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Abstract

Since its proposal in Asiacrypt 2018, the commutative isogeny-based key ex-
change protocol (CSIDH) has spurred considerable attention to improving its per-
formance and re-evaluating its classical and quantum security guarantees. In this
paper we discuss how the optimal strategies employed by the Supersingular Isogeny
Diffie-Hellman (SIDH) key agreement protocol can be naturally extended to CSIDH.
Furthermore, we report a software library that achieves moderate but noticeable
performance speedups when compared against state-of-the-art implementations of
CSIDH-512, which is the most popular CSIDH instantiation. We also report an es-
timated number of field operations for larger instantiations of this protocol, namely,
CSIDH-1024 and CSIDH-1792.

1 Introduction

In late 2018, Castryck, Lange, Martindale, Panny, and Renes presented the isogeny-
based key exchange protocol CSIDH [6]. CSIDH can be seen as a fast variant of the
Couveignes-Rostovtsev-Stolbunov scheme [11, 24, 23], by exploiting the ideas presented
in [13], but this time operating on supersingular curves defined over prime fields.

One especially attractive feature of CSIDH is that it supports efficient public-key
validation, which implies that this scheme can be used as a non-interactive (static-
static) key exchange protocol. This is a unique feature that none of the post-quantum
cryptographic schemes in the NIST contest enjoys [20]. On the negative side, CSIDH is
one order of magnitude slower than its cousin, the SIKE protocol [1]. Indeed, running on
a high-end x64 Intel processor, a constant-time implementation of CSIDH requires more
than four hundred fifty million clock cycles to compute a shared secret (cf. Table 5). For
comparison, the SIKE protocol instantiated with a 434-bit prime, requires some twenty
million clock cycles [16].
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The first constant-time implementation of CSIDH was reported by Bernstein, Lange,
Martindale, and Panny in [3]. However, the authors of [3] focused their analysis on
assessing the quantum security level provided by CSIDH.

Jalali, Azarderakhsh, Kermani, and Jao in [15]; and Meyer, Campos, and Reith
in [17], independently presented constant-time instantiations of CSIDH. The authors
of [17] introduced several ingenious algorithmic tricks, including the adoption of the
Elligator 2 map of [2], splitting isogeny computations into multiple batches (SIMBA),
and sampling the secret exponents using different interval bounds depending on the the
CSIDH small prime factors `i.

Later, the CSIDH implementation of [17] was further improved by Onuki, Aikawa,
Yamazaki, and Takagi in [22], by keeping track of two points to evaluate the action
of an ideal: one in E(Fp), and one in E(Fp2) with its x-coordinate in Fp. Moreover,
Moriya, Onuki and Takagi [19], and Cervantes-Vázquez et al. in [7], performed more
efficient CSIDH isogeny computations using the twisted Edwards model of elliptic curves.
The authors of [7] proposed a more computationally demanding dummy-free variant of
CSIDH, which in exchange, is arguably better suited to resist attacks from stronger
adversaries.

The group action algorithm proposed in the original CSIDH protocol of [6], relied on
a multiplication-based approach for constructing and evaluating isogenies. It was first
stated in [3, §8] that this multiplication-based procedure could possibly be improved by
adapting the SIDH optimal strategy approach introduced by deFeo, Jao and Plût in [12].

Shortly after [3], Hutchinson, LeGrow, Koziel and Azarderakhsh presented in [14]
several improvements for achieving faster constant-time implementations of CSIDH. The
algorithmic improvements proposed in [14] included a formal framework that permits
to adapt to CSIDH, the SIDH optimal strategies presented in [12]; a more efficient re-
ordering of the CSIDH small prime factors `i; and a procedure to find optimal bounds
for the CSIDH exponents.

However, when optimizing the CSIDH-512 variant proposed in [22], the best strategy
reported by [14] corresponds to the multiplication-based SIMBA approach of [17]. In
spite of its outstanding performance, this result is unsatisfactory in the sense that the
main contribution of [14] was to introduce optimal strategies other than the multiplication-
based one already proposed and utilized in [17]. In practice it appears as if in this set-
ting, the approach of [14] strictly reduces to finding optimal CSIDH public parameters,
namely, optimal bound vectors and SIMBA partitions. Furthermore, the authors of [14]
also claim a 12.77% speedup over the publicly available software library of [17], this time
using optimal strategies different than multiplication-based ones.

Our contributions: This is a follow-up paper of previous work presented in [7]. Here,
we present a detailed discussion of how to adapt SIDH strategies for the efficient group
action evaluation of CSIDH. Let L := [`1, `2, . . . , `74] be the list of small odd prime
numbers such that p = 4 ·

∏n
i=1 `i − 1 is the prime number used in CSIDH.

One can find CSIDH optimal strategies for each possible ordering of the set of primes
L. However, since dealing with all such orderings is clearly computationally unfeasible,

2



in this work we heuristically assume that an arrangement of the set L from the smallest
to the largest `i, is close to the global optimal. For this fixed ordering, we present a
procedure that finds an optimal strategy with cubic complexity with respect to n.

The main difference of our procedure with the framework presented in [14], is that
the strategies proposed in this paper do not rely on the SIMBA approach of [17], but
rather, they are an intuitive generalization of how the SIDH strategies can be applied to
CSIDH. We note that our approach never declares a multiplication-based strategy as an
optimal strategy. Moreover, the CSIDH optimal strategies proposed here comply with
the same codification utilized by the SIDH protocol. Additionally, we report constant-
time C-code implementations of three instantiations of the CSIDH protocol, namely,
MCR [17], OAYT [22], and the dummy-free [7] variants. Our experimental results achieve
performance speedups of 12.09%, 3.36% and 10.58% compared with the MCR, OAYT
and dummy-free styles as presented in [7].

For a fair comparison with the implementation results reported in [14], we executed
in our server the Octave script provided by the authors of [14], for finding OAYT CSIDH-
512 optimal public parameters. This script produces a header and C files that should be
executed using the C software library of [7]; in particular, we verified that the outputs
from their scripts corresponds with the provided ones in their GitHub repository. It was
experimentally found that the field arithmetic operation and clock cycle associated to
the script of [14] for the OAYT CSIDH-512 computation, is 0.7% cheaper and 0.43%
faster than the ones corresponding to our work for this CSIDH variant, respectively.

We stress that this comparison was made between our optimal strategies à la SIDH
against a SIMBA multiplication-based approach as proposed in [17] boosted with opti-
mized public parameters found by [14]. The latter setting does not use a non multiplicative-
based strategy.

Finally, we also report estimated field arithmetic operation costs of the CSIDH in-
stantiations CSIDH-1024 and CSIDH-1792. Our software library is freely available at,

https://github.com/JJChiDguez/csidh_withstrategies .

Note: Let E and E′ be two supersingular elliptic curves defined over Fp for which
there exists a separable degree-` isogeny φ : E → E′ defined over Fp. Quite recently
was presented in [4] a new approach for finding at a cost of only Õ(

√
`) operations,

the co-domain elliptic curve E′ and φ(Q) and the image of a point Q ∈ E(Fp) with
P /∈ Ker(φ). We note that the main contribution presented in [4] is largely orthogonal
to the contributions in this paper. Therefore, we leave as a future work to adopt the
findings of [4] to further reduce the computational costs of the CSIDH variants reported
here.

Organization. In §2 several background algorithmic concepts related to the CSIDH
group action computation are given. In §3 an introduction to the efficient computation
of the CSIDH class group action is given. Additionally, the usage of optimal strategies
for CSIDH is also presented in this section. In §4 additional algorithmic tricks for
the computation of three CSIDH variants are given. In §5 experimental results and
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comparison with related works are reported. Finally, in §6 we draw some concluding
remarks.

Notation. M, S, and A denote the cost of computing a single multiplication, squar-
ing, and addition (or subtraction) in Fp, respectively. We assume that a constant-time
equality test isequal(X,Y ) is defined, returning 1 if X = Y and 0 otherwise. We
also assume that a constant-time conditional swap cswap(X,Y, b) is defined, exchanging
(X,Y ) if b = 1 (and not if b = 0).

2 Preliminaries

2.1 Differential addition chains for Montgomery ladders

In the CSIDH protocol, any given scalar k is the product of a subset of the collection
of the 74 small primes `i dividing p+1

4 . Hence, one can simply compute the scalar mul-
tiplication operation [k]P as the composition of the shortest differential addition chains
for each prime ` dividing k. Note that all those shortest additions chains can be pre-
computed off-line. Montgomery ladders using differential addition chains can perform
the scalar multiplication operation [k]P with an average length of about 1.5dlog2(k)e
steps [7]. Each Montgomery ladder step involves the computation of one differential
point addition and differential point doubling at a cost of 4M + 2S + 6A and 4M +
2S + 4A , respectively.

Table 1 reports the field arithmetic expenses associated with the computation of [`]P,
where ` = 2d+ 1.

2.2 Isogeny constructions and evaluations

Let p be an odd prime number and let ` be an odd number ` = 2d+ 1, with d ≥ 1. Let
E and E′ be two supersingular elliptic curves defined over Fp for which there exists a
separable degree-` isogeny φ : E → E′ defined over Fp. This implies that there must exist
an `-order point P ∈ E(Fp) such that Ker(φ) = {∞,±P,±[2]P, . . . ,±[d]P}. Given the
domain elliptic curve E and an `-order point P ∈ E(Fp), we are interested in the problem
of computing the co-domain elliptic curve E′. Furthermore, given a point Q ∈ E(Fp)
such that Q 6∈ Ker(φ), a closely related problem is that of finding φ(Q), i.e., the image
of the point Q over E′. In the remainder of this paper, these two tasks will be called
isogeny construction and isogeny evaluation computations, respectively.

It has become customary to perform these two tasks by using three main building
blocks, namely, KPS, CODOM and PEVAL. Let us define KPS as the task of computing the
first d multiples of the point P , namely, the set R = {P, [2]P, . . . , [d]P}. Using KPS as a
building block, the module CODOM computes the per-field constants that define the co-
domain curve E′ over Fp. Also, using KPS as a building block, PEVAL computes the image
point φ(Q). Note that KPS becomes more expensive than PEVAL starting from ` ≥ 11.
When ` ≤ 7, the block KPS is considerably cheaper or even free of cost for the case ` = 3.
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Primitive M S
A

Montgomery[10] Edwards[7]
[`]P [7] 12λ 6λ 15λ −
KPS 4(d− 1) 2(d− 1) 6d− 2 6d− 2
PEVAL 4d 2 6d 2d+ 4
CODOM [9] `+ 2λ̄+ 1 2(λ+ 2) − 0

Table 1: Costs for computing prime degree-` isogenies with ` = 2d + 1 using the
KPS, PEVAL and CODOM building blocks. Field multiplication (M) and squaring (S) costs are
taken from [10, 7, 9]. The cost of performing one scalar multiplication [`]P using differential
addition chains as in [7], is also presented. The computational costs associated to the point
addition and point doubling operations is of 4M + 2S + 6A and 4M + 2S + 4A , respectively.

We define λ = dlog2 `e and λ̄ ≈ log2 (d `8 e)
3 .

Observe also that since CODOM and PEVAL show no dependencies between them, once
that the kernel points have been computed, it is possible to compute CODOM and PEVAL in
parallel. Furthermore, when evaluating an arbitrary number of points in E that do not
belong to the Ker(φ) subgroup, KPS must be computed only once. This implies that the
computational cost associated to KPS gets amortized when computing the image of two
or more points.

Table 1 summarizes the field arithmetic costs associated to the KPS and PEVAL op-
erations. Note that KPS is a straightforward computation that can be performed at the
cost of one point doubling and k − 2 point additions. Efficient formulas for comput-
ing PEVAL can be found in [10] and [7] for Montgomery and twisted Edwards curves,
respectively.

As a numerical example consider the cost of computing isogeny evaluations and
constructions for the prime ` = 2 · 64 + 1 = 127.

Example 1 Let us consider the case for the prime ` = 2 · 64 + 1 = 127. Then, ac-
cording to Table 1 the computational expenses associated with the computation of the
KPS, PEVAL and CODOM primitives and the scalar multiplication [127]T, for some point
T ∈ E(Fp), is shown in Table 2. It can be seen that constructing and evaluating a
degree-127 isogeny is 4.34 and 5.03 times more expensive than computing the scalar
multiplication [127]T, respectively. Note that any extra isogeny evaluation can reuse
the KPS computation and therefore it is only two times more expensive than finding the
multiple [127]T.

In the remainder of this paper we assume that given a curve E specified in Mont-
gomery form, a point G in E(Fp) and an odd integer ` = 2d + 1, the procedure
QuotientIsogeny invoking both the KPS and CODOM primitives, computes the degree-`
quotient isogeny φ : E → E′ ∼= E/〈G〉, returning (E′, R), where R = {G, [2]G, . . . , [d]G}.
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Primitive M S
Total Cost

S = M S = 0.8M
[`]P 84 42 126 118
KPS 252 126 378 352
PEVAL 256 2 256 256
CODOM 151 18 169 166

Table 2: Approximate arithmetic costs for computing prime degree-` isogenies with ` = 2d+
12 · 64 + 1 = 127, using the KPS, PEVAL and CODOM primitives. The cost of computing the scalar
multiplication [127]T is also reported.

3 Computing the CSIDH class group action

In this section, an introduction to the efficient computation of the CSIDH class group
action is given. We start giving a simplified view of the CSIDH algorithm, which is
followed by several algorithmic refinements.

3.1 Setting

Let `1, . . . , `n ∈ Z be small odd prime numbers such that p = 4
∏n
i=1 `i−1 is also a prime

number. We work with the 511-bit prime proposed in [6], using the following labeling:
`74 = 3, `73 = 5, . . . , `2 = 373, given by the first 73 odd primes, and `1 = 587. Let E/Fp
be a supersingular elliptic curve given in Montgomery form as,

E/Fp : y2 = x3 +Ax2 + x; (1)

It follows that #E(Fp) = (p+1) = 4
∏n
i=1 `i. Additionally, let π : (x, y) 7→ (xp, yp) be the

Frobenius map and N ∈ Z be a positive integer. Then, E[N ] := {P ∈ E(Fp) : [N ]P = O}
denotes the N -torsion subgroup of E/Fp. Similarly, E[π−1] := {P ∈ E(Fp) : (π−1)P =
O} and E[π + 1] := {P ∈ E(Fp2) : (π + 1)P = O} denote the subgroups of Fp-rational
and zero-trace points, respectively. In particular, any point P ∈ E[π + 1] is of the form
(x, iy) where x, y ∈ Fp and i =

√
−1 so that ip = −1.

3.2 A simplified constant-time CSIDH group action evaluation

The most demanding computational task of CSIDH is the evaluation of the class group
action, which is dominated by the cost of performing a number of degree-`i isogeny
constructions. This action takes as input a secret integer vector e = (e1, . . . , en) such that
ei ∈ J0,mK, and then constructs isogenies with kernel generated by P ∈ EA[`i]∩E[π−1]
for exactly ei iterations.

For constant-time implementation of CSIDH, the group action evaluation starts by
constructing isogenies with kernel generated by P ∈ EA[`i] ∩ E[π − 1] for ei iterations,
and then performs dummy isogeny constructions for (m− ei) iterations.

Algorithm 1 shows a simplified and idealized computation of the CSIDH group action
as explained next. The procedure consists of two main loops. At the beginning of the
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Algorithm 1: Simplified constant-time CSIDH class group action for supersingular curves

over Fp, where p = 4
∏n
i=1 `i − 1. The ideals li = (`i, π − 1), where π maps to the p-th power

Frobenius endomorphism on each curve. This algorithm computes exactly m isogenies for

each ideal li.

Input: A supersingular curve EA over Fp, and an exponent vector (e1, . . . , en) with each
ei ∈ [0,m]), m a positive number.

Output: EB = le11 ∗ · · · ∗ lenn ∗ EA.
1 E0 ← EA;
2 // Outer loop: Each `i prime f. is processed m times

3 for i ∈ {1, . . . ,m} do
4 T ← ObtainFullTorsionPoint(E0) ; // T ∈ En[π − 1]
5 T ← [4]T ; // Now T ∈ En

[∏
i `i
]

6 // Inner loop: processing each prime factor `i|(p+ 1);
7 for j ∈ {0, 1, . . . , n− 1} do
8 Gj ← T ;
9 for k ∈ {1, . . . , n− 1− j} do

10 Gj ← [`k]Gj

11 if ej 6= 0 then
12 (E(j+1) mod n, R)← QuotientIsogeny(Ej , Gj , `n−j) ;
13 T ← PEVAL(T,R) ;
14 ej ← ej − 1 ;

15 else
16 QuotientIsogeny(Ej , Gj , `n−j); φ(T ) ; // Dummy operations

17 T ← [`n−j ]T ;
18 Ej+1 mod n ← Ej ;

19 return E0

procedure in Step 1, the constants of the input parameter EA are assigned to E0. At
Step 4 of the outer loop of Steps 3-18, a full order point T ∈ E0 (i.e., a point having
order p+1

4 ), is computed. For the sake of simplicity it has been assumed that the function
in Step 4 must always output a full torsion point belonging to En[π − 1].1

Thereafter, the inner loop of Steps 7-18 constructs and evaluates a degree-`i isogeny
for each one of the n prime factors `j dividing p + 1, using Gj as a subgroup kernel
generator. At each iteration, an isogenous elliptic curve Ej is computed. When the
inner loop completes its computation, the constants defining the elliptic curve E0 are
used in Step 4 to find a new full order point T ∈ E0. The outer loop of Steps 3-18 simply
repeat the execution of the inner loop in order to complete exactly m evaluations. At the
end of the procedure, the constants defining the curve E0 (corresponding to the m-th
evaluation of the inner loop) is returned. As long as the computations in Steps 11-14
and Steps 15-18 are carefully balanced, and the conditional statements are substituted
by conditional swaps (see Algorithm 2), this procedure computes the group action in
constant time. Hence, the running time of Algorithm 2 does not depend on the secret

1Note that in practice the time required for finding a full-torsion point is relatively expensive. Hence,
one normally relax this condition and works with points whose order does not necessarily include all the
prime factors of p+ 1. however, this leads to extracomputational steps not shown in Algorithm 1.
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Algorithm 2: Simplified constant-time CSIDH class group action for supersingular curves

over Fp, where p = 4
∏n
i=1 `i − 1. The ideals li = (`i, π − 1), where π maps to the p-th power

Frobenius endomorphism on each curve. This algorithm computes exactly m isogenies for

each ideal li. (Low level version)

Input: A supersingular curve EA over Fp, and an exponent vector (e1, . . . , en) with each
ei ∈ [0,m]), m a positive number.

Output: EB = le11 ∗ · · · ∗ lenn ∗ EA.
1 E0 ← EA;
2 // Outer loop: Each `i prime f. is processed m times

3 for i ∈ {1, . . . ,m} do
4 T ← ObtainFullTorsionPoint(E0) ; // T ∈ En[π − 1]
5 T ← [4]T ; // Now T ∈ En

[∏
i `i
]

6 // Inner loop: processing each prime factor `i|(p+ 1);
7 for j ∈ {0, 1, . . . , n− 1} do
8 Gj ← T ;
9 for k ∈ {1, . . . , n− 1− j} do

10 Gj ← [`k]Gj

11 b← isequal(en−j , 0) ;
12 (E(j+1) mod n, R)← QuotientIsogeny(Ej , Gj , `n−j) ; // degree-`n−j isogeny

13 T ′ ← [`n−j ]T ;
14 T ← PEVAL(T,R); // Evaluate T on degree-`n−j isogeny

15 cswap(Ej , E(j+1) mod n, b) ; // undo if en−j = 0
16 cswap(T ′, T, b) ; // undo if en−j = 0
17 en−j ← en−j −

(
(b+ 1) mod 2

)
;

18 return E0

key vector e.
The computational cost of Algorithm 1 is dominated by the computation of n degree-

`i isogeny evaluations and constructions plus a total of n(n+1)
2 scalar multiplications by

the prime factors `i, for i = 1, . . . , n.

Remark 1 A natural instantiation of Algorithm 1 uses the 511-bit CSIDH prime with
74 prime factors dividing p+1. In order to guarantee a 128-bit classical security level, it
is required to choose m = 10, so that the private key space has a size of about 1174 ≈ 2256

different keys.

Algorithm 2 presents a low-level constant-time version of Algorithm 1, where all the
conditional statements have been implemented as conditional swaps statements.

Remark 2 Notice that the scalar multiplication required in Step 13 of algorithm 2, can
be performed by invoking the QuotientIsogeny() procedure using as input parameter the
point T, instead of the point Gj . Let R be the array of n−j points {T, [2]T, . . . , [dn−j ]T},
and

[ln−j ]T := [2dn−j + 1]T = [dn−j ]T + [dn−j + 1]T

= R[dn−j ] + [dn−j + 1]T = R[dn−j ] +
(
R[dn−j ] +R[1]

)
8



74 columns

74 rows

∆74

T ∈ EA

G0 =
[∏73

i=1 `i

]
T

...
...

...

. . .
[`1]

[`2]

[`3]

[`4]

[`72]

[`73]

φ`74
φ`73

φ`3
φ`2

G73

G72

G71

G2

G1

E0 E1 E2 E71 E72 E73

(a) The multiplicative strategy for computing
the CSIDH group action as given in Algorithm 1

[∏h
i `i

]
T

h

n− h

n− h degree-`i isogeny evaluations

∆n−h

∆h

∆n

(b) Optimal strategies à la SIDH for CSIDH

Figure 1: Subfigure 1a shows a discrete triangle used to compute the inner loop of the CSIDH
group action Algorithm 1. The main goal of this task is to find the field constants that define
the elliptic curve EB . As stated in Algorithm 1, the discrete triangle of Subfigure 1a must
be computed exactly m times. Using an optimal strategy as in [12], a discrete triangle ∆n is
processed by splitting it into two sub-triangles as shown in Subfigure 1b.

can be computed with two additions. Thus, the points T and Gj must be swapped before
the QuotientIsogeny() procedure is invoked.

3.3 A multiplicative-based Strategy for CSIDH

In order to efficiently compute the group action of Algorithm 1, one can adapt the
canonical strategies for traversing a weighted directed graph presented in [12], which is

represented as a discrete right triangle ∆n of side n having n(n+1)
2 vertices distributed

in n columns and rows (See Figure 1a).
The vertices of ∆n represent elliptic curve points and its vertical and horizontal

edges have as associated weight p`i and q`i , defined as the cost of performing one scalar
multiplication by `i and evaluating a degree-`i isogeny, respectively. The j-th column of
the triangle contains exactly n−j vertices representing elliptic curve points belonging to
the isogenous elliptic curve Ej , for j = 0, . . . , n−1. A leaf is defined as the most bottom
point in a given column of the triangle. The set of n leaves define the hypotenuse of
∆n. A ramification (or split) vertex is defined as a vertex having both horizontal and
vertical edges leaving from it. The weight of a split vertex is the number of vertices
between it and either the next split vertex in the column, or the leave in the column.
Each one of the n columns of ∆n corresponds to an isogenous supersingular elliptic curve
Ej , for j = n, 1, 2 . . . , n− 1.
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Remark 3 As a mechanism to obtain a constant-time implementation of the group ac-
tion, the procedure shown in Algorithm 1, as well as most constant-time implementations
of CSIDH, make an abundant use of dummy computations. Hence, it may occur that
Ek = El with 0 ≤ k < l ≤ n− 1.

At the beginning of the group action evaluation, only the base elliptic curve EA = E0

is known. Then, a point T ∈ EA (ideally) with order p+1
4 =

∏
i `i must be found. This

torsion point can be descended by performing a scalar multiplication with each one of
the n prime factors of p+ 1 (see the first column of Figure 1a).

The leaf of the first column represents the point G0 =
[∏

i `
n−1
i=1

]
T. If G0 is finite,

then it has to have order `n and can be used to generate the subgroup corresponding to
the kernel of the isogeny φ`n . The leaf G1 is defined as,

G1 =

{[∏
i `
n−2
i=1

]
φ`n(T ) if en 6= 0;[∏

i `
n−2
i=1

]
([`n]T ) if en = 0.

(2)

Provided that T is a full order point, the point G1 is guaranteed to be finite and of
order `n−1. In general, if the exponents ej 6= 0 for j = n, n− 1, . . . , 3, 2. Then

Gn−(j−1) =

[∏
i

`j−2i=1

]
φ`j (. . . (φ`n(T )) . . .). (3)

If some ek = 0, then the corresponding isogeny evaluation φ`k of Eq. (3) must be
substituted by the scalar multiplication [`k]T.

The goal of the group action computation is thus seen as the task of obtaining, one
by one, all the leaves Gj ∈ ∆n for j = 1, 2, . . . , n, until the farthest right one, Gn−1, has
been calculated. Then, the elliptic curve EB determined by φ`n : En−1 → En, can be
obtained by simply constructing a degree-`n isogeny with kernel Gn−1, which coincides
with the domain or image of φ`n depending if e1 = 0 or not, respectively.

The naive strategy followed by Algorithm 1 is depicted in Figure 1a, instantiated for
the CSIDH prime p512 with 74 prime factors `i such that `i|(p + 1). The computation
of the triangle ∆n shown in Figure 1a represents one full execution of the inner loop of
Steps 7-18. This computation should be repeated m = 10 times in order to complete the
CSIDH group action (cf. Remark 1). From Figure 1a, it can be seen that Algorithm 1

follows a pure multiplicative strategy, where n(n+1)
2 = 2775 scalar multiplications by the

scalars `i for i = 1, . . . , 74, are performed; plus the construction and evaluation of only
74 degree-`i isogenies.

Assuming that in average, one scalar multiplication computation [`]T is at least five
times less expensive than a degree-` isogeny construction or evaluation, one can see that
there is room for optimizing the multiplicative strategy followed by Algorithm 1.2 In
the following we briefly review optimal strategies as they were presented in [12].

2Another computational reason for considering other approaches, is that a multiplicative strategy is
eminently sequential. Alternative strategies exploiting the inherent parallelism of the isogeny evaluation
computations can be much more attractive for multi-core platforms.

10



3.4 Optimal strategies for CSIDH

Let L = [`1, `2, . . . , `n] be the list of small odd prime numbers such that p = 4·
∏n
i=1 `i−1

is a prime number. A CSIDH strategy is a weighted subgraph Sn(L) contained into a
discrete rectangular triangle ∆n of side n. Any strategy Sn(L) has an associated cost
defined as,

C(Sn) =
∑

x∈edges(Sn(L))

ω(x) +

n∑
j=0

ν((n− 1− j, j)), (4)

where ω(x) and ν((n− 1− j, j)) denote the weights of the edge x and leaf (n− 1− j, j),
respectively.

In addition, Sn(L) is called optimal if for any different strategy S′n(L) the inequality
Cn
(
Sn(L)

)
< Cn

(
S′n(L)

)
holds. Optimal strategies were defined in [12] within the

context of the SIDH protocol. In [12] the fact that a triangle ∆n can be optimally and
recursively decomposed into two sub-triangles ∆h and ∆n−h was exploited as shown in
Figure 1b. Let us denote as ∆h

n the design decision of splitting a triangle ∆n at row h.
The sequential cost of walking across the strategy Sn(L), which is a subgraph of ∆h

n, is
given as

C(Shn(L)) = C(Sh(Lh)) + C(Sn−h(Ln−h)) +

n−h∑
i=1

q ˜̀
i

+

h−1∑
i=0

p˜̀
n−i
,

where Lh = [˜̀n−h+1, . . . , ˜̀
n] and Ln−h = [˜̀1, . . . , ˜̀

n−h] are two disjoint sublists of L

and have size h and n − h, respectively. We say that Sĥn(L) is optimal if C(Sĥn(L)) is
minimal among all Shn(L) for h ∈ [1, n − 1]. Applying this strategy recursively leads to
a procedure that computes the CSIDH group action at an optimal cost. The associated
number of scalar multiplications is reduced at the price of increasing the total number
of isogeny evaluations and constructions.

In the context of SIDH, optimal strategies tend to balance the number of isogeny
evaluations and scalar multiplications to O(n log (n)). However, CSIDH optimal strate-
gies are expected to be largely multiplicative, i.e., optimal strategies will tend to favor
the computation of more scalar multiplications. This is due to the fact that these op-
erations are several times cheaper than isogeny evaluations for a sufficiently large prime
degree ` (cf. Example 1).

On the other hand, since evaluating/constructing an odd degree-` isogeny with ` ∈
{3, 5, 7} has a cheaper cost than a scalar multiplication by ` (see for example [9][Table
3]), one can easily show that any multiplicative-based strategy containing any of these
three small degree isogenies could never be optimal.

As proposed in [12], optimal strategies can be obtained using dynamic program-
ming (see [1, 8] for concrete algorithms). In [14][§3.1], the cost of adapting the optimal
strategies of [12] to the CSIDH setting was presented.

A brief description of our process to finding optimal strategies for CSIDH is given
next.
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3.4.1 Finding Optimal strategies for CSIDH

Notice that the computation of SIDH strategies are a very special case of CSIDH strate-
gies, where q`i (resp. p`j ) have the same fixed value. Hence, the required number of

different weighted sub-triangles is given as
∑n−1

i=1 i = (n−1)n
2 .

This is not the case for CSIDH, where each pair of sub-triangles ∆h and ∆n−h
requires different (and disjoint) sub-lists Lh and Ln−h chosen from L := [`1, `2, . . . , `n].
Additionally, since the ordering of each sub-list impacts on the cost of any strategy in
∆h and ∆n−h, the search space of different weighted sub-triangles to be considered is
exceedingly large, given as,

∑n−1
i=1 i! ·

(
n
i

)
� 2n. Therefore, searching for an optimal

strategy and ordering of the small prime factors in L, become infeasible.
Heuristically, one can expect that the optimal ordering of prime factors `i ∈ L, has a

computational cost quite close to the one associated to processing the isogenies from the
smallest to the the largest. Besides, processing the `i primes in the above order favors
the usage of non multiplicative-based strategies. This assumption can be informally
justified as follows.

Referring to Figure 1a, the isogeny maps required to move from column 0 to column
73 of the right triangle ∆74, will start from the smallest degree-3 isogeny φ`74 , all the
way until the costly degree-373 isogeny φ`2 must be computed to move from column 72
to column 73. We stress that in the case of dealing with the OAYT-style, two isogeny
evaluations must be performed.

Swapping the primes `i and `j for i < j, produces a small computational saving due
to the fact that the scalar multiplication associated to `j has a cheaper cost that the one
associated to `i. However, this swap also implies evaluating earlier the isogeny φ`i, which
is more expensive than φ`j . We note that for almost all the trail of an optimal strat-
egy, there will be more degree-`j isogeny evaluations than degree-`i isogeny evaluations.
Moreover, each one of these two isogeny evaluations are more expensive than the cost
associated to scalar multiplications by `i and `j . Of course, there might be some few
pairs `i and `j , whose swapping may lead to costly reductions. For example, this will
happen when the number of degree-`j isogeny evaluations is smaller than the number
of degree-`i isogeny evaluations. However, even in this scenario, the difference of costs
between the two arrangements is expected to be very small.

Under the above assumption, it is enough to compute optimal strategies for each
sub-list of ordered small odd primes (starting from the smallest). This implies that
the search space of different weighted sub-triangles gets reduced to a space of cubic
complexity since

12



n+

n−1∑
j=2

(n+ 1− j)(j − 1) = n+ n

n−1∑
j=2

(j − 1)−
n−1∑
j=2

(j − 1)2 = n+ n

n−2∑
j′=1

j′ −
n−2∑
j′=1

(
j′
)2

= n+ n

(
(n− 2)(n− 1)

2

)
−
(

(n− 2)(n− 1)(2n− 3)

6

)
= n+

(n− 2)(n− 1)

6

(
3n− (2n− 3)

)
= n+

(n− 2)(n− 1)(n+ 3)

6
.

Notice also that any CSIDH strategy can be encoded following the linearized repre-
sentation used in [1]. In [1], a strategy is described as a list of exactly (n − 1) positive
integers smaller than n, such that each entry determines the number of vertical edges
before a ramification or a leaf is reached. For example, the multiplicative-based strategy
of Algorithm 1, can be coded as Sn(L) := [n− 1, n− 2, . . . , 2, 1].

Based on the approach described in [1], the following cubic complexity procedure
outlines how to obtain a CSIDH optimal strategy. This procedure outputs a vector of
(n−1) positive integers smaller than n. For k, j positive integers, let us define a sub-list
of prime factors Nk,j := [`j+1, `j+2, . . . , `j+k] ∈ L. Then,

1. For each j := 0, 1 . . . , n− 1, the optimal stragegy for each N1,n−1−j is

S1(N1,n−1−j) = [] and has a cost equal to C1

(
S1(N1,n−1−j)

)
= ν

(
(n− 1− j, j)

)
.

2. For each k := 2, 3, . . . , n and j := 0, 1 . . . , n− k, the optimal strategy is

Sk(Nk,j) = [s] cat Sk−s(Nk−s,j+s) cat Ss(Ns,j)

and has a cost equal to Ck(Sk
(
Nk,j)

)
= min

h
α, where s = arg min

h
α, and

α =
{

Ck−h
(
Sk−h(Nk−h,h+j)

)
+ Ch

(
Sh(Nh,j)

)
+

ω
(
[(0, 0), (h, 0)]

)
+ ω

(
[(0, 0), (0, k − h)]

)
: h = 1, 2, . . . , k − 1

}
.

Here, ω
(
[(0, 0), (0, h)]

)
and ω

(
[(0, 0), (k− h, 0)]

)
represent a vertical segment and a hor-

izontal segment of length h and k − h, respectively. It has been assumed that the root
vertex (0, 0) corresponds with the root of the sub-triangle ∆k, associated with the sub-list
of prime factors Nk,j . See Figure 1b for an illustration of the first level of this recursive
process with k = n.

The remaining task is to figure out how to evaluate a CSIDH optimal strategy Sn(L)
as obtained in the above procedure. We discuss this problem in the next section.
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4 Additional algorithmic refinements for constant-time group
action evaluation

In this section, we focus our attention to the algorithmic tricks presented by three recent
CSIDH variants, namely, the Meyer–Campos–Reith constant-time algorithm of [17], the
Onuki–Aikawa–Yamazaki–Takagi constant-time algorithm of [22], and the dummy-free
algorithm of [7].

4.1 One torsion point with dummy isogeny constructions (MCR-style)

Meyer, Campos and Reith proposed in [17] several ingenious optimizations that com-
pared to Algorithm 1, lead to a much faster constant-time CSIDH group action compu-
tation.

One of the optimizations introduced in [17], was to sample a point using the Elligator
2 map of [2] and [3]. Typically, the Elligator 2 mapping does not return a full order
point. Let T ∈ E(Fp), with p = 4

∏n
i=1 `i − 1. As pointed out in [7], under reasonable

heuristics assumptions experimentally verified in [3], it is observed that

Pr

[[
p+ 1

`i

]
T = O

]
=

1

`i
, for i = 1, . . . , n.

In the event that the Elligator 2 procedure outputs a point T that is not of full order,
then extra points must be sampled in order to repair the missing prime factors.

A second optimization in [17], dubbed SIMBA-σ-κ, consisted of splitting the pro-
cessing of the prime factors `i as defined above, into σ disjoint sets (batches) of size
n
σ . Afterwards, a multiplicative strategy is applied to each batch. Each multiplicative
strategy is evaluated κ times.

Finally as in [18], instead of using a fixed interval [0, 10] for all the isogeny compu-
tations, the authors of [17] proposed to define a customized interval per each entry in
the secret vector e. Thus, a vector m is defined such that 0 ≤ ei ≤ mi, for i = 1, . . . , n.
The missing prime factors are repaired using a multiplicative strategy, until all the mi

degree-`i isogeny constructions have been performed.
In this work, we adopted the Elligator 2 procedure for point sampling, plus the

definition of a vector m with a customized interval per each entry in the secret vector e.
However, we dismiss the usage of the SIMBA approach.

In the remaining of this paper we will refer to this approach, which uses one torsion
point and dummy isogeny constructions, as the MCR-style CSIDH group action evalu-
ation. The details of how to execute an optimal strategy using this approach are given
in Appendix B.1.

4.2 Two torsion point with dummy isogeny constructions (OAYT-
style)

Onuki, Aikawa, Yamazaki and Takagi proposed a faster constant-time version of CSIDH
in [22]. Their key idea is to use two points to evaluate the action of an ideal, one in

14



ker(π − 1) (i.e., in E(Fp)) and one in ker(π + 1) (i.e., in E(Fp2) with the x-coordinate
in Fp). This allows them to avoid timing attacks, while keeping the same primes and
exponent range [−5, 5] as in the original CSIDH algorithm of [6]. Their algorithm also
employs dummy isogenies to mitigate some power analysis attacks, as in [17]. With
these improvements, the authors achieve a considerable speed-up compared to [17]. The
saving comes from the fact that the procedure proposed by [22] performs approximately
five isogeny constructions (as opposed to the ten constructions in [17]) and ten isogeny
evaluations per `i. Algorithm 3 of Appendix A summarizes the main idea proposed by
Onuki et al. [22].

In the remaining of this paper we will refer to this approach, which uses two torsion
points and dummy isogeny constructions, as the OAYT-style CSIDH group action eval-
uation. We stress that OAYT-style studied in this work considers both, the Elligator
2 procedure for sampling points and a customized bound vector m, but does not make
use of the SIMBA strategy (cf. §4.1). The details of how to execute an optimal strategy
using OAYT-style can be found in Appendix B.2.

4.3 Two torsion point without dummy isogeny constructions (Dummy-
free style)

A constant-time CSIDH group action computation that does not use dummy computa-
tions, thus making every computation essential for a correct final result was proposed
in [7]. This yields some natural resistance to fault attacks, at the cost of approximately
a twofold slowdown. For the approach in [7], the exponents ei are uniformly sampled
from sets

S(mi) = {e | e = mi mod 2 and |e| ≤ mi},

i.e., centered intervals containing only even or only odd integers. The action of vectors
drawn from S(m)n can be computed by interpreting the coefficients ei as,

|ei| = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ (1− 1)− (1− 1) + (1− 1)− · · ·︸ ︷︷ ︸
mi−ei times

,

i.e., the algorithm starts by acting by l
sign(ei)
i for ei iterations, then alternates between

li and l−1i for mi − ei iterations. Algorithm 4 of of Appendix A describes the approach
presented in [7].

In the remaining of this paper we will refer to this approach, which uses two torsion
points without dummy isogeny constructions, as the Dummy-free-style CSIDH group
action evaluation. We stress that Dummy-free-style considers both, the Elligator 2
procedure for sampling points and a customized bound vector m, but does not make
use of the SIMBA strategy (cf. §4.1). The details of how to execute an optimal strategy
using Dummy-free-style can be found in Appendix B.3.
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4.4 Finding an optimal bound vector for the CSIDH group action

All three of the MCR-, OAYT- and Dummy-free styles previously described in this sec-
tion, use a bound vector m = (m1,m2, . . . ,mn). The bound vector m specifies the inter-
vals where each secret exponent ei associated to each degree-`i isogeny with i = 1, . . . , n,
must be sampled. Given a bound vector m, the computational cost of the CSIDH group
action is a complex function that must take into consideration not only the expenses as-
sociated to the number of isogeny constructions/evaluations and scalar multiplications,
but also the costs of repairing missing prime factors due to the probabilistic nature of
the Elligator 2 procedure (cf. 4.1).

A heuristic solution to the optimization problem of finding a vector m such that
the computational cost of the group action evaluation is minimized while its classical
security level is preserved (cf. Remark 1), can be found by means of a greedy algorithm.

Let us assume that an initial vector m = (m1,m2, . . . ,mn) that achieves λ-bits of
classical security is given, where all mi for i = 1, . . . , n are positive integers. Then, one
first proceeds by reducing one of the entries of the vector m by one, while increasing
one or more other entries, until the perturbed vector m provides a classical security of
λ-bits, but hopefully a lesser computational cost for the group action. If the modified
vector has a smaller cost than the initial one, then the vector m is updated accordingly.
Let us use δ = 2 if the group action evaluation is performed using OAYT-style, and
δ = 1 if MCR- or Dummy-free styles are chosen. Then, a greedy algorithm that finds an
optimal vector m achieving λ-bits of classical security can be summarized as follows:

0. Initial bound (m1,m2, . . . ,mn) that yields λ-bits of classical security for the group
action. In other words, b

∑n
i=1 log2(δ ·mi + 1)c = 2λ;

1. For each i := 1, 2, . . . , n:

(a) Set −→m = (m1,m2, . . . ,mn);

(b) Decrease the i-th coordinate of −→m by one unit;

(c) Compute

µi =

m̃ = −→m + ∆: ∆ ∈ (Z+ ∪ {0})n, ∆i = 0,

 n∑
j=1

log2(δ · m̃j + 1)

 = 2λ


(d) Select the local optimal element m̂ of µi that minimizes the cost;

(e) If m̂ has a smaller cost than the initial bound (m1,m2, . . . ,mn), then replace
each mi by m̂i.

2. Output (m1,m2, . . . ,mn).

For our Python script experiments, we set the initial bound vector as (m1,m2, . . . ,mn)
with mi = 10

δ for each i := 1, 2, . . . , n. Additionally, in order to ensure that at least one
degree-`i isogeny construction will be performed for each small odd prime `i (i.e. that all
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the entries in the bound vector are strictly greater than 0), the above greedy method was
applied iteratively

(
10
δ − 1

)
times. We heuristically found out that setting mn = 3

2 ·
10
δ ,

tends to obtain better bound vectors. A Python-script implementation of the above
greedy procedure found the following bounds,

−→mMCR = (3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5,
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6,
6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10,

10, 11, 11, 12, 13, 12, 14, 15, 16, 16, 16, 20, 23,
21, 23, 23, 23, 23, 23, 23, 23, 22, 20, 19, 22, 22,
22, 22, 22, 22, 21, 21, 20, 18, 15);

−→mOAY T = (1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5,
5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 11,
9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,

11, 10, 10, 10, 10, 10, 9, 9, 7);

−→mDummy−free = (3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 6,
6, 6, 6, 8, 7, 8, 8, 8, 8, 9, 9, 9, 9,

11, 11, 11, 12, 13, 12, 14, 15, 16, 16, 16, 19, 23,
23, 23, 23, 23, 23, 23, 23, 23, 22, 20, 19, 22, 22,
22, 22, 22, 22, 21, 21, 20, 18, 15); and

for MCR, OAYT, and dummy-free styles, respectively. Let us recall that each entry of
these bound vectors corresponds with the number of degree-(`i) isogeny constructions
to be performed, with `1 = 587 > `2 > · · · > `n = 3.

4.5 Number of optimal strategies required for a group action compu-
tation

Let γ and Γ be equal to the minimum and maximum entries in the integer bound vector
m, respectively. Once again, let L = [`1, `2, . . . , `n] be the list of small odd prime numbers
such that p = 4 ·

∏n
i=1 `i − 1 is a prime number. Then as discussed in 3.4, one can find

a strategy Sn(L) that performs an optimal number of isogeny constructions/evaluations
with degrees equal to each one of the n prime factors in L. The strategy Sn(L) must
be executed γ times. At this point with high probability all the degree-`i isogenies
having entries mi = λ for i = 1, . . . , n, do not need to be considered any further.3

Additionally one still needs to process L′ isogenies, where L′ is a subset of L such that
its corresponding entries in the bound vector m are strictly greater than λ. To proceed
forward, all the entries of m must be subtracted by λ, disregarding the zero entries.

3In fact the probability of having completed all the degree-`i isogenies whose entries mi = λ for
i = 1, . . . , n, depend on the order of the points output by the Elligator 2 procedure as discussed in §4.1.
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Then, a new minimum entry λ′ is computed and a new strategy Sn′(L
′) must be found

and executed λ′ times with n′ = #L′. This procedure is repeated until there are no
more isogenies to be processed. In fact, after Γ rounds, the estimated number of missing

degree-`i isogeny constructions is ≈
(
mi
`i

)
. A simple multiplicative strategy can be

executed to repair those missing isogeny constructions/evaluations. We formalize the
preceding discussion as follows.

We require to find and execute t strategies, where t ≤ n is the number of different
integer entries in the bound vector m. Let m(k) be a multiset of bound vector with
length nk for k = 1, . . . , t. Let γk = min m(k). By definition, m(1) = m, n1 = n and
γ1 = γ. Then, the k-th strategy must be executed γk times, where

m(1) = {m1,m2, . . . ,mn},

m(2) = {m(1)
1 − γ1, . . . ,m

(1)
n1
− γ1} \ {0},

m(3) = {m(2)
1 − γ2, . . . ,m

(2)
n2
− γ2} \ {0},

...

m(t) = {m(t−1)
1 − γt−1, . . . ,m(t−1)

nt−1
− γt−1} \ {0}.

The k-th strategy must be optimal with respect to the list Lk, defined as follows:

L1 = [`1, `2, . . . , `n],

L2 = [`i ∈ L1 : L
(1)
i > γ1],

L3 = [`i ∈ L2 : L
(2)
i > γ2],

...

Lt = [`i ∈ Lt−1 : L
(t−1)
i > γt−1].

The cost of the final multiplicative strategy to account for the missing isogenies
can be skipped or at least minimized. Suppose that the group action is evaluated by
considering the following adjusted bounds,

m′i :=

⌊
mi ·

(
`i

`i − 1

)⌉
for i = 1, . . . , n.

In particular, using m′i instead of mi, the expected number of degree-`i isogeny construc-
tions to be performed is mi. To be more precise, we propose “to use” m′i times each `i
in order to reach all the mi degree-`i isogeny constructions.

The interested reader can see in Appendix D, the eleven optimal strategies that were
found and used for performing the OAYT-style CSIDH-512 instantiation.

Remark 4 Our analysis only depends on the cost of isogeny evaluations and scalar
multiplications, and thus it can be easily applied to the work of Castryck and Decru [5]
(CSURF).
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5 Experiments and comparisons

In this section, we report the CSIDH-512 group action evaluation considering the three
strategies discussed in §4, namely, i) MCR-style, ii) OAYT-style, and ii) Dummy-free-
style. We adopt the bound vectors presented in §4.4, and present a comparison of
our results versus the SIMBA-based methods that use the exponent bounds m as re-
ported in [7, §5.2].4 Additionally, we replicated the experiments of Hutchinson et
al. in [14], by using their publicly available files addc.h, simba withdummy 2.h and
action simba withdummy 2.c in combination with the software library by [7].

All of our experiments were executed on a Intel(R) Core(TM) i7-6700K CPU 4.00GHz
machine with 16GB of RAM, with Turbo boost disabled and using gcc version 5.5. Our
software library is freely available from,

https://github.com/JJChiDguez/csidh_withstrategies .

5.1 A comparison of SIMBA multiplicative-based approach Versus op-
timal strategies

In Table 3, we report the expected field arithmetic counts for computing the CSIDH-
512 group action using several combinations of the SIMBA-based method along with
strategies. These estimates correspond to the output of a Python-script that interprets
the algorithms and code presented by Cervantes et al. in [7] as they apply to the following
settings:5

1. SIMBA-σ-κ method with the configuration proposed in [17] and [22]. In other
words, this corresponds with a Python-code version of the C-code implementation
presented in [7]

2. SIMBA-σ-κ method with strategies. This is a SIMBA-σ-κ method but using opti-
mal strategies on each batch. At each batch, an optimal strategy process isogenies
starting from the largest to the smallest.

3. The improvements presented in this work with the following bound vectors:

(a) The ones proposed in Meyer-Campos-Reith [17] and Onuki et al. [22], and

(b) The ones presented in section 4.4.

The last column in Table 3 gives the expected speedups for MCR- OAYT- and
Dummy-free- styles using as a baseline the field arithmetic counts for multiplicative-
based SIMBA-5-11 for MCR and dummy-free -styles, and SIMBA-3-8 for OAYT-style.6

4The subsets of small odd primes and optimal strategies implemented, can be easily extracted from
our library.

5Let us recall that the SIMBA-σ-κ method splits the set of n small odd primes `i into σ disjoint sets
(batches) of size n

σ
. Then it applies a multiplicative strategy on each batch. Each multiplicative strategy

is evaluated κ times. Finally, it performs a multiplicative strategy on the set of unprocessed small odd
primes until all the mi degree-`i isogeny construction have been performed (See §4.1 for more details).

6Notice that the cost of validating the public key was omitted from these estimates. However, as
shown in the last row of Table 3, the computational cost of this task is negligible.
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The last three rows in Table 3 report the highest speedups. Notice that these three rows
correspond with the last three rows in Table 4. Interestingly, applying optimal strategies
for the SIMBA-based approach shows the same costs as a multiplicative-based SIMBA
method. This similarity between these two approaches, nicely corresponds to the results
reported by [14], where a SIMBA multiplicative-based strategy was found as the most
economical.

A graphical view of several of these CSIDH strategies can be found in Figures 2 and
3 of Appendix C.

Table 3 also showcases that the application of optimal strategies without the SIMBA
approach, produces different integer vector bounds and competitive speedups compared
with the work presented in [14].

Algorithm Strategy Bounds: −→m Group action
M S a Speedup (%)

evaluation

SIMBA-5-11

multiplicative

as given in [17]
MCR-style

0.900 0.297 0.939 —
optimal 0.900 0.296 0.939 0.00

multiplicative
dummy-free

1.309 0.392 1.324 —
optimal 1.308 0.392 1.322 0.00

SIMBA-3-8
multiplicative

as given in [22] OAYT-style
0.642 0.198 0.661 —

optimal 0.642 0.198 0.661 0.00

SIMBA-5-11
Multiplicative as given in section 4.4

MCR-style 0.881 0.310 0.956 0.50
dummy-free 1.280 0.415 1.353 0.35

SIMBA-3-8 OAYT-style 0.632 0.202 0.663 0.71

This work optimal
as given in [17]

MCR-style 0.930 0.242 0.851 2.09
dummy-free 1.378 0.335 1.249 -0.71

as given in [22] OAYT-style 0.670 0.173 0.626 -0.36

This work optimal as given in section 4.4
MCR-style 0.835 0.231 0.784 10.94
dummy-free 1.244 0.322 1.158 7.94
OAYT-style 0.642 0.172 0.610 3.10

Public key validation — 0.021 0.010 0.030 —

Table 3: Expected number of field operation for the constant-time CSIDH-512 group
action evaluation. Counts are given in millions of operations, averaged over 1024 random
experiments. The Speedup is computed using the multiplicative version of SIMBA-σ-κ
as a baseline, by only considering multiplication and squaring operations, and assuming
M = S. The last three rows in this table report the highest speedups. Adding the public
key validation cost to these three rows, get the last three rows in Table 4. Public key
validation was separately measured, and presented in the last row of the table.

5.2 Experimental results and comparison with related work

Tables 4–5, report the field arithmetic counting and clock cycles timings obtained for
three CSIDH-512 constant-time group action variants, averaged over 1024 random ex-
periments. The three speedup figures given in the last column are calculated with respect
to the MCR, OAYT and Dummy-free using the SIMBA approach as they were reported
in [7]. It can be seen that our approach produces noticeable savings compared against the
MCR and Dummy-free SIMBA-based implementation of [7]. In the case of our OAYT-
style implementation, the savings are more modest. Concretely, optimal strategies as
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Implementation Group action evaluation M S a Speedup (%)

Cervantes-Vázquez
et al. [7]

MCR-style 0.900 0.310 0.964 —
OAYT-style 0.658 0.210 0.691 —

dummy-free-style 1.319 0.423 1.389 —

Hutchinson et al. [14] OAYT-style 0.637 0.212 0.712 2.19

This work
MCR-style 0.862 0.255 0.866 7.69
OAYT-style 0.666 0.189 0.691 1.50

dummy-free-style 1.273 0.346 1.280 7.06

Table 4: Field operation counts for constant-time CSIDH-512 group action evaluation.
Counts are given in millions of operations, averaged over 1024 random experiments.
The three speedups given in the last column are calculated with respect to the MCR,
OAYT and dummy-free using the SIMBA approach as they were reported in [7]. We
only considered multiplication and squaring operations, and assumed M = S.

Implementation Group action evaluation Mcycles Speedup (%)

Cervantes-Vázquez et al. [7]
MCR-style 339 —
OAYT-style 238 —
dummy-free 482 —

Hutchinson et al. [14] OAYT-style 229 3.78

This work
MCR-style 298 12.09
OAYT-style 230 3.36

dummy-free-style 431 10.58

Table 5: Clock cycle timings for constant-time CSIDH-512 group action evaluation,
averaged over 1024 runs. The speedups given in the last column are calculated with
respect to the MCR, OAYT and dummy-free using the SIMBA approach as they were
reported in [7].

applied to the MCR- OAYT- and Dummy-free- styles implementations yield a 12.09%,
3.36% and 10.58% speedup over [7], respectively (See Table 5). Furthermore, Tables 4
and 5 show that our results are highly competitive with respect to the ones reported
in [14]. We found that the field arithmetic operation and clock cycle associated to the
script of [14] for the OAYT-style CSIDH-512 computation, is 0.7% cheaper and 0.43%
faster than the ones corresponding to our work for this CSIDH variant, respectively.

5.3 Expected field arithmetic costs for larger CSIDH instantiations

Using our Python3-code implementation of the CSIDH protocol, we report in Table 6
the expected number of field operations for the OAYT-style CSIDH-1024 instantiation.
It can be seen that the number of field operations is about the same as in the case of
CSIDH-512. Likewise, Table 7 reports the expected cost of a group action evaluation of
a OAYT-style CSIDH-1792 instantiation, where the 1790-bit prime p, is determined by
the product of the first 207 small odd primes `i’s different from 149, equal to p+1

4 . In
both cases, we found suitable bounds based on the approach described in §4.4.
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Notice that for the case of the OAYT-style CSIDH-1792, one requires exactly one
degree-`i isogeny construction for each `i, and thus only one optimal strategy must
be applied. Moreover, by precomputing an integer u ∈ Fp such that the Elligator 2
procedure with inputs u and Montgomery curve coefficient A, returns two full torsion
points, one can achieve a group action evaluation with a random-free fixed running
time. This comes at the cost of increasing the public key size to the double by adding
the parameters (A, u). In fact, CSIDH-1792 with OAYT-style ensures that Elligator 2
is always invoked using public parameters.

Group action evaluation M S a Cost

MCR-style 0.776 0.191 0.695 0.967

dummy-free 1.152 0.259 1.011 1.411

OAYT-style 0.630 0.152 0.576 0.782

Public key validation 0.046 0.023 0.067 0.069

Table 6: Expected number of field operation for the constant-time CSIDH-1024 group
action evaluation. Counts are given in millions of operations, averaged over 1024 random
experiments. For computing the Cost column, it is assumed that M = S and all addition
costs are ignored. Public key validation was separately measured, and presented in the
last row of the table.

Group action evaluation M S a Cost

MCR-style 1.040 0.239 0.910 1.279

dummy-free 1.557 0.327 1.337 1.884

OAYT-style 1.364 0.252 1.104 1.616

Full torsion points search 1.571 0.785 2.295 2.356

Public key validation 0.089 0.044 0.130 0.133

Table 7: Expected number of field operation for the constant-time CSIDH-1792 group
action evaluation. Counts are given in millions of operations, averaged over 1024 random
experiments. For computing the Cost column, it is assumed that M = S and all addition
costs are ignored. Public key validation and full torsion point search were separately
measured, and presented in the last rows of the table. The OAYT-style CSIDH group
action reported in this table uses full torsion points and executes in a fixed running-time.

6 Conclusions

The computational cost of the CSIDH group action evaluation, directly depends on the
number and degree of the isogenies to be processed, which are determined by the n
prime factors of p+1

4 . Another influential factor in the cost of this operation is given by
the bound vector, which specifies the number of times that each one of those isogenies
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must be processed. In this work, we have given further evidence that the application
of optimal strategies to the CSIDH group action computation can provide a noticeable
performance speedup.

In the context of CSIDH, optimal strategies can be used to speedup the SIMBA
method proposed in [17], which roughly speaking, corresponds to the framework reported
by Hutchinson et al. in [14]. In this work, we dismiss the usage of the SIMBA method by
employing optimal strategies as an intuitive generalization of the way that this technique
is applied to SIDH. When optimal strategies à la SIDH are applied to CSIDH, they tend
to exploit the cheap cost of isogeny evaluations with smaller degrees.

By following this approach, we proposed an efficient deterministic algorithm for com-
puting optimal strategies for CSIDH. We report constant-time C-code implementations
of three CSIDH variants: MCR-, OAYT-, and Dummy-free styles. As shown in Table 5,
our experimental results achieve performance speedups of 12.09%, 3.36% and 10.58%
compared with the MCR, OAYT and dummy-free SIMBA-based implementations re-
ported in [7]. Furthermore, Tables 4 and 5 show that our results are highly competitive
with respect to the ones reported in [14].

As a future work, we would like to explore the approach presented in [21], for finding
optimized bound vector for CSIDH protocol variants.
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A Constant-time Algorithms for computing the CSIDH
group action

Algorithm 3: OAYT style from [22]. Simplified constant-time CSIDH class group action

for supersingular curves over Fp, where p = 4
∏n
i=1 `i − 1. The ideals li = (`i, π − 1) and

l−1
i = (`i, π + 1) , where π maps to the p-th power Frobenius endomorphism on each curve.

This algorithm computes exactly m isogenies for each ideal li (or l−1
i ).

Input: A supersingular curve EA over Fp, and an exponent vector (e1, . . . , en) with each
ei ∈ [−m,m]), m a positive number.

Output: EB = le11 ∗ · · · ∗ lenn ∗ EA.
1 E0 ← EA;
2 // Outer loop: Each `i prime f. is processed m times

3 for i ∈ {1, . . . ,m} do
4 T+, T− ← ObtainFullTorsionPoint(E0) ; // T± ∈ En[π ∓ 1]
5 T+, T− ← [4]T+, [4]T− ; // Now T+, T− ∈ En

[∏
i `i
]

6 // Inner loop: processing each prime factor `i|(p+ 1);
7 for j ∈ {0, 1, . . . , n− 1} do
8 s← isequal(sign(ej),−1) ;

9 cswap(T+, T−, s) ; // swap ideals ln−j and l−1
n−j

10 Gj ← T+ ;
11 for k ∈ {1, . . . , n− 1− j} do
12 Gj ← [`k]Gj

13 b← isequal(en−j , 0) ;
14 (E(j+1) mod n, R)← QuotientIsogeny(Ej , Gj , `n−j) ; // degree-`n−j isogeny

15 T ′+ ← [`n−j ]T+ ;
16 T+ ← PEVAL(T+, R); // Evaluate T+ on degree-`n−j isogeny

17 T− ← PEVAL(T−, R); // Evaluate T− on degree-`n−j isogeny

18 cswap(Ej , E(j+1) mod n, b) ; // undo if en−j = 0
19 cswap(T ′+, T+, b) ; // undo if en−j = 0
20 cswap(T ′−, T−, b) ; // undo if en−j = 0
21 T− ← [`n−j ]T− ;

22 cswap(T+, T−, s) ; // swap ideals ln−j and l−1
n−j

23 en−j ← en−j −
(
(b+ 1) mod 2

)
;

24 return E0

B Executing optimal strategies for CSIDH

In this appendix, we give explicit details of how an optimal strategy can be executed
in constant-time using the MCR, OAYT and Dummy-free approaches as described
in §§4.1 4.3.
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Algorithm 4: Dummy-free Style from [7]. Simplified constant-time CSIDH class group

action for supersingular curves over Fp, where p = 4
∏n
i=1 `i−1. The ideals li = (`i, π−1) and

l−1
i = (`i, π + 1) , where π maps to the p-th power Frobenius endomorphism on each curve.

This algorithm computes exactly m isogenies for each ideal li (or l−1
i ).

Input: A supersingular curve EA over Fp, and an exponent vector (e1, . . . , en) with each
ei ∈ S(m)), m a positive number.

Output: EB = le11 ∗ · · · ∗ lenn ∗ EA.
1 E0 ← EA;
2 // Outer loop: Each `i prime f. is processed m times

3 for i ∈ {1, . . . ,m} do
4 T+, T− ← ObtainFullTorsionPoint(E0) ; // T± ∈ En[π ∓ 1]
5 T+, T− ← [4]T+, [4]T− ; // Now T+, T− ∈ En

[∏
i `i
]

6 // Inner loop: processing each prime factor `i|(p+ 1);
7 for j ∈ {0, 1, . . . , n− 1} do
8 s← isequal(sign(ej),−1) ;

9 cswap(T+, T−, s) ; // swap ideals ln−j and l−1
n−j

10 Gj ← T+ ;
11 for k ∈ {1, . . . , n− 1− j} do
12 Gj ← [`k]Gj

13 (E(j+1) mod n, R)← QuotientIsogeny(Ej , Gj , `n−j) ; // degree-`n−j isogeny

14 T+ ← PEVAL(T+, R); // Evaluate T+ on degree-`n−j isogeny

15 T− ← PEVAL(T−, R); // Evaluate T− on degree-`n−j isogeny

16 T− ← [`n−j ]T− ;

17 cswap(T+, T−, s) ; // swap ideals ln−j and l−1
n−j

18 en−j ← en−j − 1 ;

19 return E0

B.1 Using one torsion point and dummy isogeny constructions (MCR-
style)

The vertices of Sn(L) are labeled as the pair of integers (i, j), where 0 ≤ j < n and 0 ≤
i < (n− j). The vertex (i, j) determines a single torsion-

(∏n−j
k=i `k

)
point Ti,j ∈ Ej(Fp).

The root of Sn(L) is (0, 0), its leaves are the vertices of the form (n− 1− j, j), and two
vertices of the form (i, j) and (k, j) determines rational elliptic curve points on the same
curve Ej . Now, for each `i let us define

bn−j−1 :=

{
1 if a dummy degree-`n−j isogeny construction is required,
0 otherwise.

The navigation rules to walk across ∆n are described as follows:

1. There are two types of edges: horizontal and vertical edges. Any horizontal edge[
(i, j), (i, j + 1)

]
can be computed if and only if the leaf (n − 1 − j, j) has been

reached. Additionally, vertical edges of the form
[
(i, j), (i + 1, j)

]
are allowed for

0 ≤ i < n− 1− j.

2. A ramification is a vertex having both horizontal and vertical edges.
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3. At leaf (n − 1 − j, j), the following computations and constant-time swaps take
place:

T0,j , Tn−1−j,j ← cswap(T0,j , Tn−1−j,j , bn−1−j),

Ej+1, R← QuotientIsogeny(Ej , Tn−1−j,j , `n−j),

Ej , Ej+1 ← cswap(Ej , Ej+1, bn−1−j), and

T0,j , Tn−1−j,j ← cswap(T0,j , Tn−1−j,j , bn−1−j).

Here, QuotientIsogeny(Ej , Tn−1−j,j,`n−j ) is performed by assuming that Tn−1−j,j
has order-(`n−j), and its second output is a list of the multiples Rk := [k]Tn−1−j,j ,
for k = 1, . . . , dn−j with `n−j = 2dn−j + 1 (cf. §2.2).

4. A horizontal edge corresponds to a decrement in the order of the current point by
a factor `j . To be more precise, the edge

[
(i, j), (i, j+1)

]
means that the following

computations must be performed:

(a) If i = 0: R(dn−j+1) ← Rdn−j +R1 and Ti,j ← Rdn−j +R(dn−j+1) = [`n−j ]R1.

(b) Otherwise: Ti,j ← [`n−j ]Ti,j .

In both cases, the following evaluation and constant-time swap have also been
performed

Ti,j+1 ← EvaluateIsogeny(Ti,j , R), and

Ti,j , Ti,j+1 ← cswap(Ti,j , Ti,j+1, bn−j−1).

5. A vertical edge corresponds to a decrease in the order of the current point by a
scalar multiplication. In othe words, the edge

[
(i, j), (i+1, j)

]
means that Ti+1,j ←

[`i]Ti,j has been performed.

B.2 Using two torsion points and dummy isogeny constructions (OAYT-
style)

The vertices of Sn(L) are labeled by a integer pair (i, j) where 0 ≤ j < n and 0 ≤ i <
(n− j). The vertex (i, j) determines a pair of torsion-

(∏n−j
k=i `k

)
points T+,i,j ∈ Ei[π−1]

and T−,i,j ∈ Ei[π + 1]. The root of Sn(L) is (0, 0), its leaves are the vertices of the form
(n − 1 − j, j), and two vertices of the form (i, j) and (k, j) determines rational elliptic
curve points on the same curve Ej . Now, for each `i let us define,

bn−1−j :=

{
1 if dummy degree-`n−j isogeny construction is required,
0 otherwise;

and
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sn−1−j :=

{
1 if T−,i,j is required,
0 if T+,i,j is required.

Then, the navigation rules to walk across ∆n are described as follows:

1. There are two types of edges: horizontal and vertical edges. Any horizontal edge[
(i, j), (i, j + 1)

]
can be computed if and only if the leaf (n − 1 − j, j) has been

reached. Additionally, vertical edges
[
(i, j), (k, j)

]
are only allowed when i < k.

2. A ramification is a vertex having both horizontal and vertical edges.

3. At leaf (n − 1 − j, j), the following computations and constant-time swaps are
perform:

T+,0,j , T−,0,j ← cswap(T+,0,j , T−,0,j , sn−1−j),

T+,n−1−j,j , T−,n−1−j,j ← cswap(T+,n−1−j,j , T−,n−1−j,j , sn−1−j),

T+,0,j , Tn−1−j,j ← cswap(T+,0,j , T+,n−1−j,j , bn−1−j),

Ej+1, R← QuotientIsogeny(Ej , T+,n−1−j,j),

Ej , Ej+1 ← cswap(Ej , Ej+1, bn−1−j),

T+,0,j , Tn−1−j,j ← cswap(T+,0,j , T+,n−1−j,j , bn−1−j),

T+,n−1−j,j , T−,n−1−j,j ← cswap(T+,n−1−j,j , T−,n−1−j,j , sn−1−j), and

T+,0,j , T−,0,j ← cswap(T+,0,j , T−,0,j , sn−1−j).

Here, QuotientIsogeny(Ej , T+,n−1−j,j) is performed by assuming that T+,n−1−j,j
has order-(`n−j), and its second output is a list of the multiples Rk := [k]T+,n−1−j,j
for k = 1, . . . , dn−j with `n−j = 2dn−j + 1 (cf. §2.2).

4. A horizontal edge corresponds to a decrease in the order of the current point by
a factor of `n−j . To be more precise, the edge

[
(i, j), (i, j + 1)

]
means that the

following computations have been performed:

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j), and

(a) If i = 0: R(dn−j+1) ← Rdn−j +R1 and T+,i,j ← Rdn−j +R(dn−j+1) = [2dn−j +
1]R1.

(b) Otherwise: T+,i,j ← [`n−j ]T+,i,j .

In both cases, the following evaluation and constant-time swap have also been
performed
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T−,i,j ← [`n−j ]T−,i,j ,

T+,i,j+1 ← EvaluateIsogeny(T+,i,j , R),

T−,i,j+1 ← EvaluateIsogeny(T−,i,j , R),

T+,i,j , T+,i,j+1 ← cswap(T+,i,j , T+,i,j+1, bn−1−j),

T−,i,j , T−,i,j+1 ← cswap(T−,i,j , T−,i,j+1, bn−1−j), and

T+,i,j+1, T−,i,j+1 ← cswap(T+,i,j+1, T−,i,j+1, sn−1−j)

5. A vertical edge corresponds to a decrease in the order of the current point by a
scalar multiplication. In othe words, the edge

[
(i, j), (i + 1, j)

]
means that the

following operations has been performed:

(a) If there are no ramifications between the vertices (i, j) and (n− 1− j, j):

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j),

T+,i+1,j ← [`i]T+,i,j ,

T+,i+1,j , T−,i+1,j ← cswap(T+,i+1,j , T−,i+1,j , sn−1−j), and

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j).

(b) Otherwise:

T+,i+1,j ← [`i]T+,i,j , and

T−,i+1,j ← [`i]T−,i,j .

B.3 Using two torsion point without dummy isogeny constructions
(Dummy-free style)

The vertices of Sn(L) are labeled by a integer pair (i, j) where 0 ≤ j < n and 0 ≤ i <
(n− j). The vertex (i, j) determines a pair of torsion-

(∏n−j
k=i `k

)
points T+,i,j ∈ Ei[π−1]

and T−,i,j ∈ Ei[π + 1]. The root of Sn(L) is (0, 0), its leaves are the vertices of the form
(n − 1 − j, j), and two vertices of the form (i, j) and (k, j) determines rational elliptic
curve points on the same curve Ej . Now, for each `i let’s define

sn−1−j :=

{
1 if T−,i,j is required,
0 if T+,i,j is required;

then, the navigation rules to walk across ∆n are described as follows:

1. There are two types of edges: horizontal and vertical edges. Any horizontal edge[
(i, j), (i, j + 1)

]
can be computed if and only if the leaf (n − 1 − j, j) has been

reached. Additionally, vertical edges
[
(i, j), (k, j)

]
are only allowed when i < k.
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2. A ramification is a vertex having both horizontal and vertical edges.

3. At leaf (n − 1 − j, j), the following computations and constant-time swaps are
perform:

T+,n−1−j,j , T−,n−1−j,j ← cswap(T+,n−1−j,j , T−,n−1−j,j , sn−1−j),

Ej+1, R← QuotientIsogeny(Ej , T+,n−1−j,j),

Ej , Ej+1 ← cswap(Ej , Ej+1, bn−1−j), and

T+,n−1−j,j , T−,n−1−j,j ← cswap(T+,n−1−j,j , T−,n−1−j,j , sn−1−j).

Here, QuotientIsogeny(Ej , T+,n−1−j,j) is performed by assuming that T+,n−1−j,j
has order-(`n−j), and its second output is a list of the multiples Rk := [k]T+,n−1−j,j
for k = 1, . . . , dn−j with `n−j = 2dn−j + 1 (cf. §2.2).

4. A horizontal edge corresponds to a decrease in the order of the current point by
a factor of `n−j . To be more precise, the edge

[
(i, j), (i, j + 1)

]
means that the

following computations and constnat-time swaps have been performed:

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j),

T−,i,j ← [`n−j ]T−,i,j ,

T+,i,j+1 ← EvaluateIsogeny(T+,i,j , R),

T−,i,j+1 ← EvaluateIsogeny(T−,i,j , R), and

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j).

5. A vertical edge corresponds to a decrease in the order of the current point by a
scalar multiplication. In othe words, the edge

[
(i, j), (i + 1, j)

]
means that the

following operations has been performed:

(a) If there are no ramifications between the vertices (i, j) and (n− 1− j, j):

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j),

T+,i+1,j ← [`i]T+,i,j ,

T+,i+1,j , T−,i+1,j ← cswap(T+,i+1,j , T−,i+1,j , sn−1−j), and

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j).

(b) Otherwise:

T+,i+1,j ← [`i]T+,i,j , and

T−,i+1,j ← [`i]T−,i,j .
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C A graphical view of CSIDH strategies

SIMBA-5-11: MCR style SIMBA-3-8: OAYT style

Figure 2: Two variants of the CSIDH group action evaluation: MCR style as proposed
in [17] and OAYT style as proposed in [22]. Each one of the two aproaches depicted in this
figure, computes a group action using the SIMBA-σ-κ method, constructing isogenies of
prime degree grouped in σ batches. Each round must be repeated κ times. A final repair
round applies a multiplicative strategy to process the prime factors not covered during
the κ rounds. Horizontal edges (in red) and vertical edges (in blue) represent isogeny
evaluations q`i , and scalar multiplications p`i , respectively.

D Strategies à la SIDH adapted to OAYT-style CSIDH
512

Here, we present eleven optimal strategies that were found for performing the OAYT-
style CSIDH 512 instantiation. We first found an optimal strategy for all the seventy
four prime factors of p+1

4 . This strategy completed the required number of group actions
for just one of those seventy-four prime factors. Thereafter, we found a second strategy
for the remaining seventy-three prime factors. In the third iteration, a strategy for
sixty-three remainding prime factors was found. And so on so forth, until all the last
remaining twenty-one prime factors were processed by the eleventh strategy.

1. Strategy à la SIDH for 74 primes: [43, 16, 7, 4, 3, 2, 1, 3, 2, 1, 6, 5,

4, 3, 2, 1, 10, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 31, 11, 10,

33



(a) Simplified MCR-style: requires 10 rounds. (b) Simplified OAYT-style: requires 5 rounds.

(c) Simplified Dummy-free style: requires 10
rounds.

Figure 3: A graphical view of the strategies followed by three variants of the CSIDH
group action evaluation: MCR style as presented in [17], OAYT style as proposed in [22]
and dummy-free style as presented in [7]. Horizontal edges (in red) and vertical edges
(in blue) represent isogeny evaluations q`i , and scalar multiplications p`i , respectively.
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9, 8, 7, 6, 5, 4, 3, 2, 1, 22, 8, 7, 6, 5, 4, 3, 2, 1, 21, 20, 19, 18,

17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1];

2. Strategy à la SIDH for 73 primes: [42, 16, 7, 4, 3, 2, 1, 3, 2, 1, 6, 5,

4, 3, 2, 1, 10, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 30, 11, 10,

9, 8, 7, 6, 5, 4, 3, 2, 1, 21, 8, 7, 6, 5, 4, 3, 2, 1, 20, 19, 18, 17,

16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1];

3. Strategy à la SIDH for 63 primes: [38, 11, 7, 4, 2, 1, 3, 2, 1, 6, 5, 4,

3, 2, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 27, 10, 9, 8, 7, 6, 5, 4, 3,

2, 1, 19, 7, 6, 5, 4, 3, 2, 1, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9,

8, 7, 6, 5, 4, 3, 2, 1];

4. Strategy à la SIDH for 45 primes: [24, 10, 6, 4, 3, 2, 1, 5, 4, 3, 2, 1,

9, 8, 7, 6, 5, 4, 3, 2, 1, 15, 8, 7, 6, 5, 4, 3, 2, 1, 14, 13, 12, 11,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1];

5. Strategy à la SIDH for 37 primes: [20, 8, 5, 3, 2, 1, 4, 3, 2, 1, 7, 6,

5, 4, 3, 2, 1, 13, 6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3,

2, 1];

6. Strategy à la SIDH for 33 primes: [18, 7, 4, 3, 2, 1, 3, 2, 1, 6, 5, 4,

3, 2, 1, 11, 6, 5, 4, 3, 2, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1];

7. Strategy à la SIDH for 31 primes: [16, 7, 4, 3, 2, 1, 3, 2, 1, 6, 5, 4,

3, 2, 1, 10, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1];

8. Strategy à la SIDH for 27 primes: [14, 6, 4, 2, 1, 3, 2, 1, 5, 4, 3, 2,

1, 9, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1];

9. Strategy à la SIDH for 25 primes: [1, 1, 6, 4, 2, 1, 3, 2, 1, 5, 4, 3,

2, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1];

10. Strategy à la SIDH for 22 primes: [10, 6, 3, 2, 1, 2, 1, 5, 4, 3, 2, 1,

9, 8, 7, 6, 5, 4, 3, 2, 1];

11. Strategy à la SIDH for 21 primes: [10, 5, 3, 2, 1, 2, 1, 4, 3, 2, 1, 9,

8, 7, 6, 5, 4, 3, 2, 1];

35


	Introduction
	Preliminaries
	Differential addition chains for Montgomery ladders
	Isogeny constructions and evaluations

	Computing the CSIDH class group action
	Setting
	A simplified constant-time CSIDH group action evaluation
	A multiplicative-based Strategy for CSIDH
	Optimal strategies for CSIDH
	Finding Optimal strategies for CSIDH


	Additional algorithmic refinements for constant-time group action evaluation
	One torsion point with dummy isogeny constructions (MCR-style)
	Two torsion point with dummy isogeny constructions (OAYT-style)
	Two torsion point without dummy isogeny constructions (Dummy-free style)
	Finding an optimal bound vector for the CSIDH group action
	Number of optimal strategies required for a group action computation

	Experiments and comparisons
	A comparison of SIMBA multiplicative-based approach Versus optimal strategies
	Experimental results and comparison with related work
	Expected field arithmetic costs for larger CSIDH instantiations

	Conclusions
	Constant-time Algorithms for computing the CSIDH group action
	Executing optimal strategies for CSIDH
	Using one torsion point and dummy isogeny constructions (MCR-style)
	Using two torsion points and dummy isogeny constructions (OAYT-style)
	Using two torsion point without dummy isogeny constructions (Dummy-free style)

	A graphical view of CSIDH strategies
	Strategies à la SIDH adapted to OAYT-style CSIDH 512

