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Abstract. Secure multi-party computation has been extensively studied
in the past years and has reached a level that is considered practical for
several applications. The techniques developed thus far have been steadily
optimized for performance and were shown to be secure in the classical
setting, but are not known to be secure against quantum adversaries.
In this work, we start to pave the way for secure two-party computation
in a quantum world where the adversary has access to a quantum com-
puter. We show that post-quantum secure two-party computation has
comparable efficiency to their classical counterparts. For this, we develop
a lattice-based OT protocol which we use to implement a post-quantum
secure variant of Yao’s famous garbled circuits (GC) protocol (FOCS’82).
Along with the OT protocol, we show that the oblivious transfer extension
protocol of Ishai et al. (CRYPTO’03), which allows running many OTs
using mainly symmetric cryptography, is post-quantum secure. To support
these results, we prove that Yao’s GC protocol achieves post-quantum
security if the underlying building blocks do.

Keywords: Post-quantum security - Yao’s GC protocol - Oblivious
transfer - Secure two-party computation - Homomorphic encryption

1 Introduction

In light of recent advances in quantum computing, it seems that we are not far
from the time that Shor’s algorithm [54] can be executed on a real quantum
computer. There are several experts that estimate that quantum computers with
the required performance and features will be available within the next one



or two decades [8, 42]. Recently Google researchers claimed to have achieved
quantum-supremacy, i.e., being able to perform a specific type of computation
on a quantum computer, that is infeasible on conventional supercomputers [6].
This will give rise to the so-called quantum era [13], in which one of the parties
involved in a cryptographic protocol might be able to perform local quantum
computation during the protocol run whereas the communication between the
parties remains classical. It is therefore necessary to analyse the security of
cryptographic protocols against quantum adversaries. Some industrial security
review processes already mandate post-quantum security for building blocks
that are used in secure systems, which shows that the security threat posed
by quantum computers is getting attention even outside of academia. The de-
velopment of post-quantum secure cryptographic primitives such as [2, 21, 34,
41] in the past years shows the importance that the cryptographic community
attributes to the problem. However, more complex cryptographic protocols have
not yet been extensively studied, even though Canetti’s UC framework [17] and
Unruh’s quantum lifting [57] provide the necessary theoretical foundations for
achieving this task. One such complex cryptographic protocol is secure two-party
computation. In recent years, Yao’s general solution for secure computation, the
so-called ‘Yao’s Garbled Circuits’ (GC) protocol [60], emerged from a theoretical
idea to a powerful and versatile privacy-enhancing technology. Extensive research
on the adversarial model, e.g., security against malicious adversaries [37, 58],
and several protocol optimizations made GCs practical for many use cases in
the last decade. Protocol optimizations such as Garbled Row Reduction [44, 48],
the free-XOR, technique [35], fixed-key garbling [10], the half-gates approach [62],
OT extension [7, 33], and also the use of hardware instructions such as AES-NI
or parallelization improved the runtime of the protocol by orders of magnitude.

Despite its maturity and efficiency, e.g., being a constant round protocol using
mostly symmetric cryptographic primitives, the security of Yao’s GC protocol has
only been studied against classical adversaries. Unruh showed that multi-party
computation is achievable from commitments in a fully-quantum setting [57]. In
their setting quantum computers are ubiquitous, in the post-quantum setting we
consider only the adversary has quantum computing power. However, the gap
between the highly optimized GC solution used as a privacy-enhancing technology
today and this theoretical construction in the fully-quantum case, makes the
transition from the classical to the post-quantum case challenging. Therefore,
securing Yao’s GC protocol against quantum adversaries is of high practical
and theoretical interest. A prominent example is the standardization process on
post-quantum cryptographic primitives initiated by the NIST [46].

Our Contributions. In this paper, we extend the line of research for secure
computation to the post-quantum setting, combining theory and practice. On
the practical side, we complement the theoretical results by showing that post-
quantum secure two-party computation achieves performance that is close to
existing classical implementations. On the theoretical side, we pave the way for



post-quantum secure two-party computation by proving security of Yao’s GC
protocol and OT extension. Our contributions are detailed below.

1) In Section 3, we develop an efficient post-quantum secure OT protocol based
on the ring learning with errors (RLWE) problem. The protocol is based on an
additively homomorphic encryption scheme. The general method to do this is
well-known, but we show how to implement this very efficiently. In particular,
we use batching to compute a large number of OTs at the cost of one, while
maximizing the packing efficiency and the parallelism we get from homomorphic
single instruction multiple data (SIMD) operations. Additionally, we show that
OT extension introduced by Ishai et al. [33] is secure against quantum adversaries.

2) We implement our OT protocol in C++ using the Microsoft SEAL homo-
morphic encryption library [53]. In Section 4 we show that our implementation
achieves a throughput of 89k PQ-OTs per second, thus being a promising re-
placement for existing classical OT protocols. Furthermore, we implement a
post-quantum secure version of Yao’s GC protocol using our OT implementation
and compare its performance with implementations secure in the classical setting.
While a performance loss is expected, our results show that it is in fact tolerable.
Our implementations are open-source software under the permissive MIT license
and are available online at https://encrypto.de/code/pg-mpc.

3) In Section 5, we strengthen our practical results by proving that Yao’s
GC protocol can be hardened to withstand quantum attackers by replacing the
underlying components with post-quantum-secure variants. We do so by showing
that the classical proof by Lindell and Pinkas [36] also holds in the post-quantum
setting. In addition, we give a security proof for double encryption security in the
post-quantum setting adapted to the quantum random oracle model (QROM).
While these results sound very natural, we stress that they have not been formally
proven thus far.

Related Work. There are several works related to Yao’s protocol, oblivious
transfer and post-quantum security. We give a brief overview of results that are
relevant for our work. There are several implementations available, that show
practical performance for Yao’s garbled circuits protocol [20, 59, 61], that could
benefit from incorporating security against quantum adversaries. A full proof of
classical security for Yao’s garbled circuits protocol was given in [36]. In [18], the
free-XOR optimization [35] of Yao’s protocol was proven secure under a weaker
assumption than the random oracle model. The point-and-permute optimization
was introduced and implemented in [9, 39]. A formally verified software stack
for Yao’s garbled circuits was presented in [4]. Known instantiations for post-
quantum secure OT protocols are either based on the code-based McEliece crypto
system [23] or on the learning with errors (LWE) problem [15]. In [40], the authors
build OT extension from post-quantum secure primitives, but do not prove it
post-quantum secure.
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2 Preliminaries

Within this section we give the mandatory background regarding notation, en-
cryption schemes, oblivious transfer, and Yao’s protocol for our paper. Additional
background on the quantum random oracle model and the additively homomor-
phic encryption scheme is given in Appendix A.

2.1 Notation

We denote the modulus reduction in the symmetric interval [—q/2,¢/2) by []4,
and the modulus reduction of an integer a in the positive interval [0,q) by
a mod ¢. The set of integers {1,...,n} is denoted by [n]. We use bold case letters
for vectors, e.g., a, and identify the i-th entry of a vector a by (a;). In a secure
two-party computation protocol, two parties with corresponding inputs = and
y want to compute F(x,y) for a function F known by both parties. We use
statistical security parameter o = 40 bit, the symmetric security parameter x,
and the public-key security parameter .

In our proofs we use the code-based game playing framework by Bellare and
Rogaway [12]. At the start of the game, the initialize procedure is executed and
its output is given as the input to the adversary. The output of the game is the
output of the finalize procedure which takes as input whatever the adversary
outputs. In between, the adversary has oracle access to all other procedures
described in the game. For a game G and an adversary A, we write A® — y
for the event that the output of A is y when interacting with G. Likewise, we
denote the event that the G outputs y when interacting with A by G* — y. For
simplicity, we assume that for any table f[] its entries are initialized to L at the
start of the game. We denote homomorphic addition and subtraction as H and H,
respectively. Homomorphic multiplication with a plaintext is denoted by [J. The
detailed description of an additively homomorphic encryption scheme is given in
Appendix A.2. We assume the reader is familiar with the fundamental concepts
of quantum computation like the Dirac notation and measurements. For a more
thorough discussion we refer to [45].

2.2 Encryption

A secret key encryption scheme Eg is a pair of efficient algorithms Enc and Dec
for encryption and decryption, where Enc(k, m) — ¢ and Dec(k,c) — m for
message m, ciphertext ¢, and key k.

A basic security notion for secret key encryption schemes is indistinguishability
under chosen plaintext attacks (IND-CPA) which asks an adversary to distinguish
between the encryption of two adversarial chosen messages. Below we formally
define the corresponding post-quantum security notion, that is, pq-IND-CPA,
for secret key encryption schemes in the QROM. Note that the security notion
allows for multiple challenges which is an important requirement in the security
proof of Yao’s protocol.



Definition 1. Let Eg = (Enc,Dec) be a secret key encryption scheme and let the
game pq-INDCPA be defined as in Fig. 1. We say that Eg is pq-IND-CPA-secure
if the following term is negligible for any quantum adversary A:

AdvRI P (4) = 2Pr [INDCPA* — true| — 1.

Game pg-INDCPA procedure E(mo, m)
procedure Initialize

¢ <s Enc(k, mp)

b+s{0,1}; k+sK return c

procedure Enc(m) procedure Oy} aa,y |z, y))
¢ «=sEnc(k,m) return ZaTy |z, y ® H(z))
return c

procedure Finalize (V')

return (b’ = b)

Fig. 1. Game to define pg-IND-CPA security for secret key encryption schemes.

2.3 Oblivious Transfer

An oblivious transfer (OT) protocol is a protocol in which a sender transfers one
of multiple messages to a receiver, but it remains oblivious as to which message
has been transferred. At the same time, the receiver can only select a single
message to be retrieved. We focus on 1-out-of-2 OT's, where the sender inputs two
£-bit strings mg, my and the receiver inputs a choice bit b € {0,1}. At the end of
the protocol, the receiver obliviously receives only my. OT guarantees that the
sender learns nothing about the choice bit b, and that the receiver learns nothing
about the other message m,_;. OT protocols require public key cryptography as
shown in [32], and were assumed to be very costly in the past. However, in 2003
Ishai et al. [33] presented the idea of OT extension, which significantly reduces
the computational costs of OTs for many interesting applications of MPC by
extending a small number of ‘real’ base OTs to a large number of OTs using only
symmetric cryptographic primitives.

2.4 Description of Yao’s Protocol

Yao’s garbled circuits protocol [60] is a fundamental secure two-party computation
protocol. The protocol consists of two cryptographic primitives: a secret key
encryption scheme and an OT protocol. It is executed by two parties, the garbler G
and the evaluator £ with corresponding inputs = and y. At the end of the protocol,
both parties want to obtain F(z,y) for a deterministic function F. At the start
of the protocol, both parties agree on a Boolean circuit that evaluates F.



For symmetric security parameter s, the garbler G starts by choosing two
keys k? and k! of length k bits for each wire w; in the circuit, which represent
the possible values 0 and 1. For a gate g;, let [, r, and o denote the indices of the

left input wire, right input wire, and output wire, respectively. k% "% denotes
the output key for gate j corresponding to the plaintext inputs « and y. Then G
generates the garbled table

¢o < Enc(k?,Enc(k?, k91(%0)) ¢ « Enc(k?,Enc(k}, k9 (OD))
¢y < Enc(k},Enc(k?, k% (10))) ¢3 < Enc(k},Enc(k}, k% (1))

for each gate g; in the circuit. Following this, G sends the garbled tables (permuted
using a secret random permutation), called the garbled circuit G(C'), along with
the keys corresponding to its input x to £. That is, if its input bit on wire w;
is 1 it sends kil, otherwise, it sends kio . Next, £ obliviously receives the keys
corresponding to its inputs from G by executing an OT protocol. For every gate
gj, € knows two out of the four input keys, which allows to decrypt exactly
one entry of the garbled table and yields the corresponding output key. After
evaluating the circuit, £ obtains the keys assigned to the labels of the output
wires of the circuit. In the final step, G sends over a mapping from the circuit
output keys to the actual bit values and & shares the result with G.

In the description, it is required that £ can decrypt exactly one entry from the
garbled table per gate, which is ensured by the properties elusive and efficiently
verifiable range, defined below, followed by the correctness of Yao’ GC protocol.
Definition 2 (Elusive and Efficiently Verifiable Range [36]). Let Eg be
a secret key encryption scheme with algorithms (Enc,Dec) and define the range
of a key as Range, (k) = {Enc(k, m)}meqo,13n-

1. We say that Eg has an elusive range, if for any algorithm A it holds that

Pr[c € Range,, (k) | A(1™) — ¢| < negl(n), probability taken over the keys

2. We say that Eg has an efficiently verifiable range, if there exists a probabilistic

polynomial time machine M s.t. M(k,c) — 1 if and only if ¢ € Range,, (k).

Theorem 1 (Correctness of Yao’s GC Protocol [36]). We assume w.l.0.g.

that x = x1,...,2, and y = Y1,...,Yn are two n-bit inputs for a Boolean
circuit C. Let ky, ..., k, be the labels of the circuit-input wires corresponding
to x, and kyy1,.. ., ko, the labels of the circuit-input wires corresponding to y.

Assume that the encryption scheme used to construct the garbled circuit G(C')
has an elusive and efficiently verifiable range. Then given G(C), and the strings
Ryt kI RS L RS it ds possible to compute C(x,y), except with negligible
probability.

3 Post-Quantum Secure Oblivious Transfer

Yao’s protocol requires oblivious transfer (OT) for privately transferring the
input labels from the garbler to the evaluator. In the following we give a PQ-
secure construction for OT from AHE (cf. Section 3.1) and prove OT extension
post-quantum secure (cf. Section 3.2).



3.1 Post-Quantum Secure OT from AHE

We use a natural construction for a 1-out-of-2 OT protocol based on homomorphic
encryption, that follows closely the design of the OT protocol from [1, Section 5],
and works as follows:

1. The receiver encrypts its choice bit ¢, = Enc(pk,d) and sends it to the sender.

2. The sender complements the bit under encryption ¢ = 1 H ¢, computes
Cmy = (mo & ¢) B (my E ¢p), and sends it back to the receiver.

3. The receiver then decrypts the ciphertext to get my, = Dec(sk, ¢, ).

We instantiate it using the PQ-secure BFV homomorphic encryption
scheme [24] in the implementation provided by Microsoft’s SEAL library [53].
To substantially improve performance, we adapt this protocol to exploit the
single instruction multiple data (SIMD) operations of the AHE scheme. Let the
message length in the OT protocol be £bits. In order to achieve maximum paral-
lelism in the homomorphic operations of the AHE scheme (cf. Appendix A.2),
we can choose a plaintext modulus p of more than ¢ bits, such that p = 1 mod =,
i.e., d = ordz: (p) = 1. This choice of p provides the maximum number of slots
(i.e., n = p(x)) for a particular x. Then the receiver can encrypt n choice bits at
once, and similarly the sender can pack n messages at once into a single plaintext,
thereby performing n OTs at the cost of one.

However, for large ¢ such as ¢ = 2k = 256 bits for keys in PQ-Yao, having a
plaintext modulus of more than 256 bits will lead to a very inefficient instantiation
of the scheme. We would require a very large ciphertext modulus ¢ to contain
the noise, and consequently a very large n to maintain security. Although the
number of slots will increase linearly with n, the complexity of the individual
operations in the scheme will increase quasi-linearly as well, making the scheme
operations very inefficient. Thus, we restrict our choice of p to less than 60 bits,
as do the most popular libraries for HE [31, 53].

In order to pack large /-bit messages with a plaintext modulus p < 2¢, where
a = |logy(p) ], we can use one of the following two approaches:

Span Multiple Slots. The first option is to have maximal slots (n = ¢(x)
and p = 1 mod ), and have the message packed across multiple slots. Given a
message m = (my || ... || mg) € {0,1}, where each component m; € {0,1}2,
we can pack the message by storing its components in 8 = [¢/a] different slots.
Accordingly, the choice bit for that message is replicated in the corresponding
slots. The mapping used is defined as follows:

0y (o))
v { ( :

ma | mg) = (ma)iegs)

Using this approach, we can pack v = |n/3] messages into a single plaintext.
The interface functions PackM, UnpackM, and PackB for this packing method are



defined as follows:

(w(mL(i—l)/ﬁHl)(i—n mod B+1)ie[n] « PackM((mi)icfy))
(W ((mG-1)-p+5)je0) )icpyy ¢ UnPckM((mi)icpn) ,
(b (i-1)/8)+1)iem) «  PackB((bi)ie[y)) -

Higher Degree Slots. Alternatively, instead of restricting ourselves to p of
order 1, we consider p of higher order f = d = ordz:(p) > 1. As a result,
we can embed a polynomial of degree 8 — 1 in each slot, and use its higher
order coefficients as well to pack a message. Hence, an £ = « - 8 bit message
m=(my | ... mg), where m; € {0,1}, can be packed in a single slot with the
following mapping:

. {0,1}Z — Fpﬁ
(my || .-l mg) — m1—|—--~+m5Xﬁ’1 ’

Consequently, we can pack up to v = n = @(z)/d messages of ¢ bits into a
plaintext. The interface functions PackM,UnpackM, and PackB are defined as
follows:

(w (1m i))ieln) < PackM((mi)iefy))

(m ))zE['y] <~ UnpaCkM((mz)te[n
( ) +— PackB((b )ze['y])

(w ),

The Final Protocol. The final OT protocol H anp is described in Fig. 2. The
protocol is divided into two phases, namely the setup phase and the OT phase.
The setup phase is cheap (=~ 20ms in a LAN network, cf. Section 4.2) and needs
to be performed only once between a set of parties. The OT phase runs on a
batch of a maximum of « inputs at a time. In practice, the OT phase can be
iterated over (in parallel) with different batches of inputs to perform arbitrary
number of OTs.

The protocol can be instantiated with either of the packing techniques. Note
that both the techniques provide equal parallelism, which is v = |p(z)/8]
messages of ¢ bits per plaintext. An advantage of using the ‘Span Multiple Slots
technique is that it is more flexible. It allows to double the message length ¢
without changing the scheme parameters by simply halving the batch size 7, and
it is trivial to find the parameters for most efficient packing for larger values of /.
In the ‘High Degree Slots’ technique, « has to be chosen such that 8 = [¢/«a/]
is a divisor of ¢(z) for the most efficient packing, which makes the parameter
selection very restrictive and non-trivial.

For smaller values, i.e., £ < log, z, it is not possible to get maximal slots.
In such situations, using higher degree slots might be the better option. Thus,
packing the message across multiple slots is more suitable for larger values of ¢ as
in the case of Yao, and is the technique we have implemented in our benchmarks.

)

Theorem 2. The IT{E, protocol (cf. Fig. 2) securely performs y OTs of length ¢
in the presence of semi-honest adversaries, providing computational security
against a corrupted sender and statistical security against a corrupted receiver.



Sender S Receiver R

Input: mo = (mo.)e) € (Zoe) Input: b= (b);c(y) € ({0,1))"

my = (m1,i)iepy € (Zoe)”

pk (pk, sk) < KGen(P)

1 PackB((1);c(y) —
................................... OT Phase..............oooooiiiiii
mg < PackM(mo) b’ + PackB(b)
m} < PackM(m,) e ¢y < Enc(pk,b)
g 18a —
co—myHcg, a—miOe
Cmy, < Co He Cmy,

_

m) Dec(sk, cm,)
my, < UnpackM(m;,)

Output: my = (ms,,i)ic(y)

Fig. 2. Ring-LWE based OT protocol JT{%.

The proof follows straightforwardly from the pq-IND-CPA security and the
circuit privacy of the AHE scheme (cf. Appendix A.4), and can be found in
Appendix B.1. We describe the parameter selection for the scheme in Appendix C.

3.2 Post-Quantum Secure Oblivious Transfer Extension

In this section we show that OT extension works also in the post-quantum setting.
This concept has been introduced by Ishai et al. [33] and allows to obtain many
OTs using only a few actual OTs as base OTs and fast symmetric cryptographic
operations for each OT. As Yao’s GC protocol requires an OT for every bit of
the evaluator’s input, OT extension can be used to improve performance of Yao’s
GC protocol with many evaluator inputs. OT extension makes use of random
oracles. As described in Section 2, this entails that the post-quantum security
proof has to be conducted in the QROM instead of the ROM.

Our result is of interest even beyond Yao’s protocol for other applications
that use many OTs and could be proven to be post-quantum secure in future
work, e.g., the GMW protocol [28] or Private Set Intersection [47, 49, 50].

In the following theorem, we show that OT extension [33] is post-quantum
secure. The full proof is given in Appendix B.2.

Theorem 3. The OT extension protocol from [33] shown in Fig. 3 is post-
quantum secure against malicious sender and semi-honest receiver in the quantum
random oracle model.

To instantiate post-quantum secure OT extension, it is sufficient to double
the security parameter by doubling the output length of the hash function, using
SHA-512 instead of SHA-256. This corresponds to the speed-up achieved by



Input of S: 7 pairs (24,0, 2i,1) of l-bit strings, 1 <i <7
Input of R: 7 selection bits r = (r1,...,r7)

Common Input: a security parameter s

Oracle: a random oracle H: [r] x {0,1}" — {0,1}/
Cryptographic Primitive: An ideal OT primitive

1. S initializes a random vector s —s{0,1}" and R a random matrix T <«s{0,1}7*"

2. The parties invoke the OT primitive, where S acts as the receiver with input s
and R acts as the sender with input (¢, 7 ®t'),1 <i <k

3. Let Q denote the matrix of values received by S. Note that q; = (rjs) & tj.
For 1 < j < 7, S sends (yjo0,yj1) where yj0 < z0 © H(j,q;) and
yin < 21 @ H(j,q; © s).

4. For 1 < j <7, R outputs z; < y;,r; ® H(j, t;).

Fig. 3. OT extension protocol from [33].

Grover’s algorithm [29]. Hence, for PQ-security of OT extension the security
parameter k is set to 256 instead of 128 in the classical setting. This is in line
with the recommendations provided at https://keylength.com.

4 Implementation and Performance Evaluation

In this section we describe our concrete instantiation and implementation of the
PQ-secure protocols that we described in the previous sections. We benchmarked
all implementations on two identical machines using an Intel Core i9-7960X CPU
with 2.80 GHz and 128 GiB RAM. We compare the performance in a (simulated)
WAN network (100 Mbit/s, 100 ms round trip time) and a LAN network (10 Gbit/s,
0.2 ms round trip time). All benchmarks run with a single thread. We instantiate
all primitives to achieve the equivalent of 128-bit classical security.

4.1 Post-Quantum Yao Implementation and Performance

We used the code of the EMP toolkit [58, 59] as foundation for our implementation
and comparison. We compare 3 variants of Yao’s protocol in order to assess the
impact of post-quantum security on the concrete efficiency (cf. Table 1 for an
overview):

1. PQ: a post-quantum version of Yao’s protocol with 2k = 256 bit wire labels. For
obliviously transferring the evaluator’s input labels, we use our PQ-OT protocol
from Section 3. Garbling is done using the wire labels as keys for AES-256 as
follows:

table[e] = Enc(k;, Enc(k,, ko))
= ko & (Enc?PS29(ky T || 0| 0) || EncAPS2(ky T || 0 || 1))
& (EncAPS 20k, T || 1 0) || EncABS25 (kT | 1| 1)),

where k, is the output label of gate with ID j, k; is its left input label, &, its
right input label, and T = j || e is the tweak. We use the point-and-permute
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optimization [9, 39], which reduces the number of decryptions per gate to a
single one by appending a random signal bit to every label. This approach merely
prevents decryption of the wrong entries in the garbled table. Since the signal
bits are chosen at random, it has clearly no effect on the security of the scheme
itself, which makes it a suitable optimization also in the post-quantum setting.

2. C: an implementation of the classical Yao’s protocol with the same instantia-
tions as PQ, but using x = 128-bit wire labels and AES-128. Specifically, garbling
is done as follows in this implementation:

tablele] = Enc(k;, Enc(ky, ko))
= k, ® Enc*FS 128 (k) T || 0) @ Enc P51k, T || 1).

3. EMP: the original EMP implementation [59] of the classical Yao’s protocol with
state-of-the-art optimizations: free-XOR [35], fixed-key AES-128 garbling [10],
and half-gates [62] on x = 128-bit wire labels.

Table 1. Overview of our implementations and the used parameters and optimizations.

PQ C EMP [59]
PQ-Secure v X X
oT PQ-OT (Section 3) OT extension [33] OT extension [33]
Point&Permute [9, 39] v v/ v
Free-XOR [35] X X 4
Half-Gates [62] X X v
Garbling Variable-Key AES-256 Variable-Key AES-128 Fixed-Key AES-128 [10]

The circuits we benchmarked are described in Table 2.

Table 2. Boolean Circuits used to benchmark Yao’s protocol in Section 4.

Circuit Description Garbler Inputs Evaluator Inputs ANDs XORs NOTSs
aes AES-128 128 128 6800 25124 1692
add 32-bit Adder 32 32 127 61 187
mult 32x32-bit Multiplier 32 32 5926 1069 5379

The benchmark results are given in Table 3 for a LAN connection and in
Table 4 for a WAN connection. As the implementation of the EMP toolkit uses
pipelining and interleaves circuit garbling and evaluation, we only report the time
until the circuit evaluation finishes, which includes the circuit garbling. We note
that this time is marginally larger than the sole garbling time, i.e., the garbling
time makes up almost all of the reported total evaluation time.

The runtime of PQ-Yao is on average 1.5x and 2x greater than the runtime
of classical unoptimized Yao in the LAN and the WAN setting, respectively.
The performance difference gets more prominent in the WAN setting, because

11



Table 3. Performance comparison of our PQ-Yao protocol, with a classical unoptimized
Yao protocol (C), and the classical optimized EMP version [59] in a LAN network.

Input Sharing Garbling & Evaluation
Runtime [s] Comm. [MiB] Runtime [s] Comm. [MiB]
Circ. Batch | PQ C EMP | PQ C EMP | PQ C EMP PQ C EMP
aes 1]0.05 0.03 0.02 0.6 0.3 0.3 | 0.05 0.03 0.01 3.9 1.9 0.2
aes 10 | 0.06 0.02 0.02 1.4 0.3 0.3 0.15 0.13 0.04 39.0 19.5 2.1
aes 100 | 0.22 0.04 0.03 | 10.0 0.9 0.5 | 1.01 0.65 0.09 389.7 194.8 20.8
aes 1,000 | 1.67 0.13 0.10 | 97.9 7.9 4.0 19.75 6.36 0.82] 3,897.0 1,948.5 207.5
add 1|0.05 0.03 0.02 0.6 0.3 0.3 | 0.00 0.00 0.00 0.0 0.0 0.0
add 10 | 0.05 0.02 0.02 0.6 0.3 0.3 | 0.01 0.01 0.00 0.2 0.1 0.0
add 100 | 0.10 0.03 0.03 3.0 0.4 0.3 | 0.04 0.03 0.01 2.3 1.1 0.4
add 1,000 | 0.62 0.07 0.05|24.9 2.0 1.0 | 0.11 0.07 0.05 22.9 11.5 3.9
mult 1|0.05 0.02 0.02 0.6 0.3 0.3 0.03 0.02 0.01 0.9 0.4 0.2
mult 10 | 0.05 0.03 0.02 0.6 0.3 0.3 | 0.07 0.05 0.04 8.5 4.3 1.8
mult 100 | 0.10 0.02 0.03 3.0 0.4 0.3 [ 0.26 0.17 0.08 85.4 42.7 18.1
mult 1,000 | 0.44 0.06 0.04 | 24.9 2.0 1.0 2.19 1.48 0.38 853.9 426.9 180.8
TTTTT T T T T 11177 T T 1 T TTT1T1T T T T T TTTT7
512 -1 | -©- WAN: PQ
e | |-%- WAN: C
g% [ -1 |- 4- WAN: EMP
. 16 |- - |--®--LAN: PQ
- 8- 1|4 LAN: C
o) 4 - —
E 2 —| |---A--LAN: EMP
3 L 3
= 0.5 |- ies o e |
a1 0.25 |- — _
0.125 1~ 5 o —
0.0625 @i 7Y —
0.0313 & -1
0.0156 —
0.00782 |- A —
0.00391 [} - I I A —
1 10 100 1,000

Parallel AES Circuit Excutions / Number of Inputs

Fig. 4. Comparison of implementations of our PQ-Yao, with the classical, unoptimized
Yao protocol (C), and the classical, optimized EMP version in a LAN and WAN network.
Evaluation time for parallel executions of an AES circuit.
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PQ-Yao requires twice as much communication as the classical unoptimized
version due to the doubled length of the wire labels. Nevertheless, even the 2x
slowdown is reasonable for achieving PQ security. The difference in the runtime
and communication for the input sharing phase stems from the cost of the PQ-OT.
For a batch of 1,000 parallel 32-bit multiplications, our PQ-Yao implementation
performs 2.7M (88k) gates/s, while a classical unoptimized Yao version achieves
4.8M (179k) gates/s; the fully optimized classical implementation can perform
16.8M (404k) gates/s in the LAN (WAN) setting. This accounts only for AND
and XOR gates, since NOT gates can be evaluated for free in all three versions.

In Fig. 4, we plot the evaluation time (including garbling time) of parallel
AES circuits evaluated with the three versions of Yao’s protocol for different
batch sizes and show that it scales linearly.

We could not evaluate the concrete performance of the implementation of [30],
since their code is not publicly available. Based on experimental results in [30],
we expect the performance to be similar to that of the optimized, classical
implementation using all state-of-the-art optimizations (EMP).

Table 4. Performance comparison of our PQ-Yao protocol, with a classical unoptimized
Yao protocol (C), and the classical optimized EMP version [59] in a WAN network.

Input Sharing Garbling & Evaluation
Runtime [s] Comm. [MiB] Runtime [s] Comm. [MiB]
Circ. Batch PQ C EMP | PQ C EMP PQ C EMP PQ C EMP
aes 1 1.40 081 0.81]| 0.6 0.3 0.3 1.51 1.02 0.48 3.9 1.9 0.2
aes 10 1.73 0.92 0.90 1.4 0.3 0.3 4.14 2.15 0.99 39.0 19.5 2.1
aes 100 | 2.83 1.22 1.12 | 10.0 0.9 0.5 | 34.85 17.33 2.28 389.7 194.8  20.8
aes 1,000 | 13.05 2.57 2.04 | 97.9 7.9 4.0 | 342.91 171.25 18.32 | 3,897.0 1,948.5 207.5
add 1 1.03 0.71 0.61| 0.6 0.3 0.3 0.20 0.11  0.10 0.0 0.0 0.0
add 10| 1.22 0.72 0.61| 0.6 0.3 0.3 0.90 0.50 0.21 0.2 0.1 0.0
add 100 | 2.44 1.10 0.80| 3.0 0.4 0.3 1.87 0.90 0.31 2.3 1.1 0.4
add 1,000 | 4.07 1.51 1.20 | 24.9 2.0 1.0 2.79 1.50 0.63 22.9 11.5 3.9
mult 1 1.02 0.71 0.61| 0.6 0.3 0.3 0.68 0.52  0.41 0.9 0.4 0.2
mult 10| 1.02 0.71 0.61| 0.6 0.3 0.3 1.67 1.10  0.80 8.5 4.3 1.8
mult 100 | 2.27 1.10 0.80| 3.0 0.4 0.3 8.13 412 2.12 85.4 42.7  18.1
mult 1,000 | 4.03 1.51 1.20 | 24.9 2.0 1.0 | 75.68 37.60 16.14 853.9 426.9 180.8

4.2 Post-Quantum OT Implementation and Performance

We implement our PQ-OT protocol from Section 3 using the Microsoft SEAL
library [53]. We use the implementation from the EMP toolkit [59] for the classical
OTs. In our experiments, we compare the following three 1-out-of-2 OT protocols:

— PQ: our implementation of PQ-OT on 256-bit inputs (cf. Section 3).

— NP: classical Naor-Pinkas (NP)-OT [43] on 128-bit inputs, from EMP.

— OTe: classical semi-honest OT extension of [33] on 128-bit inputs, from the
implementation in EMP. It uses NP-OT [43] to perform the base OTs.

We provide performance results for running batches of N OTs in Table 5.
It is evident from the benchmarks that computation is the bottleneck for NP-
OT, while communication is the bottleneck for both PQ-OT and OT extension.
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The network setting affects PQ-OT significantly, but not as much as it affects
OT extension, since OT extension is computationally very efficient.

Table 5. 1-out-of-2 OT measured in a LAN and WAN network, comparing our PQ-OT
on 256-bit inputs (cf. Section 3) with the classical Naor-Pinkas (NP)-OT [43] and
classical OT extension (OTe) implementation on 128-bit inputs from the EMP toolkit.

Setup Phase Online Phase
Runtime [s] Comm. [KiB] Runtime [s] Comm. [KiB]
LAN WAN LAN WAN
#0Ts| PQ OTe|PQ OTe|PQ OTe| PQ NP OTe| PQ NP OTe PQ NP OTe
2°10.03 0.04]| 0.5 0.15|256 21.3| 0.04 0.03 0.01| 0.7 0.2 0.4 384 0 256
2210.02 0.03| 0.5 0.15|256 21.3| 0.04 0.03 0.01| 0.7 0.2 0.4 384 1 256
2410.02 0.03| 0.5 0.14|256 21.3| 0.04 0.03 0.01| 0.7 0.2 0.4 384 3 257
2610.02 0.04| 0.5 0.15|256 21.3| 0.04 0.03 0.01f 0.7 0.2 0.4 384 11 258
2810.02 0.03| 0.5 0.14|256 21.3| 0.04 0.05 0.01| 0.7 0.4 0.4 384 43 264
21%10.02 0.03|0.5 0.15|256 21.3| 0.05 0.12 0.01| 1.2 0.7 0.5 768 170 288
21210.03 0.04| 0.5 0.15|256 21.3| 0.10 0.29 0.02| 2.0 2.0 0.7| 3,073 680 384
21410.02 0.03|0.5 0.15|256 21.3| 0.26 1.23 0.03| 2.4 3.3 0.9| 12,293 2,720 768
21610.02 0.03] 0.5 0.15|256 21.3| 0.87 5.55 0.07| 5.0 6.4 1.3 49,173 10,880 3,072
21%10.02 0.03| 0.5 0.15|256 21.3| 3.07 22.85 0.12(17.7 22.6 2.8|196,690 43,520 12,288
22910.02 0.03| 0.5 0.14|256 21.3|11.77 91.38 0.18|68.6 91.3 5.3|786,760 174,080 49,152

Comparison with PK-based OT. PQ-OT provides better performance than
NP-OT for most practical cases (N > 2%) in the LAN setting. It reaches a
maximum throughput of ~ 89k OT/s for N = 220/ while NP-OT only reaches a
maximum of ~ 14k OT/s for N = 2!2. In the WAN setting, PQ-OT outperforms
NP-OT for N > 2'2 OTs. We also compared PQ-OT with an instantiation of
the OT construction by Gertner et al. [27] with Kyber-1024 (AVX2 optimized
90s variant) [52] and found it to be less efficient than our scheme, achieving a
maximum throughput of 50k OT/s, even though Kyber is already among the
fastest PKE schemes in the NIST standardization process. Therefore, we do
not expect this situation to change significantly with other instantiations. Even
for smaller number of OTs, the performance between the two is comparable in
the WAN setting, even though with PQ-OT we achieve PQ security and are
dealing with inputs that are twice as long. For N = 28 in the WAN setting, the
throughput of NP-OT is 640 OT/s, while the throughput of PQ-OT is 365 0T /s.
While NP-OT does not have a setup phase, PQ-OT requires to share a public
key in the setup phase. It is negligible in the LAN setting and dominated by the
communication in the WAN setting. It is relatively expensive for a small number
of OTs, but only needs to be run once with a particular party, independently of
the inputs. Thus, PQ-OT is a suitable candidate to replace NP-OT as the protocol
for base OT in the post-quantum setting at ~ 4.5x the communication cost of
NP-OT for large batch sizes. On the one hand, we show that our implementation
of PQ-OT achieves similar performance compared to NP-OT for a small number
of OTs, which is common for Yao’s protocol with a moderate number of client
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input bits. On the other hand, our implementation clearly outperforms classical
NP-OT for larger batches, especially in fast networks.

Comparison with OT extension. OT extension outperforms the two public-
key based OT protocols, in both computation and communication, for practical
number of OTs, reaching a maximum throughput of ~ 5.7M (199k) OT/s in
the LAN (WAN) setting. The runtime and communication not growing linearly
for N < 2 OTs is an artefact of the EMP implementation of OT extension.
While there is approximately one order of magnitude difference between classical
OT extension and our PQ-OT, there is room for significant improvement by
implementing post-quantum secure OT extension, as described in Section 3.2,
which we leave as future work.

5 Post-Quantum Security of Yao’s Garbled Circuits

In this section, we prove that Yao’s garbled circuits protocol (cf. Section 2.4)
achieves post-quantum security if each of the underlying building blocks is replaced
with a post-quantum secure variant. As this seems intuitive, we stress that a
simple switch to post-quantum secure building blocks is not always sufficient [25].
An example for this is the Fiat-Shamir transformation. Simply constructing a
signature scheme based on a quantum hard problem is not sufficient, due to the
switch from the ROM to the QROM. For the signature scheme qTESLA [2], for
instance, the post-quantum security has been proven directly.

The classical security of Yao’s protocol is due to Lindell and Pinkas [36].
They showed that a secure OT protocol and a secret key encryption scheme
which is secure under double encryption (a security notion they introduced)
are sufficient to prove Yao’s protocol secure against semi-honest adversaries.
Concerning the security under double encryption, they show that, classically,
IND-CPA security implies security under double encryption. We show that both
proofs can be lifted against quantum adversaries. Regarding the proof for the
protocol, this is relatively straightforward, by arguing about the different steps
from the classical proof. As for the security under double encryption, we directly
prove the post-quantum security since the classical proof is merely sketched.
Furthermore, we conduct the proof in the QROM whereas the classical proof
sketch does not consider random oracles. This is relevant when one wants to use
encryption scheme where the proof is naturally in the QROM, like sponge-based
constructions. Examples for this are the encryption schemes deployed in Isap [22]
and SLAE [19].7

Protocol Security. In this section, we prove that Yao’s protocol is post-quantum
secure against semi-honest quantum adversaries. In this setting, the adversary can
perform local quantum computations and tries to obtain additional information
while genuinely running the protocol.

" Note, however, that both schemes have yet to be proven post-quantum secure.
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The restriction to local quantum computations is due to the post-quantum
setting, in which only the adversary has quantum power while all other parties,
in this case the protocol partner, remain classical. By restricting the adversary to
be semi-honest, we ensure that it does not deviate from the protocol specification.
This models a typical scenario of an adversary which tries to obtain additional
information without being noticed by the other party. One can think of a computer
virus affecting one of the protocol participants, which tries to be unnoticed.

The theorem below states the post-quantum security of Yao’s GC protocol
given that both the OT and the encryption scheme are post-quantum secure.
The proof appears in Appendix B.3.

Theorem 4 (Post-Quantum Security of Yao’s GC Protocol). Let F be a
deterministic function. Suppose that the oblivious transfer protocol is post-quantum
secure against semi-honest adversaries, the encryption scheme is pq-2Enc-secure®,
and the encryption scheme has an elusive and efficiently verifiable range. Then
the protocol described in Section 2.4 securely computes F in the presence of

semi-honest quantum adversaries.

Double Encryption Security. To securely instantiate Yao’s protocol, an
encryption scheme which is secure under double encryption is required. In the
classical setting, Lindell and Pinkas [36] provide a short sketch that the standard
security notion for encryption schemes (IND-CPA) implies security under double
encryption. In this section, we show that the same argument holds in the post-
quantum setting, i.e., pq-IND-CPA security implies post-quantum security under
double encryption (pg-2Enc). Furthermore, we extend the result to the QROM.
This allows to cover a wider class of encryption schemes compared to the proof
sketch from [36] which does not consider random oracles.

We start by introducing the post-quantum variant of the double encryp-
tion security game in the QROM (cf. Fig. 5). Similar to the pg-INDCPA game
(cf. Fig. 1), the adversary has to distinguish between the encryption of messages
of its choice. The main difference is that there are four secret keys involved in
the game, from which two are given to the adversary. As challenge messages,
the adversary provides three pairs of messages. For each pair, one message is
encrypted twice using two different keys from which at least one is unknown to
the adversary. The adversary wins the game if it can distinguish which messages
have been encrypted. The adversary is granted access to two learning oracles
which encrypt messages under a combination of a key given by the adversary and
one of the unknown keys. There are two differences between our notion and the
(classical) one given in [36]. First, we allow for multiple challenge queries from the
adversary while [36] allow merely one. Second, the two known keys are honestly
generated by the challenger and then handed over to the adversary. In [36], the
adversary chooses these keys by itself. Since these keys correspond to the keys
that the garbler generates honestly and obliviously sends to the evaluator, this

8 We formally define post-quantum security under double encryption (pa-2Enc security)
in Definition 3.
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change in the security notion models the actual scenario very well. In fact, the
proof of Yao’s protocol only requires the adversary to know two of the keys but
not being able to generate them at will.

Definition 3 (Post-Quantum Security under Double Encryption). Let
Egs = (Enc,Dec) be a secret key encryption scheme and let the game pq2enc be
defined as in Fig. 5. Then for any quantum adversary A its advantage against
the double encryption security is defined as:

AdeEqszenC(A) =92Pr [pq2enCA — true] —1.

We say that Eg is pq-2Enc-secure if Adv%qsze"c(./l) is megligible.

Game pg2enc

procedure Enc; (k, m) procedure E(mq, m1)
Initiali
procedure Initialize ¢ < Enc(k,Enc(k{, m)) parse mo as xo || yo || 2o
b+ {0,1} return c parse m; as z1 || y1 || 21
’ !
ko, ka, ko, ki <=3 K L , c1 < Enc(ko,Enc(ki,zp))
return ko, k1 procedure Finalize (b') ¢ Enc(kK), Enc(k1, )
2 05 1, Yb
return (V' = b) ’ ‘
procedure Enco(k, m) ¢ < Enc(ko,Enc(ki, 20))
7 ¢« (c1,¢2,¢3)
¢ « Enc(k), Enc(k, m)) procedure On(} aay |, y)) .
return c
return ¢ return Zam, |z,y ® H(z))

Fig. 5. Game pg2enc to define post-quantum security under double encryption.

The theorem below states that pg-IND-CPA security implies pq-2Enc security.
The proof is given in Appendix B.4.

Theorem 5. Let Eg = (Enc,Dec) be a secret key encryption scheme. Then for
any quantum adversary A against the post-quantum security under double encryp-
tion security of Eg, there exists a quantum adversary A against the pq-IND-CPA
security of Eg such that:

AdvEP(A) < 3 AdvRITP ().
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A Additional Preliminary Material

A.1 Quantum Random Oracle Model

The quantum random oracle model (QROM) introduced by Boneh et al. [14] is
the adaptation of the random oracle model (ROM) by Bellare and Rogaway [11]
for the quantum world. In the ROM, every party, including the adversary, is
granted access to a random oracle H. In the QROM, on the other hand, parties
with quantum computing power have access to a quantum random oracle |H),
which upon being queried on |z, y) returns |z, y @ H(z)). Boneh et al. [14] point
out that the ROM is inappropriate when considering quantum adversaries, hence
post-quantum security proofs should always be conducted in the QROM.

Below we state the one-way to hiding (O2H) Lemma by Unruh [56], albeit
using the recent reformulation by Ambainis et al. [5] adapted to our case. The
lemma gives a bound on the advantage that an adversary can distinguish between
two random oracles, when given superposition access to these.

Lemma 1 (One-way to hiding (O2H) [5]). Let G, H: X — ) be random
functions, let z be a random value, and let S C X be a random set such that
Ve ¢ S, G(z) = H(x). (G,H,S,2) may have arbitrary joint distribution. Further-
more, let .AqH> be a quantum oracle algorithm which queries |H) at most q times.
Let Ev be an arbitrary classical event. Define an oracle algorithm B(‘Zm as follows:

Pick i <s[q]. Run ALH>(2) until just before its i-th round of queries to |H). Mea-
sure the query in the computational basis, and output the measurement outcome.
Let

Pieyt = Pr[Ev: A!ZH>(Z)]>
Pright = Pr[Ev: ALQ(Z)],
Pyess =Prlz € S: B(‘ZH>(Z) — .
Then it holds that

‘Pleft - Pright| < 2(1 V Pguess .

A.2 RLWE-based Additively Homomorphic Encryption

In this section, we describe an abstract Additively Homomorphic Encryp-
tion (AHE) scheme based on the Ring-LWE problem [38]. The concrete details
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of the scheme are given in Appendix A.3, and the pq-IND-CPA security and
Circuit privacy provided by the scheme are discussed in Appendix A.4.

The plaintext space parameters are x and p, where x is a positive integer and
p is a prime plaintext modulus. The plaintext space P is defined as (IF,a)", where
d is the order of p in Z% and n = ¢(x)/d. The elements of P are vectors of size
n, where each entry corresponds to a plaintext slot and the arithmetic, denoted
by + and -, is performed entry-wise on the vectors.

The scheme is defined using the following algorithms:

Parameter Generation. PU {1} <+ PGen(1*, Cang, z,p): For security parame-
ter A, the class of permitted arithmetic circuits Cagg, and the plaintext space
parameters x and p, it outputs context P if parameters exist that allow evaluation
of circuits in Cygg while maintaining a security of at least A\ bits, and L else.

Key Generation. (pk, sk) <s KGen(P): This randomized algorithm takes a
context P as input and outputs a public/secret key-pair (pk, sk).

Encryption. ¢ <—s Enc(pk, m): This randomized algorithm outputs a cipher-
text ¢ € C, given a public key pk and a message m € P. Enc(pk,-) is a homo-
morphism from (P, +) to (C,H), and this also implies scalar multiplication, i.e.,
[J: P x C — C. Homomorphic subtraction, denoted by B, can be perfomed as:
c1Bey =c B(—1c¢), where —1 € P is a vector with —1 in each slot. We
remark that B and B also operate on pairs of plaintext and ciphertext.

Decryption. mU{ L} < Dec(sk, c): Given are a secret key sk and a ciphertext
c= ]?(m, <, Tr(s)) € C, where ]?is the circuit induced by replacing the 4, —,
and - operators in f with B, B and [ respectively, I(f) is the number of inputs
to the circuit f, and m; = Enc(pk, m;) € C or m; = m; € P. If pk corresponds to
sk and f € Cang, Dec outputs m = f(my,..., my(y)), else it outputs L.

A.3 The concrete AHE Scheme

In this section, we describe a subset of the BFV scheme [24], which we are
referring to as the AHE scheme. The scheme is defined over the polynomial
ring R = Z[X]/®,, where &, is the a-th cyclotomic polynomial. In addition
to x, there are two other parameters p and ¢, which determine the plaintext
space P and the ciphertext space C respectively. Each ciphertext in this scheme
has a noise component associated with it, which grows as we perform arithmetic
operations (homomorphically) on a ciphertext. For decryption to work, the noise
has to be smaller than a certain threshold determined by the scheme parameters.
Therefore, the AHE scheme can only evaluate a limited class of arithmetic
circuits, which we denote by Capg.

Plaintext Space. The AHE scheme natively operates on R, = Z,[X]|/®,,
where the plaintext modulus p is a prime and R, consists of polynomials of
degree ¢(x) — 1 with coefficients in Z,. Let d be the order of p in Z}. Under
modulo prime p, ¢, factors into n = ¢(x)/d irreducible polynomials each of
degree d such that ®, = []"_; F; (mod p). Each factor F; of , corresponds to

the finite field Z,[X]/F; ~ F,a, and the following isomorphism holds:

pt>
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R, ~ 7y X]/F1 % -+« X Lp[X]/Fpy = Fpa x -+ X Fa.

Let P denote the plaintext space defined by the direct product of n finite fields
(IFpa)™. We refer to each independent field F,a as a plaintext slot. The elements
of P can be thought of as vectors of size n, where each entry corresponds
to a plaintext slot and the arithmetic is performed entry-wise on the vectors.
The authors in [55] exploited the isomorphism between P and R, to construct
isomorphic mappings Encode : (F,¢)" — R, and Decode : R, — (F,qa)". Thus,
given polynomial encodings a = Encode((a;);ec[,)) and b = Encode((b;)ic(n))
we have:

Decode(a + b mod (p, ®,)) = (a; + b; mod (p, F;))iepn ,
DeCOde(a - bmod (pa ¢$)) = (a‘i . bl mod (pa Fi))ie[n] )

where a mod (p, F) denotes (a mod F) mod p. Therefore, even though the scheme
natively operates on polynomials in R,, we can use the Encode and Decode
mappings to operate on vectors in P. This technique allows us to exploit the
SIMD operations [55], and is called batching.

Ciphertext Space. The ciphertext space is defined as C = (R,)?, where R, =
Z4[X]/®,. The ciphertext modulus ¢ is taken as a product of k distinct primes
¢; (also called the modulus chain), where each ¢; = 1 mod z.

Description of the Scheme. The scheme is defined as the tuple AHE =
(PGen, KGen, Enc, Dec) of algorithms, which are described as follows:

Parameter Generation. PU {1} < PGen(1*,Cang,,p): On the basis of x
and p, this function first constructs the Encode and Decode mappings. It then
chooses an appropriate error distribution xy = x(A). Finally, it finds a large enough
q to allow homomorphic evaluation of the circuits in Cxgg and also provide circuit
privacy (cf. Section A.4), while maintaining the upper bound on ¢, which is a
function of x and A required to maintain security. If such a ¢ does not exist, the
function outputs L, else it outputs the context P = (x, p, ¢, x, Encode, Decode).
For concise representation, we omit the Encode and Decode mappings from the
context PP for the rest of the paper.

Key Generation. (pk, sk) <—sKGen(IP): Given the context P as input, KGen sam-
ples a & R, and s, e < x. It then sets pk = (a,b=[a-s+¢€];) and sk =s, and
outputs the key-pair (pk, sk). We assume that both the keys implicitly contain
the context P.

Encryption. ¢ < s Enc(pk, m): Given the public key pk = (a,b) € (R,)
and a message m € (F,q)" as inputs, Enc first maps m to an element m =
Encode(m) € R,,. Let pu : R, — R, be a function defined as u(m) = [¢/p|-m. Enc
then samples u, e’,e” < x, and outputs the ciphertext ¢ = (cp = [a-u+¢€']g,c1 =
b-u+ e+ u(m),) € (Ry)>.

Decryption. m U { L} < Dec(sk,c): Given the secret key sk =s € R, and a
ciphertext ¢ = (co,c1) € (R,)?, Dec computes t = Blet—co-slg=m+v+p-k,
where v € R ® Q is the polynomial with smallest inifinity norm for some k € R.

2
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Dec outputs L if [v[|, > 1/2, else it computes m = [[t]], and outputs m =
Decode(m) € (F,a)". PGen ensures that ¢ is large enough to keep the infinity
norm of the noise polynomial v smaller than 1/2 for the circuits in Cayg.

A.4 Security of the AHE scheme

The security of the AHE scheme relies on the Decision-RLWE problem [38],
which is conjectured to be hard even in the presence of quantum adversaries.
Below, we first define the decisional ring learning with error (DRLWE) problem
followed by the theorem that states the pq-IND-CPA security of the scheme.
Finally, we discuss circuit privacy, which ensures privacy of the private inputs of
the evaluator.

Definition 4 (Decisional Ring Learning With Errors Problem). Let ¢,
be the x-th cyclotomic polynomial and q > 2 be an integer, that define R =
Z|X]/Py and Ry = R/qR, and let x be an error distribution over R. Fors <—sR,,
the decision-RLWE problem DRLWE; ;. 4 @s to distinguish M samples either
all of the form (a,b = [a-s+ ¢€],), where a <—s R, and e < x, or of the form
(a,b), where a,b s (R,)?. The advantage of an adversary A in solving the

DRLWEy; 5 . problem is defined as Adv?ﬁ,ﬁ\g]i(uﬁl).

Theorem 6 (IND-CPA security of the AHE scheme). Let = and q be
integers, and x be an error distribution on R,. For any quantum adversary A
against the pq-IND-CPA security of the AHE scheme, there exist quantum
adversaries Rq1 and Ro against the DRLWE problem such that:

AQVRRIETA, () < AdVEERE(R,) + AdvPRLE(5,),

The proof of the theorem follows the standard security proof for LWE-based
encryption schemes using two game hops which are bound by the DRLWE
advantage, which is why we omit the formal proof.

Circuit Privacy. There are situations where the evaluator introduces secret
inputs to the circuit. In such cases, the decryptor can compute the noise compo-
nent of the output ciphertext and learn information about the secret inputs of
the evaluator. To get around this problem, we use the “noise-flooding” technique
introduced in [26]. This involves adding an encryption of zero (to randomize the
ciphertext) with noise super-polynomially larger (specifically, o bits larger for
statistical security parameter o) than the noise in the output ciphertext, to hide
any statistical differences created by the private inputs of the evaluator.

B Postponed Proofs

B.1 Proof of Theorem 2

Correctness is immediate from the homomorphic properties of the AHE scheme,
and thus, we proceed directly to the construction of simulators for corrupted
sender and corrupted receiver.
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Corrupted Sender. We construct a simulator Sg that outputs a view computa-
tionally indistinguishable from the view of of the sender in IT{}},. The view of
the sender in the protocol is (mg, m1, p, pk, ¢y), where p is the random tape of
the sender. The simulator Sg has access to the input (mg, m1) of the sender in
the protocol.

At the start Sg runs KGen to obtain a key pair (pk, sk). It chooses a random
tape p, a random message m, computes the ciphertext ¢ < Enc(pk, m), and
outputs (mg, my, p, pk, c).

The view between the real view and the simulated view are computationally
indistinguishable, which follows directly from the pg-IND-CPA security of the
encryption scheme (cf. Theorem 6).

Corrupted Receiver. We construct a simulator Sg that outputs a view statistically
indistinguishable from the view of the receiver in IT{{.. The view of the receiver
in the protocol is (b, p, ¢, ), where p is the random tape of the receiver. The
input to Sg are the input b and output m of the receiver in the protocol.

The simulator Sg (b, m) proceeds as follows: It chooses a random tape p, runs
KGen to obtain a key pair (pk, sk), and computes the ciphertext ¢ < Enc(pk, m).
It then floods ¢ with noise sampled from the same distribution as the extra noise
used to drown the noise component of the output ciphertext in the real execution
(cf. Appendix A.4). Finally, the simulator outputs (b, p, ¢).

It remains to show that c is distributed statistically close to the ciphertext ¢,
in the real execution (b and p are obviously distributed identically as in the real
execution). The noise components in ¢ and ¢,,, are statistically indistinguishable.
This is owed to the noise flooding technique (cf. Appendix A.4) used in the real
execution by the Sender on ¢,,,, and in the ideal execution by the simulator
on c. Since ¢ and ¢, are encryptions of the same message, their statistical
indistinguishability follows directly from the statistical indistinguishability of
their noise components. This implies statistical indistinguishability of the views
in the real and ideal execution.

B.2 Proof of Theorem 3

To prove the theorem, we show that there exists a simulator which can simulate
the view of the corrupted party, which is either the sender or the receiver. The
simulator has access to an ideal functionality which securely implements the
OT extension protocol. Then the security follows if the adversary is unable to
differentiate a real execution from a simulated one.

Recall that the communication between the parties remains classical in the
post-quantum setting, even though the corrupted party has access to a quantum
computer. This entails that the real view of the malicious (quantum) parties in
the protocol remains the same, which allows to use the same simulators given in
the classical proof. Now the main challenge lies in proving that the additional
quantum computing power does not help in distinguishing between the real
and simulated view. The additional quantum computing power is modelled by
granting the adversary access to a quantum random oracle.
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The proof is divided into two cases. In the first, the sender is assumed to be
malicious, in the second, the receiver is assumed to be semi-honest. We show that
translating the first case to the QROM is not an obstacle. For the second case,
the situation is much more involved. The reason is that the classical proof keeps
a list of the adversary’s random oracle queries. To translate this into the QROM,
we have to work around the no-cloning theorem which prevents simply copying
the superposition queries by the adversary. In fact, this was widely believed to
be an insurmountable barrier to lift such a proof. A workaround might be to
use the compressed oracles technique, recently developed by Zhandry [63], which
allows to keep a list of superposition queries, to some extent at least. However,
we show that keeping such a list is not required for the proof. Instead we reduce
the problem of distinguishing between different random oracles to distinguishing
between the real and simulated view. This enables us to use the O2H lemma
(cf. Lemma 1 on p. 21), resulting in a much simpler post-quantum security proof.

Malicious Sender. The simulator for a malicious sender S proceeds as follows. It
runs S on a uniformly random input p. The input of S to the OT primitive in step
2 (cf. Fig. 3) is denoted by s*. The simulator sends the columns of a randomly
generated matrix Q as the output of OT to S. The simulator invokes the trusted
party with inputs z7 o < yj o, @ H(j,q;) and 27, < yj; ® H(j,q; © s*), where
yjo and y;, are the messages sent by S in step 3. Finally, the simulator outputs
whatever S outputs.

The crucial observation made in [33] is that this simulator is perfect even
for an arbitrary number of random oracle calls. That is, a distinguisher which
queries the whole random oracle (or receives a full description of it) can still
not distinguish between the real and the ideal process. Intuitively, the reason
is that the view of the sender is just a set of random values obtained from the
OT protocol in step 2. In the QROM, the adversary can query the random
oracle on several inputs in superposition per query. However, it can by no means
obtain more information than a classical adversary which queries the random
oracle on all possible inputs. Hence, we conclude that the protocol is perfectly
post-quantum secure with respect to a malicious sender.

Semi-honest Receiver. The simulator for a semi-honest receiver R proceeds as
follows. It invokes the trusted party on input r to obtain outputs z1,...,z,. It
simulates the protocol between R and S, where it substitutes the known inputs
of S, that is x;,,, with z; and the unknown inputs, that is z;1—,;, with o'
Finally, it outputs the entire view of R.

The difference between the real execution and the simulation is that in the
latter, the simulator sets half of the inputs of S to 0 instead of random values.
To detect the simulation, R has to obtain one of these values. By construction,
however, these inputs are masked by XORing them with H(j, ;& s) before sending
them to R, for s unknown to R. To unmask such a value the distinguisher has to
query the random oracle on (j,t; @ s), which is called an offending query [33].
A bound on the probability of making an offending query is therefore also a
bound on detecting the simulation. In the ROM this is straightforward, since the
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random oracle can be queried on exactly one input per query. In the QROM, on
the other hand, the situation is more complicated. The main issue is to determine
whether the adversary has made an offending query. Consider that the adversary
makes an equal superposition over the domain of the random oracle. It is not
obvious whether this query is offending or not.

To circumvent this issue, we do the following Let S be the set of offending
queries and define, based on the random oracle H, the random oracle Hs_, |,
where

L ifaeS
5 - ’ ’
s-1(a) {H(a) , else.

Assume that the adversary is given access to Hs_,, instead of H. Then it is
not able to detect the simulation since all offending queries result in L, which
prevents it from unmasking the unknown inputs. The very same holds in the
QROM, where the adversary has access to |Hs—, 1 ) instead of |H).

It remains to bound the probability of the adversary to distinguish whether it
is given access to |H) or |Hs_, 1 ). This is where we make use of the O2H lemma
Note that the O2H lemma (cf. Lemma 1 on p. 21) allows to analyse the behaviour
of the adversary when interacting with either |H) or |Hs_, ) even when we can
only simulate the oracle |H). For the remaining part, let ¢ denote the number
of queries that A makes to its quantum random oracle (|H) or |Hs—)). By
applying the O2H lemma, using that .4 has no information about s, |S| = 7, and
|[Dom(H)| = 72" we obtain

Pr[A detects simulation] < | Pr[A" — 1] — PrjAlMs—+) - 1]
< 2q\/Pr[;U €S|BM — 2] < 2q,/% =2qV2~".
T

This does not conclude the proof for a semi-honest receiver yet. The reason is
that the receiver also invokes the random oracle during the protocol (step 4).
At this point we make use of the fact that R is semi-honest, that is, it invokes
the random oracle (classically) on input (j,¢;) for j € [r]. These queries are
offending if and only if s = 0. Since s is sampled honestly from {0,1}" by S this
happens with probability 27%. Combined with the bound above, we conclude
that a semi-honest (quantum) receiver, making ¢ queries to the quantum random
oracle, can differentiate between the real execution and the simulated one with
probability at most 27% + 2¢v/2~%. Combining the result with the result for the
first case concludes the proof.

B.3 Proof of Theorem 4

We show that the classical proof by Lindell and Pinkas [36] carries over to the
post-quantum setting. The proof is divided into two cases, one for a semi-honest
garbler and one for a semi-honest evaluator. For each of these, the classical
proof constructs a simulator which simulates the view of the corrupted party
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solely based on its input and output. Then the proof is based on a hybrid
argument showing that the simulated view and the real view are computationally
indistinguishable. Note that the real view remains the same when switching to
the post-quantum setting, i.e., a quantum adversary. This is due to the fact
that the adversary runs the protocol with an honest classical party. The mere
difference is that the adversary can perform local quantum computation in order
to break the security of the protocol.

Garbler G corrupted. The view of the garbler G consists of its view from the OTs
and the message (the circuit output) it obtains from the evaluator £ at the end
of the protocol.

Simulator Sg for a corrupted garbler receives as input (z, f(x,y)) and outputs
(z,r, ST (kY 1, kL h), . ST (KD, k3,), f(z,y)), where r is a random tape that
Sg uses to generate the garbled circuit and SGT (kY. ,;, kb, ;) is the simulator for
the i-th OT execution, which exists by the post-quantum security of the OT
protocol.

To prove that the simulated view is computationally indistinguishable from the
real view, the classical proof uses a sequence of hybrid distributions Hy, ..., H,.
In hybrid H;, the first 4 OT executions are real while the remaining n — ¢ OT
executions are simulated. Lindell and Pinkas show that a distinguisher D for any
two consecutive hybrids H;_; and H; can be transformed into an adversary A
that distinguishes between the real view of the OT protocol and the simulated
one. In our case, D is quantum which entails that A is quantum. Given that the
OT protocol is post-quantum secure, we conclude that the hybrids Hy and H,, are
indistinguishable as every consecutive hybrid H;_; and H; are indistinguishable.
Note that H,, is not yet the real view of the protocol, since the simulator uses
f(z,y) to simulate the message that the evaluator sends to the garbler at the
end of the protocol. The indistinguishability between the real view and H,
follows from the correctness of the protocol (cf. Theorem 1), regardless of the
post-quantum setting.

Based on this, we conclude that the real view is indistinguishable from the
output of Sg.

Evaluator £ corrupted. The view of the evaluator £ consists of a garbled circuit
and n keys, which it receives from the garbler, as well as its view from the OTs.
The simulator Sg for a corrupted evaluator receives as input (y, F(z,y))

and outputs (y, G(C), k1, kn, SET (Y1, knt1)s - -, SET (Yn, k2n)), where G(C)
is the ‘fake’ garbled circuit which evaluates to F(x,y) irrespectively of the used
keys, k1, ..., k, are randomly sampled keys, and Sgo T(y;, kypyi) is the simulator
for the i-th OT execution, which exists by the post-quantum security of the OT
protocol.

The same argument as above yields that the output of Sg is computationally
indistinguishable from Hj, where the OT executions are replaced with the real
view, since the OT protocol is post-quantum secure. The difference between the
real view of £ and Hy is that the latter contains the ‘fake’ garbled circuit G(C).
To show these are computationally indistinguishable, another sequence of hybrids
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Hy, ..., H|c| is introduced, where the first i gates’ correspond to the ‘fake’

garbled circuit G (C), while the remaining |C| — ¢ gates correspond to the real
garbled circuit G(C). Lindell and Pinkas show that any distinguisher D between
hybrids H; 1 and H; can be transformed into an adversary A against the security
of the encryption scheme. Given that the encryption scheme is pg-2Enc-secure,
this yields that such a distinguisher does not exist.

Combined with the result above, this concludes the proof.

B.4 Proof of Theorem 5

Intuitively, the game pqg2enc (cf. Fig. 5) looks very much akin to pg-INDCPA,
except that more keys are involved and each challenge query consists of several
message pairs. However, simply reducing the pg-IND-CPA advantage of Eg to
the winning game pg2enc does not work. The issue is that every message part is
encrypted using a different combination of keys. Consider the following reduction
which uses the game pg-INDCPA to simulate encryptions under key k. For every
challenge (xq, Yo, 20), (1, Y1, 21), the adversary forwards (zo, 1) and (zp,21) to
its challenge oracle from the pg-INDCPA game and encrypts the result using kg
and k{j which it samples by itself. In order to simulate the correct challenge oracle
for the adversary, it has to encrypt y, under keys k; and kj. While the reduction
knows both keys, it is unaware of the message it has to encrypt, as this would
trivially allow to win the pg-INDCPA game.

To circumvent this issue, we introduce another game G (cf. Fig. 6). In this game,
the second ciphertext part co always contains the encryption of yg, irrespectively
of the secret bit b. By removing the issue described above, this allows to transform
any adversary against G into an adversary against pg-INDCPA. It remains to
bound the game advantage between pg2enc and G, which, in turn, can also be
bound by the pg-IND-CPA security of Eg. Let A be a quantum adversary against

Game G procedure Enc; (k, m) procedure E(mo, my)

procedure Initialize ¢ < Enc(k,Enc(k;, m)) parse mo as o || %o || 2o
b<«s{0,1} return c parse my as 1 || y1 || 21
kg,kl,ké,k{ —s K ¢1 < Enc(ko,Enc(k], z

return ko, ki procedure Finalize (V) ! (o, Enc(ky, 2,))

co + Enc(k), Enc

c3 < Enc(k), Enc

k1, y0))
k{,zb))

return (' = b) E

procedure Enco(k, m)

¢ (c1, ¢, 3)

¢ < Enc(kj,Enc(k, m)) procedure On(>- aay |7, y))
return c

return ¢ return Zaz,y |z, y @ H(z))

Fig. 6. Game G used in the proof of Theorem 5.

pg2enc. A simple reformulation yields
AdvPP(A) = 2 Adv (pq2enc?, GA) + Adv©(A).

9 Using a topological ordering for the gates in the circuit.
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We first bound the game advantage between pg2enc and G. A simple reformulation
yields

2 Adv (pq2enc”?, G*) = Pr[AP?" — 1|b=1] — Pr[A® —» 1|b=1].

Now we construct a quantum reduction R; playing the pg-INDCPA game using A
as a subroutine. It samples three keys ko, k1, and k], and sends the former two to
the adversary A. For every query (k, m) that A makes to Ency, Ry answers with
the ciphertext obtained by first encrypting m using key k{ and then encrypting
the result using key k. For queries (k, m) to Ency, R; invokes its own oracle Enc
on Enc(k, m) and forwards the response to A. For challenge queries (mq, my),
R, first parses mg as o || yo || 20 and my as 1 || y1 || 21. The ciphertext ¢ is
computed locally by encrypting z; using keys ki and k. For the ciphertext cs,
R1 encrypts z; using ki, queries its own oracle Enc on the result, and sets ¢z to
the response. As for ¢y, R1 encrypts both yo and y; using ki, invokes its own
challenge oracle E on the two ciphertexts, and assigns the response to c;. For
each of the above queries, R invokes its own quantum random oracle whenever
the local simulation of the encryption algorithm requires it. Queries > ag |z, y)
to the quantum random oracle by A are answered by forwarding the query to
the quantum random oracle from the pg-INDCPA game and sending the response
Yoy |z, y @ H(z)) back to A. When A outputs a bit &', Ry simply forwards o’
as its own output.

It is easy to see that R; perfectly simulates pg2enc and G conditioned on
b =1 and b = 0, respectively, where b is the secret bit from the pg-INDCPA game.
This yields

2 Adv (pg2enc?, G*) = Pr[APe"e — 1|b = 1] — Pr[A® — 1]|b=1]
< Pr[RPIINPPA 1 1p = 1] — Pr[RENPPA 11 =0
— Adqu-INDCPA(Rl) .

Next, we show that any quantum adversary A against G can be transformed into
an adversary Ro against pg-INDCPA. The idea is as follows: Ry samples all keys
but k; by itself. Encryptions using key k| are simulated using its own oracles Enc
and E while all other encryptions are performed locally.

At the start of the game, Ry chooses three keys kg, k1, and & and sends ko
and k; to A. Queries (k, m) to Encg can be simulated using only the quantum
random oracle, as Ry knows both £ and k). Queries (k, m) to Ency require to first
invoke the oracle Enc on m before encrypting the response using key k, again
querying the quantum random oracle as required by the encryption algorithm.
For the challenge queries (mg, my), R first parses mg and my as xg || yo || zo and
x1 || y1 || 21, respectively. Recall that in G the value y; is never encrypted. Hence,
the second ciphertext is computed locally, only invoking the quantum random
oracle, by encrypting yo using the keys k) and k;. As for the other challenge
messages (g, T1, 20, 21), R2 invokes its own challenge oracle E twice, namely on
(x0,21) and (zg,21). The first response is encrypted using key ko, the second
using key &. Finally, the ciphertexts are sent back to .A. Just as in the first part,
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queries Y ag, |z, y) that A makes to its quantum random oracle are forwarded
to the quantum random oracle from the pg-INDCPA game, as is the response
Yy |z, y ® H(z)). Whenever A outputs a bit o', R simply outputs the same
bit.

It is easy to see that Ro perfectly simulates G for A, where the secret key
from the pg-INDCPA games corresponds to the key &f in G. By forwarding the
output of A, we end up with

AdvC(A) < AdvPINDCPA(R )

The statement of Theorem 5 follows by collecting the bounds above and defining
A to be the adversary from Ry and Ro with the higher pg-IND-CPA advantage.

Remark. By removing the quantum random oracle from the games pg2enc and
G and restricting A to be classical, we obtain a classical security proof for the
security under double encryption, yielding essentially the detailed security proof
based on the proof sketch of [36].

C Parameter Selection for PQ-secure OT.

The parameters of the AHE scheme used in our experiments are as follows:
p = 65537,¢ = 1099510054913 - 1152921504606584833, x = 16384, and s = 3.2
(x is a discrete Gaussian distribution with standard deviation s). Consequently,
we get o = 16, and v = 512 for ¢ = 256. We use the conservative analysis (from
the point of view of the key owner) of the hardness of the decision Ring-LWE
(DRLWE) problem from NewHope [3] to estimate the post-quantum security for
our AHE scheme. The security of their PKE scheme has an identical reduction to
the DRLWE problem as our AHE scheme. Thus, their analysis applies directly
to our case as well. Using the script (scripts/PQsecurity.py) provided by
the authors of NewHope [51], the post-quantum security for these parameters
comes out to be 258 bits. This is greater than the post-quantum security of
NewHopel024 (233 bits), which is being considered for category V security in
the NIST post-quantum cryptography standardization process [46]. According to
NIST, category V security guarantees a greater effort in breaking the scheme than
the effort required for key search on AES-256. Thus, the addition of post-quantum
OT does not lower the security of the scheme, and the security of AES-256 is
still the lower bound on security of the post-quantum Yao protocol.

Our choice of parameters has been optimized for using PQ-OT as a base-OT
in OT extension [33], which we prove to be post-quantum secure (cf. Section 3.2).
Specifically, exactly half of the plaintext slots are utilised for performing 2x =
256 OTs on 256-bit messages, which is the requirement for the base-OT.

The justification for concrete parameters is as follows: Microsoft’s SEAL [53],
on which our implementation of AHE is based, restricts = to be a power
of 2 for efficiency purposes. Accordingly, we choose p = 65537 as our plaintext
modulus, which is the smallest prime that satisfies p = 1 mod z for practical
values of x. Consequently, we required a g of 100 bits to allow evaluation of the
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circuit employed in ITQ}:, and ensure circuit privacy with statistical security of
o = 40 bits. For these parameters, the smallest value of = that provides more than
128-bit PQ security is 16384. Choosing x = 8192 would lead to perfect utilization
of slots for performing 256 OTs on 256-bit messages, but it only provides PQ
security of 111 bits according to the rather pessimistic analysis in [3]. We believe
that a less conservative analysis will allow z = 8192, and expect this change to
double the efficiency of the scheme in performing the base-OTs.
We discuss possible security against malicious adversaries in Appendix D.

D PQ-OT with Malicious Receivers

The protocol that we describe in Section 3 is only secure against semi-honest
adversaries. In practice it is desirable to achieve security against malicious
adversaries. While we did not implement this stronger form of security in our
instantiation, we want to provide an overview of possibilities that achieve security
against active adversaries. An obvious attack on our 1-out-of-2 OT that could be
performed by a malicious receiver is setting the choice bit b to a value that is
neither 0 nor 1. Thereby the receiver would receive a superposition of both sender
messages. To mitigate this issue, we propose adding a range proof, e.g., using [16]
with which the verifier can obliviously show that his choice bit is indeed either 0
or 1. Along with a range proof, we would also require a Zero-Knowledge Proof
of Knowledge (ZKPoK), which will ensure that the noise in a ciphertext is less
than a known bound.

When running multiple OTs at the same time, choice bit replication would
need an additional proof of equality of all replicated choice bits. In that case
higher degree slots are beneficial, as this additional proof is not needed.

An alternative construction that offers security against malicious receivers and
can be instantiated with post-quantum secure primitives is provided in [40]. Their
solution circumvents the above-described problem by not explicity encrypting
the coice bit, but instead encoding it by chosing a message at the desired index
according to the protocol specification.
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