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Abstract

The existence of some structure in a code can lead to the decrease of security of
the whole system built on it. Often subcodes are used to �disguise� the code as a
�general-looking� one. However, the security of subcodes, whose Hadamard square
is equal to the square of the base code, is reduced to the security of this code,
i.e. this condition is undesirable. The paper �nds the limiting conditions on the
number of vectors of degree r removing of which retains this weakness for Reed�
Muller subcodes and, accordingly, conditions for it to vanish. For r = 2 the exact
structure of all resistant subcodes was found. For an arbitrary code RM(r,m), the
desired number was estimated from both sides. Finally, the ratio of subcodes, whose
Hadamard square is not equal to the square of the original code, was proven to
tend to zero if additional conditions on the codimension of the subcode and the
parameter r are imposed and m→∞. Thus, the implementation of checks proposed
in the paper helps to immediately �lter out some insecure subcodes.

Keywords: post-quantum cryptography, code-based cryptography, Reed�Muller subcodes,
Reed�Muller codes, Hadamard product, McEliece cryptosystem.

1 Introduction

The security of all standardized cryptographic algorithms used all around
the world is based on the complexity of several number-theoretical problems.
They usually are the discrete logarithm or factorization problem. However,
in 1994 P. Shor showed [1] that quantum computers could break all schemes
constructed this way. And in 2001 the Shore's algorithm was implemented
on a 7-qubit quantum computer. Since then various companies have been
actively developing more powerful quantum computers. Progress in this area
poses a real threat to modern public-key cryptography.

There are several approaches to build post-quantum cryptographic
schemes. One approach is to use error-correcting codes. No successful
quantum-computer attacks on �hard� problems from this area are known.
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Classical examples of code-based schemes are the McEliece cryptosystem [2]
and the Niederreiter cryptosystem [3], that are equivalent in terms of security.

The interest in code-based schemes as post-quantum ones can be noticed
while analyzing the works submitted to the contest for prospective public key
post-quantum algorithms which was announced in 2016 by the US National
Institute of Standards and Technology (NIST) [4]. The algorithms that win
this contest will be accepted as US national standards. 21 of 69 applications
�led (that is, almost a third of all works) were based on coding theory. Despite
the fact that some of them were attacked, it seems that this approach looks
quite promising and deserves further study and development. This interest
is also traced in Russian cryptography. Code-based schemes were chosen by
the Technical Committee for Standardization �Cryptographic and Security
Mechanisms� (TC 26) as one of directions in developing draft Russian na-
tional standards of post-quantum cryptographic algorithms.

When one is facing the challenge to synthesize a new code-based scheme,
the �rst thing to think about is the choice of basic code. Some schemes do not
specify the code, thus leaving it to the discretion of the user. Such schemes
are usually more reliable since their security is often directly reduced to NP-
complete problems. Most often, these problems are decoding and syndrome
decoding. However, choosing a special code also has some advantages. For
example, such codes provide asymmetric complexity in solving the decoding
problem for the legal user and adversary. In addition, due to the structure of
the code, the sizes of the public keys can be signi�cantly reduced.

However, the structure can also cause a signi�cant decrease in security of
the code, therefore one of the most important tasks is to �disguise� the code
as a �general-looking� one. One solution is to use subcodes. This approach
allows to �destroy� the structure of the code, retaining the ability to work with
the result in mostly the same way as with the original one. Nevertheless, it is
worth considering that many of proposed systems based on subcodes turned
out to be vulnerable. So in [5] and [6] Ñ. Wieschebrink built e�cient attacks
on some special cases of the Berger�Loidreauo cryptosystem [7], that is based
on subcodes of the Reed�Solomon code. The McEliece cryptosystem based
on subcodes of algebraic geometry codes was attacked in [8]. The digital
signature based on modi�ed Reed�Muller codes and described in [9] was also
attacked during the peer review at the NIST contest.

One of the mechanisms for analyzing codes with a hidden structure is the
use of the technique of Hadamard product of two codes. This method was
used by M. Borodin and I. Chizhov in [10] to improve Minder�Shokrollahi
attack [11] on the McEliece cryptosystem based on Reed�Muller codes. In
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another work [12] this technique allowed Chizhov and Borodin to reduce
the security of the cryptosystem on subcodes of Reed�Muller codes of codi-
mension one to the security of the scheme on full codes. The paper [13]
describes the distinguisher between random codes and Reed�Solomon codes
using Hadamard product.

In our paper the mentioned technique will be used to analyze Reed�
Muller subcodes without restriction on codimension. The main question that
we will try to answer is: which Reed�Muller subcodes do not allow Chizhov�
Borodin's approach. Since the reduction can be performed to a subcode,
which Hadamard square coincides with the square of the original code, we will
look for conditions under which this equality ceases to hold. Codes obtaining
these conditions will be called unstable codes, the others � stable codes. In
addition we will try to compute the probability that a randomly chosen
Reed�Muller subcode is unstable.

In Section 2 the exact structure of all stable subcodes of RM(2,m) is
found. Thus, to provide the security it is necessary to choose at least another
subcode. To be sure that a subcode of RM(2,m) is unstable it is su�cient
to exclude m+ 1 monomials of degree 2. For an arbitrary Reed�Muller code
RM(r,m) in Section 3 we estimate (both from the above and below) the
number of vectors of degree r that must be excluded from the code in order
to distort its square. Finally, in Section 4 we show that the ratio of unstable
subcodes tends to zero (as m→∞) given some additional conditions on the
codimension of the subcode and the parameter r. Thus, it is not enough to
choose an arbitrary Reed�Muller subcode when synthesizing a real scheme. It
is necessary to check the property formulated below as Proposition 4. At the
same time subcodes satisfying this property require additional consideration
since they may have some special structure.

2 The structure of stable RM(2,m) subcodes

Recall that Reed�Muller code RM(r,m) is the set of all Boolean functions
f of m variables such that deg(f) < r. Consider the code RM(1,m). We
look for the minimum number of monomials f1, . . . , fw of degree 2 such that
the code

(RM(1,m) ∪ {f1, . . . , fw})2 = RM(4,m).

Here the squaring operation refers to the squaring of Hadamard. Hadamard
product of two vectors is a vector obtained as a result of component-wise
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product of coordinates of these vectors:

(a1, . . . , an) ◦ (b1, . . . , bn) = (a1b1, . . . , anbn),

and Hadamard product of two codes A and B is the span of all pairwise
products of form a ◦ b, where a ∈ A, b ∈ B.

So we look for minimum number of monomials f1, . . . , fw of degree 2 such
that the code

RM(1,m) ∪ {f1, . . . , fw} (1)

is stable. Obviously, after �nding this number, one can also answer another
question: what is the maximum number of monomials of degree 2 that can
be removed from the code RM(2,m) so that the code

RM(2,m) \ {g1, . . . , gq} (2)

is still stable. And so, after removing (q + 1) vectors, one gets an unstable
code.

Now let us proceed to the graph interpretation of this problem. We match
a subcodeA ⊂ RM(2,m) with a graphG withm vertices labeled x1, . . . , xm.
An edge {xi, xj} is present if and only if monomial xixj ∈ A.

We will say that a graph with m vertices satis�es the property P if

1. the degree deg(v) of any vertex v is not less than (m− 3);

2. if deg(v) = m − 3 and edges {v, u} and {v, w} are missing, then the
edge {u,w} is present.

The case deg(x1) = m− 3 is shown in Fig.1. Lines denote present edges and
dots the missing ones.

Theorem 1. Subcode of the form (1) is stable if and only if the property P
is satis�ed for the corresponding graph.
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Proof. Denote G = (V,E) the graph corresponding to the subcode of form
(1). Note that the condition

(RM(1,m) ∪ {f1, . . . , f`})2 ⊃ RM(4,m) \RM(3,m) (3)

is equivalent to the condition that any induced subgraph of G with 4 vertices
has a subgraph isomorphic to the graph H shown in Fig.2. The edges {a, b}
and {c, d} correspond to degree-2 monomial used to produce the monomial
abcd. Also note that from (3) it follows that subcode (1) is stable if we can
obtain any monomial of degree 4 as product of some fi and fj, then any
monomial of degree 3 can be obtained as product of some fi and some xj,

Now we can prove the necessity. Fix any vertex v. If any 3 incident edges
{v, uj} for j = 1, 2, 3 are missing, then, obviously, the induced subgraph on
vertices v, u1, u2, u3 would not have the necessary subgraph. The contradic-
tion proves that deg(v) > m− 3.

If, however, deg(v) = m − 3 and edges {u, v1} and {u, v2} are missing,
the edge {v1, v2} must be present, as otherwise none of the induced 4-vertex
subgraphs containing vertices {u, v1, v2} will have the necessary subgraph.
Thus, the property P is satis�ed.

Now to the proof of su�ciency. Fix any induced subgraph with 4 vertices.
Obviously, it satis�es the property P for m = 4. If any vertex v has degree 1,
i.e. the edge {v, w} is present, but {v, u1} and {v, u2} are not, then by P
the edge {u1, u2} must be present. Thus, we have edges {v, w} and {u1, u2}
necessary for the H-isomorphic subgraph.

If all 4 vertices have degree at least 2, then we can �nd a simple cycle
in our graph. Obviously, its length is either 3 or 4. If it is 4, the presence
of H-isomorphic subgraph is obvious. Otherwise, we have a triangle u, v, w
and, moreover, the fourth vertex q has degree at least 2. Assume (without
loss of generality) the edge {q, u} is present, then for H-isomorphic subgraph
we can take the edges {q, u} and {v, w}.

From Theorem 1 it is obvious that the minimum number of edges is
obtained in case if the condition P is true for the graph and the degree of
each vertex is (m− 3). It remains to describe such graphs.

Proposition 1. If the condition P is satis�ed for some graph G and the
degree of each vertex is (m − 3), then the complementary graph G is union
of cycles of length at least 4.

Proof. Graph G is triangle-free and all its vertices have degree 2. Choose
an arbitrary vertex u1. It is not isolated, therefore, one can select a vertex
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adjacent to it, call it u2, As deg(u2) = 2, there exists some adjacent vertex
u3 6= u1. Continue in this way until uj coincides with one of u1, . . . , uj−1. Note
that uj cannot coincide with ui for i > 1 as it would mean that deg(ui) > 3.
Thus u1, . . . , uj−1 form a simple cycle. Its length is at least 4, as G is triangle-
free.

Thus, we have described the structure of the graph corresponding to
the minimal stable subcode of form (1). Now let us describe the complete
structure of such codes. Let us call a bamboo graph a tree which either has
one vertex or has two vertices of degree 1 and every other vertices of degree 2.

Proposition 2. If the condition P is satis�ed for some graph G, then the
complementary graph G is a union of cycles of length at least 4 and bamboo
graphs.

Proof. We proceed as in Proposition 1 and try to �nd a cycle in G. But we
can stop in a vertex of degree 1, thus obtaining a bamboo graph. Isolated
vertices are bamboo graphs by de�nition.

Corollary 1. Assume that m > 4. Then minimum number of monomials of
degree 2 needed to get a stable subcode of form (1) is m(m−3)/2; maximum
number of monomials of degree 2 such that the code of form (2) is stable
is m.

Proof. As follows from Theorem 1, we need to consider the subcodes corre-
sponding to graphs satisfying property P . From Proposition 2 it follows that
G has no more than m edges (this bound is exact for graph consisting of cy-
cles). Thus G has at least C2

m−m = m(m− 3)/2 edges. Moreover, it means
that removing not more than m edges we remain in the stable code.

Note that removing m+ 1 or more monomials of degree 2 from the code
RM(2,m) we get an unstable code.

3 Lower and upper bounds for minimal stable RM(r,m)

subcodes sizes

In this section we try to carry out argument for r > 2. That is, we will
look for the minimum number w, such that the code

RM(r − 1,m) ∪ {f1, . . . , fw} (4)

is stable. Here fi is a monomial of degree r. We match a subcode
A ⊂ RM(r,m) with a hypergraph G with m vertices labeled x1, . . . , xm.
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An r-edge {xi1, . . . , xir} is present if and only if monomial xi1 . . . xir ∈ A. In
the general case the condition similar to having an H-isomorphic subgraph
in each 4-vertex induced subgraph is equivalent to condition of the code (4)
being stable. Namely, each set of 2r vertices must be covered by two disjoint
r-edges. Let us denote a graph satisfying this condition by stable graph. Note
about covering monomials of lower degrees is the same as in the case of r = 2.

To �nd the minimum number of monomials to remove for obtaining an
unstable code can be computed by subtracting from the total number of
r-edges the found minimum w. Therefore, we will not dwell on this issue
separately.

In what follows we will use terms �graph� and �hypergraph� interchange-
ably. Denote w(r,m) the mininal number of degree-r monomials needed to
make subcode (4) stable, or, alternatively, minimal number of edges in a
stable r-hypergraph with m vertices.

Proposition 3. For any natural r and m > 2r

w(m, r) > C2r
m /C

r
m−r.

Proof. Note that any set of 2r vertices in a stable graph contains at least
one edge. Moreover, any edge is contained in exactly Cr

m−r such sets. Thus
total number of edges multiplied by Cr

m−r is at least number of all sets of 2r
vertices, which is C2r

m . This gives the necessary bound.

Corollary 2. Any stable graph contains at least 1/Cr
2r edges of a complete

graph.

Proof. The total possible number of r-edges in a graph withm vertices is Cr
m.

Then
C2r
m

Cr
m−r · Cr

m

=
(r!)2

(2r)!
=

1

Cr
2r

.

Let all the vertices of the graph be divided into sets Si, i = 1, . . . , t of
size 2r, intersecting each other in some way. Let the size of maximum pairwise
intersection be h. Let us denote S = {Si}ti=1.

Lemma 1. If h < r/3, then for any set Q /∈ S there are at most two sets
from S such that their intersection with Q have size at least r.

Proof. Assume that Q intersects with at least 3 sets such that intersection
size is at least r. Without loss of generality we assume that the sets are
S1, S2 and S3. Let us denote Q ∩ S1 = A1, Q ∩ S2 = A2, Q ∩ S3 = A3.
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Since |Q| = 2r, then it is obvious that |A1 ∪ A2 ∪ A2| 6 2r. On the other
hand, according to the inclusion-exclusion formula,

|A1 ∪ A2 ∪ A2| > |A1|+ |A2|+ |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|.

Then
3∑
i=1

|Ai| 6 2r + 3h.

By condition |Ai| > r, i ∈ {1, 2, 3}, therefore
3∑
i=1

Ai > 3r.

Whence 3r 6 2r + 3h and h > r/3, which contradicts the condition.

Let us �nd the maximum possible number of edges that can be removed
from the complete graph using the above arguments, such that the graph
remains stable.

Theorem 2. For any natural r > 2, m > 2r and h < r/3

w(m, r) 6 Cr
m − T (r,m, h) · (Cr

2r − 2) ,

where

T (r,m, h) = max
{
t : ∃S1, . . . , St, |Si| = 2r, |Si ∩ Sj| 6 h,

si ∈ {1, . . . ,m} ∀si ∈ Si
}
.

Proof. Note that two disjoint r-edges are su�cient to cover a set of 2r ver-
tices. Thus, it is possible to remove δ = (Cr

2r− 2) r-edges from the complete
graph on the 2r vertices and preserve the stability of it. Obviously, no more
edges can be removed.

Suppose that δ edges are removed from each set from S so that all of
them are covered by at least two r-edges. It remains to verify that there
exists a similar cover for any set of 2r vertices. Since by construction we can
certainly cover any set Si, we will prove that we can also cover any set Q,
|Q| = 2r.

Note that if the cardinality of the intersection with some Si does not
exceed (r−1), then removing edges in it does not a�ect the number of edges
in Q. At the same time, according to Lemma 1, for h < r/3 any set of size
2r can have intersection of size at least r with no more than two sets from
S. If there is only one such set, say, S1, then we have two cases:
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1. |Q ∩ S1| = 2r − 1. In this case there exist some edge e1 not containing
vertex v, {v} = S1 \ Q (as S1 must be covered by two disjoint edges).
Thus, we can take e2 = Q \ e1 (it must be present as we have removed
only edges contained inside sets Si), and {e1, e2} form the disjoint cover
of Q.

2. |Q ∪ S1| < 2r − 1. In this case there are at least two vertices v1 and v2
inside Q \ S1 and the cover can be formed using any two disjoint edges
e1, e2 ⊂ Q such that v1 ∈ e1, v2 ∈ e2.

Now consider the case when there are exactly two sets S1 and S2 in-
tersecting with Q at no less than r vertices. Assume that |A1| > r + h.
Then, according to the inclusion-exclusion formula |A1∩A2| = |A1|+ |A2|−
|A1 ∪ A2| > r + h + r − 2r = h that contradicts with |S1 ∩ S2| 6 h. Thus
r 6 |Ai| 6 r + h, i = 1, 2. So there are at most 2 · Cr

r+h edges removed
from Q. Note that

Cr
2r

2 · Cr
r+h

=
(2r)! r!h!

2r! r! (r + h)!
= r(2r − 1) . . . (r + h+ 1) > 2,

because r > 2 and 2r− 1 > 1. There are Cr
2r/2 pairs of disjoint edges inside

Q, so there remains at least one such pair after removal of 2 · Cr
r+h < Cr

2r/2
edges from Q.

So we obtained a stable graph removing δ edges from a complete graph
for each set from S. It remains to note that |S| is the number of sets of size 2r
whose intersections are not larger than h.

Remark 1. In [14] P. Erd�os and J. Spencer introduce the value m(n, k, t).
It determines the size of the largest set of k-element subsets of {1, . . . , n}
such that any two members of this set intersect in less than t elements. Later
V. R�odl [15] proves that

lim
n→∞

m(n, k, t) =
Ct
n

Ct
k

.

That is, in our case,

lim
m→∞

T (r,m, h) = lim
m→∞

m(m, 2r, br/3c) = C
br/3c
m

C
br/3c
2r

.
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4 The ratio of unstable RM(r,m) subcodes

The standard basis of the Reed�Muller code RM(r,m) is the basis that
includes all monomials of m variables of degree from 0 to r inclusively, i.e.

1, x1, x2, . . . , xm, x1x2, . . . , xm−1xm, . . . , x1 · · · xr, . . . , xm−r−1 · · ·xm.
We consider subcodes of the standard basis of the Reed �Muller code in which
` vectors are missing. This number is called the codimension of the subcode.
Let us denote the set of subcodes of codimension ` by RM `(r,m).

For the given parameter s and the set I = {ij}sj=1 we will call unordered
pairs {A,B} critical partition if:

A ∩B = ∅,
A ∪B = I,

1 6 |A|, |B| 6 r.

Then it is impossible to obtain the monomial xi1 . . . xis after squaring
a subcode if and only if at least one element of each critical partition is
removed. Obviously, the following proposition is true.

Proposition 4. A code is unstable RM(r,m) subcode if and only if at least
one element from each critical partition for some monomial xi1 . . . xis is re-
moved.

Proposition 5. For the given parameter s and the set I the number of
critical partitions is

w(s) =

min{r,s−1}∑
p=max{s−r,1}

1

2
Cp
s .

Proof. On the one hand the sizes of the subsets must not exceed r. On the
other hand the partition must be non-trivial, that is, partitioning into an
empty set and a set, coinciding with I, is unacceptable. Finally, when con-
sidering all partitions, each pair is counted twice.

Let us order in some way (say, lexicographically) the elements of each
critical partition and then the critical partitions themselves. Now we con-
sider any set M consisting of elements of critical partitions and having the
property that for every critical partition M contains at least one element of
this partition. We can encode M with a string α ∈ {1, 2, 3}w(s), where

αj =


1 ⇔ the 1st element of the j-th pair lies in A,

2 ⇔ the 2nd element of the j-th pair lies in A,

3 ⇔ both elements of the j-th pair lie in A;
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We will also write M(α) to denote the set corresponding to a given
α ∈ {1, 2, 3}w(s). It can be easily seen that

|M(α)| = #α(1) + #α(2) + 2 ·#α(3),

where #α(c) is the number of symbols c in the string α.
Let us denote k =

∑r
p=0C

p
m the dimension of the original code (or the

number of vectors in its standard basis). There are exactly two kinds of
unstable subcodes: those containing monomial 1 and those not containing it.
There are obviously C`−1

k−1 subcodes of the �rst kind.
Now we �x s, an index set I and a string α ∈ {1, 2, 3}w(s). Among the

subcodes of the second type there are

C
`−|M(α)|
k−1−2w(s)

ones that satisfy the condition: among the monomials comprising critical
partitions for I exactly monomials fromM(α) are missed. The reason is that
we need to choose `− |M(α)| monomials from all monomials of degree more
than 0 that do not comprise any critical partition (there are k − 1 − 2w(s)
of them).

For a given s there are Cs
m variants of choosing index set I, so we can

consider the following theorem proved.

Theorem 3. The number of unstable RM(r,m) subcodes is

θ =
2r∑
s=2

Cs
m ·

∑
α∈{1,2,3}w(s)

C
`−|M(α)|
k−1−2w(s) + C`−1

k−1.

Theorem 4. If ` = const and r > 2` + 1, then the ratio of unstable
RM(r,m) subcodes tends to zero as m→∞.

Proof. Our goal is the asymptotic estimate of the probability of the event
that after removing ` vectors from the standard basis of the code RM(r,m),
the square of the resulting code will di�er from RM(2r,m). The upper bound
for it is θ/C`

k.We divide this bound into two parts and show the tendency to
zero for each of them independently. For one of them it follows immediately
from the fact that

C`−1
k−1
C`
k

=
`

k
−−−→
m→∞

0,

since k →∞ as m→∞.
Now we consider the value γ/C`

k. Notice that

#α(1) + #α(2) + 2 ·#α(3) = |M(α)| > w(s) = #α(1) + #α(2) + #α(3).
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Then the number of removed vectors that are elements of critical partitions
for s is |M(α)| > w(s) and the total number of removed vectors is `. That
is, w(s) 6 ` and

r∑
p=max{s−r,1}

Cp
s 6 2`.

Therefore, we can consider only parameters s satisfying w(s) 6 `. Then

2w(s) =

min{r,s−1}∑
p=max{s−r,1}

Cp
s 6 2`. (5)

We consider separately two cases. If s > r+1, we have min{r, s−1} = r
and in the sum (5) there is the element Cr

s . Thus

2` > 2w(s) > Cr
s > s.

The last inequality follows from the fact that

Cr
s =

sr

r!
=

(r + 1)

2
· (r + 2)

3
· . . . (s− 1)

r
· s
1
.

If, on the other hand, s < r+ 1, we have max{s− r, 1} = 1 and there is
the element C1

s in the sum (5). Hence

2` > 2w(s) > C1
s = s.

So either way the inequality s 6 2` is satis�ed.
We simplify the upper bound for γ using this inequality and the mono-

tonicity of the binomial coe�cient Ck
n with respect to the parameter k, which

guarantees the increase of the value Ck
n with the increase of k:

2r∑
s=2

Cs
m ·

∑
α∈{1,2,3}w(s)

C
`−|M(α)|
k−1−2w(s) 6

2∑̀
s=2

C2`
m ·

∑
α∈{1,2,3}w(s)

C
`−|M(α)|
k−1−2w(s) 6

6 2` · C2`
m max

s∈[2,2`]

{
C`−z
k−1−2w(s) · 3

w(s)
}
,

where z = minα∈{1,2,3}w(s)

{
|M(α)|

}
.

Note that ` = const and 3w(s) 6 const, since s 6 2`, and w(s) < 2s. The
last is true by virtue of

2s = (1 + 1)s =
s∑

p=0

Ck
s >

1

2

min{r,s−1}∑
p=max{s−r,1}

Cp
s .
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These considerations, as well as the monotonicity of the binomial coe�cient
Ck
n with respect to n and the inequality |M(α)| > w(s), allow us to obtain

the upper bound

const · C2`
m · C

`−w(s)
k 6 const · C2`

m · C`−1
k := ψ.

We proceed to the ratio estimation.

γ

C`
k

6
ψ

C`
k

=
const · C2`

m · C`−1
k

C`
k

=
const · C2`

m · `
k − `+ 1

=
const · C2`

m

k − `+ 1
6 const ·m

2`

2k
.

After tending m to in�nity we can claim that p = 2` + 1 exists, that is,
summand C2`+1

m > m2`+1 is an element of the sum representation of k. Then

const · m
2`

2k
6 const · m

2`

m2`+1
= const · 1

m
−−−→
m→∞

0.

Future research

More accurate estimates on the minimal stable code sizes for general case
are still required, as are better estimates of the ratio of stable subcodes. In
addition, an idea for future research could be to �nd an analogues of the
obtained results for an arbitrary basis of the Reed�Muller code.
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