
MP-SPDZ: A Versatile Framework for Multi-Party Computation
Marcel Keller
CSIRO’s Data61

Australia
marcel.keller@data61.csiro.au

mks.keller@gmail.com

ABSTRACT
Multi-Protocol SPDZ (MP-SPDZ) is a fork of SPDZ-2 (Keller et
al., CCS ’13), an implementation of the multi-party computation
(MPC) protocol called SPDZ (Damgård et al., Crypto ’12). MP-SPDZ
extends SPDZ-2 to 34 MPC protocol variants, all of which can
be used with the same high-level programming interface based on
Python. This considerably simplifies comparing the cost of different
protocols and security models.

The protocols cover all commonly used security models (hon-
est/dishonest majority and semi-honest/malicious corruption) as
well as computation of binary and arithmetic circuits (the latter
modulo primes and powers of two). The underlying primitives em-
ployed include secret sharing, oblivious transfer, homomorphic
encryption, and garbled circuits.

The breadth of implemented protocols coupledwith an accessible
high-level interface makes it suitable to benchmark the cost of
computation in various security models for researchers both with
and without a background in secure computation

This paper aims to outline the variety of protocols implemented
and the design choices made in the development of MP-SPDZ as
well as the capabilities of the programming interface.

KEYWORDS
Multi-party computation; implementation

1 INTRODUCTION
Multi-party computation allows a set of parties to compute collabo-
ratively on their private inputs without revealing anything other
than the result. A range of applications have been suggested such as
truthful auctions [BDJ+06], avoiding satellite collisions [HLOI16],
computing the gender pay gap [LVB+16], or privacy-preserving ma-
chine learning [MZ17]. After the development of the basic theory
in the 1980s [CCD88, BGW88], the first implementation in software
was created by Pinkas et al. [PSSW09] in 2009. Since then, a number
of frameworks have been created for a range of security models
and computation domains. By security model we mean the assump-
tions on the behavior of the parties, in particular how many are
assumed to behave honestly and whether dishonest parties follow
the protocol or try to gain information or compromise the result by
deviating. On the other hand, the computation domain denotes a
mathematical structure that is used to represent secret information
in the computation as required by the underlying schemes. In appli-
cations, this domain usually takes the form of a ring, that is, a set
with the two operations akin to addition and multiplication. Often
said ring is simply defined by integer operations with modulus, but
there are other examples such as the Galois fields of characteristic
two (e.g., the one defining the arithmetic structure of AES).

Almost all openly available frameworks for multi-party compu-
tation are restricted to a particular security model and computation
domain, which makes it hard to assess the cost of one security
model compared to another because one has to an implement the
same computation several times. Similarly, it is hard to compare pro-
tocols in the same security model. MP-SPDZ1 aims to change this
by providing an implementation of 30 protocol variants with the
same virtual machine, and a compiler that compiles high-level code
into bytecode to be executed by said virtual machine. This allows
one to implement a computation only once before benchmarking it
in a variety of settings.

At the core of the approach of combining many protocols in
one framework lies the intuition that, despite the differences, all
commonly used protocols for secure computation can largely be
reduced to a few operations that are similar in all of them, and these
are input, output, locally computable linear operations, one much
more involved operation like AND ormultiplication, and generating
correlated randomness such as random bits. It therefore seems
natural to build a general framework facilitating this blueprint in
order to reuse components and optimizations as much as possible.
MP-SPDZ does so while still allowing specific protocols to be added
if necessary.

MP-SPDZ is based on SPDZ-2 [KRSS18, KSS13], an implementa-
tion of the SPDZ protocol [DPSZ12, DKL+13]. The infrastructure of
SPDZ-2 has been used and extended in a line works [KS14, KOS15,
KOS16, Kel17, KY18, KPR18, DEF+19]. Araki et al. [ABF+18] have
undertaken steps to integrate protocols other than SPDZ in SPDZ-2.
However, their approach is marred by overly relying on library calls
for basic operations such as share additions, and thus it is relatively
inefficient. This can be seen by how well SPDZ fares in comparison
to simpler honest-majority protocols (Figures 6-8 by Araki et al.)
because the former is natively implemented in SPDZ-2. MP-SPDZ
is not based on the work by Araki et al. but directly forked from
SPDZ-2 instead.

Hastings et al. [HHNZ19] have assessed eleven multi-party com-
putation frameworks available in the first half of 2018. They esti-
mate that creating and running three simple example programs in
all of the frameworks together took them 750 person-hours. MP-
SPDZ aims to lower the entry barrier to secure computation by
providing standalone Linux binaries for every release and extensive
documentation for the high-level language.2 In addition, it uses
a continuous integration facility, and issues filed on GitHub are
usually attended within a few days.

1https://github.com/data61/mp-spdz
2https://mp-spdz.readthedocs.org

https://github.com/data61/mp-spdz
https://mp-spdz.readthedocs.org

Marcel Keller

a = sint.Array(n)
b = sint.Array(n)
a.input_from(0)
b.input_from(1)
res = sint.dot_product(a, b)
print_ln('%s', res.reveal())

Figure 1: Inner product computation in MP-SPDZ.

Paper organization. After introducing similar frameworks (with
comparison benchmarks) and basic concepts, we will proceed layer
by layer, from the underlying protocols to the high-level library.

As an anchor throughout the paper, we will use the example of
computing an inner product of two vector supplied to by two differ-
ent parties. Hastings et al. have used this as one of their examples.
The code for MP-SPDZ is shown in Figure 1.

1.1 Comparison to Other Frameworks
In the following we will consider all frameworks described by Hast-
ings et al. and the ones subsequently added to their repository
containing example programs and build environments [HHNZ20]
at the time of writing. Where available we also indicate the ap-
proximate size of the inner product example. Table 1 highlights
how MP-SPDZ compares to other frameworks. SH stands for semi-
honest security. See Section 1.2 for details.

ABY. This framework only implements two-party computation
with semi-honest security [DSZ15]. Unlike MP-SPDZ it provides
conversion between secret-sharing computation and garbled cir-
cuits, however. The inner product example takes about 60 lines of
code without comments or empty lines.

ABY3. This framework only implements three-party computa-
tion with honest majority and semi-honest security [MR18]. The
inner product example takes about 40 lines of code without com-
ments or empty lines.

CBMC-GC. This is a compiler that compiles C code to a binary
circuit description [BHWK16] to be executed by ABY. Hastings et
al. were unable to make it work with their examples.

EMP-toolkit. This framework only implements garbled circuits
in various security models [WMK16]. If not using Yao’s garbled cir-
cuits with semi-honest security, loops are unrolled at compile time.
The inner product example takes about 60 lines of code without
comments or empty lines.

FRESCO. This framework [Ale20] only implements dishonest
majority computation, with malicious security for arithmetic cir-
cuits (SPDZ and SPDZ2k) and with semi-honest security for binary
circuits [DNNR17]. The inner product example takes about 30 lines
of code without comments or empty lines.

Frigate. This is a compiler that compiles C-like code to a binary
circuit description [MGC+16]. Unlike with MP-SPDZ, loops are
always unrolled at compile-time. The inner product example takes
about 20 lines of code without comments or empty lines.

JIFF. This JavaScript library only implements honest-majority
computation with semi-honest security as a whole [Tea20]. Unlike

MP-SPDZ it allows changing the security model between offline
and online phase. The inner product example takes about 50 lines
of code without comments or empty lines.

MPyC. This Python framework [Sch20] only implements com-
putation with semi-honest security based on Shamir’s secret shar-
ing [Sha79]. The inner product example takes about 20 lines of code
without comments or empty lines.

Obliv-C. This framework compiles an extension of C to machine
code via standard C [ZE15]. It only supports Yao’s garbled circuits
with semi-honest security. The inner product example takes about
20 lines of code without comments or empty lines.

OblivVM. This framework compiles an extension of Java to Java
bytecode [LWN+15]. It only supports Yao’s garbled circuits with
semi-honest security. The inner product example takes about 20
lines of code without comments or empty lines.

PICCO. This framework compiles an extension of C to native
binaries via standard C [ZSB13]. It only implements semi-honest
computation with an honest majority based on Shamir’s secret
sharing. The inner product example takes about 10 lines of code
without comments or empty lines.

SCALE-MAMBA. This framework [COS19] is another fork of
SPDZ-2 [KSS13, KRSS18]. Despite the common roots, the two forks
have diverged considerably since 2018. SCALE-MAMBA only im-
plements arithmetic computation modulo a prime (not modulo a
power of two), garbled circuits according to Hazay et al. [HSS17],
and binary computation based on secret sharing [FKOS15, WRK17].
All computations are implement with malicious security only, and
dishonest majority computation modulo a prime is only imple-
mented using homomorphic encryption. On the other hand, SCALE-
MAMBA implements honest-majority computation for any access
structure possible in theory.

The frontend is similar to the one in MP-SPDZ but without later
additions such as the dynamic loop optimization (Section 6.3), the
repetitive code optimization (Section 6.4), and machine learning
functionality (Section 7.3). Furthermore, the authors have started to
move away from the Python compiler in favor of a new one based
on Rust.

The inner product example takes less than 10 lines of code with-
out comments or empty lines.

Sharemind MPC. This framework implements a frontend for a
variety of backends but its own backend only uses three-party
semi-honest computation with an honest majority [BLW08]. It also
allows the use of ABY and FRESCO as backendwhile the proprietary
backend is not freely available. The inner product example takes
less than 10 lines of code without comments or empty lines.

TinyGarble. This framework only implements Yao’s garbled cir-
cuits with semi-honest security [SHS+15]. Hastings et al. were
unable to make it work with their examples.

Wysteria. This framework implements a domain-specific lan-
guage with only binary computation in the semi-honest setting
with dishonest majority [RHH14]. Hastings et al. were unable to
run all their examples in this framework.

MP-SPDZ: A Versatile Framework for Multi-Party Computation

Table 1: Time in seconds to compute an inner product of two 100,000-element vectors of 64-bit integers.

SH 2-party (OT) SH replicated 3-party Shamir Malicious Shamir SPDZ (HighGear) Yao’s GC (32-bit)

ABY 1.8 ⊥ ⊥ ⊥ ⊥ ⊥

ABY3 ⊥ 0.02 ⊥ ⊥ ⊥ ⊥

EMP-toolkit ⊥ ⊥ ⊥ ⊥ ⊥ 10
MPyC ⊥ ⊥ 8.45 ⊥ ⊥ ⊥

Obliv-C ⊥ ⊥ ⊥ ⊥ ⊥ 29
ObliVM ⊥ ⊥ ⊥ ⊥ ⊥ 700
PICCO ⊥ ⊥ 0.10 ⊥ ⊥ ⊥

SCALE-MAMBA ⊥ ⊥ ⊥ 8.3 314 ⊥

MP-SPDZ 0.9 0.03 0.08 0.4 67 9

1.2 Benchmarks
We have benchmarked MP-SPDZ against other frameworks listed
in the previous section.3 Table 1 shows how many seconds it takes
to compute an inner product of length 100,000 on one machine
with a 7-th generation i7 processor (baseline frequency 2.8 GHz).
We have opted for a local computation because not all frameworks
support execution on different hosts.

For benchmarking, we have replaced get_input_from() with
get_raw_input_from() in the MP-SPDZ code. This is because the
former leads to inputs being read using the istream functionality
of the C++ standard library, which considerably increases the time
in some benchmarks. The examples in other frameworks either use
faster functions like atoi() or the inputs are hard-coded.

Furthermore, the timings for computationmodulo a prime (Shamir
and SPDZ) have been done using a 128-bit prime because that is a
common choice given that many algorithms require a (k + s)-bit
prime for k-bit computation and security parameters s . We have
reduced all statistical security parameters in SCALE-MAMBA to
40 for a fairer comparison. Similarly, the HighGear figure excludes
key generation because the two frameworks handle this differently.

The table shows that the more sophisticated approach using a
virtual machine does not degrade performance considerably with
arithmetic computation.

In addition, we have benchmarked frameworks using Yao’s gar-
bled circuits but with 32-bit integers instead of 64 because some
examples only support the former.

Note that ⊥ means that a particular framework does not im-
plement a particular protocol, except for the case of ABY and Yao
where there is no example code available.

We have identified a number of reasons for the frameworks
performing significantly worse. MPyC and ObliVM are not im-
plemented with C/C++. For SCALE-MAMBA, we have found that
it utilizes frequent allocation/free calls due to a regular usage of
variable-length integers, and it uses a high number of relatively
expensive function calls to MPIR for fixed-length arithmetic. Fur-
thermore, it also generates more preprocessing data than necessary.

Finally, Tables 2 and 3 show our figures for the framework in a
simulated WAN setting (100 Mbit/s and 100 ms RTT) as well as the
total communication. The latter was obtained using ip -s link lo
in Docker for all other frameworks.

3The code can be found at https://github.com/mkskeller/mpc-benchmarks.

Missing frameworks. We do not provide benchmarks for various
frameworks mentioned in Section 1.1 for the following reasons:

• No working inner product example: CBMC-GC, TinyGarble,
Wysteria
• No backend executing the actual computation: Frigate
• Inner product example incomplete (without preprocessing):
FRESCO
• Using JavaScript: JIFF
• Software not available: Sharemind MPC

2 PRELIMINARIES
In this section we explain various basic concepts in secure multi-
party computation.

Security models. A core property of multi-party computation
protocols is what assumptions are made about the parties, which
happens along two axes. The first question is how many parties
are assumed to behave honestly and how many are assumed to
be “corrupted” in some way. The protocols in MP-SPDZ all as-
sume threshold corruption, that is a constant number of parties are
thought to be corrupted. There is a considerable difference between
an honest majority and a dishonest majority, that is, whether this
threshold is strictly below half the number of parties or not. The
protocols for a dishonest majority are generally more intricate and
more expensive.

The second question is how corrupted parties behave. The two
main categories here are whether they still follow the protocol but
collude on extracting information (called semi-honest or passive
corruption) or whether they also deviate from the protocol in or-
der to gain information or distort the result of the computation
(called malicious or active corruption). The latter setting raises fur-
ther questions as to whether the computation can still continue in
case of deviation (guaranteed output) and whether the corrupted
parties can learn the result without honest parties doing so (fair-
ness). All protocols in MP-SPDZ with malicious security work in
the malicious-with-abort model, which means that deviation is
detected but the protocol cannot recover after that. The reason
is that fairness is relatively expensive, and guaranteed output is
outright impossible with dishonest majority. Consider the case of
a two-party protocol: One party cannot continue when the other
stops communicating.

https://github.com/mkskeller/mpc-benchmarks

Marcel Keller

Table 2: Time in seconds to compute an inner product of two 100,000-element vectors of 64-bit integers in a WAN setting.
Protocols skipping input sharing are denoted by ‘∗’.

SH 2-party (OT) SH replicated 3-party Shamir Malicious Shamir SPDZ (HighGear) Yao’s GC (32-bit)

ABY 27 ⊥ ⊥ ⊥ ⊥ ⊥

ABY3 ⊥ 1.5 ⊥ ⊥ ⊥ ⊥

EMP-toolkit ⊥ ⊥ ⊥ ⊥ ⊥ 314
MPyC ⊥ ⊥ 9.2 ⊥ ⊥ ⊥

Obliv-C ⊥ ⊥ ⊥ ⊥ ⊥ 343
ObliVM ⊥ ⊥ ⊥ ⊥ ⊥ 1,712
PICCO ⊥ ⊥ 0.2∗ ⊥ ⊥ ⊥

SCALE-MAMBA ⊥ ⊥ ⊥ 115 570 ⊥

MP-SPDZ 29 0.9 0.2∗/1.8 14 170 319

Table 3: Total communication in MB to compute an inner product of two 100,000-element vectors of 64-bit integers. Protocols
skipping input sharing are denoted by ‘∗’.

SH 2-party (OT) SH replicated 3-party Shamir Malicious Shamir SPDZ (HighGear) Yao’s GC (32-bit)

ABY 312 ⊥ ⊥ ⊥ ⊥ ⊥

ABY3 ⊥ 4.8 ⊥ ⊥ ⊥ ⊥

EMP-toolkit ⊥ ⊥ ⊥ ⊥ ⊥ 3,395
MPyC ⊥ ⊥ 8.0 ⊥ ⊥ ⊥

Obliv-C ⊥ ⊥ ⊥ ⊥ ⊥ 3,523
ObliVM ⊥ ⊥ ⊥ ⊥ ⊥ 6,312
PICCO ⊥ ⊥ 0.006∗ ⊥ ⊥ ⊥

SCALE-MAMBA ⊥ ⊥ ⊥ 157 4,547 ⊥

MP-SPDZ 312 1.6 6.4 83 592 3,616

Computation domains. There is a variety of mathematical struc-
tures used in multi-party computation. Often this takes the form of
integers modulo some numberM . IfM = 2 the computation reduces
to binary circuits because addition then corresponds to XOR and
multiplication corresponds to AND. For largerM , the literature has
established the term arithmetic circuits because the basic operations
provided remain addition and multiplication. IfM is a prime, the
domain satisfies the definition of a field, that is, all numbers except
zero have a multiplicative inverse. This is required for a number
of schemes including Shamir’s secret sharing [Sha79] and SPDZ
[DPSZ12]. For the latter, these requirements were later adapted for
computation modulo a power 2k , resulting in the SPDZ2k protocol.
However, integer computation modulo a prime is not the only ex-
ample of a finite field. MP-SPDZ also implements computation in
F2k . The latter domain particularly has applications for symmetric
cryptosystems such as AES, which is based on arithmetic in F28 .

Secret sharing. This concept of distributing information is at the
core of many multi-party computation protocols. Information is
distributed in away that allows some sets (called qualified) of parties
to reconstruct it while some smaller sets (called unqualified) cannot
deduce anything from the shares they are given. The exact definition
of which subsets can and cannot recover is called an access structure.
Clearly, a superset of a qualified set has to be qualified as well, and
a subset of an unqualified set has be to unqualified for the access
structure to make sense. Furthermore, the common definition of

secret sharing requires that all subsets of parties are either qualified
or unqualified.

As an example consider additive secret sharing. A number x in
a range [0,M − 1] is shared among parties P1, . . . , Pn by sending a
random number xi ∈ [0,M − 1] to Pi such that

∑
i xi = x mod M .

It is easily seen that the all parties together can reconstruct x while
the view of any strict subset is indistinguishable to a random set of
numbers. This secret sharing scheme is used in all protocols with
dishonest majority except schemes based on garbling.

Other secret sharing schemes used in MP-SPDZ include repli-
cated secret sharing [BL90] where one starts with additive secret
sharing but sends more than one share to every party and Shamir’s
secret sharing [Sha79] where shares are determined using a ran-
dom polynomial of fixed degree equal to the maximum number of
corrupted parties.

All of these secret sharing schemes are linear, that is, any (affine)
linear combination of secret-shared values can be computed locally
because the reconstruction is linear as well.

Beaver’s multiplication. This technique [Bea92] reduces multipli-
cation of secret numbers to multiplication of secret random num-
bers, which is useful both in terms of security and practicality. First,
it allows executing the multiplication of secret random numbers
optimistically before checking whether the parties followed the
protocol. If the check fails the protocol can abort without conse-
quences because the secret randomness is independent of the actual

MP-SPDZ: A Versatile Framework for Multi-Party Computation

secret data. Second, Beaver’s multiplication enables batch-wise pre-
processing even if the actual computation is sequential, which is a
particular advantage when using lattice-based cryptosystems that
(only) allow to encrypt many values at once efficiently.

The multiplication works as follows: Let [x] denote a secret
sharing of x , and assume that a triple ([a], [b], [ab]) for independent
random a and b is available. The multiplication of [x] and [y] can
then be computed after revealing x + a and y + b. Revealing these
does not reveal x or y because a and b are secret and randomly
chosen. After revealing the sums, the parties compute

[xy] = [(x + a − a) · (y + b − b)]

= (x + a) · (y + b) − (x + a) · [b] − (y + b) · [a] + [ab].

Note that this computation is affine linear with respect to the secret
values and thus it is possible to compute it with any linear secret
sharing scheme.

Oblivious transfer. This is a basic two-party cryptographic pro-
tocol that was the first to be used for dishonest-majority computa-
tion. Essentially, one party (called sender) inputs two strings s0, s1,
and the other party (called receiver) inputs a bit b and learns sb .
Crucially, the sender does not learn b, and the receiver does not
learn s1−b . It is relatively straightforward to construct a protocol
from oblivious transfer that allows two parties to compute a secret
sharing of the product of private numbers known to each without
revealing the inputs. The construction is leveraged by protocols
such as MASCOT [KOS16]. Oblivious transfer is only known to
be constructed from public-key cryptography. However, OT exten-
sion [IKNP03] can be used keep the use of such more expensive
schemes at a low constant while using more symmetric cryptogra-
phy instead.

Homomorphic encryption. This refers to encryption schemes that
enable operating on ciphertexts efficiently in a way that implies
some operation without revealing the cleartext. While encryption
schemes with limited homomorphism have been known for a while
(textbook RSA is homomorphic in some sense), only the emergence
of lattice-based cryptography led to scheme that are homomorphic
with respect to two operations. MP-SPDZ uses the leveled encryp-
tion scheme by Brakerski et al. [BGV12], which requires that a
vector of numbers are encrypted at once. The minimum length de-
pends on the plaintext modulus but generally ranges from several
thousand to several ten thousand. The concrete implementation is
based on the one by Gentry et al. [GHS12], which is defined by the
use of Montgomery representation [Mon85] and fast Fourier trans-
form. The first facilitates multiplication modulo a prime without
expensive modular reduction, and the second is an efficient method
for converting a list of numbers to a polynomial in the plaintext
space such that the multiplication of two such polynomials corre-
sponds to an element-wise product of the numbers. This approach
imposes a restriction on the prime modulus that can be used, but
many applications requiring only general integer-like computation
are indifferent to the actual prime.

3 THE PROTOCOLS
Table 4 shows which protocol variants in each combination of
security model and computation domain are implemented in MP-
SPDZ. In the following sections we will briefly describe them.

3.1 Dishonest Majority
All protocols for dishonest majority use techniques related to public-
key cryptography, either oblivious transfer of homomorphic en-
cryption. Research on practical protocols in this line was started by
Nielsen et al. [NNOB12] and Damgård et al. [DPSZ12]. The former
proposed a two-party protocol computing binary circuits based on
oblivious transfer (later dubbed TinyOT), and the latter proposed
a multi-party protocol for computation in fields (modulo a prime
or F2k) using homomorphic encryption (named SPDZ after the
authors). Both use Beaver’s technique of dividing the computation
in a data-independent and a data-dependent phase [Bea92]. The
former (sometimes called “offline”) outputs correlated information
that is used by latter together with the actual private data.

MASCOT. This protocol denotes a way of computing Beaver
triples used in SPDZ using oblivious transfer (OT) with malicious
security [KOS16], which was the first offline phase released in
SPDZ-2. A core technology here is the use of so-called OT extension
with malicious security [KOS15], which considerably increases the
throughput because public-key cryptography is only used briefly
at the beginning of the computation.

SPDZ2k . MASCOT has been adapted to computation modulo a
power of two [CDE+18, DEF+19]. The main challenge here is that
not every element in Z2k has an inverse, which is a crucial tool in
proving the security of MASCOT (and SPDZ). SPDZ2k mitigates
this by moving to Z2k′ for a larger k

′ in order to counter the effect
of zero divisors. MP-SPDZ fully implements SPDZ2k using its own
implementation of Z2k optimized with compile-time k .

SPDZ and Overdrive. LowGear and HighGear [KPR18] are the
names of two protocols computing Beaver triples for SPDZ using
semi-homomorphic and somewhat homomorphic encryption, re-
spectively. They were part of SPDZ-2. Semi-homomorphic means
that it is possible to add ciphertexts and multiply ciphertexts with
cleartexts in order to obtain an encryption of the sum and the
product, respectively. By somewhat homomorphic we mean that in
addition it is also possible to multiply two ciphertexts but the result
cannot be further multiplied by a ciphertext. All known homomor-
phic cryptosystems incur a considerable performance penalty for
every additional level of ciphertext multiplication. The core idea of
SPDZ, LowGear, and HighGear is to minimize the number of such
multiplication levels using multi-party computation techniques.
LowGear and HighGear represent a trade-off in that LowGear runs
a sub-protocol between all pairs of parties (similar to Bendlin et
al. [BDOZ11]) and therefore does not scale as well with the number
of parties as HighGear.

Since MP-SPDZ does not implement the key generation needed
for LowGear and HighGear with malicious security, variants of
them using covertly secure key generation account for the two

Marcel Keller

Table 4: Protocols implemented in MP-SPDZ. ‘-’ indicates removing parts needed only for malicious security, ‘∗’ denotes other
modifications, and numbers in brackets stand for the number of protocol variants. All protocols in the first column support
both types of fields.

Security model Modulo prime / Galois field Modulo power of two Binary sharing Garbling

Malicious, dishonest majority [KOS16] [DEF+19] [DEF+19]∗ [FKOS15] [LPSY15]
Covert, dishonest majority [KPR18]∗ (2)
Semi-honest, dishonest majority [KOS16]- [KPR18]- (2) [KOS16]- [FKOS15]- [LPSY15] [ZRE15]
Malicious, honest majority [LN17] (3) [CGH+18] (2) [EKO+20] (4) [ADEN19] [FLNW17] [LN17] [LPSY15]
Malicious, honest supermajority [DEK20]
Semi-honest, honest majority [AFL+16] [CDM00] [AFL+16] [AFL+16] [CCD88] [LPSY15]

covertly secure protocols in Table 4. Optionally, the TopGear zero-
knowledge proof [BCS19] can be used instead of the original vari-
ants. This reduces the memory usage and the time needed for
smaller computations.

MP-SPDZ also retains the offline phase of earlier variants of
the SPDZ protocol, with malicious [DPSZ12] and covert security
[DKL+13]. Since they are superseded by HighGear, they are not
integrated with the online phase and therefore do not appear in
Table 4, however.

Binary secret sharing. MP-SPDZ supports two ways of comput-
ing binary circuits with secret sharing, dishonest majority, and
malicious security. The first is adapted from SPDZ2k with k = 1.
However, this variant suffers from the fact that communication is
quadratic in the security parameters. Even though that also holds
for SPDZ2k but has less of impact if k is larger than the security
parameter as is the case for SPDZ2k because the communication of
protocols based on oblivious transfer is in O(k2).

The second variant is based on a multi-party generalization of
TinyOT by Frederiksen et al. [FKOS15] and has communication
linear in the security parameter.

BMR. Beaver et al. [BMR90] have presented a way to construct
garbled circuits from any multi-party computation scheme inher-
iting the security properties. Their approach was later refined by
Lindell et al. [LPSY15] by using SPDZ as the underlying protocol.
MP-SPDZ implements BMR using SPDZ/MASCOT as well as pro-
tocols in other security models. This functionality was never part
of SPDZ-2 but has been partially published before the first version
of MP-SPDZ because it was used by Keller and Yanai to implement
oblivious RAM [KY18].

Yao’s Garbled Circuits. Bellare et al. [BHKR13] have presented a
variant of Yao’s garbled circuits that works particularly well with
AES-NI, the native implementation of AES on modern processors.
An implementation was added after the last version of SPDZ-2, and
it was recently extended to include the half-gate technique [ZRE15].

Semi-honest security. It is relatively straight-forward to convert
a protocol with malicious security to one with semi-honest secu-
rity by removing all aspects that solely contribute to malicious
security. All protocols in the line of SPDZ and TinyOT feature
two main elements for this: an information-theoretic tag (called
“MAC” in most of the literature) and a procedure called sacrificing
that checks the correctness of correlated randomness using more

correlated randomness. The latter has to be discarded thereafter
because the procedure reveals correlation between the two parts,
hence the name sacrificing. Stripping both leaves a protocol that
comes close to canonical semi-honest protocol using the underlying
techniques (oblivious transfer or homomorphic encryption). The
main difference is that in the semi-honest setting one could use
OT or HE directly with secret data instead of produced correlated
randomness. Given the cost of OT or HE, the overhead is relatively
small compared to the additional cost of Beaver’s multiplication,
however. Furthermore, using correlated randomness with homo-
morphic encryption can easily work with the SIMD structure of
LWE-based schemes, that is the fact that such schemes only can
encrypt thousands of field elements at once for reasonable secu-
rity parameters. This enables using a single encryption even for
computing sequential multiplications.

As a result, MP-SPDZ implements an OT-based protocol in all
computation domains as well protocols for fields both with semi-
homomorphic and somewhat homomorphic encryption.

3.2 Honest Majority
The honest-majority setting allows computing securely entirely us-
ing secret sharing, without oblivious transfer or homomorphic
encryption. MP-SPDZ uses two secret sharing schemes to this
end, replicated secret sharing [BL90] and Shamir’s secret sharing
[Sha79]. Both are multiplicative, that is, it is possible to locally
compute a sharing of the multiplication of two sharings without
communication, albeit resulting in a different secret sharing scheme.
A resharing protocol involving communication can then convert
back to the original sharing scheme, thus facilitating further multi-
plication.

The resharing protocol is linear in that resharing of a sum is
equivalent to the sum of resharings, which enables the parties to
compute an inner product at the communication cost of a single
multiplication. The framework reflects this by providing a particular
interface for inner products as seen later.

Semi-honest computation based on replicated secret sharing. Araki
et al. [AFL+16] have observed that resharing can be done by every
party sending exactly one element of the computation domain by
using pseudo-random zero sharing [CDI05]. The latter refers to
the generation of a fresh random sharing of zero without com-
munication using pseudo-random number generation with a set
of keys shared between every pair of parties. A similar technique

MP-SPDZ: A Versatile Framework for Multi-Party Computation

facilitates reducing the communication for private inputs as noted
by Eerikson et al. [EKO+20].

Semi-honest computation based on Shamir’s secret sharing. This
goes back to Ben-Or et al. [BGW88] for computation modulo a
prime and Chaum et al. [CCD88] for computation in extension
fields of characteristic two (and thus binary circuits). MP-SPDZ
implements resharing as described by Cramer et al. [CDM00].

3.3 Malicious computation
Lindell and Nof [LN17] have adapted the SPDZ sacrifice to the
setting of multiplicative secret sharing modulo a prime (including
replicated and Shamir’s secret sharing), and Araki et al. [FLNW17]
have done so for TinyOT. Both works are based on the observation
that the optimistic triple production using homomorphic encryption
or oblivious transfer can be replaced by producing a triple using
multiplicative secret sharing instead. A pair of such triples can
then be checked as in the dishonest-majority setting, resulting in
the ratio of triples needed to be produced per triple available for
the online phase. This is two for large fields (SPDZ) and three for
bit-based protocols (TinyOT).

For computationmodulo a power of two, Eerikson et al. [EKO+20]
have presented several variants, one more akin to TinyOT, an-
other inspired by the SPDZ2k sacrifice, a third based on a general
compiler [DOS18], and a fourth called post-sacrifice. The last was
introduced by Lindell and Nof [LN17] for computation modulo
a prime, and it works by executing any multiplication with only
semi-honest security but storing the inputs and output for a later
check with a random triple similar to a SPDZ sacrifice. This deviates
from Beaver’s technique and demonstrates that MP-SPDZ is not
restricted to it.

Another way of checking correctness with honest-majority com-
putation is by means of an information-theoretic tag as in SPDZ.
However, using multiplicative secret sharing schemes instead of
additive secret sharing allows for protocols that compute multiplica-
tions optimistically and check them later. MP-SPDZ implements the
protocols proposed by Chida et al. [CGH+18] both with Shamir and
replicated secret sharing modulo a prime and the protocol proposed
by Abspoel et al. [ADEN19] for replicated secret sharing modulo a
power of two. The latter is implemented with a minor modification
by Dalskov et al. [DEK20] that allows continuous computation.

Honest supermajority. It is known that the setting of strictly
less than one third of parties being corrupted allows for stronger
security such as guaranteed output delivery. This requires at least
four parties for one corruption.With replicated secret sharing, every
party needs to store three ring elements. The protocol by Dalskov
et al. [DEK20] uses this setting with computation modulo a power
of two to implement non-linear functionality such as truncation
and comparison efficiently.

3.4 Higher-Level Protocols
All protocols described above are generally concerned with an
implementation of an arithmetic black-box, that is private input,
addition, multiplication, and public output. However, many compu-
tations such as comparison require further correlated randomness,
most notably secret random bits in the larger domains. A simple

way of obtaining such bits is to have sufficiently many parties
(depending on the security model) input a random bit and then
computing the XOR of all of them. However, this does not scale
optimally with the number of parties because computing XOR in
a larger domain reduces to a multiplication: a ⊕ b = a + b − 2ab.
Furthermore, for malicious security, it has to be checked whether
the output actually is a bit.

For computation modulo a prime, Damgård et al. [DKL+13] have
shown that a secret random bit can be produced at the cost of only
one multiplication and one opening by using the fact that the square
of a random number does not reveal which of two possible square
roots it corresponds to (if not zero). Damgård et al. [DEF+19] later
extended this to computation modulo a power of two.

Arithmetic-binary conversion. MP-SPDZ implements several ways
of converting between arithmetic (modulo a larger number) and
binary (modulo two) computation. The general way uses correlated
randomness in the two domains, so-called doubly-authenticated
bits (daBits) introduced by Rotaru and Wood [RW19], and extended
daBits introduced by Escudero et al. [EGK+20]. In some settings
with a low number of parties and computation modulo a power
of two, there is also the possibility of a more direct conversion
[ABF+18, MR18, DSZ15, DEK20]. These protocols either provide
only semi-honest security or require an honest supermajority.

3.5 Benchmarks
In order to compare protocols for arithmetic circuits, we have bench-
marked the computation of one epoch of logistic regression for 1280
examples of 10 features and batch size 128. The resulting circuit
features more than one million multiplications in more than 1000
rounds. Tables 5 and 6 show our results for one and two corrupted
players, respectively, on co-located AWS c5.9xlarge instances.
Note that we compute the sigmoid function accurately unlike for
example ABY3 [MR18].

For protocols computing binary circuits, we have implemented
the computation of an inner product of vectors input by two differ-
ent parties with 32-bit numbers. Tables 7 and 8 show our results
for one and two corrupted players, respectively, on co-located AWS
c5.9xlarge instances. Note that [CCD88] stands for computing a
binary circuit by embedding bits in into fields of characteristic two
to satisfy the conditions of Shamir’s secret sharing. Furthermore,
the protocol after [LPSY15] names the underlying protocol for the
BMR construction.

4 INTERNAL INTERFACES
In multi-party computation based on secret sharing it is essential
that parallel communication is bundled up to some extent. This
raises the question of how to translate that requirement into an
interface that is as easy to use as possible. Consider the following
simple operator overloading:

a = b * c
e = d * f

The two multiplications can be run in parallel. However, the com-
munication implied by the first line has to be deferred at least until
the execution of the second line, which means that that a cannot
represent an actual share but a deferred value instead, which in

Marcel Keller

Table 5: Time and communication for logistic regression with various protocols tolerating one corrupted party.

Security Parties Modulo Protocol Time (s) Comm. (MB)

Semi-honest

3
264 [AFL+16] 0.62 62
128-bit prime [AFL+16] 4.41 245
128-bit prime [CDM00] 5.31 490

2

264 [DEF+19]- 27.52 8,173
128-bit prime [KOS16]- 267.24 41,424
128-bit prime [KPR18]- (semi HE) 134.44 2,367
128-bit prime [KPR18]- (somewhat HE) 539.50 2,593

Covert 2 128-bit prime [KPR18]∗ (semi HE) 1173.91 15,578
[KPR18]∗ (somewhat HE) 3708.61 27,130

Malicious 4 264 [DEK20] 1.14 78

Malicious
3

264 [EKO+20] (post-sacrifice) 11.09 249
264 [ADEN19] 5.30 274
128-bit prime [LN17] (replicated) 11.09 566
128-bit prime [CGH+18] (replicated) 18.78 658
128-bit prime [LN17] (Shamir) 18.25 1,888
128-bit prime [CGH+18] (Shamir) 206.02 2,317

2 264 [DEF+19] 973.17 109,189
128-bit prime [KOS16] 2336.57 225,670

Table 6: Time and communication for logistic regression with various protocols tolerating two corrupted parties.

Security Parties Modulo Protocol Time (s) Comm. (MB)

Semi-honest

5 128-bit prime [CDM00] 17.07 1,452

3

264 [DEF+19]- 63.19 27,725
128-bit prime [KOS16]- 562.73 147,735
128-bit prime [KPR18]- (semi HE) 366.22 7,895
128-bit prime [KPR18]- (somewhat HE) 550.08 5,058

Covert 3 128-bit prime [KPR18]∗ (semi HE) 1769.68 30,621
[KPR18]∗ (somewhat HE) 3842.80 40,689

Malicious 5 128-bit prime [LN17] (Shamir) 44.02 4,188
[CGH+18] (Shamir) 232.34 4,191

3 264 [DEF+19] 1063.82 218,089
128-bit prime [KOS16] 2559.30 451,019

turn requires a considerable machinery in the background to han-
dle the the communication and the availability of deferred values.
Such an approach has been taken by VIFF [Gei07], its successor
MPyC [Sch20], and FRESCO [Ale20]. In contrast, MP-SPDZ aims
for more efficiency at this stage and defers usability to a higher level.
Therefore, the internal interface requires the programmer indicate
parallel computation. A strictly vector-based interface is one way of
doing this, but MP-SPDZ offers a slightly more amenable variant as
show in Figure 3. Assume that a and b are vectors of multiplicands
of size n and c is supposed to hold the output. This interface allows
a more dynamic use without the necessity of copying information
into vectors first. Note that processor represents infrastructure

protocol.init_mul(&processor);
for (int i = 0; i < n; i++)

protocol.prepare_mul(a[i], b[i]);
protocol.exchange();
for (int i = 0; i < n; i++)

c[i] = protocol.finalize_mul();

Figure 2: Parallel multiplication with C++ in MP-SPDZ.

such as the network setup as the opening protocol and preprocess-
ing. The latter is necessary for some protocols, for example any
protocol using Beaver multiplication.

MP-SPDZ: A Versatile Framework for Multi-Party Computation

Table 7: Time and communication per party for inner product of length 100,000with various binary circuit protocols tolerating
one corrupted party. Numbers with ∗ are scaled up from inner products of length 1,000.

Security Parties Type Protocol Time (s) Comm. (GB)

Semi-honest

3

Secret sharing [AFL+16] 18 0.1
Secret sharing [CDM00][CCD88] 85 1.8
Garbled circuit [LPSY15][AFL+16] 594 68.7
Garbled circuit [LPSY15][CDM00] 1,002 184.5

2
Secret sharing [FKOS15]- 59 5.4
Garbled circuit [ZRE15] 8 3.6
Garbled circuit [LPSY15][KOS16]- 13,502∗ 4,178.4∗

Malicious

3

Secret sharing [FLNW17] 27 1.9
Secret sharing [LN17][CCD88] 191 14.1
Garbled circuit [LPSY15][LN17] 1,777 163.6
Garbled circuit [LPSY15][LN17] 3,241 518.6

2
Secret sharing [FKOS15] 897 73.4
Secret sharing [DEF+19]∗ 39,048∗ 2,639.8∗
Garbled circuit [LPSY15][KOS16] 132,243∗ 24,486.9∗

Table 8: Time and communication per party for inner product of length 100,000with various binary circuit protocols tolerating
two corrupted parties. Numbers with ‘∗’ are scaled up from inner products of length 1,000.

Security Parties Type Protocol Time (s) Comm. (GB)

Semi-honest
5 Secret sharing [CDM00][CCD88] 107 3.2

Garbled circuit [LPSY15][CDM00] 3,416 578.7

3 Secret sharing [FKOS15]- 65 8.4
Garbled circuit [LPSY15][KOS16]- 24,219∗ 11,981.6∗

Malicious
5 Secret sharing [LN17][CCD88] 232 25.4

Garbled circuit [LPSY15][LN17] 12,087∗ 1,624.7∗

3
Secret sharing [FKOS15] 1,029 140.9
Secret sharing [DEF+19]∗ 40,891∗ 5,209.5∗
Garbled circuit [LPSY15][KOS16] 249,508∗ 70,586.3∗

As every protocol offers the same interface, it is straightforward
to implement the same computation for several protocols at once
using C++ templating also because the input and output protocols
use the same approach.

Coming back to our inner product example, Figure 3 shows its
implementation using the internal interface of an arithmetic pro-
tocol. As the communication takes place in the exchange calls, it
is parallelized as much as possible. Furthermore, the code uses the
optimized dot product facility if available for the protocol. Note
that the code is the same for all protocols. It is only the type of
the input, protocol, and output objects that changes from proto-
col to protocol. Further note that P and processor represent the
networking setup and further infrastructure as above, respectively.

4.1 Templating
C++ templating is widely used in MP-SPDZ because it allows
reusing code whenever suitable without performance penalty. If

runtime polymorphism with virtual functions would be used in-
stead, every additional protocol would incur extra cost at every
point of the execution where protocols differ. Given that the proto-
cols implemented in the framework differ in very small units (e.g.,
adding shares can involve as little as adding two 64-bit numbers but
also adding several pairs of numbers modulo a large prime), we esti-
mate that the cost of runtime polymorphism would be considerable
due to the continuous branching.

As an example of the benefits of templating, the implementation
of Beaver’s multiplication [Bea92] requires about 100 lines of code
while being used for over ten protocols spanning all computation
domains and several security models.

The central class of any protocol represents a secret value in
that protocol. Everything else like types for corresponding clear-
text values and sub-protocols are derived from this class using
typedef. Usually classes describing a particular protocol have one
template variable for the secret value class, from which all derived
information can be accessed.

Marcel Keller

input.reset_all(P);
for (int i = 0; i < n; i++)

input.add_from_all(i);
input.exchange();
for (int i = 0; i < n; i++)
{
a[i] = input.finalize(0);
b[i] = input.finalize(1);

}
protocol.init_dotprod(&processor);
for (int i = 0; i < n; i++)
protocol.prepare_dotprod(a[i], b[i]);

protocol.next_dotprod();
protocol.exchange();
c = protocol.finalize_dotprod(n);
output.init_open(P);
output.prepare_open(c);
output.exchange(P);
result = output.finalize_open();

Figure 3: Inner product computation with C++ in MP-SPDZ.

4.2 Preprocessing
A considerable part of the backend is dedicated to the so-called pre-
processing, which denotes the generation of correlated randomness.
The most prominent example of such randomness is multiplication
triples ([a], [b], [ab]) where a and b are uniformly random and all
numbers are secret-shared. Such triples are central to the Beaver’s
multiplication. Other examples include squares (a,a2), inverses
(a,a−1), random bits, daBits, and edaBits [EGK+20].

MP-SPDZ provides implementations to generate preprocess-
ing generically for semi-honest and malicious security as well as
specific implementations for certain protocols. For example, it is
more efficient to generate squares without using multiplication in
SPDZ [DKL+13], or daBits can be generated from random bits in
some protocols for computing modulo a power of two.

Since the marginal cost per preprocessed element is lower if they
are generated in batches, the framework provides infrastructure to
do so. Furthermore, it is possible to read such information from disk,
which facilitates benchmarking only the phase of the computation
that is dependent on secret data (sometimes called “online phase”).

Preprocessing is generally executed on demand to avoid unnec-
essary computation, which is different to SCALE-MAMBA [COS19]
where even the lesser used squares are generated whenever a com-
putation is run. This does not only slow down the computation, it
can also cause the application to seemingly hang at the end because
the preprocessing has not finished.

5 THE VIRTUAL MACHINE
Keller et al. [KSS13] have presented a virtual machine designed
for the specifics of multi-party computation. This virtual machine
is at the core of SPDZ-2 [KRSS18], the predecessor of MP-SPDZ.
The main characteristic of the virtual machine is that instructions
involving communication allow an unrestricted number of argu-
ments and thus minimizing the number of communication rounds.
It is this property that distinguishes it from many other virtual

machines and processors. Consider for example the 64-bit x86 in-
struction set. While instructions vary in the number of clock cycles
required for completion (as little as one for addition but more than
100 for sine or cosine [F+11]), the difference between instructions
is easily quantified by the difference in the binary circuits required
to compute them. In multi-party computation, there is not only a
quantitative difference between an addition of shares and a multi-
plication but also a qualitative one because the former can be done
locally while the latter involves communication. This qualitative
difference has implications that vary from protocol to protocol,
but the benefit of unrestricted parallelization of communication is
straightforward due to network latencies.

In the context of garbled circuits, there is another benefit of
the parallelization property. Bellare et al. [BHKR13] proposed im-
plementing garbled circuits using AES-NI, the CPU-native imple-
mentation of AES. Their scheme makes use of so-called pipelining,
which means that several AES operations can be run in parallel
on the same CPU core if the instructions are executed directly one
after the other. The virtual machine design allows one to make use
of pipelining while relieving the user in this respect.

High-level design. SPDZ-2 implements the SPDZ online phase for
computations in Fp for a large primep and F2n with eithern = 40 or
n = 128. MP-SPDZ adds a range of protocols, replacing Fp with Z2k
for some protocols and adding computations of Boolean circuits
(technically in F2). The latter is rooted in the implementation used
by Keller and Yanai [KY18], and it workswith vectors of length 64 by
default. This is necessary for efficiency with some protocols where
a share only consists of a bit or a pair of bits, and it leads to a natural
optimization by using the 64-bit machine words of contemporary
processors, computing 64 bit operations at once. As a result, every
instantiation of the virtual machine offers integer-like computation
(in Fp or Z2k), and computation for F2n and Boolean circuits, all in
the same security model.

Basic data types. The virtual machine allows handling data of
public and secret values for every computation domain and 64-bit
integers. The reason for having clear data types in every domain
on top of another integer type is that the size of numbers in the
computation domains vary and numbers in Fp are stored using
Montgomery representation, which does not lend itself for pur-
poses such as loop counters or addressing memory. It is therefore
cleaner to have public data types reflecting all computation domains.
Furthermore, in the context of garbled circuits there is a conceptual
difference between public numbers that are known prior to garbling
such as loop counters and numbers that result from revealing a
secret value. This difference matters because the garbling part of a
computation depends on a revealed value has to happen after the
evaluation resulting in said value whereas garbling only depending
on a loop counter can be processed at any time.

Registers. The virtual machine provides an unlimited number of
registers for every basic data type. While this is less sophisticated
than a stack-based design, it allows for a simpler implementation.
Register numbers are hard-coded into the bytecode, which enables
the virtual machine to allocate sufficient numbers for the compu-
tation. Registers are generally used to store inputs and outputs of
instructions, and they are local to a thread.

MP-SPDZ: A Versatile Framework for Multi-Party Computation

Memory. For more complex data structures such as arrays, ma-
trices, and higher-dimensional structures, the virtual machine pro-
vides another facility for every basic data type, called the memory.
The memory arrays are global, and thus allows communicating
information between threads. Unlike registers, the memory can be
accessed using runtime values stored in integer registers. Memory
has to be allocated at compile time.

Instructions. Most of the instructions supported by the virtual
machine can be roughly categorized as follows:4

Copying This includes initializing registers, copying between
registers and memory, as well as conversion between regis-
ters of different public data types.

Simple computation Instructions resembling the common
three-argument format is used for all computation that does
not require communication, including linear operations on
secret values.

Secure protocols All instructions of this category allow an
infinite number of arguments to facilitate reducing commu-
nication rounds as described above. The protocols include
essential ones such as private input, multiplication, and pub-
lic output, but also more specialized ones such as inner prod-
uct, matrix multiplication, 2D convolution, and the special
truncation by Dalskov et al. [DEK19].

Preprocessed information As mentioned in Section 4.2, pre-
processing is executed batch-wise. This means that instruc-
tions of this type only incur communication if necessary.
It is also possible to communicate the amount of prepro-
cessed information required in a tape in order to optimize
the preprocessing.

Control flow The virtual machine allows jumps as well as
spawning and joining threads.

Further input/output Instructions in this category facilitate
functionality outside secure protocols such as printing or
client communication.

Protocol information It is possible to use the same program
in various player configurations by accessing information
such as the number of players and then for example loop
over all available players when gathering inputs.

Vectorization. Most instructions are vectorized, that is, they im-
ply the execution of the same operation for as many consecutive
registers as requested. This considerably reduces the overhead of
representing repetitive computation both during compilation as
well as during execution. The virtual machine also facilitates struc-
tured loading of values into consecutive registers, for example,
loading rows at any dimension in multi-dimensional arrays.

Threads. The virtual machine implements multi-threading as
follows: A computation is run in the main thread as described by
list of instructions called a “tape”. The latter can start further tapes
in other threads and wait for their completion. However, the maxi-
mum number of threads has to be known at compile time. Despite
this limitation, the available functionality is powerful enough for
many applications that benefit from multi-threading such as matrix
multiplication or convolutions.
4A more detailed descriptions of the instructions is available in the documentation:
https://mp-spdz.readthedocs.io/en/latest/instructions.html

Inner product example. Figure 4 shows the bytecode represen-
tation of our inner product example with vectors of length three.
Note that both inputmixed, dotprods, asm_open give the number
of parameters as first argument. The first instruction lets private
inputs from parties 0 and 1 to be stored in registers s1,s3,s5 and
s2,s4,s6, respectively, and the result of the inner product is then
stored in s0. Eventually, the inner product is revealed and printed
followed by a new line character.

6 THE COMPILER
Similar to SPDZ-2, the compiler runs high-level code written in
Python, and outputs bytecode to be run by the virtual machine.
Some aspects have been changed as pointed out throughout this
chapter. The following core aspects remain the same, however.

Type system. MP-SPDZ follows the dynamic typing paradigm
of Python. This makes programming more intuitive in that, for
example, any operation involving a secret and a public value results
in secret value. Consider that in a stronger type system, the as-
signment of a secret type to a public type would involve automatic
revealing, which can be unintended, or the compiler would need
to produce an error, which makes programming harder. Dynamic
typing together with a clearly named way of revealing secret infor-
mation therefore strikes a compromise between security and ease
of use.

Basic blocks. This concept is taken from general compiler design
and denotes a sequence of instructions without branching. The
compiler performs the round-minimizing optimization only in the
context of a basic block because it requires rearranging instructions.

6.1 Minimizing the Number of Rounds
This is the main optimization conducted by the compiler. It analyses
a basic block to find instructions of the same kind that can bemerged
into a single instruction because they are independent. Recall that
such instructions allow an infinite number of arguments. An easy
example of a possible merge are two multiplications that can be run
in parallel. MP-SPDZ differs from SPDZ-2 in that it merges different
operations independently while SPDZ-2 reduces multiplication to
openings using Beaver multiplications. Such a reduction clearly ex-
cludes protocols that do not use Beaver multiplications. As a result,
MP-SPDZ uses an instruction for secure multiplication, which is
merged independently of opening operations. Another difference to
SPDZ-2 is that the latter splits the opening process in two instruc-
tions called startopen and stopopen, which enables executing
local computation while waiting for information from the network.
However, this comes at the cost of an increased complexity in the
compiler as well as the fact that the number of parallel opens is
limited by the communication buffer, which has to be considered on
the compiler level. MP-SPDZ uses a single instruction for opening,
which simplifies the handling.

The algorithm proceeds in three steps:
(1) First it creates a dependency graph of all instructions in a

basic block. This graph takes the form of an directed acyclic
graphwhere the nodes stand for instructions. There are a few
reasons to create an edge between two nodes, most notably
if the output of one instruction is an input to another. Other

https://mp-spdz.readthedocs.io/en/latest/instructions.html

Marcel Keller

inputmixed 18, 0, s1, 0, 0, s3, 0, 0, s5, 0, 0, s2, 1, 0, s4, 1, 0, s6, 1 # 0
dotprods 8, 8, s0, s1, s2, s3, s4, s5, s6 # 1
asm_open 2, c0, s0 # 2
print_reg_plain c0 # 3
print_char 10 # 4

Figure 4: Virtual machine code of our inner product example with vectors of length three.

dependencies include various types of interaction with the
environment, e.g., the order of input read from a party should
not change.

(2) The algorithm assigns instructions that can be merged to
rounds. All instructions in the same round have the same
type. This is done by a variant of the longest-path algorithm:

(a) All nodes without predecessors are assigned to round zero.
(b) Every non-mergeable node is assigned the maximum of

the round number of its predecessors.
(c) Every mergeable node is assigned the minimal round that

is larger than all of its predecessors and that is compatible,
that is, it is not occupied by an instruction of another type.

Since this algorithm only considers predecessors of nodes, it
can be run together with the dependency graph creation.

(3) All instructions in the same round are merged. This involves
merging the arguments such that the semantics are pre-
served, and merging all edges in the dependency graph.

(4) The instructions are output in topological order according
to the changed dependency graph.

Memory instruction dependency. Since memory instructions al-
low runtime addresses, it is not straightforward how treat them in
the dependency graph. If every read instruction is made to depend
on a write instruction and vice versa, a possibly large potential
for minimizing rounds is lost. Consider an unrolled loop where a
memory address is read followed by some computation on the read
value, the result of which is stored at the same address, and the
same is repeated for more addresses. All computations can clearly
be executed in parallel, but a dependency of every memory instruc-
tion on the previous one prevents this. The compiler therefore only
considers dependencies if they involve the same address, be it a
compile-time address or the same register for run-time addresses. In
combination with caching registers when accessing data structures
such as a multi-dimensional arrays, this strikes a balance between
efficiency and correctness guarantees. Furthermore, the compiler
offers a command to start a new basic block, which inherently
preserves the order of instructions.

Dead code elimination. The dependency graph created above also
allows eliminating instructions with unused results. An instruction
is considered obsolete if it is not considered inherently essential
(because of side-effects on the environment or the memory) and
if all successors are obsolete. A simple backward pass suffices to
determine and eliminate obsolete instructions.

6.2 Register Allocation
As in SPDZ-2, the compiler initially uses an unlimited supply of
write-once registers, which are allocated to a minimal number of
registers at the end. For a straightline program without branches,

this is trivial by passing through backwards, allocating a register
whenever it is read for the last time, and deallocating it at the
single time it is written to. For a program with branches there is the
difficulty that some registers have to be live throughout a loop to
prevent overwrites after the last read. This is solved by allocating
registers that are written to before the loop starts before processing
the parts of the loop.

6.3 Loops
While the nature of multi-party computation makes it non-trivial
to implement loops that depend on secret data, loops depending
on public data naturally reduce the representation of computation.
Similar to SPDZ-2, MP-SPDZ supports loops depending both on
compile-time and run-time public data. The former still allows
compile-time analysis of the computation cost. In the high-level
language loops can be executed using function decorators:
@for_range(n)
def _(i):

a[i] = ...

While this is certainly unusual, it enables compilation by running
the high-level Python codewithin the scope of the compiler. Further-
more, it allows a variety of loops without creating a domain-specific
language. For example, @for_range creates a strict run-time loop
executed consecutively, @for_range_opt implements the dynamic
optimization described below, and @for_range_multithread and
@for_range_opt_multithread execute a loop in a fixed number
of threads.

Dynamic loop optimization. Büscher et al. [BDK+18] have de-
scribed a trade-off between unrolling loops in order to merge com-
munication rounds as in Section 6.1 and limiting memory usage
during compilation caused by the increased space to represent
the unrolled computation. They propose a dynamic approach of
unrolling until a time budget is exhausted. MP-SPDZ adapts their
approach by using a budget on the number of instructions produced,
which serves as a proxy for the overall compilation cost.

6.4 Repetitive Code
Since the basic computation in multi-party computation is limited
to additions and multiplications in a domain, even seemingly sim-
ple computations such as comparisons translate into a non-trivial
composition of basic operations. The design principle of MP-SPDZ
is to break down computation into basic operations in order to limit
the complexity of the virtual machine. However, this means that
repetitive code leads to a repetitive expansion of the same building
block. To avoid that cost, the compiler offers to treat certain basic
computations atomically and merging them as in Section 6.1. While
speeding up compilation this has the downside that some parallel

MP-SPDZ: A Versatile Framework for Multi-Party Computation

Pre: [x] for x ∈ Z2k , [r0], . . . , [rk−1] such that ri
$
← {0, 1}

Post: [x0], . . . , [xk−1] such that x =
∑
i xi · 2i and xi ∈ {0, 1}

(1) Compute and open [c] = [x] +
∑
i [ri] · 2i

(2) Compute c0, . . . , ck−1 such that c =
∑
i ci · 2i and ci ∈ {0, 1}

(3) Compute [x0], . . . [xk−1] using a binary adder on
([r0], . . . , [rk−1]) and (c0, . . . , ck−1)

Figure 5: Bit decomposition modulo 2k using random bits.

computations will be executed sequentially. For example, a compar-
ison and an equality test on independent data can be executed in
parallel (thus reducing the number of rounds), but treating the two
separately will execute them sequentially. Because of the trade-off,
this optimization is only used when requested.

Instances of building blocks treated in the way above range from
integer operations such as comparison and truncation to mathe-
matical functions such as the trigonometric functions.

As a concrete example, consider the case of computing the max-
imum of several values. To minimize the round complexity, this
has to computed as a binary tree, selecting the maximum at every
node, and all comparisons on every level should be computed in
parallel. It is somewhat onerous to program this as in a vectorized
manner. MP-SPDZ allows using a simple recursive approach in-
stead, merging all parallel comparisons. With the repetitive code
optimization, this happens before creating the circuits used for
comparison, which speeds up the compilation considerably.

7 HIGH-LEVEL LIBRARY
In this section, we will describe the capabilities for secret computa-
tion implemented on top of the compiler. These implementations
generally involve breaking down the desired functionality to the
basic operations supported by the protocols such as input, output,
and arithmetic in the computation domain. As these operation are
modeled by the arithmetic black-box, it is usually straightforward
to prove the security of the extended functionality.

7.1 Integer Operations
Beyond basic arithmetic in the respective domain, the library im-
plements comparison, equality, left/right shift, modulo power of
two, and power of two with secret exponent. A core component
of most of these operations in larger computation domains is a
“mask-and-open” approach. This involves adding or subtracting a
secret random value of a certain form to or from a secret value
and opening the result, which can then be processed as a public
value, for example to extract single bits. See Figure 5 for the basic
example of a bit decomposition. It uses these public bits together
with the secret bits of the masking to compute a bit decomposition
of a secret value, that is, an individual secret sharing for every bit
instead of a secret sharing for the whole value. Unlike the latter,
the former allows computing all integer operations above directly.
Catrina and de Hoogh [Cd10] have shown how to optimize this sim-
ple approach with computation modulo a prime, later adapted by
Dalskov et al. [DEK19] for computation modulo a power of two and
by Escudero et al. [EGK+20] for switching to binary computation
for parts of it.

Mask-and-open with computation modulo a prime is only statis-
tically secure and requires the secret value to be within an assumed
interval. For example, assume that x ∈ [0, 2l] and that r ∈ [0, 2l+s]
is randomly chosen for a security parameter s . Then, x + r is sta-
tistically indistinguishable from a uniform number in [0, 2l+s]. In
computation modulo a power of two this is not an issue because
overflow bits can simply be “erased” by multiplying with a power
of two.

7.2 Fractional Numbers
As SPDZ-2, MP-SPDZ offers two ways of representing fractional
numbers, fixed-point and floating-point. The former denotes repre-
senting a fractional number x by an integer y such that x = y · 2−f
for a fixed precision f . The latter is similar to floating-point repre-
sentations such as IEEE 754 in that x is represented by the four-tuple
(v,p, z, s) such that

x =

{
(−1)s · v · 2p z = 0
0 z = 1.

The additional bits s and z simplify the computation given that
secure computation does not directly allow one to access single bits
of a larger value.

Fixed-point numbers. Due to the larger efficiency, this is the pre-
ferred approach for fractional numbers in MP-SPDZ. Addition and
subtraction are straight-forward by the linearity of the represen-
tation, and multiplication corresponds to integer multiplication
followed by truncation of f bits. The truncation can either be com-
puted as a left shift or a more efficient probabilistic truncation. The
latter involves randomized rounding based on the input. For exam-
ple, 0.25 would be rounded to 0 with probability 0.75 and to 1 with
probability 0.25 when rounding to integers. Catrina and Saxena first
suggested this for computation modulo a prime [CS10], Dalskov
et al. [DEK19] adapted it for computation modulo a power of two,
and Escudero et al. [EGK+20] to mixed computation. Catrina and
Saxena also presented how to use Goldschmidt’s algorithm [Gol64]
to compute division in secure computation.

Floating-point numbers. Aliasgari et al. [ABZS13] have shown
how to implement floating-point numbers in the context of secure
computation modulo a prime. Their approach translates directly to
Z2k with the exception of multiplying by (2m)−1 in order to com-
pute a left shift for x when x = 0 mod 2m . This can be achieved
through bit decomposition, however. The library implements addi-
tion, subtraction, division, and comparisons of floating-point num-
bers. Note that the approach by Aliasgari et al. is not fully compliant
to IEEE754. However, it is possible to use the binary circuits for com-
pliant computation of some operations (addition, multiplication,
division, and square root) in the Bristol Fashion format provided
by SCALE-MAMBA [COS19]. See Section 7.3.

Mathematical functions. Aly and Smart [AS19] have implemented
a number of mathematical functions in secure computation, rang-
ing from trigonometric functions over square root to exponential
and logarithm. MP-SPDZ integrates this by reusing code provided
by the authors through SCALE-MAMBA [COS19]. All functions

Marcel Keller

are implemented for fixed-point numbers while the implementa-
tions for floating-point numbers are restricted to sine, cosine, and
tangent.

7.3 Further Functionality
The library extends beyond basic mathematics as shown in the
following paragraphs.

Machine learning. The library provides functionality for logistic
regression [KS19] and deep-learning inference [DEK19]. The for-
mer allows choosing between an accurate implementation of the
sigmoid function and an approximation similar to ABY3 [MR18].
The latter supports the quantization scheme used in MobileNets
[JKC+17] and several ImageNet solutions such as DenseNet, ResNet,
and SqueezeNet. These are compiled automatically from Tensor-
Flow with the help of CrypTFlow [KRC+20], which opens the pos-
sibility for further networks to be used.

Oblivious data structures. MP-SPDZ retains the code used by
Keller and Scholl [KS14]. This includes an oblivious array, queue,
and stack implementation. Oblivious here means that all accesses
are done secretly, that is, without revealing indices (where appli-
cable) and whether an access is reading or writing. However, it is
inherent to secure computation that an upper limit to the amount
of data in the structure is revealed. Oblivious RAM [SvS+13] is the
core technique to achieve efficient data structures for larger sizes.
Based on the data structures above, the library contains example
implementations of Dijkstra’s algorithm for shortest path in graphs,
and the Gale-Shapley algorithm for stable matching.

Binary circuits. The library allows processing binary circuits in
the so-called Bristol Fashion format. This text-based format has
been established by the authors of SCALE-MAMBA [COS19], in-
spired by similar formats used for other secure computation frame-
works. SCALE-MAMBA comes a selection of example circuits such
as the Keccak sponge function [BDPVA09]. Based on the latter, the
library provides the computation of SHA3 for short inputs. Unlike
SCALE-MAMBA, MP-SPDZ processes binary circuits in the com-
piler in the compiler in order to optimize them for secret sharing
computation and Yao’s garbled circuits. SCALE-MAMBA only uses
Bristol Fashion circuits in the context of BMR-style garbled circuits
where such optimizations matter less because the key used in AES
is not fixed.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers of CCS 2020 for
their helpful suggestions and comments.

REFERENCES
[ABF+18] Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Yehuda Lindell,

Kazuma Ohara, and Hikaru Tsuchida. Generalizing the SPDZ compiler
for other protocols. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 880–895. ACM Press,
October 2018.

[ABZS13] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele.
Secure computation on floating point numbers. InNDSS 2013. The Internet
Society, February 2013.

[ADEN19] Mark Abspoel, Anders Dalskov, Daniel Escudero, and Ariel Nof. An
efficient passive-to-active compiler for honest-majority MPC over rings.
Cryptology ePrint Archive, Report 2019/1298, 2019. https://eprint.iacr.
org/2019/1298.

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma
Ohara. High-throughput semi-honest secure three-party computation
with an honest majority. In Edgar R.Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016,
pages 805–817. ACM Press, October 2016.

[Ale20] Alexandra Institute. FRESCO - a FRamework for Efficient Secure COm-
putation, 2020. https://github.com/aicis/fresco.

[AS19] Abdelrahaman Aly and Nigel P. Smart. Benchmarking privacy preserving
scientific operations. In Robert H. Deng, Valérie Gauthier-Umaña, Martín
Ochoa, and Moti Yung, editors, ACNS 19, volume 11464 of LNCS, pages
509–529. Springer, Heidelberg, June 2019.

[BCS19] Carsten Baum, Daniele Cozzo, and Nigel P. Smart. Using TopGear in
overdrive: A more efficient ZKPoK for SPDZ. In Kenneth G. Paterson and
Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS, pages 274–302.
Springer, Heidelberg, August 2019.

[BDJ+06] Peter Bogetoft, Ivan Damgård, Thomas Jakobsen, Kurt Nielsen, Jakob
Pagter, and Tomas Toft. A practical implementation of secure auctions
based on multiparty integer computation. In Giovanni Di Crescenzo
and Avi Rubin, editors, FC 2006, volume 4107 of LNCS, pages 142–147.
Springer, Heidelberg, February / March 2006.

[BDK+18] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer,
and Thomas Schneider. HyCC: Compilation of hybrid protocols for
practical secure computation. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFengWang, editors,ACMCCS 2018, pages 847–861. ACM
Press, October 2018.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 169–188.
Springer, Heidelberg, May 2011.

[BDPVA09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak sponge function family main document. Submission to NIST
(Round 2), 3(30):320–337, 2009.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 420–
432. Springer, Heidelberg, August 1992.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser,
editor, ITCS 2012, pages 309–325. ACM, January 2012.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May
1988.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway.
Efficient garbling from a fixed-key blockcipher. In 2013 IEEE Symposium
on Security and Privacy, pages 478–492. IEEE Computer Society Press,
May 2013.

[BHWK16] Niklas Büscher, Andreas Holzer, Alina Weber, and Stefan Katzenbeisser.
Compiling low depth circuits for practical secure computation. In Ioan-
nis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Katsikas, and Catherine A.
Meadows, editors, ESORICS 2016, Part II, volume 9879 of LNCS, pages
80–98. Springer, Heidelberg, September 2016.

[BL90] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and
monotone functions. In Shafi Goldwasser, editor, CRYPTO’88, volume
403 of LNCS, pages 27–35. Springer, Heidelberg, August 1990.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A frame-
work for fast privacy-preserving computations. In Sushil Jajodia and
Javier López, editors, ESORICS 2008, volume 5283 of LNCS, pages 192–206.
Springer, Heidelberg, October 2008.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In 22nd ACM STOC, pages 503–
513. ACM Press, May 1990.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty uncondi-
tionally secure protocols (extended abstract). In 20th ACM STOC, pages
11–19. ACM Press, May 1988.

[Cd10] Octavian Catrina and Sebastiaan de Hoogh. Improved primitives for
secure multiparty integer computation. In Juan A. Garay and Roberto De
Prisco, editors, SCN 10, volume 6280 of LNCS, pages 182–199. Springer,
Heidelberg, September 2010.

[CDE+18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaop-
ing Xing. SPD Z2k : Efficient MPC mod 2k for dishonest majority. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II,
volume 10992 of LNCS, pages 769–798. Springer, Heidelberg, August 2018.

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseu-
dorandom secret-sharing and applications to secure computation. In Joe
Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 342–362. Springer,
Heidelberg, February 2005.

https://eprint.iacr.org/2019/1298
https://eprint.iacr.org/2019/1298
https://github.com/aicis/fresco

MP-SPDZ: A Versatile Framework for Multi-Party Computation

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General secure
multi-party computation from any linear secret-sharing scheme. In Bart
Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 316–334.
Springer, Heidelberg, May 2000.

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority MPC for
malicious adversaries. In Hovav Shacham and Alexandra Boldyreva, edi-
tors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 34–64. Springer,
Heidelberg, August 2018.

[COS19] KU Leuven COSIC. SCALE-MAMBA, 2019. https://github.com/
KULeuven-COSIC/SCALE-MAMBA.

[CS10] Octavian Catrina and Amitabh Saxena. Secure computation with fixed-
point numbers. In Radu Sion, editor, FC 2010, volume 6052 of LNCS, pages
35–50. Springer, Heidelberg, January 2010.

[DEF+19] Ivan Damgård, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller,
Peter Scholl, and Nikolaj Volgushev. New primitives for actively-secure
MPC over rings with applications to private machine learning. In 2019
IEEE Symposium on Security and Privacy, pages 1102–1120. IEEE Com-
puter Society Press, May 2019.

[DEK19] Anders Dalskov, Daniel Escudero, and Marcel Keller. Secure evaluation of
quantized neural networks. Cryptology ePrint Archive, Report 2019/131,
2019. https://eprint.iacr.org/2019/131.

[DEK20] Anders Dalskov, Daniel Escudero, and Marcel Keller. Fantastic four:
Honest-majority four-party secure computation with malicious security.
Cryptology ePrint Archive, Report 2020/1330, 2020. https://eprint.iacr.
org/2020/1330.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority
- or: Breaking the SPDZ limits. In Jason Crampton, Sushil Jajodia, and
Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages 1–18.
Springer, Heidelberg, September 2013.

[DNNR17] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranel-
lucci. The TinyTable protocol for 2-party secure computation, or: Gate-
scrambling revisited. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 167–187. Springer,
Heidelberg, August 2017.

[DOS18] Ivan Damgård, Claudio Orlandi, and Mark Simkin. Yet another compiler
for active security or: Efficient MPC over arbitrary rings. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 799–829. Springer, Heidelberg, August 2018.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Mul-
tiparty computation from somewhat homomorphic encryption. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 643–662. Springer, Heidelberg, August 2012.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A
framework for efficient mixed-protocol secure two-party computation.
In NDSS 2015. The Internet Society, February 2015.

[EGK+20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter
Scholl. Improved primitives for MPC over mixed arithmetic-binary cir-
cuits. In DanieleMicciancio and Thomas Ristenpart, editors,CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 823–852. Springer, Heidelberg, Au-
gust 2020.

[EKO+20] Hendrik Eerikson, Marcel Keller, Claudio Orlandi, Pille Pullonen, Joonas
Puura, andMark Simkin. Use your brain! Arithmetic 3PC for anymodulus
with active security. In Yael Tauman Kalai, Adam D. Smith, and Daniel
Wichs, editors, ITC 2020, pages 5:1–5:24. Schloss Dagstuhl, June 2020.

[F+11] Agner Fog et al. Instruction tables: Lists of instruction latencies, through-
puts and micro-operation breakdowns for Intel, AMD and VIA CPUs.
Copenhagen University College of Engineering, 93:110, 2011.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter
Scholl. A unified approach to MPC with preprocessing using OT. In Tetsu
Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452
of LNCS, pages 711–735. Springer, Heidelberg, November / December
2015.

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-
throughput secure three-party computation for malicious adversaries
and an honest majority. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 225–255.
Springer, Heidelberg, April / May 2017.

[Gei07] Martin Geisler. VIFF: Virtual ideal functionality framework. http://viff.dk/,
2007.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation
of the AES circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 850–867. Springer, Heidelberg,
August 2012.

[Gol64] Robert E. Goldschmidt. Applications of division by convergence. Master’s
thesis, MIT, 1964.

[HHNZ19] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic.
SoK: General purpose compilers for secure multi-party computation. In
2019 IEEE Symposium on Security and Privacy, pages 1220–1237. IEEE
Computer Society Press, May 2019.

[HHNZ20] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic.
Sample code and build environments for mpc frameworks, 2020. https:
//github.com/MPC-SoK/frameworks.

[HLOI16] Brett Hemenway, Steve Lu, Rafail Ostrovsky, and William Welser IV.
High-precision secure computation of satellite collision probabilities. In
Vassilis Zikas and Roberto De Prisco, editors, SCN 16, volume 9841 of
LNCS, pages 169–187. Springer, Heidelberg, August / September 2016.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost con-
stant round MPC combining BMR and oblivious transfer. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624
of LNCS, pages 598–628. Springer, Heidelberg, December 2017.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of LNCS, pages 145–161. Springer, Heidelberg, August 2003.

[JKC+17] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew G. Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantiza-
tion and training of neural networks for efficient integer-arithmetic-only
inference. CoRR, abs/1712.05877, 2017.

[Kel17] Marcel Keller. The oblivious machine - or: How to put the C into MPC.
In Tanja Lange and Orr Dunkelman, editors, LATINCRYPT 2017, volume
11368 of LNCS, pages 271–288. Springer, Heidelberg, September 2017.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT
extension with optimal overhead. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages
724–741. Springer, Heidelberg, August 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster
malicious arithmetic secure computation with oblivious transfer. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 830–842. ACM
Press, October 2016.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 158–189. Springer,
Heidelberg, April / May 2018.

[KRC+20] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta,
Aseem Rastogi, and Rahul Sharma. Cryptflow: Secure tensorflow in-
ference. In 2020 IEEE Symposium on Security and Privacy (SP), pages
336–353, Los Alamitos, CA, USA, may 2020. IEEE Computer Society.

[KRSS18] Marcel Keller, Dragos Rotaru, Peter Scholl, and Nigel P. Smart. Multiparty
computation with SPDZ, MASCOT, and Overdrive offline phases, 2018.
https://github.com/bristolcrypto/SPDZ-2.

[KS14] Marcel Keller and Peter Scholl. Efficient, oblivious data structures for
MPC. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II,
volume 8874 of LNCS, pages 506–525. Springer, Heidelberg, December
2014.

[KS19] Marcel Keller and Ke Sun. A note on our submission to track 4 of iDASH
2019. Cryptology ePrint Archive, Report 2019/1246, 2019. https://eprint.
iacr.org/2019/1246.

[KSS13] Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for
practical actively secure MPC with dishonest majority. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
549–560. ACM Press, November 2013.

[KY18] Marcel Keller and Avishay Yanai. Efficient maliciously secure multiparty
computation for RAM. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 91–124. Springer,
Heidelberg, April / May 2018.

[LN17] Yehuda Lindell and Ariel Nof. A framework for constructing fast
MPC over arithmetic circuits with malicious adversaries and an honest-
majority. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 259–276. ACM Press, Octo-
ber / November 2017.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient
constant round multi-party computation combining BMR and SPDZ. In
Rosario Gennaro andMatthew J. B. Robshaw, editors,CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 319–338. Springer, Heidelberg, August 2015.

[LVB+16] Andrei Lapets, Nikolaj Volgushev, Azer Bestavros, Frederick Jansen, and
Mayank Varia. Secure mpc for analytics as a web application. In 2016
IEEE Cybersecurity Development (SecDev), pages 73–74. IEEE, 2016.

[LWN+15] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi.
ObliVM: A programming framework for secure computation. In 2015
IEEE Symposium on Security and Privacy, pages 359–376. IEEE Computer
Society Press, May 2015.

https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://eprint.iacr.org/2019/131
https://eprint.iacr.org/2020/1330
https://eprint.iacr.org/2020/1330
http://viff.dk/
https://github.com/MPC-SoK/frameworks
https://github.com/MPC-SoK/frameworks
https://github.com/bristolcrypto/SPDZ-2
https://eprint.iacr.org/2019/1246
https://eprint.iacr.org/2019/1246

Marcel Keller

[MGC+16] B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor. Frigate: A
validated, extensible, and efficient compiler and interpreter for secure
computation. In 2016 IEEE European Symposium on Security and Privacy
(EuroS P), pages 112–127, 2016.

[Mon85] Peter L Montgomery. Modular multiplication without trial division.
Mathematics of computation, 44(170):519–521, 1985.

[MR18] Payman Mohassel and Peter Rindal. ABY3 : A mixed protocol framework
for machine learning. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 35–52. ACM Press,
October 2018.

[MZ17] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on Security
and Privacy, pages 19–38. IEEE Computer Society Press, May 2017.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-
party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer, Heidelberg,
August 2012.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C.Williams.
Secure two-party computation is practical. In Mitsuru Matsui, editor, ASI-
ACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer, Heidelberg,
December 2009.

[RHH14] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A
programming language for generic, mixed-mode multiparty computa-
tions. In 2014 IEEE Symposium on Security and Privacy, pages 655–670.
IEEE Computer Society Press, May 2014.

[RW19] Dragos Rotaru and Tim Wood. MArBled circuits: Mixing arithmetic and
Boolean circuits with active security. In Feng Hao, Sushmita Ruj, and
Sourav Sen Gupta, editors, INDOCRYPT 2019, volume 11898 of LNCS,
pages 227–249. Springer, Heidelberg, December 2019.

[Sch20] Berry Schoenmakers. MPyC: Secure multiparty computation in Python.
https://github.com/lschoe/mpyc, 2020.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association
for Computing Machinery, 22(11):612–613, November 1979.

[SHS+15] Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi, Thomas
Schneider, and Farinaz Koushanfar. TinyGarble: Highly compressed and
scalable sequential garbled circuits. In 2015 IEEE Symposium on Security
and Privacy, pages 411–428. IEEE Computer Society Press, May 2015.

[SvS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely sim-
ple oblivious RAM protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 2013, pages 299–310. ACM Press, November
2013.

[Tea20] Multiparty.org Development Team. JavaScript implementation of feder-
ated functionalities, 2020. https://github.com/multiparty/jiff.

[WMK16] XiaoWang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient
MultiParty computation toolkit. https://github.com/emp-toolkit, 2016.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 39–56. ACM
Press, October / November 2017.

[ZE15] Samee Zahur and David Evans. Obliv-C: A language for extensible data-
oblivious computation. Cryptology ePrint Archive, Report 2015/1153,
2015. http://eprint.iacr.org/2015/1153.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole
- reducing data transfer in garbled circuits using half gates. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057
of LNCS, pages 220–250. Springer, Heidelberg, April 2015.

[ZSB13] Yihua Zhang, Aaron Steele, and Marina Blanton. PICCO: a general-
purpose compiler for private distributed computation. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
813–826. ACM Press, November 2013.

https://github.com/lschoe/mpyc
https://github.com/multiparty/jiff
https://github.com/emp-toolkit
http://eprint.iacr.org/2015/1153

MP-SPDZ: A Versatile Framework for Multi-Party Computation

A INNER PRODUCT EXAMPLES
A.1 ABY
/**
\file innerproduct.h
\author sreeram.sadasivam@cased.de
\copyright ABY - A Framework for Efficient Mixed-protocol Secure Two-party Computation

Copyright (C) 2015 Engineering Cryptographic Protocols Group, TU Darmstadt
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

\brief Implementation of the Inner Product using ABY Framework.
*/

#ifndef __INNERPRODUCT_H_
#define __INNERPRODUCT_H_

#include "../../../abycore/circuit/booleancircuits.h"
#include "../../../abycore/circuit/arithmeticcircuits.h"
#include "../../../abycore/circuit/circuit.h"
#include "../../../abycore/aby/abyparty.h"
#include "../../../abycore/sharing/sharing.h"
#include <math.h>
#include <cassert>

using namespace std;

/**
\param role role played by the program which can be server or client part.
\param address IP Address
\param seclvl Security level
\param nvals Number of values
\param bitlen Bit length of the inputs
\param nthreads Number of threads
\param mt_alg The algorithm for generation of multiplication triples
\param sharing Sharing type object
\param num the number of elements in the inner product
\brief This function is used for running a testing environment for solving the
Inner Product.
*/
int32_t test_inner_product_circuit(e_role role, char* address, uint16_t port, seclvl seclvl,

uint32_t nvals, uint32_t bitlen, uint32_t nthreads, e_mt_gen_alg mt_alg,
e_sharing sharing, uint32_t num);

/**
\param s_x share of X values
\param s_y share of Y values
\param num the number of elements in the inner product
\param ac Arithmetic Circuit object.
\brief This function is used to build and solve the Inner Product modulo 2^16. It computes the inner product by

Marcel Keller

multiplying each value in x and y, and adding those multiplied results to evaluate the inner
product. The addition is performed in a tree, thus with logarithmic depth.

*/
share* BuildInnerProductCircuit(share *s_x, share *s_y, uint32_t num, ArithmeticCircuit *ac);

#endif

/**
\file innerproduct.cpp
\author sreeram.sadasivam@cased.de, heavily modified by marcella
\copyright ABY - A Framework for Efficient Mixed-protocol Secure Two-party Computation
Copyright (C) 2015 Engineering Cryptographic Protocols Group, TU Darmstadt
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
\brief Implementation of the Inner Product using ABY Framework.
*/

#include "innerproduct.h"

int32_t test_inner_product_circuit(e_role role, char* address, uint16_t port, seclvl seclvl,
uint32_t nvals, uint32_t bitlen, uint32_t nthreads, e_mt_gen_alg mt_alg,
e_sharing sharing, uint32_t num) {

/**
Step 1: Create the ABYParty object which defines the basis of all the
operations which are happening. Operations performed are on the
basis of the role played by this object.
*/
ABYParty* party = new ABYParty(role, address, port, seclvl, bitlen, nthreads,

mt_alg);

/**
Step 2: Get to know all the sharing types available in the program.
*/
vector<Sharing*>& sharings = party->GetSharings();

/**
Step 3: Create the circuit object on the basis of the sharing type
being inputed.
*/
ArithmeticCircuit* circ =

(ArithmeticCircuit*) sharings[sharing]->GetCircuitBuildRoutine();

/**
Step 4: Creating the share objects - s_x_vec, s_y_vec which
are used as inputs to the computation. Also, s_out which stores the output.
*/

MP-SPDZ: A Versatile Framework for Multi-Party Computation

share *s_x_vec, *s_y_vec, *s_out;

/**
Step 5: Allocate the vectors that will hold the plaintext values.
*/
uint16_t x, y;

uint16_t output;

uint16_t * input = (uint16_t*) malloc(num * sizeof(uint16_t));

uint32_t i;

/**
Step 6: Fill the input array with data read from file.
Copy the input values into a share object for each party.
The values for the party different from role is ignored,
but PutINGate() must always be called for both roles.
*/

char *fname = (char *) malloc(100);
sprintf(fname, "/root/ABY/src/examples/innerprod/data/innerprod.%d.dat", role);

std::ifstream infile;
infile.open(fname);

for(i = 0; i < num; i++) {
infile >> input[i] ;
if(infile.eof()) {break;}

}

infile.close();

s_x_vec = circ->PutSIMDINGate(i, input, 16, SERVER);
s_y_vec = circ->PutSIMDINGate(i, input, 16, CLIENT);

/**
Step 7: Build the circuit, passing the input shares and circuit object.
*/
s_out = BuildInnerProductCircuit(s_x_vec, s_y_vec, num, circ);

/**
Step 8: Output the value of s_out (the computation result) to both parties
*/
s_out = circ->PutOUTGate(s_out, ALL);

/**
Step 9: Executing the circuit using the ABYParty object evaluate the
problem.
*/
party->ExecCircuit();

/**
Step 10: Type caste the plaintext output to 16 bit unsigned integer.
*/
output = s_out->get_clear_value<uint16_t>();

cout << "Circuit Result: " << output << endl;

Marcel Keller

delete s_x_vec;
delete s_y_vec;

delete input;
delete party;

return 0;
}

/*
Constructs the inner product circuit. num multiplications and num additions.
*/
share* BuildInnerProductCircuit(share *s_x, share *s_y, uint32_t num, ArithmeticCircuit *ac) {

uint32_t i;

// pairwise multiplication of all input values
s_x = ac->PutMULGate(s_x, s_y);

// split SIMD gate to separate wires (size many)
s_x = ac->PutSplitterGate(s_x);

// add up the individual multiplication results and store result on wire 0
// in arithmetic sharing ADD is for free, and does not add circuit depth, thus simple sequential adding
for (i = 1; i < num; i++) {

s_x->set_wire_id(0, ac->PutADDGate(s_x->get_wire_id(0), s_x->get_wire_id(i)));
}

// discard all wires, except the addition result
s_x->set_bitlength(1);

return s_x;
}

A.2 ABY3

#include<iostream>
#include <cryptoTools/Network/IOService.h>

#include "aby3/sh3/Sh3Runtime.h"
#include "aby3/sh3/Sh3Encryptor.h"
#include "aby3/sh3/Sh3Evaluator.h"

#include "innerprod.h"

using namespace oc;
using namespace aby3;

void innerprod_test(oc::u64 partyIdx, std::vector<int>values) {
if (partyIdx == 0)

std::cout << "testing innerprod..." << std::endl;

IOService ios;
Sh3Encryptor enc;
Sh3Evaluator eval;
Sh3Runtime runtime;
setup_samples(partyIdx, ios, enc, eval, runtime);

MP-SPDZ: A Versatile Framework for Multi-Party Computation

// encrypt (only parties 0,1 provide input)
u64 rows = values.size();
si64Matrix A(1, rows);
si64Matrix B(rows, 1);

if (partyIdx == 0) {
i64Matrix input(1, rows);
for (unsigned i = 0; i < rows; i++)
input(0, i) = values[i];

enc.localIntMatrix(runtime, input, A).get();
} else {

enc.remoteIntMatrix(runtime, A).get();
}

if (partyIdx == 1) {
i64Matrix input(rows, 1);
for (unsigned i = 0; i < rows; i++)

input(i, 0) = values[i];
enc.localIntMatrix(runtime, input, B).get();
} else {

enc.remoteIntMatrix(runtime, B).get();
}

// parallel multiplications
si64Matrix sum(1, 1);
Sh3Task task = runtime.noDependencies();
task = eval.asyncMul(task, A, B, sum);
task.get();

// reveal result
i64Matrix result;
enc.revealAll(runtime, sum, result).get();
std::cout << "result: " << result(0, 0) << std::endl;

}

A.3 CBMC-GC
// computes an inner product
//
// input: arrays of equal length
// output: integer inner product
//

#define LEN 10

typedef struct {
int xs[LEN];

} Array;

int mpc_main(Array INPUT_A, Array INPUT_B) {

int product = 0;

for(int i=0; i<LEN; i++) {
product += INPUT_A.xs[i] * INPUT_B.xs[i];

Marcel Keller

}

return product;

}

A.4 EMP-toolkit
#include "emp-sh2pc/emp-sh2pc.h"
#include <new>
using namespace emp;
using namespace std;

int LEN = 100000;

void test_innerprod(int bitsize, string inputs_a[], string inputs_b[], int len) {

Integer sum(bitsize, 0, PUBLIC);
Integer prod(bitsize, 0, PUBLIC);
Integer *a = new Integer[len];
Integer *b = new Integer[len];

Batcher batcher;
for(int i=0; i<len; i++) {

a[i] = Integer(bitsize, inputs_a[i], ALICE);
batcher.add<Integer>(bitsize, inputs_b[i]);

}
batcher.make_semi_honest(BOB);
for(int i=0; i<len; i++) {

b[i] = batcher.next<Integer>();
}

for(int i=0; i<len; i++) {
prod = a[i] * b[i];
sum = sum + prod;

}

cout << "SUM: " << sum.reveal<int>() << endl;
delete[] a;
delete[] b;

}

int main(int argc, char** argv) {
int bitsize;

// generate circuit for use in malicious library
if (argc == 2 && strcmp(argv[1], "-m") == 0) {

setup_plain_prot(true, "innerprod.circuit.txt");
bitsize = 16;
string inputs[LEN] = {"0","0","0","0","0","0","0","0","0","0"};
test_innerprod(bitsize, inputs, inputs, LEN);
finalize_plain_prot();
return 0;

}

MP-SPDZ: A Versatile Framework for Multi-Party Computation

// run computation with semi-honest model
int port, party;
parse_party_and_port(argv, &party, &port);
NetIO * io = new NetIO(party==ALICE ? nullptr : "127.0.0.1", port);

setup_semi_honest(io, party);

if (argc != 4) {
cout << "Usage: ./innerprod <party> <port> <bitsize>" << endl

<< endl;
delete io;
return 0;

}

cout << "Calculating inner product of two inputs of length " << LEN << endl;

bitsize = atoi(argv[3]);

char fname_a[40];
char fname_b[40];

sprintf(fname_a, "../data/innerprod/%d.1.dat", bitsize);
sprintf(fname_b, "../data/innerprod/%d.2.dat", bitsize);

ifstream infile_a(fname_a);
ifstream infile_b(fname_b);

string* inputs_a = new string[LEN];
string* inputs_b = new string[LEN];

if(infile_a.is_open() && infile_b.is_open()) {
for(int i=0; i<LEN; i++) {

getline(infile_a, inputs_a[i]);
getline(infile_b, inputs_b[i]);

}
infile_a.close();
infile_b.close();

}

test_innerprod(bitsize, inputs_a, inputs_b, LEN);
delete io;

}

A.5 Fresco
package dk.alexandra.fresco.samples.innerproduct;

import dk.alexandra.fresco.framework.Application;
import dk.alexandra.fresco.framework.DRes;
import dk.alexandra.fresco.framework.builder.numeric.ProtocolBuilderNumeric;
import dk.alexandra.fresco.framework.value.SInt;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

Marcel Keller

/**
Defines the MPC computation to input private values, compute the inner
product, and output the result to all parties.

*/
public class InnerProduct implements Application<Integer, ProtocolBuilderNumeric> {

private final List<BigInteger> vector;

/**
Constructs a new MPC computation for inner product using a given list of
integers as the vector of this party.

*/
public InnerProduct(List<Integer> vector) {

this.vector = vector.stream().map(BigInteger::valueOf).collect(Collectors.toList());
}

@Override
public DRes<Integer> buildComputation(ProtocolBuilderNumeric builder) {

List<DRes<SInt>> sVec1 = new ArrayList<>(vector.size());
List<DRes<SInt>> sVec2 = new ArrayList<>(vector.size());
for (int i = 0; i < vector.size(); i++) {

// Note: the below is a bit of a cheat as we are inputting the same vector
// for both party 1 and 2. This works because if we are not party i our
// input for party i will be disregarded.
sVec1.add(builder.numeric().input(vector.get(i), 1));
sVec2.add(builder.numeric().input(vector.get(i), 2));

}
DRes<SInt> result = builder.advancedNumeric().innerProduct(sVec1, sVec2);
DRes<BigInteger> openResult = builder.numeric().open(result);
return () -> openResult.out().intValue();

}

}

License.

MIT License

Copyright (c) 2018 Security Lab // Alexandra Institute

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

MP-SPDZ: A Versatile Framework for Multi-Party Computation

A.6 Frigate
/*
* compute inner product of two vectors
*/

#define LEN 10
#parties 2

/* define some types */
typedef int_t 32 int
typedef uint_t 6 sint

typedef struct_t array
{

int data[LEN];
}

/* define computation parameters */
#input 1 array
#output 1 int
#input 2 array
#output 2 int

function void main() {

array xinput = input1;
array yinput = input2;

int result = 0;

for(sint i=0; i<LEN; i++) {
result = result + (xinput.data[i] * yinput.data[i]);

}

output1 = result;
output2 = result;

}

A.7 JIFF
(function (exports, node) {

var saved_instance;

/**
* Connect to the server and initialize the jiff instance
*/
exports.connect = function (hostname, computation_id, options) {
var opt = Object.assign({}, options);
// Added options goes here

if (node) {
// eslint-disable-next-line no-undef
jiff = require('../../lib/jiff-client');
// eslint-disable-next-line no-undef,no-global-assign
$ = require('jquery-deferred');

Marcel Keller

}

// eslint-disable-next-line no-undef
saved_instance = jiff.make_jiff(hostname, computation_id, opt);
// if you need any extensions, put them here

return saved_instance;
};

/**
* The MPC computation
*/
exports.compute = function (input, jiff_instance) {
try {
if (jiff_instance == null) {

jiff_instance = saved_instance;
}

var final_deferred = $.Deferred();
var final_promise = final_deferred.promise();

// Share the arrays
jiff_instance.share_array(input, input.length).then(function (shares) {

try {
// multipy all shared input arrays element wise
var array = shares[1];
for (var p = 2; p <= jiff_instance.party_count; p++) {

for (var i = 0; i < array.length; i++) {
array[i] = array[i].smult(shares[p][i]);

}
}

// sum up elements
var sum = array[0];
for (var i = 1; i < array.length; i++) {

sum = sum.sadd(array[i]);
}

// Open the array
jiff_instance.open(sum).then(function (results) {
final_deferred.resolve(results);

});

} catch (err) {
console.log(err);

}
});

} catch (err) {
console.log(err);

}

return final_promise;
};

}((typeof exports === 'undefined' ? this.mpc = {} : exports), typeof exports !== 'undefined'));

MP-SPDZ: A Versatile Framework for Multi-Party Computation

A.8 MPyC
import numpy as np
from mpyc.runtime import mpc

async def main():

initialize mpc, define secure int type
LEN = 100000
await mpc.start()
secint = mpc.SecInt(128)

party 0 samples the inputs locally...
if mpc.pid == 0:

vec1 = [np.random.randint(1,1000) for _ in range(LEN)]
vec2 = [np.random.randint(1,1000) for _ in range(LEN)]

...and secret-shares them with the others
result_type = [secint()] * LEN
sec_vec1 = mpc.input([secint(v) for v in vec1] if mpc.pid == 0 else result_type, senders=0)
sec_vec2 = mpc.input([secint(v) for v in vec2] if mpc.pid == 0 else result_type, senders=0)

compute inner product
ip = mpc.in_prod(sec_vec1, sec_vec2)

output result (to everybody)
result = await mpc.output(ip)
print("result:", result)
if mpc.pid == 0:

assert(result == np.dot(vec1, vec2))
await mpc.shutdown()

if __name__ == '__main__':

mpc.run(main())

A.9 Obliv-C
#include<obliv.oh>

#include"innerProd.h"

void dotProd(void *args){
protocolIO *io = args;
int v1Size = ocBroadcastInt(io->input.size, 1);
int v2Size = ocBroadcastInt(io->input.size, 2);

obliv int* v1 = malloc(sizeof(obliv int) * v1Size);
obliv int* v2 = malloc(sizeof(obliv int) * v2Size);

feedOblivIntArray(v1, io->input.arr, v1Size, 1);
feedOblivIntArray(v2, io->input.arr, v2Size, 2);

int vMinSize = v1Size<v2Size?v1Size:v2Size;

obliv int sum = 0;
for(int i=0; i<vMinSize; i++){

Marcel Keller

sum += v1[i]*v2[i];
}

revealOblivInt(&(io->result), sum, 0);

}

A.10 ObliVM
package com.github.danxinnoble.oblivm_benchmarker.innerProd;

int main@n@m(int@n x, int@m y){
secure int32[public (n/32)] alc;
secure int32[public (m/32)] bb;
public int32 N = n/32;
public int32 M = m/32;

for(public int32 i=0; i<N; i=i+1){
alc[i] = x$32*i~32*(i+1)$;

}

for(public int32 i=0; i<M; i=i+1){
bb[i] = y$32*i~32*(i+1)$;

}

public int min;
if(N < M){
min=N;

} else {
min=M;

}

secure int32 sum = 0;
for(public int32 i=0; i<min; i=i+1){
sum = sum + (alc[i] * bb[i]);

}

return sum;
}

A.11 PICCO
/*
* takes the inner product of two inputs
*/

public int LEN = 100000;

public int main() {

int A[LEN], B[LEN];

smcinput(A,1,LEN);
smcinput(B,1,LEN);

int p = A @ B;

smcoutput(p,1);

MP-SPDZ: A Versatile Framework for Multi-Party Computation

return 0;

}

A.12 SCALE-MAMBA
n = 100000

sum = MemValue(sint(0))
aaaas = sint.Array(n)
bbbbs = sint.Array(n)

sint.get_private_input_from(0, size=n).store_in_mem(aaaas.address)
sint.get_private_input_from(1, size=n).store_in_mem(bbbbs.address)

@for_range(10)
def _(j):

for k in range(10000):
i = 10000 * j + k
sum.iadd(aaaas[i] * bbbbs[i])

print_ln("InnerProd: %s", sum.reveal())

A.13 Sharemind
/*
* Sharemind MPC example programs
* Copyright (C) 2018 Sharemind
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
**/

import stdlib;
import shared3p;

domain pd_shared3p shared3p;

void main() {
pd_shared3p uint64 [[1]] a = argument("a");
pd_shared3p uint64 [[1]] b = argument("b");

pd_shared3p uint64 c = sum(a * b);

publish("c", c);
}

Marcel Keller

A.14 License
The work by Hastings et al. in this section comes with the following license:
MIT License

Copyright (c) 2018-2019 Marcella Hastings, Brett Hemenway, Daniel Noble, Steve Zdancewic

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

* Note that this software contains scripts that download software created *
* by third parties, which must be used in accordance with their own licenses. *

	Abstract
	1 Introduction
	1.1 Comparison to Other Frameworks
	1.2 Benchmarks

	2 Preliminaries
	3 The Protocols
	3.1 Dishonest Majority
	3.2 Honest Majority
	3.3 Malicious computation
	3.4 Higher-Level Protocols
	3.5 Benchmarks

	4 Internal Interfaces
	4.1 Templating
	4.2 Preprocessing

	5 The Virtual Machine
	6 The Compiler
	6.1 Minimizing the Number of Rounds
	6.2 Register Allocation
	6.3 Loops
	6.4 Repetitive Code

	7 High-Level Library
	7.1 Integer Operations
	7.2 Fractional Numbers
	7.3 Further Functionality

	Acknowledgments
	References
	A Inner Product Examples
	A.1 ABY
	A.2 ABY3
	A.3 CBMC-GC
	A.4 EMP-toolkit
	A.5 Fresco
	A.6 Frigate
	A.7 JIFF
	A.8 MPyC
	A.9 Obliv-C
	A.10 ObliVM
	A.11 PICCO
	A.12 SCALE-MAMBA
	A.13 Sharemind
	A.14 License

