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Abstract. For more than two decades, proving or refuting the following
statement has remained a challenging open problem in the theory of
secret sharing schemes (SSSs): every ideal access structure admits an
ideal perfect multi-linear SSS. We consider a weaker statement in this
paper asking if: every ideal access structure admits an ideal perfect group-
characterizable (GC) SSS. Since the class of GC SSSs is known to include
the multi-linear ones (as well as several classes of non-linear schemes), it
might turn out that the second statement is not only true but also easier
to tackle. Unfortunately, our understanding of GC SSSs is still too basic
to tackle the weaker statement. As a first attempt, it is natural to ask
if every ideal perfect SSS is equivalent to some GC scheme. The main
contribution of this paper is to construct counterexamples using tools
from theory of Latin squares and some recent results developed by the
present authors for studying GC SSSs.

As a minor contribution, we also study the above two statements with
respect to several variations of weakly-ideal access structures.

Key words: ideal secret sharing schemes, linear secret sharing, group-
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1 Introduction

A secret sharing scheme (555) is used by a dealer to share a secret among a
set of n participants by giving a share to each one. The dealer uses a fixed and
publicly-known sharing map p: So x R — &1 x ..., S,, where Sy is the secret
space, S; is the share space of the i’th participant and R is the randomness
space. Given a secret sy € Sp, the dealer chooses a randomness r € R, according
to some known distribution (which might depend on sq), and then computes the
shares as (s1,...,8,) = p(so,7). The share s; is then privately transferred to the
1’th participant.

The most common notion of security for SSSs is perfect security. In a perfect
SSS, it is required that every subset of participants either fully recover the secret,
in which case the subset is called qualified, or gain no information about it. The
set of all qualified subsets of participants is called an access structure.

The efficiency of a SSS is quantified using the notion of information ratio,
defined to be the ratio between the largest share size and the secret size. The
(perfect) information ratio of an access structure is the infimum of all information
ratios of SSSs that perfectly realize it.



2 Kaboli-Khazaei-Parviz

Linear and multi-linear SSS. The most well-studied type of SSS is the class
of multi-linear schemes. In these schemes, the secret, share and randomness
spaces are all vector spaces and the sharing map is linear. That is, the secret is
composed of some finite field elements and the sharing is done by applying the
sharing map on the secret elements and some randomly chosen elements from
the finite field. When the secret is composed of a single field element, the scheme
is called linear.

Group-characterizable SSS. Group-characterizable (GC) SSSs have recently
been studied in a few works. We will review known results in Section 3. GC
schemes are generalizations of several classes of SSSs, including multi-linear,
abelian and homomorphic® schemes and probably a rich subclass of non-linear
ones.

A GC scheme is defined by a finite group (G, #), called the main group, and a
collection Gy, Gy, ..., G, of its subgroups. The reader may refer to Appendix Al
for basics of abstract algebra. The secret space is the quotient set G/Gy and the
share space of the i’th participant is the quotient set G/G;. To share a secret s €
G/Gy, the dealer chooses a random g € G such that sg = gGy (there are |G|/|Go|
such elements). The shares are then computed as (s1,...,8,) = (9G1,...,9Gn).
That is, the 7’th participant’s share is the coset gG;.

Non-perfect security notions. Several non-perfect security notions for SSSs
have appeared in the literature, notably the following three ones (in decreasing
level of security): statistically-perfect [8], almost-perfect [I5] and quasi-perfect [25,
Chapater 5]. Non-perfect SSSs allow some degree of imperfection in correctness
and privacy, and they differ in how to quantize the amount of missed information
by the qualified sets and leaked information to the unqualified ones. Non-perfect
security notions have been recently studied in [27] and the following two main
results have been proved. First, the information ratio of an access structure with
respect to all non-perfect security notions coincides with perfect information
ratio for the class of linear schemes. Second, for the general class of SSSs (i.e.,
non-linear), information ratio is invariant with respect to all non-perfect security
notions, but it remains open whether it also coincides with perfect security.

1.1 Ideal SSS: an old problem and a new one

A SSS is said to be ideal if the secret size and all share sizes are equal. An
access structure is called ideal if it is realizable by a perfect ideal SSS. Despite
several notable results, characterization of ideal access structures is still an open
problem. We will review the related literature in Section I=3. All known ideal
access structures are realizable by some ideal perfect multi-linear SSS. A long
standing open problem in theory of SSSs (with consequences in matroid theory
too, see Section [A) is to prove or refute the following statement, first raised by
Simonis and Ashikhmin in [B9].

! In a homomorphic scheme, multiplying the corresponding shares of two secrets re-
sults in valid shares for the product of the secrets.
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Statement 1.1 (Multi-linear/Ideal) Every ideal access structure admits an
ideal perfect multi-linear SSS.

It is known that SSSs whose secret spaces are of size two or three are lin-
ear [4]. Recently, Jafari and Khazaei [21] have shown that every ideal perfect
homomorphic SSS can be transformed into an ideal perfect multi-linear scheme
that realizes the same access structure. In another recent work [Z3], the present
authors have shown that every homomorphic SSS is equivalent to some GC SSS
with normal subgroups in the main group (i.e., Go,G1,...,G, are all normal
subgroups in G). Therefore Statement I is equivalent to the following: every
ideal access structure admits an ideal perfect GC SSS with normal subgroups.

Since the original open problem has resisted all efforts for more than two
decades, and GC SSSs are probably a much richer class than the GC schemes
with normal subgroups, it makes sense to first try to prove or refute the following
weaker statement.

Statement 1.2 (GC/Ideal) Every ideal access structure admits an ideal per-
fect GC SSS.

If Statement T2 turns out to be wrong, so does Statement II. If State-
ment 2 turns out to be true, the next step would be—e.g., similar to the
approach of [21]—to see if there exists a way to transform a perfect ideal GC
SSS into a perfect ideal GC scheme with normal subgroups, that still realizes
the same access structure.

1.2 Contributions

Unfortunately, our understanding of GC SSSs is still in its infancy state, and due
to lack of enough tools and techniques we are not yet ready to prove or refute
Statement 3. In this paper, we present the following results.

(I) On group-characterizability of ideal SSSs. The first natural attempt for
proving Statement [, if true, is to see if every ideal perfect SSS is equivalent
to some GC' SSS. Our main result in this paper is to show that this naive
approach fails to work. That is, there exists ideal perfect SSSs which are not
equivalent to any GC scheme. Therefore, more sophisticated methods are
needed to prove the statement, if true. Again, a natural approach for doing
S0, is to find a generic method that transforms any ideal perfect SSS into an
ideal perfect GC scheme, for the same access structure.

Challenges and tools. We remark that our result is not as trivial as it
might seem at first. First, not many examples of non-linear SSSs are known
in the literature. Second, assuming that one finds a candidate, how would
one prove that it is not equivalent to any GC SSS?

Solution. We use the connection between Latin squares and ideal access
structures for the (2,2)-threshold access structure, first realized by Seymour
in [B6]. Once we find such candidates, we use our recent result [23] which
allows one to recognize if a SSS is equivalent to any GC one.



4

(IT)

(IT)

Kaboli-Khazaei-Parviz

On weakly-ideal access structures. Since proving or refuting both State-
ment [0 and Statement I remain challengingly open for ideal access struc-
tures, our next goal is to see if similar statements are satisfied for weaker
notions of ideality.

Four weak variants. In [G], Beimel and Livne have named an access struc-
ture nearly-ideal if it admits a perfect SSS with information ratio arbitrarily
close to one. Also, a nearly-ideal access structure which is not ideal was exhib-
ited in [6]. Another approach to study other notions of weakly-ideal access
structures is to work with non-perfect SSSs instead of perfect ones. Each
non-perfect security notion mentioned earlier leads to a natural notion of
weak ideality for access structures as follows: quasi-ideal, almost-ideal and
statistically-ideal. The recent result of Jafari and Khazaei [22] shows that
these three notions of ideality are equivalent.

Observations. One may wonder if Statement T or Statement 2 holds
true for any of the mentioned variants of weakly-ideal access structures; but
of course, the statements need to be slightly modified (see Questions B2
and BH). We show that none of the four variants of weakly ideal access
structures mentioned above are realizable by “close-to-ideal” multi-linear
SSSs. This result follows by two recent results by Jafari and Khazaei: 1) for
the class of linear schemes, the information ratio of an access structure is
invariant with respect to all non-perfect security notions as well as perfect
security [22] and 2) there exists a nearly-deal access structure that does not
admit a close-to-ideal perfect linear SSS [21]. Also, we show that quasi-ideal
access structures are realizable by “close-to-ideal” GC SSSs, which follows by
the following observations. GC random variables completely characterize the
topological closure of the so-called entropy region [&1] due to a remarkable
result by Chan and Yeung [14]. A direct consequence of this result is that
in the computation of information ratio of access structures with respect
to quasi-perfect security, we can restrict ourselves to the class of GC SSSs.
It is unknown if this is true for perfect or any other non-perfect security
notion. In particular, it remains an open question if the other three variants
of weakly-ideal access structures are realizable by “close-to-ideal” GC SSSs.
A summary of these observations is given in Table I (Section @).

Towards a weak characterization of ideal access structures. Mejia
and Montoya [33] have presented to some extent a characterization theorem
for ideal access structures that admit ideal multi-linear SSSs. It is an inter-
esting topic for research to see if their result can be extended to other classes
of ideal access structures. Since in this paper we are focusing on ideal access
structures that admit GC SSSs, we use this opportunity to provide some
tools which might be useful for the study of such possible extensions to this
class.

1.3 Related works

In this section, we review known and related results about ideal and GC SSSs.
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Ideal SSSs. SSSs were introduced in two independent works by Shamir [B7]
and Blakely [d] for the case of threshold access structures (i.e., a set is qualified
if and only if its size is larger than a certain threshold). Shamir’s scheme was
perfectly secure, but Blakely’s was statistically secure. Secret sharing for general
access structures was introduced by Ito, Saito and Nishizeki [20]. It was proved
by Karnin et. al. [27] that perfect realization is not possible with share sizes
smaller than the secret size. The notions of ideal SSS and ideal access structure
were introduced in a remarkable work by Brickell and Davenport [0], in which
they discovered that every ideal SSS is induced by a matroid. Seymour showed
that the access structures induced by matroids are not necessarily ideal [36]. Ma-~
troids which correspond to ideal SSSs were subsequently called entropic (e.g.,
see [B4]). Ideal SSSs are not only equivalent to entropic matroids, but also to
p-representable matroids [30] and almost affine codes [39]. Despite several impor-
tant works (e.g., see [1,8,d,29-31,8%]), the characterization and classification of
ideal SSSs is still an open problem. Simonis and Ashikhmin [39] proved that the
class of ideal multi-linear SSSs is strictly larger than that of the linear ones (be-
cause, e.g., the non-Pappus matroid is not representable) and raised the question
if every ideal access structure admits an ideal multi-linear SSS.

Recently, Jafari and Khazaei [21] showed that every ideal homomorphic SSS
can be converted into an ideal multi-linear scheme, with the same access struc-
ture. This shows that in the case of ideal access structures, homomorphic and
linear SSSs have the same power. But, for general access structures, Jafari and
Khazaei [21] also showed that homomorphic SSSs outperform multi-linear ones.

Group-characterizable SSSs. The notion of GC random variables was in-
troduced by Chan and Yeung in [I4], where they proved that the GC random
variables are rich enough to completely characterize the (topological) closure of
the so-called entropy region [I1] (defined to be the set of all entropic polyma-
troids). GC RVs include several classes of well-known RVs. Multi-linear, abelian
and Homomorphic SSSs are all known to be GC. In particular in [Z3] it was shown
that every homomorphic SSS is equivalent to some GC scheme with normal sub-
groups in the main group. Additionally, a necessary and sufficient condition was
given for a SSS to be equivalent to some GC scheme (which will be recalled
and used in this paper). In [23], it was also proved that for the class of GC SSSs
whose secret subgroup (Gp) is normal in the main group (G), the almost-perfect,
statistical and perfect security notions all coincide.

GC random variables have also been studied in other works (e.g., [I2,I3,IR,
a0]), which are not directly related to SSSs.

1.4 Paper structure

The paper is organized as follows. In Section B, we present the notations and
basic concepts. In Section B, we review the results of [23], which is a necessary and
sufficient condition for a SSS to be inherently group-characterizable. In Section B,
using the necessary condition mentioned in Section B, we present ideal perfect
SSSs which are not inherently GC. Weakly-ideal access structures are studied in
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Section B. In Section B we recall and study Mejia and Montoya’s classification-
like theorem of ideal access structures that admit ideal multi-linear schemes. The
paper is concluded in Section @.

2 Preliminaries and notation

In this section, we introduce our notation and basic concepts. We refer to [2] for
a survey on SSSs. For the reader’s convenience we review the basic concepts of
abstract algebra in Appendix Al

Notation. We use boldface letters for random variables (RVs). For a positive
integer n, [n] stands for the set {1,2,...,n}. All RVs considered in this paper are
discrete with finite supports. The support and Shannon entropy of a RV x are
denoted by supp (x) and H (x), respectively. The mutual information of RVs x,y
is denoted by I(x : y) := H(x) + H(y) —H(x,y). Also, H(x|y) := H(x) —I(x : y).

2.1 Secret sharing schemes

A secret sharing scheme (SSS) is usually meant to be used by a dealer to share
a secret among a set of participants as follows. The dealer chooses a randomness
according to a pre-specified distribution and applies a fixed and public mapping
on the secret and randomness to compute the share of each participant. This
definition does not consider a priori a distribution on the secret space. In this
paper, we use the following equivalent definition.

Definition 2.1 (Secret sharing scheme) A secret sharing scheme (SSS), on
participants set [n], is a joint distribution II = (Xg,X1,...,Xy), where Xq is the
secret RV with H (xg) > 0 and x; is the share RV of participant i € [n].

A dealer samples (zg,21,...,%,) according to the joint distribution x and
keeps x( as the secret for himself. He then privately transfers the share x; to
participant ¢. If the dealer wishes to share a given secret xy € supp(xp), he
samples from distribution x a tuple (xg,1,...,%,) conditioned on the event
[x0 = xo]. The shares are then determined by the sampled tuple.

Perfect security. The most common type of security notion for a SSS is that of
perfect security. In a perfectly-secure SSS, the secret can be reconstructed only
by qualified subsets and it must remain information-theoretically hidden from
unqualified sets. This concept is formalized using the following two definitions.

Definition 2.2 (Access structure) Let [n] be a set of participants. We refer
to a non-empty subset I' < 21" with & ¢ I', as an access structure if it is
monotone; i.e., if A€ I' and A < B € [n] then B € I'. The elements of I' are
called qualified and those of 2I"\I" are called unqualified.

Definition 2.3 (Perfect realization) We say that a SSS (X, X1,...,Xp) iS a
perfect scheme for an access structure I' on participants set [n] if the following
two conditions hold:
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e (Correctness) H(xg|xa) = 0, for every qualified subset A€ I,
e (Privacy) I(x¢ : x4) = 0, for every unqualified subset A € I'°,

where for a subset A < [n], x4 = (x;);.4 denotes the marginal distribution on
coordinates with elements in A.

Perfect information ratio. There is a well-known parameter, called infor-
mation ratio, for quantifying the efficiency of SSSs. The information ratio of
participant ¢ in the SSS IT = (x¢, X1, ..,Xy,) is defined to be H(x;)/H(xp). The
information ratio of a SSS is the maximum of all participants’ information ratios.
The (perfect) information ratio of an access structure is defined as the infimum
of the information ratios of all SSSs that perfectly realize it.

2.2 Multi-linear secret sharing schemes

The most common types of SSSs fall into the class of multi-linear schemes. In
these schemes, the secret is composed of some finite field elements and sharing
is done by applying some fixed linear mapping on the secret elements and some
randomly chosen elements from the finite field. Several equivalent definitions
exist for multi-linear schemes. Here, we present two definitions, which are known
to be equivalent (e.g., see [23, Appendix C].

Definition 2.4 (Multi-linear SSS) A multi-linear SSS can be defined in any
of the following equivalent ways.

I (linear maps) Let u; : U — U; be a linear map for every i€ {0,1,...,n},
where U and U;’s are all finite dimensional vector spaces on a finite field
F. We refer to (puo(u), p1(w), ..., un(0)) as a multi-linear SSS, where u is a
uniform RV on U.

II. (affine subspaces) Let V be a finite-dimensional vector space on a fi-
nite field F and Vo, Va,...,V, be subspaces of V. We refer to (v + Vo, v +
Vi,...,v+V,) as a multi-linear SSS, where v is a uniform RV on V. Here,
the support of RV v + V; is the set of all affine subspaces parallel to V; (i.e.,
{v+V; | veV} where v+ V; is the translation of V' by the vector v).

III. (Subspace collection) Let T be a finite-dimensional F-vector space and
Ty, T1, ..., Ty be a collection of subspaces of T. Let a be a uniform RV on
T* ={a|a: T —F is a linear functional}, the dual space of T. We refer to
(|1, &1y, - - - elr,) as a multi-linear SSS. Here, o, is the same mapping
as « but its domain has been restricted to T;.

The first definition corresponds to the description which was given in the
beginning of this subsection: simply let u = (s,r) and po(s,r) = s, where s
is the secret and r is the randomness. The second definition is useful to view
the multi-linear schemes as a subclass of group-characterizable SSSs, which is
defined in next subsection. The third definition is closely related to definition of
SSSs in terms of the so-called (multi-target) monotone span programs [3,26]. We
refer to [Z2, Section 2.5] for an explanation of this connection.
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2.3 Group-characterizable SSSs

The notion of GC RVs was introduced by Chan and Yeung in the information
theory literature in 2002 [I4]. Here we tailor the definition for SSSs. It can be
viewed as a generalization of the second definition given above for multi-linear
SSSs.

Definition 2.5 (GC scheme) Let (G, *) be a finite group, Go,G1...,G, be
some subgroups of G and g be a uniform RV on G. We refer to the joint RV
(gGo,gG1, . ..,8Gy) as a group-characterizable (GC) SSS, induced by the tuple
[G: Go,G1,- - ,Gy]. Here, gG; is a RV whose support is the left cosets of G;
in G.

Group-characterizable SSSs generalize several classes of SSSs including multi-
linear ones, as discussed above, abelian ones [21] and homomorphic ones [23].

3 On inherently group-characterizable SSSs

In [23], SSSs which are “equivalent” to some GC scheme have been called in-
herently group-characterizable (IGC). The formal definition is given below.

Definition 3.1 (IGC scheme) A SSS II = (xg,X1,...,Xy) is called inher-
ently group-characterizable (IGC) if there exist a GC SSS II' = (yo,¥1,---,¥n)

and a tuple (fo, f1,---, fn) of mappings f; : supp (x;) — supp(y;) such that the
random variable IT' is identically distributed as (fo(X0), f1(X1),- -, fo(Xn))-

In this section, we recall a theorem proved in [23], which gives a necessary
and sufficient condition for a RV to be IGC. We first present some definitions
and then the theorem.

3.1 Some basic definitions

We recall two group actions? on matrices defined in [23]. The set of all permu-

tations on [m], called the symmetric group of order m is denoted by S,,.

Definition 3.2 (Permutation action) Let M be a matriz with m rows and
o €S,,. The action - M 1is defined to be a matriz with the same number of rows
whose i ’th row is the o (i) th row of M.

Definition 3.3 (Reordering action) Let M = [m;;]mxn be a matriz and de-
note its jth column by MJ. A reordering for M is a tuple f = (f', f%,..., ")
such that f7, j € [n], is a permutation on the set of distinct elements of M.
The action f - M is defined as follows, where f7 acts on the j’th column by

fj M = [f7 (mij)]me'

foM=[f" MU MP - M

2 The action of a group G on a set X is a well-known concept in group theory, defined
by a mapping - : G x X — X, which has some specific properties. We do not need
the complete definition in this paper.



On Ideal and Weakly-Ideal Access Structures 9

Sometimes, reordering of a matrix behaves the same way as permuting the
rows. This was a motivation for the following definition in [23].

Definition 3.4 (Automorphisms group of a matrix) Let M be a matriz
with m rows. The set of all automorphisms of M is defined as follows,

Auwt(M)={c€eS,,:0-M = f- M, for some reordering f of M}.
Each element of Aut(M) is called an automorphism.

It turns out that Aut(M) is a subgroup of S,,. Also, the reordering that
corresponds to an automorphism o is unique, which we denote by f,.

3.2 A necessary and sufficient condition for inherent
group-characterizability

Theorem B, proved in [23], provides a necessary and sufficient condition for a
SSS to be IGC. First we need to define the matrix representation of a SSS.

Matrix representation of a SSS. A SSS on n participants can be represented
by a matrix with n + 1 columns, by considering the distinct elements of the
support of the SSS as the rows of the matrix. Of course, a non-zero probability
needs to be assigned to each row to fully specify the scheme, but for uniform
distributions it can be ignored. In particular, the following two classes of SSSs
are known to be uniformly distributed on their supports: the GC class [I1] and
the ideal perfect class [Bg].

Theorem 3.5 ( [23]) Let II be a SSS, with uniform distribution on its support.
Let M be the matriz representation of II with m rows. Then II is IGC if and
only if for every i,j € [m] there exists an automorphism o € Aut(M) such that
o(i) = j. Additionally, if IT is IGC, then m divides |Aut(M)|.

4 Ideal schemes which are not IGC

In this section, we show that there are ideal perfect SSSs which are not IGC.
The motivation for studying this problem was discussed in the introduction.

We consider the (2, 2)-threshold access structure and use the connection be-
tween SSSs and Latin squares to show the existence of infinitely many non-IGC
ideal SSSs for it. To warm up, we start by showing that a natural non-linear
scheme for this access structure turns out to be IGC.

4.1 An unsuccessful attempt

Consider the (2, 2)-threshold access structure, defined on participants set {p1, p2},
whose only qualified subset is {p1,p2}. There is a simple linear scheme for this
access structure. The secret and randomness spaces are both a finite field F. To
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share a secret s € F, a randomness r € F is chosen uniformly which will be the
share of participant p;. The share of py is s+ r.

One may consider the following more general variant of this scheme, with
the hope to get a non-IGC scheme. The secret and randomness spaces are both
a finite group (H, #), which is not necessarily abelian. To share a secret s € H,
a randomness 7 € H is chosen uniformly which will be the share of participant
p1. The share of ps is s * r. Unfortunately, this scheme is IGC according to the
following proposition, proved in Appendix B.

Proposition 4.1 Let (H,*) be a finite group and s,r be independent and uni-
formly distributed RVs on H. Then, the joint distribution (s,r,s=*r) is IGC.

4.2 Schemes based on Latin squares

It was noticed by Seymour [B6] that there exists a one-to-one correspondence
between ideal SSSs for the (2,2)-threshold access structure and Latin squares.

A Latin square of size n is an n x n matrix with elements in {1,...,n}, in
which none of the entries occur twice within any row or column.

A Latin square of size n can be used to construct a SSS for the (2, 2)-threshold
access access structure. The secret space is the set {1,...,n}. For sharing a secret
s, chosen uniformly from the secret space, we select randomly an entry of the
Latin square that is equal to s. Let 7 and j be the row and column indices of
this entry, respectively. The index i (resp. j) is considered as the share of party
p1 (resp. pa). Clearly, the parties together can reconstruct the secret using their
shares, but they learn no information about the secret alone. Therefore, the
scheme is perfect and ideal.

On the other hand, in a straightforward way, an ideal SSS for the (2,2)-
threshold access structures induces a Latin square. Hence, Latin squares and
ideal SSSs for this access structure are equivalent.

The goal of the remaining two subsections is to show that there exist Latin
squares which correspond to non-IGC SSSs.

4.3 Autotopism group of a Latin square

The autotopism group of a Latin square is a well-studied concept in Latin square
literature (e.g., see [2X]), which turns out to be closely related to automorphism
group of its corresponding SSS. In this subsection, we explore this connection.

Isotope Latin squares. The autotopism group of a Latin square is defined via
the following group action. Let f = (fo, f1, f2) € S3 be a triple of permutations
on the set [n] and LS be a Latin square of size n. We define the action f - LS
as follows:

- first, fo acts on the entries of LS;
- then, f; permutes the rows of LS;
- finally, fo permutes the columns of LS.
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Clearly, f - LS remains a Latin square. We say that two Latin squares LS
and LS’ are isotope if there exists f € S3 such that f- LS = LS'. Now, we are
ready to define the autotopism group of a Latin square.

Definition 4.2 (Autotopism group) Let LS be a Latin square of size n. The
following set is called the autotopism group of LS:

Atp(LS) = {feS LS = f- LS} .

The following easy-to-prove proposition relates group autotopism of a Latin
square to the automorphism group of its corresponding SSS (recall Definition B4).

Proposition 4.3 (Relation between Atp and Aut) Let M be the matriz
representation of the SSS induced by a Latin square LS. Then we have

Atp(LS) = {fs : 0 € Aut(M)} ,

where f, is the unique reordering that corresponds to the automorphism o.

4.4 Counterexamples

We use the following theorem, proved by McKay and Wanless in [32], to show
that there exists infinitely many ideal SSSs which are not IGC.

Theorem 4.4 (Informal [32]) Almost all Latin squares have a trivial auto-
topism group.

Let LS be a Latin square and M be the matrix representation of its cor-
responding SSS. If Atp(LS) = {e}, then by Proposition E=3, the set {f, : o €
Aut(M)} contains only the identity element (reordering). Since M has no re-
peated rows, if a permutation o € Aut(M) is non-trivial, then the reordering
fo will be non-trivial. Therefore, Atp(LS) = {e} implies that Aut(M) = {e}.
Hence, the matrix M is not IGC, because by Theorem BH, the row size of M
must divide the size of the group Aut(M). Thus, we have the following corollary.

Corollary 4.5 There are infinitely many ideal SSSs that are not IGC.

Smallest concrete counterexample. Up to isotopy, the number of Latin
squares of sizen = 1,2,3,4,5isequal to 1,1, 1, 2, 2, respectively. Clearly, inherent
group-characterizability of schemes induced by Latin squares is invariant up to
isotopy. It is possible to check that for n < 4, all schemes induced by non-isotope
Latin squares of size n are IGC. Here is an example of a Latin square of size
n = 5 which does not induce an IGC scheme.

LS =

o x| o wof —
wl| ot = || o
ol ot —| e
—| w0l x| o ot
po| | wo| el i
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5 On weakly-ideal access structures

In this section, we first recall three well-known non-perfect security notions for
SSSs. Then, we review four weak notions of ideality for access structures which
have, explicitly or implicitly, appeared in the literature. In the last three subsec-
tions, we discuss the possibility of realization of weakly-ideal access structures
by optimal schemes from three different classes of SSSs (multi-linear, GC and a
subclass of GC schemes).

5.1 Non-perfect security notions and known results

In this subsection, we recall three well-known non-perfect security notions for
SSSs. Statistical security is a standard relaxation of perfect security, probably
first mentioned in [R]. Almost-perfect and quasi-perfect security notions have
been introduced and studied in [I5, 24, 25]. We refer to [22] for an extensive
study of non-perfect security notions.

Family of schemes. Non-perfect security notions are defined with respect to
a family {ITj}ren of SSSs, where k can be considered as a security parameter.
We assume that the sequence of information ratios of the SSSs in our families
is converging. We refer to the converged value as the information ratio of the
family.

In the following, let I" be an access structure on n participants and {1y} ken
be a family of SSSs, where IT, = (x5,x%,...,x%). We recall that a function
£:N — R is said to be negligible if £(k) = k=),

Statistical security. We say that {II;} is a statistical family for I (or {II}}
statistically realizes I) if:

1. The secret length grows at most polynomially in k; that is, log, [supp(x5)| =
O(k°) for some ¢ > 0.

2. For every qualified set A € I", there exists a reconstruction function RECON 4 :
supp(x¥) — supp(xk) such that for every secret s in the support of x§, the
error probability Pr[RECON 4 (x%) # s|xk = s] is negligible in k.

3. For every unqualified set A € I" and every pair of secrets s, s’ in the support
of x&, the statistical distance § 3. | Pr[x% = z|x§ = s]—Pr[x} = z|x} = 5]
is negligible in k.

Almost-perfect security. We say that {II}} is an almost-perfect family for I"
(or {II}} almost-perfectly realizes I") if:

1. klim H(xE|x¥) = 0 for every qualified set A € I', and
—0

2. klim I(x} : x%) = 0 for every unqualified set B ¢ I'.
—00
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Quasi-perfect security. We say that {II;} is a quasi-perfect family for I" (or
{II;} quasi-perfectly realizes I') if:

— limg_, o % = 0 for every qualified set A € I', and
— limy o (H(()x)’:?) = 0 for every unqualified set B € I'“.

Non-perfect information ratios. With respect to each security notion, a
variant of information ratio for an access structure can be defined. For example,
the quasi-perfect information ratio of an access structure is defined to be the
infimum of the information ratios of all families of SSSs that quasi-perfectly
realize it. Statistically-perfect and almost-perfect information ratios are defined
similarly.

Known results about non-perfect SSSs. The following relation holds for the
information ratios of an access structure with respect to the mentioned security
notions and for every class of SSSs:

quasi-perfect < almost-perfect < statistical < perfect

(for any class of schemes) . (5-1)

For the GC SSSs whose secret subgroup (Gp) is normal in the main group
(G), the following equivalence has been proved in [23]. That is, if {II;} is an
almost-perfect family for an access structure I', then for every sufficiently large
k, I} is a perfect scheme for I'. The equivalence for the multi-linear class has
also been mentioned in [H].

almost-perfect = statistical = perfect

(for GC schemes with normal secret subgroup) . (5.2)

For multi-linear and general classes of SSSs, it has been proved in [22] that
the following relations hold for the information ratios of an access structure with
respect to different security notions:

quasi-perfect = almost-perfect = statistical (5.3)
(for general schemes), '
quasi-perfect = almost-perfect = statistical = perfect

(for multi-linear schemes). (5-4)

An interesting property of quasi-perfect security is that GC SSSs are “com-
plete” for computing the corresponding information ratio. It is an open prob-
lem if this is also true for other security notions. The following proposition
has been implicitly mentioned in [25]. The proof follows from a well-known re-
sult by Chan and Yeung [I4] stating that: for every scheme (random variable)
II = (X;)iepuipo}, there exists a sequence {II;} of GC schemes, with Il =
(xF)icPuipo}» such that for every A < P U {po} it holds that limy_, +H(x%) =
H(x
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Proposition 5.1 (Completeness of GC SSSs for quasi-perfect security)
The quasi-perfect information ratio of every access structure can be computed by
restricting the computation to the class of GC schemes.

5.2 Four variants of weakly-ideal access structures

Recall that an access structure is called ideal if it admits an ideal perfect SSS.
One can consider weaker notions of ideality for access structures. In [6], an
access structure has been called nearly-ideal if its (perfect) information ratio
is one. Weaker variants can be defined with respect to the non-perfect security
notions mentioned in the previous subsection. In [[H], an access structure has
been called almost-ideal if its almost-perfect information ratio is one. One can
define statistically-ideal and quasi-ideal access structures similarly (we are not
aware of any explicit mention of these notions in the literature).
The following relation holds between different notions of ideality:

“«—
quasi-ideal < almost-ideal < statistically-ideal - nearly—idealiideal (5.5)
=

The equivalence between quasi-ideal, almost-ideal and statistically-ideal ac-
cess structures follows from relation (623). Notice that an ideal access structure is
nearly-ideal too. However, the converse is not necessarily true. A notable coun-
terexample, introduced by Beimel and Livne [B, page 2641], is a well-known
12-participant access structure, called F A F. It has both Fano an non-Fano ac-
cess structures as minors. The (perfect) information ratio of this access structure
is one but it does not admit an ideal perfect SSS.

It remains an open question whether statistically-ideal and nearly-ideal no-
tions are equivalent. In [[H], Csirmaz has presented an explicit almost-ideal (and
hence statistically-ideal) access structure with 174 participants. Finding smaller
such access structures is an interesting research problem that might lead to the
resolution of this open question.

5.3 Impossibility of realization by multi-linear schemes

Recall that it is a long-standing open problem whether every ideal access struc-
ture admits an ideal multi-linear SSS [3Y]. It is then natural to ask a similar
question about any of the four variants of weakly-ideal access structures.

Question 5.2 (Multi-linear /Weakly-ideal) Is any variant of weakly-ideal
access structures “optimally realizable” by multi-linear SSSs?

Let us first present a formal definition of optimal realizability by a class of
SSSs (e.g., multi-linear or GC).

Definition 5.3 (Optimal realizability) Let C be a class of SSSs. We say that
an almost-ideal access structure I is optimally realizable by class C, if there exists
a family of class-C SSSs that almost-perfectly realizes I' and the sequence of their
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information ratios converges to one. A similar definition can be given for the case
of nearly-ideal, statistically-ideal and quasi-ideal access structures, with respect
to the perfect, statistically-perfect and quasi-prefect realizations, respectively.

Claim 5.4 The answer to Question B3 is negative for all four variants of
weakly-ideal access structures.

Proof. By relation (B4), it is sufficient to prove the claim only for the case of
nearly-ideal access structures. Recall that at the end of Section B2, we men-
tioned that Beimel and Livne have presented an example of a nearly-ideal access
structure called F A F. Recently, Jafari and Khazaei [21] showed that the exact
value of its information ratio is 4/3 for the class of multi-linear SSSs. Therefore,
it is not optimally realizable by multi-linear schemes. This completes the proof
of our claim. m]

5.4 Possibility of realization by GC schemes

Recall that it also remains open if every ideal access structure admits an ideal
GC SSS. Similar to Question B3, we can raise the following question.

Question 5.5 (GC/Weakly-ideal) Is any variant of weakly-ideal access struc-
tures “optimally realizable” by GC SSSs?

By Proposition B, in the computation of information ratios of access struc-
tures with respect to quasi-perfect security, it is sufficient to restrict to the class
of GC SSSs. Therefore, the answer to Question B is positive for quasi-ideal
access structures. As we mentioned earlier, it is an open problem if GC SSSs are
complete for perfect or any other non-perfect security notion. It also remains
open if the the answer to Question B8 is positive for the other three variants
of weakly-ideal access structures (which is a special case of the former open
problem).

5.5 Possibility of realization by GC schemes with normal secret
subgroup

Motivated by relation (E2), one can raise the following question.

Question 5.6 (GC with normal secret group/Weakly-ideal) Is any vari-
ant of weakly-ideal access structures “optimally realizable” by GC SSSs with nor-
mal secret subgroups?

The problem remains open for all four variants. However, by (52) the answer
for almost-ideal, statistically-ideal and nearly-ideal access structures are all the
same.
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6 Mejia and Montoya’s characterization-like theorem for
ideal access structures

In this section, we recall a result by Mejia and Montoya [33] for characterizing
ideal access structures that admit ideal multi-linear schemes. It is an interesting
research problem if their result can be extended to ideal access structures that
admit ideal GC schemes. In this section, we present some notions which might
be useful to explore this idea.

6.1 Matroids induced by ideal access structures

There are several equivalent definitons for matroids (e.g., see [34]). The following
is suitable for the purpose of this paper.

Definition 6.1 If Q is a finite set and r : 29 — 7 satisfies the following three
conditions, then M = (Q,r) is called a matroid on the ground set Q with rank
function r:

a) If AcQ, then 0 <r(4) <|A4].
b) If Ac Bc Q, thenr(A) < r(B).
c) IfA,BcQ, thenr(Au B)+r(An B) <r(A)+r(B).

Independent sets and bases. For a matroid M = (Q,r), aset A € @Q is called
an independent set of M if r(A) = | A|. The maximal independent sets are called
bases. It is easy to prove that all bases have the same cardinality.

Let I be an ideal access structure and x = (x;)}_, be an ideal secret sharing
scheme that realizes it. Define Q = {0,1,...,n} and the function r : 2¢ — R as

r(A) = H(x4)/H(xo).

It can be shown [iT0] that the tuple (@, ) is a matroid with rank function r
and the ground set Q. This matroid is independent of the scheme and is uniquely
determined by the access structure. We notate the matroid induced by an ideal
access structure I" by Mp.

We need the following definitions for this section.

Definition 6.2 (Matroid representation and entropic matroid) Let I be
an access structure and M be its induced matroid. Fvery ideal SSS for I' is called
a representation for Mp. Matroids that have such representations are called en-
tropic.

Definition 6.3 (Multi-linear/GC matroid) We call a matroid multi-linear
(resp. GC) if it is representable by an ideal multi-linear (resp. GC) SSS.

Definition 6.4 (Multi-linear/GC ideal access structure) We call an ideal
access structure multi-linear (resp. GC) if it admits an ideal multi-linear (resp.

GC) SSS.
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6.2 A characterization theorem for ideal multi-linear access
structures

We recall that an access structure is called homogeneous if all its minimal qual-
ified subsets have the same size. Related to a given matroid, Mejia and Mon-
toya [B3] define a homogeneous access structure as follows.

Definition 6.5 (Mejia-Montoya’s access structure) Let M = (Q,r) be a
matroid. Define the access structure Gen(M) as follows:

Gen(M) ={AcQ:r(4) =r(Q)}

Clearly, Gen(M) < 2% is an access structure on the participant set (. Fur-
thermore, the size of all its minimal qualified sets is r(Q). Hence, Gen(M) is
homogeneous.

Notice that by starting from an ideal access structure I' on n participants,
we end up with an access structure Gen(Mp) on n + 1 participants. It is not
directly clear if Gen(Mr) is ideal too. However, if I admits an ideal multi-linear
scheme, the following theorem proved by Mejia and Montoya [33], shows that
Gen(Mr) is also ideal and admits an ideal multi-linear scheme. The converse is
also trivially true even when Gen(M) is only ideal (i.e., without requiring to
be realizable by an ideal multi-linear scheme).

This theorem in some sense states that to characterize ideal multi-linear
access structures, it is sufficient to characterize ideal multi-linear homogeneous
ones. It remains open if a similar theorem holds for other classes of SSSs such
as GC schemes. In later subsections, we provide some tools that might be useful
to explore such extensions.

Theorem 6.6 (characterization theorem) Let I be an access structure. Then
I" is ideal multi-linear if and only if Gen(Mp) is ideal multi-linear.

6.3 Extended complementary information

Below, we introduce two notions called complementary information (Col) and
extended COI (ECol). The former is defined for two jointly distributed RVs and
the latter for a vector of jointly distributed RVs. In some sense, the Col is similar
to the common information property [L8].

Definition 6.7 (Col) Letx,y be two jointly distributed RVs such that H(x|y) =
0. We say that (x,y) satisfies the complementary information property if there
exists a RV z such that the following properties hold:

1. H(zly) =0
2. 1(z:x)=0
3. H(y) = H(x) + H(z)



18 Kaboli-Khazaei-Parviz

Definition 6.8 (Extended Col property) Let (y,x1,...,X,) be a vector of
jointly distributed RVs such that

H(x;ly) = 0 and H(x;) = H(x;), for all i,j € [n]. We say that [y; (X;)ic[n]]
satisfies the extended complementary information property (ECol) if there exists
a RV z such that the following conditions hold:

1. Hialy) =0,
2. (z:x1--x,) =0,
3. H(y) = H(z) + H(x;), for all i€ [n].

It is easy to show that the multi-linear RVs satisfy the Col property. Never-
theless, multi-linear RVs do not necessarily satisfy the Col property. However,
as we will see in the proof of Proposition B, for a given multi-linear RV, it is
possible to construct a “closely related” multi-linear RV that satisfies the ECol

property.

6.4 ECol for matroids

In order to present the result of Mejia and Montoya in a way that one can think
about its possible extensions (e.g., to GC schemes), we need to define the notion
of ECol for matroids as well.

Let X = (x9,X1,.-.,Xy) be an ideal SSS for an access structure I". For a basis
B of the induced matroid Mr and an element b € B, notate Xpp = (X;)ien\p-
Since the scheme is ideal, it then follows that H(X g ;) = (|B| — 1)H(xo). The
following definition is then meaningful, because all bases of a matroid have the
same size.

Definition 6.9 Let M be an entropic matroid and denote the set of its bases by
B. We say that M satisfies the ECol property if there exists a representation X =
(X0,X1, .-, Xp) for M such that [X; (Xp.b)BeBber] satisfies the ECol property.

Proposition 6.10 Any multi-linear matroid satisfies the ECol property.

Proof. Let M be a multi-linear matroid and X = (x¢,X1,...,X,) be a repre-
sentation for it, induced by a subspace collection (7p,T1,...,T,) of a vector
space T (see Definition ZA-IIT). We show that [X; (X ps)pen,rer] satisfies the
ECol property. For any base B of M and b € B define T = ZiGB\b T;.

It is possible to find a positive integer k such that the set T\ J!_, T¥ has
at least k(dimT — dim7T}) linearly independent vectors. For this &, define the
subspace W of T* as the subspace generated by the obtained linearly inde-
pendent vectors. Clearly, for all i € [n], it holds that 7% = W @ TF. Let
X' = (x(,%},...,%,,) be the multi-linear scheme induced by the vector space
@le T and its subspaces

k k k
(T3, T1,....T,) = (P To.PT,.... PT).
i=1  i=1 i=1
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Clearly, X’ is a multi-linear representation for the matroid M. Also, if z is
the random variable induced by the subspace W, then according to the above
discussion the tuple [X'; (X%,b) BeBpep] satisfies the ECol property with com-
plementary information z. Therefore, the matroid satisfies the ECol property.

o

The following theorem is useful for thinking about generalization of Mejia
and Montoya’s result [B3].

Theorem 6.11 Let M be an entropic matroid which satisfies the ECol property.
Then the access structure Gen(M) is ideal.

Proof. Let B be the set of bases for M. Since M satisfies the ECol prop-
erty, then there exists a representation X = (xg,X1,...,X,) for M such that
[X; (X B,p) Ben.ver] satisfy the ECol property. Let z be the random variable that
realizes it. Clearly, the tuple IT = (z,X¢,X1,...,X,) is an ideal secret sharing
scheme for Gen(M) in which z is the secret RV and x; is the i’th participant’s
share RV. O

Corollary 6.12 ( [83]) If M is a multi-linear matroid, then Gen(M) is an
ideal multi-linear access structure.

Corollary 6.13 If I' is an ideal multi-linear access structure, then Gen(Mp) is
an ideal multi-linear access structure too.

Since GC matroids are a natural generalization of the multi-linear ones, we
may wonder if these matroid satisfy the ECol property too. If so, one can then
apply the above theorem to extend Mejia and Montoya’s characterization theo-
rem (Theorem BIT).

Question 6.14 Is it true that any GC matroid satisfies the ECol property.

We remark that unlike multi-linear random variables, the GC random vari-
ables do not necessarily satisfy the Col property (Definition 622). The reason is
that the notion of complemented group only exists for supersolvable groups with
elementary abelian Sylow subgroups [[9, Theorems 1& 2]. Nevertheless, this does
not directly show that the answer to the above question is negative. For example
if Statement I turns out to be true (i.e., every ideal access structure admits an
ideal perfect multi-linear SSS), the answer to the above question is positive too.

7 Conclusion

It is a long standing open problem in secret sharing and matroid theory to prove
or refute if every ideal access structure is realizable by an ideal multi-linear SSS.

In this paper, we first proposed to study a weaker statement asking if every
ideal access structure is realizable by an ideal group-characterizable (GC) SSS.
As a first step towards attacking this problem, we studied the easier problem
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if every ideal perfect SSS is GC, up to relabeling the secret and shares. Even
though the answer turned out to be negative, the proof was not as trivial as it
might look at a first glance.

Then, we studied four variants of weakly-ideal access structures; that is,
nearly-ideal, statistically-ideal, almost-ideal and quasi-ideal. We then raised the
same questions again; that is, whether every variant of weakly-ideal access struc-
tures is optimally realizable by a family of multi-linear or GC secret sharing
schemes with information ratio one. For the class of multi-linear SSSs, the an-
swer turned out to be negative for all variants. However, for the class of GC
schemes, the answer was shown to be positive for the case of quasi-ideal access
structures. The remaining cases were left open. Table M shows a summary of
known results and open problems. The table also includes the possibility of op-
timal realization by GC SSSs with normal secret subgroups which was shortly
discussed in the paper.

In the paper, we also explored a classification-like theorem by Mejia and
Montoya for ideal access structures that admit ideal multi-linear schemes and
suggested some tools for exploring its possible extensions for GC schemes.

weakly-ideal

ideal|nearly-ideal|stat.-ideal |almost-ideal|quasi-ideal
multi-linear ? X X X X
GC with normal secret subgroup| 7?7 ? ?
GC ? ? ‘ ? ‘ ? v/

Table 1: Optimal realizability of different types of ideal access structures by
multi-linear and GC schemes

We hope that this paper incites motivation for researchers with interests
in group-theory, combinatorics and matroid theory to study the GC random
variables, introduced by Chan and Yeung in the context of information theory
further. We believe that this may lead to the resolution of some long-standing
open problems in the theory of secret sharing and matroid theory.
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A Basics of abstract algebra

For the reader’s convenience, we recall the basic concepts from group theory
which are used in this paper. They can be found in any standard textbook in
abstract algebra, e.g., [I7].

Group. A group is a tuple (G, *) where G is a set and * is a binary operation
on G that satisfies the group axioms: closure (i.e., a * b € G for every a,b € G),
associativity (i.e., a = (b*c) = (a=b) = ¢ for all a,b,c € G), identity (i.e., there
exists an element e € GG called the identity such that a * e = e * a = a for every
a € G) and invertibility (i.e., for every a € G there exists an element a~! € G

such that a * a

l=qgtlxa=e).
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Subgroup. A subset H of a group G is called a subgroup of G if it satisfies the
group axioms under the operation of G. By Lagrange’s theorem, the order of a
subgroup H of group G divides the order of G; i.e., |H| | |G|.

Coset and quotient set. Given a group G and a subgroup H, and an element
g € G, one can consider the corresponding left coset: aH := {ah : h € H}. The
set of all left cosets of a subgroup H in a group G is called the quotient set,
denoted by G/H. In particular, |G/H| = |G|/|H|. The left cosets of a subgroup
partition the group.

Normal subgroup and quotient group. A subgroup N of a group G is
called normal if it is invariant under conjugation by members of G; that is,
gNg~! = N for all g € G. Indeed, for a normal subgroup N of G, the quotient
set G/N admits a natural group structure, called the quotient group. The group
operation is defined by (aN) # (bN) = (a * b) N which can be shown to be well-
defined.

B Proof of Proposition &1

One can use Theorem BA to show that the scheme (s,r,s * r) is IGC. Here,
we directly present a group characterization [G : Go, G1, G2] for it. Denote the
trivial subgroup of H by 1 and let (H®, ) be the opposite group of H, where it
has the same elements and the product of r,s € H° is defined to be r- s := s=*7r.
Let

G =Hx H°,
Go=1x H®,
G1:H><1,

Gy ={(z,z7 ') |z e H} .
It is easy to check that the G;’s are subgroups of G. We show this only for G.
Since Gy is trivially closed under inversion, it is enough to show that it is closed
under multiplication. Let (z,z71), (y,y ') be two elements of G5 and notice that
their product also belongs to Gs, since we have

(@27 h) (yy™) = (@xya™ -y ) = (wxry,y  xaTl) = (zxy (axy)).

Consider the GC scheme induced by [G : Gy, G1,G>3] and the relabeling
(fo, f1, f2) given by the isomorphisms f; : G/G; — H, i = 0,1,2, defined as
below:

(s,7)Go — s if i=0

(8,7)Gg — 1 if i=1

(s,7)Go > sxr if i =2
The first two are trivially well-defined. To check that the last one is well-
defined too, notice that (s,r) € Go if and only if s = r = 1. It then follows that
[G : Go,G1,G2] is a group characterization for the random variable (s,r,s #r).
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