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Abstract. An encryption scheme is called indistinguishable under chosen plaintext attack (short
IND-CPA) if an attacker cannot distinguish the encryptions of two messages of his choice. There
are other variants of this de�nition but they all turn out to be equivalent in the classical case. In
this paper, we give a comprehensive overview of these di�erent variants of IND-CPA for symmetric
encryption schemes in the quantum setting. We investigate the relationships between these notions
and prove various equivalences, implications, non-equivalences, and non-implications between these
variants.
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1 Introduction

Advances in quantum computing have continuously raised the interest in post-quantum secure cryptogra-
phy. In order for a post-quantum secure scheme to be designed, as a �rst step a security de�nition has to
be agreed upon. There has been extensive research toward proposing quantum counterparts of classical
security de�nitions for di�erent cryptographic primitives: encryption schemes [BZ13b,GHS16,CEV20],
message authentication codes [BZ13a,AMRS20], hash functions [Zha15,Unr16], etc. For a classical cryp-
tographic primitive to be quantum secure, besides the necessity of a quantum hardness assumption, we
also need to consider how a quantum adversary will interact with a classical algorithm. In the research
works mentioned above, the security notions have been de�ned in a setting where the quantum adver-
sary is allowed to make quantum queries a.k.a. superposition queries to the cyptographic primitives. In
this paper, we focus on quantum versions of indistinguishability under chosen plaintext attack for sym-
metric encryption schemes. There are some proposals for a quantum IND-CPA notion in the literature
[BZ13b,GHS16,MS16] (see Section 1.1 for more details). However, there are a number of design choices
(e.g., how queries are performed, when they are classical, etc.) in those works, each work considers dif-
ferent combinations of those design decisions, and the choice which combinations are investigated and
which are not is somewhat ad-hoc. In addition, it was not known (prior to our work) how the di�erent
de�nitions relate to each other, or whether they are even all equivalent. (The latter would show that the
design choices are in fact irrelevant, but unfortunately we �nd that this is not the case.) The aim of our
work is to comprehensively study the resulting variants of the IND-CPA de�nition and the relationship
(implication/equivalence/non-implication) between them.

Indistinguishability under chosen plaintext attack (IND-CPA) is a classical security notion for en-
cryption schemes in which the adversary interacts with the encryption oracle in two phases: the learning
phase and challenge phase. The learning phase (if it exists) is de�ned in a unique way: the adversary
makes queries to the encryption oracle. In contrast, the challenge phase can be de�ned in di�erent ways:
(a) The adversary chooses two messages m0,m1 and sends them to the challenger. The adversary will

receive back the encryption of mb for a random bit b.
(b) The adversary chooses two messages m0,m1 and sends them to the challenger. The adversary will

receive back the encryptions of mb, mb̄ for a random bit b.
(c) The adversary chooses a message m and sends it to the challenger. The challenger will send back

either the encryption of m or a randomly chosen message depending on a random bit b.
At the end, the adversary tries to guess the bit b. In other words, the de�nition varies according to how
the challenger responds to the adversary during the challenge phase. We call it the �return type�. As
summarized above, there are three di�erent return types: a) The challenger returns one ciphertext. (We
use the abbreviation �1ct�.) b) The challenger returns two ciphertexts. (We use the abbreviation �2ct�.)
c) The challenger returns a real or random ciphertext. (We use the abbreviation �ror�.) A comprehen-
sive study of these notions has been done in [BDJR97] in the classical setting and it turns out these
notions are equivalent up to a polynomial loss in the reductions. (The notion 2ct has not been studied



in [BDJR97], however, it is easy to see that 1ct and 2ct are equivalent in the classical setting.)

In addition, there are di�erent kinds of quantum queries, di�ering in what registers are returned or
discarded or used as input/output. (We make the di�erent possibilities more explicit in the following.)
This distinction has no counterpart in the classical setting.

In the following, we present existing quantum IND-CPA notions in the literature [BZ13b,GHS16,MS16].
We make the type of quantum query and the return type (1ct, 2ct or ror) in the de�nitions explicit.

1.1 Previous works

Boneh-Zhandry de�nition. In ([BZ13b]), Boneh and Zhandry initiate developing a quantum security
version of IND-CPA. They consider that the adversary has �standard oracle access� (ST ) to the encryp-
tion oracle in the learning phase. The standard oracle access to the encryption oracle Enc is de�ned
as the unitary operator UEnc : |x, y〉 → |x, y ⊕ Enc(x)〉 (see Section 3). For the challenge phase, they
attempt to translate the classical notion of one-ciphertext and two-ciphertext return types (presented in
(a) and (b) above) to the quantum case using the standard query model. However, they show that the
natural translation leads to an impossible notion of IND-CPA. So instead they consider classical challenge
queries in their proposed de�nition combined with standard quantum queries in the learning phase. This
inconsistency between the learning phase and the challenge phase resulted in further investigation of the
quantum IND-CPA notion in [GHS16].

Quantum IND-CPA notions in [GHS16]. In [GHS16], the authors attempt to resolve the incon-
sistency of the learning and the challenge phase of the security de�nition proposed in [BZ13b]. They
propose a �security tree� of possible security notions. In a nutshell, their security tree is built on four
di�erent perspectives on the interaction between the adversary and the challenger: 1) how the adversary
sends the challenge queries: the adversary sends quantum messages during the challenge phase or it sends
a classical description of quantum messages; 2) whether the challenger sends back the input registers
to the adversary or keeps them; and 3) the query model: the adversary has standard oracle access to
the challenger or it has �minimal oracle� access [KKVB02] (that is de�ned as |x〉 → |Enc(x)〉, called the
�erasing query model� in this work).4 Even though in total there are 23 = 8 possible security de�nitions,
only two are investigated in [GHS16]. These two de�nitions are (according to their terminology briefed
above): 1) quantum messages, not returning the input register and minimal oracle access 5. 2) classical
description of messages, not returning the input register and minimal oracle access. In our paper, we
do not consider the case when the adversary can submit the classical description of quantum messages.
Therefore, we only study the former security notion in our paper. In this paper, we refer to the minimal
query model as the �erasing query model� (ER) (see Section 3).

Quantum IND-CPA notion in [MS16]. In [MS16], Mossayebi and Schack focus on translating the
real-or-random case (c) to the quantum setting by considering an adversary that has standard oracle
access to the encryption oracle. Their security de�nition consists of two experiments, called real and
permutation. In the real experiment, the adversary's queries will be answered by the encryption oracle
without any modi�cation (access to UEnc) whereas in the permutation game, in each query a random
permutation will be applied to the adversary's message and the permuted message will be encrypted
and returned to the adversary (access to UEnc◦π for a random π). The advantage of the adversary in
distinguishing these two experiments should be negligible for a secure encryption scheme. This is a
security notion without learning queries but the adversary can perform many challenge queries. The
adversary has the standard oracle access to the challenger and the challenge phase is implemented by
the real-or-random return type.

Therefore, there are three achievable de�nitions for quantum IND-CPA notion in the literature so
far. These three notions only cover a small part of the di�erent combinations of the design choices made

4 They additionally distinguish between what they call the �oracle model� and the �challenger model� queries.
The di�erence is that in the �oracle model�, only unitary query oracles are allowed, while in the �challenger
model�, query oracles are allowed that, e.g., erase register. The security de�nitions that can be expressed in
the �challenger model� trivially subsume those that can be stated in the �oracle model�. So the distinction has
no e�ect on the set of possible security de�nitions. (In fact [GHS16] never formally de�nes the distinction.)

5 This security de�nition is equivalent to the indistinguishability notion proposed in [BJ15] for secret key encryp-
tion of quantum messages when restricted to a classical encryption function operating in the minimal query
type.
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in those papers � the query models (classical, ST , and ER etc.), the challenge return type (1ct, 2ct,
and ror), the number of queries (none, one, many) � even if we only consider di�erent combinations
of the design decisions already made in those papers. The choice which combinations are considered
seems ad-hoc (in the sense that there is no systematic consideration of other combinations), and the
combinations actually matter (di�erent from the classical setting where we tend to arrive at the same
notion of IND-CPA in many di�erent ways).

In this paper, our aim is to answer the following questions:

What is a comprehensive list of distinct possible quantum IND-CPA notions?
How do these notions relate to each other?

Which one is the strongest (achievable) security notion?

Why should we care? Encryption schemes (and other cryptographic primitives) secure under quantum
queries (a.k.a. superposition queries) have been studied in prior work from a number of angles, e.g.,
[KM10,KM12,BZ13b,BZ13a,DFNS13,KLLN16,MS16,GHS16,ATTU16,LSZ20,ECKM20]. There are two
main reasons for studying them: The fear that future cryptographic devices will be quantum and will
therefore either intentionally or due to manipulation by the adversary perform encryption and similar
operations in superposition. And the fact that in security proofs, intermediate games may involve oracles
that answer quantum queries even if the original games were purely classical.6 While these reasons give
motivation for studying quantum queries, they do not answer the question which model is the right one,
and which security de�nition is the right one. While we cannot give a de�nitive answer which de�nition
is right (although we can answer, e.g., which is strongest), we do clarify which options there are, and
how they relate (at least in the case of IND-CPA security of symmetric encryption). And by showing
equivalences, we also narrow down the �eld to a more manageable number of choices (namely 14 instead
of 72). This enables designers of symmetric encryption schemes or modes of operations to know which
security notions can be or need to be considered (e.g., they could simply show security with respect to
the strongest ones). It provides guidance to cryptographers using symmetric encryption as subprotocols
what options there are to make the proofs go through, and it provides foundational insight into the
structure of security de�nitions, and tells us which design choice does or does not matter. We note that
it is very easy to get misled here by one's intuition, and to assume relationships between the notions that
are not correct. For example, [GHS16] mistakenly states that that the security notion based on erasing
queries ER are stronger than those based on standard or embedding queries ST and then restricts their
attention only to ER queries because this supposedly leads to the strongest result.7 To the best of our
knowledge, this claim has not been disputed so far. Our results show that this is not correct and the
notions are actually incomparable. Last but not least, understanding IND-CPA with quantum queries is
an important �rst step towards �nding good notion for IND-CCA with quantum queries. The latter is a
hard problem with partial success [GKS20,CEV20] that has so far eluded a de�nitive answer.

1.2 Our contribution

We study all possible quantum IND-CPA security notions. We classify the notions according to the
following criteria:
(1) Number of queries that the adversary can make during the learning and challenge phase: zero (0),

one (1) or many (∗) queries. Note that in the learning phase either there are no queries or many
queries, while in the challenge phase there is one query or many queries.

(2) Query model in which the adversary is interacting with the challenger: classical (CL), standard (ST ),
erasing (ER), or �embedding query model� (EM ). The embedding query model is the same as the
standard oracle model except that the adversary only provides the input register and the output
register will be initiated with |0〉 by the challenger (see Section 3).

(3) The return type of the challenge ciphertext: 1ct, 2ct, or ror.
This gives 5 choices for the learning phase and 24 choices for the challenge phase. Therefore, there are

120 variants of the security notion altogether. We use the notation learn(?, ?)-chall(?, ?, ?) for the security
notions where the question marks are identi�ed from the choices above. For instance, Boneh-Zhandry

6 For example, in a post-quantum security proof involving quantum rewinding [Wat09,Unr12], the adversary
(including any oracles it queries) is �rst transformed into a unitary operation. As a side e�ect, any classical
oracle would also be transformed into a unitary one.

7 Their precise wording is �we will focus on the (. . . 2) models in order to be on the `safe side', as they lead
to security notions which are harder to achieve.�. In their language, type-(2) models correspond to our ER
queries, and type-(1) models to our ST queries.
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de�nition [BZ13b] can be represented with learn(∗,ST )-chall(1,CL, 1ct) which means many ST queries
in the learning phase and one classical challenge query, both returning one ciphertext.

Excluded security notions.We do not consider security notions with di�erent quantum query models
in the learning phase and the challenge phase. E.g., ST challenge queries with ER learning queries.
While technically possible, we consider such combinations to be too �exotic� and do not expect them
to be used.8 (Classical queries can be combined with any of quantum query models though. E.g., the
Boneh-Zhandry de�nition [BZ13b] is of this type.) Also, we do not consider a security notion with no
learning queries and only one challenge query since this corresponds to the IND-OT-CPA notion (one-
time IND-CPA security) that will not be considered in this paper. This leaves us with 72 notions.

Impossible security notions. Any security notion with the standard query model and the return type
of one-ciphertext or two-ciphertexts in the challenge phase is impossible to achieve by any encryption
scheme [BZ13b]. Any query model with the embedding query type EM and the one-ciphertext return
type in the challenge phase is impossible to achieve. (See Section 5).

Impossible security notions

learn(0,−)-chall(∗,ST , 1ct), learn(0,−)-chall(∗,ST , 2ct), learn(∗,CL)-chall(1,ST , 1ct),
learn(∗,CL)-chall(1,ST , 2ct), learn(∗,CL)-chall(∗,ST , 1ct), learn(∗,CL)-chall(∗,ST , 2ct),
learn(∗,ST )-chall(1,ST , 1ct), learn(∗,ST )-chall(1,ST , 2ct), learn(∗,ST )-chall(∗,ST , 1ct),
learn(∗,ST )-chall(∗,ST , 2ct), learn(0,−)-chall(∗,EM , 1ct), learn(∗,CL)-chall(1,EM , 1ct),
learn(∗,CL)-chall(∗,EM , 1ct), learn(∗,EM )-chall(1,EM , 1ct), learn(∗,EM )-chall(∗,EM , 1ct)

This leaves us with 57 notions that remain valid and achievable. Then, we compare these notions and
put the equivalent notions in the same panel and this results in 14 panels. We give an overview of the
equivalent notions in each panel and relation between panels below.

Security notions that are equivalent (see Section 6): The de�nitions inside each box are equivalent.

Panel 1

learn(0,−)-chall(∗,ER, 1ct), learn(0,−)-chall(∗,ER, 2ct), learn(∗,CL)-chall(∗,ER, 1ct),
learn(∗,CL)-chall(∗,ER, 2ct), learn(∗,ER)-chall(1,ER, 1ct), learn(∗,ER)-chall(1,ER, 2ct),
learn(∗,ER)-chall(∗,ER, 1ct), learn(∗,ER)-chall(∗,ER, 2ct)

Note that Panel 1 includes the security notion from [GHS16]. These equivalences have been achieved
by Theorem 16, Theorem 18 and Theorem 21.

Panel 2

learn(0,−)-chall(∗,ST , ror), learn(∗,CL)-chall(∗,ST , ror), learn(∗,ST )-chall(1,ST , ror),
learn(∗,ST )-chall(∗,ST , ror)

Note that Panel 2 includes the security notion from [MS16]. These equivalences have been obtained
by Theorem 16 and Theorem 19.

Panel 3

learn(∗,CL)-chall(1,ER, 2ct)

Panel 4

learn(0,−)-chall(∗,ER, ror), learn(∗,CL)-chall(∗,ER, ror), learn(∗,ER)-chall(1,ER, ror),
learn(∗,ER)-chall(∗,ER, ror)

The equivalences in Panel 4 have been concluded by Theorem 16 and Theorem 19.

8 This is, of course, arguable. But without this restriction, the number of possible combinations would grow
beyond what is manageable in the scope of this paper.
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Panel 5

learn(0,−)-chall(∗,EM , ror), learn(0,−)-chall(∗,EM , 2ct), learn(∗,CL)-chall(∗,EM , ror),
learn(∗,CL)-chall(∗,EM , 2ct), learn(∗,EM )-chall(1,EM , 2ct), learn(∗,EM )-chall(1,EM , 2ct),
learn(∗,EM )-chall(∗,EM , 2ct), learn(∗,EM )-chall(∗,EM , 2ct)

We can conclude the equivalences in Panel 5 by Theorem 16, Theorem 18, Theorem 20, Theorem 19,
and Theorem 23.

Panel 6

learn(∗,ST )-chall(1,CL, 1ct), learn(∗,ST )-chall(1,CL, 2ct), learn(∗,ST )-chall(1,CL, ror),
learn(∗,ST )-chall(∗,CL, 1ct), learn(∗,ST )-chall(∗,CL, 2ct), learn(∗,ST )-chall(∗,CL, ror)

Note that this panel includes the security notion from [BZ13b]. We can conclude these equivalences
by Theorem 16 and Theorem 17.

Panel 7

learn(∗,CL)-chall(1,EM , 2ct)

Panel 8

learn(∗,CL)-chall(1,ER, 1ct)

Panel 9

learn(∗,CL)-chall(1,ER, ror)

Panel 10

learn(∗,ER)-chall(1,CL, 1ct), learn(∗,ER)-chall(1,CL, 2ct), learn(∗,ER)-chall(1,CL, ror),
learn(∗,ER)-chall(∗,CL, 1ct), learn(∗,ER)-chall(∗,CL, 2ct), learn(∗,ER)-chall(∗,CL, ror)

We can conclude the equivalences in Panel 10 by Theorem 16 and Theorem 17.

Panel 11

learn(∗,ER)-chall(1,CL, 1ct), learn(∗,ER)-chall(1,CL, 2ct), learn(∗,ER)-chall(1,CL, ror),
learn(∗,ER)-chall(∗,CL, 1ct), learn(∗,ER)-chall(∗,CL, 2ct), learn(∗,ER)-chall(∗,CL, ror)

Panel 12

learn(∗,CL)-chall(1,ST , ror)

Panel 13

learn(∗,CL)-chall(1,EM , ror)

Panel 14

learn(0,−)-chall(∗,CL, ror), learn(0,−)-chall(∗,CL, 1ct), learn(0,−)-chall(∗,CL, 2ct),
learn(∗,CL)-chall(∗,CL, ror), learn(∗,CL)-chall(∗,CL, 1ct), learn(∗,CL)-chall(∗,CL, 2ct),
learn(∗,CL)-chall(1,CL, ror), learn(∗,CL)-chall(1,CL, 1ct), learn(∗,CL)-chall(1,CL, 2ct)

We can conclude the equivalences in Panel 14 by Theorem 16 and Theorem 17.

Main Conclusion. We observe that di�erent from the the classical case in which IND-CPA notions
with di�erent types of challenge queries (1ct, 2ct or ror) are equivalent (see Panel 14), when the chal-
lenge query is quantum (ST , EM or ER), the notions are not equivalent. More speci�cally: 1) for the
standard query model, only the real-or-random return type is achievable (and two others are impossible
to achieve). 2) for the embedding query model, the one-ciphertext return type is impossible to achieve,
however, other two cases are equivalent (see Panel 5). 3) for the erasing query model, the one-ciphertext
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and two-ciphertexts return type are equivalent (see Panel 1) and they are stronger than the real-or-
random return type (Panel 1 implies Panel 4 but Panel 4 does not imply Panel 1.)

Implications and non-implications (Section 6 and Section 7). The implications and separation
have been drawn in Table 1. The cells with a question mark remain open questions. We conclude that
a notion P does not imply Q if there exists an encryption scheme that is secure with respect to the
notion P and insecure with respect to the notion Q. All of non-implications hold on the assumption of
the existence of a quantum secure one-way function. They all hold in the standard model except the
non-implication in the Theorem 39 that holds in the quantum random oracle model.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

P1 ; ⇒ ⇒22 ⇒ ⇒24 ⇒ ⇒ ⇒ ⇒ ⇒ ;42 ⇒ ⇒
P2 ; ; ; ⇒ ⇒ ⇒ ;29 ? ;39 ⇒ ⇒ ⇒ ⇒
P3 ? ; ? ? ? ⇒ ⇒ ⇒ ? ? ; ⇒ ⇒
P4 ; ; ; ⇒ ? ⇒ ;29 ⇒ ⇒ ⇒ ; ⇒ ⇒
P5 ; ; ; ; ? ⇒ ; ? ; ⇒ ; ⇒ ⇒
P6 ; ; ; ; ; ;40 ; ; ; ⇒ ; ;41 ⇒
P7 ; ; ; ; ? ? ; ? ; ? ; ⇒23 ⇒
P8 ? ; ? ? ? ? ? ⇒22 ? ? ; ⇒ ⇒
P9 ; ; ; ? ? ? ? ; ? ? ; ⇒ ⇒
P10 ; ; ; ; ; ? ;40 ; ; ⇒ ; ;34 ⇒
P11 ; ; ; ; ; ? ; ; ; ; ; ; ⇒
P12 ; ? ; ; ? ? ? ; ? ; ? ⇒ ⇒
P13 ; ; ; ; ? ? ? ; ? ; ? ; ⇒
P14 ; ; ; ; ; ; ; ; ; ; ;33 ; ;

Table 1. Implications and separations between panels. The cells with question marks remain open problems.
An arrow in row Pn, column Pm indicates whether Pn implies or does not imply Pm. The superscript number
next to an arrow indicates the number of the corresponding theorem. Arrows without a superscript follow by
transitivity. See Section 7 for more details.

Main conclusions of Table 1.

� Panels P1 and P2 together imply all other security notions. We present an encryption scheme that
is secure in the sense of the notions in Panels 1 and 2 (see Section 8), and therefore it is secure with
respect to all notions.

� Panel 1 and 2 are not comparable to each other. This resolves an open question stated in [MS16,GKS20]
for a comparison between these security notions.

Decoherence Lemmas: As a technical tool, we introduce several �decoherence lemmas�. Essentially, a
decoherence lemma states that a certain randomized query e�ectively measures the input of that query
(even if the query is actually performed in superposition). Speci�cally, we show that a query to a random
sparse injective function in the erasing query model ER will e�ectively measure its input (even if no reg-
ister is actually measured or erased). And we show an analogous result for the embedding query model
EM and a random function (see Section 4). These decoherence lemmas make it much easier to compare
di�erent query models because we can use them to prove that the queries are essentially classical. They
are an essential tool in our analysis, both for showing implications and separations. However, we believe
that they are a tool of independent interest for the analysis of superposition queries in cryptographic
settings.

Simulating learning queries with challenge queries. Classically, it is easy to see that one can
simulate the learning queries with the challenge queries. For instance, for the return types of 1ct, 2ct,
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the reduction makes a copy of the learning query and sends the query along with its copy to the chal-
lenger and forwards back the ciphertext (for 1ct) or one of the ciphertexts (for 2ct) to the adversary.
But when the queries are quantum, this approach will not work due to no-cloning theorem. We resolve
this obstacle and show that the simulation of learning queries using challenge queries is possible in the
quantum setting as well (see Theorem 18 and Theorem 19.).

Impossibility results for natural modes of operation. We show (Corollary 43) that any out of
a large class of modes of operation is insecure with respect to challenge queries of type (ST , ror).
Basically, this includes all modes of operation where at least one output block is not dependent on all
input blocks. While we do propose an encryption scheme that is secure with respect to all (achievable)
notions presented in this work, an e�cient mode of operation with this property is an open problem.
Corollary 43 gives an indication why this is the case. (Modes of operation have been studied with respect
to the Boneh-Zhandry's de�nition in [ATTU16].)

1.3 Organization of the paper

In Section 2, we give some notations and preliminaries. The Section 3 is dedicated to de�nitions that
are needed in the paper. We present all possible security notions for IND-CPA in the quantum case in
this section. In Section 4, we prove some lemmas that are needed for security proofs. The Section 5 is
dedicated to rule out security notions that are impossible to be achieved for any encryption scheme. In
Section 6, we investigate implications between all security notions de�ned in Section 3. We obtain 14
groups of equivalent security notions. Then, we prove some implications between these 14 panels. The
Section 7 is dedicated to show non-implications between panels. The relation between few panels are left
as open questions. Finally, we present an encryption scheme that is secure with respect to all security
notions de�ned in the paper in Section 8.

2 Preliminaries

We recall some basics of quantum information and computation needed for our paper below. Interested
reader can refer to [NC16] for more informations. For two vectors |Ψ〉 = (ψ1, ψ2, · · · , ψn) and |Φ〉 =
(φ1, φ2, · · · , φn) in Cn, the inner product is de�ned as 〈Ψ, Φ〉 =

∑
i ψ
∗
i φi where ψ∗i is the complex

conjugate of ψi. Norm of |Φ〉 is de�ned as ‖|Φ〉‖ =
√
〈Φ,Φ〉. The outer product is de�ned as |Ψ〉〈Φ| : |α〉 →

〈Φ, α〉|Ψ〉. The n-dimensional Hilbert space H is the complex vector space Cn with the inner product
de�ned above. A quantum system is a Hilbert space H and a quantum state |ψ〉 is a vector |ψ〉 in H with
norm 1. A unitary operation over H is a transformation U such that UU† = U†U = I where U† is the
Hermitian transpose ofU and I is the identity operator over H. The computational basis for H consists of
n vectors |bi〉 with 1 in the position i and 0 elsewhere (these vectors will be represented by n vectors {|x〉 :
x ∈ {0, 1}logn}). With this basis, the unitary CNOT is de�ned as CNOT: |m1,m2〉 → |m1,m1 ⊕m2〉
where m1,m2 are bit strings. The Hadamard unitary is de�ned as H: |b〉 → 1√

2
(
∣∣b̄〉 + (−1)b|b〉) where

b ∈ {0, 1}. An orthogonal projection P over H is a linear transformation such that P2 = P = P†.
A measurement on a Hilbert space is de�ned with a family of orthogonal projectors that are pairwise
orthogonal. An example of measurement is the computational basis measurement in which any projection
is de�ned by a basis vector. The output of computational measurement on state |Ψ〉 is i with probability
‖〈 bi, Φ〉‖2 and the post measurement state is |bi〉. The density operator is of the form ρ =

∑
i pi|φi〉〈φi|

where pi are non-negative and add up to 1. This represents that the system will be in the state |φi〉
with probability pi. We denote the trace norm with || · ||1, i.e., ||M ||1 = tr(|M |) = tr(

√
M† ·M). For two

density operators ρ1 and ρ2, the trace distance is de�ned as TD(ρ1, ρ2) = 1
2 ||ρ1−ρ2||1. For two quantum

systems H1 and H2, the composition of them is de�ned by the tensor product and it is H1 ⊗ H2. For
two unitary U1 and U2 de�ned over H1 and H2 respectively, (U1 ⊗ U2)(H1 ⊗H2) = U1(H1)⊗ U2(H2).

Often, when we write �random� we mean �uniformly random�. For a function f , the notation im f
means {f(x) : x ∈ {0, 1}m}. Many terms, which we are going to use throughout this paper, are actually
a function of the implicit security parameter η, however in order to keep notations simple, we refuse in
most cases to make the dependence of η explicit, and just omit η. Quantum registers are denoted by Q
with possibly some index. We will use the notation of Uf , Û

g for arbitrary f , arbitrary injective g where

Uf : |x, y〉 7→ |x, y ⊕ f(x)〉 and Ûg : |x〉 7→ |g(x)〉.
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2.1 Realizability of Ûg as a quantum circuit

The linear operator Ûg is mathematically well de�ned however we have to argue that it can also be
realized in a quantum computer e�ciently whenever g is e�ciently computable and reversible, classically.
In order to do so we introduce a new concept, which we call the lifting of a classical injective function.

De�nition 1. For an arbitrary injective g : {0, 1}h ↪→ {0, 1}n we call glift : {0, 1}n ≈−→ {0, 1}n some
chosen (but in a �xed way) bijective function such that

∀x ∈ {0, 1}h : glift(x||0n−h) = g(x)

That is, glift as just an arbitrary extension of g with a bigger domain, so that glift is bijective and
e�ciently computable. Now we implement Ûg using its inverse.

Qin :|x〉
Uglift U(glift)−1

|g(x)〉
Qout : |0〉 |0〉

where Uglift is implemented as the following:

Qin :|x〉
Uglift

|x〉
Qanc :

∣∣0n−h〉 |0〉
Qout : |0〉 |g(x)〉

Note that for an injective function g if there exists an e�ciently computable function g−1 such that
g−1(g(x)) = x, then we can implement erasing type query without the ancillary register. For instance,
this is the case for encryption scheme and its decryption:

Qin :|x〉
UEnc UDec

|f(x)〉
Qout : |0〉 |0〉

3 De�nitions

One of the main points in this text is to compare di�erent ways to model how a quantum-circuit can
access a classical function (i.e., how to represent a classical function as a quantum gate). There are 3
query models that model this, here called ST (standard query model), EM (embedding query model)
and ER (erasing query model). EM is in some sense the �weakest� in that it can be simulated by both
ST and ER. Let

f : {0, 1}h → {0, 1}n

be a deterministic function.
ST-query model: In this query model, an algorithm A that queries f provides two registers Qin, Qout
of h and n q-bits, respectively. Then, the unitary Uf : |x, y〉 7→ |x, y ⊕ f(x)〉 is applied to these registers
and �nally the registers Qin, Qout are passed back to A. We depict the quantum circuit corresponding
to this query model as follows.

Qin : |x〉
Uf

|x〉
Qout : |y〉 |y ⊕ f(x)〉

EM-query model: , The di�erence of the EM -query model with the ST -model is that the lower wire
(called "output-wire") is forced to contain 0n and is not part of the input to quantum circuit but produced
locally. In other words, an algorithm A provides a register Qin of h qubits and Qout is initialized as 0n

and then the unitary Uf is applied to registers Qin, Qout and they are passed back to A. The following
quantum circuit illustrates this query model.

Qin : |x〉
Uf

|x〉
Qout : |0n〉 |f(x)〉

ER-query model: This query model is only possible for functions f that are injective.

Q : |x〉 Ûf |f(x)〉

Note that the ST and EM oracles for a classical function f can be constructed in canonical way from a
classical circuit that computes f [NC16] and the ER oracle constructed in Section 2.1.
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De�nition 2. A triple (KGen,Enc,Dec) of e�cient algorithms is called an (h, n, n′, t, t′)-encryption
scheme (note that these parameters depend on η) i�

KGen : {0, 1}t
′
→ {0, 1}h

Enc : {0, 1}h × {0, 1}n × {0, 1}t → {0, 1}n
′

Dec : {0, 1}h × {0, 1}n
′
→ {0, 1}n ∪ {⊥}

such that

∀k ∈ {0, 1}h,m ∈ {0, 1}n, r ∈ {0, 1}t : Deck(Enck(m; r)) = m

(Note that an encryption scheme is by de�nition always entirely classical.) Here Enck(m; r) is written
instead of Enc(k,m, r) and Deck(c) instead of Dec(k, c). Enc is called the encryption function, Dec is
called the decryption function and KGen is called the key generation function. {0, 1}h is the key space,
{0, 1}n is the message (plaintext) space, {0, 1}n′ is the ciphertext space, {0, 1}t is the randomness space
and {0, 1}t′ is the key randomness space. The decryption is allowed but not required to output ⊥ for an
invalid ciphertext. The encryption algorithm samples an element of {0, 1}t uniformly at random and then
invokes the encryption function. The key generation algorithm samples an element of {0, 1}t′ uniformly
at random and then invokes the key generation function.

For simplicity, we allow ourselves to write k
$←− KGen() instead of kr

$←− {0, 1}t′ , k := KGen(kr) and

c
$←− Enck(m) instead of r

$←− {0, 1}t, c := Enck(m; r).

De�nition 3. For natural numbers h and n, two functions f1 : {0, 1}h → {0, 1}n and f2 : {0, 1}h →
{0, 1}n are called c-indistinguishable (short for classically indistinguishable) i� there exists a negligible ε
such that for all classical polynomial time oracle algorithms (adversaries) Â we have:

|Prob[1← Âf1()]− Prob[1← Âf2()]| < ε,

(Note, that the de�nition of c-indistinguishability is never used in the paper, it is just mentioned for
reference purposes) We call f1, f2 s-indistinguishable (short for standard indistinguishable) or CL-q-
indistinguishable i� there exists a negligible ε such that for all quantum polynomial time oracle algorithms
(adversaries) A and all auxiliary quantum states |ψ〉 chosen by A (since A can use an internal quantum
register to distinguish) it holds:

|Prob[1← ACL(f1)(|ψ〉)]− Prob[1← ACL(f2)(|ψ〉)]| < ε,

We call f1, f2 qm-q-indistinguishable (short for (query model)-quantum-indistinguishable) for qm ∈
{CL,ST ,ER} (note that we are not considering EM ) i� there exists a negligible ε such that for all
quantum polynomial time oracle algorithms (adversaries) A making polynomial number of queries to its
oracle in the query model qm and all auxiliary quantum states |ψ〉 chosen by A it holds:

|Prob[1← Aqm(f1)(|ψ〉)]− Prob[1← Aqm(f2)(|ψ〉)]| < ε.

Note that s-indistinguishability is the same as CL-q-indistinguishability.

We call a pseudorandom permutation πs a vPRP for v ∈ {c, s, q}, i� it is v-indistiguishable from a
truly random permutation.

That means, that cPRP (classically pseudorandom permutation), sPRP (standard pseudorandom per-
mutation = quantum-resistant pseudorandom permutation) and qPRP (quantum pseudorandom per-
mutation) can be de�ned like this (Note that we mean strong PRP whenever we say PRP, we are not
considering weak PRPs):

� With cPRP is meant a pseudorandom permutation πs which is secure against a classical adversary
with classical access to πs and π

−1
s .

� With sPRP is meant a pseudorandom permutation πs which is secure against a quantum adversary
with classical access to πs and π

−1
s .

� With qPRP is meant a pseudorandom permutation πs which is secure against a quantum adversary
with superposition access to πs and π

−1
s .
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Formally ST -qPRP and ER-qPRP have to be distinguished, but as shown below they are equivalent.
More formally cPRP, sPRP, qPRP are de�ned by:

De�nition 4. A (m,n)-v-strong-PRP (also called block cipher) for v ∈ {c, s, q} is a pair of two permu-
tations (= bijective functions) π and π−1 with seed s:

πs, π
−1
s : {0, 1}n → {0, 1}n, s ∈ {0, 1}m

sucht that the oracle f1(x) = πs(x) is v-indistinguishable from a truly random permutation f2 : {0, 1}n →
{0, 1}n.

Remark 5. Note that Zhandry showed in [Zha16] that a qPRP (ST -query-model) can be constructed
from a one-way-function. Also we are not distinguishing qPRP in the ST -query-model and in the ER-
query-model. The next lemma will justify that by proving that ST -q-PRP-oracles and ER-q-PRP-oracles
can be constructed out of each other by a simple construction.

Lemma 6. A bijection π is a strong ST -q-PRP i� it is a strong ER-q-PRP.

Proof. The reason is, that ST and ER query models can be constructed out of each other if the oracle
function is a permutation and with access to its inverse. The following circuit shows how a ER query
can be simulated by ST queries to π and π−1:

|m〉
Uπ Uπ−1

|π(m)〉
|0〉⊗n |0〉⊗n

The following circuit shows how a ST query can be simulated by ER queries to π and π−1:

|m〉 Ûπ • Ûπ
−1 |m〉

|c〉 |c⊕ π(m)〉

Next we have to de�ne what it means for an encryption scheme to ful�ll a certain security notion.
Namely we will de�ne what it means to be l-c-IND-CPA-secure. Here l and c are just symbols which will
be instantiated later. l stands for learning query and c stands for challenge query. Accordingly l will be
instantiated with some learning query model and c will be instantiated with some challenge query model.

De�nition 7. We say the encryption scheme Enc = (KGen,Enc,Dec) is l-c-IND-CPA-secure if any
polynomial time quantum adversary A can win in the following game with probability at most 1

2 + ε for
some negligible ε.

The l-c-CPA game:

Key Gen: The challenger runs KGen to obtain a key k, i.e., k
$←− KGen(), and it picks a random bit b.

Learning Queries: The challenger answers to the l-type queries of A using Enck. l also speci�es the
number of times this step can be repeated.
Challenge Queries: The challenger answers to the c-type queries of A using Enck and the bit b. (Note
that the adversary is allowed to submit some learning queries between the challenge queries as well.) c
also speci�es the number of times this step can be repeated.
Guess: The adversary A returns a bit b′, and wins if b′ = b.

In the two sections below, we de�ne di�erent types of the learning queries and the challenge queries
and we specify which combination of them are considered for IND-CPA security of encryption schemes.

3.1 Syntax of l - the learning queries

Note that in all of the following query models, we assume the challenger picks k
$←− KGen(). For simplicity,

we omit it from our description. A fresh randomness will be chosen for each query (quantum or classical),
but, for a superposition query, all the messages in the query will be encrypted with the same randomness
[BZ13b].
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Learning Query type CL. For any query on input message m, the challenger picks r
$←− {0, 1}t and

gives back c← Enck(m; r) to the adversary.

Learning Query type ST. For any query, the challenger picks r
$←− {0, 1}t and applies the unitary

UEnck to the provided registers of the adversary,Qin, Qout registers, and gives them back to the adversary.

Qin
UEnck(·;r)

Qin

Qout Qout

Learning Query type EM. Upon receiving the provided register of the adversary, say Qin, the chal-

lenger picks r
$←− {0, 1}t and creates a register Qout containing the state |0〉⊗n and applies the unitary

UEnck to the registers Qin, Qout, and gives them back to the adversary.

Qin
UEnck(·;r)

Qin

|0〉⊗n
′

Qout

Learning Query type ER. Upon receiving the provided register of the adversary, say Qin, the chal-

lenger picks r
$←− {0, 1}t , applies the unitary ÛEnck(·,r) to the register Qin and gives it back to the

adversary.

Qin ÛEnck(·;r) Qout

Note that ÛEnck(·;r) is physically realizable because Enck is e�ciently reversible for �xed r using Deck(see
Section 2.1).

3.2 Syntax of c - the challenge queries

First we give an informal overview over the di�erent challenge query types, then we de�ne each of them
in a concise way:
Overview:

� chall(·,CL, 1ct) m0,m1 7→ Enck(mb, r) classically

� chall(·,CL, 2ct) m0,m1 7→ Enck(mb, r),Enck(mb̄, r) classically

� chall(·,CL, ror) m 7→ Enck(m, r) or Enck(m∗, r) classically

� chall(·,ST , 1ct) |m0,m1, c〉 7→ |m0,m1, c⊕ Enck(mb; r)〉
� chall(·,ST , 2ct) |m0,m1, c0, c1〉 7→ |m0,m1, c0 ⊕ Enck(mb; rb), c1 ⊕ Enck(mb̄; rb̄)〉
� chall(·,ST , ror) |m, c〉 7→

∣∣m, c⊕ Enck(πb(m); r)
〉
for a random permuation π

� chall(·,EM , 1ct) |m0,m1, 0〉 7→ |m0,m1,Enck(mb; r)〉
� chall(·,EM , 2ct) |m0,m1, 0, 0〉 7→ |m0,m1,Enck(mb; rb),Enck(mb̄; rb̄)〉
� chall(·,EM , ror) |m, 0〉 7→

∣∣m,Enck(πb(m); r)
〉
for a random permuation π

� chall(·,ER, 1ct) |m0,m1〉 7→ |Enck(mb; r)〉 and trace out |mb̄〉
� chall(·,ER, 2ct) |m0,m1〉 7→ |Enck(mb; r),Enck(mb̄; rb̄)〉
� chall(·,ER, ror) |m〉 7→

∣∣Enck(πb(m); r)
〉
for a random permuation π

Using a the permutation π in this way, is a general way of construction real-or-random-like quantum
query models and �rst appeared in [MS16]. The idea behind it is that a random permutation π in some
way replaces a plaintext m with a random bitstring, as this would be the case classically.

Challenge Query type chall(·,CL, 1ct). (The notation 1ct stands for one-ciphertext.)
In this query model, the adversary picks two messages m0,m1 and sends them to the challenger. The

challenger picks r
$←− {0, 1}t and a random bit b and returns Enck(mb; r)
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Challenge Query type chall(·,ST , 1ct). In this query model, the adversary prepares two input
registers Qin0, Qin1, one output register Qout and sends them to the challenger. The challenger picks

r
$←− {0, 1}t and a random bit b, applies the following operation on these three registers and returns the

registers to the adversary.

UST ,1ct,r,b : |m0,m1, c〉 7→ |m0,m1, c⊕ Enck(mb; r)〉.

Qin0 :

UST ,1ct,r,bQin1 :

Qout :

where
UST ,1ct,r,b : |m0,m1, c〉 7→ |m0,m1, c⊕ Enck(mb; r)〉

Challenge Query type chall(·,EM , 1ct). In this query model, the adversary prepares two input
registers Qin0, Qin1, and sends them to the challenger. The challenger prepares an output register Qout

containing |0〉⊗n
′
, picks r

$←− {0, 1}t and a random bit b, applies the following operation on these three
registers and returns the registers to the adversary.

UEM ,1ct,r,b : |m0,m1, 0〉 7→ |m0,m1,⊕Enck(mb; r)〉.

Qin0 :

UST ,1ct,r,bQin1 :

Qout : |0〉⊗n
′

Challenge Query type chall(·,ST , 2ct). (The notation 2ct stands for two-ciphertexts.)
In this query model, the adversary prepares two input registersQin0, Qin1, two output registersQout0, Qout1

and sends them to the challenger. The challenger picks r0, r1
$←− {0, 1}t and a random bit b, applies the

following operation on these four registers and returns the registers to the adversary.

UST ,2ct,r0||r1,b : |m0,m1, c0, c1〉 7→ |m0,m1, c0 ⊕ Enck(mb; r0), c1 ⊕ Enck(mb̄; r1)〉.

Qin0 :

UST ,2ct,r0||r1,b
Qin1 :

Qout0 :

Qout1 :

where
UST ,2ct,r0||r1,b : |m0,m1, c0, c1〉 7→ |m0,m1, c0 ⊕ Enck(mb; r0), c1 ⊕ Enck(mb̄; r1)〉.

Challenge Query type chall(·,EM , 2ct). In this query model, the adversary prepares two registers
Qin0, Qin1 and sends them to the challenger. The challenger prepares two registersQout0, Qout1 containing

|0〉⊗n
′
, picks r0, r1

$←− {0, 1}t and a random bit b, applies the following operation on these four registers
and returns the registers to the adversary.

UEM ,2ct,r0||r1,b : |m0,m1, 0, 0〉 7→ |m0,m1,Enck(mb; r0),Enck(mb̄; r1)〉.

Qin0 :

UST ,2ct,r0||r1,b
Qin1 :

Qout0 : |0〉⊗n
′

Qout1 : |0〉⊗n
′
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Challenge Query type chall(·,ER, 2ct). In this query model, the adversary prepares two registers

Qin0, Qin1 and sends them to the challenger. The challenger picks r0, r1
$←− {0, 1}t and a random bit b,

applies the following operation on these two registers and returns the registers to the adversary.

UER,2ct,r0||r1,b : |m0,m1〉 7→ |Enck(mb; r0),Enck(mb̄; r1)〉

Qin0
UER,2ct,r0||r1,b

Qout0

Qin1 Qout1

Challenge Query type chall(·,ER, 1ct). In this query model, the adversary prepares two registers

Qin0, Qin1 and sends them to the challenger. The challenger picks r
$←− {0, 1}t and a random bit b,

measures the register Qinb̄ (one of the provided registers by the adversary) and throws out the result,
applies the unitary ÛEnck(·,r) to the register Qinb, and passes it back to the adversary.

Qin0 ÛEnck(·;r) Qout

Qin1 a
b •

where registers Qin0, Qin1 will be swapped if and only if b = 1.

Challenge Query type chall(·,ST , ror). (The notation ror stands for �real or random�.)

In this query model, the adversary provides two registers Qin, Qout. The challenger picks r
$←− {0, 1}t, b $←−

{0, 1}, a random permutation π on {0, 1}n, applies the unitary UEnck◦πb to Qin, Qout and passes them
back to the adversary.

Qin
UEnck◦πb

Qin

Qout Qout

Challenge Query type chall(·,EM , ror). In this query model, the adversary provides a register

Qin. The challenger prepares a register Qout containing |0〉⊗n
′
, picks r

$←− {0, 1}t, b $←− {0, 1}, a ran-
dom permutation π on {0, 1}n, applies the unitary UEnck◦πb to Qin, Qout and passes them back to the
adversary.

Qin :
UEnck◦πb

Qin

Qout : |0〉⊗n
′

Qout

Challenge Query type chall(·,ER, ror). In this query model, the adversary prepares a register Qin

and sends it to the challenger. The challenger picks r
$←− {0, 1}t, b $←− {0, 1}, a random permutation π on

{0, 1}n, applies the following operation to the register Qin, and passes it back to the adversary.

UER,ror,r,b : |m〉 7→
∣∣Enck(πb(m); r)

〉
Qin UER,ror,r,b Qout

Note that the circuit above is physically realizable because Enck and π are injective for �xed r. We
give an alternative circuit for the above operation:

Qin Ûπ
b

ÛEnc(·,r) Qout
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3.3 Instantiation of learning and challenge query models

We de�ne l := learn(lnb, lqm) (�nb� stands for �number�, �qm� stands for �query model�) where lnb
shows the number of the learning queries and lqm shows the type of the learning queries. Therefore,
l = learn(lnb, lqm) where (lnb, lqm) ∈ ({∗}×{CL,ST ,EM ,ER})∪{(0,−)} where ∗ means arbitrary many
queries and 0 means no learning queries. For the challenge queries, we de�ne c := chall(cnb, cqm, crt)
(�nb� stands for �number�, �qm� stands for �query model�, �rt� stands for �return type�) where cnb shows
the number of the challenge queries and cqm, crt show the type of the challenge queries. Therefore,
c = chall(cnb, cqm, crt) where (cnb, cqm, crt) ∈ {1, ∗} × {CL,ST ,EM ,ER} × {1ct, 2ct, ror}

Number of queries:

� 0: Zeros queries (only allowed for learning queries, otherwise the notion becomes trivial)
� 1: One query (only allowed for challenge queries)
� ∗: arbitrary many queries

Query models:

� CL: Classical queries
� ST : Standard quantum queries
� EM : Embedding quantum queries
� ER: Erasing quantum queries

Return types: (only relevant for challenge queries)

� 1ct: One-ciphertext, that is, the adversary sends two plaintexts m0 and m1, but only one of them,
mb is encrypted.

� 2ct: Two-ciphertexts, that is, the adversary sends two plaintexts m0 and m1 and both of them are
encrypted and the adversary has to guess which ciphertext corresponds to which plaintext.

� ror: Real or random, that is, the adversary sends one plaintext m, and he gets either the encryption
of m or of π(m) where π is a random permutation on the plaintext space.

3.4 The valid combinations of the learning and challenge queries

In De�nition 7, we de�ned the security of an encryption scheme in the sense of l-c-IND-CPA. Now, we
explicitly specify which combination of the learning queries, l, and the challenge queries, c, are considered
in this paper.

The valid combinations. We consider only combinations where,

� (lnb, cnb) ∈ {(∗, 1), (∗, ∗), (0, ∗)} i.e., (lnb, cnb) 6= (0, 1). Which means we are not considering variants
of IND-OT-CPA (which is the security of encryption only used once).

� (lqm, cqm) ∈ {(CL,CL)} ∪ {(CL, x), (x,CL), (x, x)|x ∈ {ST ,EM ,ER}}, i.e., if learning queries and
challenge queries are both quantum they are not allowed to be from di�erent query models. This
is to keep the combinatorial explosion of di�erent notions in check, and notions that combine two
di�erent notions of superposition queries strike as rather exotic.

4 Decoherence lemmas

The informal idea of the following lemma is, that if you have one-time access to an ER-type oracle
of a random permutation, you cannot distinguish whether this oracle �secretely� applies a projective
measurement to your input, that measures whether your input is |+〉⊗m and if not which computational
state |x〉 it is.

Lemma 8. For a bijective function π : {0, 1}m → {0, 1}m let Ûπ be the unitary that performs the ER-
type mapping |x〉 7→ |π(x)〉. Let X be a quantum register with m qubits. Then the following two oracles
can be distinguished in a single query with probability at most 2−m+2:

� F0: Pick a random permutation π and apply Ûπ on X,
� F1: Pick a random permutation π, measure X as described later and then apply Ûπ to the result.
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The quantum circuit for F0 is:

|x〉 Ûπ |π(x)〉

and for F1 it is:

|x〉 H⊗m c←M|0〉〈0| H⊗m Mc Ûπ |π(x̂)〉 or |+〉

where c←M|0〉〈0| is a projective measurement, storing the result (0 or 1) in c, that projects to the spaces

span(|0〉⊗m) (corresponding to 0) and its orthogonal space (corresponding to 1) andM1 is a measurement
in the computational basis, whose outcome is denoted by x̂ andM0 means no operation.

Note, that if we writeM|+〉〈+| for the projective measurement, that projects to the subspace span(|+〉⊗m),
we can write F1 simply as:

|x〉 c←M|+〉〈+| Mc Ûπ |π(x̂)〉 or |+〉

On a very high level, the proof proceeds as follows: We explicitly represent the density operators ρ0, ρ1

after execution of F0, F1, respectively (for a generic initial state). Then we show by explicit calculation
that ρ0 = ρ′ where ρ′ is the state after F1 if we omit the measurement Mc. Finally we proceed to
bound the trace distance between ρ1 and ρ′. (This then gives a bound on the adversary's distinguishing
probability.) This is done by explicitly computing ρ1 − ρ′ and noting that this di�erence is a tensor
product of two matrices σ1, σ2, both of reasonably simple form, and one of them having very small trace
norm.

Proof. Let M := 2m. A general strategy for distinguishing F0 and F1 can be described as follows: The
adversary chooses some Hilbert space H and for each x ∈ {0, 1}m picks α̂x ∈ C, normalized |φx〉 ∈ H
such that

∑
x∈X |α̂x|2 = 1. The adversary then prepares the bipartite state

|Ψ〉AB :=
∑

x∈{0,1}m
α̂x|φx〉A ⊗ |x〉B

and sends the B-part as the input of an oracle query to f . (We can assume this without loss of generality,
because any state |Ψ〉AB can be written in this form.) Let ρ0 be the density operator of the state after
applying the oracle in F0 to |Ψ〉. Let ρ1 be the density operator of the state after applying the oracle
in F1 to |Ψ〉. Let ρ′ be the density operator of the state in F1 if the computational measurementMc is
omitted. Decompose |Ψ〉 as:

|Ψ〉 = γyes|ψyes〉+ γno|ψno〉

such that |ψyes〉 ∈ H ⊗ span{|+〉⊗m} and |ψno〉 ∈ H ⊗ span{|+〉⊗m}⊥. Now choose quantum states |Φ〉
and (|ψx〉)x and scalars β and (αx)x∈X such that

γyes|ψyes〉 = β|Φ〉 ⊗ |+〉⊗m

and

γno|ψno〉 =
∑
x

(αx|ψx〉 ⊗ |x〉)

so then

|Ψ〉 = β|Φ〉 ⊗ |+〉⊗m +
∑
x

(αx|ψx〉 ⊗ |x〉)

and such that H⊗ span{|+〉⊗m} is orthogonal to
∑
x (αx|ψ〉 ⊗ |x〉⊗m). To simplify computation choose

quantum states |ψyes〉 and |ψno〉 and scalars γyes and γno (�yes� corresponds to measuring c = 0 and �no�
corresponds to measuring c = 1). In the following, we prove

∑
x αx|ψx〉 = 0.

Claim 1. ∑
x

αx|ψx〉 = 0
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Proof (of Claim): ∑
x

αx|ψx〉 =
∑
x,y

(I⊗ 〈y|)(αx|ψx〉 ⊗ |x〉)

= 2
m
2

(
I⊗ 〈+|⊗m

)∑
x

(αx|ψx〉 ⊗ |x〉) = 2
m
2

(
I⊗ 〈+|⊗m

)
γno|ψno〉

But by the choice of γno|ψno〉 this is 0.
This proves the claim.

Now we show that ρ0 = ρ′ and then we show that TD(ρ0, ρ1) (which is equal to TD(ρ′, ρ1)) is neg-
ligible.

Claim 2.
γno

∑
π

(I⊗ Ûπ)|ψno〉 = 0

Proof (of Claim):

γno

∑
π

(I⊗ Ûπ)|ψno〉 =
∑
π

(I⊗ Ûπ)
∑
x

(αx|ψx〉 ⊗ |x〉)

=
∑
π

∑
x

(αx|ψx〉 ⊗ |π(x)〉) =
∑
π

∑
y

(αy
∣∣ψπ−1(y)

〉
⊗ |y〉)

=
∑
y

∑
π

(αy
∣∣ψπ−1(y)

〉
⊗ |y〉) =

∑
y

∑
x

∑
π:π−1(y)=x

(αx|ψx〉 ⊗ |y〉)

=
∑
y

∑
x

M !

M
· (αx|ψx〉 ⊗ |y〉) =

M !

M
·
∑
x

|ψx〉 ⊗
∑
y

αy|y〉

(i)
=
M !

M
·
∑
x

|ψx〉 ⊗ 0 = 0

where (i) follows from Claim 1.
This proves the claim.

Claim 3.
(I⊗ Ûπ)(γyes|ψyes〉) = γyes|ψyes〉

Proof (of Claim): This hold because γyes|ψyes〉 = β|Φ〉⊗|+〉⊗m and Ûπ|+〉⊗m = 2−
m
2

∑
x |π(x)〉 = |+〉⊗m.

This proves the claim.

Claim 4.
ρ0 = ρ′

Proof (of Claim): This can be shown by proving that ρ0 − ρ′ = 0. We know that

ρ0 =
1

M !

∑
π

(I⊗ Ûπ)|Ψ〉〈Ψ |(I⊗ Ûπ)†

and
|Ψ〉 = γyes|ψyes〉+ γno|ψno〉

De�ning the shorthand ∣∣ψ′yes

〉
:= (I⊗ Ûπ)γyes|ψyes〉 = γyes|ψyes〉
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and ∣∣ψ′no,π

〉
:= (I⊗ Ûπ)γno|ψno〉

we can write

ρ0 =
1

M !

∑
π

(
(
∣∣ψ′yes

〉
+
∣∣ψ′no,π

〉
)(
〈
ψ′yes

∣∣+
〈
ψ′no,π

∣∣))
and

ρ′ =
1

M !

∑
π

(∣∣ψ′yes

〉〈
ψ′yes

∣∣+
∣∣ψ′no,π

〉〈
ψ′no,π

∣∣)
so that means that

ρ0 − ρ′ =
1

M !

∑
π

(
∣∣ψ′yes

〉〈
ψ′no,π

∣∣+
∣∣ψ′no,π

〉〈
ψ′yes

∣∣)
=
∣∣ψ′yes

〉
(
∑
π

〈
ψ′no,π

∣∣) + (
∑
π

∣∣ψ′no,π

〉
)
〈
ψ′yes

∣∣
so this is 0 as Claim 2 implies

∑
π

∣∣ψ′no,π

〉
= 0.

This proves the claim.
Now move on to proving that TD(ρ′, ρ1) is negligible. First observe that ρ1 is the sum of two parts
ρ1 = ρyes + ρno corresponding to the situations, ρyes where c was measured to be 0 and ρno where c was
measured to be 1. And in the same way decompose ρ′ = ρyes + ρ′no by de�ning:

ρyes = γyes|ψyes〉〈ψyes|γ∗yes

and

ρ′no =
( 1

M !

∑
π

∑
x,y

αxα
∗
y|ψx〉〈ψy| ⊗ |π(x)〉〈π(y)|

)
=

1

M !

∑
π

∣∣ψ′no,π

〉〈
ψ′no,π

∣∣
and

ρno =
( 1

M !

∑
π

∑
x

|αx|2|ψx〉〈ψx| ⊗ |π(x)〉〈π(x)|
)

Now compute

ρ′ − ρ1 =
(
ρyes +

1

M !

∑
π

∣∣ψ′no,π

〉〈
ψ′no,π

∣∣)− (ρyes + ρno)

=
1

M !

∑
π

∣∣ψ′no,π

〉〈
ψ′no,π

∣∣− ρno

=
1

M !

∑
π

∑
x 6=y

αxα
∗
y|ψx〉〈ψy| ⊗ |π(x)〉〈π(y)|

=
1

M !

∑
x6=y

∑
u 6=w

∑
π

π(x)=u
π(y)=w

αxα
∗
y|ψx〉〈ψy| ⊗ |π(x)〉〈π(y)|

=
1

M !

∑
x6=y

∑
u 6=w

∑
π

π(x)=u
π(y)=w

αxα
∗
y|ψx〉〈ψy| ⊗ |u〉〈w|

=
1

M !

∑
x6=y

∑
u 6=w

(M − 2)!αxα
∗
y|ψx〉〈ψy| ⊗ |u〉〈w|

=

∑
x 6=y

αxα
∗
y|ψx〉〈ψy|

⊗
 1

M(M − 1)

∑
u6=w

|u〉〈w|


So call

σ1 :=
∑
x6=y

αxα
∗
y|ψx〉〈ψy|

and

σ2 :=
1

M(M − 1)

∑
u6=w

|u〉〈w|
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Then
ρ0 − ρ1 = σ1 ⊗ σ2

Now prove that ‖σ2‖1 is su�ciently small, for this sake let ρ∗ = 1
M IM :

‖σ2‖1 =

∥∥∥∥∥∥ 1

M(M − 1)

∑
u 6=w

|u〉〈w|

∥∥∥∥∥∥
1

=

∥∥∥∥∥ 1

M(M − 1)

(∑
u,w

|u〉〈w| −
∑
z

|z〉〈z|

)∥∥∥∥∥
1

=
1

M − 1

∥∥∥∥∥∑
u,w

1

M
|u〉〈w| −

∑
z

1

M
|z〉〈z|

∥∥∥∥∥
1

(i)

≤ 1

M − 1

∥∥∥∥∥ 1

M

∑
u,w

|u〉〈w|

∥∥∥∥∥
1

+

∥∥∥∥∥ 1

M

∑
z

|z〉〈z|

∥∥∥∥∥
1


=

1

M − 1

(∥∥∥|+〉⊗m〈+|⊗m∥∥∥
1

+ ‖ρ∗‖1
)

(ii)
=

1

M − 1
(1 + 1) ≤ 4 · 2−m

where (i) uses the triangle inequality for the trace norm, and (ii) involves the following two facts: for
any normalized pure state |ψ〉, ‖|ψ〉〈ψ|‖1 = 1 (here in particular we have |+〉⊗m = 1√

M

∑
x |x〉) and for

the maximally mixed state ρ∗ := 1
M IM , ‖ρ∗‖1 = 1. So it follows that:

‖σ2‖1 ≤ 2−m+2

and we can compute

‖σ1‖1 =

∥∥∥∥∥∑
x,y

αxα
∗
y|ψx〉〈ψy| −

∑
x

|αx|2|ψx〉〈ψx|

∥∥∥∥∥
1

=

∥∥∥∥∥(∑
x

αx|ψx〉
)(∑

y

α∗y〈ψy|
)
−
∑
x

|αx|2|ψx〉〈ψx|

∥∥∥∥∥
1

≤ 1 +

∥∥∥∥∥∑
x

|αx|2|ψx〉〈ψx|

∥∥∥∥∥
1

≤ 1 +
∑
x

|αx|2 ‖|ψx〉〈ψx|‖1

= 1 +
∑
x

|αx|2 · 1

= 1 + ‖γno|ψno〉‖2

= 1 + |γno|2 ≤ 2

So all in all
‖ρ0 − ρ1‖1 = ‖σ1‖1 · ‖σ2‖1 ≤ 2 · 2−m+2 = 2−m+3

so

TD(ρ0, ρ1) =
1

2
‖ρ0 − ρ1‖1 ≤ 2−m+2

This implies that no adversary can distinguish the results of F0 and F1 with probability better than
2−m+2. In particular if m is at least superlogarithmical, so for instance linear in the security parameter,
then F0 and F1 are indistinguishable for one query.

Lemma 9. For numbers m and n and an injective function f : {0, 1}m → {0, 1}m+n let Ûf be the
isometry that performs the ER-type mapping |x〉 7→ |f(x)〉. Let X be a quantum register containing m
qubits. Then the following two oracles can be distinguished with probability at most 3 · 2−n.
1. F0: Pick f uniformly at random and then apply Ûf on X,
2. F1: Pick f uniformly at random, measure X in the computational basis then apply Ûf to the result.

The quantum circuit for F0 is:

|x〉 Ûf |f(x)〉

and for F1 it is:

|x〉 M Ûf |f(x̂)〉

whereM is a computational basis measurement (in the picture we denote the outcome of this measurement
with x̂).
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Proof. Intuitively this follows from Lemma 8 because: Picking a random injection has the same distri-
bution as composing concatenation of su�ciently many 0s with a random permutation. Formally, the
equivalence is shown by a sequence of hybrid oracles where G0 = F0 and G4 = F1. In the de�nition of
the hybrid games, π is always a random permutation π : {0, 1}m+n → {0, 1}m+n.
G0 is the same as F0 and G1 is the following oracle:

Oracle G1 :
Ûπ|0〉⊗n

G0 and G1 are perfectly indistinguishable for any adversary, because the probability distributions of the
observed functionality are exactly the same.

G1 and G2 can be distinguished with probability at most 2−m−n+2 by Lemma 8 where G2 is the
following oracle:

Oracle G2 :
c←M|+〉〈+| Mc Ûπ|0〉⊗n

(Here we follow the same notation as above namely, that c ← M|+〉〈+| is a projective measurement,

storing the result (0 or 1) in c, that projects to the spaces span(|+〉⊗m) (corresponding to 0) and its
orthogonal space (corresponding to 1) and M1 is a measurement in the computational basis, whose
outcome is denoted by x̂ andM0 means no operation.)

Oracle G3 :
M Ûπ|0〉⊗n

G2 and G3 can be distinguished with probability at most 2−n because the probability of measuring |+〉
is 2−n. Or more formally because ‖(|φ〉 ⊗ |0〉⊗n)†|+〉‖ ≤ 2−

n
2 for any |φ〉.

Oracle G4 : M Ûf

G3 and G4 are perfectly indistinguishable because the probability distributions are the same and G4

is the same as F1. Thus F0 and F1 can be distinguished with probability at most 2−n + 2−m−n+2 + 2−n

which is bounded by 3 · 2−n

Lemma 10. For a random function f : {0, 1}m → {0, 1}n, an embedding query to f is indistinguishable
from an embedding query to f preceded by a computational measurement on the input register. Let X be
an m-qubit quantum register. Then for any input quantum register m, the following two oracles can be
distinguished with probability at most 2−n.

1. F0: apply Uf to X and another register containing n zeros. The quantum circuit for F0 is:

|x〉
Uf

|x〉
|0〉⊗n |f(x)〉

2. F1: measure X in the computational basis and apply Uf to the result and another register containing
zeros. The circuit for F1 is:

|x〉 M
Uf

|x̂〉

|0〉⊗n |f(x̂)〉

whereM is a computational basis measurement whose outcome we denote by x̂.

Proof. Let M := 2m and N := 2n. A general strategy for distinguishing F0 and F1 can be described as
follows: The adversary chooses some Hilbert space HA and for each x ∈ {0, 1}m picks αx ∈ C, |φx〉 ∈ HA
such that

∑
x∈X |αx|2 = 1. The adversary then prepares the bipartite state

|Ψ〉AM :=
∑
x∈X

αx|φx〉A ⊗ |x〉M

and sends the B-part as the input of an oracle query to f . (We can assume this without loss of generality,
because any state |Ψ〉AB can be written in this form.) Let ρ0 be the density operator of the state after
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applying the oracle in F0 to |Ψ〉. Let ρ1 be the density operator of the state after applying the oracle in
F1 to |Ψ〉. Then it holds

ρ0 =
1

NM

∑
f

∑
x,y

α∗xαy|φx〉〈φy| ⊗ |x〉〈y| ⊗ |f(x)〉〈f(y)|

and

ρ1 =
1

NM

∑
f

∑
x,y

α∗xαx|φx〉〈φx| ⊗ |x〉〈x| ⊗ |f(x)〉〈f(x)|

=
1

NM

∑
f

∑
x,y

δx=yα
∗
xαy|φx〉〈φy| ⊗ |x〉〈y| ⊗ |f(x)〉〈f(y)|

Compute

ρ0 − ρ1 =
1

NM

∑
f

∑
x,y

δx 6=yα
∗
xαy|φx〉〈φy| ⊗ |x〉〈y| ⊗ |f(x)〉〈f(y)|

=
1

NM

∑
x 6=y

∑
u,w

∑
f,f(x)=u,f(y)=w

α∗xαy|φx〉〈φy| ⊗ |x〉〈y| ⊗ |u〉〈w|

=
1

N2

(∑
x6=y

|x〉〈y|
)
⊗
(∑
u,w

|u〉〈w|
)

=
1

N

( 1

N

∑
x 6=y

|x〉〈y|
)
⊗
( 1

N

∑
u,w

|u〉〈w|
)

=
1

N

(
|+〉〈+| − 1

N
I
)
⊗
(
|+〉〈+|

)
where u and w run over {0, 1}n. This implies:

‖ρ0 − ρ1‖1 = ‖ 1

N

(
|+〉〈+| − 1

N
I
)
⊗
(
|+〉〈+|

)
‖1 =

1

N
· 2 · 1 =

2

N

so

TD(ρ0, ρ1) ≤ 1

N
= 2−n.

This �nishes the proof.

Corollary 11. Assume n ≥ m. For a random injective function f : {0, 1}m → {0, 1}n the oracles F0

and F1 in Lemma 10 are distinguishable with probability at most 1/2n + C/2n where C is a universal
constant.

Proof. This follows from Theorem 7 in [Zha15] that states any algorithm making q quantum queries
cannot distinguish a random function from a random injective function, except with probability at most
Cq3/2n.

Corollary 12. Let R ⊆ {0, 1}s be a (�xed) set of size 2n. Let f : {0, 1}m → {0, 1}s be a random
injection with range R, that is, f is uniformly randomly chosen from the set of all injective functions
f : {0, 1}m → {0, 1}s with im f ⊆ R. An EM -query to f is distinguishable from an EM -query to f
preceded with a computational basis measurement with probability at most 1/2n + C/2n where C is a
universal constant. In other words, the following circuits are indistinguishable.

|x〉
Uf

|x〉 |x〉 M
Uf

|x̂〉

|0〉⊗n |f(x)〉 |0〉⊗n |f(x̂)〉

Proof. We can write f = g ◦ π where g : {0, 1}n → {0, 1}s is a �xed injective function with range R and
π : {0, 1}m → {0, 1}n is a random injective function. Let g−1 be a left inverse for the function g. An EM
query to f can be implemented using functions g and π as follows (using an ancillary register Anc):

Qin :
Uπ

Qin

Anc : |0〉⊗n
Ug Ug−1

Qout

Qout : |0〉⊗s a
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A simple calculation shows that the above circuit implements the isometry Uf = Ug◦π. Now using
Corollary 11, the circuit above is indistinguishable from the following circuit when one measures Qin
register at the beginning: (We stress that Uπ is used only once as required by Corollary 11 )

Qin : M
Uπ

Qin

Anc : |0〉⊗n
Ug Ug−1

Qout

Qout : |0〉⊗s a

And this is a circuit that implements an EM -query to f preceded with a measurement.

5 Impossible Security Notions

Proposition 13. There is no l-chall(cnb,ST , 1ct)-IND-CPA-secure encryption scheme where the l and
cnb can be replaced by any of the possible parameters.

Proof. This is formally proven in [BZ13b] as Theorem 4.2. For short the attack consists of inputting into
the challenge query oracle the state

|0〉⊗n ⊗ |ψ〉 ⊗ |0〉⊗n
′

where |ψ〉 is some arbitrary �su�ciently non-classical� quantum state, for example |+〉⊗n. If b = 0 the
state |ψ〉 is preserved and if b = 1 the state |ψ〉 is disturbed. So the adversary can distinguish by measuring
the second register.

Proposition 14. There is no l-chall(cnb,ST , 2ct)-IND-CPA-secure encryption scheme where the l and
cnb can be replaced by any of the possible parameters.

Proof. It is formally proven in [BZ13b] as Theorem 4.4. For short the attack consists of inputting into
the challenge query oracle the state

|0〉⊗n ⊗ |ψ〉 ⊗ |0〉⊗n
′
⊗ |+〉⊗n

′

where |ψ〉 is some arbitrary �su�ciently non-classical� quantum state. If b = 0 the state |ψ〉 is preserved
as its encryption is �absorbed� by |+〉⊗n

′
, but if b = 1 the state |ψ〉 is disturbed. So the adversary can

distinguish by measuring the second register.

Proposition 15. There is no l-chall(cnb,EM , 1ct)-IND-CPA-secure encryption scheme where the l and
cnb can be replaced by any of the possible parameters.

Proof. The same proof as for Proposition 13 works as the attack is based on inputting |0〉⊗n
′
on the

output registe. More precisely, the adversary inputs |0〉⊗n ⊗ |ψ〉 and gets exactly the same output as in
the proof of Proposition 13 and then can do exactly the same measurement to distinguish.

6 Implications

From the theoretically (4+1)×2×4×3 = 120 possible IND-CPA-notions, we excluded 1×1×4×3 = 12
that correspond to IND-OT-CPA instead of IND-CPA, as there is no learning query and only 1 challenge.
This leaves 108 notions. Next we excluded 2× 2× 3× 3 = 36 notations that we considered unreasonable,
as they combine quantum learning queries with quantum challenge queries of di�erent query models.
This leaves 72 notions. Next we excluded 15 notions that are proven impossible. This leaves 57 notions.

Now we will relate the remaining IND-CPA-notions. The 57 notions can be grouped together in 14
Panels depicted in Figure 1, so that in each panel the notions are equivalent. In order to have a compact
representation in Figure 1, for any qm ∈ {ST ,EM ,ER} we de�ne the set T ∗(qm) as

T ∗(qm) = {(learn(0,−), ∗, qm), (learn(∗,CL), ∗, qm), (learn(∗, qm), 1, qm), (learn(∗, qm), ∗, qm)}.

Note that (learn(∗,CL), 1, qm) is not in T ∗(qm). This set will only be used in Figure 1 to have a compact
representation.

Inside each panel all the notions are equivalent and apart from that, there are the following 20
implications between the panels depicted in Figure 1 using black arrows. The full set of implications
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P1: l-chall(cnb, cqm, crt),
(l, cnb, cqm) ∈ T ∗(ER),

crt ∈ {1ct, 2ct}

P2: l-chall(cnb, cqm, ror),
(l, cnb, cqm) ∈ T ∗(ST )

P3: learn(∗,CL)-chall(1,ER, 2ct)

P4: l-chall(cnb, cqm, ror),
(l, cnb, cqm) ∈ T ∗(ER)

P5: l-chall(cnb, cqm, crt),
(l, cnb, cqm) ∈ T ∗(EM ),

crt ∈ {2ct, ror}

P6: learn(∗,ST )-chall(cnb,CL, crt),
cnb ∈ {1, ∗},

crt ∈ {1ct, 2ct, ror}

P7: learn(∗,CL)-chall(1,EM , 2ct)

P8: learn(∗,CL)-chall(1,ER, 1ct)

P9: learn(∗,CL)-chall(1,ER, ror)

P10: learn(∗,ER)-chall(cnb,CL, crt),
cnb ∈ {1, ∗},

crt ∈ {1ct, 2ct, ror}

P11: learn(∗,EM )-chall(cnb,CL, crt),
cnb ∈ {1, ∗},

crt ∈ {1ct, 2ct, ror}

P12: learn(∗,CL)-chall(1,ST , ror)

P13: learn(∗,CL)-chall(1,EM , ror)

P14: l-chall(cnb,CL, crt),
(l, cnb) ∈ {(learn(0,−), ∗),

(learn(∗,CL), 1), (learn(∗,CL), ∗)},
crt ∈ {1ct, 2ct, ror}

Fig. 1. The 57 notions and equivalences and implications between them. The red dashed arrows show non-
implications that if hold, the graph will be complete.
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between all notions can be derived by taking the transitive closure of this graph. Every implication that
is not in the transitive closure of the graph is being disproven in the section about separations Section 7
or have been left as open questions. The red dashed red arrows in Figure 1 show non-implications that
if hold, the graph will be complete.

Note that Panel 6 corresponds to the quantum security de�nitions by Boneh and Zhandry [BZ13b].
Some implications follow from some theorem proven later and some are easy enough that say can be
proven by a short argument. The arguments used are the following. In each case, we assign a short name
in bold to that argument type.

� more cqs: i.e., more challenge queries. If two security notions just di�er by the fact that one of them
allows only one challenge query and the other allows polynomially many, then trivially the notion
allowing polynomially many implies the notion allowing only one. For example:

learn(∗,CL)-chall(∗,ER, ror)⇒ learn(∗,CL)-chall(1,ER, ror)

� extra lq-oracle: i.e., extra learning-query-oracle. If two security notions just di�er by the fact, that
one of them allows learning queries and the other doesn't, then trivially the notion allowing learning
queries implies the notion allowing no learning queries. For example:

learn(∗,CL)-chall(∗,ER, 1ct)⇒ learn(0,−)-chall(∗,ER, 1ct)

� other ciphertext: If two security notions just di�er by the fact, that one of them allows chall(cnb,ER, 1ct)
challenge queries and the other chall(cnb,ER, 2ct) challenge queries, then trivially the notions allowing
chall(cnb,ER, 2ct) challenge queries implies the notion allowing chall(cnb,ER, 1ct) challenge queries
(see Section 3.2). For example:

learn(∗,CL)-chall(1,ER, 2ct)⇒ learn(∗,CL)-chall(1,ER, 1ct)

� simulate classical: Classical queries can be simulated with any quantum query type by measuring
the result in the computational basis. For example:

learn(∗,ER)-chall(∗,ER, ror)⇒ learn(∗,CL)-chall(∗,ER, ror)

� simulate le with ch: When learning queries are classical, they can be simulated by the challenge
queries in the case of 1ct and 2ct. In more details, on input m as a classical learning query, we can
query (m,m) as a challenge query and simulate the learning query. For instance:

learn(0,−)-chall(∗,ER, 2ct) =⇒ learn(∗,CL)-chall(∗,ER, 2ct)

� EM simulation by ST. The query type EM can be simulated by ST -type by putting |0〉 in the
output register Qout. For example,

learn(∗,CL)-chall(∗,ST , ror)⇒ learn(∗,CL)-chall(∗,EM , ror)

� EM simulation by ER. The query type EM can be simulated by ER-type queries. In the following,
we present a circuit that depicts the simulation of EM -type queries to some function f using an ER-
type query to f :

|m〉 •
|0〉⊗n Ûf

For example,
learn(∗,ER)-chall(∗,ER, ror)⇒ learn(∗,EM )-chall(∗,EM , ror)

For the panels with more than one notion, it has to be proven, that all the notations inside are equivalent:
Panel P1 (8 security notions):

learn(∗,CL)-chall(∗,ER, 2ct) =⇒ learn(∗,CL)-chall(∗,ER, 1ct) other ciphertext

learn(∗,CL)-chall(∗,ER, 1ct) =⇒ learn(0,−)-chall(∗,ER, 1ct) extra lq-oracle

learn(0,−)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(∗,ER, 1ct) by Theorem 18

learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(1,ER, 1ct) more cqs

learn(∗,ER)-chall(1,ER, 1ct) =⇒ learn(∗,ER)-chall(1,ER, 2ct) by Theorem 21

learn(∗,ER)-chall(1,ER, 2ct) =⇒ learn(∗,ER)-chall(∗,ER, 2ct) by Theorem 16

learn(∗,ER)-chall(∗,ER, 2ct) =⇒ learn(0,−)-chall(∗,ER, 2ct) extra lq-oracle

learn(0,−)-chall(∗,ER, 2ct) =⇒ learn(∗,CL)-chall(∗,ER, 2ct) simulate le with ch
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Panel P2 (4 security notions):

learn(∗,ST )-chall(∗,ST , ror) =⇒ learn(∗,CL)-chall(∗,ST , ror) simulate classical

learn(∗,CL)-chall(∗,ST , ror) =⇒ learn(0,−)-chall(∗,ST , ror) extra lq-oracle

learn(0,−)-chall(∗,ST , ror) =⇒ learn(∗,ST )-chall(∗,ST , ror) by Theorem 19

learn(∗,ST )-chall(∗,ST , ror) =⇒ learn(∗,ST )-chall(1,ST , ror) more cqs

learn(∗,ST )-chall(1,ST , ror) =⇒ learn(∗,ST )-chall(∗,ST , ror) by Theorem 16

Panel P4 (4 security notions):

learn(∗,ER)-chall(∗,ER, ror) =⇒ learn(∗,CL)-chall(∗,ER, ror) simulate classical

learn(∗,CL)-chall(∗,ER, ror) =⇒ learn(0,−)-chall(∗,ER, ror) extra lq-oracle

learn(0,−)-chall(∗,ER, ror) =⇒ learn(∗,ER)-chall(∗,ER, ror) by Theorem 19

learn(∗,ER)-chall(∗,ER, ror) =⇒ learn(∗,ER)-chall(1,ER, ror) more cqs

learn(∗,ER)-chall(1,ER, ror) =⇒ learn(∗,ER)-chall(∗,ER, ror) by Theorem 16

Panel P5 (8 security notions):

learn(∗,EM )-chall(∗,EM , ror) =⇒ learn(∗,CL)-chall(∗,EM , ror) simulate classical

learn(∗,CL)-chall(∗,EM , ror) =⇒ learn(0,−)-chall(∗,EM , ror) extra lq-oracle

learn(0,−)-chall(∗,EM , ror) =⇒ learn(∗,EM )-chall(∗,EM , ror) by Theorem 19

learn(∗,EM )-chall(∗,EM , ror) =⇒ learn(∗,EM )-chall(1,EM , ror) more cqs

learn(∗,EM )-chall(1,EM , ror) =⇒ learn(∗,EM )-chall(1,EM , 2ct) by Theorem 20

learn(∗,EM )-chall(1,EM , 2ct) =⇒ learn(∗,EM )-chall(∗,EM , 2ct) by Theorem 16

learn(∗,EM )-chall(∗,EM , 2ct) =⇒ learn(∗,CL)-chall(∗,EM , 2ct) simulate classical

learn(∗,CL)-chall(∗,EM , 2ct) =⇒ learn(0,−)-chall(∗,EM , 2ct) extra lq-oracle

learn(0,−)-chall(∗,EM , 2ct) =⇒ learn(∗,EM )-chall(∗,EM , 2ct) by Theorem 18

learn(∗,EM )-chall(∗,EM , 2ct) =⇒ learn(∗,EM )-chall(∗,EM , ror) by Theorem 23

Panel P6 (6 security notions):

learn(∗,ST )-chall(1,CL, 1ct) =⇒ learn(∗,ST )-chall(∗,CL, 1ct) by Theorem 16

learn(∗,ST )-chall(∗,CL, 1ct) =⇒ learn(∗,ST )-chall(1,CL, 1ct) more cqs

The rest of equivalences by Theorem 17

Panel P10 (6 security notions):

learn(∗,ER)-chall(1,CL, 1ct) =⇒ learn(∗,ER)-chall(∗,CL, 1ct) by Theorem 16

learn(∗,ER)-chall(∗,CL, 1ct) =⇒ learn(∗,ER)-chall(1,CL, 1ct) more cqs

The rest of equivalences by Theorem 17

Panel P11 (6 security notions):

learn(∗,EM )-chall(1,CL, 1ct) =⇒ learn(∗,EM )-chall(∗,CL, 1ct) by Theorem 16

learn(∗,EM )-chall(∗,CL, 1ct) =⇒ learn(∗,EM )-chall(1,CL, 1ct) more cqs

The rest of equivalences by Theorem 17

Panel P14 (9 security notions):

learn(∗,CL)-chall(1,CL, 1ct) =⇒ learn(∗,CL)-chall(∗,CL, 1ct) by Theorem 16

learn(∗,CL)-chall(∗,CL, 1ct) =⇒ learn(∗,CL)-chall(1,CL, 1ct) more cqs

learn(∗,CL)-chall(∗,CL, 1ct) =⇒ learn(0,−)-chall(∗,CL, 1ct) extra lq-oracle

learn(0,−)-chall(∗,CL, 1ct) =⇒ learn(∗,CL)-chall(∗,CL, 1ct) simulate le with ch

The rest of equivalences by Theorem 17

The 20 arrows in detail:

24



� From panel 1 to panel 3
precisely: learn(∗,CL)-chall(∗,ER, 2ct) =⇒ learn(∗,CL)-chall(1,ER, 2ct)
argument: more cqs

� From panel 1 to panel 4
precisely: learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(∗,ER, ror)
argument: Theorem 22

� From panel 1 to panel 6
precisely: learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ST )-chall(∗,CL, 1ct)
argument: Theorem 24

� From panel 2 to panel 5
precisely: learn(∗,ST )-chall(∗,ST , ror) =⇒ learn(∗,EM )-chall(∗,EM , ror)
argument: EM simulation by ST.

� From panel 2 to panel 6
precisely: learn(∗,ST )-chall(∗,ST , ror) =⇒ learn(∗,ST )-chall(∗,CL, 1ct)
argument: simulate classical

� From panel 4 to panel 5
precisely: learn(∗,ER)-chall(∗,ER, ror) =⇒ learn(∗,EM )-chall(∗,EM , ror)
argument: EM simulation by ER

� From panel 2 to panel 12
precisely: learn(∗,CL)-chall(∗,ST , ror) =⇒ learn(∗,CL)-chall(1,ST , ror)
argument: more cqs

� From panel 3 to panel 7
precisely: learn(∗,CL)-chall(∗,ER, 2ct) =⇒ learn(∗,CL)-chall(∗,EM , 2ct)
argument: EM simulation by ER.

� From panel 3 to panel 8
precisely: learn(∗,CL)-chall(1,ER, 2ct) =⇒ learn(∗,CL)-chall(1,ER, 1ct)
argument: other ciphertext

� From panel 4 to panel 10
precisely: learn(∗,ER)-chall(∗,ER, ror) =⇒ learn(∗,ER)-chall(∗,CL, 1ct)
argument: simulate classical

� From panel 4 to panel 9
precisely: learn(∗,CL)-chall(∗,ER, ror) =⇒ learn(∗,CL)-chall(1,ER, ror)
argument: more cqs

� From panel 5 to panel 7
precisely: learn(∗,CL)-chall(∗,EM , 2ct) =⇒ learn(∗,CL)-chall(1,EM , 2ct)
argument: more cqs

� From panel 5 to panel 11
precisely: learn(∗,EM )-chall(∗,EM , 2ct) =⇒ learn(∗,EM )-chall(∗,CL, 1ct)
argument: simulate classical

� From panel 6 to panel 11
precisely: learn(∗,ST )-chall(1,CL, 1ct) =⇒ learn(∗,EM )-chall(1,CL, 1ct)
argument: EM simulation by ST

� From panel 8 to panel 9
precisely: learn(∗,CL)-chall(1,ER, 1ct) =⇒ learn(∗,CL)-chall(1,ER, 1ct)
argument: Theorem 22

� From panel 10 to panel 11
precisely: learn(∗,ER)-chall(1,CL, 1ct) =⇒ learn(∗,EM )-chall(1,CL, 1ct)
argument: EM simulation by ER

� From panel 7 to panel 13
precisely: learn(∗,CL)-chall(1,EM , 2ct) =⇒ learn(∗,CL)-chall(1,EM , ror)
argument: Theorem 23

� From panel 9 to panel 13
precisely: learn(∗,CL)-chall(1,ER, ror) =⇒ learn(∗,CL)-chall(1,EM , ror)
argument: EM simulation by ER

� From panel 11 to panel 14
precisely: learn(∗,EM )-chall(1,CL, 1ct) =⇒ learn(∗,CL)-chall(1,CL, 1ct)
argument: simulate classical

� From panel 12 to panel 13
precisely: learn(∗,CL)-chall(1,ST , 1ct) =⇒ learn(∗,CL)-chall(1,EM , ror)
argument: EM simulation by ST.

25



� From panel 13 to panel 14
precisely: learn(∗,CL)-chall(1,EM , ror) =⇒ learn(∗,CL)-chall(∗,CL, 1ct)
arguments: We can show the implication with the application of the following arguments respec-
tively: simulate classical, Theorem 17 and Theorem 16

These are the implications. Now we prove the theorem mentioned in this list. In Theorem 16, we prove
that if we �x all the parameters in two notions expect the number of the challenge queries (that can be
one or many), the notion with many challenge queries implies the notion with one challenge query if one
can simulate the challenge queries with the learning queries (when knowing the challenge bit).

Theorem 16. If a chall(1, cqm, crt)-challenge-query can be e�ciently simulated with an lqm-learning-
query (when knowing the challenge bit b) then learn(∗, lqm)-chall(1, cqm, crt) =⇒ learn(∗, lqm)-chall(∗, cqm, crt).

Proof. Let A be an adversary that wins in the learn(∗, lqm)-chall(∗, cqm, crt) game with non-negligible
advantage ε(n). We assume that A makes q challenge queries. We construct an adversary B that attacks
in the sense of learn(∗, lqm)-chall(1, cqm, crt). Let B be an adversary that chooses uniformly at random
an element k from {1, . . . , q}, runs the adversary A and answers to the i-th challenge query made by A
as follows:

1. When i < k, B simulates the i-th challenge query by a learning query assuming that b = 0.
2. For k-th challenge query, B uses a challenge query to answer.
3. When i > k, B simulates the i-th challenge query by a learning query assuming that b = 1.

At the end, B returnsA's output. Let the game Gb denote an execution of B together with the learn(∗, lqm)
-chall(1, cqm, crt) challenger. Let Gbk denote the same but using a �xed value of k. Note that G0

k = G1
k+1.

Then G0
q is essentially an execution of A with the learn(∗, lqm)-chall(∗, cqm, crt) challenger with b = 0.

And G1
1 one with b = 1. Thus |Pr[1 ← G0

q ] − Pr[1 ← G1
1 ]| ≥ ε(n). Furthermore the advantage of B is

|Pr[1 ← G0] − Pr[1 ← G1]| = |
∑
k

1
q Pr[1 ← G0

k] −
∑
k

1
q Pr[1 ← G1

k]| = | 1q (Pr[1 ← G0
q ] − Pr[1 ← G1

1 ])| ≥
ε(n)/q. This is a contradiction with the security in the learn(∗, lqm)-chall(1, cqm, crt) sense.

In the following theorem, we show that when the challenge queries are classical and we �x other
parameters except the return types, these notions (with di�erent return types 1ct, 2ct, ror) are equivalent.

Theorem 17. Let L = {learn(0,−), learn(∗,CL), learn(∗,ST ), learn(∗,EM ), learn(∗,ER)} and Cnb =
{1, ∗}. For all (l,Cnb) ∈ L× Cnb \ {

(
learn(0,−), 1

)
}, the following security notions are equivalent for all

encryption schemes: (Note that when l = learn(0,−) and cnb = 1, the security de�nition is IND-OT-CPA
that we have excluded.)

� C1ct := l-chall(cnb,CL, 1ct)-IND-CPA-security
� C2ct := l-chall(cnb,CL, 2ct)-IND-CPA-security
� Cror := l-chall(cnb,CL, ror)-IND-CPA-security

Proof. C2ct =⇒ C1ct: trivial.
C1ct =⇒ C2ct, case cnb = ∗: A 2ct-challenge-query of the form

(m0,m1) 7→ (Enck(mb),Enck(mb̄))

can be simulated by two queries of the form (m0,m1) 7→ Enck(mb), namely by querying

(m0,m1) 7→ Enck(mb)

to get Enck(mb) and then switching the inputs and querying

(m1,m0) 7→ Enck(mb̄)

to get Enck(mb̄). So the desired outcome (Enck(mb),Enck(mb̄)) is simulated.
C1ct =⇒ C2ct case cnb = 1: We prove that

l-chall(1,CL, 1ct) =⇒ l-chall(∗,CL, 1ct) =⇒ l-chall(∗,CL, 2ct) =⇒ l-chall(1,CL, 2ct)

(for simplicity we drop the IND-CPA-security from the notation above). The �rst implication follows
from Theorem 16, the second implication was proven above and the third implication is trivial, because
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the only di�erence is that there are less challenge queries available on its right side.
C1ct =⇒ Cror: This follows from the fact that a ror-challenge-query can be simulated by a 1ct-challenge-
query as follows. Let A be a successful adversary against l-chall(cnb,CL, ror)-IND-CPA-security, trans-
form it into an adversary BA against l-chall(cnb,CL, 1ct)-IND-CPA-security. (The adversary B runs A
and plays the role of the challenger for A.) The learning queries are simply forwarded. When A performs
a challenge query with input m′, then B samples a random value r and submits (m0,m1) = (m′, r) to
the challenger. The challenger answers with Enck(mb) i.e., with Enck(m′) if b = 0 and with Enck(r) if
b = 1. This is exactly what A expects to get back, so B can simply pass it over to A.
Cror =⇒ C1ct: We want to show that the game with challenge queries (m0,m1) 7→ Enck(m0) is indis-
tinguishable from the game with challenge queries (m0,m1) 7→ Enck(m1). But since Enc is Cror-secure it
follows that the game with challenge queries (m0,m1) 7→ Enck(m0) is indistinguishable from the game
with challenge queries (m0,m1) 7→ Enck(r) where r is random. And as well that the game with challenge
queries (m0,m1) 7→ Enck(r) where r is random is indistinguishable from the game with challenge queries
(m0,m1) 7→ Enck(m1). So by transitivity of indistinguishability Enc is C1ct-secure.

In the theorem below, we show that the security de�nition with no learning queries imply the security
de�nition that performs EM and ER type learning queries. The idea of proof is to simulate learning
queries with the challenge queries. Classically, we can simulate easily the learning queries using the
challenge queries by making a copy of the message sent as a learning query and send the message
and its copy as a challenge query. However, this approach is not straightforward in the quantum case
because of no-cloning theorem. Therefore, we de�ne two intermediate games with learning queries that
always return encryption of 0. Overall, we show that IND-CPA games and two intermediate games are
indistinguishable.

Theorem 18. learn(0,−)-c =⇒ learn(∗, lqm)-c where c ∈ {chall(∗,EM , 2ct), chall(∗,ER, 2ct), chall(∗,ER, 1ct)}
and lqm ∈ {EM ,ER}.

Proof. Let Enc be some encryption scheme that is learn(0,−)-c-secure for c ∈ {chall(∗,EM , 2ct), chall(∗,ER, 2ct),
chall(∗,ER, 1ct)}. We will show that Enc is learn(∗, lqm)-c-secure by de�ning a sequence of IND-CPA
games that demonstrate that settings with challenge bit b = 0 and b = 1 are indistinguishable.

De�ne the learning query l′ to be as follows: For EM type learning queries, after receiving the quantum
register Qin, measure it in the computational basis to get a classical value x, compute Enc(0), and return
|x,Enc(0)〉. For ER type learning queries, it returns |Enc(0)〉.

Let Game Gb be the IND-CPA game with c-challenge-queries and learn(∗, lqm)-learning-queries when
the challenge bit is b. Let Game G′b be the IND-CPA game with c-challenge-queries and l′-learning-queries
when the challenge bit is b.

Now we shall show in sequence that these games are indistinguishable from one another:

G0
∼= G′1

∼= G′0
∼= G1.

To do this, we construct an adversary B that breaks learn(0,−)-c-security from an adversary A that
distinguishes the two subsequent games in the relation above. Let b′ denote the challenge bit of the
adversary B's challenger. In all the cases, the adversary B answers the challenge queries made by A by
forwarding them to its challenger. In the following, we show how the adversary B answers the learning
queries made by A in each case.
G0
∼= G′1 :G0
∼= G′1 :G0
∼= G′1 : Upon receiving the quantum register Qin as a learning query from the adversary A, the

adversary B prepares the quantum register Q′in containing |0〉, performs the c-challenge query for Qin, Q
′
in

registers and then does the following:

(i) When c = chall(∗,EM , 2ct), B receives back four registers. B measures and discards the second and
fourth registers and sends the �rst and third registers to A.

Qin : |m〉

c
Q′in : |0〉 a
Qout :|0〉⊗n

′

Q′out :|0〉⊗n
′

a
At the end, the adversary B returns A's output. Note that if the challenge bit is b′ = 0, then the
adversary B returns |m,Enc(m)〉 to A. This is a simulation of the EM type learning queries in
game G0. It is clear that the challenge queries made by A are simulated perfectly by B. Therefore,
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the adversary B perfectly simulates game G0 when b′ = 0. When the challenge bit is b′ = 1, the
adversary B e�ectively measures Qin by measuring Q′out (which contains the encryption of Qin).
Thus, it returns |m,Enc(0)〉 (where m is the result of measuring Qin) as an answer for a learning
query. This is a simulation of the l′ learning queries in game G′1. Therefore, the adversary B perfectly
simulates game G′1 when b′ = 1. Since Enc is learn(0,−)-chall(∗,EM , 2ct)-secure, G0 and G′1 are
indistinguishable.

(ii) When c = chall(∗,ER, 2ct), B receives two registers. B measures and discards the second register
and sends the �rst register to A.

Qin : |m〉 U(ER,1ct,r0)

Q′in : |0〉 U(ER,1ct,r1) a
b′ •

At the end, the adversary B returns A's output. Note that if the challenge bit is b′ = 0, then the
adversary B returns |Enc(m)〉 to A. This is a simulation of ER type learning queries in game G0. It
is clear that the challenge queries made by A are simulated perfectly by B. Therefore, the adversary
B perfectly simulates game G0 when b

′ = 0. When the challenge bit is b′ = 1 the adversary B returns
|Enc(0)〉 as an answer for a learning query. This is a simulation of l′ learning queries in game G′1.
Therefore, the adversary B perfectly simulates game G′1 when b′ = 1. Since Enc is learn(0,−)-
chall(∗,ER, 2ct)-secure, G0 and G′1 are indistinguishable.

(iii) When c = chall(∗,ER, 1ct), B receives back one register and forwards it to A.

Qin : |m〉 U(ER,1ct,r)

Q′in : |0〉 a
b′ •

At the end, the adversary B returns A's output. Similar to the cases above, we can show that the
adversary B simulates the game G0 when the challenge bit is b′ = 0 and it simulates the game G′1
when the challenge bit is b′ = 1. Since Enc is learn(0,−)-chall(∗,ER, 1ct)-secure, G0 and G′1 are
indistinguishable.

G′0
∼= G1G′0
∼= G1G′0
∼= G1: Similar to the cases above, we can show that G′0 and G1 are indistinguishable. In this case, the

adversary B after receiving the quantum register Qin as a learning query from the adversary A, prepares
the quantum register Q′in containing |0〉, performs the c-challenge query for Q′in, Qin registers (the order
of registers have been exchanged). Then it does exactly the same as above in each case. For instance in
the case of c = chall(∗,EM , 2ct), B receives back four registers, then measures and discards the second
and fourth registers and sends the �rst and third registers to A.

Q′in : |0〉

c
Qin : |m〉 a
Qout :|0〉⊗n

′

Q′out :|0〉⊗n
′

a

At the end, B returns A's output. The other cases are similar.

G′1
∼= G′0 :G′1
∼= G′0 :G′1
∼= G′0 : It is clear that B can simulate l′ learning queries in both cases of EM and ER type queries

by performing a c-challenge-query with input |0〉 ⊗ |0〉 to obtain |Enc(0)〉. Therefore, B can simulate the
games G′0 and G′1 when b′ = 0 and b′ = 1, respectively. At the end, B returns A's output. Two games
are indistinguishable because Enc is learn(0,−)-c secure. In summary, we showed that G0 and G1 are
indistinguishable and therefore Enc is learn(∗, lqm)-c-secure.

In the theorem below, we show that the security de�nition with no learning queries imply the security
de�nition that performs ST , EM and ER type learning queries when the return type of the challenge
queries is ror. The idea of the proof is to simulate the learning queries with the challenge queries. In
each case, we de�ne an intermediate game with learning queries that applies a random permutation to
the input register before invoking the query (and undo this by applying π−1 to the input register for
ST and EM cases.) Then we show that IND-CPA games with b = 0, 1 are indistinguishable from this
intermediate game and this �nishes the proof.
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Theorem 19. learn(0,−)-chall(∗, cqm, ror) =⇒ learn(∗, cqm)-chall(∗, cqm, ror), cqm ∈ {ST ,EM ,ER}.

Proof. Let Enc be some encryption scheme that is learn(0,−)-chall(∗, cqm, ror)-secure for cqm ∈ {ST ,EM ,
ER}. We will show that Enc is learn(∗, cqm)-chall(∗, cqm, ror)-secure by de�ning a sequence of IND-CPA
games that demonstrate that the settings with the challenge bit b = 0 and b = 1 are indistinguishable.
Let Game Gb be the IND-CPA game with chall(∗, cqm, ror)-challenge queries and learn(∗, cqm)-learning
queries when the challenge bit is b.

We de�ne the game G′ to be the IND-CPA game with chall(∗, cqm, ror)-challenge queries with the
challenge bit b = 1 and learn(∗, l′qm)-learning queries where the learning query model l′qm is as follows:
For the query model qm = ST , after receiving the quantum registers Qin and Qout, apply a random
permutation π on register Qin, perform the query to Enc and �nally apply π−1 on register Qin afterwards.
We draw the circuit below.

Qin : π
UEnc

π−1

Qout :

For the query model qm = EM , after receiving the quantum register Qin, prepare a quantum register

Qout containing |0〉⊗n
′
, apply a random permutation π on register Qin, perform the query to Enc and

�nally apply π−1 on register Qin afterwards. We draw the circuit below.

Qin : π
UEnc

π−1

|0〉⊗n
′

For the query models ER, after receiving the quantum register Qin, apply a random permutation π on
register Qin, perform the query to Enc (in the ER query model). The circuit for l′qm queries in this case
is

Qin : π ÛEnc

Next we will show the following indistinguishability relations.

G0
∼= G′ ∼= G1

In all cases, from an adversary that distinguishes two games we construct an adversary that breaks the
learn(0,−)-chall(∗, cqm, ror) security of Enc. Let A be an adversary that distinguishes two subsequent
games in the relation above with non-negligible probability µ. We construct the adversary B that breaks
the learn(0,−)-chall(∗, cqm, ror) IND-CPA security of Enc.

G0G0G0
∼= G′G′G′: In this case, the adversary B runs A and answers to A's learning queries by forwarding

them as the challenge queries to the challenger. B will also directly forward the challenge queries made
by A to the challenger. At the end, B returns output of A. We show that B simulates perfectly two games
for the di�erent type of queries separately:

1. When cqm = ST : We recall the challenge query type (ST , ror) in the circuit below.

Qin :
UEnc◦πb′

Qout :

Note that if the challenge bit b′ = 0 then B simulates the learning and challenge queries in the game
G0 and if b′ = 1 then B simulates the learning and challenge queries in the game G′. So the advantage
of B in guessing the challenge bit b′ is at least µ.

2. When cqm = EM : We recall the challenge query type (EM , ror) in the circuit below.

Qin :
UEnc◦πb′

|0〉⊗n
′

Note that if the challenge bit b′ = 0 then B simulates the learning and challenge queries in the game
G0 and if b′ = 1 then B simulates the learning and challenge queries in the game G′. So the advantage
of B in guessing the challenge bit b′ is at least µ.

3. When cqm = ER: We recall the challenge query type (ER, ror) in the circuit below.

Qin : ÛEnc◦πb′

It is clear that if the challenge bit b′ is 0 then B simulates the learning queries in the game G0 and
if the challenge bit is 1 then B simulates the learning and challenge queries in the game G′. So the
advantage of B in guessing the challenge bit b′ is at least µ.
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G′G′G′ ∼= G1G1G1: We show these two games are indistinguishable for di�erent query types:

1. When cqm = ST . In this case, the adversary B answers to A's learning queries by forwarding them
as the challenge queries to the challenger. To answer A's challenge queries, B applies a random
permutation π on input register Qin and sends Qin and Qout to the challenger. After getting the
response from the challenger, it applies π−1 to the input register Qin and sends them to the adversary
A. If the challenge bit b′ = 0, then the adversary B simulates learning queries and challenge queries
in the game G1. If the challenge bit b′ = 1, then the adversary B simulates learning queries and
challenge queries in the game G′.

2. When cqm = EM . The adversary B does the same as above except Qout contains |0〉⊗n.
3. When cqm = ER. In this case, the adversary B answers to A's learning queries by forwarding them

as the challenge queries to the challenger. To answer the challenge queries, B applies a random
permutation π on input register Qin and sends it to the challenger. After getting the response from
the challenger, it forwards it to the adversary A. If the challenge bit b′ = 0, then the adversary B
simulates learning queries and challenge queries in the game G1. If the challenge bit b

′ = 1, then the
adversary B simulates learning queries and challenge queries in the game G′.

In the theorem below, we show that for the embedding query type, ror-challenge queries imply 2ct-
challenge queries. A less general version of this theorem (when there is only one challenge query) is used
to show the equivalences of the notions in Panel 5.

Theorem 20. learn(∗,EM )-chall(∗,EM , ror) =⇒ learn(∗,EM )-chall(∗,EM , 2ct)

Proof. Let Enc be some encryption scheme that is learn(∗,EM )-chall(∗,EM , ror)-secure. We will show
that Enc is learn(∗,EM )-chall(∗,EM , 2ct)-secure by showing that the settings with challenge bit b = 0
and b = 1 are indistinguishable. Since the learning queries are already the same, it is su�cient to de�ne
a sequence of games with indistinguishable challenge queries. (The learning queries are (∗,EM ) in all
cases)

In the following we de�ne c(i) challenge queries for i = 1, 2, 3, 4 :

(i) c(1): On input registers Qin0 and Qin1 and the challenge bit b does the following:

Qin0 : |m0〉
UEnc◦π

|0〉⊗n
′

Qin1: |m1〉
UEnc

|0〉⊗n
′

b •

where π is a random permutation.
(ii) c(2): On input registers Qin0 and Qin1 and the challenge bit b does the following:

Qin0 : |m0〉
UEnc◦π0

|0〉⊗n
′

Qin1: |m1〉
UEnc◦π1

|0〉⊗n
′

b •

where π0 and π1 are random permutations.
(iii) c(3): On input registers Qin0 and Qin1 and the challenge bit b does the following:

Qin0 : |m0〉 M
UEnc◦π0

|0〉⊗n
′

Qin1: |m1〉
UEnc◦π1

|0〉⊗n
′

b •

where π0 and π1 are random permutations. The measurement outcome is forgotten.

30



(iv) c(4): On input registers Qin0 and Qin1 and the challenge bit b does the following:

Qin0 : |m0〉 M
UEnc◦π0

|0〉⊗n
′

Qin1: |m1〉 M
UEnc◦π1

|0〉⊗n
′

b •

where π0 and π1 are random permutations. The measurement outcomes are forgotten.

Let c(0) = chall(∗,EM , 2ct). Let Game G
(i)
b be the IND-CPA game with learn(∗,EM )-learning-queries

and c(i)-challenge-queries when the challenge bit is b, where i ∈ {0, 1, 2, 3, 4}.
We will show that the following sequence of games are indistinguishable from each other:

G
(0)
0
∼= G

(1)
0
∼= G

(2)
0
∼= G

(3)
0
∼= G

(4)
0
∼= G

(4)
1
∼= G

(3)
1
∼= G

(2)
1
∼= G

(1)
1
∼= G

(0)
1

Let assume the adversary Ai distinguishes two games G(i) and G(i+1). In the circuits depicted below,
` refers to a unitary gate implementing ` = learn(∗,EM ) while c refers to a unitary gate implementing
c = chall(∗,EM , ror). Below, b′′ refers to the challenge bit that the reduction algorithm (B) tries to �nd.

G
(0)
b
∼= G

(1)
bG

(0)
b
∼= G

(1)
bG

(0)
b
∼= G

(1)
b : Let A0 be an adversary that distinguish G

(0)
b and G

(1)
b . When A0 makes a learning query, B

simply passes it through. When A0 makes a challenge query for input registers Qin0, Qin1, B simulates
this by using a challenge query for the input register Qin0 and using a learning-query for Qin1. Let Qout0
denote the output of the challenge query with Qin0 and Qout1 denote the output of the learning query
with Qin1. Then B gives the registers Qin0, Qin1, Qoutb, Qoutb̄ to A0. We draw the circuit below which
uses a control-swap gate depending on the value of b. At the end, B makes the same guess b′ as A0.

Qin0 : |m0〉
c

Qin0

Qin1

Qin1 : |m1〉
`

Qoutb

Qoutb̄
b •

We analyse the case when b = 0. In this case if the challenge bit b′′ = 0 then the adversary B simu-

lates (∗,EM , 2ct) challenge queries and therefore it simulates game G
(0)
0 . When b′′ = 1 then B returns

|m0〉|m1〉|Enc(π(m0))〉|Enc(m1)〉 for a random permutation π. That is a c(1) type challenge query. In

other words, B simulates the game G
(1)
0 . We can do the same analysis when b = 1.

G
(1)
b
∼= G

(2)
bG

(1)
b
∼= G

(2)
bG

(1)
b
∼= G

(2)
b : Let A1 be an adversary that distinguish G

(1)
b and G

(2)
b . When A1 makes a learning query, B

simply passes it through. When A1 makes a challenge query for input registers Qin0, Qin1, B simulates
this by picking a random permutation π0, applying to the register Qin0, sending the result as a learning
query, applying π−1

0 to Qin0 and using a challenge query for Qin1. Let Qout0 denote the output of the
learning query with Qin0 and Qout1 denote the output of the challenge query with Qin1. Then B gives
the registers Qin0, Qin1, Qoutb, Qoutb̄ to A0. We draw the circuit below which uses a control-swap gate
depending on the value of b. At the end, B makes the same guess b′ as A0.

Qin0 : |m0〉 π0

`
π−1

0 Qin0

Qin1

Qin1 : |m1〉
c

Qoutb

Qoutb̄
b •

We analyse when b = 0. In this case if the challenge bit b′′ = 0, then the adversary B returns

(|m0〉, |m1〉, |Enc(π0(m0))〉, |Enc(m1)〉). So B simulates the game G
(1)
0 . If the challenge bit b′′ = 1, then

the adversary B returns (|m0〉, |m1〉, |Enc(π0(m0))〉, |Enc(π1(m1))〉) for a random permutation π1. That

is B simulates the game G
(2)
0 . We can do the same analysis when b = 1.
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G
(2)
b
∼= G

(3)
bG

(2)
b
∼= G

(3)
bG

(2)
b
∼= G

(3)
b : These can be proven by direct application of Corollary 12. (with f := Encr ◦ π0 and

R := im Encr for �xed randomness r.)

G
(3)
b
∼= G

(4)
bG

(3)
b
∼= G

(4)
bG

(3)
b
∼= G

(4)
b : These can be proven by direct application of Corollary 12.

G
(4)
0
∼= G

(4)
1G

(4)
0
∼= G

(4)
1G

(4)
0
∼= G

(4)
1 : Since Enc is learn(∗,EM )-chall(∗,EM , ror) secure, it is learn(∗,EM )-chall(∗,CL, 2ct) secure

by simulating classical queries by quantum queries (Panel 5 implies Panel 11 in Figure 1). Note that in the

game G
(4)
0 the outcome of a challenge query will be

(
m0,m1,Enc(π0(m0)),Enc(π1(m1))

)
and in the game

G
(4)
1 it will be

(
m0,m1,Enc(π1(m1)),Enc(π0(m0))

)
. If there is an adversary A that distinguishes games

G
(4)
0 and G

(4)
1 , then one can construct an adversary B that breaks learn(∗,EM )-chall(∗,CL, 2ct) security.

The adversary B runs A and answers to its challenge queries as follows. Upon receiving the quantum
registers Qin0 and Qin1 from the adversary A, it measures the registers and gets two classical values
m0,m1, applies random permutations π0, π1 to m0,m1, respectively, sends the result as a challenge query
to its challenger, and �nally forwards back the answer to A. It is clear that when b = 0, the adversary

B simulates the game G
(4)
0 and otherwise it simulates the game G

(4)
1 . In conclusion, we have shown G0

and G1 are indistinguishable which implies Enc is learn(∗,EM )-chall(∗,EM , 2ct) secure.

In Theorem 21, we show that when the query model is ER in both the learning queries and the
challenge queries, the return type 1ct implies 2ct.

Theorem 21. learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(∗,ER, 2ct)

Proof. Let Enc be some encryption scheme that is learn(∗,ER)-chall(∗,ER, 1ct)-secure. We will show
that Enc is learn(∗,ER)-chall(∗,ER, 2ct)-secure by showing that the settings with challenge bit b = 0
and b = 1 are indistinguishable. The learning queries will be learn(∗,ER) in all games.

De�ne the challenge query c′b as follows: on input registers Qin0, Qin1, discard the register Qin0,

prepares an ancillary register Anc containing |0〉⊗n
′
and use the chall(∗,ER, 1ct)-challenge-query (the

dashed box below) for the registers Qin1, Anc as follows:

Qin0 : a

Qin1 : UER,1ct Qout0

Anc : |0〉⊗n
′

UER,1ct Qout1

b •

where UER,1ct is Û
Enc(·,r0)/ÛEnc(·,r1). De�ne the challenge query c′′ as follows: on input registersQin0, Qin1,

it discards Qin0, Qin1, prepares ancillary registers Anc0 and Anc1 containing |0〉⊗n
′
and use learning

queries for Anc0, Anc1. The quantum circuit for a c′′ query is shown below.

Qin0 : a
Qin1 : a

Anc0 :|0〉⊗n
′

Encl Qout0

Anc1 :|0〉⊗n
′

Encl Qout1

where Encl is ÛEnc. Let Game Gb be the IND-CPA game with chall(∗,ER, 2ct)-challenge-queries when
the challenge bit is b. Let Game G′b be the IND-CPA game with c′b-challenge queries. Let Game G′′ be
the IND-CPA game with c′′-challenge queries.

We will show that the following sequence of games are indistinguishable from each other:

G0
∼= G′1

∼= G′′ ∼= G′0
∼= G1.

To do this, we construct an adversary B that breaks learn(∗,ER)-chall(∗,ER, 1ct)-security from an
adversary A that distinguishes two consecutive games. Let b′ denotes A's guess and b′′ denotes the
challenge bit of B's challenger.
G0
∼= G′1 :G0
∼= G′1 :G0
∼= G′1 : When A submits the input registers Qin0, Qin1 as a challenge query, B simulates this by

using a learn(∗,ER)-learning query for Qin1 to get the second output register, prepares an ancillary

32



register Anc containing |0〉⊗n
′
, and making a chall(∗,ER, 1ct)-challenge-query for Qin0, Anc to get the

�rst output register. At the end B makes the same guess as A.

b′′ •

Qin0 : |m0〉 UER,1ct Qout0

Anc :|0〉⊗n
′

a
Qin1 : |m1〉 Encl Qout1

If the challenger bit b′′ = 0 the adversary B will receive |Enc(m0)〉 back from its challenger and sends
(|Enc(m0)〉, |Enc(m1)〉) to A. Therefore, B simulates the challenge queries in game G0 when b′′ = 0.
If the challenger bit b′′ = 1 the adversary B will receive |Enc(0)〉 back from its challenger and sends
(|Enc(0)〉, |Enc(m1)〉) to A. Note that this is an c′1 type challenge query, therefore, B simulates the
challenge queries in game G′1 when b′′ = 1.
G1
∼= G′0 :G1
∼= G′0 :G1
∼= G′0 : When A submits the input registers Qin0, Qin1 as a challenge query, B simulates this by using

a learn(∗,ER)-learning query for Qin1 to get the �rst output register, prepares an ancillary register Anc

containing |0〉⊗n
′
, and making a chall(∗,ER, 1ct)-challenge-query for Anc, Qin0 to get the second output

register. At the end, B returns A's guess.

Qin1 : |m1〉 Encl Qout0

b′′ •

Anc :|0〉⊗n
′

UER,1ct Qout1
Qin0 : |m0〉 a

If the challenger bit b′′ = 0 the adversary B will receive |Enc(0)〉 back from its challenger and sends
(|Enc(m1)〉, |Enc(0)〉) to A. Note that this is an c′0 type challenge query, therefore, B simulates the
challenge queries in game G′0 when b′′ = 0. If the challenger bit b′′ = 1 the adversary B will receive
|Enc(m0)〉 back from its challenger and sends (|Enc(m1)〉, |Enc(m0)〉) to A. Therefore, B simulates the
challenge queries in game G1 when b′′ = 1.
G′0
∼= G′′ :G′0
∼= G′′ :G′0
∼= G′′ : When A makes a challenge query by submitting the input registers Qin0 and Qin1, B answers

this by discarding the register Qin0, preparing ancillary registers Anc0, Anc1 containing |0〉⊗n
′
, making a

chall(∗,ER, 1ct)-challenge-query for Qin1, Anc0 to get output register Qout0, and using a learning query
for Anc1 to get the output register Qout1. At the end, B makes the same guess b′ as A where b′ = 1
means A interacts in game G′′.

Qin0 : |m0〉 a
b′′ •

Qin1 : |m1〉 UER,1ct Qout0

Anc0 :|0〉⊗n
′

a

Anc1 :|0〉⊗n
′

Encl Qout1

When the challenge bit b′′ = 0, B will receive back |Enc(m1)〉 and sends (|Enc(m1)〉, |Enc(0)〉) to A.
Hence, B simulates the challenge queries in game G′0. When the challenge bit b′′ = 1 it will receive back
|Enc(0)〉 and sends (|Enc(0)〉, |Enc(0)〉) to A. Hence, B simulates the challenge queries in game G′′ in
this case.

G′1
∼= G′′ :G′1
∼= G′′ :G′1
∼= G′′ : When A makes a challenge query by submitting the input registers Qin0 and Qin1, B answers

this by discarding the register Qin0, preparing ancillary registers Anc0, Anc1 containing |0〉⊗n
′
, making

a chall(∗,ER, 1ct)-challenge-query for Anc1, Qin1 to get the output register Qout1, and using a learning
query for Anc0 to get the output register Qout0. At the end, B makes the same guess b′ as A where b′ = 0
means A interacts in game G′′.

Qin0 : |m0〉 a

Anc0 :|0〉⊗n
′

Encl Qout0

b′′ •

Anc1 :|0〉⊗n
′

UER,1ct Qout1

Qin1 : m1 a
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When the challenge bit b′′ = 0, B will receive back |Enc(0)〉 and sends (|Enc(0)〉, |Enc(0)〉) to A. Hence, B
simulates the challenge queries in game G′′. When the challenge bit b′′ = 1 it will receive back |Enc(m1)〉
and sends (|Enc(0)〉, |Enc(m1)〉) to A. Hence, B simulates the challenge queries in game G′1 in this
case.

In Theorem 22, we show that 1ct return type implies ror return type for ER query model.

Theorem 22. The following implications hold:

� learn(∗,CL), chall(1,ER, 1ct) =⇒ learn(∗,CL)-chall(1,ER, ror).
� learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(∗,ER, ror)

Proof. We prove the second implication and the �rst one can be proven analogously. Let Enc be an
encryption scheme that is learn(∗,ER)-chall(∗,ER, 1ct)-secure. We will show that Enc is learn(∗,ER)-
chall(∗,ER, ror)-secure by showing that the settings with challenge bit b = 0 and b = 1 are indistinguish-
able. Since the learning queries are already the same, it is su�cient to de�ne a sequence of games with
indistinguishable challenge queries.

De�ne the challenge query c′ as follows: Upon receiving the input register Qin, discard it and instead
make a ER learning query for |0〉.

Qin : |m〉 a
Anc :|0〉⊗n

′

Enc(ER) Qout

Let Game Gb be the IND-CPA game with chall(∗,ER, ror)-challenge-queries and CL-learning-queries
when the challenge bit is b. Let Game G′ be the IND-CPA game with c′-challenge-queries and ER-
learning-queries.

Next we will show in sequence that these games are indistinguishable from one another:

G0
∼= G′ ∼= G1

To do this, we construct an adversary B that breaks learn(∗,ER)-chall(∗,ER, 1ct)-security from an ad-
versary Ab that distinguishes the game Gb from G′. Let b′′ denote the B's challenge bit.

G0
∼= G′ :G0
∼= G′ :G0
∼= G′ : When A0 makes a challenge query by submitting the input register Qin, B answers this by

preparing an ancillary register Anc containing |0〉⊗n
′
, and then sending the registers Qin, Anc to its

challenger and forwards back the result to A0.

b′′ •

Qin : |m〉 UER,1ct Qout

Anc :|0〉⊗n
′

a
If the challenge bit b′′ = 0, B will receive back |Enc(m)〉 and sends it to A0. Therefore, B simulates

the challenge queries in game G0. If the challenge bit b
′′ = 0, B will receive back |Enc(0)〉 and sends it

to A0. Therefore, B simulates the challenge queries in game G′.

G1
∼= G′ :G1
∼= G′ :G1
∼= G′ : When A1 makes a challenge query by submitting the input register Qin, B answers this by

preparing an ancillary register Anc containing |0〉⊗n
′
, picking a qPRP π and applying it to the register

Qin, then sending the registers Anc, Qin to its challenger and forwarding back the result to A1.

b′′ •

Anc :|0〉⊗n
′

UER,1ct Qout

Qin : |m〉 π a
If the challenge bit b′′ = 0, B will receive back |Enc(0)〉 and sends it to A1. Therefore, B simulates the
challenge queries in game G′. If the challenge bit b′′ = 1, B will receive back |Enc(π(m))〉 and sends it
to A1. Therefore, B simulates the challenge queries in game G1.

In Theorem 23, we show that the 2ct return type implies the ror return type for the EM query model.

Theorem 23. The following implications hold:
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� learn(∗,CL)-chall(1,EM , 2ct) =⇒ learn(∗,CL)-chall(1,EM , ror)
� learn(∗,EM )-chall(∗,EM , 2ct) =⇒ learn(∗,EM )-chall(∗,EM , ror)

Proof. We prove the �rst implication and the second one can be proven analogously. Let Enc be an en-
cryption scheme that is learn(∗,CL)-chall(1,EM , 2ct) secure. Consider an adversary A that is successful
in attacking Enc in the sense of learn(∗,CL)-chall(1,EM , ror)-queries. Let Gb be the IND-CPA game
against learn(∗,CL)-chall(1,EM , ror)-queries when the challenge bit is b. By Corollary 12, if we measure
the input register in the game G1 this can not be detected by the adversary A. (Note that each query
uses a di�erent random permutation π and uses it only once.) We de�ne G′1 to be similar to the game
G1 except with a measurement in the computational basis on the input register submitted as a challenge
query. The games G1 and G′1 are indistinguishable by Corollary 12. We de�ne G′′1 to be similar to the
game G′1 except for each challenge query the input register will be initiated with a random classical
value. It is clear that G′′1 and G′1 are indistinguishable. Since G1 and G′′1 are indistinguishable, A can
distinguish the games G′′1 and G0. We de�ne an adversary B against learn(∗,CL)-chall(1,EM , 2ct), which
uses A as follows: when A makes a chall(1,EM , ror)-challenge-query by submitting the input register
Qin, B prepares an ancillary register Anc containing a random classical value and sends Qin, Anc as a
challenge query to its challenger. Upon receiving the response from the challenger, it discards the second
and the fourth register and forwards the �rst and the third register to A. At the end, B returns A's
guess.

Qin :

UEM ,2ct
Anc : a
|0〉⊗n

′

|0〉⊗n
′

a
Let b′′ be the B's challenger bit. If b′′ = 0, B simulates the response in the game G0 but if b′′ = 1, B
simulates the response in the game G′′1 . Therefore B can breaks the security of Enc against learn(∗,CL)
-chall(1,EM , 2ct).

Theorem 24. learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ST )-chall(∗,CL, 1ct). This shows that P1
=⇒ P6.

Proof. This has been proven in [GHS16] using multiple implications. Refer to Figure 2 in [GHS16] such
that �gqIND-qCPA� in the �gure is learn(∗,ER)-chall(∗,ER, 1ct) in our notation and �IND-qCPA� in
the �gure is learn(∗,ST )-chall(∗,CL, 1ct) in our notation.

7 Separations

In this section all possible implications between di�erent notions of IND-CPA security that are not shown
in Figure 1 or do not follow from it by transitivity are disproven here, apart from the non-implications
stated as open questions. First we give an overview of results in this section.

7.1 Overview of results

In the following, we use two rules to show non-implications:

� if A 6=⇒ B and C =⇒ B then we can deduce A 6=⇒ C.
� if A 6=⇒ B and A =⇒ C then we can conclude C 6=⇒ B.

Panel 1: From the Figure 1, we can conclude that P1 =⇒ P3, P4, P5, P6, P7, P8, P9, P10, P11, P13, P14.
So it is only left to show the relation between P1 and P2, P12. From Theorem 42, P1 6=⇒ P12 and as
a corollary P1 6=⇒ P2 because P2 =⇒ P12. Therefore

P1 6=⇒ P2, P12.

This �nishes all of implication and non-implications from P1.

Panel 2: From Figure 1, we can conclude that P2 implies P5, P6, P7, P11, P12, P13, P14. We show in
Corollary 29, P2 6=⇒ P8 and since P1, P3 =⇒ P8 then P2 6=⇒ P1, P3. In Theorem 39, we show
P2 6=⇒ P10 and since P4 =⇒ P10 then P2 6=⇒ P4. Therefore,

P2 6=⇒ P1, P3, P4, P8, P10
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This �nishes all of implication and non-implications from P2. The relation between P2 and P9 remains
open.
Panel 3: From Figure 1, we can conclude that P3 =⇒ P7, P8, P9, P13, P14. Since P1 =⇒ P3 and
P1 6=⇒ P2, P12, we can deduce P3 6=⇒ P2, P12. The relationships between P3 and P1, P4, P5, P6, P10, P11
remain open questions.

Panel 4: From Figure 1, we can conclude that P4 =⇒ P5, P7, P9, P10, P11, P13, P14. From Corol-
lary 29, P4 6=⇒ P8 and since P1, P3 =⇒ P8 then P4 6=⇒ P1, P3. Since P1 6=⇒ P2, P12 and
P1 =⇒ P4 then we can deduce P4 6=⇒ P2, P12. The relation between P4 and P6 remains open
question.

Panel 5: From Figure 1, we can conclude that P5 =⇒ P7, P11, P13, P14. Since P1 =⇒ P5 and
P1 6=⇒ P2, P12, then P5 6=⇒ P2, P12. Since P2 =⇒ P5 and P2 6=⇒ P1, P3, P4, P8, P10, we can
deduce P5 6=⇒ P1, P3, P4, P8, P10. The relationships between P5 and P6, P9 remain open.

Panel 6: From Figure 1, P6 =⇒ P11, P14. Since P2 =⇒ P6 and P2 6=⇒ P1, P3, P4, P8, P10, P12,
then we can conclude that P6 6=⇒ P1, P3, P4, P8, P10, P12. We show in Theorem 40 that P6 6=⇒ P7
and since P2, P5 =⇒ P7 then we can deduce P6 6=⇒ P2, P5. From Theorem 41, P6 6=⇒ P13 and
since P9 =⇒ P13, then P6 6=⇒ P9. Therefore

P6 6=⇒ P1, P2, P3, P4, P5, P7, P8, P9, P10, P12, P13.

We cover all implication and non-implications from P6.

Panel 7: From Figure 1, P7 =⇒ P13, P14. Since P1 6=⇒ P2, P12 and P1 =⇒ P7, then P7 6=⇒
P2, P12. Since P2 6=⇒ P1, P3, P4, P8, P10 and P2 =⇒ P7, then P7 6=⇒ P1, P3, P4, P8, P10. The
relation between P7 and P5, P6, P9, P11 remain open.

Panel 8: From Figure 1, P8 =⇒ P9, P13, P14. Since P1 6=⇒ P2, P12 and P1 =⇒ P8, then
P8 6=⇒ P2, P12. The relationships between P8 and P1, P3, P4, P5, P6, P7, P10, P11 remain open.

Panel 9: From Figure 1, P9 =⇒ P13, P14. Since P4 6=⇒ P1, P2, P3, P8, P12 and P4 =⇒ P9, then
P9 6=⇒ P1, P2, P3, P8, P12. The relation between P9 and P4, P5, P6, P7, P10, P11 remain open.

Panel 10: From Figure 1, P10 =⇒ P11, P14. Since P4 6=⇒ P1, P2, P3, P12 and P4 =⇒ P10
then P10 6=⇒ P1, P2, P3, P12. We show in Theorem 40 P10 6=⇒ P7 and since P4, P5 =⇒ P7 then
P10 6=⇒ P4, P5. From Theorem 34, P10 6=⇒ P13 and since P8, P9 =⇒ P13 then P10 6=⇒ P8, P9.
The relation between P10 and P6 remains open.

Panel 11: From Figure 1, P11 =⇒ P14. Since P6 6=⇒ P1, P2, P3, P4, P5, P7, P8, P9, P10, P12, P13
and P6 =⇒ P11 then P11 6=⇒ P1, P2, P3, P4, P5, P7, P8, P9, P10, P12, P13. The relation between
P11 and P6 remains open.

Panel 12: From Figure 1, P12 =⇒ P13, P14. Since P2 6=⇒ P1, P3, P4, P8, P10 and P2 =⇒ P12
then P12 6=⇒ P1, P3, P4, P8, P10. The relation between P12 and P2, P5, P6, P7, P9, P11 remain open.

Panel 13: From Figure 1, P13 =⇒ P14. Since P1 6=⇒ P2, P12 and P1 =⇒ P13, then P13 6=⇒
P2, P12. Since P2 6=⇒ P1, P3, P4, P8, P10 and P2 =⇒ P13, then P13 6=⇒ P1, P3, P4, P8, P10.
The relation between P13 and P5, P6, P7, P9, P11 remain open.

Panel 14: Since P6 6=⇒ P1, P2, P3, P4, P5, P7, P8, P9, P10, P12, P13 and P6 =⇒ P14 then
P14 6=⇒ P1, P2, P3, P4, P5, P7, P8, P9, P10, P12, P13. From Theorem 33, P14 6=⇒ P11 and since
P6 =⇒ P11, then P14 6=⇒ P6. Since P14 6=⇒ P13 and P7 =⇒ P13 then P14 6=⇒ P7. Therefore,

P14 6=⇒ P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13.

7.2 Separations by Quasi-Length-Preserving Encryptions

The notion of a core function and quasi-length-preserving encryption schemes was �rst formally intro-
duced in [GHS16]. Intuitively, the de�nition splits the ciphertext into a message-independent part and a
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message-dependent part that has the same length as the plaintext. We de�ne a variant of a quasi-length-
preserving encryption scheme below.

De�nition 25 (Core function). A function g is called the core function of an encryption scheme
(KGen,Enc,Dec) if

1. for all k ∈ {0, 1}h,m ∈ {0, 1}n, r ∈ {0, 1}t,

Enck(m; r) = f(k, r)||g(k,m, r)

where f is an arbitrary function independent of the message.
2. there exists a function f ′ such that for all k ∈ {0, 1}h,m ∈ {0, 1}n, r ∈ {0, 1}t we have f ′(k,

f(k, r), g(k,m, r)) = m.

De�nition 26 (Quasi-Length-Preserving). An encryption scheme with core function g is said to
be quasi-length-preserving if for all k ∈ {0, 1}h,m ∈ {0, 1}n, r ∈ {0, 1}t,

|g(k,m, r)| = |m|,

that is, the output of the core function has the same length as the message.

In the theorem below we show that any quasi-length-preserving encryption scheme is insecure for the
query model in Panel 8. And as a corollary any quasi-length-preserving encryption scheme is insecure
for any query models in Panel 1 and Panel 3 because they imply Panel 8 Figure 1. (This corollary can
be derived directly from the proof of the theorem below since the attack does not use learning queries.)

Theorem 27. Any quasi-length-preserving encryption scheme is insecure for the query model learn(∗,CL)
-chall(1,ER, 1ct). This shows that any quasi-length-preserving encryption scheme is insecure for the query
model in Panel 8.

Proof. Suppose the function Enc is quasi-length-preserving, i.e., we can write

Enck(m; r) = f(k, r)||g(k,m, r)

for some functions f and g such that
|g(k,m, r)| = |m|.

Since the encryption function is decryptable and quasi-length-preserving then g is essentially a permu-
tation for �xed k, r. Now in the challenge query, the adversary prepares two input registers Qin0, Qin1

containing the uniform superposition of all messages and |0〉⊗n, respectively. After getting the outcome,
the adversary performs the projective measurementM|+〉 on the output register to determine whether

it is in the state |+〉⊗n or not. We draw the circuit below. For simplicity, we omit the classical values of
f(k, r) from the circuits.

Qin0 : |+〉⊗n gk,r M|+〉

Qin1 : |0〉⊗n |
b •

When b = 0 the measurementM|+〉 succeeds with probability 1, but when b = 1, this happens only with
negligible probability.

In the theorem below we choose two query models from Panel 2 and Panel 4 and we propose a quasi-
length-preserving encryption function that is secure in those two security notions. Then we can conclude
that there is a quasi-length-preserving encryption function that is secure for any query models in Panel 2
and Panel 4 because query models inside of panels are equivalent. (This can be concluded directly from
the proof of the theorem below as well.)

Theorem 28. If there exists a quantum secure one-way function then for query models

learn(∗, qqm)-chall(1, qqm, ror) when qqm ∈ {ST ,ER}

there is a quasi-length-preserving encryption function that is secure. This shows that there is a quasi-
length-preserving encryption function that is secure for any query models in Panels 2 and 4.
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Proof. Let

Enck(m; r) = sPRPk(r)||qPRPr(m)

where qPRP is a strong quantum-secure pseudorandom permutation [Zha16] and sPRP is a standard-
secure pseudorandom permutation. Because fresh randomness is used in each learning and challenge query
and sPRPk is indistinguishable from a truly random function, we can replace sPRPk(r) with a random
value in each (learning and challenge) query. This makes the second part of the ciphertext independent
of the �rst part in each query. Therefore in each query we have that qPRPr is indistinguishable from
a fresh truly random permutation σ. Therefore, with ror-type challenge queries, the adversary cannot
distinguish an encryption of m from an encryption of π(m) for a truly random permutation π because σ
and σ ◦ π are indistinguishable.

Corollary 29. The security notions mentioned in Theorem 28 do not imply the security notions men-
tioned in Theorem 27. Speci�cally, P2, P4 6=⇒ P8.

7.3 Separations by Simon's Algorithm

Roughly speaking, in this section we construct a couple of separating examples making use of the fact
that Simon's algorithm (see [Sim97]) can only be executed by an quantum adversary with superposition
access to the black box function, but not by a quantum adversary with classical access to the black box
function.

The idea is to de�ne a function Fs,σ (s being a random bitstring) that is supposed to leak some
bitstring σ to an adversary with superposition access to Fs,σ but not to an adversary who has only
classical access to Fs,σ. Namely the adversary with superposition access uses Simon's algorithm to retrieve
σ. Roughly speaking Fs,σ is composed of many small block functions fs,σ,i, i = 1, . . . , n̂ and each of them
leaking about one bit. It is proven in [Sim97] that n̂ = O(|σ|) queries su�ce to recover σ (see later).

The function Fs,σ is �rst de�ned and then it is used several times in this subsection as a building
block to construct separating examples for diverse IND-CPA-notions.

De�nition 30. Let s = s1|| . . . ||sn̂||r1|| . . . ||rn̂ be a random bitstring. Let Psi be a quantum secure
pseudorandom permutation9 (qPRP) with the seed si and input/output length of n/2. Let

gs,σ,i(y) = Psi(y)⊕ Psi(y ⊕ σ) and fs,σ,i(y) = gs,σ,i(y)||(y ⊕ ri).

Note that fs,σ,i is σ-periodic ignoring its second part. The second part makes fs,σ,i injective. Note that
the inverse of fs,σ,i is easy to compute. Let

Fs,σ(x) = fs,σ,1(x1)|| . . . ||fs,σ,n̂(xn̂)

where xi is i-th block of x. Note that Fs,σ will be decryptable using s since each of fs,σ,i is decryptable.

Lemma 31. On the assumption of existing a quantum secure one-way function and for a random secret
s and known σ 6= 0, Fs,σ is indistinguishable from a truly random function for any quantum adversary
restricted to make only one classical query.

Proof. We show that for every i and y, fs,σ,i(y) is indistinguishable from a random bitstring. Since y⊕ri is
indistinguishable from a random bitstring (for random ri), it is left to show gs,σ,i(y) = Psi(y)⊕Psi(y⊕σ) is
indistinguishable from a random bitstring. The result follows because Psi is a pseudorandom permutation.

Lemma 32. An adversary having one-query-EM -type quantum access to Fs,σ can guess σ with high
probability. (The reason we are looking at the embedding query model is because it is the weakest, the
same statements for the standard and the erasing query model follow automatically.)

Proof. The attack is a variation of Simon's attack [Sim97]. Remember that Fs,σ consists of n̂-many block
function fs,σ,i. In the analysis below, we shorten fs,σ,i to fi and gs,σ,i to gi. In the attack the same

9 Quantum secure pseudorandom permutation can be constructed from a quantum secure one-way function
[Zha16].
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operation is done with each of the fi. Namely the attack on one of the fi happens according to the
following quantum circuit:

|+〉⊗n

Ufi

• H⊗n M

|0〉 M
|0〉

The evolution of the quantum state right after CNOT gate is

2−
n
2

∑
m

|m, 0, 0〉 7→ 2−
n
2

∑
m

|m, gi(m),m⊕ ri〉 7→ 2−
n
2

∑
m

|m, gi(m), ri〉

The last register contains a classical value and therefore it does not interfere the analysis of Simon's
algorithm for the function gi. So the measurement returns a random m such that m · σ = 0.

Hence it yields a linear equation about σ. As this happens for every block, the adversary gets n̂ linear
equations about σ, so by the choice of n̂ (i.e., n̂ = 2|σ|) the adversary is able to retrieve σ with high
probability.

Theorem 33. If there exists a quantum secure one-way function then learn(∗,CL)-chall(∗,CL, 1ct) 6=⇒
learn(∗,EM )-chall(1,CL, 1ct). This shows that Panel 14 6=⇒ Panel 11.

Proof. Consider

Enck,k′(m,m
′; r||r′) = Fr,k(m)||PRFk′(r)||(PRFk(r′)⊕m′)||r′,

where PRFk and PRFk′ are standard secure pseudorandom functions with the key k, k′ respectively.
Enck,k′ is decryptable because using the secret key k and the last part of the ciphertext (r′) we can
obtain m′ and using the secret key k′ we can obtain the randomness r and then decrypt Fr,k. We prove
Enc is learn(∗,CL)-chall(∗,CL, 1ct)-secure. In every query, since r is fresh randomness and PRFk′ is a
pseudorandom function, we can replace PRFk′(r) with a random bitstring. Now we can use Lemma 31
to replace Fr,k(m) with a random bitstring. Finally, since r′ is a fresh randomness in each query and
PRFk is a pseudorandom function we can replace PRFk(r′)⊕m′ with a random bitstring. Therefore, in
each query the encryption scheme just returns a random looking bitstring, which obviously hides b. This
proves the learn(∗,CL)-chall(∗,CL, 1ct)-security. We show the learn(∗,EM )-chall(1,CL, 1ct)-insecurity.
In the attack, the adversary uses one learning query to retrieve k, according to Lemma 32 and then the
challenge query can be trivially distinguished by decrypting the third part of the challenge ciphertext
(adversary knows k, r′ and can decrypt PRFk(r′)⊕m′.)

Theorem 34. If there exists a quantum secure one-way function then the following non-implication
holds:

learn(∗,ER)-chall(∗,CL, 1ct) 6=⇒ learn(∗,CL)-chall(1,EM , ror).

This means that P10 6=⇒ P13.

Proof. The idea of the proof is like in the last theorem to open up a backdoor that only a quantum
adversary can use. We de�ne Enc as follows.

Enck(z||x; l||s) = sPRPk(l||s)||qPRPl(z)||Fs,l(x)

where Fs,l is de�ned in De�nition 30. Enck is decryptable since we can obtain l, s from sPRPk(l||s)
and then decrypt qPRPl(z) using l and decrypt Fs,l(x) using s, l. Now we show that Enc is insecure
in the learn(∗,CL)-chall(∗,EM , ror)-sense. The attack works as follows: A chooses z = 0n and puts in
the register for x a superposition of the form |+〉⊗n. Then A passes the result as a challenge query to
the challenger. Upon receiving the answer from the challenger, A performs the algorithm presented in
Lemma 32 to the last part of the ciphertext to recover l. Let l̂ be the output of the algorithm presented
in Lemma 32. Then A uses l̂ to decrypt the classical part of the challenge ciphertext, qPRPl(z). Let ĉ

be the output of the decryption using l̂. If ĉ = 0n, A returns 0, otherwise it returns 1. We analyse how
A can distinguish the two cases when the challenge bit is b = 0 and b = 1. When the challenge bit is
b = 0, the algorithm in Lemma 32 will recover l with high probability and therefore A returns 0 with
high probability. When the challenge bit is b = 1 then A will get back Enck(·; r) ◦ π applied to the input
register. In this case, by Corollary 12 a measurement on the input register remains indistinguishable
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for A (with R := range Enck(·; r) in Corollary 12). So we can assume the input register collapses to a
classical message. Therefore A will recover l with negligible probability.

We show that Enc is secure in the learn(∗,ER)-chall(∗,CL, 1ct)-sense. Let Gb be the learn(∗,ER)-
chall(∗,CL, 1ct)-IND-CPA game when the challenge bit is b. We show that G0 and G1 are indistinguish-
able. We de�ne the game G′ in which the challenge query will be answered with a random string and
learning queries are answered with ER. We show that Gb is indistinguishable from G′. We can replace
sPRPk(l||s) with a random element in the challenge query. Since s is a fresh randomness in the chal-
lenge query by Lemma 31 Fs,l(xb) is indistinguishable from a random element. Finally, we can replace
qPRPl(zb) with a random element. Therefore, games Gb and G

′ are indistinguishable.

7.4 Separations by Shi's SetEquality problem

De�nition 35 (SetEquality problem). The general SetEquality problem can be described as follows.
Given oracle access to two injective functions

f, g : {0, 1}m → {0, 1}n

and the promise that
im f = im g ∨ (im f ∩ im g) = ∅)

decide which of the two holds.

Here we will be consider the average-case problem, which involves random injective functions f and
g. For SetEquality, the average-case and worst-case problem are equivalent: if we have an average-case
distinguisher D then we can construct a worst-case-distinguisher by applying random permutations on
the inputs and outputs of queries to f and g, which simulates an oracle for D.

The SetEquality problem was �rst posed by Shi [Shi02] in the context of quantum query complexity.
In [Zha15] it is proven that with ST -type-oracle access this problem is hard in m. However, a trivial
implication of the swap-test shows that with ER-type oracle access it has constant complexity.

Lemma 36. The SetEquality problem is indistinguishable under polynomial ST -type queries.

Proof. This follows from Theorem 4 in [Zha15], which shows that Ω
(
2m/3

)
ST -type queries are required

to distinguish the two cases.

Lemma 37. The SetEquality problem is distinguishable under one ER-type query. That is, an adversary
can, by only accessing f once and g once, decide whether they have equal or disjoint ranges with non-
negligible probability.

Proof. The attack works by a so-called swap-test, shown in the following circuit where the unitary
control-Swap is de�ned as cSwap : |b,m0,m1〉 → |b,mb⊕0,mb⊕1〉.

|+〉 • H M

|+〉⊗m Ûf
Swap

|+〉⊗m Ûg

Let |Φ〉 = 2−m/2
∑
x |x〉 and |φM〉 =

∑
x |M(x)〉,M∈ {f, g}, where the sums are over all x ∈ {0, 1}m.

Then, up to normalization, the quantum circuit above implements the following:

|+〉|Φ〉|Φ〉 I⊗Û
f⊗Ûg

7−→ |+〉|φf 〉|φg〉
cSwap7→ |0〉|φf 〉|φg〉+ |1〉|φg〉|φf 〉
H⊗I7→ |0〉 (|φf 〉|φg〉+ |φg〉|φf 〉) + |1〉 (|φf 〉|φg〉 − |φg〉|φf 〉)

If the ranges of f and g are equal, then a measurement of the top qubit in the computational basis is
guaranteed to yield 0. If the ranges are disjoint, then the measurement yields 0 or 1 with probability
1
2 .

In order to apply the SetEquality problem to encryption schemes, we de�ne constructions for f and
g that use a random seed s.
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De�nition 38. Let σs1 , σ
′
s2 : {0, 1}m → {0, 1}m be qPRPs with seed s1, s2. Let Js3 , Js4 be a pseudo-

random sparse injection built from a qPRP, i.e., for some qPRP J̃s3 , J̃s4 : {0, 1}n → {0, 1}n, and any
x ∈ {0, 1}m with n > m, de�ne Js3(x) := J̃s3(x||0n−m) and Js4(x) := J̃s4(x||0n−m). We can then de�ne
F0,s1,s2,s3 , G0,s1,s2,s3 : {0, 1}m → {0, 1}n to be a pair of pseudorandom sparse injections with equal range:

F0,s1,s3 := Js3 ◦ σs1 , G0,s2,s4 := Js4 ◦ σ′s2 .

Let τs5 , τs6 : {0, 1}n → {0, 1}n be a qPRP with seed s5, s6. Let K̃s7 , K̃
′
s8 : {0, 1}m → {0, 1}n−1 be a

pair of pseudorandom sparse injections, and de�ne Ks7 := 0||K̃s7 ,K
′
s8 := 1||K̃ ′s8 . We can then de�ne

F1,s′ , G1,s′ : {0, 1}m → {0, 1}n (where s′ = (s1, s2, s5, s6, s7, s8)) to be a pair of pseudorandom sparse
injections with disjoint ranges:

F1,s1,s5,s7 := τs5 ◦Ks7 ◦ σs1 , G1,s2,s6,s8 := τs6 ◦K ′s8 ◦ σ
′
s2 .

Let s = (s1, s2, s3, s4, s5, s6, s7, s8). Note that Fb,s and Gb,s are decryptable using b, s.

Theorem 39. If there exists a quantum secure one-way function then learn(∗,ST )-chall(1,ST , ror) 6=⇒
learn(∗,ER)-chall(1,CL, 1ct) in the quantum random oracle model. This shows that Panel 2 6=⇒ Panel
10.

Proof. Let H : {0, 1}h → {0, 1}|s| be a random oracle. Let sPRP be a standard secure pseudorandom
permutation with seed of length |s|. Let γk(m1||m2; r, j) := Fkj ,H(r)(m1)||Gkj ,H(r)(m2) where kj is j-th
bit of k. Consider the encryption function

Enck(m1||m2; r, j) := γk(qPRPr(m1||m2); r, j)||sPRPH(k)(r)||j, (1)

where qPRPr is a quantum secure pseudorandom permutation with seed r. The encryption scheme above
is decryptable as follows. First one can decrypt sPRPH(k) using the random oracle H and the secret
key k and then decrypt the other part of the ciphertext using j, r, the secret key k and the random
oracle H. We show that the above encryption scheme is learn(∗,ST )-chall(1,ST , ror) secure. Let A
be an adversary that attacks in the sense of learn(∗,ST )-chall(1,ST , ror) IND-CPA. In the following,
we abuse the notation and use π(qPRPr(m1))1, π(qPRPr(m2))2 to indicate the �rst m bits and the
second m bits of π(qPRPr(m1||m2)), respectively. The challenge query submitted by the adversary is
two registers Qin and Qout that may contain superposition of many |m1,m2〉Qin

|y〉Qout
basis states

(QinQout :
∑
m1,m2,y

αm1,m2,y|m1,m2〉|y〉). For simplicity, we only show one of the computational basis
states in the presentation of the games and with linearity of UEnc it will be similar for the rest.

Game 0 : learn(∗,ST )-chall(∗,ST , ror) IND-CPA

k
$← {0, 1}h, b $← {0, 1}, π $← ({0, 1}2m+1 → {0, 1}2m+1), r

$← {0, 1}t, j $← {1, · · · , n},
|m1,m2〉|y〉 ← AH,Enc(),
c := |m1,m2〉

∣∣y ⊕ (Fkj ,H(r)(π
b(qPRPr(m1))1), Gkj ,H(r)(π

b(qPRPr(m2))2, sPRPH(k)(r), j))
〉

b′ ← AH,Enc(c),
return [b = b′] .

Let {r, r2, · · · , rq} is the set of all randomness used in the learning queries and the challenge query in γ
part of encryption. In the following game we replace H(k), H(r), H(r2) · · · , H(rq) with random values
in the learning queries and challenge queries. We call this Game 1 and in the presentation below we only
show the replacement in the challenge query. The same replacement will occur in all learning queries.

Game 1 :

k
$← {0, 1}h, b $← {0, 1}, π $← ({0, 1}2m+1 → {0, 1}2m+1), r

$← {0, 1}t, j $← {1, · · · , n}, r∗, k∗ $← {0, 1}|s|
|m1,m2〉|y〉 ← AH,Enc(),
c := |m1,m2〉

∣∣y ⊕ (Fkj ,r∗(π
b(qPRPr(m1))1), Gkj ,r∗(π

b(qPRPr(m2))2, sPRPk∗(r), j))
〉

b′ ← AH,Enc(c),
return [b = b′] .

In order to show that Game 0 and Game 1 are indistinguishable, we use Theorem 3 in [AHU19]. Let
q be the total number of queries to the random oracle H. By Theorem 3 in [AHU19], there exists a
polynomial time adversary B that returns an output x such that

|Pr[1← Game 0]− Pr[1← Game 1]| ≤
√
qPr[x ∈ {r, r2, · · · , rq, k} : Game 2]
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where Game 2 is de�ned as below (with randomness r∗, r∗2 , · · · , r∗q and random key k∗):

Game 2 :

k
$← {0, 1}h, b $← {0, 1}, π $← ({0, 1}2m+1 → {0, 1}2m+1), r

$← {0, 1}t, j $← {1, · · · , n}, r∗, k∗ $← {0, 1}|s|
|m1,m2〉|y〉 ← AH,Enc(),
c := |m1,m2〉

∣∣y ⊕ (Fkj ,r∗(π
b(qPRPr(m1))1), Gkj ,r∗(π

b(qPRPr(m2))2, sPRPk∗(r), j))
〉

b′ ← AH,Enc(c),
x← BH,Enc(c).

Let F ∗0 and G∗0 be random injection functions with equal ranges. Let F ∗1 and G∗1 be random injection
functions with disjoint ranges. Note that since r∗ is a fresh randomness by construction of Fkj ,r∗ and
Gkj ,r∗ in De�nition 38 they are indistinguishable from F ∗0 and G∗0 when kj = 0 and they are indistin-
guishable from F ∗1 and G∗1 when kj = 1. Next, we replace Fkjr∗ and Gkjr∗ with F

∗
1 and G∗1 respectively

in the challenge query in Game 2. Note that the same argument holds for the learning queries and we

replace all Fkj ,r∗i and Gkj ,r∗i with independent random injective functions F
(i)
1 and G

(i)
1 with disjoint

ranges. Let call the modi�ed game Game 2a. Note that two games are indistinguishable because the
set-equality problem is hard for ST-type queries by Lemma 36.

Game 2a :

k
$← {0, 1}h, b $← {0, 1}, π $← ({0, 1}2m+1 → {0, 1}2m+1), r

$← {0, 1}t, j $← {1, · · · , n}, r∗, k∗ $← {0, 1}|s|
|m1,m2〉|y〉 ← AH,Enc(),
c := |m1,m2〉

∣∣y ⊕ (F ∗1 (πb(qPRPr(m1))1), G∗1(πb(qPRPr(m2))2, sPRPk∗(r), j))
〉

b′ ← AH,Enc(c),
x← BH,Enc(c).

Since in each query a fresh randomness will be encrypted by sPRPk∗ , we can replace sPRPk∗(randomness)
with random values in Game 2b. Next, in Game 2c we can replace qPRP with a independent random
permutation in each query because the seed of qPRP is chosen independently at random in each query
and it is not used elsewhere in Game 2b. It is clear that the success probability of Game 2c is (q+ 1)/2h

because k, r, r2, · · · , rq have not been used in Game 2c. Now we show that the success probability in
Game 1 is 1/2 + neg. We can do similar modi�cation presented above to de�ne Game 1a. So in each
query, two random injective functions with disjoint ranges will be used. Next we de�ne Game 1b in
which we replace sPRPk∗(r) with a random value α∗ in the challenge query. This can be done since r
is a fresh randomness and sPRP is a standard secure pseudorandom permutation. Finally, we replace
qPRPr with a random permutation π′ in the challenge query in Game 1c. This can be done because r
is a fresh randomness that has been used only as seed of qRPR in Game 1b.

Game 1c :

k
$← {0, 1}h, b $← {0, 1}, π $← ({0, 1}2m+1 → {0, 1}2m+1), r

$← {0, 1}t, j $← {1, · · · , n}, r∗, k∗ $← {0, 1}|s|
|m1,m2〉|y〉 ← AH,Enc(),
c := |m1,m2〉

∣∣y ⊕ (F ∗1 (πb(π′(m1))1), G∗1(πb(π′(m2))2, α
∗)
〉

b′ ← AH,Enc(c),
return [b = b′] .

It is clear that the success probability of Game 1c is 1/2 + neg. Overall, we showed that the success
probability of Game 1 is 1/2 + neg and this �nishes the security proof.

Now we show that Enc can be broken in learn(∗,ER)-chall(1,CL, 1ct). Let A′Enc denote the adversary
that plays the learn(∗,ER)-chall(1,CL, 1ct)-IND-CPA game. By Lemma 37, it is possible for A′Enc to
perform a learn(∗,ER)-learning-query for m ← |+〉⊗m|+〉⊗m and conduct a swap-test to determine kj
with high probability for a random j (Note that j is the last part of the ciphertext and is known to
the adversary). The procedure is repeated polynomially many times until A′Enc has enough information
about the key k to guess it with su�ciently high probability. Finally, A′Enc can choose any two classical
messages m0,m1 for challenge query, and use the private key k to decrypt the result and determine the
challenge bit b.

7.5 Separations by other arguments

Theorem 40. On the existence of a quantum secure one-way function, the following separation holds:
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1. learn(∗,ST )-chall(∗,CL, 1ct), learn(∗,ER)-chall(∗,CL, 1ct) 6=⇒ learn(∗,CL)-chall(1,EM , 2ct)
P6, P10 6=⇒ P7

Proof. Consider
Enck(m; r) = r||PRFk(r)⊕m for m, r ∈ {0, 1}n

where PRF is a standard secure pseudorandom function. The security in learn(∗,ST )-chall(∗,CL, 1ct)
and learn(∗,ER)-chall(∗,CL, 1ct) senses follows by Lemma 3 in [ATTU16]. We show the insecurity using
a challenge query of type chall(1,EM , 2ct). The attack is described by the following quantum circuit.
For simplicity, we omit the wires corresponding to the r-parts of two ciphertexts.

|+〉⊗n

UEM,2ct,r0||r1,b

• H⊗n M

|0〉⊗n

|0〉⊗n

|0〉⊗n

When b = 0, the measurement returns 0 with probability 1 and it outputs 0 only with negligible proba-
bility when b = 1.

Theorem 41. On the existence of a quantum secure one-way function, learn(∗,ST )-chall(∗,CL, 1ct) 6=⇒
learn(∗,CL)-chall(1,EM , 1ct). This shows that P6 6=⇒ P13.

Proof. Consider
Enck(m; r) = r||PRPk(r)⊕m for m, r ∈ {0, 1}n

where PRP is a standard secure pseudorandom permutation. The security in learn(∗,ST )-chall(∗,CL, 1ct)
and learn(∗,ER)-chall(∗,CL, 1ct) senses follows by Lemma 3 in [ATTU16]. The insecurity follows from
Lemma 10 in [CEV20].

Theorem 42. On the existence of a quantum secure one-way function, learn(∗,ER)-chall(1,ER, 1ct) 6=⇒
learn(∗,CL)-chall(1,ST , ror). This shows that P1 6=⇒ P12.

Proof. Let qPRP and qPRP ′ be two quantum secure pseudorandom permutations with input/output
{0, 1}2n. Let sPRP be a standard secure pseudorandom permutation. For m1 and m2 of length n-bits,
we de�ne Enc as following:

Enck(m1,m2; r1, r2) = qPRPr1(0n||m1)||qPRPr2(0n||m2)||sPRPk(r1, r2).

First, we prove that Enc is learn(∗,ER)-chall(1,ER, 1ct) secure. Note that the adversary does not have
superposition access to sPRP since the randomness are classical and are chosen by the challenger.
Therefore, in each query we can replace sPRPk(r1, r2) with a random value because r1 and r2 are fresh
randomness and sPRP is a standard secure pseudorandom permutation.

Then in each query we can replace qPRPr1 and qPRPr2 with random permutations π1 and π2, re-
spectively. Now we can measure the input register by Lemma 9 and the security follows from learn(∗,CL)
-chall(1,CL, 1ct) security of Enc.
Now we show that Enc is not secure with respect to learn(∗,CL)-chall(1,ST , ror) notion. Let Qin1 and
Qin2 be input registers corresponding to �rst n bits and second n bits of message, respectively. Similarly,
Qout1 and Qout2 be the output registers. The adversary can query

Qin1Qin2Qout1Qout2 := |+〉⊗n|0〉⊗n|+〉⊗2n|0〉⊗2n

in the challenge query. After receiving the answer, it applies the Hadamard operator to Qin1 then
measures the register in the computational basis. We draw the circuit to attack Enc in the following. For
simplicity, we omit the wires corresponding to the last parts of two ciphertexts.

Qin1 |+〉⊗n

UEnc◦πb

H⊗n M
Qin2 |0〉⊗n

Qout1 |+〉⊗2n

Qout2 |0〉⊗2n

When b = 0, since no permutation is applied and Enc works component-wise, the output of the circuit
right before applying the Hadamard operators is |+〉⊗n|0〉⊗n|+〉⊗2n|qPRPr2(0n||0n)〉⊗2n

. Therefore, the
measurement returns 0 with probability 1. On the other hand, when b = 1 a permutation will be applied
to both input registers Qin1, Qin2 and it shu�es the input. Therefore Qin1 register will be entangled
with output registers. In this case, the measurement returns 0 with negligible probability.
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Note that a block cipher mode of operation uses a block cipher several times to encrypt a message of
longer size. In the following we show that the attack presented above can be applied to a large class of
modes of operation and show their insecurity with respect to learn(∗,CL)-chall(1,ST , ror) notion. This
can be extended to authentication encryption schemes and tweakable block ciphers.

Corollary 43. We call a mode of operation natural if it has the following property: For some message
length `, there exists an input block i and an output block j such that output block j does not depend
on i, but, ranging over all possible input messages, output block j can take any value. (Note that this
includes many modes of operation. E.g., CBC mode satis�es this with i being the second and j being the
�rst block.)

No natural mode of operation is secure in the sense of learn(∗,CL)-chall(1,ST , ror) notion.

Proof. Let Mk denotes the register for the k-th input block. Let Ck denotes the register for the k-th
output block. The adversary inserts |+〉 in Mi and |0〉 for the rest of the input registers. And for the
output registers, the adversary puts |0〉 in the j-th output register and |+〉 elsewhere. When b = 0 (no
permutation is applied), the Mi register will be |+〉 (and Cj register will be a classical value). Therefore,
applying the Hadamard operator to the register Mi followed with a computational basis measurement
will return 0 with probability 1. On the other hand, when b = 1 a random permutation will be applied to
the input registers and shu�es the input. Now Mi register will be entangled with Cj register. Therefore,
the measurement returns 0 with negligible probability.

8 Encryption secure in all notions

In this section we propose an encryption scheme that is secure for all security notions described in this
paper. From Figure 1, Panel 1 and Panel 2 imply all other panels. Therefore it is su�cient to construct an
encryption scheme that is secure in a setting where there are no learning queries, and where the challenge
queries are either c1 = chall(∗,ER, 1ct) or c2 = chall(∗,ST , ror). Consider the encryption scheme Enc
as Enck(m; r, r′) = qPRPr(r

′||m)||sPRPk(r) for r′,m ∈ {0, 1}n. In order to decrypt the ciphertext, �rst
we decrypt sPRPk(r) using the secret key k and obtain r then we can obtain the message m using r.
Now we show that Enc is c1 = chall(∗,ER, 1ct) and c2 = chall(∗,ST , ror) secure in the following:

Theorem 44. The encryption scheme Enck(m; r, r′) = qPRPr(r
′||m)||sPRPk(r) presented above is

chall(∗,ER, 1ct) and chall(∗,ST , ror) secure.

Proof. chall(∗,ER, 1ct) security: In each query we can replace sPRPk(r) with a random bit string
because r is a fresh randomness and sPRP is a standard secure pseudorandom function. Now we can
replace qPRPr with a random permutation π′ in each query and use Lemma 9 to measure the input
register (with f := π′(r′||·)). This collapses to the security against chall(∗,CL, 1ct) queries that is trivial.

chall(∗,ST , ror) security: In each query we can replace sPRPk(r) with a random bit string because
r is a fresh randomness and sPRP is a standard secure pseudorandom function. Then we can replace
qPRPr with a random permutation π′ in each query. The security is trivial because for a random r′,
f1(m) = π′(r′||m) (when the challenge bit is 0) and f2(m) = π′(r′||π(m)) (when the challenge bit is 1)
have the same distribution.

9 Discussion on open questions

From Table 1, 41 cases are left as open questions. In Figure 1, we indicate six non-implications (with
red dashed arrows) that if they hold, all the open questions will be resolved by the transitivity. First, we
verify this claim and then argue why these six non-implications are more likely to be true.

Assuming P2 6=⇒ P9, since P2 =⇒ P5, P7, P12, P13, we can conclude that P5, P7, P12, P13 6=⇒
P9.

Assuming P3 6=⇒ P11, since P3 =⇒ P7, P8, P9, P13, we can obtain P7, P8, P9, P13 6=⇒ P11.
And since P1, P4, P5, P6, P10 =⇒ P11, we can conclude P3 6=⇒ P1, P4, P5, P6, P10.

Assuming P4 6=⇒ P6, since P4 implies P5, P7, P9, P10, P11, P13, we can conclude that P5, P7,
P9, P10, P11, P13 does not imply P6.

Assuming P8 6=⇒ P7, since P1, P3, P4, P5 =⇒ P7, then P8 6=⇒ P1, P3, P4, P5. And since
P8 =⇒ P13, then P13 6=⇒ P7.
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Assuming P12 6=⇒ P7, since P2, P5 =⇒ P7, then P12 6=⇒ P2, P5.
Assuming P12 6=⇒ P11, since P6 =⇒ P11, then P12 6=⇒ P6. And since P12 =⇒ P13, we can

conclude P13 6=⇒ P11.
This resolves all the open questions corresponding to P1, P2, P3. For P4, we need to �nd the question

mark P9?P4. Since P9 6=⇒ P11 and P4 =⇒ P11 then P9 6=⇒ P4. This resolves all the open questions
corresponding to P4. Open cases related to P5 are P7, P9, P13?P5. Since P7, P9, P13 6=⇒ P11 and
P5 =⇒ P11 then P7, P9, P13 6=⇒ P5. This resolves all the open questions corresponding to P5. It
has been left to conclude weather P8 implies P6 or it does not. Since P8 6=⇒ P11 and P6 =⇒ P11,
then P8 6=⇒ P6. This resolves all the open questions corresponding to P6. For P7, we need to �nd
P9?P7. Since P8 6=⇒ P7 and P8 =⇒ P9, then P9 6=⇒ P7. This resolves all the open questions
corresponding to P7. For P8, we need to resolve P8?P10, P11. Since P3 =⇒ P8 and P3 6=⇒ P10, P11,
we can obtain P8 6=⇒ P10, P11. This resolves all the open questions corresponding to P8. Still P9?P10
is open. Since P8 =⇒ P9 and P8 6=⇒ P10, we can obtain P9 6=⇒ P10. This resolves all the open
questions corresponding to P9. There is no unresolved case for P10, P11, P12, P13 and P14. Therefore,
if the non-implications indicated with red dashed arrows in Figure 1 hold, all the open questions will be
solved.

Now we discuss why it is more likely that these non-implications hold.

1. (P2?P9). These notions have classical learning queries and one challenge query of type (ER, ror)
and (ST , ror) respectively. To show the implication, the reduction adversary needs to simulate a ST
challenge query with an ER challenge query that is highly non trivial since ER query type does
not return the input register but the adversary that attacks (ST , ror) expects to receive back the
input register. Here, the reduction adversary can not copy the quantum input register itself due to
no-cloning. So the non-implication is more likely to happen.

2. (P8?P7). These notions have classical learning queries and one challenge query of type (ER, 1ct) and
(EM , 2ct) respectively. The same argument as above holds for this case too.

3. (P4?P6). To show the implication, we need to simulate ST queries with ER queries that is non-trivial
due to no-cloning theorem (as discussed above as well).

4. (P3?P11). The notions in P11 have many quantum learning queries but P3, have classical learning
queries and only one quantum challenge query. It is unlikely that a reduction adversary can simulate
many quantum queries with only one quantum query.

5. (P12?P11). The notions in P11 have many quantum learning queries but P12 have classical learning
queries and only one quantum challenge query. It is unlikely that a reduction adversary can simulate
many quantum queries with only one quantum query similar to the above.

6. (P12?P7). These notions have classical learning queries and one challenge query of type (ST , ror)
and (EM , 2ct), respectively. Here, the adversary that attacks (EM , 2ct) expects to receive back four
quantum registers that are the evaluation of the encryption oracle on two quantum input registers,
however, one (ST , ror) query only evaluates the encryption oracle on one quantum input register.
Here, the reduction adversary can not simulate two quantum evaluations of the encryption oracle
with only one quantum access to the encryption oracle.
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