
JaxNet: Scalable Blockchain Network

Iurii Shyshatsky ∗1, Vinod Manoharan †1, Taras Emelyanenko ‡1, and
Lucas Leger §1

1JaxNet, Kyiv, Ukraine

May 1, 2020

Abstract

Today’s world is organized based on merit and value. A single global currency
that’s decentralized is needed for a global economy. Bitcoin is a partial solution
to this need, however it suffers from scalability problems which prevent it from
being mass-adopted. Also, the deflationary nature of bitcoin motivates people to
hoard and speculate on them instead of using them for day to day transactions. We
propose a scalable, decentralized cryptocurrency that is based on Proof of Work.
The solution involves having parallel chains in a closed network using a mecha-
nism which rewards miners proportional to their effort in maintaining the network.
The proposed design introduces a novel approach for solving scalability problem in
blockchain network based on merged mining.

Index terms: blockchain, scalability, sharding,
merged-mining, distributed networks

1 Introduction

1.1 Need for a global decentralized currency.

Governments, through their monetary policies influence the value of a currency. A person
could work for her entire life, save a part of her wealth in their currency and lose everything
overnight when the currency collapses due to bad monetary policy. If this is less probable
to occur in well manage countries with sound institutions, bad money is still a fact.

∗iuriijax.net
†vinodjax.network
‡tarasjax.network
§lucasylegergmail.com

1

iurii\spacefactor \@m {}jax.net
vinod\spacefactor \@m {}jax.network
taras\spacefactor \@m {}jax.network
lucasyleger\spacefactor \@m {}gmail.com

1.2 Paper organization 1 INTRODUCTION

People from some developing nations, although very productive are still unable to create
value for themselves as much as people from developed nations due to unstable local
governments. Effective competition is still at the local level and restricted within currency
markets. In other words, we have local currencies in a globalized world. A single global
decentralized currency would create a fairer and more competitive environment removing
all the inequalities created by their respective governments. This would in turn increase
the overall productivity of our civilization and speed up advancement in all spheres.

1.2 Paper organization

This paper is organized as follows. In the section 1.3 a brief introduction to the Blockchain
Scalability Problem is given. In the section 2 the design of our solution is discussed. Brief
description of the main idea is given in the section 2.1.5. section 3 mining reward scheme
is described and how it affects the network economy. Network security is discussed in the
section 2.11. Finally, section 4 contains discussion of the results and open problems.

1.3 Scalability of the distributed network

After the launch of the Bitcoin network [68], we witness with its exponential capitalization
growth a Cambrian explosion of new altcoins. Naturally, a new question arose: is BTC
or any of its numerous rivals, could become an universal global currency with a cheap
maintenance, fast and acceptable even for small transactions in any fast-food, any apparel
shop or gas-station, as well as secure and reliable for big transactions between large
corporations and big complicated long term contracts like cargo ships, opening a credit
line or setting the supply chain contract. Among the leading problems are legislation,
the position of the financial market’s regulators, the attitude of individual suppliers and
consumers. However, there are more technical obstacles on the way to mass adoption.
All together these obstacles are commonly called scalability problem in distributed system.
Another name for this problem is Scalability Trilemma. This term was introduced by the
co-founder of the Ethereum project Vitaliy Buterin. [35, 37, 69]

When the size of the distributed system grows it requires more maintenance. If some
blockchain network becomes more global, then it should, on the one hand, have billions of
wallets and execute billions of transactions every day. So it should be rather powerful to
handle this transaction throughout and store part of the transaction history required for
thorough verification. On the other hand, this system should be friendly enough for small
nodes to help maintain the network with their limited resources. The system should be
convenient for users in terms of short confirmation time, easy and reliable transactions
with low fees. Overall, distributed networks should be decentralized and thus be an
alternative to classical solutions of the problem through decentralization. Even though
blockchain technology widely uses some sophisticated techniques to record, maintain and
validate data like encryption, hashes and Merkle trees there are still significant limitations.
First, any node which wants to operate as a full node has to track everything that is going
on in the network. He has to know whether somebody signed a transaction in order to

2

2 ARCHITECTURE

?

Scalability

Decentralization

Se
cu

ri
ty

Figure 1: Blockchain Scalability Trilemma

buy a cup of coffee and keep the history of such transactions for a significant amount
of time. Many nodes operate only as light nodes and rely heavily on full nodes. The
more global the network becomes, the worse it gets. Only supercomputers and fiber-
optic communications can do the job efficiently. Personal devices like smartphones and
laptops are too far away from such performance. This means more centralization and
only the biggest nodes will survive, defeatting the case of centralization in the first place.
Scalability has its cost but we are about to choose how to pay for it. The classical solution
of the scalability problem is centralization. Many projects set a goal to find a solution
that avoids centralization.[66] We claim that we have found the design which is better
than existing solutions and we are going to describe it in this paper.

2 Architecture

2.1 Solution Overview

2.1.1 Concepts and notations

In this section, we are going to discuss key concepts relevant to Jaxnet that are used
throughout the paper. We assume that the reader is familiar with the concept of a
distributed network and the basic blockchain design of Bitcoin introduced by Satoshi
Nakamoto. Since Jaxnet design has multiple differences from Bitcoin we have to review
common concepts in the new setting and introduce some new ideas. In short, unlike many
other blockchain systems, Jaxnet maintains multiple chains of blocks, use specific mining
and reward schemes. To avoid confusion we need a clear description of this setting.

3

2.1 Solution Overview 2 ARCHITECTURE

Moreover, blockchain is rather new technology and the set of common notations and
concepts is not well established. Frequently word meaning depends on the context.

Node is a basic component of the distributed network. Nodes constitute the distributed
network. Nodes are often divided into two types: full nodes and light nodes. Full-nodes
perform necessary communication and store necessary data to verify data on their own.
Light nodes reduce their storage and network communication expenses. Thus they rely in
some way on full nodes and accept respective security risks. One of the goals of scalable
distributed network protocol is to reduce such expenses and allow more nodes to operate
as full-nodes.

Blockchain is the replicated database in the form of blocks of records linked into
chains.[65] Sometimes the whole network which maintains chains of blocks is called the
blockchain. Mining is the process of selecting a leader who adds new data to the large
distributed network known as the blockchain network through the consensus. Although
the Bitcoin blockchain uses the consensus protocol based on solving a hard puzzle known
as ”Proof of Work” some other approaches were developed.[64] Proof of Work or PoW is a
type of consensus protocol in which miners rich consensus by participating in the contest
of solving hard puzzles. As well as Bitcoin blockchain Jaxnet uses the Proof of Work
approach. However, in contrast to Bitcoin Jaxnet maintains multiple blockchains and
miners participate in multiple contests simultaneously. Miners have the freedom of choice
in what subset of blockchains to mine and, respectively, what subset of PoW contests
to participate in. Therefore in the setting of JaxNet, we have the following definition.
Mining in the JaxNet is the process of selecting a leader who commits new data to the
blockchains by reaching the PoW consensus described in this paper.

An important concept in JaxNet is ”shard”. Although this word is widely used we
will set its meaning in the context of JaxNet and use the concept through this paper. A
shard in JaxNet is the collection of nodes that participate in each shard together with the
shard-blockchain maintained by this collection. Shards constitute JaxNet. The number of
shards is regulated by the JaxNet protocol. Any node can participate in as many shards
as he wants as long as he poses enough storage and bandwidth resources. The maximal
number of shards in JaxNet is not fixed. Let us denote N to be the number of shards in
JaxNet at some moment. Besides shard-chains, the JaxNet protocol maintains one special
chain. Let us call it the Beacon Chain or BC in short. Therefore, there are N + 1 chains
in JaxNet. The number of shards N could be increased based on the consensus protocol
conducted on the Beacon chain.

Blocks in the blockchain networks typically consist of two parts: block header and
block body. This design improves the throughput of information across the network.
Typically the block header contains the most important data. It includes the reference
to the body of the block and the hash of the previous header block in the chain. Block
headers are often used to set the order of blocks in the chain and validate the block body
data. Therefore, the chain of block headers without bodies is often called a blockchain.
Block bodies contain information about the transactions. Block content is discussed in
the section 2.3

In JaxNet there are two types of blocks: blocks in the Beacon Chain and blocks in

4

2.1 Solution Overview 2 ARCHITECTURE

shard chains. In JaxNet both types of blocks contain the header part and the body part.
During the mining process miner proposes to extend chains with his versions of blocks.

The blocks in his proposal are aggregated in the specific structure used for merged mining
discussed in the section 2.4. The motivation of the miner is the reward. In Jaxnet this
reward consists of two parts and described in the appendix C.2.

Some recently established blockchain networks achieve good performance at the cost of
decentralization. In these systems transaction verification, block generation and acquiring
network rewards is restricted to the group of nodes called validators. Therefore, not
all nodes in the network are the same and nodes often need a permission to become a
validator.

In contrast to the aforementioned systems, Jaxnet is a permisionless peer-to-peer net-
work. Nodes are equal and have identical roles similarly to Bitcoin design. No permission
is needed to join the network.

2.1.2 Sharding of the distributed network

One of the possible approaches to the blockchain scalability problem is sharding (figure
2).

A1 A1

A2 A2
A3 A3

A4 A4
B1 B1

B2 B2
B3 B3

B4 B4

C1 C1

C2 C2
C3 C3

C4 C4
D1 D1

D2 D2
D3 D3

D4 D4

Unsharded Network Shard AShard B

Shard C Shard D

Figure 2: Network Sharding

The use of the term sharding could be traced to the problem of database scaling.[10]
Sharding arose as a natural approach for solving it.

Sharding of the blockchain network could bring benefits and disadvantages.[39, 69]
One argument in favour of sharding is that it could reduce the amount of information
that a single node should process and store. This is a crucial requirement for a scalable
blockchain network. However, this approach causes two problems. First, there is a need
for a convenient and reliable tool for transferring funds between accounts in different

5

2.1 Solution Overview 2 ARCHITECTURE

shards. Second, the solution should preserve the same level of security. In particular, it
should have the same or equivalent level of the resistance to 51%-attacks for each shard
in the network as could be achieved by a single network with the hash rate equal to an
aggregate hash rate of every shard. Our solution addresses these problems.

2.1.3 Merged mining

Merged mining is a technology of particular importance in our design. It is a process
of mining two or more cryptocurrencies at the same time, without sacrificing overall
mining performance.[67, 23] In simple terms, if one compares generating hashes during
mining with rolling a dice and the blockchain network with some entity which rewards
you whenever the correct number is rolled, then with merge mining you get rewarded
simultaneously from multiple entities while rolling the same dice. Merge mining was first
described by Satoshi Nakamoto on the forum in 2008. His idea was first implemented in
Namecoin and then was used in the list of other projects. [36, 49, 40, 23]

There are multiple approaches to organize merged mining. One has to follow one
principle though, merged mined coins always share the same hashing algorithm. Miners
collect profit from mining both or more chains. However, this profit is not necessarily the
same on both chains. In the pair Bitcoin and Namecoin most of the profit is collected
from the Bitcoin chain. In the pair Dogecoin & Litecoin profits are closer to each other.
In the second case, hash rates show significant correlation with each other since miners
often try to mine both of them to maximize their profits.[40, 23] In some cases, merged
mining becomes unprofitable since bandwidth and data storage expenses on one of chains
exceed revenue.

Merged mining was already proposed as a possible approach to solving the Scalability
Trilemma. However, observers said the benefits of merged mining could be achieved in
more efficient way by setting just one chain with larger block size. Sometimes merged
mining is considered to be a stealth block size increase.

2.1.4 Nonstandard block reward allocation schemes

As December of 2019, the majority of cryptocurrency projects follow block reward and
coin issuance rules similar to the Bitcoin design. Some projects like Ethereum don’t have
predefined rules. Although there were proposals of so-called algorithmic stablecoins [57].
Their history could be traced back to to Bitcointalk forum that was used by Bitcoin com-
munity. In particular, some participants proposed ”stablecoins pegged to the electricity”.
Proposals such as Encoin, GEM, Inertiacoin, Decrits were discussed there in 2011-2014.
However, these proposals haven’t withstood criticism and, to the best of our knowledge,
were never finalized. Nevertheless, similar proposals sometimes appear in non-academic
publications.[27]

Unlike the majority of blockchain protocols, JaxNet doesn’t follow the ”fixed block
reward” rule. Instead of that the block reward is proportional to the block difficulty.
However, in contrast to aforementioned blockchain proposals JaxNet doesn’t have a goal

6

2.1 Solution Overview 2 ARCHITECTURE

of designing a stablecoin. It’s exchange rate will float according to market demand and
supply.

Since the block reward rule used in JaxNet is not common there is no deep research
devoted to it. Nevertheless, in the recent paper by Chen et. al. [44] there is a study of
reward allocation schemes and requirements which should be satisfied in order to make
blockchain network to properly work. The authors of that paper determine a narrow
class of such schemes and lists few examples. Remarkably, the reward scheme in JaxNet
falls into the category generalized proportional allocation rules and listed as ”Example
3”. Simultaneously the similar result was achieved by Leshno and Strack.[52] It’s possible
that there were other proposals, however, we are not familiar with them.

2.1.5 Main idea of the solution

Sharding and merge-mining have been already proposed by researchers as possible ap-
proaches for the blockchain scalability problem along with many ideas. However, as it
was observed, the simultaneous usage of them in one solution causes a centralization
problem. Since during merge mining miner can participate in merge mining of multiple
chains simultaneously he can collect rewards from all of them, Therefore, if he calculated
h hashes within some time interval t then his mathematical expectation of his reward
Rtotal is a sum over expected rewards Ri, i = 1, n in every chain he has been mining:

E(Rtotal(h)) = E(R1(h)) + E(R2(h)) + ...+ E(Rn(h)) (2.1)

The equation 2.1 implies that the more shards miner mine the more rewards he is about
to get and miners who mine more shards get a huge advantage over those who have
limited resources. Therefore all miners are very interested in mining as many shards as
possible. The more partitioned network become the less profitable becomes mining for
weak players. Simply they do not mine enough coins to pay for their electricity bills.
As the scaling continues the more centralized network becomes. All remaining players in
it mine nearly every shard. So, in this case, we about to lose the decentralization part
of the Scalability Trilemma. Therefore Vitaliy Buterin in his discussion of the problem
compared merge mining to stealth increasing of the block size.[69]

This argument looks concrete. However, the authors of this paper think there is a flaw
in its rational. Let’s split the reward into two parts: issued coins and collected transaction
fees. Let’s talk about issued coins and left transaction fees apart for a while.

• First, assume that the reward for mining the block in a shard depends on the number
of shards which its builder was mining.

• Second, assume that everybody in the shard can learn this number from the infor-
mation printed in the block without any knowledge of what is going on in other
shards.

• Third, assume that reward functions in every shard are designed in such a way that
the expected reward in each shard is proportional to one’s effort or average hash
rate.

7

2.2 Block Content 2 ARCHITECTURE

• Finally, assume that coins in each shard have nearly the same value.

Then one can compute:

E(Ri(h)) = k
h

n
(2.2)

where k is some coefficient of proportionality. Then one can rewrite the equation 2.1 as
follows:

E(Rtotal(h)) =
n∑

i=1

k · h
n

= k · h (2.3)

It means that the expected reward of coins issued to the miner in the whole network is
proportional to his effort in the number of hashes that he generated during mining and
independent of n. This is a great property since it implies that small mining farms with
little bandwidth and storage and big mining pools can coexist in JaxNet with negligible
penalties to their earnings. So, we have the same balance which one has in the network
with the single blockchain: rewards and influence of each participant is proportional to
his hash rate.

However, one can argue what is a benefit for a miner to operate many shards if he
can mine what he wants in one of them. It is time to remember about transaction fees,
which we do not divide by n. They satisfy the equation 2.1. Therefore the more shards
he is mining the more transaction fees he competes for. This extra earning should at least
cover his expenses on a faster internet connection, extra data processing and storage.

We can summarize the points above into the following statement:

Proposition 1. Described in the paper, the blockchain network is balanced when every
participant is rewarded proportional to his effort in maintaining the network.

2.2 Block Content

In this subsection we are going to discuss the block structure in JaxNet. The content of
the blocks is listed in tables 1 to 4. The purpose of records version, timestamp, bits
and nonce are the same as in Bitcoin[68] and other blockchains. Block headers in the
Beacon Chain include hashes of the previous block headers and roots of the Merkle trees
of respective block bodies. Shard blocks have a similar design. However, in JaxNet blocks
contain some extra data. Also instead of previous block hashes in shard chains we use
previous blocks commitments discussed in the section 2.7.

Besides standard records, the Beacon chain block header table 1 includes the number
of shards in the network, the encoding of shard merge-mining tree and its root. The
Beacon chain block body includes transactions and their count. The transaction part of
the block body is limited to 24Kb.

The shard-chain block header is rather standard. However, it includes merge-mining
number MM number and doesn’t contain a nonce.

Block body in shard chains includes a data record BC header, Merkle proof ”Shard Proof”
that this particular block was merge-mined according to the protocol and, finally, merge-

8

2.2 Block Content 2 ARCHITECTURE

Table 1: Beacon Chain Block Header

Field Size name Data type Comments

4 version uint32 t
32 prev block char[32] Hash of the previous block in the BC
32 Bmerkle root char[32] Block body Merkle tree root
32 MMmerkle root char[32] Root of Merge-mining tree
4 timestamp uint32 t
4 bits uint32 t Target of BC
8 nonce uint64 t
45 tree encoding uint8[] Encoding of the Merge-mining tree
4 # of shards uint32 t The number of shards in JaxNet and expan-

sion flag
Maximal Aggregate size is 165 bytes

Table 2: Beacon Chain Block Body

Field Size Name Data type Comments

32 txn count var int BC transaction count
? txns tx[] BC transaction records

Maximal Aggregate size is 64 Kbytes

Table 3: Shard Chain Block Header

Field Size Name Data type Comments

32 PBC char[32] Commitment of previous shard blocks
32 Bmerkle root char[32] Block body Merkle Root
4 bits uint32 t Target of SC
4 MM number uint32 t Merge-mining number

Aggregate size is 72 bytes.

mining proof ”MM Proof” which proves that MM number in the respective block header is
valid. The transaction part of the block body is limited to 24Kb.

We need to highlight one important thing regarding BC header in SC block body. This
thing is not necessarily a header of some block on BC. It only has the same structure.
This record will be referred as BC header container. It is important to avoid confusion
here. In JaxNet there is no cross-chain links which could be found in other blockchain
proposals.

9

2.3 Mining scheme 2 ARCHITECTURE

Table 4: Shard Chain Block Body

Field
Size

Name
Data
type

Comments

3840 MM Proof char[3840] Merge-mining proof (largest possible size in
bytes).

640 Shard Proof char[640] Merkle Proof of the shard header block (largest
possible size in bytes).

165 BC header block Respective BC header block
32 txn count var int SC transaction count
? txns tx[] SC transaction records

Aggregate size without txns is 4645bytes at maximum.
Transaction part is around 24Kbytes.

SC Block Header #N

Target

MM number

Prev.
Blocks
Comm.

BBody
Merkle
RootMerkle Mountain Range

Shard
Merkle
Proof

SC

Block

Body

Merge
Mining
Proof

Tree encoding

TimeStamp

Version

Nonce

Shard
Merkle
Root

Junk

Figure 3: Shard Chain block in JaxNet

2.3 Mining scheme

The mining scheme in JaxNet relies on merged-mining. The miner can choose the subset
of shards, download the necessary information about them and the Beacon Chain, form
valid blocks for those shards, put them into the Merkle tree as per fig. 5 and start mining
them simultaneously according to the following protocol:

1) Learn the total number of shards NS in JaxNet from the data in the Beacon Chain.
Determine the depth DS of the Shard Merkle tree.

DS = dlog2(NS)e (2.4)

10

2.3 Mining scheme 2 ARCHITECTURE

2) Choose the subset of shards for mining. Not every combination of shards is allowed.
Check the subsection 2.4 on Merged-mining proofs. Also, the connection to nodes in
each of those shards is required. Thus nodes that mine many shards need a good
network connection.

3) Build shard blocks and put them into the Shard Merkle Tree (fig. 4) as described in
subsection section 2.4. Calculate the root of this Shard Merkle tree.

Root

H0

MH

empty empty

H01

H010

Shard
block

H011

Shard
block

H1

H10

MH H101

Shard
block

H11

H110

Shard
block

MH

Figure 4: Merge Mining of shard blocks

4) Put the root of the Shard Merkle tree into the BC header along with other valid data.

5) Merge-mine. During this process the miner generates a low hash of the BC header.

6) If the miner receives from the network or mines a new valid block for particular shard
he should include it into his shard chain, rebuild respective shard block, update the
respective leaf in the Shard Merkle Tree, recalculate intermediate hashes in it and the
root, update the root in the BC header, continue mining. Also, he does these actions
if

7) The miner successes in mining any SC block he broadcasts it to respective shard he
connected to. If BC block is mined miner broadcasts it to every node he connected to.

For shard nodes it is not necessary to store BC headers from SC block bodies and Merge
Mining Proofs once respective SC block headers are rather deep in the shard chain.

Merge Mining scheme is displayed on the fig. 5.

11

2.4 Merged mining proof 2 ARCHITECTURE

BC Block Header #NBC Block Header #N − 1

Version Timestamp

Target

Nonce Tree encoding

of shards

Prev.
Block
Hash

Shard
Merkle
Root

BBody
Merkle
Root

BC

Block

Body

Shard Merkle Tree

SC

Block

Header

SC

Block

Header

SC

Block

Header

Figure 5: Merge Mining in JaxNet

2.4 Merged mining proof

Merged Mining Proof or MMP is the backbone and the key innovation of JaxNet protocol.
According to JaxNet protocol, any miner can merge-mine multiple shards simultaneously.
MMP is a tool that allows anyone within the particular shard to estimate how many
shards were merge-mined. MMP is the proof that certain miner, who merge-mined the
particular block, was not mining a particular subset of shards.

JaxNet protocol has the following steps and features which allow proof of merged
mining to work.

2.4.1 Shard Merkle Tree

Nodes in JaxNet have a special agreement described in the protocol on how to perform
merged mining. The set of shards in JaxNet are in one-to-one correspondence with the
set of leaves of Shard Merkle Tree (fig. 4): the first leaf from the left corresponds to the
first shard, the second leaf to the second shard and so on. It is allowed to merge-mine
the shard block only on the leaves of the Shard Merkle Tree which corresponds to this
shard. Blocks which are merge-mined in the wrong place should be rejected during the
block verification within the shard.

When the network decides to increase the network capacity it may switch to higher
Merkle Tree with more capacity. The respective protocol is described in the section 2.5.

12

2.4 Merged mining proof 2 ARCHITECTURE

2.4.2 Magic hashes

When the miner calculates the root of the Shard Merkle Tree he obeys the following
rules. He starts from the lowest level of the Shard Merkle Tree which consists of leaves.
He calculates hashes in leaves that correspond to shards which has chosen for merged
mining. Each hash in the leaf is a hash of its respective SC block header. The rest of the
leaves are left empty. Then he calculates hashes level by level from the bottom to the top.
The hash of the parent node is the hash of the concatenation of child nodes. If one of the
nodes is empty he substitutes it with the ”magic hash”. Magic hash consists of zero bits.
If both child nodes are empty then the parent node is empty too.

This construction establishes a simple way to prove that a certain shard was not mined.
If corresponding to the shard leaf contains a magic hash or is an ancestor of the node with
such hash, then this shard was not mined by the miner when he generated the block with
this Shard Merkle Tree. Therefore, in order to prove that at most k shards were mined,
it is enough to provide a valid Shard Merkle Tree with some amount of magic hashes in
it.

For example, shards with binary indexes ”000” and ”001” on fig. 4 are ancestors of the
magic hash in the node with index ”00”. Shards with indexes ”100” and ”111” correspond
to leaves with magic hashes. These shards were not merge-mined.

Assume Shard Merkle Tree has a height h and h+ 1 levels. Let’s enumerate its levels
from bottom to top so that leaves are on level 0 and root is on the level h. Let mi, i = 0, n
is a number of magic hashes on the level i. Then this Shard Merkle Tree validates that

h∑
i=0

mi · 2i (2.5)

shards were not merge-mined. Therefore at most

2h −
h∑

i=0

mi · 2i (2.6)

shards were merge-mined.
The construction similar to Shard Merkle Tree in Jaxnet was described by A.Zamyatin

in his PhD thesis in subsection 2.2.1.[23]

2.4.3 Merged Mining Proof

When Shard Merkle Tree is calculated it is placed into the BC block header. Then the
miner starts merged mining by changing the nonce in this BC block header and computing
its mining hash which is described in the section 2.9. Assume he succeeds and get a mining
hash that is less than target of some SC block header. Then, he can compose SC block
described in the section 2.2 and display it on the fig. 3.

Since Shard Merkle Tree protects the data integrity, the miner has a proof of how
merged mining has been executed. Shard Merkle Proof is a merkle proof that SC block

13

2.5 Expanding the Network 2 ARCHITECTURE

header was mined in the correct place. MM number is the miner’s claim about how many
shards he was mining. In the section 3.1 it is discussed how MM number is used to set a
proper reward for the SC block. Merged Mining Proof and Shard Merkle Tree encoding
is his proof that MM number is valid.

2.4.4 Orange subtree and encoding

Let us consider the subtree of the Shard Merkle Tree with the same root and which leaves
are parents of the nodes with magic hashes. Let us call this subtree as ”orange subtree”
within this paper. For example, on fig. 4 edges of this subtree are colored in orange. Its
leaves are nodes with labels ”H0”, ”H10” and ”H11”.

Let us denote the set of leaves of the orange subtree as L, the set of nodes with magic
hashes as M . We see that each node in L has two children: one of them is in M and
the second one is some regular hash. Let’s denote the set of these second children as
P . (We neglect the probability that this regular hash is the magic hash). In JaxNet
Merged Mining Proof is the list of hashes that correspond to nodes in P together with
the encoding of the orange subtree. If an orange subtree has k + 1 leaves then

|L| = |M | = |P | = k + 1. (2.7)

Therefore Merge Mining proof will contain k + 1 hashes. We are now left to determine
what is encoding in the orange subtree. This encoding consists of two parts. One of them
is the structure of orange subtree as a binary tree. This binary tree encoding has 2k − 1
bits. It could be found in the appendix A.2.

The second part of the encoding is the position of regular and magic hashes. Each
leaf of orange subtree has two children: one is a magic hash and second is regular hash.
However, it’s not known which hash is on the left and which one is on the right. One bit
per leaf is needed to encode this position. In total, k + 1 bits are required.

Therefore, orange subtree encoding has 3k bits.
It is not mandatory to take an orange subtree with a certain number of leaves. This

number is variable. If orange subtree has less than k leaves then encoding will be shorter.
Limitations on k are discussed in the appendix A.2.

2.5 Expanding the Network

The key feature of the scalable solution is the ability to effectively address the problem at
any scale. However, in each particular case some choice of parameters may work better
than another. It is easy to choose parameters if there is a central authority that knows
well the current state of the system. The question is how to set these parameters in the
distributed network.

The key parameter in JaxNet is the number of shards N . When the number of users in
the system and transaction count is limited, the most efficient solution is to maintain only
a few shards. One chain solutions could perform even better. Besides efficiency, having
too many shards can trigger a security risk. If there are too many shards then there will

14

2.6 Block Verification 2 ARCHITECTURE

be little incentive to merge mine them for powerful nodes. Thus, the hash rate in many
of them could plummet. So the selection of parameter N is a rather big responsibility.

Beacon Chain

Shard Chain #1

Shard Chain #2

Figure 6: Chains in JaxNet

In JaxNet, we set a simple consensus on the value based on the hash rate. Block
headers on the Beacon Chain contain a specific field. The last bit in this field is the flag.
The rest of the bits is the binary representation of the number of shards in the system.
The flag has value ’1’ signals that miner who mined this block votes to increase the number
of shards in the system and ’0’ signals about the opposite. On each mining round miners
count the number of ’1’ in previous blocks on the Beacon chain. If all conditions below
are satisfied:

a) number of ones in the previous 1024 blocks on BC is greater than 768

b) in the previous 1024 blocks on BC the number of shards was constant.

then on the next block shard number N have to be increased by

dN = max
(
1, 2dlog2(N)e−9) (2.8)

Increasing the number of shards in the block number n triggers the following events.
Starting from block n + 10 miners can merge mine shards N + 1,..., N + dN . Genesis
block on those shard chain has the following content. The hash of the previous block in
it is the hash of the (N + 9)th block on the Beacon Chain. the target of the genesis block
is the target of the (N + 9)th block on the Beacon Chain.

If the N is the power of 2 then the Shard Merkle tree is full. Thus after N -th block
miners merge mine on the Shard Merkle Tree which is one level higher.

Blocks on any chain with an incorrect number of shards or with a wrong height of the
Shard Merkle tree should be rejected.

2.6 Block Verification

Block verification on the Beacon chain for full nodes follows the common standards for
single-chain blockchains, plus few extra steps. It should be verified that the number of

15

2.7 Super light client 2 ARCHITECTURE

shards is valid and calculated according to the protocol. Also, the tree encoding size
should not exceed the size limit.

On shard chains verification is more tricky.

1) First, check that all data in SC block header is available, has prescribed types and size
limits. Check version and timestamps.

2) Check that the hash of the BC header is below the target of the shard.

3) Take Shard Proof from the SC block body and verify that this body corresponds to
the SC block header.

4) Reconstruct the orange subtree (see subsection section 2.4) from the encoding stored
in BC header.(check appendix A.2) Take MM Proof and verify that Merge Mining
Proof is valid. In particular check that MM number is proved to be valid.

5) Check whether shard transactions from the SC block body are valid. Note that in
JaxNet there will be set a minimal transaction fee.

2.7 Super light client

In the design of the Bitcoin network Satoshi Nakamoto introduced the construction of
light client. It provides devices with limited resources a way to verify transactions by
getting proofs from full nodes using Simplified Payment Verification (SPV).[68] However,
to make any SPV possible the light client has to determine the valid chain. Hence, it is
necessary to download all headers in the chain. In the case of Bitcoin aggregate size of
block headers in 2019 is around 50Mb. However, for other cryptocurrencies this number
could be significantly higher. For instance, block interval times are 40 times less and their
average size is 6-7 times larger than in Bitcoin. Therefore, even light client with SPV
becomes demanding.[42]

In the past decade the blockchain community has proposed few approaches to address
this problem by constructing so-called super-light client. These approaches endeavors
to make use of so-called reference blocks or super blocks. It worse to mention the work
of Kiayias et al. on proofs of proof of work (PoPoW)[22] and non-interactive PoPoW
(NiPoPoW)[25]. However, this design has multiple drawbacks. First, it does not work
properly if block difficulty is not fixed. Second, some bribery attacks were proposed.
Third, there are some concerns about efficiency. Proofs, that a certain transaction was
included in a certain block requires the download of the subchain of block headers.[42]

Recently Bünz et al. proposed the design of FlyClient which aim to resolve the problem
for blockchains with variable difficulty.[42] Also, this solution is a significant step forward
in terms of efficiency. It is based on Merkle Mountain Range commitments and Fiat-
Shamir heuristic[4]. The author of FlyClient proposes a way to deploy it in existing
blockchains by including Merkle Mountain Range tree roots in block headers.

JaxNet incorporates the idea of a FlyClient in its design. In particular, we use Merkle
Mountain Range tree roots instead of previous block hashes. There is no sense to keep

16

2.8 Timestamps and difficulty 2 ARCHITECTURE

both of them in the block header. We recall Merkle Mountain Range tree roots in JaxNet
as previous blocks commitments (PBC) since they play the same role as previous block
hashes in other blockchains. Also, Merkle Mountain Range in JaxNet follows the design
of FlyClient Under Variable Difficulty described in the same paper[42]. However, there
are few differences.

1. Leaves of Merkle Mountain Ranges are hashes of concatenation of SC headers and
hashes of BC header containers associated with them. The reason for this decision
is described in the section 2.11.

2. In the original design[42] of FlyClient nodes of the Merkle Mountain Range contain
the data about timestamps and difficulty so that the super-light client can verify
correctness of difficulty transitions based on timestamps. It was done in order
to prevent the difficulty raising attack. However, the paper contains inaccurate
argument regarding this setting. It is discussed in the appendix B.

In contrast to the original design the super-light client in Jaxnet doesn’t verify
difficulty transitions in the chain. Still there is a verification that the particular
chain is the heaviest one. If honest nodes control the majority of the computational
resources, we can assume that they maintain the heaviest chain and all difficulty
transitions in it are valid.

Every Merkle Mountain Range node in JaxNet does not contain the data regarding
timestamps. However, it includes the record ”subchain weight”. Subchain weight of
the leaf is the difficulty of the respective block in the chain. Subchain weight of the
regular node is the sum of weights of its children. Therefore this record contains the
aggregate weight of blocks below it. This design makes possible the construction
of the proof described in the original paper that is required for the verification of
the chain weight. In contrast, in the original design there were two records: one for
the chain weight at the beginning of the subchain and one for the chain weight at
the end of the subchain. So the subchain weight was calculated as the difference
between these two records.

3. Sampling

A detailed description of FlyClient implementation and performance in JaxNet goes
beyond the scope of this paper.

2.8 Timestamps and difficulty

In the Bitcoin network [68] and similar solutions, it is a common practice to regulate
block times, block difficulties and the coin issuance rate through some mechanism based
on timestamps. JaxNet has a list of such rules as well. However, these rules are slightly
different. We are going to describe them in this section. First, we share the motivation
of these rules. Desired goals are as follows:

17

2.8 Timestamps and difficulty 2 ARCHITECTURE

a) Keep the block time on the Beacon Chain around 600s.

b) Keep the block time on every Shard Chain around 15s.

c) Keep the difference between the creation time of the (N + 1)-th block on the Beacon
Chain and the creation time of the first block around 600 ·N seconds.

d) Keep the difference between the creation time of the (N + 1)-th block on every Shard
Chain and the creation time of the first block around 15 ·N seconds.

We set a priority for goals ”c” and ”d”. This setting differs from the majority of other
cryptocurrencies in which rules are designed to keep a fixed block time and certain coin
issuance. In JaxNet, the ”heaviest chain rule” is more important than the ”longest chain
rule” in the consensus. Besides, chain length is a useful tool to set a ”soft synchronization”
between chains. Synchronization in a distributed network is a rather hard task. However,
in certain case of the rather short fork chain length is a tool which can do the job. Also,
it is cheaper from the viewpoint of both communication and computation.

2.8.1 Difficulty Adjustment Algorithm

The difficulty for the first epoch on the BC is set to be D0. The difficulty for the first
epoch of the SC equals half of the difficulty of respective genesis block on the BC for this
SC.

Block difficulty is adjusted every epoch. For the SC an epoch is

NSC = 4 · 60 · 24 = 4976 (2.9)

blocks. For the BC it is

NBC = 211 = 2048 ' 2016 = 2 · 7 · 24 · 6 (2.10)

blocks. Similarly to Nakamoto’s design, we allow a time window for accepting timestamps.
Let’s set some notations. Let
D0 is a minimal allowed difficulty in the network.
TBC = 600 is a desired block time of BC.
TSC = 15 is a desired block time of SC.
Tnext is a target block time for the next epoch.
Dprev is the target difficulty for the previous epoch.
Dnext is the target difficulty for the next epoch.
The Difficulty Adjustment Algorithm in JaxNet works as follows. Assume the previous

epoch has ended on the block n and τn is its timestamp.

1) First, we calculate how the actual timestamp of block n differs from the desired times-
tamp of this block. We start from the genesis block of the BC. This block is number 0
in the chain and the timestamp t0 = 0. Then, given the desired block time for the BC
is TBC = 600, the desired timestamp for the block number n in seconds is tn = 600n.

18

2.8 Timestamps and difficulty 2 ARCHITECTURE

For the SC the genesis block is some block #m on the Beacon Chain. It has the desired
timestamp 600m. For the block #n on the SC the desired timestamp in seconds is
defined as tn = 600m+ 15n.

On the first step the node calculates the difference:

dn = τn − tn (2.11)

2) Motivation of the second step is to estimate the average hash rate during the previous
epoch.

Let τ̃1 is a median timestamp of first 5 blocks in the previous epoch and τ̃2 is a median
timestamp of the last 5 blocks in that epoch.

Then the average hash rate AHR during that epoch could be estimated as

AHR =
(N − 5) ·Dprev

(τ̃2 − τ̃1)
(2.12)

where N is a number of blocks in the epoch.

3) The goal of the third step is to adjust the difficulty for the next epoch in such a way
that the expected value of the timestamp of the last block in it coincide with its desired
value.

Dnext

AHR
=
dn +N · T

N
(2.13)

where T = TBC for BC and T = TSC for SC.

Formally, the fraction in the left-hand-side of eq. (2.13) is the desired expected block
time Tnext for the next epoch. In order to avoid too long or too short values of this
fraction let us agree to adjust it as follows:

Tnext =
Dnext

AHR
=


dn+N ·T

N
if 0.8T < dn+N ·T

N
< 1.2T

0.8T if 0.8T ≥ dn+N ·T
N

1.2T if dn+N ·T
N

≥ 1.2T

(2.14)

The difficulty Dnext for the next epoch is calculated from eq. (2.12) and eq. (2.14).

2.8.2 Timestamp Window

Clock synchronization between computer systems is not an easy task. Existing solutions
such as Network Time Protocol (NTP) [13] could cause errors. Also due to various rea-
sons, miner’s node could get offline for a short time and lose synchronization. Therefore,
blockchain networks often set some Timestamp Window within which the timestamp is
considered to be valid. In the original Bitcoin design, Time Window was set to be 2
hours. Recent research [38] shows that over the last decade mining became more profes-
sional and timestamp errors seldom exceed 1 minute. This is a reason why in JaxNet,

19

2.9 Hashing algorithms 2 ARCHITECTURE

the Time Window on SC is reduced to be 6 minutes. The time window on BC remains
at 120 minutes.

Literally, timestamp control rules [55] for BC are the same as in Bitcoin. Timestamp
T (Hn) of block header Hn is rejected if anything below is true:

• (Median Past Time (MPT) Rule)

T (Hn) ≤ median of the previous 11 blocks (2.15)

• (Future Block Time Rule)

T (Hn) ≥ median time of the peers’ nodes + 2h (2.16)

For SC there are following rejection rules:

•
T (Hn) ≤ median of the previous 23 blocks (2.17)

•
T (Hn) ≥ median time of the peers’ nodes + 6m (2.18)

It is important to remember that a timestamp rejected now could become valid in the
future.

2.9 Hashing algorithms

As one may notice the design of JaxNet heavily uses cryptographic hash functions or
simply hashes. In this subsection we will specify what particular hash functions are used.

The SHA-3 hashing function is often used in Merkle trees, block header hashes and
etc. The exception is the hash of the Beacon chain block header. In this case, we use a
special hash function described below in this section. In the design of JaxNet, this hash
works as a mining hash. So, in the Proof of Work challenge, miners are searching the
nonce such that mining hash of respective BC block header is below the target. Moreover,
merged mining of shard blocks requires finding of low BC block header hash as well as
discussed in the section 2.4.

The motivation is the following. For Merkle tree constructions we need some fast
efficient hash algorithm. JaxNet uses SHA-3-256 [17] which belongs to KECCAC family
of hash functions. However, the authors of this paper believe that mining hash function
should pose one extra property called ASIC-resistance. Many researchers say with confi-
dence that complete ASIC-resistance is unachievable. Nevertheless, some hash functions
are known to be more ASIC-resistant than others.

The latest revision of the Ethash algorithm [70] is known for its good ASIC-resistance.
However, it appears that it has some incompatibility issues with FlyClient discussed in the
section 2.7. JaxNet uses a modified version of Ethash as its mining algorithm. However,
the description of this hash function goes beyond the scope of this paper.

20

2.10 Cross-shard transactions 2 ARCHITECTURE

2.10 Cross-shard transactions

Exchanging coins between nodes in different shards is a big problem.[61, 60, 59] One
possible solution is tto use a trusted third party. Although some other approaches were
proposed.[58, 50]

In short, the problem is as follows. Assume Alice has a non-empty wallet in some
shard and wants to send part of her funds in it to Bob. Assume Bob doesn’t have a wallet
and his JaxNet client has no information about this shard. In JaxNet shard chains are
independent of each other. Therefore, there is no way to directly transfer coins from one
shard to another. However, there are some tools and features which resolve this problem.

1) First, coins in different shards have almost the same value and could be exchanged
one-to-one.

2) Second, Jaxnet has a Super Light Client discussed in the section 2.7. A party can
easily connect to the shard by downloading few MB of data. Therefore, Bob can open
a wallet in this shard and synchronize his client with a shard chain. Then he can check
whether the transaction from Alice was included into the block on SC. However, if
Bob’s client got synchronized with many chains it could become heavy. Thus, there is
a need in the third party that can make some optimization on request in exchange for
some fees.

3) In JaxNet, hubs take a role of the third party for some transactions. Hubs assist in
moving funds between shards. Any user can send coins from his wallet in one shard
and receive coins from the hub in another shard. No permission is needed to set a
hub on some node. Users are free to chose the hub. However, there is a need in trust
between users and the hub.

2.11 Security model

A blockchain network is a rather complex system which could be attacked from multi-
ple vectors.[56] We will discuss those which are specific to blockchain designs and most
relevant for JaxNet security.

2.11.1 51% attacks

One of the main threats of blockchain sharding schemes is single-shard takeover at-
tacks [69]. They are the sort of 51% attacks performed within the shard. JaxNet attains
some level of security against them with merge mining. Even though, an attacker can
perform a successful attack after aggregating around 25% of the hash rate. This 25% is
not fixed. We assume that new shards are established when some coalition of nodes is able
and willing to sustain it. It is assumed that new shard is opened responsibly so that there
is appropriate hash rate to protect it from single-shard takeover attacks. It is assumed
that a coalition of nodes mentioned above will supply the required hash rate. Of course,
at some point the hash rate in the shard may drop below this 25% threshold. This is the

21

2.11 Security model 2 ARCHITECTURE

price we have to pay for the scalability. One may argue that this price is unacceptable.
Nevertheless, the percentage of the network hash rate is not always the best measure of
security. As an example one can compare Bitcoin and some unknown altcoin based on the
same hashing algorithm. One can easily conduct double-spending attacks on unknown
altcoin, however it will be very hard and expensive to repeat that trick with Bitcoin.[46]
This situation may change in the future, however in November 2019 this fact could be
accepted with confidence.

As another approach to measure the security of the network one may consider security
budget and security factor.[33, 32] Annual security budget is an amount of money paid
in coins to miners in block rewards and transaction fees. Roughly speaking, that is
a number of coins multiplied by their price in US dollars or in another asset. This
money should cover their expenses on mining hardware and electricity. Assuming that
mining hardware on average is effectively working around a year, we can suggest that
this parameter gives an estimate of how much money is invested in mining hardware by
honest nodes. In order to perform a successful attack a malicious actor should make a
comparable investment. Purchasing or renting a large amount of hardware is considered
to be a hard task. Obviously, if possible profit exceeds expenses, security budget will
not stop an attacker. However, security budget provides understanding what amount of
money it is safe to transfer through the blockchain.

For the large blockchain network its good to have a high security budget in order to
protect large transfers. Security factor is a fraction which characterises this ratio:

security factor =
security budget

capitalization
(2.19)

In order to maintain the system secure we should keep the parameters mentioned
above on high level. Since in JaxNet the cost of attack denominated in percents of the
hash rate is less than on single-chain blockchains, it is important to have higher security
budget and security factor. It does not mean JaxNet is less secure. It means we pay for
the same level of security more than it is required for casual blockchain.

2.11.2 Timestamp cheating

There are known attacks on blockchain networks based on timestamp manipulation. If
malicious nodes control around 50% of the network hash rate they may try to increase
the block rate in the network. In networks similar to Bitcoin such actions could be rather
profitable.[62]

In JaxNet it is possible to perform this attack if one poses significant hash rate.
However, benefit of such attack is less since the reward is almost independent from the
block rate. Implementation of inflation management from the section 3.5 could increase
vulnerability. However, even in this case attack will require significant computational
power and little expected profit. Block rate in affected chains will recover to the normal
state after few difficulty adjustments.

22

3 BLOCKCHAIN ECONOMICS

2.11.3 Attacks on Proof of Merged Mining mechanism

Malicious actors can attempt to attack Proof of Merge Mining Mechanism in JaxNet.
Since the hash function validates the integrity of the content, an attacker can not replace
data fields after BC header container with low hash was generated. He may try to merge-
mine the SC block in multiple places. However, each shard has a prescribed position in
Shard Merkle tree. If the attacker try put SC header on different level his attack will
fail. Respective BC header container has a record of how many shards are in the network.
Based on this record only one level in Shard Merkle tree will be valid.

Another attack vector is generating BC header container for some SC header within
the chain. It could be a problem for the Super Light Client described in the section 2.7.
The attacker can generate some chain of SC headers, generate a heavy-chain proof with
Fiat-Shamir heuristics, get a list of important SC headers and only then validate them by
generating BC header containers for them. In order to address this issue Merkle Mountain
Range commitment in JaxNet includes commitment of previous BC header containers.

2.11.4 Attacks on shard expansion mechanism

Malicious actor may lobby to open too many shards in the network so that it will not be
able protect all of them. It is assumed that honest miners will not vote for opening new
shards if they are not going to mine them. Therefore opening extra shard against the
will of majority will require huge expenses on maintaining high hash rate for more than
a week.

3 Blockchain Economics

In this section we will discuss economical aspects of JaxNet.

3.1 Setting rewards in Jaxnet

In this subsection we will set BC and SC block rewards in Jaxnet. Details of this approach
is discussed in the appendix C.2. First, let’s define coefficient k from the eq. (C.5):

k = 2−48
Jax coin

hash
(3.1)

Therefore, on BC block reward is

R(block) = D · 2−48BC Jax coin

hash
(3.2)

where D = 2256

T
is the block difficulty.

On SC block reward is

R(block) =
1

n
·D · 2−48SC Jax coin

hash
(3.3)

23

3.2 The economics of JaxCoin 3 BLOCKCHAIN ECONOMICS

where n is block merged mining number discussed in the section 2.4.
Jax coins on BC and SC may have different price.
In order to curb down money creation, a slightly different formula is proposed in the

section 3.5.

3.2 The economics of JaxCoin

Let us first explain the hybrid form of JaxCoin. It is neither a peg, nor a commodity-
based coin, or a fixed-supply coin that would artificially increase its market value. Our
coin supply follows nonetheless some simple economic incentives.

As already showed by [1], the value of commodity monies are subjected to techno-
logical changes. For instance, a money is backed by oil, when new technologies such as
fracking were discovered, substantial amount of oil could be retrieved, and the price of
the commodity dropped on the London and New-York markets. The same applies to
JaxCoin, technological improvements of ASIC and GPU imply higher productivity of the
new mining rigs. Efficiency gains in the hardware market allows miners to mine more
outputs (i.e. coins) for the same amount of inputs (i.e. electricity). Everything else being
equal, miners would race to have the latest mining equipment and beat the competition.
Over time, this R&D arms race [41] will affect the price downward as miners will issue
too many coins due to productivity gains in the hardware industry. We introduce below
a parameter that corrects for this market externality.

Friedman [1] also claims that in a commodity system, the money base would be too
narrow to act as a counter-cyclical force in the economy and would just worsen price
movements. However, JaxCoin does not rely on such forces.

Linking coin supply to a ‘cost-based’ incentive mechanism has some advantages. Re-
call that our coin supply is proportional to the aggregated mining work executed in the
network. First, we avoid backing up our coin with some fiat currencies or other baskets
of assets denominated in fiat, like stable coins currently on the market. As such, Jaxcoin
prices should not be as much correlated as other assets with fiat currencies. In the crypto
sphere, stable coins have been a hot topic for some years as investors need some stability
in prices. A lot of coins provide some mechanisms to smooth out peaks and troughs but
they are always pegged to some assets or fiat currencies that defeat the purpose of a
decentralized payment system backed by mathematical rules and economic incentives in
the first place.

Since our coin is not redeemable into other assets, there is no need for JaxNet to hold
on cash or collateral, which decreases the financial risks for the whole network and ease
its adaptation to market needs [9]. The price of the coin will float on market exchanges
according to simple supply and demand economics. Our main assumption is that miners,
just like on Bitcoin, cannot mint coins at a loss. But unlike Bitcoin, supply growth is
volume dependent (how much hashpower over all shards) and not time dependent (a fix
reward per block). With this setting, we can avoid technical flaws and some economic
flaws of cryptocurrencies, as we will see below in more details.

24

3.3 Overview of the blockchain economics 3 BLOCKCHAIN ECONOMICS

3.3 Overview of the blockchain economics

The goal of this subsection is to prove the validity of the following proposition.

Proposition 2. a) There is a strong reason to assume that the price of the coin is the
same in each shard.

b) Miners have an incentive to mine many shards instead of focusing on one shard because
of transaction fees.

First, we start from the observation of the simple fact: miners mine if and only if it
is profitable. The incentive for miners is to mine up to the point where their expected
profit equals their expected revenues minus their costs. Above this threshold, miners will
not put more resources.

Then, our coin departs also from regular institutions which holds seigniorage on money
printing. Using this analogy with cryptocurrencies is slightly misleading since miners, con-
trary to monetary authorities, are profit oriented. This is true for existing cryptocurrencies
and holds for JaxCoin. They create and make money by validating blocks.

However, unlike conventional PoW blockchains, JaxCoin supply does not grow at a
pre-specified growth rate. Instead, miners have to adjust their contribution of computing
resources to both their cost structure and the new transaction needs of the network. They
also have an opportunity cost in mining JaxCoin, as these resources are not put to mine
other coins on other blockchains.

In the more mature coin markets using PoW algorithms, we can observe a path toward
an equilibrium where mining altcoin A brings a marginal profit similar to mining altcoin
B. In disequilibrium, miners arbitrage between which altcoin is more profitable to mint.
Then, in the long run, marginal profits on every altcoins mining converge back towards
the equilibrium. In participating in the mining process of JaxCoin, miners have the
opportunity to mine any shard. In this context, they would make an arbitrage to mine
the most profitable shard. That being said, we assume that miners on shards will behave
exactly like in the altcoin market: in the long run, the marginal profit will tend to be the
same across all shards.

In JaxNet there are multiple shard chains which work in parallel. Miners who don’t
have enough resources to mine everywhere can choose on what shard chain to mine. As
a result we expect that the profitability of mining on every shard chain in JaxNet will
be the same. If we assume that mining expenses on some two shard chains are the same
we can conclude that the expected revenues are the same. If we neglect the difference in
the value of expected transaction fees we can conclude that the value of expected block
rewards is the same on every shard chain. The expected number of coins in reward is
the same by design.(appendix C.2) Therefore, we expect that every shard coin will be
valued similarly no matter on what shard it was mined. The shard coin value is about to
converge toward the same value on every shard. In short, if the value of the coin on one
shard will be higher than on another then we expect miners to mine on the first shard:
on average mining each coin requires the same effort but first one is more valuable. Soon
values of both coins will become equal.

25

3.3 Overview of the blockchain economics 3 BLOCKCHAIN ECONOMICS

Let us take a closer look on the mining revenues and expenses in PoW based blockchain
networks maintained in November 2019.(section 3.3) Revenue often consists of two parts:
transaction fees and block reward of issued coins. The main part of the expenses is
purchasing of the mining hardware, bills for the electricity, network connection and data
storage. This is true for the majority of PoW based blockchain networks as well as JaxNet.

The table 5 contains an estimates by Croman et al. on distribution of miners expenses
over 5 main categories.[20] The general pattern is that mining hardware and electricity
bills constitute around 98% of overall expenses. These expenses are striking high and
generally considered as a waste of resources since common payment systems do not have
them.

Table 5: Bitcoin cost breakdown. Includes cost incurred by all nodes.[20]

at max troughput at de facto troughput

cost/tx percentage cost/tx percentage

Mining: proof-of-work ∼ $0.8− $1.7 ∼ 56% ∼ $3.6 ∼ 56%

Mining: hardware ∼ $0.6− $1.3 ∼ 42% ∼ $2.7 ∼ 42%

Transaction validation ∼ $0.002 ∼ 0.2% ∼ $0.008 ∼ 0.2%

Bandwidth ∼ $0.02 ∼ 2% ∼ $0.08 ∼ 2%

Storage (running cost) ∼ $0.0008/5 years

Let’s take a look on the distribution of miners revenues. In networks like Bitcoin
around 99% of reward comes from coin issuance and only 1% from transaction fees.
Transaction fees are determined by the demand on the block body space and limited
proposal of such space. Users are interested to keep their transaction fees as minimum as
possible. We can expect that in scalable blockchain network with high throughput trans-
action fees will be minimal.[51] However, in Jaxnet transaction fees have an important
role and their value should be noticeable. One possible approach is to set a lower bound
on the transaction fee. However, the paper by Lavi et.al.[51] describes a promising fix to
this problem.

In JaxNet miners have the opportunity to choose on what shard to mine. Let’s make
an estimation of the possible profit or lose from their decision to mine the shard i. The
mathematical expectation of the block reward of issued coins doesn’t depend on this
choice. On the other hand miners could increase the expected value of the second part of
their reward. Expected reward of miner from transaction fees is given by the formula:

E(reward) =
∑
i

TFi ·
MHR

SHRi +MHR
(3.4)

where TFi is aggregate transaction fees of transactions included into the shard block,
MHR is particular miners hash rate, SHRi is the shard i-th hash rate excluding particular
miner.

26

3.4 Excessive coin supply? 3 BLOCKCHAIN ECONOMICS

Let εi to be the cost of processing i-th shard. Then

4i =
TFi ·MHR

SHRi +MHR
− εi =

=
TFi

1 + SHRi

MHR

− εi
(3.5)

is the miners possible profit if he decides to join mining on i-th shard. One can observe
that the higher his hash rate the higher value of this expression. Therefore, miners or
mining pools with higher hash rate has more incentive to mine more shards. Also miners
who mine many shards have an incentive to increase their revenue by increasing their
hash rate. Another catch is that shards higher average sum of transactions fees TFi are
more likely to attract miners. So we expect that shards with more intensive trading will
be better protected.

3.4 Excessive coin supply?

In this subsection we are going to discuss money creation and its potential impact for the
value of JaxCoins. First, we need to give some definitions that will apply throughout the
rest of the paper.

First, we need to distinguish monetary creation from monetary mass.The later is the
total of coins minted since the genesis block. The former is the increase in money supply
within a time interval. In the blockchain network the measure of time is the number of
blocks in the chain. The measure of money are coins. Coin supply at the block number n
is the number of coins issued from the beginning of the chain up to the block number n
inclusively. In the setting of JaxNet we call monetary creation from block n to block m
be the fraction:

MS(n,m) =
Coin supply at the block #m

Coin supply at the block #n
− 1 (3.6)

where n < m and MS is the notation for the monetary creation through this paper.
To keep the things simple we do not distinguish the coins in active circulation from

coins on so called ”cold accounts”. Monetary creation defined above has an advantage
that it could be easily calculated from the blockchain history. JaxNet consists of multiple
shards and multiple chains. Therefore, the Beacon chain and each shard chain has its own
monetary mass and monetary creation. However, by the design of the reward scheme we
can expect that the coin supply on the Beacon chain is nearly equal to the aggregate coin
supply of shards. This fact makes monetary creation on the Beacon chain to be a good
measure of the newly minted coins in JaxNet.

In JaxNet monetary creation is directly related to the security against 51% attacks
(see section 2.11).

There is no sense in coins which do not have an exchange value. Let’s assume that
Beacon chain coins and shard coins are used as exchange tokens in some market. Assume
on this market there is a supply and demand, coins have a constant velocity of circulation
and some market price or some equivalent of goods at the target moment. The price of

27

3.4 Excessive coin supply? 3 BLOCKCHAIN ECONOMICS

the coin may vary at different moments of the time. The price inflation is the tool for
measuring this difference.

Bitcoin and the majority of other blockchain networks have a limited supply of coins.
This involves scarcity of the coins in the market. Thus the price on them could fluctuate
up and down. However, in such systems coin creation decreases to zero as time passes.
This sort of monetary policy can cause problems in the future. [33, 32, 31] In JaxNet
the coin supply is not limited. However, the proposed design involves positive monetary
creation which is discussed in the appendix D.2. The possible impact of money creation
on blockchain economics is discussed in appendix D.1.2.

One may think that giving the reward proportional to the effort is a bad idea since
miners will mint huge amount of coins so that further mining will be unprofitable. We can
argue that there are three forces which could drive the further mining. First of them is the
technological progress. Launches of more efficient new mining rigs on the market could
intensify mining in the network. Whenever such event happens, mining in the network is
boosted during a certain interval of time. Let’s make a few estimates. Assume that the
situation on the market is stable so that demand and supply remain at the same level and
velocity of the currency is constant. Assume that minting the coin on the new device is γ
times more cost efficient than on the previous efficiency leader. Let the previous volume
of currency on the market is V coins and further minting of coins was nearly unprofitable.
Then we can expect that the new equilibrium on this market will be reached once coin
supply will reach γ · V . Therefore

(γ − 1)V (3.7)

coins are going to be minted. One may suppose that this will entail a dramatic emission of
coins within a short period. There is indeed an upper bound in the production of mining
equipment that cannot satisfies all the demand in the short term. Besides, we argued
that miners investment is irreversible, so that they can delay their investment decisions.
They are more likely to do so if they anticipate just short-lived productivity gains due to
new equipment and not sustainable demand. Another economic dimension to take into
account is that PoW mining is an opportunity cost, meaning that miners have to give up
on resources that could be used for other profitable endeavours, being mining other PoW
blockchains or something altogether. This opportunity cost is correlated to the monetary
supply and its exchange rate [45], meaning that miners will switch their activity if their
expected payoffs go down due to oversupply or price crashes. This will reduce the hash
rate across all shards and therefore the coin supply. Finally, recall that miners maximize
their profit in aligning with the quantities produced by other mining pools. Marginal
profit will soon reach zero and supply will stabilize, everything else being equal.

The second force which supports our coin issuance mechanism is the fact that tokens
sometimes get lost. It’s caused by hardware issues, inaccuracy, death of their owners and
token burning schemes[54]. For example, there is an estimate that nearly 30% of issued
BTC are already lost.[53] Lost tokens no longer participate in coin circulation and get
replaced by newly issued coins.

The third force is the growth of the market. Whenever this happens there is always
need for new coins for transaction purposes.

28

3.5 Coin creation management 3 BLOCKCHAIN ECONOMICS

Technological improvement in mining hardware inevitably cause price decrease. So it’s
important to have an insight on the rate of this process. An attempt to get an estimate is
given in the appendix D.2. Coin devaluation is not something token holders want to see.
It is good to have a mechanism which takes into account these efficiency gains to correct
downward movements of prices. Our proposal is discussed in the section 3.5.

3.5 Coin creation management

Our coin supply management is inspired by rule-based monetary economics. Although
these policies are not implemented in today’s central banks policies, they are relevant to
manage the coin supply efficiently in Jax Network.

Furthermore, JaxCoin is not affected by the type long-term deflationary problems that
are inherent to Bitcoin or other commodity monies, because coin supply will adapt to de-
mand through a non-cooperative game as we will see below. Ultimately, the fundamental
value of our coin is correlated to the costs of mining, much closer than Bitcoin can be.
Besides, the implementation of a constant further contract the money supply. The main
objective of the protocol is to provide a stable coin with simple issuance rules inspired by
the monetary economics of Friedman [2] and Taylor [6]. Both authors, in different ways,
suggested a constant rate of money supply irrespective of business cycles.

Below in this section we will discuss possible tools for coin supply management within
JaxNet. As we have learned from the appendix D.2 money creation can affect prices in
the nearest future, and therefore destroy the fundamental value of the coin. Actually,
economists often state that currency serves as a medium of exchange and as a store of
value. Following the quantitative theory of money, high level of coin issuance would
undermine the currency as a store of value, everything else being equal.

Economic setting and assumptions are discussed in the appendix D.1.1.
To avoid currency crashes and high volatility (appendix D.1.2), coin issuance should

obey a strict set of rules so that miners can anticipate their expected payoffs and adjust
their hashrate accordingly.

3.5.1 Naive approach and obstacles

One can set mining epochs so that block reward will decrease with time in some way. As
always, the measure of the logical time in the system is the length of the chain. Each
shard has its length which determines its mining epoch. If one properly set mining epochs
and rewards within them, he will be able to address high coin supply. However, there are
few obstacles on this way.

First, monetary policy for coin issuance should follow a clear and transparent set
of rules. If monetary creation is high it could lead to high price inflation. If it is too
low it could provoke emergence of an economic bubble on the blockchain and dangerous
fluctuations of the hash rate. Desired mechanism should properly work over the long
term, and be simple enough for miners to calculate their expected profits. It is possible
that in the future technological advancement will slow down and won’t bring much yearly

29

3.5 Coin creation management 3 BLOCKCHAIN ECONOMICS

improvement in energy efficiency of semiconductors. Monetary creation shouldn’t drop
to zero and cause security issues anticipated for bitcoin-style monetary policy.

Second, some synchronization mechanism is required to make sure that shard chains
follow the same rules. Timestamps, block reference mechanisms could be falsified by
malicious actors. The length of the chain is a good substitute for the time within a single
chain. However, here we face multiple problems. First, chain length is not a precise
measure of time. Basically, chain length is random variable with some distribution. We
can only shape the parameters of this distribution. Second, casual miners and malicious
actors can try to manipulate timestamps or accept wrong timestamps if they find it
beneficial. Moreover, in the setting of JaxNet there are multiple chains and every chain
has its own length.

3.5.2 Proposal of the mechanism

Obstacles mentioned above make the task rather tricky. Nevertheless, we offer a solution
below that fixes part of the aforementioned issues.

First, let’s mention some useful features which JaxNet already has.

a) One can expect that an overwhelming majority of miners mine BC. It doesn’t cause
any extra workload and brings profit. If all miners in JaxNet mine on BC then we can
expect that the coin supply on BC approximately equals to aggregate the coin supply
on shard chains. Thus, the study of BC provides us an insight on intensity of mining
and coin issuance in the whole network.

b) Calculation of aggregate block difficulties on BC within a certain interval is easy and
provides an estimate of average hash rate within that interval.

c) Difficulty and timestamp control rules in the section 2.8 are designed to keep chain
length and real time almost synchronous.

Let’s split every blockchain into sequences of mining epochs. Each mining epoch on
the chain is a sequence of blocks. Limits of every epoch are determined by chain length.

On the BC first mining epoch starts with the genesis block #0. Mining epoch #m
ends with the block #(L ·m) and then next epoch starts. We set L to be 4096.

On every SC, the last block in the epoch is determined similarly. The genesis block
of SC is some block on BC and its epoch is already defined. The difference is that every
block on BC corresponds to 40 blocks on SC. So in order to ”close” an epoch forty times
more SC blocks are required.

We propose to set a reward for the block Bn in the mining epoch #m according to
the next formula:

R(Bn) = D(Bn) ·
m−1∏
i=1

ki (3.8)

Here R and D are reward and difficulty respectively. ki is an adjustment coefficient of the
mining epoch i. Adjustment coefficient ki is defined as follows. We set

λ = exp(ln(0.8)/144) = 0.99845159 (3.9)

30

3.5 Coin creation management 3 BLOCKCHAIN ECONOMICS

Then for the first mining epoch we set

k1 = λ12 (3.10)

Then we follow next rules. We calculate aggregate difficulty in i-th epoch Di on BC and
aggregate difficulty of BC D from first epoch to i-th epoch.

D =
i∑

j=1

Dj (3.11)

ki =


ki−1 if D−Di

D
< λ4 · k3/2i−1

ki−1 · λ−2 if
(

D−Di

D
≥ λ2 · k3/2i−1

)
∧ (ki−1 < 1)

1 if ki−1 = 1

(3.12)

Motivation of the rules above is the following. They somewhat reduce coin issuance and
make coins more scarce. If there are insufficient mining in the network or a sign that
mining will be reduced, then adjustment coefficients get larger. These should stimulate
mining in next epochs by making it more profitable.

Notice that because of the difficulty control rules described in the section 2.8 one can
calculate adjustment coefficient of the epoch before its end. On average there should be
two weeks in reserve when next mining epoch in the shard starts. Therefore, one can
almost always calculate how many coins were issued in the certain block even if it was
minted recently.

Overall, unlike conventional PoW blockchains, JaxCoin supply does not grow at a
pre-specified growth rate. Instead, miners must adjust their supply to both their cost
structure and the new transaction needs of the network.

Our coin supply management is inspired by rule-based monetary economics to con-
strain our monetary supply. Although these policies are not implemented in today’s
central banks policies, they are relevant to manage the coin supply efficiently in Jaxnet.
Besides, we do not apply these rules right on. As we have seen they are amended to fit
the technical aspects of blockchain-based protocols.

Scarcity of the money supply is economically bounded by the fact that a miner will
not allocate resources if it is not profitable for him. Money supply, although theoretically
unlimited, cannot grow above the cost of energy and the productivity gains observed
in the hardware mining equipment. The theoretical growth rate is parametrized by a
constant k. This is an upper bound to which every miner needs to abide by, which is
correcting for efficiency gains in mining equipment. A daily feed will be calculated based
on economic forces and provided to every mining pool. This practical k cannot be higher
than the theoretical k. Miners will be able to choose to apply any k.1

1We assume here that miners are in a Cournot game played indefinitely, they choose quantity according
to other miners. Therefore, the more mining pools, the higher the welfare.

31

4 CONCLUSIONS

4 Conclusions

4.1 Addressing Scalability Trilemma

In this subsection we are going to summarize how our solution addresses Blockchain
Scalablity Trilemma. The main question is whether this problem is solved or how well it
is addressed. Since there is no unique description of Trilemma and the community may
have different expectations there is a place for speculations on this subject.

First, let us start from the scalability part of the Trilemma. One may argue that any
sharding scheme is the stealth increase of the block size and our solution is kind of that.
Really, if some node decides to become the fullest node in the network and operate all
shards that will be the case. The storage and bandwidth requirements for him will grow
almost linearly with the number of shards. Actually, the scheme proposed in this paper
requires some number of such nodes or mining pool operators. However, not all nodes in
the network are obligated to do that. Our solution provides a freedom of choice. Nodes can
become full nodes for the specific shard of few specific shards without significant penalties
to their margins. Moreover, in any solution with decentralized nature transactions should
be processed by multiple nodes. Our solution assumes that some nodes do the most part of
that work. The question is how many nodes are able to achieve that level of performance.
Data storage requirements and transaction validation according to table 5 is the cheapest
part. The bandwidth requirement could be the problem. However, even today 40GBit
internet cables are not rare. Setting a good reliable connection between most heavy nodes
does not seem an unsolvable problem. It is affordable compared to expenses on mining
hardware.

Second, let us discuss the decentralization part of the Trilemma. One may argue
that in our solution there is some limited number of powerful nodes which together have
overwhelming influence on the blockchain network. The authors of this paper admit that
coalitions of powerful nodes pose a threat on centralization. However, if we take a close
look on existing decentralized solutions like Bitcoin and Ethereum we observe that major
part of the computational power is aggregated by few mining pools.[35] Participants of
those pools are not involved neither in block creation or block verification. They are simply
perform blind mining. Nevertheless, participants are free to join and left the mining pool
if it does something inappropriate or is about to aggregate hash rate power up to a
critical point. Although, as a rule, mining pool operators are interested in maintaining
the network and conducting mining in accordance to the protocol requirements. We can
conclude dominating role of mining pools is considered to be acceptable.

Third, security side of the Trilemma is not discussed yet. This part is discussed in the
section 2.11. Commonly, the hash rate is considered to be the measure of the security
against 51% attacks. It works fine when we compare networks with identical design.
However, researchers in order to achieve scalability often propose some Proof-of-Stake
consensus schemes. These designs do not involve mining as generating a hash. Thus, it
is not obvious how to make a direct comparison. Nevertheless, security always ascend to
the money. In order to perform an attack, a malicious actor needs to make an investment

32

4.2 Open questions for further research 4 CONCLUSIONS

of money of the same magnitude as one that network pays for its security. We argue
that JaxNet provides a good trade-off between the security and other parameters of the
system.

One parameter in the section 2.5 is of particular interest. We create a new shard when
roughly 75% of the network hash rate votes for that. As the system grows we make a
trade-off between scalability, security and decentralization. If we expand to aggressively
the network becomes less secure and less decentralized. On the other hand, establishing
new shards improves scalability.

4.2 Open questions for further research

Here we present the list of most interesting open questions related to JaxNet which will
be interesting for the further research.

Question 4.1. Is there better solutions to the blockchain Scalability Trilemma?

Question 4.2. Is there a reliable and efficient way to set cross-shard transactions in
JaxNet protocol?

Cross shard transaction solutions is an area of extensive research. Although many
approaches were proposed in the past few years a good solution for issue is yet to be
found.

Question 4.3. Is there a better way to organize consensus between nodes on the total
number of shards?

It’s a tricky question. On the one hand the network needs scalability in order to
effectively process more transactions. Casual users are interested in numerous shards with
reliable and cost efficient transactions. On the other hand miners are not much interested
in increasing the number of shards since they can charge high fees on the limited number
of shards. Also increasing number of shards to the level where only few miners will be
able to support majority of them is big threat to the security and decentralization.

Question 4.4. Is there a wise way to control money creation in decentralized network?

On the one hand it’s good for coin holders when the coin creation rate is low. On the
other hand issuance of new coins in JaxNet is the payment for the security against 51%
attacks in shards. It’s possible to set more complex time dependent reward functions which
reduce the reward as a number of blocks on the main chain growth similar to Bitcoin.
In this case mining in JaxNet will be less profitable. If at some point in the future
technological advancement due to Moor’s law will become slower there is a possibility
that honest mining will be less profitable and hash-rate in the system will dramatically
fail. In this situation malicious actions could become more profitable and poses a serious
thread to the system.

Question 4.5. Is there a way to reorganize existing blockchain networks and improve
their scalability in the fashion similar to JaxNet?

33

REFERENCES REFERENCES

The author of this paper believe this is possible. However major improvements to
their protocol should be adopted. Moreover, after such hard forks they may loss some of
their key features. Also the baggage of the previous transaction history could make them
less efficient than JaxNet.

References

[1] Milton Friedman. “Commodity-reserve currency”. In: Journal of Political Economy
59.3 (1951), pp. 203–232 (cit. on p. 24).

[2] Milton Friedman. A program for monetary stability. 3. Ravenio Books, 1960 (cit. on
p. 29).

[3] Jean Tirole. “Asset bubbles and overlapping generations”. In: Econometrica: Jour-
nal of the Econometric Society (1985), pp. 1499–1528 (cit. on p. 49).

[4] Amos Fiat and Adi Shamir. “How to prove yourself: Practical solutions to identi-
fication and signature problems”. In: Conference on the Theory and Application of
Cryptographic Techniques. Springer. 1986, pp. 186–194 (cit. on p. 16).

[5] Ralph C Merkle. “A digital signature based on a conventional encryption function”.
In: Conference on the theory and application of cryptographic techniques. Springer.
1987, pp. 369–378 (cit. on p. 40).

[6] John B Taylor. “Discretion versus policy rules in practice”. In: Carnegie-Rochester
conference series on public policy. Vol. 39. Elsevier. 1993, pp. 195–214 (cit. on p. 29).

[7] Avinash K Dixit, Robert K Dixit, and Robert S Pindyck. Investment under uncer-
tainty. Princeton university press, 1994 (cit. on p. 49).

[8] Sergei K Lando. Lectures on generating functions. Vol. 23. American Mathematical
Soc., 2003 (cit. on p. 40).

[9] Neil Wallace and Tao Zhu. “Float on a Note”. In: Journal of Monetary Economics
54.2 (2007), pp. 229–246 (cit. on p. 24).

[10] Cory Isaacson. Database Sharding: The Key to Database Scalability. Accessed on
10.02.2020. Aug. 2009. url: http://web.archive.org/web/20190716222656/
http://www.dbta.com/Editorial/Trends- and- Applications/Database-

Sharding--The-Key-to-Database-Scalability-55615.aspx (cit. on p. 5).

[11] Carmen M Reinhart and Kenneth S Rogoff. This time is different: Eight centuries
of financial folly. princeton university press, 2009 (cit. on p. 51).

[12] Jonathan Koomey et al. “Implications of historical trends in the electrical efficiency
of computing”. In: IEEE Annals of the History of Computing 33.3 (2010), pp. 46–54
(cit. on p. 52).

[13] David Mills et al. “Network time protocol version 4: Protocol and algorithms spec-
ification”. In: (2010) (cit. on p. 19).

34

http://web.archive.org/web/20190716222656/http://www.dbta.com/Editorial/Trends-and-Applications/Database-Sharding--The-Key-to-Database-Scalability-55615.aspx
http://web.archive.org/web/20190716222656/http://www.dbta.com/Editorial/Trends-and-Applications/Database-Sharding--The-Key-to-Database-Scalability-55615.aspx
http://web.archive.org/web/20190716222656/http://www.dbta.com/Editorial/Trends-and-Applications/Database-Sharding--The-Key-to-Database-Scalability-55615.aspx

REFERENCES REFERENCES

[14] Robert Martin. “The st. petersburg paradox”. In: Stanford Encyclopedia of Philos-
ophy (2011) (cit. on p. 44).

[15] Lear Bahack. “Theoretical Bitcoin Attacks with less than Half of the Computational
Power (draft)”. In: arXiv preprint arXiv:1312.7013 (2013) (cit. on p. 43).

[16] Hal R Varian. Intermediate microeconomics with calculus: a modern approach. WW
Norton & Company, 2014 (cit. on p. 50).

[17] Morris J Dworkin. SHA-3 standard: Permutation-based hash and extendable-output
functions. Tech. rep. NIST, 2015. url: https://www.nist.gov/publication

s / sha - 3 - standard - permutation - based - hash - and - extendable - output -

functions?pub_id=919061 (cit. on p. 20).

[18] Jonathan Koomey and Samuel Naffziger. Moore’s Law Might Be Slowing Down, But
Not Energy Efficiency. Mar. 2015. url: https://spectrum.ieee.org/computing/
hardware/moores-law-might-be-slowing-down-but-not-energy-efficiency

(cit. on p. 52).

[19] Steven Roman. An introduction to Catalan numbers. Springer, 2015 (cit. on p. 40).

[20] Kyle Croman et al. “On scaling decentralized blockchains”. In: International Con-
ference on Financial Cryptography and Data Security. Springer. 2016, pp. 106–125
(cit. on p. 26).

[21] Sebastiaan Deetman. Bitcoin Could Consume as Much Electricity as Denmark by
2020. Accessed on 10.12.2019. Motherboard Tech by Vice, Mar. 2016. url: http:
//web.archive.org/web/20191108020635/https://www.vice.com/en_us/

article/aek3za/bitcoin-could-consume-as-much-electricity-as-denmark-

by-2020 (cit. on p. 52).

[22] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. “Proofs of
proofs of work with sublinear complexity”. In: International Conference on Finan-
cial Cryptography and Data Security. Springer. 2016, pp. 61–78 (cit. on p. 16).

[23] Alexei Zamyatin. “Merged Mining: Analysis of Effects and Implications”. PhD the-
sis. Master’s thesis, Vienna University of Technology, 2016 (cit. on pp. 6, 13).

[24] Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. “On succinct representa-
tions of binary trees”. In: Mathematics in Computer Science 11.2 (2017), pp. 177–
189 (cit. on p. 40).

[25] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. “Non-Interactive Proofs of
Proof-of-Work.” In: IACR Cryptology ePrint Archive 2017.963 (2017), pp. 1–42 (cit.
on p. 16).

[26] Bruno Biais et al. “Equilibrium bitcoin pricing”. In: Available at SSRN 3261063
(2018) (cit. on p. 50).

35

https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061
https://spectrum.ieee.org/computing/hardware/moores-law-might-be-slowing-down-but-not-energy-efficiency
https://spectrum.ieee.org/computing/hardware/moores-law-might-be-slowing-down-but-not-energy-efficiency
http://web.archive.org/web/20191108020635/https://www.vice.com/en_us/article/aek3za/bitcoin-could-consume-as-much-electricity-as-denmark-by-2020
http://web.archive.org/web/20191108020635/https://www.vice.com/en_us/article/aek3za/bitcoin-could-consume-as-much-electricity-as-denmark-by-2020
http://web.archive.org/web/20191108020635/https://www.vice.com/en_us/article/aek3za/bitcoin-could-consume-as-much-electricity-as-denmark-by-2020
http://web.archive.org/web/20191108020635/https://www.vice.com/en_us/article/aek3za/bitcoin-could-consume-as-much-electricity-as-denmark-by-2020

REFERENCES REFERENCES

[27] Tim Cotten. The Anti-Bitcoin: Inflationary By Design. Accessed on 9.01.2020. Nov.
2018. url: https://web.archive.org/web/20200109025629/https://blog.
cotten.io/the-anti-bitcoin-inflationary-by-design-9972709b10b?gi=

7962602c4cc4 (cit. on p. 6).

[28] Ittay Eyal and Emin Gün Sirer. “Majority is not enough”. In: Communications
of the ACM 61.7 (June 2018), pp. 95–102. doi: 10.1145/3212998. url: https:
//doi.org/10.1145%5C%2F3212998 (cit. on p. 46).

[29] Rodney Garratt and Neil Wallace. “Bitcoin 1, bitcoin 2,....: An experiment in pri-
vately issued outside monies”. In: Economic Inquiry 56.3 (2018), pp. 1887–1897
(cit. on p. 49).

[30] Barclay James. Bitcoin Mining Efficiency Set to Double by 2020. Accessed on
20.11.2019. Medium, Oct. 2018. url: http://web.archive.org/web/202001201
04241/https://medium.com/@sunnyday.james/bitcoin-mining-efficiency-

set-to-double-by-2020-e2abb1052c2f (cit. on p. 52).

[31] Matteo Leibowitz. Bitcoin: Disinflating to Death. Accessed on 20.01.2020. Aug.
2018. url: https://web.archive.org/web/20191206010733/https://medium.
com/@matteoleibowitz/bitcoin-disinflating-to-death-b4ba7b691969 (cit.
on p. 28).

[32] Jordan McKinney. Bitcoin Security in One Chart. Accessed on 20.12.2019. Sept.
2018. url: https://web.archive.org/web/20190712071627/https://medium.
com/coinmonks/bitcoin-security-in-one-chart-694ee3ed8c2d (cit. on pp. 22,
28).

[33] Jordan McKinney. Bitcoin Security: a Negative Exponential. Accessed on 20.12.2019.
Aug. 2018. url: https : / / web . archive . org / web / 20191205170701 / https :

/ / medium . com / coinmonks / bitcoin - security - a - negative - exponential -

95e78b6b575 (cit. on pp. 22, 28).

[34] Julien Prat and Benjamin Walter. “An equilibrium model of the market for bitcoin
mining”. In: (2018) (cit. on p. 49).

[35] K Samani. “Models for scaling trustless computation”. In: MultiCoin Capital (2018)
(cit. on pp. 2, 32).

[36] Buchko Steven. What is Merged Mining? Can You Mine Two Cryptos at the Same
Time? Accessed on 20.11.2019. Nov. 2018. url: https://web.archive.org/web/
20200110082741/https://coincentral.com/what-is-merged-mining/ (cit. on
p. 6).

[37] Viswanathan Surya and Shah Aakash. The Scalability Trilemma in Blockchain.
Accessed on 20.11.2019. Oct. 2018. url: https : / / web . archive . org / web /

20191119002351/https://medium.com/@aakash_13214/the- scalability-

trilemma-in-blockchain-75fb57f646df (cit. on p. 2).

[38] Chainalysis Team. Time Travelling with Satoshi. Accessed on 9.01.2020. Aug. 2018.
url: Time%20Travelling%20with%20Satoshi (cit. on p. 19).

36

https://web.archive.org/web/20200109025629/https://blog.cotten.io/the-anti-bitcoin-inflationary-by-design-9972709b10b?gi=7962602c4cc4
https://web.archive.org/web/20200109025629/https://blog.cotten.io/the-anti-bitcoin-inflationary-by-design-9972709b10b?gi=7962602c4cc4
https://web.archive.org/web/20200109025629/https://blog.cotten.io/the-anti-bitcoin-inflationary-by-design-9972709b10b?gi=7962602c4cc4
https://doi.org/10.1145/3212998
https://doi.org/10.1145%5C%2F3212998
https://doi.org/10.1145%5C%2F3212998
http://web.archive.org/web/20200120104241/https://medium.com/@sunnyday.james/bitcoin-mining-efficiency-set-to-double-by-2020-e2abb1052c2f
http://web.archive.org/web/20200120104241/https://medium.com/@sunnyday.james/bitcoin-mining-efficiency-set-to-double-by-2020-e2abb1052c2f
http://web.archive.org/web/20200120104241/https://medium.com/@sunnyday.james/bitcoin-mining-efficiency-set-to-double-by-2020-e2abb1052c2f
https://web.archive.org/web/20191206010733/https://medium.com/@matteoleibowitz/bitcoin-disinflating-to-death-b4ba7b691969
https://web.archive.org/web/20191206010733/https://medium.com/@matteoleibowitz/bitcoin-disinflating-to-death-b4ba7b691969
https://web.archive.org/web/20190712071627/https://medium.com/coinmonks/bitcoin-security-in-one-chart-694ee3ed8c2d
https://web.archive.org/web/20190712071627/https://medium.com/coinmonks/bitcoin-security-in-one-chart-694ee3ed8c2d
https://web.archive.org/web/20191205170701/https://medium.com/coinmonks/bitcoin-security-a-negative-exponential-95e78b6b575
https://web.archive.org/web/20191205170701/https://medium.com/coinmonks/bitcoin-security-a-negative-exponential-95e78b6b575
https://web.archive.org/web/20191205170701/https://medium.com/coinmonks/bitcoin-security-a-negative-exponential-95e78b6b575
https://web.archive.org/web/20200110082741/https://coincentral.com/what-is-merged-mining/
https://web.archive.org/web/20200110082741/https://coincentral.com/what-is-merged-mining/
https://web.archive.org/web/20191119002351/https://medium.com/@aakash_13214/the-scalability-trilemma-in-blockchain-75fb57f646df
https://web.archive.org/web/20191119002351/https://medium.com/@aakash_13214/the-scalability-trilemma-in-blockchain-75fb57f646df
https://web.archive.org/web/20191119002351/https://medium.com/@aakash_13214/the-scalability-trilemma-in-blockchain-75fb57f646df
Time%20Travelling%20with%20Satoshi

REFERENCES REFERENCES

[39] Jia Yaoqi. Op Ed: The Many Faces of Sharding for Blockchain Scalability. Accessed
on 25.01.2020. Mar. 2018. url: https : / / web . archive . org / web / * / https :

//bitcoinmagazine.com/articles/op-ed-many-faces-sharding-blockchain-

scalability (cit. on p. 5).

[40] Binance Research (Etienne). Case Study: Merged Mining in Dogecoin & Litecoin.
Accessed on 10.01.2020. 2019. url: https://web.archive.org/web/20200107004
526/https://research.binance.com/analysis/merged-mining (cit. on p. 6).

[41] Humoud Alsabah and Agostino Capponi. “Pitfalls of Bitcoin’s Proof-of-Work: R&D
arms race and mining centralization”. In: Available at SSRN 3273982 (2019) (cit. on
p. 24).

[42] Benedikt Bünz et al. “Flyclient: Super-Light Clients for Cryptocurrencies.” In:
IACR Cryptology ePrint Archive 2019 (2019), p. 226 (cit. on pp. 16, 17, 42, 45).

[43] Cambridge Bitcoin Electricity Consumption Index. Methodology. Accessed on 10.12.2019.
Cambridge Centre for Alternative Finance, Oct. 2019. url: http://web.archive.
org/web/20191201124823/https://www.cbeci.org/methodology/ (cit. on
p. 52).

[44] Xi Chen, Christos Papadimitriou, and Tim Roughgarden. “An axiomatic approach
to block rewards”. In: Proceedings of the 1st ACM Conference on Advances in Fi-
nancial Technologies. 2019, pp. 124–131 (cit. on p. 7).

[45] Michael Choi and Guillaume Rocheteau. “Money mining and price dynamics”. In:
Available at SSRN 3336367 (2019) (cit. on p. 28).

[46] Cyril Grunspan and Ricardo Pérez-Marco. “On Profitability of Nakamoto double
spend”. In: arXiv preprint arXiv:1912.06412 (2019) (cit. on p. 22).

[47] Adam S Hayes. “Bitcoin price and its marginal cost of production: support for a
fundamental value”. In: Applied Economics Letters 26.7 (2019), pp. 554–560 (cit. on
p. 50).

[48] Ava Howell. The Longest Blockchain is not the Strongest Blockchain. Accessed on
20.02.2020. June 2019. url: https://web.archive.org/web/20200228100705/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/

2019/june/the-longest-blockchain-is-not-the-strongest-blockchain/

(cit. on p. 44).

[49] Redman Jamie. How Merge Mining and Anchored Blockchain Projects Capitalize on
Bitcoin’s Security Model. Accessed on 20.11.2019. Sept. 2019. url: https://web.
archive.org/web/20190922123748/https://news.bitcoin.com/how-merge-

mining-and-anchored-blockchain-projects-capitalize-on-bitcoins-secur

ity-model/ (cit. on p. 6).

[50] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. “SharPer: Shard-
ing Permissioned Blockchains Over Network Clusters”. In: arXiv preprint arXiv:1910.00765
(2019) (cit. on p. 21).

37

https://web.archive.org/web/*/https://bitcoinmagazine.com/articles/op-ed-many-faces-sharding-blockchain-scalability
https://web.archive.org/web/*/https://bitcoinmagazine.com/articles/op-ed-many-faces-sharding-blockchain-scalability
https://web.archive.org/web/*/https://bitcoinmagazine.com/articles/op-ed-many-faces-sharding-blockchain-scalability
https://web.archive.org/web/20200107004526/https://research.binance.com/analysis/merged-mining
https://web.archive.org/web/20200107004526/https://research.binance.com/analysis/merged-mining
http://web.archive.org/web/20191201124823/https://www.cbeci.org/methodology/
http://web.archive.org/web/20191201124823/https://www.cbeci.org/methodology/
https://web.archive.org/web/20200228100705/https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2019/june/the-longest-blockchain-is-not-the-strongest-blockchain/
https://web.archive.org/web/20200228100705/https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2019/june/the-longest-blockchain-is-not-the-strongest-blockchain/
https://web.archive.org/web/20200228100705/https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2019/june/the-longest-blockchain-is-not-the-strongest-blockchain/
https://web.archive.org/web/20190922123748/https://news.bitcoin.com/how-merge-mining-and-anchored-blockchain-projects-capitalize-on-bitcoins-security-model/
https://web.archive.org/web/20190922123748/https://news.bitcoin.com/how-merge-mining-and-anchored-blockchain-projects-capitalize-on-bitcoins-security-model/
https://web.archive.org/web/20190922123748/https://news.bitcoin.com/how-merge-mining-and-anchored-blockchain-projects-capitalize-on-bitcoins-security-model/
https://web.archive.org/web/20190922123748/https://news.bitcoin.com/how-merge-mining-and-anchored-blockchain-projects-capitalize-on-bitcoins-security-model/

REFERENCES REFERENCES

[51] Ron Lavi, Or Sattath, and Aviv Zohar. “Redesigning Bitcoin’s fee market”. In: The
World Wide Web Conference. 2019, pp. 2950–2956 (cit. on p. 26).

[52] Jacob Leshno and Philipp Strack. “Bitcoin: An Impossibility Theorem for Proof-of-
Work based Protocols”. In: (2019) (cit. on p. 7).

[53] Jamie Redman. ’Lost Coins’ Study Estimates BTC’s True Supply. Accessed on
10.01.2020. Nov. 2019. url: https://web.archive.org/web/20191220233638/
https : / / news . bitcoin . com / lost - coins - study - estimates - btcs - true -

supply/ (cit. on p. 28).

[54] Nathan Reiff. Cryptocurrency ’Burning’: Can It Manage Inflation? Accessed on
10.01.2020. June 2019. url: https://web.archive.org/web/20190714034420/
https://www.investopedia.com/tech/cryptocurrency- burning- can- it-

manage-inflation/ (cit. on p. 28).

[55] Bitmex Research. Bitcoin’s Block Timestamp Protection Rules. Accessed on 15.01.2020.
Oct. 2019. url: https : / / web . archive . org / web / 20191213190859 / https :

//blog.bitmex.com/bitcoins- block- timestamp- protection- rules/ (cit.
on p. 20).

[56] Muhammad Saad et al. “Exploring the attack surface of blockchain: A systematic
overview”. In: arXiv preprint arXiv:1904.03487 (2019) (cit. on p. 21).

[57] Alyze Sam. The Complete Guide to Stablecoins in 2019. Accessed on 9.01.2020.
Oct. 2019. url: https://web.archive.org/web/20191008131920/https://
hackernoon.com/2019-complete-stablecoin-guide-0n9es3zab (cit. on p. 6).

[58] Alex Skidanov and Illia Polosukhin. “Nightshade: Near Protocol Sharding Design”.
In: URL: https://nearprotocol. com/downloads/Nightshade. pdf (2019), p. 39 (cit.
on p. 21).

[59] Alberto Sonnino et al. “Replay attacks and defenses against cross-shard consensus
in sharded distributed ledgers”. In: arXiv preprint arXiv:1901.11218 (2019) (cit. on
p. 21).

[60] Gang Wang et al. “Sok: Sharding on blockchain”. In: Proceedings of the 1st ACM
Conference on Advances in Financial Technologies. 2019, pp. 41–61 (cit. on p. 21).

[61] Alexei Zamyatin et al. Sok: Communication across distributed ledgers. Tech. rep.
IACR Cryptology ePrint Archive, 2019: 1128, 2019 (cit. on p. 21).

[62] Michael Davidson and Tyler Diamond. On the Profitability of Selfish Mining Against
Multiple Difficulty Adjustment Algorithms. Tech. rep. IACR, 2020 (cit. on p. 22).

[63] Yo-Der Song and Tomaso Aste. “The cost of Bitcoin mining has never really in-
creased”. In: arXiv preprint arXiv:2004.04605 (2020) (cit. on p. 52).

[64] Yang Xiao et al. “A survey of distributed consensus protocols for blockchain net-
works”. In: IEEE Communications Surveys & Tutorials (2020) (cit. on p. 4).

[65] Dongfang Zhao. “Algebraic Structure of Blockchains: A Group-Theoretical Primer”.
In: arXiv preprint arXiv:2002.05973 (2020) (cit. on p. 4).

38

https://web.archive.org/web/20191220233638/https://news.bitcoin.com/lost-coins-study-estimates-btcs-true-supply/
https://web.archive.org/web/20191220233638/https://news.bitcoin.com/lost-coins-study-estimates-btcs-true-supply/
https://web.archive.org/web/20191220233638/https://news.bitcoin.com/lost-coins-study-estimates-btcs-true-supply/
https://web.archive.org/web/20190714034420/https://www.investopedia.com/tech/cryptocurrency-burning-can-it-manage-inflation/
https://web.archive.org/web/20190714034420/https://www.investopedia.com/tech/cryptocurrency-burning-can-it-manage-inflation/
https://web.archive.org/web/20190714034420/https://www.investopedia.com/tech/cryptocurrency-burning-can-it-manage-inflation/
https://web.archive.org/web/20191213190859/https://blog.bitmex.com/bitcoins-block-timestamp-protection-rules/
https://web.archive.org/web/20191213190859/https://blog.bitmex.com/bitcoins-block-timestamp-protection-rules/
https://web.archive.org/web/20191008131920/https://hackernoon.com/2019-complete-stablecoin-guide-0n9es3zab
https://web.archive.org/web/20191008131920/https://hackernoon.com/2019-complete-stablecoin-guide-0n9es3zab

REFERENCES REFERENCES

[66] Qiheng Zhou et al. “Solutions to Scalability of Blockchain: A Survey”. In: IEEE
Access (2020) (cit. on p. 3).

[67] Binance Academy. Merged Mining. Accessed on 20.11.2019. url: https://web.
archive.org/web/20191019050229/https://www.binance.vision/glossary/

merged-mining (cit. on p. 6).

[68] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. Bitcoin white
paper. url: https://bitcoin.org/bitcoin.pdf (cit. on pp. 2, 8, 16, 17).

[69] Ethereum wiki project. On sharding blockchains. Accessed on 20.11.2019. url: htt
ps://web.archive.org/web/20191202081742/https://github.com/ethereum/

wiki/wiki/Sharding-FAQ (cit. on pp. 2, 5, 7, 21).

[70] Ethereum Wiki. Ethash. Accessed on 10.01.2020. url: https://web.archive.

org/web/20191202081803/https://github.com/ethereum/wiki/wiki/Ethash

(cit. on p. 20).

39

https://web.archive.org/web/20191019050229/https://www.binance.vision/glossary/merged-mining
https://web.archive.org/web/20191019050229/https://www.binance.vision/glossary/merged-mining
https://web.archive.org/web/20191019050229/https://www.binance.vision/glossary/merged-mining
https://bitcoin.org/bitcoin.pdf
https://web.archive.org/web/20191202081742/https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://web.archive.org/web/20191202081742/https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://web.archive.org/web/20191202081742/https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://web.archive.org/web/20191202081803/https://github.com/ethereum/wiki/wiki/Ethash
https://web.archive.org/web/20191202081803/https://github.com/ethereum/wiki/wiki/Ethash

A ARCHITECTURE DETAILS

A Architecture details

A.1 Merkle-proofs

Merkle trees and Merkle proofs are backbones of the blockchain technology. They were
patented by Ralph Merkle in 1979 and became widely used along with similar digital
signature schemes. [5] Merkle Tree has a binary tree structure with data chunks at the
bottom below tree leaves (fig. 7a). Merkle tree of height h has 2h leaves. In order to
prove integrity of certain data on constructs Merkle Proof (fig. 7b) of length h hashes
(not including Root). Merkle Proof could bee verified after 2h hash calculations. In

Root

H0

H00

H000

DATA

H001

DATA

H01

H010

DATA

H011

DATA

H1

H10

H100

DATA

H101

DATA

H11

H110

DATA

H111

DATA

(a) Merkle Tree

Root

H0

H00

H000 H001

H01

H010

DATA

H011

H1

H10

H100 H101

H11

H110 H111

(b) Merkle Proof

Figure 7: Merkle

JaxNet Merkle trees are used to efficiently keep integrity of transactions in the body
block. Another instance of usage is Shard Merkle tree. In each instance SHA-3 hashing
algorithm is used in order to achieve better performance. Therefore the size of the Merkle
proof in the solution is often 8h bytes.

A.2 Tree Encoding

The number of binary trees with n+1 leaves is n-th Catalan number Cn. Catalan numbers
and various counting problems in which they appear are well studied in Combinatorics.[8,
19, 24] There is a one-to-one map between binary trees with n + 1 leaves and Dyck
words of length 2n. Also it’s known as correspondence between binary trees and balanced
parenthesis. We use this correspondence to encode binary trees as sequences of bits.
Therefore binary tree with at most n + 1 leaves will be encoded with 2n bits. However,
such encoding always starts from ’1’ or from open parenthesis ’(’. We drop first symbol

40

A.2 Tree Encoding A ARCHITECTURE DETAILS

and get encoding with 2n − 1 bits. Therefore, merge mining tree encoding always have
3n bits.

In JaxNet orange trees have limited size. If say that orange with n+ 1 leaves has the
size n+ 1. Size limit depends on the height h of the Shard Merkle Tree and given in the
table 6 below.

Table 6: Size of Merge-mining tree encoding

Height of
the Shard
Merkle tree

Bound on the
max size of
orange subtree

Max size of
orange subtree
encoding in bits

Max size of
Merge-mining tree
encoding in bits

1 1 2 3

2 2 3 6

3 4 7 12

4 16 31 48

5 30 59 90

h > 5 6h 12h-1 18h

20 120 239 360

Block sizes increase as number grows. Relevant data is aggregated in the table 7.

Table 7: Size of block components

Height of
the Shard
Merkle tree

Max size of
MM tree
encoding, bits

Max size of
shard
proof, bytes

Max size of
merge-mining
proof, bytes

Max size of
BC block
header, bytes

Max size of
SC block
body, KB

1 3 16 32 121 ∼ 32

2 6 32 64 121 ∼ 32

3 12 48 128 122 ∼ 32

4 48 64 512 126 ∼ 32

5 90 80 960 132 ∼ 32

h > 5 18h 32h 192h 120 + d9h/4e ∼ 32

20 360 640 3840 165 ∼ 32

In fact, finding the number of trees with at n + 1 leaves and height less than h is
another well-known problem in Combinatorics and Probability theory. Application of
reflection principle gives the formula to calculate the number mentioned above:(

2n

n

)
−
(

2n

n− 1

)
+

(
2n

n+ 2h

)
−
(

2n

n+ 2h− 1

)
(A.1)

41

B DISCUSSION OF THE FLYCLIENT

Since we take n = 6h it becomes(
12h

6h

)
−
(

12h

6h− 1

)
+

(
12h

8h

)
−
(

12h

8h− 1

)
(A.2)

which could be approximated as

' C6h '
212h

√
π(6h)3/2

O

(
1 +

1

h

)
(A.3)

Even for rather small values of h it is a huge number. This estimate reflects the fact that,
despite some limitations, we provide a huge flexibility for selecting the subset of shards
for merged mining.

It is possible to have an empty orange subtree. In this case encoding has 0 bits. If
Shard Merkle Tree root is magic then any shard was merge-mined. If it’s not a magic
hash then it is assumed that all open shards were merge-mined.

B Discussion of the FlyClient

This subsection is devoted to FlyClient introduced by Bünz et al.[42]. The original paper
with its description contains few flows and the misleading argument. Since this construc-
tion plays an important role in our design it’s reasonable to investigate the issue.

B.1 Flaw in the construction and consensus

B.1.1 Description of the problem

The problem could be described as follows.
The author of the original design claims that the proposed super-light client should

verify all difficulty transitions in the chain. This verification requires the data about
timestamps and block difficulties which is often stored in the block headers. The simplest
way to get an access to this data and verify its integrity is to download necessary block
headers. However, the main purpose of the super-light client is to reduce the number of
headers which should be downloaded. Let’s find answers for the next three questions:

1. How much data is required to be downloaded in the original design of the FlyClient
in order to verify all difficulty transition?

2. Does verification of difficulty transition rules in the original design of the FlyClient
work as intended and reach its purpose?

3. Is there any need in this verification?

Bünz et al. consider a model in which difficulty adjustment occurs every N blocks.
Although difficulty adjustment algorithm vary from one blockchain protocol to another,
a timestamp from at least one block from each N -block interval is required. Therefore,

42

B.1 Flaw in the construction and consensus B DISCUSSION OF THE FLYCLIENT

the number of block headers required for verification of every difficulty transition within
the chain linearly depends on the length of the chain. This is sad since in the original
paper FlyClient is advertised as a super-light client with sublinear chain weight proof
that contains only O(log2 L) headers together with inclusion proofs. However, we observe
that the client which directly verify every difficulty transition has neither polylogarithmic
overhead nor sublinear overhead. It’s nothing but a casual client with linear overhead.
Nevertheless, Bünz et al. claim that the specific variable-difficulty MMR described in
the subsection 6.1 can resolve all issues at once. So let’s move from the question (a) to
question (b).

In the subsection 6.1 Bünz et al. list a series of checks which are ”sufficient for the sim-
plified scenario”. However, one can notice that this list covers only a part of calculations
made in the difficulty transition protocol. Instead of the full check it verifies whether there
is a possible assignment to the difficulty transitions yielding these parameters. Verifica-
tion covers only the part of MMR that was included in the proof. Moreover, verification
of the particular block difficulty often requires timestamp data from the previous epoch.
So only a part of difficulty transition are actually verified. In order to finish the proof the
author of the original design address this problem with the following claim:

”We formally prove this by saying that an adversary that uses invalid difficulty
transitions cannot increase its success probability.”

It’s followed by the Lemma 4. It’s time to move from question (b) to the question (c).
We have already discovered that a reliable verification requires a transmission of the

significant amount of data from the original chain. Another argument against verification
of difficulty transition rules is the fact that it doesn’t prevent the malicious actor from
manipulating timestamps. Attacker who secretly generates a concurrent chain can set
timestamps as he wants. Therefore he can manipulate block difficulties in his favor while
the resulting chain will respect the difficulty transition rules. Interestingly, the similar
statement was proved by Bünz et al. in Lemma 4.

B.1.2 Investigation of the motivation

Let’s investigate why aforementioned verification was established. The author of the
FlyClient claims that this verification is required to prevent the difficulty raising attack
introduced by Banack [15]. In particular, in the introduction on the page 4 it’s written
that

”Without these checks an adversary could create valid proofs with non-negligible
probability by creating few but high difficulty blocks.”

This statement is followed by the ”SPV assumption”:

Assumption 1. (SPV assumption). The chain with the most PoW solutions follows the
rules of the network and will eventually be accepted by the majority of miners.

43

B.1 Flaw in the construction and consensus B DISCUSSION OF THE FLYCLIENT

Also on the page 7 one can read:

”The main intuition for these attacks is that an adversary can mine fewer but
higher difficulty weight blocks such that, because of the increased variance,
they can get lucky and exceed the more powerful honest miners.”

In fact, the model chosen by the author of FlyClient improperly represents commonly
accepted view on the Proof-of-Work consensus and SPV clients.

In the model chosen by Bünz et al. the ”correct” chain is one that is longer. The
role of the longest chain rule in the original FlyClient design is set in Algorithm 1 in
the subsection 4.1. However, the correct chain should be the one in which more work
was executed. Aforementioned work is the aggregate difficulty of the blocks in the chain.
The author of the FlyClient address the problem by introducing ”SPV assumption”.
Actually, this assumption is wrong. It’s a well known confusion about the Proof of Work
consensus.[48] This incorrect implementation of the Proof of Work consensus opens the
door to multiple attacks based on timestamp manipulation.[48] It appears that its very
easy to construct malicious chain that is longer than the heaviest chain maintained by
the honest majority. Moreover, difficulty transitions within it will be correct. The well
known example is Bitcoin’s testnet3 chain. It had suffered from such attacks and became
much longer than Bitcoin’s chain in the main network.

B.1.3 Investigation of Banack’s draft

In the FlyClient original paper aforementioned attacks are ignored. On the other hand,
the difficulty raising attack is mentioned. However, this attack has got a wrong evaluation.

1) First, the paper by Banack is a draft written in 2013. There are some incomplete
arguments in it.

2) The paper written by Banack has nothing to do with the security of light clients and
SPV protocol. It describes the interaction between full nodes maintained by miners.
Some important details of consensus rules are missed.

3) Finally, similarly to St. Petersburg Paradox[14] in Probability Theory, effectiveness of
Banack’s attack is limited by real life restrictions. In particular, the duration of any
attack is always limited. Common PoW consensus rules reject forks which occurred
deep in the chain history. Probability of success and expected profit of the attack is
negligible compared to the significant resources required for its launch. This attack
can harm. However, casual 51% attacks appear to be more affordable and profitable
for malicious actors.

B.1.4 Fixing the problem

One may notice that this attack is similar to martingale strategies in casino games. The
simplest way to prevent such attacks is to set an upper bound on the block difficulty.

44

B.2 Problem with the optimal sampling C REWARD SCHEME DETAILS

The natural bound is the difficulty of the blocks on BC taken with some coefficient. So
we can set the rule that the difficulty of blocks on every SC should be less than maximal
difficulty of blocks on BC within some interval divided by 20. Super Light Client should
reject shard chains with extra difficult blocks. Full nodes should follow this rule too.

Super-light client Rule 1. Nodes that run shard client in sharded blockchain
network should reject SC block which violate the restriction on the difficulty:

D(SC block) ≤ C ·max
S

(BC block) (B.1)

Where C is some coefficient and S is some subset of blocks on the main chain.

B.2 Problem with the optimal sampling

Interestingly, the problems in FlyClient original design[42] are not limited to the determi-
nation of the heaviest chain. There are numerous issues in subsections 5.4 and 6.1. Some
problems tricky and require a thorough discussion like the one above. The attempt to de-
fine and determine the best probability distribution for sampling is a complete fail. Some
errors are rather plain. Description, discussion and resolving these issues goes beyond the
scope of subsection in the Appendices. It’s a subject of the subsequent paper.

According to the Google Scholar search engine aforementioned paper by Bünz et al.
was already cited in at least 7 other paper. Interestingly, there is no mention about
any issues within those papers. Moreover, aforementioned papers assert that FlyClient
is implemented for Ethereum. However, in the original paper it is clearly stated that
FlyClient has a serious compatibility issues with Ethereum blockchain. Therefore Fly-
Client was proposed for ”Ethereum-like blockchain” which has significant differences with
real Ethereum blockchain. So these assertions about the FlyClient are inaccurate and
misleading.

C Reward scheme details

C.1 Complexity of the mining in the blockchain

The goal of this subsection is to set rewards for mining in correspondence with the compu-
tational time spent for mining so that the miner who computed X megahashes will receive
the proportional reward measured in coins. At list we want make the fraction between
reward and computational time to be as close to constant as possible. Computational
time here is not the time spent for mining by certain mining farm but the number of
hashes which were computed.

Let’s consider the block content described the section 2.2. Block headers on BC and
SC contain a specific field often called Bits. It encodes a positive integer target difficulty
or simply target. Even though it is a 256 bit number, 32 bits and some formula are used
to compress and store it in the block. During the mining process the miner composes the
block and calculates its 256 bit mining hash which is discussed in the section 2.9. If the

45

C.2 Setting rewards for the mining C REWARD SCHEME DETAILS

hash considered as binary number is less than target difficulty number then the mining
was successful.

Let’s denote the target as T . Then the probability p to get low hash after single hash
computation is:

p =
number of low hashes

total number of hashes
=

T

2256
(C.1)

We can consider single block mining as a classical Bernoulli process in which we repeat
the block generating procedure until we find the block with a good hash. Here the success
event is ”the low hash found” and failure event is ”the block hash is to too high”. We
don’t know exactly when the success event will occur, however, mathematical expectation
of the number of blocks generated until the success is equal to 1

p
= 2256

T
. So target T is a

good measure of the current complexity of mining in the blockchain.
Here we should place an important disclaimer. In this section we consider an ideal

situation when all miners in the network are honest and follow the prescribed protocol
and timely share information with other nodes. We only calculated the probability to
mine the block but not the probability to get the reward for the mining. In reality the
blockchain may have collisions when two miners simultaneously mined blocks. In this case
only one of the blocks will be placed into the chain according to the consensus protocol
accepted in the network. Therefore, only one of the miners will get a reward. Moreover,
some of the nodes may perform so called ”selfish mining” and increase their reward by
some factor. Many author describes a scenario in which a selfish miner or some coalition
of them avoid sharing information with honest nodes. In Jaxnet we use the fix proposed
in the paper [28].

C.2 Setting rewards for the mining

Suppose we want to set a reward in coins for each mined low hash in such a way that on
average the reward is proportional to the effort made by the mining network. Obviously,
it’s not efficient to track the performance of every miner, every mining farm and every
Application-Specific Integrated Circuit (ASIC). However, according to the appendix C.1
we have an estimate for it. That is

2256

T
(C.2)

On average that is a total number of blocks mined by the whole network before somebody
will find the good hash.

In the classic Bitcoin blockchain, the reward remains fixed for a long time interval.
Then, the block mining reward in this network halves every 210000 blocks. At this moment
we ignore the fees collected by miners in choosing which transaction should be included
to the next block. Our goal is to set mining reward proportional to the mining complexity
T

2256
of the block. Suppose the reward function R is not fixed and depends in some way

on the quality of the hash of the block.

R(block) 6= const (C.3)

46

C.2 Setting rewards for the mining C REWARD SCHEME DETAILS

In terms of statistics our goal is to have the mathematical expectation of the reward for
the mining pool, which is proportional to the complexity of mining. It is estimated as the
mathematical expectation of the number of hashes to be mined before the success.

E(R(block)) = k · E(numb of blocks) = k · 2256

T
(C.4)

where k is some constant coefficient. The probability space here is the set of all possible
mining events which end up with generating some low hash block. This good block is
denoted as ”block”. Although, this block is not unique and it is even possible to have
two good blocks to be generated simultaneously. We will discuss this situation later in
this paper. We assume that the hash function is perfect and all good hashes and all good
blocks are equally likely to be generated.

The shortest way to rich this goal is to set the reward function equal to k · 2256
T

. In
this case

E(R(block)) = R(hash) = k · 2256

T
(C.5)

and everything is fine.
Let us discuss the advantages of this approach for awarding rewards. The main effect

of reward distribution in this way is that we set a coin issuance to be dependent on hash
rate of the network which mines the chain. This effect is more valuable when we have
a network with multiple shards. Each shard of the network perform mining and coin
issuance. If both shards issue coins with the rate proportional to their hash rate we could
set a correspondence between the value of coins in the first and in the second chain so that
we can exchange in one to one rate. The value of the coin will be in direct correspondence
to the amount of computational resources involved in mining of blocks in particular time
interval. In particular every miner in the network will know that no matter what chain
he will choose for mining he will get the same expected reward of issued coins. Really, if
the miner M has a hash rate x of the hash rate of the network then the probability that
he will get the reward R is x. Thus his expected reward is xR. On the other hand the
expected number of hashes that he will calculate during the mining round is x part of the
expected number of hashes given that will be calculated in the whole network during the
mining round. In our model this expected number of hashes calculated during the round
is proportional to the reward. Thus, the expected reward of each miner is proportional to
his effort. However, there maybe different variance of expected reward on each chain. In
our model the chain with higher hash rate will get lower parameter target and therefore
higher complexity of mining the block. If some miner with low hash rate will mine on that
chain he will get rewarded less often than on a chain with lower complexity. Therefore,
his income from mining on chain with high target will be more stable.

Another part of miner’s reward is transaction fees. Any miner will be interested to
direct computational power into mining in the chain which has a higher ratio

aggregate transaction fees

aggregate hash rate of miners on the chain
(C.6)

47

C.2 Setting rewards for the mining C REWARD SCHEME DETAILS

Therefore, the higher number of aggregate transaction fees will stimulate miners to mine
next block on this chain. On the other hand, if there are less transaction requests, mining
and block creation will go slower. Similar to Bitcoin blockchain after some number of of
blocks the difficulty parameter ”target” will be adjusted in order to stabilize the block
creation rate in the network.

The separate case is when there is a collision in the network and the chain temporary
splits into two chains. Then the consensus mechanism comes into play and decides which
chain will become a main chain. Those who were mining this chain will get the reward
by collecting transaction fees and some number of issued coins. The question is whether
those miners who were mining on the second chain or even third chain get any reward. In
the Bitcoin network they don’t get anything and blocks in it become ”orphan blocks” not
used in the network. In the Ethereum network, there is another approach. Blocks outside
of the main chain could become so-called uncle blocks. Uncle blocks get some part of
the reward. The second approach has some advantages with some minor disadvantages.
One important observation here is that there is no much sense in giving high part of
reward to the miners who mine blocks outside of the main chain even though later they
will be incorporated into the chain. It’s crucial to maintain the main chain and thus
have the consensus on what transaction were processed in the network. Even in more
complex protocols proposed or used in Ethereum there is an analogue of the main chain
which has just more complicated building rules. Thus its crucial to stimulate miners to
mine on the main chain and in the case of collision always direct their resources to more
attractive chain. In the case of Bitcoin blockchain the more attractive chain is one which
is longer. Giving more reward to orphan or uncle blocks may stimulate selfish mining
and rise security concerns. On the other hand if we want to make the blockchain network
with large number of transactions and low transaction processing delays we need to have
high block creation rate. When the block creation rate increases collisions in the network
occurs more often. Each such collision involves some amount of mining by some part of the
miners outside the main chain. Moreover, even in the case when there is no any collisions
mining outside the main chain still occurs shortly after the new block creation due to
information transition delays. Internet network is fast, nevertheless, the speed of light is
considered to be a natural limit to convectional ways of transmitting information in time-
space. If the miner on average has half a second delay before he learns that the new block
was created in the network then on average he will spend half a second on mining outside
of the chain each round. For example, in Bitcoin network with 10 minutes rounds that
will result in 3 second of mining time during each hour. If new blocks are created every
30 seconds then wasteful mining will take 1 minute per hour. Thus the aggregate time
which miners spent on mining outside the main chain significantly increases. Therefore
it’s natural to set more fair reward distribution algorithm by assigning part of issued
tokens to uncle blocks.

The essential question is whether the miners get rewarded proportional to their effort
when the collision has occurred on the chain in our model. The answer is as follows.
Whenever the miner mines on the main chain his expected reward is proportional to his
effort. We assume that the mining community in the network follows the protocol, do

48

D ECONOMIC DETAILS

not try to perform 51% attack or any other cheating so that whenever the new block is
created earlier than his counterparts and it was immediately transmitted to the network
then with overwhelming probability it will be adopted by the network and miner will
get his reward. Of course, it’s possible that the miner has high ping, unreliable internet
connection, low karma, bad luck or whatever else and his block won’t get into the chain.
Nevertheless, we assume that such situations won’t be common and it’s each miner’s
interest reduce off-chain mining impact on their income. Our model suggests some part
of reward for uncle blocks. Nevertheless, we expect that mining would be almost always
performed on the main chain. Therefore the paradigm ”expected reward equals to effort”
will hold up to small amendment described above. It worse saying that such collision are
essential part of all blockchain designs and such assumptions are essential part for all of
them. One of the goals of our proposal is to adjust the parameters of our model in the
way that reduces mining time loss due to occasions described above.

D Economic details

D.1 Economic model in Jaxnet

D.1.1 Assumptions about money and monetary rules

Let us make few assumptions about money and monetary rules before delving into the
economic setup. We follow a micro-founded understanding of money, where its fundamen-
tal value converges towards its transaction purpose. [3] Our coin supply is endogenous,
i.e. it depends on economic variables and not on an external authority. However, coin
supply does not abide by the same rules as in standard monetary economics. For one
thing, as liquidity increases into the economy, the price levels decreases, more precisely,
the coin value denominated in other currencies decreases.

Misleadingly, some economists have argued that an equilibrium exists where the value
of a privately issued outside money such as Bitcoin is zero [29]. But this relies on two
strong assumptions:

i) marginal costs of minting are decreasing and,

ii) miners never adjust their supply to market conditions.

If i) can be true with paper money printing, this is not necessarily the case in the cryp-
tocurrency world. In our setting, mining one extra coin requires more electricity (variable
cost) and more computing power (irreversible investment as in [7, 34]), provided the min-
ing pool is already at full capacity. Mining cryptocurrencies is costly, unlike printing
banknotes. Furthermore, we argue that miners are price takers who compete on quan-
tities, exactly like in a Cournot setup 2, where they adjust the quantity of hashpower

2In this setup, assume that there are several mining pools competing with each other. They cannot
compete on the prices of the output (i.e. JaxCoins), since this one is given by market forces. Instead,
they adjust their quantities (here the hash rate) according to the quantities of the other mining pools in
the market.

49

D.1 Economic model in Jaxnet D ECONOMIC DETAILS

according to others’ choices. Therefore, global production depends only on the sum of
marginal costs [16]. This is confirmed by one econometric analysis, where the price of
Bitcoin is closely correlated to its marginal cost of production [47]. In that case, money
supply is function of its underlying cost structure (i.e. mining intensity) on the supply
side and the demand for transnational purposes on the other [26].

Overall, money supply adjustments in our framework follows a sequence such as:

Where:

• p is the price of outputs

• w is the price of inputs

• π is the profit

• M is the monetary mass, i.e. all coins in circulation

• T is the number of transactions over the network

• V is the velocity of JaxCoin

• E[v] is the expected value of JaxCoins for the next period

Here, we can see that the demand and supply adjust sequentially. Output (i.e. new
coins minted) are always an ex post response to higher or lower demand for JaxCoins.
Miners adjust their behaviors to market conditions. Let us suppose there is a drop in
demand for transactions on the network. After this drop, miners will calculate their
expected profit for the next period and allocate the proper amount of computing power
that maximize their profits (i.e. market price of the total amount of coins they can mine
minus their costs). In these conditions, miners always adjust to demand shocks with one
period time lag.

Therefore, this figure shows that there is a feedback loop that can amplify the impact
of demand shocks in the short run. In the particular case where the users’ expected value
drops, they will ditch the coin and drive its value even further down. This is reinforced
by the fact that once created, newly minted coins will be circulating forever and be part

50

D.2 Inflation of the coin price D ECONOMIC DETAILS

of the monetary mass, unless otherwise lost. Miners will adjust and lower their hash rate
to maintain their marginal profits equal to their marginal cost. The converse being true
during a period where demand increases.

Once again, miners are profit driven. They make money in allocating their computing
power. Therefore, the expected value of the coin is directly linked to its marginal cost,
which, we assume, would limit long term volatility.

D.1.2 Short term risks for JaxCoin

At early stages, prices will not be denominated into Jaxcoins as it needs first to be
considered as a medium of exchange. Inflation concerns are set at a more mature stage
of Jaxcoin history. Furthermore, the implementation of smart contract functions into the
Jax.Network will mix things up, as Jaxcoin will not be only a medium of exchange but
also a utility token .

That being said, the primary concern for JaxCoin is a currency crash. Assuming
JaxCoin will follow a logit adoption rate of adoption, prices will not be denominated in
JaxCoin at early stages. At this stage, the platform still needs to attract a sustainable
network effect in a two-sided setup. Thus, our concern is that the currency would not be
stable because of oversupply and will depreciate against other fiat or cryptocurrencies.

In modern times, Reinhart & Rogoff “define as currency crash an annual depreciation
in excess of 15 percent. Mirroring our treatment of inflation episodes, we are concerned
here not only with the dating of the initial crash but with the full period in which annual
depreciations exceed the threshold.” [11]

A GPU/ASIC-based supply would increase the money supply between 18 to 80% year
on year, according to our worst-case scenario. Indeed, the efficiency gains of mining
equipment are forecast to increase by this rate. This will affect primarily the exchange
rate, as the coin will first be denominated in other currencies or cryptocurrencies. Only in
a second time-period, after the adoption diffusion has reached a certain level, that some
inflation can arise. In both cases, we propose some rules to overcome these issues.

D.2 Inflation of the coin price

In this section we are going to discuss the potential decrease of the coin’s purchasing
power in our system. In short, we expect that the amount of goods that one user can buy
with N coins could decline after some interval of time. However, we argue that this level
of inflation will remain low and do not last in the long run.

There are a few reasons which make this thing happen. First, whenever a new block
is created some amount of coins are issued in order to reward miners. These newly
issued coins are added to the total amount of coins already in the system. Therefore,
the total supply of coins grows up. If the demand on the coins grows at the same rate
then purchasing power of the coin remains the same 3. However, if the issuance of coins

3It is assumed here that the velocity of the coin is constant. However, velocity has an impact on price
levels. Indeed, it depends on the behavior of token holders. For instance, if they are willing to hold

51

D.2 Inflation of the coin price D ECONOMIC DETAILS

exceeds the demand of coins its price should go down. Second, we know that efficiency
of mining equipment improves every year. For example, Cambridge Bitcoin Electricity
Consumption Index (CBECI) uses the following data[43] on ASIC efficiency in order to
estimate aggregate power consumption of the Bitcoin network. Also the aggregate hash
rate of miners grows, mostly due to new entrants. This implies that the higher price for
the coin the more profitable its mining and more miners will target their equipment to
mining JaxCoin. Since the rate at which our coin is issued is proportional to the effort
of miners, soon we will get a bunch of new coins in the system. These new coins will
push its exchange rate downwards. Therefore, we do not expect the price of the token
to be significantly higher than its mining cost in the long run. Furthermore, low price
will reduce the mining activity in the network and slow down the coin issuance. In this
scenario the main source of profit is stemming from mining fees. So, cost efficiency of
mining plays a crucial role in adjusting the supply upward or downward.

In order to control monetary issuance and limit supply shocks, we need to get an
estimate of the efficiency gains we have to study how rapidly grows the efficiency of mining
hardware. In this context one might remember the so-called Koomey’s law.[12] It states
that from 1946 to 2009 power efficiency of microprocessors was doubling every 1.57 years.
That is 55.5% of efficiency gains per year. However, in a subsequent work[18], this data
was reexamined. It states that in the new century efficiency gains might be slowing down.
According to the new estimate the doubling occurs every 2.7 years. So, in 2015 there
were 29.3% of efficiency gains on average year on year. Although this data is somewhat
outdated, there is sufficient thorough research on this topic and the current state of
things is not clear. Moreover, technological progress in Application-Specific Integrated
Circuits (ASIC) manufacturing tends to be more rapid than in General Processing Unit
(GPU) manufacturing. Nevertheless, the recent research by Yo-Der Song and Tomaso
Aste [63] that study efficiency improvements in the mining hardware from 2010 to 2020.
However, the methodology in this research differs from our approach. GPU mining and
ASIC mining are not distinguished in the calculation. Therefore, the estimate for the
technological progress given in this study doesn’t accurately address the needs of our
model.

Let us study the efficiency gains of ASICs. Table 8 shows that the list of efficiency
leaders in past 5 years was the following: For the 62 month-period between July 2014
and August 2019 we can determine ASIC with the best efficiency per Joule. We assume
that efficiency of ASICs could be simulated as Geomtric Brownian motion. The common
approach in this setting is to consider logarithms of efficiency of ASICS and approximate
them in least square metric with a linear function of time.

Unsophisticated computation in Octave gives us the estimated coin growth rate of
80, 35 percents year on year or 5 percents per month.

Other studies of ASIC’s efficiency could be found here [21, 30].

the coin for a long time period, velocity will be low. This means that more coins are needed to fill the
transaction needs of the network. Unfortunately, velocity is very complicated to measure, and we do not
wish to provide inaccurate forecasts on this account

52

D.2 Inflation of the coin price D ECONOMIC DETAILS

Table 8: ASICs efficiency leaders timeline

Name of the ASIC Release date Efficiency (J/Gh)

Bitmain Antminer S3 07.2014 0.77

Bitmain Antminer S3 12.2014 0.51

Bitmain Antminer S7 09.2015 0.27

Bitmain Antminer S9 (11.5Th) 06.2016 0.1

Ebang Ebit E10 02.2018 0.09

ASICminer 8 Nano Pro 05.2018 0.05

Bitmain Antminer S17 Pro (53Th) 04.2019 0.04

Of course, it is doubtful that this level of efficiency could be achieved by any mining
farm. First, buying and maintaining mining equipment costs huge amount of money.
Second, besides mining hardware there is network hardware. It costs money and consumes
electricity. Its efficiency vary from one data-center to another. Third, some mining farms
may have access to cheaper electricity. For instance, they purportedly utilize the heat
from mining rigs.

Let us now turn to GPU mining.
Again we take the logarithm of the efficiency and apply a linear approximation in least

53

D.2 Inflation of the coin price D ECONOMIC DETAILS

Table 9: GPU hashes per Joel efficiency table

Name of
the GPU

hash
algorithm

Release
date

hashrate
Mhashes/s

Power
consumption W

Efficiency
(Mh/J)

Rx 380 Ethash 06.2015 19 140 0.219

Rx 390 Ethash 07.2015 16.5 220 0.075

Rx 480 Ethash 06.2016 29.5 135 0.136

Rx 580 Ethash 04.2017 30.2 135 0.224

Vega 56 Ethash 08.2017 36.5 210 0.174

Radeon VII Ethash 02.2019 78 230 0.339

GTX1060 (6GB) Ethash 07.2016 22.5 90 0.25

1070 Ethash 06.2016 30 120 0.25

1660TI Ethash 02.2019 25.7 90 0.286

2060 Ethash 01.2019 27.6 130 0.212

2070 Ethash 10.2018 36.9 150 0.243

2080TI Ethash 09.2018 52.5 220 0.239

square metric. Unsophisticated calculations in Octave give us inflation of 18 percents per
year.

In either case, we just provided a rough approximation as we lack data points to be
more precise. This is due to the fact this market is quite new and we do not have much
hindsight on the potential efficiency gains in the long run, especially with ASIC circuits.

One might question why other mining expenses are not taken into account. As we
know from the section 3.3, expenses on mining hardware and electricity are much higher
than other expenses. The price of the certain mining appliance is not fixed. The highest
price on the new model of ASIC is within first few weeks after its release on the market.
Then its price dramatically deteriorate until power efficiency of the hardware becomes
insufficient to compete with new models and keep mining profitable. We can conclude
that the price of the ASIC completely depends on the profit they could bring during
there lifespan. Interestingly, the most important property of these equipment is power
efficiency.

One might question why we don’t use the data about hash rate dynamics and USD-
cryptocurrency exchange rates. We posit that cost of hash computation can be derived
from this data. The problem is that the price of the cryptocurrency is highly speculative
and volatile. The price can plummet within a short period of time. However, these ups
and downs do not imply that mining hardware becomes worth in hash computations.

54

D.2 Inflation of the coin price D ECONOMIC DETAILS

55

	Introduction
	Need for a global decentralized currency.
	Paper organization
	Scalability of the distributed network

	Architecture
	Solution Overview
	Concepts and notations
	Sharding of the distributed network
	Merged mining
	Nonstandard block reward allocation schemes
	Main idea of the solution

	Block Content
	Mining scheme
	Merged mining proof
	Shard Merkle Tree
	Magic hashes
	Merged Mining Proof
	Orange subtree and encoding

	Expanding the Network
	Block Verification
	Super light client
	Timestamps and difficulty
	Difficulty Adjustment Algorithm
	Timestamp Window

	Hashing algorithms
	Cross-shard transactions
	Security model
	51% attacks
	Timestamp cheating
	Attacks on Proof of Merged Mining mechanism
	Attacks on shard expansion mechanism

	Blockchain Economics
	Setting rewards in Jaxnet
	The economics of JaxCoin
	Overview of the blockchain economics
	Excessive coin supply?
	Coin creation management
	Naive approach and obstacles
	Proposal of the mechanism

	Conclusions
	Addressing Scalability Trilemma
	Open questions for further research

	Architecture details
	Merkle-proofs
	Tree Encoding

	Discussion of the FlyClient
	Flaw in the construction and consensus
	Description of the problem
	Investigation of the motivation
	Investigation of Banack's draft
	Fixing the problem

	Problem with the optimal sampling

	Reward scheme details
	Complexity of the mining in the blockchain
	Setting rewards for the mining

	Economic details
	Economic model in Jaxnet
	Assumptions about money and monetary rules
	Short term risks for JaxCoin

	Inflation of the coin price

