Relationships between quantum IND-CPA notions

Tore Vincent Carstens', Ehsan Ebrahimi?, Gelo Tabia®, and Dominique Unruh!

! University of Tartu, Estonia
2 FSTM & SnT, University of Luxembourg
3 National Tsing Hua University & National Cheng Kung University, Taiwan

Abstract. An encryption scheme is called indistinguishable under chosen plaintext attack (short
IND-CPA) if an attacker cannot distinguish the encryptions of two messages of his choice. There
are other variants of this definition but they all turn out to be equivalent in the classical case. In
this paper, we give a comprehensive overview of these different variants of IND-CPA for symmetric
encryption schemes in the quantum setting. We investigate the relationships between these notions
and prove various equivalences, implications, non-equivalences, and non-implications between these
variants.

Keywords: Symmetric encryption, Quantum security, IND-CPA.

1 Introduction

Advances in quantum computing have continuously raised the interest in post-quantum secure cryptogra-
phy. In order for a post-quantum secure scheme to be designed, as a first step a security definition has to
be agreed upon. There has been extensive research toward proposing quantum counterparts of classical
security definitions for different cryptographic primitives: encryption schemes [BZ13bIGHS16/CEV20],
message authentication codes [BZ13alAMRS20], hash functions [Zhal5lUnr16], etc. For a classical cryp-
tographic primitive to be quantum secure, besides the necessity of a quantum hardness assumption, we
also need to consider how a quantum adversary will interact with a classical algorithm. In the research
works mentioned above, the security notions have been defined in a setting where the quantum adver-
sary is allowed to make quantum queries a.k.a. superposition queries to the cyptographic primitives. In
this paper, we focus on quantum versions of indistinguishability under chosen plaintext attack for sym-
metric encryption schemes. There are some proposals for a quantum IND-CPA notion in the literature
[BZ13bIGHS16|MS16] (see Section for more details). However, there are a number of design choices
(e.g., how queries are performed, when they are classical, etc.) in those works, each work considers dif-
ferent combinations of those design decisions, and the choice which combinations are investigated and
which are not is somewhat ad-hoc. In addition, it was not known (prior to our work) how the different
definitions relate to each other, or whether they are even all equivalent. (The latter would show that the
design choices are in fact irrelevant, but unfortunately we find that this is not the case.) The aim of our
work is to comprehensively study the resulting variants of the IND-CPA definition and the relationship
(implication/equivalence/non-implication) between them.

Indistinguishability under chosen plaintext attack (IND-CPA) is a classical security notion for en-
cryption schemes in which the adversary interacts with the encryption oracle in two phases: the learning
phase and challenge phase. The learning phase (if it exists) is defined in a unique way: the adversary
makes queries to the encryption oracle. In contrast, the challenge phase can be defined in different ways:
(a) The adversary chooses two messages mg,m1 and sends them to the challenger. The adversary will

receive back the encryption of m, for a random bit b.

(b) The adversary chooses two messages mg, m; and sends them to the challenger. The adversary will

receive back the encryptions of my, mg for a random bit b.

(¢) The adversary chooses a message m and sends it to the challenger. The challenger will send back

either the encryption of m or a randomly chosen message depending on a random bit b.

At the end, the adversary tries to guess the bit b. In other words, the definition varies according to how
the challenger responds to the adversary during the challenge phase. We call it the ‘“return type”. As
summarized above, there are three different return types: a) The challenger returns one ciphertext. (We
use the abbreviation “lct”.) b) The challenger returns two ciphertexts. (We use the abbreviation “2ct”.)
¢) The challenger returns a real or random ciphertext. (We use the abbreviation “ror”.) A comprehen-
sive study of these notions has been done in [BDJRIT] in the classical setting and it turns out these
notions are equivalent up to a polynomial loss in the reductions. (The notion 2ct has not been studied

in [BDJRI7|, however, it is easy to see that lct and 2ct are equivalent in the classical setting.)

In addition, there are different kinds of quantum queries, differing in what registers are returned or
discarded or used as input/output. (We make the different possibilities more explicit in the following.)
This distinction has no counterpart in the classical setting.

In the following, we present existing quantum IND-CPA notions in the literature [BZ13bIGHS16/MS16].
We make the type of quantum query and the return type (1lct, 2ct or ror) in the definitions explicit.

1.1 Previous works

Boneh-Zhandry definition. In ([BZ13b|), Boneh and Zhandry initiate developing a quantum security
version of IND-CPA. They consider that the adversary has “standard oracle access” (ST') to the encryp-
tion oracle in the learning phase. The standard oracle access to the encryption oracle Enc is defined
as the unitary operator Uy : |2,y) — |z,y @ Enc(z)) (see Section [3). For the challenge phase, they
attempt to translate the classical notion of one-ciphertext and two-ciphertext return types (presented in
@ and (]ED above) to the quantum case using the standard query model. However, they show that the
natural translation leads to an impossible notion of IND-CPA. So instead they consider classical challenge
queries in their proposed definition combined with standard quantum queries in the learning phase. This
inconsistency between the learning phase and the challenge phase resulted in further investigation of the
quantum IND-CPA notion in [GHSI6].

Quantum IND-CPA notions in [GHS16]. In [GHS16|, the authors attempt to resolve the incon-
sistency of the learning and the challenge phase of the security definition proposed in [BZ13b]. They
propose a “security tree” of possible security notions. In a nutshell, their security tree is built on four
different perspectives on the interaction between the adversary and the challenger: 1) how the adversary
sends the challenge queries: the adversary sends quantum messages during the challenge phase or it sends
a classical description of quantum messages; 2) whether the challenger sends back the input registers
to the adversary or keeps them; and 3) the query model: the adversary has standard oracle access to
the challenger or it has “minimal oracle” access [KKVBO02] (that is defined as |z) — |Enc(x)), called the
“erasing query model” in this work)ﬁ Even though in total there are 23 = 8 possible security definitions,
only two are investigated in [GHS16]. These two definitions are (according to their terminology briefed
above): 1) quantum messages, not returning the input register and minimal oracle access ﬂ 2) classical
description of messages, not returning the input register and minimal oracle access. In our paper, we
do not consider the case when the adversary can submit the classical description of quantum messages.
Therefore, we only study the former security notion in our paper. In this paper, we refer to the minimal
query model as the “erasing query model” (ER) (see Section [3).

Quantum IND-CPA notion in [MS16]. In [MS16], Mossayebi and Schack focus on translating the
real-or-random case to the quantum setting by considering an adversary that has standard oracle
access to the encryption oracle. Their security definition consists of two experiments, called real and
permutation. In the real experiment, the adversary’s queries will be answered by the encryption oracle
without any modification (access to Ugyn.) whereas in the permutation game, in each query a random
permutation will be applied to the adversary’s message and the permuted message will be encrypted
and returned to the adversary (access to Ugpcor for a random). The advantage of the adversary in
distinguishing these two experiments should be negligible for a secure encryption scheme. This is a
security notion without learning queries but the adversary can perform many challenge queries. The
adversary has the standard oracle access to the challenger and the challenge phase is implemented by
the real-or-random return type.

Therefore, there are three achievable definitions for quantum IND-CPA notion in the literature so
far. These three notions only cover a small part of the different combinations of the design choices made

* They additionally distinguish between what they call the “oracle model” and the “challenger model” queries.
The difference is that in the “oracle model”; only unitary query oracles are allowed, while in the “challenger
model”, query oracles are allowed that, e.g., erase register. The security definitions that can be expressed in
the “challenger model” trivially subsume those that can be stated in the “oracle model”. So the distinction has
no effect on the set of possible security definitions. (In fact [GHS16] never formally defines the distinction.)

5 This security definition is equivalent to the indistinguishability notion proposed in [BJ15] for secret key encryp-
tion of quantum messages when restricted to a classical encryption function operating in the minimal query
type.

in those papers — the query models (classical, ST, and ER etc.), the challenge return type (lct, 2ct,
and ror), the number of queries (none, one, many) — even if we only consider different combinations
of the design decisions already made in those papers. The choice which combinations are considered
seems ad-hoc (in the sense that there is no systematic consideration of other combinations), and the
combinations actually matter (different from the classical setting where we tend to arrive at the same
notion of IND-CPA in many different ways).

In this paper, our aim is to answer the following questions:

What is a comprehensive list of distinct possible quantum IND-CPA notions?
How do these notions relate to each other?
Which one is the strongest (achievable) security notion?

Why should we care? Encryption schemes (and other cryptographic primitives) secure under quantum
queries (a.k.a. superposition queries) have been studied in prior work from a number of angles, e.g.,
[KM10/KM12/BZ13bBZ13aDFNS13IKLLNT6/MST16/GHST6/ATTU16|LSZ20/ECKM20]. There are two
main reasons for studying them: The fear that future cryptographic devices will be quantum and will
therefore either intentionally or due to manipulation by the adversary perform encryption and similar
operations in superposition. And the fact that in security proofs, intermediate games may involve oracles
that answer quantum queries even if the original games were purely classicalﬁ While these reasons give
motivation for studying quantum queries, they do not answer the question which model is the right one,
and which security definition is the right one. While we cannot give a definitive answer which definition
is right (although we can answer, e.g., which is strongest), we do clarify which options there are, and
how they relate (at least in the case of IND-CPA security of symmetric encryption). And by showing
equivalences, we also narrow down the field to a more manageable number of choices (namely 14 instead
of 72). This enables designers of symmetric encryption schemes or modes of operations to know which
security notions can be or need to be considered (e.g., they could simply show security with respect to
the strongest ones). It provides guidance to cryptographers using symmetric encryption as subprotocols
what options there are to make the proofs go through, and it provides foundational insight into the
structure of security definitions, and tells us which design choice does or does not matter. We note that
it is very easy to get misled here by one’s intuition, and to assume relationships between the notions that
are not correct. For example, [GHS16] mistakenly states that that the security notion based on erasing
queries ER are stronger than those based on standard or embedding queries ST and then restricts their
attention only to ER queries because this supposedly leads to the strongest resultm To the best of our
knowledge, this claim has not been disputed so far. Our results show that this is not correct and the
notions are actually incomparable. Last but not least, understanding IND-CPA with quantum queries is
an important first step towards finding good notion for IND-CCA with quantum queries. The latter is a
hard problem with partial success [GKS20JCEV20] that has so far eluded a definitive answer.

1.2 Our contribution

We study all possible quantum IND-CPA security notions. We classify the notions according to the

following criteria:

(1) Number of queries that the adversary can make during the learning and challenge phase: zero (0),
one (1) or many (*) queries. Note that in the learning phase either there are no queries or many
queries, while in the challenge phase there is one query or many queries.

(2) Query model in which the adversary is interacting with the challenger: classical (CL), standard (ST),
erasing (ER), or “embedding query model” (EM). The embedding query model is the same as the
standard oracle model except that the adversary only provides the input register and the output
register will be initiated with |0) by the challenger (see Section [3).

(3) The return type of the challenge ciphertext: 1ct, 2¢t, or ror.

This gives 5 choices for the learning phase and 24 choices for the challenge phase. Therefore, there are

120 variants of the security notion altogether. We use the notation learn(?, ?)-chall(?,?, ?) for the security

notions where the question marks are identified from the choices above. For instance, Boneh-Zhandry

5 For example, in a post-quantum security proof involving quantum rewinding [Wat09Unr12], the adversary
(including any oracles it queries) is first transformed into a unitary operation. As a side effect, any classical
oracle would also be transformed into a unitary one.

" Their precise wording is “we will focus on the (...2) models in order to be on the ‘safe side’, as they lead
to security motions which are harder to achieve.”. In their language, type-(2) models correspond to our ER
queries, and type-(1) models to our ST queries.

definition [BZ13b| can be represented with learn(x, ST')-chall(1, CL, 1ct) which means many ST queries
in the learning phase and one classical challenge query, both returning one ciphertext.

Excluded security notions. We do not consider security notions with different quantum query models
in the learning phase and the challenge phase. E.g., ST challenge queries with ER learning queries.
While technically possible, we consider such combinations to be too “exotic” and do not expect them
to be usedﬂ (Classical queries can be combined with any of quantum query models though. E.g., the
Boneh-Zhandry definition [BZ13b] is of this type.) Also, we do not consider a security notion with no
learning queries and only one challenge query since this corresponds to the IND-OT-CPA notion (one-
time IND-CPA security) that will not be considered in this paper. This leaves us with 72 notions.

Impossible security notions. Any security notion with the standard query model and the return type
of one-ciphertext or two-ciphertexts in the challenge phase is impossible to achieve by any encryption
scheme [BZ13b]. Any query model with the embedding query type EM and the one-ciphertext return
type in the challenge phase is impossible to achieve. (See Section .

_ Impossible security notions

learn(0, —)-chall(x, ST, 1ct), learn(0, —)-chall(x, ST, 2ct), learn(x, CL)-chall(1, ST, 1ct),
learn(*, CL)-chall(1, ST, 2ct), learn(x, CL)-chall(x, ST, lct), learn(*, CL)-chall(x, ST, 2ct),
learn(*, ST)-chall(1, ST, 1ct), learn(x, ST)-chall(1, ST, 2ct), learn(x, ST)-chall(*, ST, 1ct),
learn(x, ST)-chall(x, ST,2ct), learn(0, —)-chall(x, EM, lct), learn(x, CL)-chall(1, EM, 1ct),
learn(*, CL)-chall(x, EM,1ct), learn(x, EM)-chall(1, EM,1ct), learn(x, EM)-chall(x, EM,1ct)

This leaves us with 57 notions that remain valid and achievable. Then, we compare these notions and
put the equivalent notions in the same panel and this results in 14 panels. We give an overview of the
equivalent notions in each panel and relation between panels below.

Security notions that are equivalent (see Section@: The definitions inside each box are equivalent.

Panel 1
learn(0, —)-chall(x, ER, 1ct), learn(0, —)-chall(x, ER, 2ct), learn(x, CL)-chall(x, ER, 1ct),
learn(*, CL)-chall(x, ER, 2ct), learn(*, R)-chall(1, ER, 1ct), learn(x, ER)-chall(1, ER, 2ct),
learn(*, ER)-chall(x, ER, 1ct), learn(x, ER)-chall(x, ER, 2ct)

muu

Note that Panel 1 includes the security notion from [GHS16|. These equivalences have been achieved
by Theorem Theorem [1§ and Theorem

Panel 2

learn(0, —)-chall(x, ST, ror), learn(x, CL)-chall(x, ST, ror), learn(x,ST)-chall(1,ST,ror),
learn(*, ST)-chall(*, ST, ror)

Note that Panel 2 includes the security notion from [MS16|. These equivalences have been obtained
by Theorem [16] and Theorem

_ Panel 3
learn(*, CL)-chall(1, ER, 2ct)

_ Panel 4

learn(0, —)-chall(x, ER,ror), learn(x, CL)-chall(x, ER,ror), learn(x, ER)-chall(1, ER,ror),
learn(*, ER)-chall(x, ER, ror)

The equivalences in Panel 4 have been concluded by Theorem [I6] and Theorem [I9}

8 This is, of course, arguable. But without this restriction, the number of possible combinations would grow
beyond what is manageable in the scope of this paper.

Panel 5

learn(0, —)-chall(x, EM , ror), learn(0, —)-chall(x, EM , 2ct), learn(x, CL)-chall(x, EM ,ror),
learn(x, CL)-chall(x, EM,2ct), learn(x, EM)-chall(1, EM,2ct), learn(x, EM)-chall(1l, EM,2ct),
learn(*, EM)-chall(x, EM,2ct), learn(x, EM)-chall(x, EM, 2ct)

We can conclude the equivalences in Panel 5 by Theorem [16] Theorem [18] Theorem 20} Theorem
and Theorem

Panel 6

learn(x, ST)-chall(1, CL, 1ct), learn(x, ST)-chall(1, CL,2ct), learn(x,ST)-chall(1, CL,ror),
learn(x, ST)-chall(x, CL, 1ct), learn(x, ST)-chall(x, CL,2ct), learn(x, ST)-chall(*, CL,ror)

Note that this panel includes the security notion from [BZ13b]. We can conclude these equivalences
by Theorem [16] and Theorem

— Panel 7
learn(x, CL)-chall(1, EM, 2ct)

_ Panel 8
learn(*, CL)-chall(1, ER, 1ct)

— Panel 9
learn(x, CL)-chall(1, ER,ror)

_Panel 10

learn(*, ER)-chall(1, CL, 1ct), learn(x, ER)-chall(1, CL,2ct), learn(*, ER)-chall(1, CL,ror),
learn(*, ER)-chall(x, CL, 1ct), learn(x, ER)-chall(x, CL,2ct), learn(*, ER)-chall(x, CL,ror)

We can conclude the equivalences in Panel 10 by Theorem [16] and Theorem
— Panel 11

learn(*, ER)-chall(1, CL, 1ct), learn(x, ER)-chall(1, CL,2ct), learn(*, ER)-chall(1, CL,ror),
learn(*, ER)-chall(x, CL, 1ct), learn(x, ER)-chall(x, CL,2ct), learn(*, ER)-chall(x, CL,ror)

— Panel 12
learn(*, CL)-chall(1, ST, ror)

_ Panel 13
learn(*, CL)-chall(1, EM,ror)

_ Panel 1/
learn(0, —)-chall(x, CL,ror), learn(0, —)-chall(x, CL,1ct), learn(0,
learn(x, CL)-chall(x, CL,ror), learn(x, CL

learn(*, CL)-chall(1, CL,ror), learn(x, CL

—)-chall(*, CL, 2ct),
chall(x, CL, 1ct), learn(x, CL)-chall(x, CL,2ct),
)_

)_
)-chall(1, CL, 1ct), learn(x, CL)-chall(1, CL,2ct)

We can conclude the equivalences in Panel 14 by Theorem [I6 and Theorem

Main Conclusion. We observe that different from the the classical case in which IND-CPA notions
with different types of challenge queries (1lct, 2ct or ror) are equivalent (see Panel 14), when the chal-
lenge query is quantum (ST, EM or ER), the notions are not equivalent. More specifically: 1) for the
standard query model, only the real-or-random return type is achievable (and two others are impossible
to achieve). 2) for the embedding query model, the one-ciphertext return type is impossible to achieve,
however, other two cases are equivalent (see Panel 5). 3) for the erasing query model, the one-ciphertext

and two-ciphertexts return type are equivalent (see Panel 1) and they are stronger than the real-or-
random return type (Panel 1 implies Panel 4 but Panel 4 does not imply Panel 1.)

Implications and non-implications (Section |§| and Section . The implications and separation
have been drawn in Table [T} The cells with a question mark remain open questions. We conclude that
a notion P does not imply @ if there exists an encryption scheme that is secure with respect to the
notion P and insecure with respect to the notion . All of non-implications hold on the assumption of
the existence of a quantum secure one-way function. They all hold in the standard model except the
non-implication in the Theorem [39] that holds in the quantum random oracle model.

P1 P3| P4

N

P6
NP2y

P10
=
kL]

U
—
—

P12
NV

$13

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14

¥

=

-
f?

MENNE
Helu|u]e]| oz
$le|8He | Hy D
U;'\Dﬁ'ﬂUU'*’Ug

S EAEAEANARS
T A A = A

AR AR R R AR R R

¥ ¥

UUU@U&&@U&&@UE

o | B [| | o] |
|l [

?
= | 2 |#

- RN RN AR R R

kdEiEIkAR kAR AR AR AR,
AkdbakikdnanlkaARakdR;
SRR AR R AR R AR R

PG ($ || S $| | $$ || $] ¥
¥

&.\,.\3&#.\,.\3
SRR

¥ ¥

-

Table 1. Implications and separations between panels. The cells with question marks remain open problems.
An arrow in row Pn, column Pm indicates whether Pn implies or does not imply Pm. The superscript number
next to an arrow indicates the number of the corresponding theorem. Arrows without a superscript follow by
transitivity. See Section [7] for more details.

Main conclusions of Table [l

— Panels P1 and P2 together imply all other security notions. We present an encryption scheme that
is secure in the sense of the notions in Panels 1 and 2 (see Section , and therefore it is secure with
respect to all notions.

— Panel 1 and 2 are not comparable to each other. This resolves an open question stated in [MST6IGKS20]
for a comparison between these security notions.

Decoherence Lemmas: As a technical tool, we introduce several “decoherence lemmas”. Essentially, a
decoherence lemma states that a certain randomized query effectively measures the input of that query
(even if the query is actually performed in superposition). Specifically, we show that a query to a random
sparse injective function in the erasing query model ER will effectively measure its input (even if no reg-
ister is actually measured or erased). And we show an analogous result for the embedding query model
EM and a random function (see Section [4)). These decoherence lemmas make it much easier to compare
different query models because we can use them to prove that the queries are essentially classical. They
are an essential tool in our analysis, both for showing implications and separations. However, we believe
that they are a tool of independent interest for the analysis of superposition queries in cryptographic
settings.

Simulating learning queries with challenge queries. Classically, it is easy to see that one can
simulate the learning queries with the challenge queries. For instance, for the return types of 1lct, 2ct,

the reduction makes a copy of the learning query and sends the query along with its copy to the chal-
lenger and forwards back the ciphertext (for lct) or one of the ciphertexts (for 2ct) to the adversary.
But when the queries are quantum, this approach will not work due to no-cloning theorem. We resolve
this obstacle and show that the simulation of learning queries using challenge queries is possible in the
quantum setting as well (see Theorem [18 and Theorem)

Impossibility results for natural modes of operation. We show (Corollary that any out of
a large class of modes of operation is insecure with respect to challenge queries of type (ST, ror).
Basically, this includes all modes of operation where at least one output block is not dependent on all
input blocks. While we do propose an encryption scheme that is secure with respect to all (achievable)
notions presented in this work, an efficient mode of operation with this property is an open problem.
Corollary 43| gives an indication why this is the case. (Modes of operation have been studied with respect
to the Boneh-Zhandry’s definition in [ATTU16].)

1.3 Organization of the paper

In Section [2] we give some notations and preliminaries. The Section [3] is dedicated to definitions that
are needed in the paper. We present all possible security notions for IND-CPA in the quantum case in
this section. In Section [4] we prove some lemmas that are needed for security proofs. The Section [f] is
dedicated to rule out security notions that are impossible to be achieved for any encryption scheme. In
Section [6] we investigate implications between all security notions defined in Section [B] We obtain 14
groups of equivalent security notions. Then, we prove some implications between these 14 panels. The
Section [7]is dedicated to show non-implications between panels. The relation between few panels are left
as open questions. Finally, we present an encryption scheme that is secure with respect to all security
notions defined in the paper in Section

2 Preliminaries

We recall some basics of quantum information and computation needed for our paper below. Interested
reader can refer to [NC16| for more informations. For two vectors |¥) = (91,9, -+ ,%,) and |P) =
(61,02, ,¢n) in C", the inner product is defined as (¥,®) = .17 ¢; where ¢} is the complex
conjugate of ¥;. Norm of |®) is defined as |||®)|| = 1/(P, P). The outer product is defined as [¥)(P| : |a) —
(P, a)|¥). The n-dimensional Hilbert space H is the complex vector space C™ with the inner product
defined above. A quantum system is a Hilbert space and a quantum state |1)) is a vector |¢) in H with
norm 1. A unitary operation over # is a transformation U such that UUT = UTU = I where U is the
Hermitian transpose of U and I is the identity operator over H. The computational basis for H consists of
n vectors |b;) with 1 in the position ¢ and 0 elsewhere (these vectors will be represented by n vectors {|x) :
x € {0,1}!°8"}). With this basis, the unitary CNOT is defined as CNOT: |mq,ma) — |my,m; © ma)
where my,my are bit strings. The Hadamard unitary is defined as H: |b) — %(’@ + (=1)%|b)) where

b € {0,1}. An orthogonal projection P over H is a linear transformation such that P2 = P = PT.
A measurement on a Hilbert space is defined with a family of orthogonal projectors that are pairwise
orthogonal. An example of measurement is the computational basis measurement in which any projection
is defined by a basis vector. The output of computational measurement on state |¥) is i with probability
|(bi,®)||* and the post measurement state is |b;). The density operator is of the form p = Y, p;|#:)(¢;|
where p; are non-negative and add up to 1. This represents that the system will be in the state |¢;)
with probability p;. We denote the trace norm with || -||1, i.e., || M||; = tr(|M|) = tr(vV M1 - M). For two
density operators p; and p, the trace distance is defined as TD(p1, p2) = 3|p1 — p2||1. For two quantum
systems H; and Hs, the composition of them is defined by the tensor product and it is H; ® Hs. For
two unitary U; and U, defined over H; and Hso respectively, (U; ® Us)(H1 ® Ha) = Ui (H1) @ Ua(Hs).
Often, when we write “‘random” we mean “uniformly random”. For a function f, the notation im f
means {f(z) : € {0,1}™}. Many terms, which we are going to use throughout this paper, are actually
a function of the implicit security parameter 1, however in order to keep notations simple, we refuse in
most cases to make the dependence of 7 explicit, and just omit 1. Quantum registers are denoted by @
with possibly some index. We will use the notation of Uy, U9 for arbitrary f, arbitrary injective g where

Ui |a,y) = |2,y @ f(x)) and U7 :[x) — |g(x)).

2.1 Realizability of U9 as a quantum circuit

The linear operator U9 is mathematically well defined however we have to argue that it can also be
realized in a quantum computer efficiently whenever g is efficiently computable and reversible, classically.
In order to do so we introduce a new concept, which we call the lifting of a classical injective function.

Definition 1. For an arbitrary injective g : {0,1}" < {0,1}" we call ¢"% : {0,1}" = {0,1}" some
chosen (but in a fived way) bijective function such that
va € {0,1}" : " (x]]0" ") = g(x)

lift

That is, ¢"* as just an arbitrary extension of g with a bigger domain, so that g™ is bijective and

efficiently computable. Now we implement U9 using its inverse.

Qin :|x) — — lg(z))
U lift U lifty—1
Qout |O> 1 ! DC W * |0>

where Ugir is implemented as the following:

Qin :|1) ————— — [z)
Qanc : |0"=") — Ugure — 10)
Qout |O> -1 *lg(l‘»

Note that for an injective function g if there exists an efficiently computable function g—! such that
g (g(x)) = z, then we can implement erasing type query without the ancillary register. For instance,
this is the case for encryption scheme and its decryption:

Qin :|x) — — [f(x))
Qout |O>] UEnc DC UDCC | ‘0>

3 Definitions

One of the main points in this text is to compare different ways to model how a quantum-circuit can
access a classical function (i.e., how to represent a classical function as a quantum gate). There are 3
query models that model this, here called ST (standard query model), EM (embedding query model)
and ER (erasing query model). EM is in some sense the “weakest” in that it can be simulated by both
ST and ER. Let

f:{0,1}" — {0, 1}"
be a deterministic function.
ST-query model: In this query model, an algorithm A that queries f provides two registers Q;n, Qout
of h and n g-bits, respectively. Then, the unitary Uy : |z, y) — |z,y & f(z)) is applied to these registers
and finally the registers Q;,, Qou: are passed back to A. We depict the quantum circuit corresponding
to this query model as follows.

Qout : |y> 1 T |y@f(x)>

EM-query model: , The difference of the EM-query model with the ST-model is that the lower wire
(called "output-wire") is forced to contain 0™ and is not part of the input to quantum circuit but produced
locally. In other words, an algorithm A provides a register @;,, of h qubits and @, is initialized as 0"
and then the unitary Uy is applied to registers Qin, @out and they are passed back to A. The following
quantum circuit illustrates this query model.

Uy

Qin: |z) — 1 =)
Qout : L'f(‘r»

L - == l

ER-query model: This query model is only possible for functions f that are injective.
Q: o) —{0s @)

Note that the ST and EM oracles for a classical function f can be constructed in canonical way from a
classical circuit that computes f [NC16] and the ER oracle constructed in Section

Definition 2. A triple (KGen, Enc,Dec) of efficient algorithms is called an (h,n,n’ t,t')-encryption
scheme (note that these parameters depend on n) iff

KGen : {0,1} — {0,1}"
Enc: {0,1}" x {0,1}" x {0,1}* — {0,1}"
Dec : {0,1}" x {0,1}" — {0,1}" U {L}

such that
Vi € {0,1}",m € {0,1}",r € {0,1} : Decy,(Ency(m; 7)) = m

(Note that an encryption scheme is by definition always entirely classical.) Here Ency(m;r) is written
instead of Enc(k, m,r) and Deck(c) instead of Dec(k,c). Enc is called the encryption function, Dec is
called the decryption function and KGen is called the key generation function. {0,1}" is the key space,
{0,1}" is the message (plaintext) space, {0, 1}"/ is the ciphertext space, {0,1}! is the randomness space
and {0, 1}t/ is the key randomness space. The decryption is allowed but not required to output L for an
invalid ciphertext. The encryption algorithm samples an element of {0, 1}t uniformly at random and then
invokes the encryption function. The key generation algorithm samples an element of {0, 1}t/ uniformly
at random and then invokes the key gemeration function.

For simplicity, we allow ourselves to write k & KGen() instead of kr & {0,1}", k := KGen(kr) and
c& Encg(m) instead of r & {0,1}*, ¢ := Encg(m;).

Definition 3. For natural numbers h and n, two functions fi : {0,1}" — {0,1}" and f» : {0,1}" —
{0,1}" are called c-indistinguishable (short for classically indistinguishable) iff there exists a negligible
such that for all classical polynomial time oracle algorithms (adversaries) A we have:

[Prob[1 « A% ()] — Prob[l « A%2()]| <&,

(Note, that the definition of c-indistinguishability is never used in the paper, it is just mentioned for
reference purposes) We call f1, fa s-indistinguishable (short for standard indistinguishable) or CL-q-
indistinguishable iff there exists a negligible € such that for all quantum polynomial time oracle algorithms
(adversaries) A and all auziliary quantum states |¢) chosen by A (since A can use an internal quantum
register to distinguish) it holds:

[Prob[1 = AUV (|y))] — Prob[l « A2 (j4))]| <,

We call f1, fo gm-q-indistinguishable (short for (query model)-quantum-indistinguishable) for qm €
{CL,ST,ER} (note that we are not considering EM) iff there exists a negligible £ such that for all
quantum polynomial time oracle algorithms (adversaries) A making polynomial number of queries to its
oracle in the query model gqm and all auxiliary quantum states |¢p) chosen by A it holds:

|Prob(1 ¢+ AT ([4h))] — Prob[1 + AT™U2)(|4h))]] < .
Note that s-indistinguishability is the same as CL-q-indistinguishability.

We call a pseudorandom permutation 7y a vPRP for v € {¢, s, ¢}, iff it is v-indistiguishable from a
truly random permutation.

That means, that cPRP (classically pseudorandom permutation), sPRP (standard pseudorandom per-
mutation = quantum-resistant pseudorandom permutation) and qPRP (quantum pseudorandom per-
mutation) can be defined like this (Note that we mean strong PRP whenever we say PRP, we are not
considering weak PRPs):

— With cPRP is meant a pseudorandom permutation 75 which is secure against a classical adversary
1

with classical access to w5 and 7 .
— With sPRP is meant a pseudorandom permutation 75 which is secure against a quantum adversary
with classical access to s and ;.
— With qPRP is meant a pseudorandom permutation 74 which is secure against a quantum adversary

with superposition access to 7, and 7.

Formally ST-qPRP and FR-qPRP have to be distinguished, but as shown below they are equivalent.
More formally cPRP, sPRP, qPRP are defined by:

Definition 4. A (m,n)-v-strong-PRP (also called block cipher) for v € {c, s, q} is a pair of two permu-
tations (= bijective functions) = and w1 with seed s:

me,my + 2 {0,1}" — {0,1}",5 € {0,1}™

sucht that the oracle f1(x) = 7s(x) is v-indistinguishable from a truly random permutation fo : {0,1}" —

{0,1}".

Remark 5. Note that Zhandry showed in [Zhal6] that a qPRP (ST-query-model) can be constructed
from a one-way-function. Also we are not distinguishing qPRP in the ST-query-model and in the ER-
query-model. The next lemma will justify that by proving that ST-q-PRP-oracles and FR-q-PRP-oracles
can be constructed out of each other by a simple construction.

Lemma 6. A bijection 7 is a strong ST-q-PRP iff it is a strong ER-¢-PRP.

Proof. The reason is, that ST and ER query models can be constructed out of each other if the oracle
function is a permutation and with access to its inverse. The following circuit shows how a ER query
can be simulated by ST queries to m and 7~ !:

Im) — — |m(m))
Ux U,—1
O L O L M
The following circuit shows how a ST query can be simulated by ER queries to 7 and 7~

m) —{o~ m)
[
U

|lc & m(m))

o
<
fan

O

Next we have to define what it means for an encryption scheme to fulfill a certain security notion.
Namely we will define what it means to be [-c-IND-CPA-secure. Here [and ¢ are just symbols which will
be instantiated later. [stands for learning query and c¢ stands for challenge query. Accordingly [will be
instantiated with some learning query model and ¢ will be instantiated with some challenge query model.

Definition 7. We say the encryption scheme Enc = (KGen, Enc,Dec) is [-c-IND-CPA-secure if any
polynomial time quantum adversary A can win in the following game with probability at most % + € for
some negligible e.

The I-c-CPA game:

Key Gen: The challenger runs KGen to obtain a key k, i.e., k & KGen(), and it picks a random bit b.
Learning Queries: The challenger answers to the [-type queries of A using Encg. | also specifies the
number of times this step can be repeated.

Challenge Queries: The challenger answers to the c-type queries of A using Ency and the bit b. (Note
that the adversary is allowed to submit some learning queries between the challenge queries as well.) ¢
also specifies the number of times this step can be repeated.

Guess: The adversary A returns a bit b, and wins if b = b.

In the two sections below, we define different types of the learning queries and the challenge queries

and we specify which combination of them are considered for IND-CPA security of encryption schemes.

3.1 Syntax of I - the learning queries

Note that in all of the following query models, we assume the challenger picks k & KGen(). For simplicity,
we omit it from our description. A fresh randomness will be chosen for each query (quantum or classical),
but, for a superposition query, all the messages in the query will be encrypted with the same randomness
[BZ13b].

10

Learning Query type CL. For any query on input message m, the challenger picks r & {0,1}* and
gives back ¢ + Ency(m;r) to the adversary.

Learning Query type ST. For any query, the challenger picks r & {0,1}* and applies the unitary
Ugne, to the provided registers of the adversary, Qin, Qout registers, and gives them back to the adversary.

Ukney, (-57)
Qout 1 [Qout

Learning Query type EM. Upon receiving the provided register of the adversary, say Q;,, the chal-

lenger picks r < {0,1}* and creates a register Qoy; containing the state |0)®"

Ugne, to the registers Qin, Qout, and gives them back to the adversary.

Qin I [Qin
on' UEan(~;r)
‘O> 1 [Qout

and applies the unitary

Learning Query type ER. Upon receiving the provided register of the adversary, say @;,, the chal-
lenger picks r & {0,1}? | applies the unitary UEner(1) to the register Q;, and gives it back to the

adversary.
Qin Qo

Note that UEnex(5) is physically realizable because Ency, is efficiently reversible for fixed r using Decy(see

Section [2.1).

3.2 Syntax of ¢ - the challenge queries

First we give an informal overview over the different challenge query types, then we define each of them
in a concise way:
Overview:

— chall(-, CL, 1ct
— chall(-, CL, 2ct
— chall(-, CL, ror

(- mg, my — Encg(mp,) classically

(- mg, my — Encg(my, r), Encg(mg,) classically

(- m — Encg(m,r) or Encg(m*,r) classically

— chall(-, ST, 1ct) |mg,m1,c) — |mg, my, c @ Encg(mp; 7))

— chall(-, ST, 2ct) |mg,m1,co,c1) — |mo, m1,co ® Encg(mp;p), c1 @ Ency(mg; rg))

— chall(+, ST, ror) |m,c) — |m,c® Ency(n®(m);r)) for a random permuation
(.
(.
(.
(.
(.
(.

~— —— —

~—

— chall(-, EM, 1ct) |mg,mq,0) — |mg, mq, Encg(mp; 7))

— chall(-, EM, 2ct) |mg, m1,0,0) — |mg, my, Ency(me; 1), Encg (mg; r3))

— chall(-, EM,ror) |m,0) — ‘m, Ency (7°(m);r)) for a random permuation
— chall(-, ER, 1ct) |mg, m1) — |Encg(myp;r)) and trace out |mg)

— chall(-, ER, 2ct) |mg, m1) — |Encg(mp;), Encg(mg;)

— chall(-, ER,ror) |m) ~ |Ency(x®(m);7)) for a random permuation «

Using a the permutation 7 in this way, is a general way of construction real-or-random-like quantum
query models and first appeared in [MS16|. The idea behind it is that a random permutation 7 in some
way replaces a plaintext m with a random bitstring, as this would be the case classically.

Challenge Query type chall(-, CL, 1ct). (The notation lct stands for one-ciphertext.)
In this query model, the adversary picks two messages mg,m; and sends them to the challenger. The

challenger picks r & {0,1}" and a random bit b and returns Ency(mp;7)

11

Challenge Query type chall(-, ST, 1ct). In this query model, the adversary prepares two input
registers Q;no, Qin1, One output register Q.+ and sends them to the challenger. The challenger picks

ré {0,1}! and a random bit b, applies the following operation on these three registers and returns the
registers to the adversary.

UsT 1ct,rp : |Mo, m1, ¢y = |mo, my, ¢ ® Encg(mp;r)).

Qino: —F —
Qin1: — Ustict,rp —

Qout : 1 —

where
UsT 1ct,rp © |mo, m1,c) = |mo, my, c @ Ency(mp; 7))

Challenge Query type chall(-, EM,1ct). In this query model, the adversary prepares two input
registers Qino, @in1, and sends them to the challenger. The challenger prepares an output register Q¢
containing |0>®n , picks r & {0,1}* and a random bit b, applies the following operation on these three
registers and returns the registers to the adversary.

UeM 1ct,rp * | Mo, ma, 0) = [mo, my, ®Ency, (mp; 7).

Qino: —F —
Qin1: —— Ustictrp —
Qout : |0>®n’ 1 *

Challenge Query type chall(:, ST, 2ct). (The notation 2ct stands for two-ciphertexts.)
In this query model, the adversary prepares two input registers Q;,0, @Qin1, two output registers Qout0, Qout1

and sends them to the challenger. The challenger picks rg, & {0,1}" and a random bit b, applies the
following operation on these four registers and returns the registers to the adversary.

UsT,2¢t,ro||r1,b © |0, M1, Co, 1) + [mo, m1, co @ Encg (map; o), 1 @ Ency(mg; 71)).

Qino: — —
Qin1 : -] _—

UST,Qct,TOH'rl,b
QoutO :

Qoutl : -1 —

where
UsT 2ct,r0|jr1,b © |M0, M1, Co, €1) = Mo, m1, co © Ency(me; o), c1 @ Ency(mg;r1)).

Challenge Query type chall(-, EM,2ct). In this query model, the adversary prepares two registers
Qino, Qin1 and sends them to the challenger. The challenger prepares two registers Qo y+0, @out1 containing

|O>®",, picks 7o, 71 & {0,1}! and a random bit b, applies the following operation on these four registers
and returns the registers to the adversary.

UBM 2¢t,r0||r b * |™0,™M1,0,0) = |mg, my, Encg(mp; 7o), Ency (mg; r1)).

Qino : | *
Q. 1 L [
Q " . ‘0>®n/ UST,Qct,roHrl,b

out0 -] *
Qoutl : ‘0>®n' 1 *

12

Challenge Query type chall(-, ER, 2ct). In this query model, the adversary prepares two registers

Qino, Qin1 and sends them to the challenger. The challenger picks rg, 71 ﬁ {0, 1}75 and a random bit b,
applies the following operation on these two registers and returns the registers to the adversary.

UEBR,2¢t,r0||r b * |0, m1) — |Encg(me; o), Ency (mg; 1))

QinO
Qinl

* QoutO
* Qoutl

UER,Qct,ro [|71,b

Challenge Query type chall(-, ER,1ct). In this query model, the adversary prepares two registers

Qino, Qin1 and sends them to the challenger. The challenger picks r & {0,1}! and a random bit b,
measures the register Q,,; (one of the provided registers by the adversary) and throws out the result,
applies the unitary UF"*(7) to the register Qinp, and passes it back to the adversary.

O — Qo

Qin1 —
b

where registers Qino, Qin1 Will be swapped if and only if b = 1.

Challenge Query type chall(-, ST, ror). (The notation ror stands for "real or random”.)

In this query model, the adversary provides two registers Q. , Qou:- The challenger picks r & {0,1}%, b &
{0,1}, a random permutation 7 on {0,1}", applies the unitary Ug,, ot 10 Qin, Qousr and passes them
back to the adversary.

UEnck om?b

Qout 1 [Qout

Challenge Query type chall(-, EM,ror). In this query model, the adversary provides a register

Qin- The challenger prepares a register Q,,; containing \0)®"/, picks r & {0,1}%, b & {0,1}, a ran-
dom permutation 7 on {0,1}", applies the unitary Ug,, oxt t0 Qin, Qour and passes them back to the
adversary.

Qin : - | * Q’L’ﬂ
UvEnc;C omb

Qout : |0>®n' 1 [Qout

Challenge Query type chall(-, ER,ror). In this query model, the adversary prepares a register Q;,,

and sends it to the challenger. The challenger picks r & {0,1}, b & {0, 1}, a random permutation 7 on
{0, 1}, applies the following operation to the register Q;,, and passes it back to the adversary.

UgR ror,rp : |mM) — ‘Enck(ﬂ'b(m);r»

Qn Qout

Note that the circuit above is physically realizable because Ency and 7 are injective for fixed r. We
give an alternative circuit for the above operation:

Qin — " P00 = Qour

13

3.3 Instantiation of learning and challenge query models

Jr

We define [:= learn(lyp, lgm) (“nb” stands for “number”, “qm” stands for “query model”) where [,
shows the number of the learning queries and [, shows the type of the learning queries. Therefore,
[= learn(lyp, lym) where (L, lgm) € ({*} x {CL, ST, EM, ER})U{(0, —)} where * means arbitrary many
queries and 0 means no learning queries. For the challenge queries, we define ¢ := chall(c,p, Cgm, ¢re)
(“nb” stands for “number”; “qm” stands for “query model”, “rt” stands for “return type”) where c,; shows
the number of the challenge queries and ¢4, ¢+ show the type of the challenge queries. Therefore,

¢ = chall(¢yp, Cgm, ¢rt) Where (Cup, Cgm, ¢rt) € {1,%} x {CL, ST, EM, ER} x {1ct, 2ct, ror}

Number of queries:

— 0: Zeros queries (only allowed for learning queries, otherwise the notion becomes trivial)
— 1: One query (only allowed for challenge queries)
— x: arbitrary many queries

Query models:

— CL: Classical queries

— ST: Standard quantum queries

— EM: Embedding quantum queries
— FER: Erasing quantum queries

Return types: (only relevant for challenge queries)

— lct: One-ciphertext, that is, the adversary sends two plaintexts mg and mq, but only one of them,
my is encrypted.

— 2ct: Two-ciphertexts, that is, the adversary sends two plaintexts mg and m; and both of them are
encrypted and the adversary has to guess which ciphertext corresponds to which plaintext.

— ror: Real or random, that is, the adversary sends one plaintext m, and he gets either the encryption
of m or of w(m) where 7 is a random permutation on the plaintext space.

3.4 The valid combinations of the learning and challenge queries

In Definition [7] we defined the security of an encryption scheme in the sense of [-c-IND-CPA. Now, we
explicitly specify which combination of the learning queries, [, and the challenge queries, ¢, are considered
in this paper.

The valid combinations. We consider only combinations where,

— (Lupy tnp) € {(%,1), (%, %), (0, %) } i.e., (lup, cnp) # (0,1). Which means we are not considering variants
of IND-OT-CPA (which is the security of encryption only used once).

— (Igms ¢qm) € {(CL, CL)} U{(CL,z), (z, CL), (z,x)|x € {ST,EM, ER}}, ie., if learning queries and
challenge queries are both quantum they are not allowed to be from different query models. This
is to keep the combinatorial explosion of different notions in check, and notions that combine two
different notions of superposition queries strike as rather exotic.

4 Decoherence lemmas

The informal idea of the following lemma is, that if you have one-time access to an ER-type oracle
of a random permutation, you cannot distinguish whether this oracle “secretely” applies a projective
measurement to your input, that measures whether your input is |+)®m and if not which computational
state |x) it is.

Lemma 8. For a bijective function m : {0,1}™ — {0,1}™ let U™ be the unitary that performs the ER-
type mapping |x) — |m(z)). Let X be a quantum register with m qubits. Then the following two oracles
can be distinguished in a single query with probability at most 272

— Fy: Pick a random permutation m and apply U™ on X,
— Fy: Pick a random permutation w, measure X as described later and then apply U™ to the result.

14

The quantum circuit for Fy is:

and for Fy it is:

M -1
e or 4
L === - _ __ _ = —

where ¢ < Mg (| is a projective measurement, storing the result (0 or 1) in c, that projects to the spaces

span(|0)®™) (corresponding to 0) and its orthogonal space (corresponding to 1) and M" is a measurement
in the computational basis, whose outcome is denoted by & and M means no operation.

Note, that if we write M| | for the projective measurement, that projects to the subspace span(|+>®m),
we can write F; simply as:

On a very high level, the proof proceeds as follows: We explicitly represent the density operators pg, p1
after execution of Fy, Fy, respectively (for a generic initial state). Then we show by explicit calculation
that pg = p’ where p’ is the state after F} if we omit the measurement M¢°. Finally we proceed to
bound the trace distance between p; and p’. (This then gives a bound on the adversary’s distinguishing
probability.) This is done by explicitly computing p; — p’ and noting that this difference is a tensor
product of two matrices o1, 02, both of reasonably simple form, and one of them having very small trace
norm.

Proof. Let M := 2™. A general strategy for distinguishing Fy and F; can be described as follows: The
adversary chooses some Hilbert space H and for each z € {0,1}™ picks &, € C, normalized |¢,) € H
such that) |éz|? = 1. The adversary then prepares the bipartite state

|W>AB = Z dac‘¢1>A ® ‘1‘>B

ze{0,1}m

and sends the B-part as the input of an oracle query to f. (We can assume this without loss of generality,
because any state |¥) ,; can be written in this form.) Let po be the density operator of the state after
applying the oracle in Fy to |7). Let p; be the density operator of the state after applying the oracle
in F} to |¥). Let p’ be the density operator of the state in F} if the computational measurement M¢ is
omitted. Decompose |¥) as:

|!p> = 7yes|wyes> + ’7no|'¢no>

such that [thyes) € H @ span{|+)*™} and [¢hno) € H @ span{|+)®™}+. Now choose quantum states |®)
and (|¢;)), and scalars 8 and (ay)zex such that

7yes|¢yes> = /8|¢> ® |_|_>®m

and

’Vno"l/}no> - Z (am|w$> & |$>)

x

so then

) = B®) @ [H)°™ +) (aalths) ® |2))

and such that H ® span{|+)®"} is orthogonal to °_ (c.|¢)) ® |z)®™). To simplify computation choose
quantum states |1)yes) and |t,,) and scalars vyes and o (“yes” corresponds to measuring ¢ = 0 and “no”
corresponds to measuring ¢ = 1). In the following, we prove > o[1),) = 0.

Claim 1.

Zar|wx> =0

15

Proof (of Claim):

Zax\% =Y (I {y)(aslts) ® |z))

T,y

2% (1@ (+%™)) (calthe) @ |2)) = 2% (1 (+]%™) Yaoltno)

x
But by the choice of Jy0|tno) this is 0.
This proves the claim.

Now we show that pg = p’ and then we show that TD(pg, p1) (which is equal to TD(p', p1)) is neg-
ligible.

Claim 2. .
Tno Z (I®U™)|tno) =0

™

Proof (of Claim):
o (L0 U)line) = 32 (18 07) 3 aslin) ©)
—ZZ (azltoe) ® (@ ZZ ay\wﬂ 1)) @ 1))
:ZZmywﬂy»@w ZZ S (aalte) @ ly)

937r7r1y)x

_ZZ O%W)x ®|y v Zl% ®Zay‘y
é lem =

where (i) follows from Claim [i}
This proves the claim.

Claim 3. A
(T® U™)(Vyes|¥yes)) = Vyes|¥yes)

Proof (of Claim): This hold because Vyes|tyes) = 8|8)@|+)*™ and U™ |4+)*™" = 2% 3 |n(z)) = |+)®.
This proves the claim.

Claim 4.
/

pPo=p
Proof (of Claim): This can be shown by proving that pg — p’ = 0. We know that
1 o o
po = 2 3 (L8 D7)yl (I U7
and
|Q/> = '7y93|wye5> + '7n0|1/)n0>
Defining the shorthand

|w;es> =010® ﬁﬂ)7y95|1/)y88> = 'erS|1/}yeS>

16

and

we can write

and

so that means that

[Vhom) = 1@ U™) Ynolthno)

p0.= 271 3 (Bhes) + [h0ie (W] + (Vo)

/]‘ ! ! / /
P = M Z (|7pyes><wyes‘ + |wn0,7r><¢no,7r’)

PO—P - M' Z ’wyes> n07r’+|wno7r>< yes|)

= ‘¢YCS> Z HO W‘ Z |wno ™ ycs

™

so this is 0 as Claim [2|implies |0/},) =0
This proves the claim.

Now move on to proving that TD(p’, p1) is negligible. First observe that p; is the sum of two parts
P1 = Pyes + Pno corresponding to the situations, pyes where ¢ was measured to be 0 and p,, where ¢ was

measured to be 1. And in the same way decompose p’ = pyes + pl,, by defining:

and

Pyes = Vyes|Vyes) <¢yeS|’Y;es

o= (37 32 D oyl] © @) im(o)l) = 110 3) (Vo]

and

Now compute

So call

and

T x,y

oo = (17 3 3 lowlPba) (9 @ () ()

P/ —pP1= (pyes M Z Wuo) (Vo ﬂ.’) — (pyes + pno)
= M Z ’2/};0,7" 1p:10771'| — Pno

- LS S asaglen] @ @) e

T zFy

— XY Y il vl e @))

oFyY uFw 71'(13:11
m(y)=w

=YY Y weagln) (] ©)l

TFY uFW 77(171)':71
m(y)=w

M,ZZ — 2) g) (W | ® 1) 0]

THEY uFw

= (Z amaZ}I%Mwy) ® (Z |u) wl)
TH#Yy u;é'w

o1 =Y apg|i) (1|
zHY

o2 = Sroar o 2 [

u;éw

17

Then
po—p1=01Q 03

Now prove that [|o2||; is sufficiently small, for this sake let p, = -y

loally = | =777 =3 Zlu (wl HM (Zlu (w] = ZI)

uFw
1 1 1
M|u><w|—gﬂz><z 7 2]+

®m QM (“)]- —m
- L) 2 14+1)<4-2
M (HH (+ H + e Hl) ot tls

1

T M-1

1
3 L

<
- M-1
1

where (i) uses the triangle inequality for the trace norm, and (i7) involves the following two facts: for
any normalized pure state [¢), [|[#))(¥|[ls = 1 (here in particular we have |+)®" = = 2., [v)) and for

the maximally mixed state p, := 3;1as, ||p«[l1 = 1. So it follows that:

ooy < 2772

and we can compute

loulh = |32 awaphin) (0] = D lewal?loa) (0l
- H (D cwlen)) (D aptwnl) = 3 laallen) (v
ST+ Y laa o) (vel

< 1+ 3 ol) el

_1+Z|aw|2 1

=1+ ||'Yn0|¢n0>||2
=1+ "YHO‘Z <2

So all in all
o = palls = lloully - ol < 2-277F2 = 27m+3
SO 1
TD(po, p1) = 5llpo = prll < 2+

This implies that no adversary can distinguish the results of Fy and F; with probability better than
27~m+2 In particular if m is at least superlogarithmical, so for instance linear in the security parameter,
then Fj and F} are indistinguishable for one query. O

Lemma 9. For numbers m and n and an injective function f : {0,1}™ — {0,1}"*" let UT be the
isometry that performs the ER-type mapping |z) — |f(x)). Let X be a quantum register containing m
qubits. Then the following two oracles can be distinguished with probability at most 3-27".

1. Fy: Pick f uniformly at random and then apply Ul on X,
2. Fy: Pick f uniformly at random, measure X in the camputatwnal basis then apply U? to the result.

z) (@)

o) —[M}{o7] 1@

The quantum circuit for Fy is:

and for Fy it is:

where M is a computational basis measurement (in the picture we denote the outcome of this measurement
with &).

18

Proof. Intuitively this follows from Lemma [§] because: Picking a random injection has the same distri-
bution as composing concatenation of sufficiently many Os with a random permutation. Formally, the
equivalence is shown by a sequence of hybrid oracles where Gy = Fy and G4 = F}. In the definition of
the hybrid games, 7 is always a random permutation 7 : {0, 1}™*" — {0, 1}™+",

G| is the same as Fy and G is the following oracle:

Oracle G; : —————] —

0 —Y

Gy and G are perfectly indistinguishable for any adversary, because the probability distributions of the
observed functionality are exactly the same.

G1 and Gy can be distinguished with probability at most 2= "2 by Lemma [8] where G is the
following oracle:

Oracle Gog : —————]]] —

0)°" —] oMy | M| | O

(Here we follow the same notation as above namely, that ¢ < M4y is a projective measurement,
storing the result (0 or 1) in ¢, that projects to the spaces span(|+)®™) (corresponding to 0) and its
orthogonal space (corresponding to 1) and M! is a measurement in the computational basis, whose
outcome is denoted by & and M° means no operation.)

Oracle G : ————] M T
|0>®n o L U

G2 and G35 can be distinguished with probability at most 2~™ because the probability of measuring |+)
is 27" Or more formally because [|(|¢) ® [0)*™)F|+)|| <27 % for any |¢).

Oracle Gy :

G3 and G4 are perfectly indistinguishable because the probability distributions are the same and G4
is the same as F;. Thus Fy and Fy can be distinguished with probability at most 27" +2-m—n+2 y 9—n
which is bounded by 3-27" O

Lemma 10. For a random function f : {0,1}™ — {0,1}", an embedding query to f is indistinguishable
from an embedding query to f preceded by a computational measurement on the input register. Let X be
an m-qubit quantum register. Then for any input quantum register m, the following two oracles can be
distinguished with probability at most 27™.

1. Fy: apply Uy to X and another register containing n zeros. The quantum circuit for Fy is:

|2) 1, T @)

10)°" —L = [f(2)

2. Fi: measure X in the computational basis and apply Uy to the result and another register containing

zeros. The circuit for Fy is:
= T — -1 ~
) — T 12)

10— H- 1F@)

where M is a computational basis measurement whose outcome we denote by &.

Proof. Let M := 2™ and N := 2". A general strategy for distinguishing Fy and F} can be described as
follows: The adversary chooses some Hilbert space H 4 and for each 2 € {0,1}™ picks o, € C,|¢,) € Ha
such that »_ |az|? = 1. The adversary then prepares the bipartite state

V) anr = Z Og|da) 4 @ |2)),

zeX

and sends the B-part as the input of an oracle query to f. (We can assume this without loss of generality,
because any state [¥) ,; can be written in this form.) Let py be the density operator of the state after

19

applying the oracle in Fy to |¥). Let p; be the density operator of the state after applying the oracle in
Fy to |¥). Then it holds

po = ~r 0 3 03y 1626, © 1) (0] @ (@) ()

fzy
and
o1 =mr D0 O asanlde) (9] @ [2) 2] @ | F (@) (2]
o=y
S S b 050,62} (6, @)0l @ L))
f =y
Compute

po— 1 =y 0 D Byt 62 {u] 1) (y] @ £ () (F)
oy

—m Y Y sl ol @)l

r#y ww f,f(z)=u,f(y)=w

= (S (h)

w#u

1

= Sl) © (5 b w)
TH£yY u,w

1

1
=5 () = FD @ ()

where u and w run over {0,1}". This implies:

1 1 1 2
_ —||= T ——.9.1==
oo = prll = 5 () (4 = 1) ® () () I = N
so 1
TD(po, p1) < N =2""
This finishes the proof. O

Corollary 11. Assume n > m. For a random injective function f : {0,1}™ — {0,1}" the oracles Fy
and Fy in Lemma are distinguishable with probability at most 1/2™ + C/2"™ where C is a universal
constant.

Proof. This follows from Theorem 7 in [Zhalj| that states any algorithm making ¢ quantum queries
cannot distinguish a random function from a random injective function, except with probability at most
Cq3/2". O

Corollary 12. Let R C {0,1}® be a (fized) set of size 2™. Let f : {0,1}" — {0,1}° be a random
injection with range R, that is, f is uniformly randomly chosen from the set of all injective functions
f:4{0,1}™ — {0,1}* with im f C R. An EM-query to f is distinguishable from an EM-query to f
preceded with a computational basis measurement with probability at most 1/2™ + C/2" where C is a
universal constant. In other words, the following circuits are indistinguishable.

@) ———) e ——{M)
0" — (@) 0°" — T |r@))

Proof. We can write f = gom where g : {0,1}" — {0,1}° is a fixed injective function with range R and
7:{0,1}™ — {0,1}" is a random injective function. Let g~! be a left inverse for the function g. An EM
query to f can be implemented using functions g and 7 as follows (using an ancillary register Anc):

Qin : Uﬂ— an

Anc: |0)®" — — —Qout
U U,-
P L W L

20

A simple calculation shows that the above circuit implements the isometry Uy = Ugor. Now using
Corollary the circuit above is indistinguishable from the following circuit when one measures @;,
register at the beginning: (We stress that U, is used only once as required by Corollary)

Anc: 0)®"™ — " —Qout
. U, Uy~
Qout : ‘0>®é e DC g —
And this is a circuit that implements an EM-query to f preceded with a measurement. O

5 Impossible Security Notions

Proposition 13. There is no l-chall(cyp, ST, 1ct)-IND-CPA-secure encryption scheme where the | and
tnp can be replaced by any of the possible parameters.

Proof. This is formally proven in [BZ13b] as Theorem 4.2. For short the attack consists of inputting into
the challenge query oracle the state

0)°" @ [¢) @ |0)®"

where |¢)) is some arbitrary “sufficiently non-classical” quantum state, for example |+)®". If b = 0 the
state |¢) is preserved and if b = 1 the state |¢) is disturbed. So the adversary can distinguish by measuring
the second register. O

Proposition 14. There is no l-chall(cnp, ST, 2¢t)-IND-CPA-secure encryption scheme where the | and
tap can be replaced by any of the possible parameters.

Proof. It is formally proven in [BZ13b] as Theorem 4.4. For short the attack consists of inputting into
the challenge query oracle the state

100%™ ® [¢) @ |0)®" @ |+)®™

where [¢)) is some arbitrary “sufficiently non-classical” quantum state. If b = 0 the state |¢) is preserved

as its encryption is “absorbed” by |+>®n,, but if b = 1 the state |¢) is disturbed. So the adversary can
distinguish by measuring the second register. O

Proposition 15. There is no I-chall(c,p, EM, 1ct)-IND-CPA-secure encryption scheme where the | and
tap can be replaced by any of the possible parameters.

Proof. The same proof as for Proposition works as the attack is based on inputting |O>®n/ on the
output registe. More precisely, the adversary inputs |0>®n ® |¢) and gets exactly the same output as in
the proof of Proposition [13] and then can do exactly the same measurement to distinguish. O

6 Implications

From the theoretically (4+1) x 2 x 4 x 3 = 120 possible IND-CPA-notions, we excluded 1 x 1 x4 x 3 = 12
that correspond to IND-OT-CPA instead of IND-CPA, as there is no learning query and only 1 challenge.
This leaves 108 notions. Next we excluded 2 x 2 x 3 x 3 = 36 notations that we considered unreasonable,
as they combine quantum learning queries with quantum challenge queries of different query models.
This leaves 72 notions. Next we excluded 15 notions that are proven impossible. This leaves 57 notions.

Now we will relate the remaining IND-CPA-notions. The 57 notions can be grouped together in 14
Panels depicted in Figure [1} so that in each panel the notions are equivalent. In order to have a compact
representation in Figure [1} for any qm € {ST, EM, ER} we define the set T*(qm) as

T*(qm) = {(learn(0, —), *, qm), (learn(x, CL), ¥, qm), (learn(x, qm), 1, qm), (learn(x, gm), *, qm)}.

Note that (learn(x, CL), 1, qm) is not in 7*(qm). This set will only be used in Figure to have a compact
representation.

Inside each panel all the notions are equivalent and apart from that, there are the following 20
implications between the panels depicted in Figure [I] using black arrows. The full set of implications

21

| P3: learn(+, CL)-chall(1, ER, 2ct) |

) S

P1: I-chall(¢np, Cgm, ¢re), |
(I, cnb, €qm) € T*(ER), |
et € {1ct, 2ct} !

P4: [-chall(cnp, ¢gm, ror),
W\ (L cns, cqm) € T*(ER) |5

Y P10: learn(*, ER)-chall(cns, CL, crt),
\3

] P7: learn(*, CL)-chall(1, EM, 2ct)

\ Cnb € {17*}7

A}

v crt € {Lct, 2ct, ror}

Y
A%
\
A}

¢t € {2ct,ror}

,’E"5: I-chall(¢np, Cqm, Crt), “‘
([, Cnb, Cqm) S T*(EM)7 M

P2: I-chall(cpp, ¢gm, roT),

P11: learn(x, EM)-chall(cyp, CL, ¢r¢),

Cnb € {1’ *}7
et € {1lct, 2ct, ror}

(L, ¢npy Cqm) € T*(ST)

>

P6: learn(x, ST)-chall(cyp, CL, ¢t),

Cnb € {17 *}a
et € {1ct, 2ct, ror}

P12: learn(*, CL)-chall(1, ST, ror) y

1
’ P13: learn(4, CL)-chall(1, EM,ror) ‘

Y
P14: -chall(cnp, CL, ¢rt),
(Lrens) € {(learn(0, —), *),
(learn(x, CL), 1), (learn(x, CL), %)},

g € {1ct, 2ct, ror}

Fig.1. The 57 notions and equivalences and implications between them. The red dashed arrows show non-
implications that if hold, the graph will be complete.

22

between all notions can be derived by taking the transitive closure of this graph. Every implication that
is not in the transitive closure of the graph is being disproven in the section about separations Section [7]
or have been left as open questions. The red dashed red arrows in Figure [1| show non-implications that
if hold, the graph will be complete.

Note that Panel 6 corresponds to the quantum security definitions by Boneh and Zhandry [BZ13b].
Some implications follow from some theorem proven later and some are easy enough that say can be
proven by a short argument. The arguments used are the following. In each case, we assign a short name
in bold to that argument type.

— more cqgs: i.e., more challenge queries. If two security notions just differ by the fact that one of them
allows only one challenge query and the other allows polynomially many, then trivially the notion
allowing polynomially many implies the notion allowing only one. For example:

learn(*, CL)-chall(x, ER,ror) = learn(*, CL)-chall(1, ER,ror)

— extra lg-oracle: i.e., extra learning-query-oracle. If two security notions just differ by the fact, that
one of them allows learning queries and the other doesn’t, then trivially the notion allowing learning
queries implies the notion allowing no learning queries. For example:

learn(x, CL)-chall(x, ER, 1ct) = learn(0, —)-chall(x, ER, lct)

— other ciphertext: If two security notions just differ by the fact, that one of them allows chall(c,;, ER, 1ct)
challenge queries and the other chall(c,;, ER, 2ct) challenge queries, then trivially the notions allowing
chall(c,p, ER, 2ct) challenge queries implies the notion allowing chall(c,;, ER, 1ct) challenge queries
(see Section . For example:

learn(x, CL)-chall(1, ER, 2ct) = learn(*, CL)-chall(1, ER, lct)

— simulate classical: Classical queries can be simulated with any quantum query type by measuring

the result in the computational basis. For example:
learn(*, ER)-chall(x, ER,ror) = learn(*, CL)-chall(x, ER, ror)

— simulate le with ch: When learning queries are classical, they can be simulated by the challenge
queries in the case of lct and 2ct. In more details, on input m as a classical learning query, we can
query (m,m) as a challenge query and simulate the learning query. For instance:

learn(0, —)-chall(x, ER, 2ct) = learn(x, CL)-chall(x, ER, 2ct)

— EM simulation by ST. The query type EM can be simulated by ST-type by putting |0) in the

output register @,,:. For example,
learn(*, CL)-chall(x, ST, ror) = learn(x, CL)-chall(x, EM, ror)

— EM simulation by ER. The query type EM can be simulated by ER-type queries. In the following,
we present a circuit that depicts the simulation of EM-type queries to some function f using an FR-
type query to f:

|m) —F——————= =
10" —o—o/

For example,
learn(*, ER)-chall(x, ER,ror) = learn(x, EM)-chall(x, EM , ror)

For the panels with more than one notion, it has to be proven, that all the notations inside are equivalent:
Panel P1 (8 security notions):

learn(*, CL)-chall(x, ER,2ct) = learn(*, CL)-chall(x, ER, 1ct) other ciphertext
learn(x, CL)-chall(x, ER, 1ct) = learn(0, —)-chall(x, ER, 1ct) extra lg-oracle
learn(0, —)-chall(x, ER, 1ct) = learn(x, ER)-chall(x, FR,1ct) by Theorem
learn(*, ER)-chall(x, ER, 1ct) = learn(x, ER)-chall(1, ER, 1ct) more cqs
learn(*, ER)-chall(1, ER, 1ct) = learn(x, ER)-chall(1, ER,2ct) by Theorem [21]
learn(x, ER)-chall(1, ER,2ct) = learn(x, ER)-chall(x, ER,2ct) by Theorem [16]
learn(x, ER)-chall(x, ER,2ct) = learn(0, —)-chall(*, FR,2ct) extra lg-oracle
learn(0, —)-chall(x, ER, 2ct) = learn(x, CL)-chall(x, ER, 2ct) simulate le with ch

23

Panel P2 (4 security notions):

learn(x, ST)-chall(x, ST, ror) = learn(x, CL)-chall(x, ST, ror) simulate classical

learn(x, CL)-chall(x, ST, ror) = learn(0, —)-chall(x, ST,ror) extra lg-oracle

learn(0, —)-chall(, ST,ror) = learn(*, ST)-chall(x, ST, ror) by Theorem [I9]
learn(x, ST)-chall(*, ST, ror) = learn(x, ST)-chall(1, ST, ror)
)-chall() b

learn(x, ST)-chall(1, ST,ror) = learn(x, ST)-chall(x, ST, ror

more cqs
y Theorem

Panel P4 (4 security notions):

learn(x, ER)-chall(x, ER,ror) = learn(x, CL)-chall(x, ER, ror) simulate classical
learn(x, CL)-chall(x, ER,ror) = learn(0, —)-chall(x, ER,ror) extra lg-oracle
learn(0, —)-chall(x, ER,ror) = learn(*, ER)-chall(*, ER,ror) by Theorem

learn(x, ER)-chall(x, ER,ror) = learn(x, ER)-chall(1, ER, ror)

learn(*, ER)-chall(1, ER,ror) = learn(x, FR)-chall(*, ER,ror) b

more cgs
y Theorem

Panel P5 (8 security notions):

chall(x, EM , ror
chall(x, EM , ror

learn(x, EM)-chall(x, EM ,ror) = learn(x, simulate classical
learn(*, CL)-chall(x, EM ,ror) = learn(0,
learn(0, —)-chall(x, EM ,ror) = learn(x, EM)-chall(x, EM, ror

learn(x, EM)-chall(x, EM ,ror) = learn(x, EM)-chall(1, EM,ror more cqs

learn(x, EM)-chall(1, EM ,ror) = learn(*, EM)-chall(1, EM,2ct) by Theorem [20]

CL)-chall(x,)

—)-chall(x,)

(,)

(1,)

(1,)

learn(x, EM)-chall(1, EM,2ct) = learn(x, EM)-chall(x, EM,2ct) by Theorem [16]
(%,)

(%,)

(%,)

(,)

extra lg-oracle
by Theorem

learn(x, EM)-chall(x, EM, 2ct) = learn(x, CL)-chall(x, EM, 2ct) simulate classical
learn(x, CL)-chall(x, EM,2ct) = learn(0, —)-chall(x, EM, 2ct
learn(0, —)-chall(x, EM,2ct) = learn(, EM)-chall(x, EM, 2ct
learn(x, EM)-chall(x, EM, 2ct) = learn(, EM)-chall(x, EM,ror

extra lg-oracle

by Theorem
by Theorem

Panel P6 (6 security notions):
learn(x, ST)-chall(1, CL, 1ct) = learn(x, ST')-chall(x, CL, 1ct) by Theorem
learn(x, ST)-chall(x, CL, 1ct) = learn(x, ST)-chall(1, CL,1ct) more cqs
The rest of equivalences by Theorem

Panel P10 (6 security notions):
learn(*, ER)-chall(1, CL, 1ct) = learn(*, ER)-chall(x, CL, 1ct) by Theorem
learn(x, ER)-chall(x, CL, 1ct) = learn(x, ER)-chall(1, CL,1ct) more cqs
The rest of equivalences by Theorem

Panel P11 (6 security notions):

learn(*, EM)-chall(1, CL, 1ct) = learn(*, EM)-chall(*, CL, 1ct) by Theorem
learn(x, EM)-chall(x, CL, 1ct) = learn(*, EM)-chall(1, CL,1ct) more cqs
The rest of equivalences by Theorem [17]
Panel P14 (9 security notions):
learn(x, CL)-chall(1, CL, 1ct) = learn(x, CL)-chall(x, CL, 1ct) by Theorem
learn(x, CL)-chall(x, CL, 1ct) = learn(x, CL)-chall(1, CL, 1ct) more cqs
learn(*, CL)-chall(x, CL, 1ct) = learn(0, —)-chall(x, CL, 1ct)
()

learn(0, —)-chall(x, CL, 1ct) = learn(x, CL)-chall(x, CL, 1ct
The rest of equivalences by Theorem

extra lg-oracle

simulate le with ch

The 20 arrows in detail:

24

From panel 1 to panel 3

precisely: learn(x, CL)-chall(x, ER,2ct) = learn(*, CL)-chall(1, ER, 2ct)
argument: more cqs

From panel 1 to panel 4

precisely: learn(x, ER)-chall(x, ER, 1ct) = learn(*, ER)-chall(x, ER, ror)
argument: Theorem [22]

From panel 1 to panel 6

precisely: learn(x, ER)-chall(x, ER, 1ct) = learn(x, ST)-chall(x, CL, 1ct)
argument: Theorem

From panel 2 to panel 5

precisely: learn(x, ST)-chall(x, ST, ror) = learn(x, EM)-chall(x, EM,ror)
argument: EM simulation by ST.

From panel 2 to panel 6

precisely: learn(x, ST)-chall(*, ST, ror) = learn(*, ST)-chall(x, CL, 1ct)
argument: simulate classical

From panel 4 to panel 5

precisely: learn(x, ER)-chall(x, ER,ror) = learn(x, EM)-chall(x, EM , ror)
argument: EFM simulation by ER

From panel 2 to panel 12

precisely: learn(x, CL)-chall(x, ST,ror) = learn(x, CL)-chall(1, ST, ror)
argument: more cqs

From panel 3 to panel 7

precisely: learn(x, CL)-chall(x, ER,2ct) = learn(x, CL)-chall(x, EM, 2ct)
argument: EM simulation by ER.

From panel 3 to panel 8

precisely: learn(x, CL)-chall(1, ER,2ct) = learn(*, CL)-chall(1, ER, lct)
argument: other ciphertext

From panel 4 to panel 10

precisely: learn(x, ER)-chall(x, ER,ror) = learn(x, ER)-chall(*, CL, 1ct)
argument: simulate classical

From panel 4 to panel 9

precisely: learn(x, CL)-chall(x, ER,ror) = learn(x, CL)-chall(1, ER, ror)
argument: more cqs

From panel 5 to panel 7

precisely: learn(x, CL)-chall(x, EM,2ct) = learn(*, CL)-chall(1, EM, 2ct)
argument: more cqs

From panel 5 to panel 11

precisely: learn(x, EM)-chall(x, EM , 2ct) = learn(x, EM)-chall(x, CL, 1ct)
argument: simulate classical

From panel 6 to panel 11

precisely: learn(x, ST)-chall(1, CL, 1ct) = learn(x, EM)-chall(1, CL, 1ct)
argument: EM simulation by ST

From panel 8 to panel 9

precisely: learn(x, CL)-chall(1, ER, 1ct) = learn(x, CL)-chall(1, ER, lct)
argument: Theorem [22]

From panel 10 to panel 11

precisely: learn(x, ER)-chall(1, CL, 1ct) = learn(x, EM)-chall(1, CL, 1ct)
argument: EM simulation by ER

From panel 7 to panel 13

precisely: learn(x, CL)-chall(1, EM,2ct) = learn(x, CL)-chall(1, EM,ror)
argument: Theorem

From panel 9 to panel 13

precisely: learn(x, CL)-chall(1, ER,ror) = learn(*, CL)-chall(1, EM,ror)
argument: EM simulation by ER

From panel 11 to panel 14

precisely: learn(x, EM)-chall(1, CL, 1ct) = learn(*, CL)-chall(1, CL, lct)
argument: simulate classical

From panel 12 to panel 13

precisely: learn(x, CL)-chall(1, ST, 1ct) = learn(x, CL)-chall(1, EM,ror)
argument: EM simulation by ST.

25

— From panel 13 to panel 14
precisely: learn(x, CL)-chall(1, EM,ror) = learn(x, CL)-chall(x, CL, 1ct)
arguments: We can show the implication with the application of the following arguments respec-
tively: simulate classical, Theorem [I7] and Theorem [16]

These are the implications. Now we prove the theorem mentioned in this list. In Theorem we prove
that if we fix all the parameters in two notions expect the number of the challenge queries (that can be
one or many), the notion with many challenge queries implies the notion with one challenge query if one
can simulate the challenge queries with the learning queries (when knowing the challenge bit).

Theorem 16. If a chall(1, ¢, ¢r¢)-challenge-query can be efficiently simulated with an lym-learning-
query (when knowing the challenge bit b) then learn(x, [qy,)-chall(1, ¢qm, ¢ry) = learn(s, [qy)-chall(*, cqm, crt)-

Proof. Let A be an adversary that wing in the learn(, [4y)-chall(*, cqm, ¢;¢) game with non-negligible
advantage €(n). We assume that A makes ¢ challenge queries. We construct an adversary B that attacks
in the sense of learn(x, lqm)-chall(1, cqm, ¢x+). Let B be an adversary that chooses uniformly at random
an element k from {1,...,q}, runs the adversary A and answers to the i-th challenge query made by A
as follows:

1. When ¢ < k, B simulates the i-th challenge query by a learning query assuming that b = 0.
2. For k-th challenge query, B uses a challenge query to answer.
3. When i > k, B simulates the i-th challenge query by a learning query assuming that b = 1.

At the end, B returns A’s output. Let the game G® denote an execution of B together with the learn (*, lym)
-chall(1, ¢qm, ¢r¢) challenger. Let g}; denote the same but using a fixed value of k. Note that gg = g,i_H.

Then gg is essentially an execution of A with the learn(x, lym)-chall(x, ¢qm, ¢;¢) challenger with b = 0.

And G} one with b = 1. Thus [Pr[l < GJ] — Pr[l + G{]| > €(n). Furthermore the advantage of B is
Prl < %) = Pr[l = G| = X2, g Prll = GR] = 32, g Prll « Gil| = [(Pr(l « Gg] — Prll « G{])| >
€(n)/q. This is a contradiction Wlth the security in the learn(x, [m)-chall(1, cqm, ¢;t) sense. O

In the following theorem, we show that when the challenge queries are classical and we fix other
parameters except the return types, these notions (with different return types lct, 2¢t, ror) are equivalent.

Theorem 17. Let £ = {learn(0, —), learn(* CL) learn(*, ST),learn(x, EM),learn(x, ER)} and &,, =
{1,%}. For all (I, &) € £ x €y, \ {(learn(0,—), 1)}, the following security notions are equivalent for all
encryption schemes: (Note that when | learn(O —) and cpp = 1, the security definition is IND-OT-CPA
that we have excluded.)

— Ciet := l-chall(cyp, CL, 1ct)-IND-CPA-security
— Coct := l-chall(c,p, CL, 2¢t)-IND-CPA-security
— Crop := l-chall(cyy, CL, ror)-IND-CPA-security

Proof. Coct = Cict: trivial.
Ciet = Cog, case ¢, = x: A 2ct-challenge-query of the form

(mg, m1) — (Encg(my), Encg(mg))
can be simulated by two queries of the form (mg, m1) — Encg(m;), namely by querying
(mog, m1) — Encg(my)
to get Encg(myp) and then switching the inputs and querying
(my, mg) — Encg(mg)

to get Ency(mg). So the desired outcome (Ency(mp), Ency(mg)) is simulated.
Ciet = Coct case ¢, = 1: We prove that

I-chall(1, CL,1ct) = [-chall(*, CL, 1ct) = [-chall(x, CL,2ct) = I-chall(1, CL, 2ct)

(for simplicity we drop the IND-CPA-security from the notation above). The first implication follows
from Theorem [T6] the second implication was proven above and the third implication is trivial, because

26

the only difference is that there are less challenge queries available on its right side.

Cict = Cpor: This follows from the fact that a ror-challenge-query can be simulated by a 1ct-challenge-
query as follows. Let A be a successful adversary against [-chall(c,,;, CL, ror)-IND-CPA-security, trans-
form it into an adversary B4 against I-chall(c,y, CL, 1ct)-IND-CPA-security. (The adversary B runs A
and plays the role of the challenger for A.) The learning queries are simply forwarded. When A performs
a challenge query with input m/, then B samples a random value r and submits (mg, my) = (m/,r) to
the challenger. The challenger answers with Ency(m;) i.e., with Encg,(m’) if b = 0 and with Enc(r) if
b = 1. This is exactly what A expects to get back, so B can simply pass it over to A.

Cror = Cict: We want to show that the game with challenge queries (mg,m1) — Encg(mg) is indis-
tinguishable from the game with challenge queries (mg, m1) — Encg(mq). But since Enc is C,o,-secure it
follows that the game with challenge queries (mg,m1) — Encg(mg) is indistinguishable from the game
with challenge queries (mg, m1) — Encg(r) where r is random. And as well that the game with challenge
queries (mg, m1) — Encg(r) where r is random is indistinguishable from the game with challenge queries
(mg, my) — Encg(m1). So by transitivity of indistinguishability Enc is Cy.-secure. O

In the theorem below, we show that the security definition with no learning queries imply the security
definition that performs EM and ER type learning queries. The idea of proof is to simulate learning
queries with the challenge queries. Classically, we can simulate easily the learning queries using the
challenge queries by making a copy of the message sent as a learning query and send the message
and its copy as a challenge query. However, this approach is not straightforward in the quantum case
because of no-cloning theorem. Therefore, we define two intermediate games with learning queries that
always return encryption of 0. Overall, we show that IND-CPA games and two intermediate games are
indistinguishable.

Theorem 18. learn(0, —)-¢ = learn(x, lym)-¢ where ¢ € {chall(x, EM, 2ct), chall(x, ER, 2ct), chall(x, ER, 1ct)}
and g € {EM, ER}.

Proof. Let Enc be some encryption scheme that is learn(0, —)-c-secure for ¢ € {chall(x, EM, 2ct), chall(x, ER, 2ct),
chall(x, ER, 1ct)}. We will show that Enc is learn(x, [qm)-c-secure by defining a sequence of IND-CPA
games that demonstrate that settings with challenge bit b = 0 and b = 1 are indistinguishable.
Define the learning query I’ to be as follows: For EM type learning queries, after receiving the quantum
register Q;,, measure it in the computational basis to get a classical value z, compute Enc(0), and return
|z, Enc(0)). For ER type learning queries, it returns |[Enc(0)).
Let Game G}, be the IND-CPA game with c¢-challenge-queries and learn(x, [y,)-learning-queries when
the challenge bit is b. Let Game G} be the IND-CPA game with c-challenge-queries and I'-learning-queries
when the challenge bit is b.
Now we shall show in sequence that these games are indistinguishable from one another:

Go 2 G 2 Gy ~G.

To do this, we construct an adversary B that breaks learn(0, —)-c-security from an adversary A that
distinguishes the two subsequent games in the relation above. Let b denote the challenge bit of the
adversary B’s challenger. In all the cases, the adversary B answers the challenge queries made by A by
forwarding them to its challenger. In the following, we show how the adversary B answers the learning
queries made by A in each case.

Go =2 G} : Upon receiving the quantum register Q;, as a learning query from the adversary A, the
adversary B prepares the quantum register @/, containing |0), performs the c-challenge query for Q;,, @,
registers and then does the following:

(i) When ¢ = chall(x, EM, 2ct), B receives back four registers. B measures and discards the second and
fourth registers and sends the first and third registers to A.

Qin : |m>]

bt 10) —
Qout :|0>®n'

Z)ut :|O>®n/ |

At the end, the adversary B returns A’s output. Note that if the challenge bit is ¥’ = 0, then the
adversary B returns |m,Enc(m)) to A. This is a simulation of the FM type learning queries in
game Gg. It is clear that the challenge queries made by A are simulated perfectly by B. Therefore,

27

the adversary B perfectly simulates game Go when & = 0. When the challenge bit is ¥ = 1, the
adversary B effectively measures Q;, by measuring @/, (which contains the encryption of Q).
Thus, it returns |m, Enc(0)) (where m is the result of measuring Q;,) as an answer for a learning
query. This is a simulation of the I’ learning queries in game G'. Therefore, the adversary B perfectly
simulates game G} when ¥ = 1. Since Enc is learn(0, —)-chall(x, EM, 2ct)-secure, Gy and G are
indistinguishable.

(i) When ¢ = chall(x, ER, 2ct), B receives two registers. B measures and discards the second register
and sends the first register to A.

Qin : |m> :> U(ER,lct,ro)

o)

Y ==

At the end, the adversary B returns A’s output. Note that if the challenge bit is o’ = 0, then the

adversary B returns |Enc(m)) to A. This is a simulation of ER type learning queries in game Gy. It

is clear that the challenge queries made by A are simulated perfectly by B. Therefore, the adversary

B perfectly simulates game G when b’ = 0. When the challenge bit is &’ = 1 the adversary B returns

|Enc(0)) as an answer for a learning query. This is a simulation of I’ learning queries in game G.

Therefore, the adversary B perfectly simulates game G} when ¥’ = 1. Since Enc is learn(0, —)-
chall(x, ER, 2ct)-secure, Go and G are indistinguishable.

(iii) When ¢ = chall(x, ER, 1ct), B receives back one register and forwards it to A.

Gt I

in o 10)
b/ —

At the end, the adversary B returns A’s output. Similar to the cases above, we can show that the
adversary B simulates the game Gy when the challenge bit is " = 0 and it simulates the game G
when the challenge bit is ¥’ = 1. Since Enc is learn(0, —)-chall(x, ER, 1ct)-secure, Go and G} are
indistinguishable.

0 = Gi: Similar to the cases above, we can show that G{, and G are indistinguishable. In this case, the
adversary B after receiving the quantum register Q);, as a learning query from the adversary A, prepares
the quantum register @}, containing |0), performs the c-challenge query for Q},,, Q. registers (the order
of registers have been exchanged). Then it does exactly the same as above in each case. For instance in
the case of ¢ = chall(x, EM, 2ct), B receives back four registers, then measures and discards the second

and fourth registers and sends the first and third registers to A.

int 10)]
Qin = |m) |
Qout:|0>®n/
out H0)®" ——L_——

At the end, B returns A’s output. The other cases are similar.

G1 2 Gy : Tt is clear that B can simulate I learning queries in both cases of EM and ER type queries
by performing a c-challenge-query with input |0) ® |0) to obtain |Enc(0)). Therefore, B can simulate the
games G and G} when ¥’ = 0 and b’ = 1, respectively. At the end, B returns A’s output. Two games
are indistinguishable because Enc is learn(0, —)-c¢ secure. In summary, we showed that Gy and G; are
indistinguishable and therefore Enc is learn(x, [y,)-c-secure. O

In the theorem below, we show that the security definition with no learning queries imply the security
definition that performs ST, EM and ER type learning queries when the return type of the challenge
queries is ror. The idea of the proof is to simulate the learning queries with the challenge queries. In
each case, we define an intermediate game with learning queries that applies a random permutation to
the input register before invoking the query (and undo this by applying 7! to the input register for
ST and EM cases.) Then we show that IND-CPA games with b = 0,1 are indistinguishable from this
intermediate game and this finishes the proof.

28

Theorem 19. learn(0, —)-chall(*, cqm,r0r) = learn(x, ¢qm)-chall(*, cqm,r01), ¢qm € {ST, EM, ER}.

Proof. Let Enc be some encryption scheme that is learn(0, —)-chall(%, ¢qm, ror)-secure for ¢qm € {ST, EM,
ER}. We will show that Enc is learn(x, ¢qm)-chall(*, ¢qm, ror)-secure by defining a sequence of IND-CPA
games that demonstrate that the settings with the challenge bit b = 0 and b = 1 are indistinguishable.
Let Game G} be the IND-CPA game with chall(*, ¢qm, ror)-challenge queries and learn(x, ¢qm)-learning
queries when the challenge bit is b.

We define the game G’ to be the IND-CPA game with chall(x, ¢qm, ror)-challenge queries with the
challenge bit b = 1 and learn(x, If,;,,)-learning queries where the learning query model [, is as follows:
For the query model qm = ST, after receiving the quantum registers @Q;, and Q.,.:, apply a random
permutation 7 on register Q;,, perform the query to Enc and finally apply 7~ on register Q;,, afterwards.

We draw the circuit below.
Qm : 1

UEnc
Qout :
For the query model qm = EM, after receiving the quantum register @Q);,,, prepare a quantum register

Qout containing |0 ®"I, apply a random permutation 7 on register Q);,, perform the query to Enc and
g y
finally apply 7! on register Q;, afterwards. We draw the circuit below.

Qin : !

|0> ®n/ UEDC

For the query models ER, after receiving the quantum register @;,, apply a random permutation 7 on
register Q;,, perform the query to Enc (in the ER query model). The circuit for [, queries in this case

is
Qin

Next we will show the following indistinguishability relations.

Go2G' =G,

In all cases, from an adversary that distinguishes two games we construct an adversary that breaks the
learn(0, —)-chall(*, ¢qm, ror) security of Enc. Let A be an adversary that distinguishes two subsequent
games in the relation above with non-negligible probability p. We construct the adversary B that breaks
the learn(0, —)-chall(, ¢qm, ror) IND-CPA security of Enc.

Gp = G': In this case, the adversary B runs A and answers to A’s learning queries by forwarding
them as the challenge queries to the challenger. B will also directly forward the challenge queries made
by A to the challenger. At the end, B returns output of A. We show that B simulates perfectly two games
for the different type of queries separately:

1. When ¢qm = ST: We recall the challenge query type (ST,ror) in the circuit below.
Qin . UEncon'b/
Qout L1 —
Note that if the challenge bit b’ = 0 then B simulates the learning and challenge queries in the game
Go and if " = 1 then B simulates the learning and challenge queries in the game G’. So the advantage
of B in guessing the challenge bit ¥’ is at least p.
2. When ¢y, = EM: We recall the challenge query type (EM,ror) in the circuit below.

Qin : — —

|O>®n’ UEHCOT{'b,

Note that if the challenge bit ¥" = 0 then B simulates the learning and challenge queries in the game
Go and if b’ = 1 then B simulates the learning and challenge queries in the game G’. So the advantage
of B in guessing the challenge bit ¥’ is at least pu.

3. When ¢y, = ER: We recall the challenge query type (ER,ror) in the circuit below.

Qin L UEnCO'rrb’ —

It is clear that if the challenge bit o’ is 0 then B simulates the learning queries in the game G and
if the challenge bit is 1 then B simulates the learning and challenge queries in the game G’. So the
advantage of B in guessing the challenge bit ¥’ is at least p.

29

G’ = G1: We show these two games are indistinguishable for different query types:

1. When ¢, = ST In this case, the adversary B answers to A’s learning queries by forwarding them
as the challenge queries to the challenger. To answer A’s challenge queries, B applies a random
permutation 7 on input register Q;, and sends Q;, and Q. to the challenger. After getting the
response from the challenger, it applies 7! to the input register @Q;,, and sends them to the adversary
A. If the challenge bit b’ = 0, then the adversary B simulates learning queries and challenge queries
in the game G;. If the challenge bit ¥’ = 1, then the adversary B simulates learning queries and
challenge queries in the game G’.

. When ¢ = EM. The adversary B does the same as above except oy contains |0)
. When ¢g, = ER. In this case, the adversary B answers to A’s learning queries by forwarding them
as the challenge queries to the challenger. To answer the challenge queries, B applies a random
permutat