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Abstract. With the ongoing developments in artificial intelligence (AI),
big data, and cloud services, fully homomorphic encryption (FHE) is be-
ing considered as a solution for preserving the privacy and security in
machine learning systems. Currently, the existing FHE schemes are con-
structed using lattice-based cryptography. In state-of-the-art algorithms,
a huge amount of computational resources are required for homomorphic
multiplications and the corresponding bootstrapping that is necessary to
refresh the ciphertext for a larger number of operations. Therefore, it is
necessary to discover a new innovative approach for FHE that can reduce
the computational complexity for practical applications. In this paper,
we propose a code-based homomorphic operation scheme. Linear codes
are closed under the addition, however, achieving multiplicative homo-
morphic operations with linear codes has been impossible until now.
We strive to solve this problem by proposing a fully homomorphic code
scheme that can support both addition and multiplication simultane-
ously using the Reed-Muller (RM) codes. This can be considered as a
preceding step for constructing code-based FHE schemes. As the order
of RM codes increases after multiplication, a bootstrapping technique
is required to reduce the order of intermediate RM codes to accomplish
a large number of operations. We propose a bootstrapping technique
to preserve the order of RM codes after the addition or multiplication
by proposing three consecutive transformations that create a one-to-one
relationship between computations on messages and that on the corre-
sponding codewords in RM codes.

Keywords: Error-correcting codes (ECCs), fully homomorphic encryption (FHE),
homomorphic computation, post-quantum cryptography (PQC), Reed-Muller
(RM) codes.

1 Introduction

Error-correcting codes (ECCs) are being used in diverse application areas. They
have been developed for wireless communication systems in noisy channels and
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digital storage systems [1, 2]. They are also widely used in other areas such as
distributed computing systems or public-key cryptography, also known as code-
based cryptography. The security of code-based cryptography is based on the
fact that the decoding problem of a random linear code is an NP-complete prob-
lem [3]. Especially, code-based cryptography is one of the candidates for post-
quantum cryptography that can resist attacks using operations over quantum
computers.

Recently, machine learning has become popular in many areas and a few
applications that employ this technology require the privacy of input data to
be maintained. For the security of machine learning, differential privacy and
fully homomorphic encryption (FHE) are considered as candidates. In the case
of differential privacy, the information on the individuals in the dataset is not
disclosed even though the entire dataset is available. However, when it comes to
FHE, both multiplication and addition can be performed for encrypted messages.
Thus, confidential messages can be securely manipulated on the untrusted cloud
server. In FHE, the encryption schemes can support both addition and multi-
plication without any limitations on the number of operations.

As Gentry proposed the first generation FHE in 2009 [4], there has been
extensive research on homomorphic encryption schemes based on lattice-based
hard problems [5–10]. The most promising recent research works on lattice-based
homomorphic encryption schemes are the homomorphic encryption for the arith-
metic of approximate numbers scheme, called the Cheon-Kim-Kim-Song (CKKS)
scheme [6] and the fast FHE over the torus (TFHE) scheme [7]. Despite sub-
stantial progress since Gentry’s first FHE scheme, the computational complexity
of FHEs is still too high to be used in privacy-preserving machine learning sys-
tems. For example, it takes almost 30 seconds for one bootstrapping operation
while using the CKKS library. As more than 105 bootstrappings are necessary
to sort hundreds of data packets, several days are needed for the homomorphic
sorting operation [10]. Therefore, we need to discover a new innovative approach
to achieve more efficient FHE.

Along with the extremely fast-growing data and computation sizes, the size
of distributed computing systems has also grown increasingly larger with time.
During computing, a certain amount of unpredictable system noise or straggler
nodes that cause delays cannot be avoided. To reduce these problems, we fre-
quently use coded computation, which is a method of using coding theoretic
techniques in distributed systems. In this regard, the first known study was
conducted on the computing matrix multiplication problem using erasure codes
and minimum distance separable codes [11]. Later, more studies with diverse
approaches to increase the speed of coded computations also appeared [12–14].
System components, such as sensors, are required to working efficiently even in
noisy conditions, such as high temperature. To ensure this, we need a coding
technique with high error tolerance, such as Reed-Muller (RM) codes, because
they can correct random erasures and errors with high probability [15].

Besides, we also expect these results to be used in quantum computing. There
are numerous studies on the application of ECCs in quantum computing [16–19].
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Researchers have also succeeded in mapping the ECCs of classical computers
into new quantum codes called “stabilizer codes.” Several trials on using alge-
braically defined codes, such as Hamming codes, Bose-Chaudhuri-Hocquenghem
codes, RM codes, and Golay codes have been accomplished. Moreover, methods
for using sparse-graph codes such as low-density parity-check codes are also be-
ing studied. The goal of all these studies is to achieve fault-tolerant quantum
computation. In the future, we expect homomorphic computation to be an im-
portant component in quantum computers, and therefore our contribution to
creating a homomorphic computation method for RM codes may turn out to be
useful in RM-code-based quantum error correction.

In this paper, we propose a code-based homomorphic computation scheme
using RM codes that can support simultaneous addition and multiplication op-
erations. Addition can be performed freely in linear codes due to the nature of
the linearity. However, no such method of multiplication exists for codewords,
that is, it is not possible to obtain a valid codeword just by multiplying two valid
codewords. Therefore, we propose a linear transformation that can map the mul-
tiplication result of any pair of valid codewords to a valid codeword. As the order
of the codewords monotonically increases during the multiplication in the RM
codes, there is a certain limitation on the number of multiplications. To resolve
this problem, we propose a bootstrapping method to reduce the RM codewords
of the second-order to that of the first-order after codeword multiplication.

The paper is organized as follows: We present the preliminaries in Section
II, where we describe the basic concepts of the original RM codes, and set a few
notations. Moreover, we present the fundamental definition of FHE. Our main
results are presented in Section III. We define the addition and multiplication
operations on the message and codeword domains, respectively, and also propose
the main scheme used in our bootstrapping technique for RM codes. Finally, we
conclude our paper and mention future works in Section IV.

2 Preliminaries

2.1 RM codes

In this subsection, we briefly introduce the fundamental notions and properties
of RM codes. An RM code, RM(r,m) is defined with integers r and m, where r is
the order of the code and n = 2m is the code length. The dimension of RM(r,m)
is kr =

∑r
i=0

(
m
i

)
and the minimum distance is dmin = 2m−r. Further, we

can express RM(r,m) with r-th order linear combinations of Boolean functions
v0 = 1,v1, · · · ,vm. Thus, the generator matrix Gr of the r-th order RM code,
RM(r,m) can be expressed as
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Gr =



v0

v1

...
vm

v1v2

v1v3

...
vm−1vm

...
v1 · · ·vr

v1 · · ·vr−1vr+1

...
vm−r+1 · · ·vm



, (1)

where, vivj denotes the component-wise multiplication of vi and vj [1,2,20–23].
The columns of the generator matrix are evaluated by each Boolean function of
each row with every m-tuple binary vector from (1, 1, · · · , 1) to (0, 0, · · · , 0) in
the reverse lexicographical order.

The generator matrix G of the first-order RM codes is constructed from
{v0,v1, · · · ,vm} in (1), and the generator matrix of the second-order RM codes
is created from {v0,v1, · · · ,vm,v1v2,v1v3, · · · ,vm−1vm}. The first-order RM
code has a dimension of k = m+ 1 and can be represented with linear combina-
tions of v0, · · · ,vm.

The message can be expressed with a polynomial of degree m, a(x), or with
a (m+ 1)-tuple vector a as

a(x) =

m∑
i=0

aix
i

a = (a0, a1, · · · , am).

And codeword of the first-order RM codes, RM(1,m), can be expressed with
a polynomial of degree n−1, c(x), or with a n-tuple vector c by multiplying the
k × n generator matrix G in (1) to message as

c(x) =

n−1∑
i=0

cix
i

c = (c0, c1, · · · , cn−1) = aG =

m∑
i=0

aivi, (2)

where we abuse the vector and polynomial notations.
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2.2 Fully homomorphic encryption

Homomorphic encryption plays a crucial part in ensuring privacy because it does
not expose the original data in computing environments such as machine learning
or cloud services [4]. An encryption scheme is said to be “homomorphic” with
respect to an operation ♦ on plaintext space P if it satisfies

Decrypt(Encrypt(m1) ∗ Encrypt(m2))

= Decrypt(Encrypt(m1♦m2))

= m1♦m2

for an operation ∗ on ciphertext space C. The operation ♦ is usually an addition
or multiplication.

An encryption scheme is called “somewhat homomorphic” if it satisfies only
a limited number of operations because of its inability to perform decryption
after a certain number of operations. The scheme is called “fully homomorphic”
if it can perform an infinite number of homomorphic operations for addition and
multiplication [5].

3 Homomorphic computation of RM(1,m)

3.1 Addition and multiplication in RM codes

Homomorphic operations are executed both on the message and codeword do-
mains. Although addition is performed identically in both the domains, the mul-
tiplication of the codewords must be defined as a new codeword of a message
that is defined as a polynomial multiplication with modulo xk − 1.

In our proposed scheme, we only consider the first-order RM codes for homo-
morphic operations because they have the maximum Hamming distance 2m−1

and can be efficiently used for related homomorphic computations. As described
in Subsection 2.1, the RM codes can be described as polynomials. Therefore,
for the homomorphic addition of two codewords, we perform a component-wise
addition ⊕ between the coefficients of the same order of the polynomial terms.
In the case of homomorphic multiplication, the codewords can be multiplied
by performing some multiplication �, which corresponds to the codeword of
multiplication of two message polynomials of the order m, a(x) and a′(x), as
a(x)a′(x) mod (xm+1 − 1), as given in Table 1.

In the case of addition, it is evident that the computation on the message
domain and codeword domain are directly related because the RM codes are
linear. However, while multiplying two corresponding codewords, c(x) and c′(x),
or c and c′, we have two fundamental problems. The first problem is that just
multiplying c and c′ component-wisely does not completely match the codeword
corresponding to the multiplied message. Therefore, we need to apply the lin-
ear transformation for correctly matching the message and the code domains.
The second problem is that the multiplied codeword is a second-order RM code
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instead of the first one. To fix the relationship between the two domains and
reduce the order of codeword, we need a linear transformation of the multiplied
codewords. This linear transformation is described in the next subsection.

Table 1: Addition and multiplication with messages and codewords.

Computation Messages Codewords

Addition a(x) + a′(x) mod (xm+1 − 1) c⊕ c′

Multiplication a(x)a′(x) mod (xm+1 − 1) c� c′

3.2 Bootstrapping technique in RM codes

The two problems encountered during the homomorphic multiplications of RM
code can be resolved by using the bootstrapping technique that will be intro-
duced in this subsection. The first-order RM code is represented with linear
combination of {v0,v1, · · · ,vm}. The multiplied codewords are of the second-
order, which is RM (2,m). Therefore, we need to reduce the order of the RM
code for further operations.

Let c and c′ be two distinct codewords of the first-order RM code for two
messages a(x) and a′(x). The multiplication of a(x) and a′(x) is expressed as

a(x)a′(x) mod (xm+1 − 1) =

m∑
l=0

(
∑

i+j=l mod (m+1)

aia
′
j)x

l. (3)

Thus, the corresponding codeword of a(x)a′(x) mod (xm+1 − 1) is given as

m∑
l=0

(
∑

i+j=l mod (m+1)

aia
′
j)vl. (4)

However, the direct multiplication of the two corresponding codewords is given
as

(

m∑
i=0

aivi)(

m∑
j=0

a′jvj). (5)

Therefore, (4) and (5) are not the same even though they represent the same
message. Notably, (5) is a second-order RM code. Therefore, (5) should be mod-
ified to fit (4). This process is called bootstrapping in this paper.

The bootstrapping process comprises three steps as follows.
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𝑎(𝑥) 𝒄

𝑎′(𝑥) 𝒄′

𝒄𝒏𝒆𝒘 = Encoding ( 𝑎(𝑥)𝑎′ 𝑥 mod (𝑥𝑚+1 − 1) )

in RM(1,𝑚)

Bootstrapping technique

Step 1, Step 2, Step 3

RM(1,𝑚)

RM(1,𝑚)

Fig. 1: Bootstrapping process in the first-order RM codes.

1. Step 1: Represent the coefficients aia
′
j+aja

′
i of vivj in (5) as the components

of the codewords c = (c0, c1, · · · , cn−1) and c′ = (c′0, c
′
1, · · · , c′n−1), whose

transformation is denoted by (n+m)× (k2 +m) matrix V .
2. Step 2: Derive the coefficients

∑
i+j=l mod (m+1) aia

′
j of xl in (3) by using

coef(vivj), whose transformation is denoted by (k2 +m)× k matrix X.
3. Step 3: Find the codeword cnew of the message a(x)a′(x) mod (xm+1 − 1)

in RM(1,m) by using the generator matrix G.

The proposed bootstrapping procedure for homomorphic multiplication in
RM (1, m) code is depicted in Fig. 1, where notations of polynomials and vectors
are abused. Notably, the above three steps can be combined into an (n+m)×n
linear transformation V XG. We can do this as many times as necessary to finish
the arbitrary homomorphic computations. To perform Steps 1 and 2, we need
the following theorem and corollary.

Theorem 1. In the first-order RM code, RM(1,m), we have

cn−1−
∑m

i=1 αi2i−1 = a0 +

m∑
i=1

αiai,

where the transpose of (α0, α1, · · · , αm) denotes the p-th column of G with p =
n− 1−

∑m
i=1 αi2

i−1.

Proof: From (2), we have

cp = (a0, a1, · · · , am)(p-th column of G)

=

m∑
i=0

aigip,

where gip denotes the (i, p) element of G. Clearly, the first row of G is all-one
vector, that is, α0 = 1, and thus every cp includes a0. Then, for the remaining
rows of G, we should add ai if the (i+ 1)-th component of p-th column of G is
’1’.
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It can be observed that the p-th column of the generator matrix of RM(1,m)
except the first row, is the one’s complement of the binary representation of p.
Let (1, α1, α2, · · · , αm)T be the p-th column of G. Then, we have p = 2m − 1−∑m
i=1 αi2

i−1. Thus, the theorem is proved.
�

From Theorem 1, it is straightforward to obtain the following corollary.

Corollary 1. In the first-order RM code, RM(1,m), we have

c0 + c2s−1 = as, s = 1, 2, · · · ,m.

The three steps of the bootstrapping are explained in detail as follows.

Step 1: Coefficient mapping from c and c′ to the coef(vivj)
Here, we will represent the coefficients of vivj in (5) by using the components

of the codewords, c = (c0, c1, · · · , cn−1) and c′ = (c′0, c
′
1, · · · , c′n−1) as follows. In

another variation explained later, the coefficient of vivj is denoted as a function
fij of components of c and c′

coef(vivj) = fij(c0, c1, · · · , cn−1, c′0, c′1, · · · , c′n−1).

The coefficient of vivj can be determined by considering the following four
cases.

Case 1-1) i 6= j and i, j 6= 0:
From (5), the coefficient of vivj becomes aia

′
j + aja

′
i. We can express this as

coef(vivj) = aia
′
j + aja

′
i

= (a0 + ai + aj)(a
′
0 + a′i + a′j)

+ (a0 + ai)(a
′
0 + a′i) + (a0 + aj)(a

′
0 + a′j)

+ a0a
′
0

and from Theorem 1, we have

coef(vivj) = cn−1−2i−1−2j−1c′n−1−2i−1−2j−1

+ cn−1−2i−1c′n−1−2i−1

+ cn−1−2j−1c′n−1−2j−1

+ cn−1c
′
n−1.

Case 1-2) i 6= 0, j = 0:
From (5), the coefficient of viv0 = vi becomes aia

′
0 + a0a

′
i. We can express

this as

coef(vi) = aia
′
0 + a0a

′
i

= (a0 + ai)(a
′
0 + a′i)

+ a0a
′
0

+ aia
′
i
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and from Theorem 1 and Corollary 1, we have

coef(vi) = cn−1−2i−1c′n−1−2i−1

+ cn−1c
′
n−1

+ (c0 + c2i−1)(c′0 + c′2i−1).

This case is very similar to Case 1-1), but we cannot use Theorem 1 when j = 0.
Thus, we separate this from Case 1-1) and use Corollary 1.

Case 2-1) i = j 6= 0:
From (5), we can express the coefficient as

coef(vi
2) = aia

′
i

and from Corollary 1, we have

(c0 + c2i−1)(c′0 + c′2i−1).

It should be noted that the Boolean function vi
2 is actually equal to vi.

However, we have separated these two cases because coef(vi) corresponds to
coef(xi) and coef(vi

2) corresponds to coef(x2i mod(m+1)).

Case 2-2) i = j = 0:
From (5), we can express the coefficient as

coef(v0) = a0a
′
0

and from Theorem 1, we have

cn−1c
′
n−1.

By merging the above four cases, we can make a binary (n+m)× (k2 +m)
matrix V , which is a linear transformation from

(c0c
′
0, c1c

′
1, · · · , cn−1c′n−1, (c0 + c20)(c′0 + c′20),

(c0 + c21)(c′0 + c′21), · · · , (c0 + c2m−1)(c′0 + c′2m−1))

to

(coef(v0), coef(v1), · · · coef(vm),

coef(v1v2), coef(v1v3), · · · coef(vm−1vm),

coef(v1
2), coef(v2

2), · · · , coef(vm
2)).

Step 2: Message mapping
We will derive the coefficient

∑
i+j=l mod (m+1) aia

′
j of xl in (3) with a func-

tion gl as

coef(xl) =
∑

i+j=l mod(m+1)

aia
′
j

= gl(coef(vivj)). (6)

We can determine gl as given in the following theorem.
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Theorem 2. In the first-order RM code, RM(1,m), coef(xl) in (3) is given as

coef(xl) =
∑

i+j=l mod(m+1)

coef(vivj).

Proof: It can be easily observed that (5) can be rewritten as

m∑
l=0

(
∑

i+j=l mod(m+1)

aia
′
jvivj). (7)

Focusing on the coefficients of vivj in (7), when i+ j = l mod (m+ 1), the sum
of coef(vivj) is the sum of aia

′
j . And this result equals the coefficients of xl also

from (6). Thus, the theorem is proved. �
Now, by using Theorem 2, we can perform a linear transformation from

(coef(v0), coef(v1), · · · , coef(vm),

coef(v1v2), coef(v1v3), · · · , coef(vm−1vm),

coef(v1
2), coef(v2

2), · · · , coef(vm
2))

to

(coef(x0), coef(x1), · · · , coef(xm))

denoted by (k2 +m)× k matrix X, where k2 =
(
m
0

)
+
(
m
1

)
+
(
m
2

)
.

After merging Steps 1 and 2, we obtain

coef(xl) = gl(fij(c0, c1, · · · , cn−1, c′0, c′1, · · · , c′n−1)).

Step 3: Re-encoding of RM(1,m)
Here, the k × n generator matrix G is multiplied with V X to obtain a new

codeword of the first-order RM code that corresponds to the resulting codeword
obtained for the multiplication of the two messages, a(x)a′(x) mod xm+1 − 1.

Combining Steps 1–3
In case of addition, clearly, the codeword of the message a(x)+a′(x) is c⊕c′.

However, for multiplication, it is divided into three steps called bootstrapping.
Let

z = (c0c
′
0, c1c

′
1, · · · , cn−1c′n−1, (c0 + c20)(c′0 + c′20),

(c0 + c21)(c′0 + c′21), · · · , (c0 + c2m−1)(c′0 + c′2m−1)).

Then, the new codeword cnew in RM(1,m), corresponding to a(x)a′(x) mod
xm+1 − 1, is given as

cnew = z · V ·X ·G.
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Finally, we can determine the codeword cnew in RM(1,m), corresponding to
the message a(x)a′(x) mod xm+1−1, by using c, c′, and the (n+m)×n matrix,
T = V ·X ·G.

Note: In fact, there exist a few all-zero rows in V for some row indices.
This is because we do not use every case listed in Theorem 1 in Step 1. Only
cn−1−2i−1−2j−1c′n−1−2i−1−2j−1 , cn−1−2i−1c′n−1−2i−1 , cn−1−2j−1c′n−1−2j−1 , and cn−1c

′
n−1

are used for Cases 1-1), 1-2), 2-1), and 2-2). Thus, for the rest of ci and c′i, we
have all-zero rows in V and we add (c0 + c20)(c′0 + c′20), (c0 + c21)(c′0 + c′21), · · · ,
and (c0 + c2m−1)(c′0 + c′2m−1) to the last m elements in z.

3.3 Example

To help understand the homomorphic computation of the first-order RM codes,
RM(1,m), we present an example of an RM(1,4) code. First, we determine the
matrix V as

V =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 1 0 0 0 0 0
0 1 0 0 0 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1



.

This matrix is obtained by merging Cases 1-1), 1-2), 2-1), and 2-2), whose size
is 20× 15. In this example, the 0, 1, 2, 4, and 8-th rows are ’0s.’
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Then, in Step 2, we can obtain the relations between coef(xl) and coef(vivj)
as

coef(x0) = coef(v0
2) + coef(v1v4) + coef(v2v3)

coef(x1) = coef(v0v1) + coef(v2v4) + coef(v3
2)

coef(x2) = coef(v0v2) + coef(v1
2) + coef(v3v4)

coef(x3) = coef(v0v3) + coef(v1v2) + coef(v4
2)

coef(x4) = coef(v0v4) + coef(v1v3) + coef(v2
2).

From Theorem 2, the corresponding matrix X is given as

X =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0



,

where the matrix size is 15×5. For Step 3, we obtain the 5×16 generator matrix
G from (1) as

G =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

 .



Homomorphic Computation in Reed-Muller Codes 13

Then, by multiplying these three matrices, we obtain a matrix T with size of
20× 16 as

T =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0



.

Now, we obtain a new codeword cnew of the first-order RM code by multi-
plying T on the right of the vector z. Thus, cnew corresponds to the codeword
of the message multiplication polynomial a(x)a′(x) mod x5 − 1 in RM(1,4), as
given in Table 2, where we have presented three examples.

Table 2: Examples with RM(1,4) code

Example 1) Example 2) Example 3)

a (01000) (00010) (00011)

a′ (01000) (00010) (00011)

c (1010101010101010) (1111000011110000) (0000111111110000)

c′ (1111000011110000) (1111111100000000) (1100110000110011)

apm (00001) (00100) (11101)

z
(1010000010100000

0000)
(1111000000000000

0000)
(0000110000110000

0001)

anew (00001) (00100) (11101)

cnew (1111111100000000) (1100110011001100) (1010010110100101)

For message vectors a and a′, we have c and c′. Then, we determine a
vector z and perform Steps 1 and 2, which are the matrices V and X. Thus,
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we obtain a new message vector ”anew” and this corresponds to the polynomial
multiplication of two messages, a(x)a′(x) mod x5 − 1, also denoted as ”apm.”
Finally, we obtain a new codeword cnew of the first-order RM code from the
generator matrix G.

4 Conclusion and future works

In this paper, we suggested a transformation method, called bootstrapping,
which facilitates the homomorphic multiplication of the first-order RM codes
while preserving the order of the RM codes after the computation (addition and
multiplication). Furthermore, we created a relation between the proposed code-
word multiplication c� c′ and the multiplication of two messages. We employed
three steps for performing the bootstrapping. In Step 1, we expressed the coeffi-
cients of vivj as the components of the codewords c0, c1, · · · , cn−1, c′0, c′1, · · · , and
c′n−1. In Step 2, we represented the coefficients of xl by the coefficients of vivj .
Thus, by merging these two steps, we constructed a relation between the code-
word components and coefficients of xl, which are the components of message
polynomial multiplication. We encoded this process by multiplying the generator
matrix in Step 3 to obtain the corresponding codeword as the first-order RM
code.

As future works, we will consider the homomorphic computation of higher-
order RM codes. Moreover, we plan to implement the computation in the pres-
ence of noise, which can be useful in homomorphic cryptography.
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