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Abstract. Collateral employed in cryptoeconomic protocols protects
against the misbehavior of economically rational agents, compensating
honest users for damages and punishing misbehaving parties. The intro-
duction of collateral, however, carries three disadvantages: (i) requiring
agents to lock up substantial amount of collateral can be an entry bar-
rier, limiting the set of candidates to wealthy agents; (ii) affected agents
incur ongoing opportunity costs as the collateral cannot be utilized else-
where; and (iii) users wishing to interact with an agent on a frequent
basis (e.g., with a service provider to facilitate second-layer payments),
have to ensure the correctness of each interaction individually instead of
subscribing to a service period in which interactions are secured by the
underlying collateral.

We present Promise, a subscription mechanism to decrease the initial
capital requirements of economically rational service providers in cryp-
toeconomic protocols. The mechanism leverages future income (such as
service fees) prepaid by users to reduce the collateral actively locked
up by service providers, while sustaining secure operation of the pro-
tocol. Promise is applicable in the context of multiple service providers
competing for users. We provide a model for evaluating its effectiveness
and argue its security. Demonstrating Promise’s applicability, we discuss
how Promise can be integrated into a cross-chain interoperability proto-
col, XCLAIM, and a second-layer scaling protocol, NOCUST. Last, we
present an implementation of the protocol on Ethereum showing that all
functions of the protocol can be implemented in constant time complex-
ity and Promise only adds USD 0.05 for a setup per user and service
provider and USD 0.01 per service delivery during the subscription pe-
riod.

1 Introduction

Since their creation, arguably the most significant property of blockchains is their
facilitation of trustless exchange between entities with weak identities [8].Yet the
trustless nature of the systems means not only that parties may transact with-
out trusting each other, but also that they should not trust each other. This
creates a design challenge for interactions which would typically involve such
trust. In this paper, we focus on blockchain protocols which, at least in part,
encode trust by monetary collateral. Here, collateral is value escrowed by a ser-
vice provider, Alice, to guarantee the user, Bob, that regardless of the behavior
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of Alice, Bob cannot lose funds. In particular, payment, cross-chain, and generic
computation protocols can be designed such that Bob is guaranteed to receive
from Alice at least the amount of funds that are at risk in case she misbehaves.
Protocols involving collateral include cross-chain communication [21], scalable
off-chain payments [I5], state channels [I1], watchtowers [T6J45], and outsourc-
ing of computation and verification games [20]

Problem. Relying on collateral as trust is itself associated with a set of challenges.
Collateralization requires the provision of a substantial amount of funds upon
protocol initialization, limiting the set of participants to a selected few. Leaving
participation to a small set of agents can lead to phenomena like the “rich are
getting richer” through wealth compounding [12]. While it is not possible to grant
less wealthy agents proportionally higher rewards due to Sybil identities [9],
we can lower the entry barrier for agents to join a protocol. Finally, locked
funds result in opportunity costs for the agent who could use their collateral for
participating in other protocols [14].

This work. We present Promise, a simple but effective mechanism to lower entry
barriers for intermediaries in protocols relying on collateral for secure operation.
Further, Promise is a subscription mechanism: Instead of locking up a significant
amount of funds as collateral, Promise allows intermediaries to stake future
payments (e.g., service fees) with the promise the payments will be disbursed
upon the correctly provision of the service. Similar to online platforms, users
can choose to subscribe to a service and pay fees upfront — for a some pre-agreed
service period (the “subscription period”). However, instead of transferring these
payments directly to the intermediary, users lock pre-paid fees in an escrow smart
contact, preventing theft by either party. The intermediary needs to provide
the service honestly for the entire period set by the user. The benefit of this
scheme is two-fold: (i) the intermediary is incentivized to act honestly while
enjoying a lower initial collateral, and (ii) the user can reduce his transaction
cost and only pays if the service was provided honestly over his defined period.
As long as (i) the initial collateral is higher than the potential gain from not
delivering the service, (ii) the expected future revenue from correct operation
exceeds potential gains by the intermediary, (iii) users have the option to leave
the protocol, (iv) and misbehavior can be proved to the smart contract, Promise
incentivizes correct behavior.

Application. We discuss how Promise can be applied to XCLAIM and NOCUST.
Both protocols are suitable candidates for Promise, as in both protocols “service
providers” are a necessary part. XCLAIM is a cross-chain protocol that allows
creation of Cryptocurrency-backed Assets (CbA) on an issuing blockchain en-
abled by a collateralized third-party called a vault [2I]. Vaults provide collateral
on the issuing blockchain to ensure that it is not economically rational for them
to steal the locked cryptocurrency on the backing blockchain. NOCUST is a
commit-chain protocol that allows to send cryptocurrency payments off-chain
facilitated by so-called operators [I5]. Operators are service-providing agents
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that (i) collect fees for operating the off-chain payment network, and (ii) provide
a certain amount of collateral to insure finalization of payments. Both, vaults and
operators are service providers from the perspective of Promise: (i) any agent
can become a service provider by locking a certain amount of collateral, and
(ii) agents can earn fees by providing their services. Moreover, we show that the
implementation of Promise in an Ethereum Solidity smart contract only adds
USD 0.03 to setup Promise between a user and a service provider, USD 0.01 to
provide the deposit for the service provider and USD 0.01 to provide the pre-
payment. During the subscription period, each delivery of the service adds a cost
of USD 0.01. Finally, the withdrawal of both deposit and accumulated payments
adds USD 0.01 for the service provider.

Outline. We introduce the system model and assumptions in Section [2} followed
by a description of Promise in Section 3] Next, we discuss the security of Promise
and argue in which cases Promise can provide benefits to users and intermediaries
in Section [d] Also, we present how Promise can be applied to existing systems
in Section Bl We discuss related work in Section [f] and conclude in Section

2 System Model

In Promise, a user Bob engages a service provider Alice to fulfill a task valued at
Vg on his behalf. Bob pays Alice p each period t for performing the task. Given
the absence of strong identities, the total value of the task to Bob (Vp) needs
to be fully collateralized, via a deposit D, such that D > Vpg. For example, if a
particular task involves Alice offering a service and Bob having a $100 exposure—
in the form of counter-party risk—to Alice, Alice will need to post at least $100
as collateral to insure the exposure, such that Bob does not stand to lose funds
if Alice behaves maliciously.

Formally, we adopt the definitions of agreements A in cryptoeconomic pro-
tocols from [I4]. The service providing agent Alice A and the receiving agent
Bob B participate in an agreement encoded by a specification @, payments p
and a deposit D. In such an agreement, Alice needs to fulfill the specification &
and provide the collateral D in advance. When Alice fulfills the specification, all
future payments p held in escrow are released to Alice.

Promise is a mechanism to reduce initial collateral locking. However, Promise
is not meant as a stand-alone protocol, but rather, serves as a “plug-in” to
existing cryptoeconomic protocols. Given a generic cryptoeconomic protocol 7
that satisfies the assumptions of Section[2.3] we can apply Promise and write the
protocol as mp. We note that the agreement A4 is given by the generic protocol .
We assume that Alice and Bob have entered into agreement A and have agreed
on the specification @, payments p, and the deposit D.

We give a summary of symbols in Table [T}
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Table 1: Symbols used in Promise

Symbol Description

Total value of a task to agent i.

A monetary deposit.

An agreement reached between a service provider and a user.

A protocol specification, specifying the the task for the serivce provider and
the required proof that the task has been performed.

Payment held in escrow and released to the providing agent on fulfillment of
the agreement.

The number of future periods.

A generic cryptoeconomic protocol.

The cost of an individual transaction.

The expected rate of return.

The utility of agent i at time ¢t.

The likelihood that the user remains in the protocol.

The number of times Alice did not deliver the service.

Discount factor for future utility.
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2.1 Specifications

The specification @ describes the task that Alice needs to provide and the proof
that serves as evidence that the task has been provided. There are several ap-
proaches to encode the specification. In the BitML calculus [6], a specification
consists of (i) a model describing a contract and agent choices symbolically and
(ii) a model encoding a sequence of transactions that form a smart contract in
Bitcoin computationally. For example, Alice can deliver a digital good to Bob
in return for a payment. The contract would then specify that if Bob receives
the good, payment to Alice is being made. Specifications are also useful when
exchanging digital goods with the FairSwap protocol [10]. In FairSwap, Alice
sends a digital good to Bob and provides proof of sending by providing a witness
(hashes of the transferred data) to a smart contract as proof. The specification
in FairSwap is encoded as a boolean circuit that evaluates whether the provided
witness (the hash) satisfies the specification. In case the circuit evaluates to true,
Alice is paid for delivering the data.

Expressing the specification abstractly gives us the freedom to leave the en-
coding and implementation up to the protocol that integrates with Promise. For
the remainder of the model for Promise, we assume the specification can either
be fulfilled, i.e., ® = 1 or not, i.e., ® = 0.

2.2 Roles

Promise adopts the BAR model of rational agents [2] including private prefer-
ences of agents as proposed in [I4]. We define the following roles.

— Alice, the Intermediary: Alice is economically rational and entrusted with
executing a task. She provides a deposit D into the escrow before executing
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the task and receives m payments p upon successful completion. Alice prefers
to adhere to the specification @ if her utility for doing so is greater than other
action choices.

— Bob, the User: Bob represents the user requesting execution of a task by
Alice. A user provides payments {pi,...,pm} into the escrow. The user is
assumed to be honest and correctly reports behavior of Alice.

— Escrow: The escrow is a smart contract responsible for holding deposits by
Alice and payments by Bob.

— Verifier: The verifier detects malicious behavior of Alice. In practice, this
role is fulfilled by a smart contract, a dedicated third party, or the user.

2.3 Assumptions

The verifier in the system is able to detect any faults by Alice and is able to prove
that Alice was at fault. This means, that the specification @ of the protocol 7
has some “proof”. For example, this could be the hash input of a boolean circuit
as in FairSwap, a transaction inclusion proof as required by XCLAIM, or fraud-
proofs [3].

We further assume that the protocol utilizing Promise implements payments
and deposits through a ledger functionality (e.g., as described in [I3]). Also, there
is a one to one mapping between the collateral and a user, such that the collateral
of an intermediary is not split between multiple users. Agents in the system can
be identified with their public/private key pair. Finally, time is denoted with ¢.

2.4 Utilities

In our model, we assume that agents are economically rational and self-interested.
An agent will therefore decide on a course of action depending on the utility asso-
ciated with those actions. We use a simplified model here, were the intermediary
Alice can choose between two actions and Bob has no choice once he committed
to the agreement A.

Alice can either fulfill the specification or not, with the following payoffs
one period ahead. V4 denotes the additional monetary gain that Alice expects
to receive if she chooses to deviate from the protocol, where V4 > 0. We only
include a valuation on the malicious side to Alice as Alice could be bribed to
violate the specification. This is a worst case assumption: Alice can only be
influenced by increasing her incentive to misbehave. While we could also include
a positive valuation for honest behavior, this would not strengthen our security
assumptions.

Vg denotes the monetary value that Bob attaches to receiving the service.
Note that we assume private information: Bob does not know Alice’s private
valuation V4, and Alice does not know Bob’s valuation of the service Vp.

Last, ¢ denotes the cost of an individual transaction. E[r]D reflects the ex-
pected opportunity cost of locking the capital for one period where E[ | denotes
an expected value and r is a rate of return. The rate of return indicates the
potential interest an agent could earn by participating in another protocol. For
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example, instead of locking D in the protocol, Alice could trade D, lock D in
staking [I2] or lending [I] protocols to earn an interest.
— E[r|D ifo=1
up= P ED )
Va—E[r]D—-D, ifd=0

(2)

Ve—p—¢c, ifd=1
up =
D—-Vg—¢ if®d=0

Each round the game resets. Therefore, Alice fulfills the specification iff
p>Va—D (3)

Assuming that Vg — p — ¢ > 0, otherwise Bob would not seek the service from
Alice in the first place, he stands to gain utility if Alice provides the service.

2.5 Security

Following the rational agents assumptions and the utility definitions in Eq.
and , we define a secure cryptoeconomic protocol as follows.

Definition 1 (Security). Assuming rational service provider A with a private
valuation Vy, a cryptoeconomic protocol m implementing a specification @ is
secure if A’s utility ua for fulfilling the specification @ is higher than her utility
for violating the specification @, i.e., p > Vs — D.

In the following, we introduce Promise in detail. We use Def. [I] to show that
integrating Promise into a generic protocol m does not affect its security. The
core proof is to show that m and 7p are equivalent with respect to their security.

3 Promise

In Promise we allow Bob to provide multiple payments in advance and delay the
receipt of the payments by Alice. In turn, Alice is able to reduce the initially
provided collateral from D to D; such that D; < D. At ¢ = 0, Bob is able to lock
m payments {p1,...,pm} in escrow and determine a period 7 after which Alice
can receive the payments. When ¢ < 7, Alice continues to accumulate collateral
as time passes by keeping the cumulative total of her payments p; in escrow. We
provide an intuition in Fig. [Il Promise has the following advantages for Alice
and Bob.

Alice: the barrier to entry as an intermediary is lowered, as in the first period
Alice only needs to provide a lower initial deposit D as opposed to D. Fur-
ther, instead of expecting a single next payment p, Alice has, in expectation,
p - m payments lined up as part of Bob’s subscription to her services.

Bob: the aggregation of multiple payments allows Bob to reduce transaction
costs and guarantees Bob that he only pays Alice if she fulfills all tasks for
the given period m.
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Fig.1: Promise allows intermediaries (Alice) to lock less initial deposit D; and
use payments p; provided by users (Bob) as additional deposit. The initial de-
posit and payments are locked until time m determined by Bob. Only when Alice
fulfills the specification @ until ¢ = m can Alice withdraw her initial deposit Dy
and the total payments pm.

3.1 Protocol

The Promise protocol consists of three steps. We denote the service provider
as A, the user as B, and the smart contract implementing Promise as P. We
assume that A and B have agreed the total payment and the period over which
the payment is to-be-paid in advance.

1. At t = 0: B locks m payments in P. A locks the initial deposit Dy in P.

2. At t={1,...,m}: A provides m times the agreed task to B. P allocates one
payment p to A, if (i) A provides a proof to P that fulfills the specification
&, or (ii) B does not provide a fraud proof that A did not provide the task
within a determined time [3].

3. At t = m: A withdraws p(m + 1) and Dy from P.

To argue about the security of Promise, we introduce two concepts: (i)
sequential-games with discounting and (ii) a likelihood of users exiting the sys-
tem upon the service provider not adhering to the specification of the agreement.

3.2 Sequential Games and Discounting

Introducing Promise transforms the single-shot game of the agreement between
Alice and Bob into a sequential-round game. Instead of Alice and Bob treating
each game in isolation, they need to consider the utilities for the sequence m of
the game.

Without Promise, at each round ¢, Alice decides if she prefers to fulfill the
specification based on the utilities denoted by Eq. and .
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With Promise, Alice needs to consider that if she does not adhere to @ in
any round ¢, she does not receive any of the payments. For example, if Alice
provided the services according to @ for n rounds, but fails to do so in a round
t < m, she does not receive pn payments, but rather looses D; and receives 0
payments.

Hence, Alice’s decision needs to account for all p-m payments. Furthermore,
payments are made in the future. A promised payment in the future is less
valuable to Alice today, which we denoted with the parameter §. 0 < § < 1
denotes the discount factor of an agent’s valuation of future utility. We argue
that an agent can spend received payments somewhere else or potentially invest
the payment for a profit. Hence, the service provider faces an opportunity cost
for delayed payments. The payoffs to Alice, if she follows the same course of
action over every round, are as follows.

ualt) = { o (325) (0 — (¢t + DE[]p — E[F]Dy), ifd=1 "

"ot (+25) (Va — E[r]D; — Dy), it =0

Bob receives the following pay-off, depending on Alice’s behavior.

uB(t):{ l’;gl(1ir)t(v3—p—c—(m—t)E[r]p), ifd=1

Z”;Bl(liT)t(Dz—Vch), if & =0

3.3 Termination Probability

Lowering Alice’s initial collateral to Dy increases the risk of Alice not fulfilling the
specification of the agreement. Specifically, in the first round, Alice’s collateral
is the lowest since she has not provided the service yet and has not added any
payment into her collateral pool.

We argue that Bob exits a protocol after Alice not adhering to @, encoded
in the function 3(n) — [0,1) describing the likelihood that Bob remains in the
protocol. The variable n describes the number of times Bob tolerates Alice not
delivering the service. Each time Bob does not received Vg due to Alice not
providing the service as agreed, the lower the probability that Bob continues to
participate. Each user can have its own §(n) function where users might choose
to never participate with a service provider again, i.e., (1) = 0 and others
might tolerate a higher number of incidents. This changes Alice’s pay-off for the
protocol as follows.

ua(t) = { o (735) (0= (¢t + DE[]p — EFDy), =1 -

o (25) (B(n)Va —E[FID; - Dp), i & =0

As 8 decreases, the payoff to Alice can become negative for not fulfilling the
specification if 5(n)V; < E[r]D; — D. For Alice, we increase the motivation to
follow the specification by (i) providing a sum of payments pm that Bob locks
in the protocol, and (ii) the fear of Bob leaving the protocol altogether if she
does not provide the service the entire period. As Bob chooses m, he has a direct
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influence on Alice’s expected pay-off. By setting large m and being able to quit
the protocol upon Alice’s misbehavior, he can motivate “rational Alice” to act
in his interest.

4 Analysis

The core argument of Promise is that by locking multiple payments, service
providers can reduce their initial collateral. Specifically, introducing Promise
to a protocol w, does not increase the incentive for an intermediary A to not
adhere to the specification. This means that 7p and 7 are equivalent in terms of
security considering an economically rational intermediary A under Def. [I| More
formally, we state that:

Theorem 1 (Security equivalence). Given a protocol w that has a verifiable
specification @ and a economically rational service provider A that provides more
initial collateral Dy than an incentive Va to violate the specification, introduc-
ing Promise is secure if A does not gain additional utility by not fulfilling the
specification considering A participates in at least two rounds in .

4.1 Action Choices

Alice’s utility for choosing a specific course of action i.e., fulfilling vs. not fulfilling
the specification, is given by Eq. @ However, this makes an implicit assumption:
Alice considers the entire period m as a basis for her decision. We depict her
added utilities for an example of two rounds in Fig.

| 10 6 \t
3 p—Eip-ElDr T Xolsty) (0 Bl - E[r]Da\E
11‘/_0 ,t_l.‘ Nt=2

‘.
______

Fig. 2: Depicting the sum of utilities depending on different action choices made
by Alice. At ¢ = 0 Alice can choose between fulfilling the specification and receive
the utility depicted in blue or choose the opposite and receive the utility depicted
in red. If Alice at any point prefers to violate the specification, the game restarts
and the action choices are essentially back to the t = 0 state. Furthermore, at
t = 1, Alice will already have committed to adhering to the specification. In
case Alice decides to misbehave at this point, she will not receive p that she was
allocated when she transitioned to t1. However, if she decides to continue to fulfill
the specification, she will be rewarded with an additional payment allocation.
This game continues until t = m.
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Showing that Thm. [I] holds, requires considering that Alice might not par-
ticipate for m rounds. Specifically, Alice might still consider the agreement as a
single-shot game with a decision horizon of exactly one round. Following this,
we can use m = 1 and Eq. to conclude that Alice prefers to fulfill the speci-
fication if:

p—E[r]p> B(n)Va— Dy (7)

Collateral Condition Comparing Alice’s decision without Promise in Eq. and
her decision with Promise in Eq. @ without considering S clearly shows that if
Alice only considers a single round, introducing Promise weakens the security of
7 as Alice is not paid immediately and the initial collateral is reduced. Moreover,
even if Alice considers multiple rounds, if Eq. does not hold, Alice has a higher
utility to not fulfill the specification if Bob is willing to continue to enter into
agreements with her. Even worse, if Bob decides to continue using the protocol
7 and black-lists Alice for her violating @, Bob still might end up with a Sybil
identity of Alice. Hence, for Promise to not weaken security the initial collateral
needs to be set above (n)V4 — p + E[r]p.

In practice, this is achieved by over-collateralization or state-reversal. Over-
collateralization is used in XCLAIM where a vault has to provide 200% collateral
of the value it stands to obtain by violating the specification. In NOCUST and,
generally, payment channel networks, participants are not able to steal funds,
since an older state can be committed that reverses the stealing of funds.

4.2 Security Proof

Proof. Under the assumption that A is economically rational, wants to partic-
ipate in at least two rounds, e.g. ¢ > 0, and Eq. holds, we prove that 7p is
secure. If Eq. holds, Alice should fulfill the specification in the first round.
We now show that if this holds, Alice should continue with the same course of
actions in any subsequent round ¢ € m. 0375+ If if at any point k£ € m, Alice
decides to stop adhering to the specification she will receive the following pay-off:

k—1
uat,k) =Y (5 i r)t(—(t—kl)E[r]p—E[r]Dl)—f— (5 i r)t(ﬂ(n)VA—E[T]DJ—DI)
t=0

(8)
Alice has locked her collateral Dy for multiple rounds as well as the payments
she should have received. Due to her actions she gains V4 but for each round
she has locked more payments and collateral, the higher her cost to change her
choices of action w.r.t. the specification. Moreover, if Alice plans to participate
in multiple rounds, she stands to decrease her probability to provide services for
other users depending on 3. Hence, assuming Alice is economically rational, Alice
has the highest pay-off when fulfilling the specification until she has completed
the service within the entire subscription period m, i.e., it is incentive compatible.
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4.3 Cost Reduction for Service Providers

Service providers can reduce their initial collateral to the lower bound under the
condition of Eq. . From this equation, we can determine the reduction if Alice
only considers a single round of the game. We express D; as D — p where p is
the reduction of the initial collateral and solve for p This yields:

p=p—E[rlp+D—B(n)Va 9)

However, if we consider that Alice wants to participate in m rounds, we can
express this based on Eq. @ and solving for p. However, we argue that under
the assumption of Eq. @, Alice’s decision is essentially between participating a
single round and not fulfilling the specification, or participating multiple rounds
over the pre-agreed period m while adhering to the specification. To calculate
Alice’s decision bound, we are assuming that from Eq. @D the first reduction
is set to the lowest possible value. This means that the term S(n)Va —p +
E[r]p— Dy = 0, i.e., at the decision bound Alice is undecided if she should fulfill
the specification since the utilities for both choices are equal. Thus, p can be
expressed as:

—

m

p= tig (1i7,)t<p— (t+1)E[r]p — E[r]D) (10)

In Section [5.1] we give an example how collateral is lowered given a set of
parameters. Note that to calculate the collateral reduction, both the service
provider and the user only need to know the prior collateral requirement D as
defined by m. For example, in XCLAIM this is 200%.

4.4 Cost Reduction for Users

Assume that Alice behaves honestly. If a user pays every round ¢ for the service
provided by Alice, then his pay-off per round is Vg — p — ¢ as described in Eq.
. However, locking multiple payments incurs opportunity cost. This cost is
lowered at every time step as the payments are assigned to the intermediary, as
expressed in Eq. .

Bob starts with an opportunity cost of E[r]pm at ¢ = 0. The opportunity
cost is reduced to E[r]p(m — 1) at t = 1 as the payment is allocated to Alice.
Generalizing this for ¢ rounds, leaves us with E[r]p(m — t) at every time step ¢
from today’s perspective.

The user locks future payments when the sum of the transaction costs ¢ for
m payments is greater than the opportunity cost for locking additional payments
plus the single transaction cost for making the prepayments. Hence, the bound-
ary for a user to choose Promise as individually rational choice maximizing his
pay-off is given by:

Z(ljr)tCZZ(lir)tE[T]p(m—t) (11)

t=1 t=0
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¢ = Elrlp(m — 1) (12)

Provided the right hand of Eq. is smaller, Bob should use Promise to lock
multiple payments pm as it is his individually rational choice that maximizes his
pay-off ug.

5 Applications

In this section we apply Promise to the XCLAIM protocol. We show analytically
how Promise is able to reduce the initial amount of locked deposits. Further, we
give a sketch how Promise can be implemented in NOCUST.

5.1 XCLAIM

XCLAIM is a protocol that allows users to transfer assets between heterogeneous
decentralized ledgers using a collateralized service provider called a vault [21].
Instead of relying on a trusted third party like a centralized exchange, the vault
must provide collateral to ensure that it does not steal the coins it holds in
custody. It has to verify correctness of her actions by submitting transaction
inclusion proofs to the smart contracts that augments the protocol. Promise
can be applied such that the vault, Alice, locks some initial collateral D; and
issues backed-tokens using this collateral. Bob, using the service, is able to lock
the future payments of Alice to allow him to transfer more assets between the
ledgers.

Initial Parameters XCLAIM uses an initial set of parameters as follows:

— Initial Collateral D: A service provider needs to provide 200% collateral D
in comparison to the value held in custody V4.

— Payments p: Although payments are not specified in the original XCLAIM
paper, similar services such as tBTC require users to pay 0.9375% of fees as
paymen

— Rate of return r: A service provider needs to lock collateral in the ETH
currency to participate. Possible alternatives offer a maximum of 3.75% APR
rate

— Discount factor §: Service providers can discount future payments. As the
price of cryptocurrencies is relatively volatile we adopt a strongly discounted
future income at 0.75 from [14].

Integrating Promise For sake of example, we are using BTC as the issuing cur-
rency and ETH as the backing currency. This means that the vault, the service
provider, has to lock ETH as collateral to provide security against stealing BTC
it holds in custody. Given the parameters, Promise can be integrated as follows.

! Based on https://docs.keep.network/tbtc/index.pdf from 3 May 2020.
% Based on https://www.coingecko.com/en/earn/ethereum from 3 May 2020.
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1. The user and a vault agree on a subscription period m. For example, the
user and the vault can agree that the vault will be responsible for the next
ten Bitcoin-backed tokens issued or redeemed by this users that are each 1
BTC in size.

2. The user and the vault set-up a Promise contract in which the user pre-pays

m = 10 fees at 0.9375% of 1 BTC for the next ten requests at a set price of

p = 0.009375 to issue or redeem Bitcoin-backed tokens.

The vault then deposits the initial deposit Dj into the contract.

4. Each time the user issues or redeems tokens with the vault, the vault is
allocated a part of the payment p.

5. Finally, after ten requests have been made, the vault can withdraw pm and
Dy.

w

Cost Reduction For simplicity, we are going to denote all monetary amounts in
BTC. In XCLAIM, a vault would have to provide the equivalent of 2 BTC in
collateral to hold custody over 1 BTC in value. First, we calculate the possible
Dy collateral given Eq. (@ This gives us the minimum collateral required to
also protect against a vault that plays a single-shot game. For simplicity, we are
assuming that the vault has an incentive of 1 to steal the BTC (the current
value of the Bitcoin) as well as a hidden motivation to steal BTC such that
Va4 = D = 2. Moreover, the vault is not interested in any future collaboration
with the user, hence §(n) = 1. Last, we divide the 3.75% APR through 365 days
to get the average return.

p=p—E[r]p+D—B(n)Va

0.0375
=—0.0003750 + 2 — 2 (13)

p = 0.009375 —
p = 0.00937404

Second, we are using Eq. to explore the reduction factor p if the vault
plays a sequential game. Note that, at a minimum, a vault has at least a private
value of V4 to not follow the specification of XCLAIM: if the vault can take the
1 BTC and is punished with less collateral D; being taken away, it is incentive
compatible for the vault to take the 1 BTC. Using the example values above, we
calculate p as:

)
(1+T

)'(p — (¢ + 1)E[r]p — E[r]D)

S
Il
© (‘TMG
<)

(14)

0.0375 0.0375
365 0.009375 — 365

(L)t(o.oogsm —(t+1)

* 2)
1+7r

©
I

t=

[}

Discussion We plot the results from Eq. and in Figure The collateral
reduction p can be subtracted from D. In practice, the user and the service
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Maximum reduction [p]
0.051

0.041

0.03]

0.02}

0.00> ! ! ! ! I Rounds [m]
2 4 6 8 10

— Sequential Game Reduction Single-Shot Game Reduction

Fig. 3: The possible collateral reduction p under the assumption that the vault
considers a single round of execution (i.e., a single-shot game) as depicted in
the orange line or that the vault considers a sequential game with multiple
rounds as depicted in the blue line. The colored areas show in which collateral
reduction ranges the vault does not receive an additional incentive to violate
the specification as agreed with the user. The more rounds m the game last,
the higher the collateral reduction p can be under the sequential game scheme.
Collateral reductions are constant in case the vault only plays a single-shot game.

provider can agree on the desired reduction. We note three findings: (i) If the user
and the service provider want to maintain security w.r.t. no additional incentive
for the service provider to violate the specification, the maximum reduction
is given by the single-shot game reduction from Eq. (13| (the orange line in
the Figure). (ii) Note that the main reason that the single-shot reduction is
comparably low since the user has a “buffer” of 1 unit of BTC that was added
to V4. If the user is willing to accept a lower buffer, say 0.5, the collateral
can be consequently lowered. This would still cover the value of the 1 BTC
in our example plus a 0.5 potential malicious intend on the vaults side. (iii)
The user and the service provider can agree to lower the initial collateral Dy
in a sequential game setting if they agree on a longer period m. The collateral
reduction, however, is finite: as m — oo, p stabilizes to a constant value.

5.2 NOCUST

NOCUST is a second-layer payment protocol whereby an untrusted intermedi-
ary operates a commit-chain to facilitate payments between its users [I5]. The
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application of Promise to NOCUST follows a similar approach as the XCLAIM
example. Hence, we are only giving a sketch of Promise’s applicability here.

We consider a scenario where Alice is the intermediary commit-chain opera-
tor, and Bob is a payment recipient. In this setting we propose to employ Promise
as follows: Any fee to be paid by Bob to Alice in exchange for the delivery of
an incoming payment would be locked as collateral that Bob could claim if the
NOCUST protocol fails. Over time, the fees locked in Promise would grant Bob
instant finality over larger payments, increasing the utility of the service.

For example, in a sales scenario, Bob could release some goods immediately
after Alice promises to deliver the payment for them, instead of waiting two
rounds for guaranteed finality. If Alice fails to deliver the payment, her collateral
would paid to Bob to cover the cost of the goods.

5.3 Implementation

We implement Promise in Solidity in around 100 lines of code. We use the imple-
mentation to experimentally assess the cost of executing the contract functions.
Our cost calculations are summarized in Table [2| based on an Ether exchange
rate of USD 172.61 and 1.5 Gwei gas price. The implementation is available as
an open source projectﬂ

Table 2: Overview of Promise functions and their cost.

Function Description Gas cost Cost

create Setup function. 112196  USD 0.02895
deposit  Called by intermediary to provide deposit. 43291 USD 0.01116
payment Called by user to provide pre-payment. 43770 USD 0.0113
deliver Called as part of task provision. 50703 USD 0.01309

withdraw Called by intermediary after the service period is 31788 USD 0.0082
up to receive payment and deposit.

6 Related Work

There are two strands of related literature. The first one comes from the fi-
nancial world covering (advance) payments for financial contracts. The second
strand comes from the more recent work in decentralized ledgers. In the eco-
nomics literature, a wide range of work focuses on secured debt, such as [I7I1]].
However, these concepts rely on trust on third parties to maintain security in the
debt and payment positions. Promise replaces this third-party trust by holding
advance payments in a smart contract escrow.

3 https://github.com/nud31/Promise/tree/master/src
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On the second strand, Balance is a protocol that allows intermediaries to
lower their collateral over time [14]. It operates at the other end of Promise:
instead of lowering the initial collateral, the more an agent behaves honestly, the
higher the reduction of collateral. Balance requires the highest collateral to be
provided at the start of the interaction between agents and makes the assump-
tion that payments are close to 0 (i.e., there is perfect competition). Promise and
Balance can be combined together to first reduce initial collateral when boot-
strapping a new protocol and then lower collateral requirements for established
agents over time. Teutsch et al. discuss bootstrapping a token for verifiable com-
putations [19]. This work discusses how to enable users, like Bob, to obtain the
required funds to participate in TrueBit. Their proposal includes a governance
game that allows to exchange special governance tokens into collateral tokens
(for intermediaries) and utility tokens (for users). Lastly, the idea of bundling
payments together is also introduced in [7] to create subscriptions for services of
agents. Promise extends this idea to allow collateral reduction for intermediaries.

7 Conclusion

We present Promise, a subscription mechanism that allows users to lock pay-
ments for future services for a period of time. The locked payments are added to
the initial collateral of a service provider, Alice, each time a service is delivered.
The core assumption for the security of Promise is that a user Bob is able to
lock a number of payments up front and exit the protocol when Alice misbehaves
receiving back all of his payments over the subscription period and the initial
collateral provided by Alice. On the other hand, Alice is able to utilize Bob’s
future payments as collateral throughout the subscription period. We have intro-
duced a semi-formal model for Promise. We discuss the security and the effect
of the 8 parameter, but leave formal proofs of the security properties as future
work. We have shown how Promise can be applied to the XCLAIM protocol and
shown a sketch of appliying it to NOCUST.
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