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Abstract. The US National Institute of Standards and Technology
(NIST) recently announced the public-key cryptosystems (PKC) that
have passed to the second round of the post-quantum standardization
process. Most of these PKC come in two flavours: a weak IND-CPA
version and a strongly secure IND-CCA construction. For the weaker
scheme, no level of security is claimed in the plaintext-checking attack
(PCA) model. However, previous works showed that, for several NIST
candidates, only a few PCA queries are sufficient to recover the secret
key. In order to create a more complete picture, we design new key-
recovery PCA against several round 2 candidates. Our attacks against
CRYSTALS-Kyber, HQC, LAC and SABER are all practical and require
only a few thousand queries to recover the full secret key. In addition, we
present another KR-PCA attack against the rank-based scheme RQC,
which needs roughly O(238) queries. Hence, this type of scheme seems
to resist better than others to key recovery. Motivated by this observa-
tion, we prove an interesting result on the rank metric. Namely, that the
learning problem with the rank distance is hard for some parameters,
thus invalidating a common strategy for reaction attacks.

1 Introduction

As quantum computers are becoming a credible threat to standard public-key
cryptography, the US National Institute of Standards and Technology (NIST)
launched a standardization process for post-quantum cryptosystems. Many sub-
missions were received at the first deadline in 2017. In January 2019, the second
round candidates were announced, resulting in a smaller batch of 26 algorithms.
Only a few types of schemes were proposed and most of them belong to three
categories: lattice-based, code-based and multivariate-based. In addition, most
lattice-based algorithms follow the same pattern, as shown in [3].

Most round 2 candidates share a similar structure: first, the authors present a
CPA-secure public-key encryption scheme, which allows only for ephemeral keys.
Then, this CPA construction is transformed into a strongly secure Key Exchange
Mechanism (KEM) using the well-known Fujisaki-Okamoto (FO) transform or
a variant [14,15,20,31].

While the CPA scheme is not meant to be secure if the secret key is used
more than once, it is usually simpler and more efficient than its strongly se-
cure counterpart. As a result, we think that the threat of misuse of the weaker
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construction by non-experts in the implementation stage is high. Moreover, it
was mentioned in [22] that badly implemented KEMs could leak information
about the underlying CPA construction via side channels. More precisely, these
implementations leaked whether the decryption of a ciphertext was correct or
not and several timing attacks exploiting this flaw were subsequently proposed
(e.g. [10,6]). This motivates our study of the key-reuse resilience of several NIST
round 2 candidates.

In the security model we considered, the adversary can query a plaintext and
ciphertext pair to an oracle, which returns whether the ciphertext decrypts to
the given plaintext or not. The goal of the attacker is then to recover the secret
key. This model makes sense in the side-channel scenario mentioned above. In
addition, it also corresponds to the real-life setting where a malicious participant
can attempt to establish a secure connection with a server. In this case, the
malicious party can send erroneous ciphertexts and observe the reaction of the
server (e.g. whether the secure channel can be established or not). This kind of
attack is often called reaction attack in the literature.

Related work. Reaction attacks is an old topic in cryptography and one of
the most famous examples is Bleichenbacher’s attack against RSA published
in 1998 [7]. The term reaction attack was probably first mentioned in [19]. In
that paper, the authors showed that in the McEliece scheme, an adversary can
recover a plaintext by observing decryption results of erroneous ciphertexts. In
2003, Howgrave-Graham et al. presented a reaction attack against the NTRU
cryptosystem, which recovers the secret key [21]. More recently, several key-
reuse and reaction attacks against post-quantum cryptosystems were published.
See for example attacks against QC-MDPC [18], LEDApkc [12], NewHope [4],
HILA5 [5], etc. In 2016, Fluhrer [13] and Ding et al. [11] showed how key-reuse
can be exploited against Ring-LWE based schemes.

In 2019, Băetu et al. [3] introduced a framework capturing the similar struc-
ture shared by lattice-based proposals. In the same paper, the notion of key-
recovery under plaintext-checking attack (KR-PCA) was presented, which for-
malized the concept of reaction attacks. More notably, the authors designed
several misuse attacks against NIST candidates. It was shown that with a few
thousand queries, many proposals can be broken if the secret key is reused. The
algorithms attacked were (R.)EMBLEM, Frodo, KINDI, LIMA, LOTUS and
Titanium. However, results against several NIST round 2 candidates are still
missing. One of our goals is to get a more complete picture.

The same paper [3] also introduced the concept of learning problem. In this
model, an adversary tries to recover a secret value, having access to an oracle
that returns whether the distance between the secret and a given value is below
some threshold. It was shown that an efficient learning algorithm was sufficient
to design a practical KR-PCA attack in most cases. Interestingly, many key-
reuse attacks solve an instance of the learning problem in one way or another in
order to recover the key (e.g. [3,4,11]).

Finally, in an independent and concurrent work, Qin et al. [28] presented a
reaction attack against Kyber similar to ours. Their paper is focused only on
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Kyber while we target many schemes. The performance of their best attack is
similar to ours, even if our algorithm seems to perform slightly better on average,
at least for Kyber512.

Our contributions. In this paper, we present several key-reuse attacks in the KR-
PCA model defined in [3]. More precisely, we design KR-PCA attacks against
the following NIST round 2 proposals: HQC, LAC, CRYSTALS-Kyber, SABER
and RQC. In our attacks (except for RQC), only a few thousands queries to the
oracle are needed to recover the private key. Moreover, the complexity is polyno-
mial in the size of the parameters. The only exception is RQC [25], a rank-metric
proposal, for which our best attack is exponential (but still practical for the pro-
posed parameters). We report our and other existing results against round 2
candidates in Table 1. We included external results only when the attack was
in the same model as ours and targeted explicitly a version of a cryptosystem
submitted to the NIST process. This does not mean that other round 2 candi-
dates are not vulnerable to existing reaction attacks. Actually, apart from the
schemes targeted in this paper, nearly all round 2 candidates have existing re-
action attacks against them or similar schemes (e.g. the attack in [18] probably
works on BIKE, [29] on ROLLO, [12] on LEDACrypt, [21] on NTRU, etc.).
For each scheme, we indicate the number of unknowns in the secret key in Zq,
the maximal and expected number of queries necessary to recover the key. Con-
cretely, the number of oracle calls can be seen as the number of times the key
must be reused before the adversary can recover it. As a proof-of-concept, we
also implemented the attacks against CRYSTALS-Kyber and SABER. As the
attack against HQC is a straightforward application of the attack against Lepton
from [3], we defer its description to Appendix C.

In addition, we show that the learning problem is hard in the rank-metric
setting for some parameters. As most key-reuse attacks solve an instance of the
learning problem in order to recover the key, this result demonstrates that such
a strategy is not applicable to rank-based schemes. We stress that this result
does not prove that efficient KR-PCA are impossible in the rank-metric but
that common techniques are not applicable, which is still significant. From a
more information-theoretical point of view, this confirms the intuition that the
rank distance between a secret and a given value leaks much less information on
the secret than other distances such as Hamming.

2 Notation

We let Rq = Zq[X]/(Xn + 1). For a distribution Ψ , we write x←$Ψ to denote
that x is sampled from the distribution Ψ . If x is a vector or a polynomial of
dimension n, we write x←$Ψn to say that each component of x is sampled
independently from Ψ . For some vector or polynomial x, xi is the i-th coefficient
and (x)i is the subset composed of the i-th first coefficients of x. For some set
X , x←$X means that x is sampled uniformly at random from X . For x ∈ Zq,
we write x′ = 〈x〉q for the unique integer x′ ∈ (−b q2c, b

q
2c] s.t. x′ ≡ x (mod q).
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Table 1: KR-PCA on NIST round 2 post-quantum cryptosystems. For each at-
tack, we report the number of unknowns in the key, the number of oracle calls
to recover the private key and the expected number of oracle calls, respectively.
Values are rounded to the closest power of 2. The results obtained in this paper
are highlighted.

Schemes Unknowns max. #queries E[#queries]

CRYSTALS-Kyber-512 210 211 210

Frodo-640 [3] 212 216 -
HQC-128 (see App. C) 215 216 216

LAC-128 29 211 211

NewHope1024 [27] 210 - 220

Round5 (HILA5) [5] 210 - 213

RQC-I 213 267 ≤ 238

SABER (LightSaber) 29 211 211

We denote by dxc rounding x to the nearest integer, with ties rounded up. If
f is a function defined on a component of a vector (or polynomial) v, we write
f(v) to denote the function being applied to each component of v. Finally, we
denote [n] the set {0, 1, . . . , n− 1}.

3 Plaintext-Checking Attack

We first recall the definition of a Public-Key Cryptosystem (PKC).

Definition 1 (Public-Key Cryptosystem). A Public-Key Cryptosystem
(PKC) is a tuple of four algorithms (setup, gen, enc, dec) defined as follows.

• pp←$ setup(1λ): The setup algorithm outputs the public parameters pp.
• (pk, sk)←$ gen(pp): The key generation algorithm takes the public parameters

as inputs and outputs the public key pk and the secret key sk.
• ct←$ enc(pp, pk, pt): The encryption procedure takes the public parameters
pp, the public key pk and a plaintext pt as inputs and outputs a ciphertext
ct.
• pt′ ← dec(pp, sk, ct): The decryption function takes the public parameters pp,

the secret key sk and the ciphertext ct as inputs and outputs a plaintext pt′.

A PKC is correct if for any plaintext pt, after running the four procedures we
have

Pr[pt 6= pt′] = negl(λ).

The first three algorithms are randomized but can be considered as deterministic
algorithms using random coins. In the following sections, we omit the public
parameters in the inputs for the sake of simplicity.

The real-life scenario where a malicious user can detect whether or not a
ciphertext decrypts to some plaintext was formally captured in [3]. In this work,
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KR-PCA(A)

pp←$ setup(1λ)

(pk, sk)←$ gen(pp)

sk′ ← AO
PCO

(pp, pk)

return 1sk′=sk

Oracle OPCO(pt, ct)

1 : pt′ ← dec(pp, sk, ct)

2 : return 1pt′=pt

Fig. 1: KR-PCA game.

LEARNΨ,ρ,‖·‖(A)

δ ←$Ψ

δ
′ ← AO

learn

return 1δ′=δ

Oracle Olearn(x)

return 1‖δ+x‖≤ρ

Fig. 2: LEARN game.

the authors define the notion of Key-Recovery under Plaintext-Checking Attack
(KR-PCA), where an adversary has access to a plaintext-checking oracle and
aims at recovering the secret key. This notion is defined by the game given in
Figure 1.

In the same work, the authors define the notion of learning game. In this
game, an adversary tries to learn a secret value given access to an oracle that
returns whether or not the distance between the secret and the given value
exceeds some threshold. We give this game in Figure 2. The game is parametrized
by the threshold ρ, the secret value distribution Ψ and the norm ‖ · ‖. The
adversary has access to the public parameters and to the oracle Olearn and tries
to guess the secret δ.

The authors then showed that for most of the lattice-based schemes of the
NIST competition, the KR-PCA game reduces to the LEARN game. In addition,
for most common norms (e.g. Hamming, L1 in Zq, ...) the learning game can
be solved in a logarithmic number of queries in the size of the secret domain
(i.e. O(log2(|D|)) for δ ∈ D). This led to the design of several efficient KR-PCA
attacks.

4 LAC

4.1 LAC-CPA

In LAC [23], the elements are in Rq. For v ∈ Rq, x ∈ Zq, let h(v, x) := |{i : vi =
x, i ∈ [n]}| be the function that counts the number of coefficients set to x in v.
Then, we define Sw = {v : v ∈ Rq, h(v,−1) = h(v, 1) = w

2 } for w even, as the
set of polynomials in Rq that contains exactly w

2 1s and −1s. In addition, we
consider a centered binary distribution ψσ on {−1, 0, 1} with variance σ and a
BCH code of error-correcting capacity t. The scheme works as follows.

• gen: Sample (sk, d)←$S2
w and A←$Rq. Set pk = (A,B = A× sk + d).

• enc(pk, pt ∈ {0, 1}k): Sample (t, e, f)←$S2
w × Ψ `vσ and output

(U, V )←
(
t×A+ e, (t×B)`v + f +

⌈q
2

⌋
× encodeBCH(pt)

)
.

• dec(sk, U, V ): Compute W ← V − (U × sk)`v and output decode(W ).
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The decode(W ) function first computes

W ′i =

{
1, if d q4c ≤Wi < d 3q4 c
0, otherwise

(1)

then outputs decodeBCH(W ′).

4.2 KR-PCA

Consider w.l.o.g. that the KR-PCA attack uses pt = 0k. Hence, we have

encodeBCH(pt) = 0`v ∈ Z`vq .

Then, since the BCH code can correct up to t errors, the decryption of some
ciphertexts (U, V ) will be incorrect (i.e. OPCO(pt, (U, V )) = 0) iff for at least t
of the components of W we have Wi ∈ [d q4c, d

3q
4 c) by Eq. (1). Therefore, we can

consider the following plaintext-checking attack (see Figure 3 in Appendix A for
detailed pseudocode).

• Set U = −(d q4c − 1) ∈ Rq (i.e. a constant polynomial).
• We observe that

1 + (−U × sk)i /∈
[
−dq

4
c, dq

4
c
)
⇔ ski = 1 (2)

−2 + (−U × sk)i /∈
[
−dq

4
c, dq

4
c
)
⇔ ski = −1. (3)

Then, let V = 1 ∈ Z`vq be the vector with 1 in every component. By Eq.
(2), if there are more than t ones in sk, V − (U × sk)`v will decode in-
correctly and OPCO(pt, (U, V )) will return a failure. Then, by iteratively
cutting the number of 1s in V by half and querying the oracle, one can
perform a binary search to find Ṽ = (Ṽ0, . . . , Ṽ`v ), Ṽi ∈ {0, 1} s.t. Ṽ − (U ×
sk)`v contains exactly t errors. Finally, given this vector Ṽ , one can perform
the following algorithm.

1. Let V = Ṽ and J = {i : Ṽi 6= 1} be the subset of indices i for which
Ṽi (= Vi) is not 1. Then, let’s pick some i ∈ J and set Vi = 1. If the
oracle returns an error, it means that t + 1 errors have been detected
and thus the decoding of the ith component failed. In turn, that implies
that condition in Eq. (2) is fulfilled. Hence, we know that ski = 1. If the
oracle returns no error, we set Vi = −2 and query again. If an error is
returned it means ski = −1 by Eq. (3), otherwise sk = 0. One can iterate
for every i ∈ J . Thus, at the end of this step, we recovered all ski s.t.
i ∈ J .

2. To get the other components of sk, we set V = Ṽ as in the beginning
of step 1 but we add an extra error such that V − (U × sk)`v contains
t + 1 errors (we can do it easily since we know some values ski). Then,
for each i s.t. Vi = 1 (i.e. i /∈ J ), we proceed as follows. We set Vi = 0
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and query the oracle. If the oracle does not return an error, it means
the ith component was part of the t+ 1 errors (i.e. Eq. (2) was fulfilled)
and therefore ski = 1. Otherwise, if the oracle returns an error, we thus
know ski ∈ {−1, 0}. Let I be the indices of such components.

3. Set V = Ṽ (i.e. V − (U × sk)`v contains t errors). For each i ∈ I,
set Vi = −2. If the oracle returns an error, it means that Eq. (3) is
fulfilled and thus ski = −1, otherwise ski = 0. Hence, we recovered each
components ski for i ∈ {1, . . . , `v}.

4.3 Remarks and results

Note that we assumed that (sk)`v contained more than t ones for the binary
search to succeed in finding Ṽ . If this is not the case, we can still perform the
attack by first looking for Ṽ , Ṽi ∈ {−1, 0} s.t. the decryption contains t errors
and modify the signs in the attack. Note that for the parameters considered
by LAC authors, it is very unlikely that sk contains less than t 1s (same for
−1s). For example, for LAC128 (n = 512, w = 256, `v = 400, t = 16, σ = 1), the
probability to have less than t ones and minus ones in (sk)`v if we assume each
component i.i.d. with Pr[ski = 0] = Pr[ski ∈ {−1, 1}] = 1

2 is

Pr [|{i : ski = 0, ski ∈ (sk)`v}| > `v − t] =

`v∑
i=`v−t+1

1

2`v

(
`v
i

)
≈ 2−311.

In the worst case, we performed the binary search and queried 2 times for
each component, thus the total number of queries is log2(`v)+2×`v Hence, since
`v = 400, we can recover 400 unknowns of sk in at most log2(400) + 2 × 400 ≈
210 queries. Actually, if we denote sk = (sk1, . . . , skn), we will recover the `v
leftmost coefficients. We can recover the n−`v remaining coefficients by applying
the same attack using U = (d q4e−1)×Xn−`v . This will shift the n−`v coefficients
to the leftmost positions (note that −Xn = 1 in Rq). Hence, we need to apply at
most two times the attack, resulting in a total number of queries smaller than 211.
In the round 2 specifications [23], each component of V has its 4 least significant
bits dropped after encryption. At decryption, each component is thus multiplied
by 24. This does not impact our attack as Eq. (2)-(3) still hold with ±24 instead
of 1,−2. Finally, we note that in a recent independent work, D’Anvers et al. [10]
exploits similar properties to perform a timing attack against LAC.

5 CRYSTALS-Kyber

5.1 Kyber-CPA

In CRYSTALS-Kyber [30], the elements are in Rq = Zq[X]/(Xn + 1). Elements
are sampled from a distribution Ψη which is defined as

{(ai, bi)}i∈[η]←$ {0, 1}2×η; return

η∑
i=1

(ai − bi)
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with η = 2. Thus, Ψη returns a value in {−2,−1, 0, 1, 2}. For a polynomial
P ∈ Rq, we write P ←$Ψη to denote that each component of P is sampled
independently from Ψη. Moreover, we define

compress(x, d) =

⌈
2d

q
× x
⌋

mod 2d

decompress(x, d) =
⌈ q

2d
× x
⌋
.

Such functions guarantee that for any x ∈ Zq, we have∣∣∣〈x− decompress(compress(x, d), d)〉q
∣∣∣ ≤ ⌈ q

2d+1

⌋
.

When we apply these functions to vectors or polynomials in Rq, we assume they
are applied to each coefficient. Then, CRYSTALS-Kyber-CPA works as follows.

• gen: Sample A←$Rk×kq and (sk, d)←$ (Ψkη )2. Set pk ← (A,B) = (A,A ×
sk + d).
• enc(pk, pt ∈ {0, 1}n): Sample (t, e, f)←$ (Ψkη )2 × Ψη. Compute (U, V ) ←

(t × A + e, t × B + f +
⌈
q
2

⌋
× pt) ∈ Rkq × Rq. Output

(compress(U, dU ), compress(V, dV )).
• dec(sk, U ′, V ′): Compute (U, V )← (decompress(U ′, dU ), decompress(V ′, dV )).

Return compress(V − U × sk, 1).
We note that with the parameters proposed by the authors, we have

compress(x, 1) =

{
0, if − d q4c ≤ 〈x〉q ≤ d

q
4c

1, otherwise
. (4)

Finally, we define δ as V − U × sk = δ + encode(pt).

5.2 KR-PCA

From now on, we consider the parameters proposed by the authors for Kyber512,
namely n = 256, q = 3 329, η = 2, dU = 10 and dV = 3. In addition, we assume
k = 1 for now. In the plaintext-checking attack, we consider the message with all
components set to 0 (i.e. pt = 0 ∈ Rq) for the sake of simplicity, although some
minor changes would allow the attack to work for any pt. Let ρ = d q4c. Then, by
the definition of dec and Eq. (4), we know the plaintext-checking oracle (PCO)
will return 1 (i.e. success) iff |〈δi〉q| ≤ ρ, ∀i ∈ [n]. First, we state the following
lemma.

Lemma 1. Let U = −
⌈
q
4

⌋
/2 = −ρ/2 be a constant polynomial and U ′ =

compress(U, dU ). Given ki ∈ {−3, . . . , 4}, i ∈ [n], let V ′ = (0, . . . , ki, . . . , 0) be
the polynomial with ki in the i-th coefficient and 0 elsewhere. Then, for pt = 0
and the parameters of Kyber512, we have

OPCO(pt, (U ′, V ′)) = 1⇔
∣∣∣∣〈ski × ρ

2
+ ki ×

ρ

2

〉
q

∣∣∣∣ ≤ ρ.
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Proof. First, we observe that for the given parameters, decompress(U ′, dU ) = U .

Then, for V ′ = (0, . . . , ki, . . . , 0), ki ∈ {−3, . . . , 4} we have V =
decompress(V ′, dV ) = (0, . . . , ki × ρ

2 , . . . , 0) because

decompress(ki, dV ) =
⌈q

8
× ki

⌋
∗
= ki ×

⌈q
4

⌋
/2 = ki ×

ρ

2
(5)

where the ∗ equality holds with the parameters q = 3 329 and ki ∈ {−3, . . . , 4}.

Let δ = V − U × sk. Then, for all j ∈ [n], j 6= i

δj = 0− skj × U = skj ×
ρ

2
∈ [−ρ, ρ]

since skj ∈ {−2, . . . , 2} and U = −ρ/2 is a constant polynomial. For j = i
we have δi = ki × ρ

2 + ski × ρ
2 . Now, since δj ∈ [−ρ, ρ] for all j 6= i,

an error in the decoding can only happen in the i-th component. Hence,
querying OPCO(pt, (U ′, V ′)) is equivalent to querying some oracle Olearn(ki) =
1∣∣∣〈αi+ki× ρ2 〉q∣∣∣≤ρ, where αi = ski × ρ

2 ∈ [−ρ, ρ]. ut

Note that the oracle Olearn(ki) in the proof above is similar to the one in the
learning game defined in Figure 2. Now we set ki = −(k′i + 2) × ρ

2 for some
k′i ∈ {−2, . . . , 1}, αi = ski× ρ

2 and (U ′, V ′) as in Lemma 1. Then, if the condition

|αi + ki| =
∣∣∣αi − ρ− k′i × ρ

2

∣∣∣ ≤ dq/2c (6)

holds, then

OPCO(pt, (U ′, V ′)) = 1⇔ |〈αi − ρ− k′i ×
ρ

2
〉q| ≤ ρ

(6)⇔

|αi − ρ− k′i ×
ρ

2
| ≤ ρ⇔ −ρ ≤ αi − ρ− k′i ×

ρ

2
≤ ρ⇔

k′i ×
ρ

2
≤ αi ≤ 2ρ+ k′i ×

ρ

2
⇔ k′i ×

ρ

2
≤ αi ⇔ k′i ≤ ski

where the first equivalence follows from Lemma 1, the second to last equivalence
follows from αi ≤ ρ and k′i ×

ρ
2 ≤ ρ (hence the second inequality always holds)

and the last because αi = −ski × U = ski × ρ
2 . Hence, by setting ki = −(k′i + 2)

and (U ′, V ′) as in Lemma 1, one can perform a binary search and recover ski
by querying OPCO(0, (U ′, V ′)) and varying k′i. In order for condition (6) to hold,
we start with k′i = 0. Then, in the further iterations the condition holds for any
αi, k

′
i × ρ/2 ∈ [−ρ, 0] or αi, k

′
i × ρ/2 ∈ [0, ρ].

The last difficulty is in the case where the final interval is [1, 2] (i.e. we know
ski ∈ {1, 2} after some iterations). In this case, we would need to pick k′i = 2
and set V ′i = −(k′i + 2) = −4. However, in this case the ∗ equality in Equation
(5) of the proof of Lemma 1 does not hold. A solution is to set V ′i = −1 and
U ′ = compress(ρ2 , dU ) before querying OPCO(0n, (U ′, V ′)). Then, for ski ∈ {1, 2}
we have ∣∣∣−ρ

2
− ski ×

ρ

2

∣∣∣ ≤ ρ⇔ ski = 1.
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Hence, if the query returns a success we can set ski ← 1, otherwise ski ← 2.
We give the KR-PCA algorithm in Figure 4 in Appendix A.

5.3 Efficiency and implementation

First, we note that the value of k (remember we work in Rkq ) does not impact
the attack but simply increases the number of coefficients we need to recover.
Since we do 1 binary search with at most 3 queries and the total number of
unknowns is n × k = 256 × 2 = 512, one can recover sk in at most 3 × 512 =
1536 queries. In addition, the number of queries in the binary search is only 2
when ski ∈ {−2,−1, 0}. The probability that happens given ski←$Ψη is Pr[ski ∈
{−2, 1, 0}] = 11

16 . Hence, E[#queries] = 512 ×
(
11
16 × 2 + 5

16 × 3
)

= 1 184. We
implemented a proof of concept of the attack in Sage for k = 1. Our code is
based on a code1 implemented for a paper by Albrecht et al. [1]. Finally, we
note that the only differences between Kyber512 and the more secure versions
are the parameter k and the compression factors dU , dV . For the higher security
levels, the compression is less aggressive thus does not impact our attack and
the number of queries required increases linearly with k.

6 SABER

6.1 SABER-CPA

SABER [9] works with vectors and matrices where components are polynomi-
als in Rq for some integer q, as in Kyber. Components of the secret key are
sampled from a centered binomial distribution Ψη, where the sampled elements
are in the range [−η/2, η/2]. The security of SABER is based on the Mod-
ule Learning With Rounding (M-LWR) problem. We apply our attack to the
weaker version of SABER, namely LightSaber. In this version, the parameters
are eq = 13, ep = 10, eT = 3, q = 2eq , p = 2ep , T = 2eT , η = 10, n = 256 and
k = 2. We also define the polynomial h ∈ Rp with all coefficients equal to
2ep−2 + 2ep−eT−1 + 2eq−ep−1 = 196 and the polynomial h′ ∈ Rp with all co-
efficients set to 2eq−ep−1 = 4. The × operation is the standard vector/matrix
multiplication with component-wise polynomial multiplication (most elements
are matrices or vectors of polynomials). The scheme works as follows.

• gen: Sample sk←$ (Ψnη )k ∈ Rkq , A←$Rk×kq and set d ∈ Rkq as the vector with

each coefficient set to h′. Then, compute B ← (A× sk+d)� (eq− ep) ∈ Rkp
where � is the component-wise bitshift operation. Then, set pk = (A,B).

• enc(pk,m ∈ {0, 1}n): Sample t←$ (Ψnη )k, set e ∈ Rkq as the vector with each

coefficient set to h′ and compute U ← (A × t + e) � (eq − ep) ∈ Rkp. Set

V ← (BT × t+ h− 2ep−1m)� (ep − eT ) ∈ RT and output (U, V ).
• dec(sk, U, V ): Output (UT × sk− 2ep−eT V + h)� (ep − 1) ∈ R2.

1 Available on https://github.com/fvirdia/lwe-on-rsa-copro

https://github.com/fvirdia/lwe-on-rsa-copro
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Let Wi = (U×sk)i−128×Vi+196. Then, a decrypted component can be written
as

dec(sk, U, V )i =

{
0, if Wi < 2ep−1 = 29

1, if Wi ≥ 2ep−1 = 29
.

6.2 KR-PCA

The idea of the Plaintext-Checking attack is similar to the one used in the pre-
vious section. However, here we have to deal with the addition of the polynomial
h = 196+ . . .+196 ·Xn−1. Moreover, the domain of the components of the secret
key is {−5, . . . , 5}, which is much larger than in Kyber.

First, we consider k = 1, pt = 0n and V = 0 ∈ RT . Then, for any constant
polynomial U ∈ [−b 1965 c, b

196
5 c] and ski ∈ {−5, . . . , 5}, we have

Wi = (U × sk)i + 196 < 29 ∀i ∈ [n] ⇐⇒ OPCO(pt, (U, V )) = 1.

This means that if we set V = vi · Xi (i.e. only the i-th term is non-zero), we
have the following equivalence

OPCO(pt, (U, V )) = 0 ⇐⇒ (U × sk)i − 2ep−eT vi + 196 ≥ 29.

In other words, an error can occur only in the i-th component. Let vi = 2, then
−2ep−eT vi + 196 (mod p) = 964. Now for c ∈ {2, 3, 4, 5}, we have

OPCO

(
pt,

(
60

c
, 2Xi

))
= 1 ⇐⇒ 964 + ski×

60

c
(mod p) < 512 ⇐⇒ ski ≥ c.

similarly, for c ∈ {−5, . . . ,−2}

OPCO

(
pt,

(
60

c
, 2Xi

))
= 1 ⇐⇒ 964 + ski ×

60

c
mod p < 512 ⇐⇒ ski ≤ c.

Hence, by querying OPCO(pt, (U, vi ·Xi)) with U = 60
c one can perform a binary

search to find all ski s.t. ski ∈ {−5, . . . ,−2, 2, . . . , 5}. Let I be the set of indices
of such components.

In a second step, we want to find all ski ∈ {−1, 0, 1}. As in the previous
step, we can set U = ± 60

1 , V = 2Xi. The problem is that in this case U /∈
[−b 1965 c, b

196
5 c] and therefore it is not guaranteed that an error will occur only

in the i-th component. However, since we know every skj , j ∈ I, we can find

two vectors Ṽ ± =
∑
j∈I v

±
j ·Xj s.t. OPCO(pt, (±60, Ṽ ±)) = 1. Hence, by setting

U = ±60 and V = Ṽ ± + 2Xi, one can find the remaining ski ∈ {−1, 0, 1}.
Finally, for k > 1, we can simply shift the polynomial U in an k-length vector
and apply the same algorithm k times. The full algorithm is given in Figure 5
in Appendix A.
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6.3 Efficiency and Implementation

The binary search for one secret component takes at most dlog(η)e queries and
there are k × n components. For LightSaber, it means that one can recover
sk in at most 4 × 512 = 211 queries. The higher security levels for SABER
require a less aggressive compression (as in Kyber) and a smaller domain for
the components of the secret key. It means that a similar attack can be applied.
For Saber and FireSaber, 3 × 768 ≈ 211 and 3 × 1024 = 3072 queries would be
needed, respectively. Interestingly, the maximal number of queries required for
Saber would be roughly the same as for LightSaber. As a proof of concept, we
implemented the attack against LightSaber using the reference implementation
in C.

Finally, we leave as a future improvement the optimization of the way the
value c is picked in the binary search. Following the results presented in [3], it
should be feasible to design a binary search algorithm with an expected number
of queries close to H(ski), where H(·) is the Shannon entropy. For instance, in
LightSaber we have H(ski) ≈ 2.7.

7 RQC

7.1 Rank-based cryptography

The RQC cryptosystem [25] is similar to HQC [26] but uses the rank metric
instead of the Hamming distance. Let q be a prime and consider the finite field
Fqm . Let g ∈ Fq[X] be an irreducible polynomial of degree m. Then, we have
Fqm ' Fq[X]/〈g〉 ' Fmq . Now, let Fnqm be the vector space over the finite field
Fqm . Each element of this vector space can be seen as a polynomial in Fqm [X]/〈f〉
where f ∈ Fq[X] is an irreducible polynomial of degree n, using the trivial
isomorphism

φ : v ∈ Fnqm 7→
n−1∑
i=0

viX
i (mod f).

For elements in Fnqm , the multiplication × is defined as the polynomial mul-
tiplication in Fqm [X]/〈f〉. More formally, for any a, b ∈ Fnqm

a× b := φ−1(φ(a) · φ(b)).

Similarly, the multiplication in Fqm is defined as the polynomial multiplication
in Fq[X]/〈g〉. In RQC-I, as m = 97 and n = 67, the two polynomials are f =
X67 +X5 +X2 +X + 1 and g = X97 +X6 + 1.

Rank metric and support. Let v = (v0, v1, . . . , vn−1) ∈ Fnqm and {βi}i∈[m] be a
basis of Fqm over Fq. Then, each component vi ∈ Fqm can be written as a vector
in Fmq using the basis representation. Hence, v can be represented as a m × n
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matrix with elements in Fq. We denote this matrix by M(v), which is of the
form

M(v) =

 v0,0 · · · vn−1,0
...

. . .
...

v0,m−1 · · · vn−1,m−1


with vi,j ∈ Fq s.t. vi =

∑
j∈[m] vi,jβj . While not important, the choice of basis of

Fqm impacts the matrix representation. In what follows, we consider the canon-
ical basis. That is, we consider v ∈ Fqm as a polynomial in Fq[X]/〈g〉 and take
the trivial representation of this polynomial as a vector in Fmq .

Definition 2 (Rank in Fnqm). Let v ∈ Fnqm be a vector and M(v) ∈ Fm×nq be
its matrix representation as defined above. Then, we define the rank of v as

‖v‖ := rank(M(v))

that is, the rank of the matrix representation of v. Then, the distance between
v, w ∈ Fnqm is defined as

‖v − w‖ = rank(M(v)−M(w)).

For an arbitrary matrix A, let span(A) be the vector space spanned by the
columns of A. Then, the support of a vector is defined as follows.

Definition 3 (Support in Fnqm). Let v ∈ Fnqm . Then, the support is

supp(v) := span(M(v))

i.e. the vector space spanned by the columns of M(v). Similarly, we write
supp(vT ) for the vector space spanned by the rows of M(v). Finally, by the
definition of the rank of a matrix, we have dim(supp(v)) = dim(supp(vT )) = ‖v‖.
A useful tool when dealing with vector subspaces is the q-binary coefficient (also
called Gaussian coefficient), which counts the number of subspaces of dimension
r in a vector space of dimension n over a field of cardinality q. It is defined as[

n
r

]
q

=

r−1∏
i=0

qn − qi

qr − qi
.

7.2 RQC scheme

Let Snw = {v ∈ Fnqm : ‖v‖ = w} and Sn1,w = {v ∈ Fnqm : ‖v‖ = w, 1 ∈ supp(v)}. In
addition, let w,w′ ∈ Z be parameters. RQC uses a random Gabidulin code [16]
defined by a generating matrix G ∈ Fk×nqm and with decoding capacity ρ = bn−k2 c.
We denote the corresponding decoding algorithm by decodegab. Then, RQC-CPA
works as follows.

• gen: Sample (sk, d)←$S2n
1,w and A←$Fnqm . Set B ← A × sk + d. Pick a

random generating matrix G ∈ Fk×nqm for some Gabidulin code. Output (pk =
(A,B,G), sk).

• enc(pk,m ∈ {0, 1}k): Sample (t, e, f)←$S3n
w′ . Compute U ← A × t + e and

V ← B × t+mG+ f . Output (U, V ).
• dec(sk, U, V ): Output decodegab(V − U × sk).
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Correctness. Let δ = t×d+f −e× sk. Then, for any legit ciphertext (U, V ) (i.e.
(U, V ) = enc(pk,m) for some pk,m) we have V − U × sk = mG + δ. Since the
decoding capacity of the code is ρ, we assume dec(sk, U, V ) = m ⇐⇒ ‖δ‖ ≤ ρ
thus, OPCO(pt, U, V ) = 1 ⇐⇒ ‖δ‖ ≤ ρ.

7.3 KR-PCA

We give a Key-Recovery under Plaintext-Checking attack that works with an
expectation of O(wqmin{m,n}−ρ+1) queries. As q = 2, w = 5,m = 97, n = 67 and
ρ = 31 for RQC-I, we obtain a complexity of O(239). First, we state a useful
theorem and two lemmas.

Theorem 1 (Lemma 1, [8] or Theorem 11, [24]). Let X,Y ∈ Fm×n be two
m× n matrices over an arbitrary field F. Then,

rank(Y +X) = rank(Y ) + rank(X)

iff
span(Y ) ∩ span(X) = {0} and span(Y T ) ∩ span(XT ) = {0}.

In other words, for two matrices over a field, the rank of their sum is equal to the
sum of their rank iff their column space (resp. their row space) trivially intersect.

Lemma 2. We consider the RQC PKC. Let B = A × sk + d, sk, d ∈ Fnqm ,
supp(sk) = supp(d) and ‖sk‖ = ‖d‖ = w. Then, finding a subspace F ⊂ Fqm s.t.
z = dim(F ) ≤ m

2 and supp(sk) = supp(d) ⊆ F is sufficient to recover sk and d.
Similarly, let z = dim(F ), z′ = dim(F ′), then finding F, F ′ ⊂ Fnq s.t. z+ z′ ≤ n,

supp(skT ) ⊆ F and supp(dT ) ⊆ F ′ is sufficient to recover sk and d.

Proof sketch. We give here an informal argument. A complete discussion can
be found in [2]. If one can find a subspace F s.t. the support of sk (and d) is
contained in it, one can compute a basis {βi}i∈[z] for the subspace F . Then, one

can write ski =
∑z−1
j=0 ai,jβj and di =

∑z−1
j=0 bi,jβj , where the 2nz coefficients

ai,j , bi,j are unknown. Then, B = (A, 1) · (sk, d)T ∈ Fnqm can be seen as a system
of nm linear equations in Fq with 2nz unknown coefficients. Hence, as long as
nm ≥ 2nz ⇐⇒ z ≤ m

2 , one can solve the system of equations to recover sk, d.
Similarly, if one can find a basis for a subspace containing the row space of

M(sk) and another for the row space of M(d), one can write the system of mn
equations in Fq given by B as a system with m(z + z′) unknown coefficients. In
this case, the system is solvable for z + z′ ≤ n. ut

Lemma 3. Let pnk,w the probability that some random subspace of dimension k
non-trivially intersects a given subspace of dimension w in Fnq , with k + w ≤ n.
Then,

pnk,w ≤ (qk − 1)
(qw − 1)

(qn − 1)
≤ qw+k−n.

Proof. See Appendix B.1.
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The attack. Let V = x for some x ∈ Fnqm and U = −1 ∈ Fnqm . Then,

OPCO(0, (U, V )) = 1 ⇐⇒ ‖sk + x‖ ≤ ρ.

Let’s pick x ∈ Fnqm at random s.t. ‖x‖ = ρ − w. Then, by Theorem 1, we have
‖sk + x‖ = ρ iff the column spaces (resp. the row spaces) of sk and x do not
intersect (i.e. trivially intersect). By Lemma 3, the probability an intersection
occurs in the column space or in the row space is upper bounded by pmρ−w,w +
pnρ−w,w ≤ qρ−m + qρ−n. Since m ≥ n and ρ < n

2 in RQC, this can be further

bounded by O(q−n/2), which is negligible in n. Hence, we assume this does not
occur and ‖sk + x‖ = ρ. In this case, supp(sk) ⊂ supp(sk + x) and supp(skT ) ⊂
supp((sk + x)T ). Indeed, each vector in supp(sk + x) can be written as a linear
combination of vectors in the union of the basis of sk and x. Clearly, the union
of the two basis is then a basis for supp(sk+x) since ‖sk+x‖ = w+(ρ−w). The
same argument works for the row space. Hence, the attack consists of finding a
basis of supp(sk + x) or supp((sk + x)T ) and then finding sk by Lemma 2. We
focus on finding the first one.

Let u = sk + x with ‖u‖ = ρ and y = (α, 0, . . . , 0) ∈ Fnqm . Then,

M(y) =


α0 0 · · · 0
α1 0 · · · 0
...

...
. . .

...
αm−1 0 · · · 0

 .

We observe that supp(u) ∩ supp(y) 6= {0} ⇐⇒ α ∈ supp(u) for ‖y‖ = 1.
Therefore, by Theorem 1, ‖u+y‖ = ρ iff y ∈ supp(u) or (1, 0, . . . , 0) ∈ supp(uT ) ⊂
Fnq . Now, if we consider supp(uT ) as a random subspace of dimension ρ in Fnq ,

the probability that (1, 0, . . . 0) ∈ supp(uT ) can be upper bounded by qρ+1−n ≤
q−n/2+1 by Lemma 3, which is negligible. Hence, one can iterate over all α ∈ Fqm
and mark α whenever ‖u + y‖ ≤ ρ. At the end, all marked α’s form the vector
space supp(u). Then, one can find a basis for this subspace and recover the secret
key sk by Lemma 2, since ρ < n

2 <
m
2 . In this case, the total number of queries

needed is O(qm). Note that the strategy of querying y with only one non-null
component is similar to a recent timing attack against RQC [6].

Improved attack. Now, instead of marking all α’s in the vector space supp(u),
one can mark α s.t. α is not in the subspace spanned by the already marked α’s.
More formally, in the i-th step, if we know that α(1), . . . , α(i−1) ∈ supp(u), we
do not mark α(i) s.t. α(i) ∈ 〈α(1), . . . , α(i−1)〉. In that way, the expected number
of queries needed is lowered since we recover only a basis of supp(u) and not the
whole subspace. Note that we could check for linear independence of α(i) before
querying it, sparing a few queries but increasing the amount of offline work.

The expected number of queries needed can be approximated as follows.
Let Xi be the number of queries needed to find a new basis vector in supp(u),
knowing we already found α(1), . . . , α(i) ∈ supp(u). We refer to the vectors which
are not a new basis vector as bad. In each step, we assume we did not query any
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bad vectors. Thus, the number of potential basis vectors is qρ − qi and the total
number of vectors left to query is qm − i. The expected number of draws before
getting a good vector (i.e. a new basis vector) is therefore E[Xi] = qm−i+1

qρ−qi−1+1 .
At the beginning, we already know that the basis of x is a set of ρ− w linearly
independent elements of supp(u). Therefore, we set α(1), . . . , α(ρ−w) as the basis
of x and only w basis vectors need to be found. Hence, the expected total number
of queries before getting the ρ basis vectors is approximately

ρ−1∑
i=ρ−w

qm − i+ 1

qρ − qi + 1
≤

ρ−1∑
i=ρ−w

qm

qρ − qi
≤ wqm−ρ+1.

Note that this is actually an upper bound on the real expectation, since we made
an assumption that worsens the actual performance (i.e. we forget we already
queried some bad vectors). The full attack is given in Figure 6 in Appendix
A. Hence, the expected total number of queries is O(wqm−ρ+1). The success
probability of the algorithm is at least 1 − O(q−n/2+1). Finally, observe that
in RQC, sk, d are picked uniformly at random from Fnqm s.t. ‖sk‖ = ‖d‖ = w,
supp(sk) = supp(d) and 1 ∈ supp(sk) = supp(d). The fact that we know one
vector of the subspace spanned by sk does not impact the attack but merely
decreases the randomness of sk.

Row support recovery. The attack that recovers a vector subspace supp(uT )
which contains the row space of sk is nearly identical to the one above. The
only difference is that we iterate over all α ∈ Fnq by setting y ∈ Fnqm s.t.
y = (α0X,α1X, . . . , αn−1X). We do not set y = (α0, α1, . . . , αn−1), otherwise
1 ∈ supp(y) and thus ‖u + y‖ ≤ ρ for all α. Now, the row space of the se-
cret key supp(skT ) is not necessarily equal to the row space of d. However, one
can recover a subspace containing the latter in the exact same way. Indeed, the
only difference is that we set U = A, V = B + x for any x ∈ Fnqm and then

OPCO(pt, (U, V )) = 1 ⇐⇒ ‖V − U × sk‖ = ‖d + x‖ ≤ ρ. Note that Lemma 2
still applies since ρ < n

2 . The expected number of queries is upper bounded by
wqn−ρ+1.

Total cost. Hence, the total number of queries needed to recover the key is upper
bounded by wqmin{m,n}−ρ+1. For the CPA version of RQC-I (which targets 128-
bit security), this amounts to roughly 239 queries.

7.4 Hardness of learning in the rank metric

As the KR-PCA attack against RQC given above has an exponential complexity,
one could wonder whether a polynomial attack would be possible. While not
proving the hardness of the KR-PCA game in the RQC setting, we show here
that the learning game is hard for small errors.

First, we state useful theorems and lemmas.
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Theorem 2 (Corollary 8.1, [24]). Let X,Y ∈ Fm×n be two m × n matrices
over a field F, c = dim(span(X)∩ span(Y )) and d = dim(span(XT )∩ span(Y T )).
Then,

rank(X) + rank(Y )− c− d ≤ rank(X + Y ) ≤ rank(X) + rank(Y )−max(c, d).

Theorem 2 directly implies the following corollary.

Corollary 1. Let x, y ∈ Fnqm s.t. ‖x‖ = w, ‖y‖ = z and z ≥ w. Let c =

dim(supp(x) ∩ supp(y)), d = dim(supp(xT ) ∩ supp(yT )) and ρ be some positive
integer. Then, if z > ρ+ w

‖x+ y‖ > ρ.

Theorem 3 (Intersection of subspaces). Let w, d, n ∈ N and W be some
random secret subspace of Fnq of dimension w. We consider the following game.
A participant who does not know W tries to find a subspace X of Fnq of dimension
d s.t. the intersection W∩X is non-trivial. The game stops when such a subspace
is found. Then, the probability pn,tw,d of success in t trials is

pn,tw,d ≤
t

qn−d−w
.

Proof. See Appendix B.2.

Now we can prove the hardness of the learning game in the rank metric
setting.

Theorem 4 (Hardness of learning in the rank metric). Let q =
2, w, ρ, n,m and d = ρ + w be some positive integers s.t. w + d = ρ + 2w <
min{m,n}. In addition, we consider Snw = {v ∈ Fnqm : ‖v‖ = w}, Ψ the uni-
form distribution over Snw and ‖ · ‖ the rank distance. Then, for any ppt learning
adversary At restricted to t number of queries with t < qmin{m,n}−w−d, we have

AdvlearnΨ,ρ,‖·‖(At) = Pr[LEARNΨ,ρ,‖·‖(At)⇒ 1] ≤ t

qn−w−d
+

t

qm−w−d
+ negl

where negl =
([

n
w

]
q

∏w−1
i=0 (qm − qi)

)−1
.

Proof. See Appendix B.3.

Discussion. While not proving the hardness of KR-PCA attacks, Theorem 4
shows that the learning game in the rank metric is difficult for some parameters.
As many reaction attacks are based on the capability to solve an instance of the
learning game, this result is still significant. Note that when the error weight w
is large, qn−ρ−2w ≤ 1 and the bound becomes meaningless. However, in most
settings, the value w is picked small enough. For example, in RQC-I, we have
w = 5, ρ = 31,m = 97 and n = 67. Therefore, the advantage of a t-bounded
adversary is roughly bounded by t

226 . This means that a number of queries of
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the order of 226 is necessary to win with good probability. While feasible, the
cost is still exponential. More generally, if ρ+ 2w is smaller but proportional to
n (and m), the learning problem requires an exponential number of queries in
the rank metric.

From a broader perspective, this result shows that the rank distance leaks
less information than other common norms. Indeed, as shown in [3], the learn-
ing problem for other distances such as the Hamming distance, the L∞ norm
in Zq or some variants can be solved with a polynomial number of queries.
One explanation is that the learning problem for other metrics can be solved
component-wise. That is, by varying one component of x in the query, one can
extract information only about the corresponding component in the secret value.
Then, it is sufficient to recover the secret component by component. In the rank
metric though, this strategy is not possible as varying one entry in the value x
does not necessarily give information about a given component. More generally,
this confirms the intuition that the rank leaks less information, as flipping one
entry in a vector always changes the Hamming weight but not necessarily the
rank.

This result tends to show that the rank metric may be well suited to resist
to key misuse and similar attacks.

8 Conclusion

In this work, we have have presented key-reuse attacks against several NIST
PQC round 2 candidates, namely Kyber, SABER, LAC, HQC and RQC. We
have shown that for all but one of these schemes, a few thousands reuses can
lead to the recovery of the secret key. In the model considered, the adversary
only knows whether the decryption is a success or not.

As our misuse attack against RQC is borderline practical, we have demon-
strated that for RQC-I parameters, similar attacks cannot be efficient. More
generally, we proved that the distance between a secret and a given value leaks
less information in the rank metric than in other metrics. While interpreting this
result with care, this tends to show that practical reaction (or similar) attacks in
the rank metric may not be as straightforward as in other metrics. We leave the
proof of (im)possibility of efficient KR-PCA attacks against RQC-like schemes
as an open problem.
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A Algorithms

1: Algorithm lac kr pca(pp)
2: (A,B)← pk;

3: pt← 0k

4: U ← −(d q4 c − 1) ∈ Rq
5: Find Ṽ s.t. decode(V − U × sk) detects t errors.

6: J ← {i : Ṽi 6= 1}
7: for i ∈ J do
8: V ← Ṽ ;Vi ← 1
9: r ← Opco(pt, (U, V ))
10: if r = 0 then
11: ski ← 1; continue
12: end if
13: Vi ← −2; r ← Opco(pt, (U, V ))
14: if r = 0 then
15: ski ← −1 continue
16: end if
17: ski ← 0
18: end for
19: Set Ṽ ′ s.t. decode(V − U × sk) detects t+ 1 errors . E.g. we can set Ṽ ′ ← V if one oracle

call failed in the last iteration of the previous loop.
20: I = ∅
21: for i ∈ [`v ] \ J do

22: V ← Ṽ ′;Vi ← 0
23: r ← Opco(pt, (U, V ))
24: if r = 1 then
25: ski ← 1; continue
26: end if
27: I ← I ∪ {i} . ski ∈ {−1, 0}
28: end for
29: for i ∈ I do
30: V ← Ṽ ;Vi ← −2
31: r ← Opco(pt, (U, V ))
32: if r = 0 then
33: ski ← −1; continue
34: end if
35: ski ← 0
36: end for
37: return sk
38: end Algorithm

Fig. 3: KR-PCA adversary against LAC.
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1: Algorithm kyber kr pca(pp)
2: (A,B)← pk; ρ← d q

4
c

3: pt← 0 ∈ Rq
4: U ′ ← compress(−ρ/2, dU );U ′2 ← compress(ρ/2, dU );
5: for ` ∈ {1, . . . , k} do
6: We write U ′ (resp. U ′2) for the vector in Rkq with polynomial U ′ (resp. U ′2)

at position ` and 0 ∈ Rq elsewhere.
7: for i ∈ {1, . . . , n} do
8: V ′ ← 0 ∈ Rq
9: a← −2; b← 2

10: while b > a do . Binary search to find ski
11: c← d b+a

2
e;V ′i ← −2− c . After decompression V = −ρ− c× ρ

2

12: if c = 2 then . c = 2 special case
13: V ′i ← −1; r ← OPCO(pt, (U ′2, V

′))
14: if r = 1 then a← 1
15: else a← 2
16: end if
17: continue
18: end if
19: r ← OPCO(pt, (U ′, V ′))
20: if r = 1 then . ski ≥ c
21: a← c
22: else . ski < c
23: b← c− 1
24: end if
25: end while
26: ski ← a
27: end for
28: end for
29: return sk
30: end Algorithm

Fig. 4: KR-PCA adversary against CRYSTALS-Kyber.
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1: Algorithm saber kr pca(pp)
2: (A,B)← pk; ρ← d q

4
c

3: pt← 0256

4: for ` ∈ {1, . . . , k} do
5: We write U for the vector in Rkp with polynomial U at position ` and 0 ∈ Rp

elsewhere.
6: I ← ∅
7: for i ∈ {1, . . . , n} do
8: V ← 2 ·Xi ∈ RT
9: a← −5; b← 5

10: if OPCO(pt, (30, V )) then a← 2
11: else
12: if OPCO(pt, (−30, V )) then b← −2
13: else
14: I ∪ {i}; continue
15: end if
16: end if
17: while b > a do . Binary search to find sk`,i
18: c← sgn(a+ b)d| b+a

2
|e;U ← 60

c
. For η = 10, c|60 for all

c ∈ {−5, . . . , 5}
19: if OPCO(pt, (U, V )) then
20: if c > 0 then a← c
21: else b← c
22: end if
23: else
24: if c > 0 then b← c− 1
25: else a← c+ 1
26: end if
27: end if
28: end while
29: sk`,i ← a
30: end for
31: find two vectors Ṽ ± s.t. OPCO(0256, (±60, Ṽ ±)) = 1
32: for i ∈ I do
33: V ← Ṽ + + 2Xi

34: if OPCO(pt, (60, V )) then sk`,i ← 1; continue
35: end if
36: V ← Ṽ − + 2Xi

37: if OPCO(pt, (−60, V )) then sk`,i ← −1; continue
38: end if
39: sk`,i ← 0
40: end for
41: end for
42: return sk
43: end Algorithm

Fig. 5: KR-PCA adversary against LightSaber-CPA.
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1: Algorithm rqc kr pca(pp)
2: (A,B)← pk;
3: pt← 0k

4: U ← −1
5: x←$Snρ−w
6: compute basis {βi}i∈[ρ−w] of span(x)
7: W ← {βi}i∈[ρ−w]

8: for α ∈ Fqm do
9: y ← (α, 0, . . . , 0) ∈ Fnqm

10: V ← x+ y
11: r ← Opco(pt, (U, V ))
12: if r = 1 then
13: if α not in subspace spanned by the elements of W then
14: W =W ∪ {α}
15: end if
16: if |W| = ρ then break
17: end if
18: end if
19: end for
20: Set ski =

∑ρ−1
i=0 ai,jγi and di =

∑ρ−1
i=0 bi,jγi with γi ∈ W

21: Solve B = (A, 1) · (sk, d)T

22: return sk
23: end Algorithm

Fig. 6: KR-PCA adversary against RQC.
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B Proofs

B.1 Proof of Lemma 3

Proof. The proof of the first inequality is a simple union bound. The probability
that a random non-zero random vector is in the subspace of dimension w is
(qw−1)
(qn−1) (i.e. the number of non-zero vectors in the subspace over the number of

non-zero vectors in Fnq ). Then, the probability that at least one of the qk−1 non-
zero vectors of the random subspace is in the given subspace is upper bounded by

(qk − 1) (qw−1)
(qn−1) . The second bound is straightforward analysis: one can compute

the following equivalence

(qk − 1)
(qw − 1)

(qn − 1)
≤ qw+k−n ⇐⇒ qw + qk − 1 ≥ qw+k

qn

which holds with k + w ≤ n. ut

B.2 Proof of Theorem 3

Proof. By a union bound, the probability of finding an intersection with a sub-
space of dimension d in a given trial is upper bounded by the probability of
finding an intersection with a subspace of dimension 1 (i.e. a vector) in qd − 1
trials. Therefore, we have

pn,tw,d ≤ p
n,(qd−1)t
w,1 ≤ pn,t

′

w,1 (7)

for t′ = qdt − 1 (and t > 0). Then, in any of the t′ trials, the probability that
a given vector is in the secret subspace of dimension w is upper bounded by
qw−1

qn−t′−1 (i.e. there are qw − 1 non-zero vectors in W and at most t′ non-zero

vectors have already been tried). Hence,

pn,t
′

w,1 ≤ t′
qw − 1

qn − t′ − 1
≤ t′

qn−w
=

t

qn−d−w
(8)

where the first inequality follows from a union bound and the second holds iff
t′ + 1 ≤ qn−w ⇐⇒ t ≤ qn−w−d. As the theorem clearly holds for t > qn−w−d

since pn,tw,d ≤ 1, combining Eq. (7) and (8) concludes the proof. ut

B.3 Proof of Theorem 4

Proof. The idea of the proof is to show that the oracle of the learning game is
useful only if the adversary can find a non-trivial intersection with the subspace
spanned by the columns or the rows ofM(δ). We proceed by the game hopping
technique.

First, consider the learning game of Figure 2 but we replace the oracle with
the oracle OG0 of Figure 7. We call this new game G0. One can see that this
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game is the same as the learning game. Indeed, by Corollary 1, the condition in
line 2 returns the same result as 1‖δ+x‖≤ρ. Then, if the column (and row) spaces
ofM(x) andM(y) trivially intersect, we have ‖δ+x‖ = ‖δ‖+ ‖x‖ by Theorem
1. Hence, line 9 returns the correct result because the condition on lines 5-6 did
not hold. Finally, if this condition did hold, the result is obviously the same as
in the original oracle. Now, consider the game G1 which is the same as G0 except
it returns 1‖δ‖+‖x‖≤ρ when both ‖x‖ ≤ ρ+ w and condition on lines 5-6 of OG0

hold. Let’s call this event int. Clearly, G0 and G1 are the same except when int
happens.

We want to compute Pr[int], that is, the probability that the adversary finds
some x s.t. ‖x‖ ≤ ρ + w and a non-trivial intersection with the column or row
space of δ in less than t queries. Now, in the learning game, the oracle replies
1‖δ‖+‖x‖≤ρ (which contains no extra information about δ) as long as int does
not occur. Therefore, the probability of int to occur is upper bounded by the
probability to find a non-trivial intersection in the row or column space in t tries
with ‖x‖ = ρ+ w. Hence, by a union bound and Theorem 3, we have

Pr[int] ≤ t

qn−ρ−2w
+

t

qm−ρ−2w
.

In G1, the oracle gives no information to the adversary, as ‖δ‖ and ‖x‖ are
known. Therefore, one can remove the oracle and the probability of success of
the adversary is simply the probability to guess the correct value δ. The number
of vectors in Snw is

[
n
w

]
q

∏w−1
i=0 (qm − qi) (see [17] for example). Therefore,

Pr[G1(At)⇒ 1] ≤

([
n

w

]
q

w−1∏
i=0

(qm − qi)

)−1
.

Hence,

AdvlearnΨ,ρ,‖·‖(At) ≤ |Pr[G0(At)⇒ 1]− Pr[G1(At)⇒ 1]|+ Pr[G1(At)⇒ 1]

≤ Pr[int] + Pr[G1(At)⇒ 1]

≤ t

qn−w−d
+

t

qm−w−d
+

([
n

w

]
q

w−1∏
i=0

(qm − qi)

)−1
.

ut

C HQC

The HQC [26] scheme works mainly in R2 and with the Hamming weight ‖x‖ =
|{i : xi 6= 0}|. In addition, let wsk, wt, wf be some integers and Sw = {v : v ∈
R2, ‖v‖ = w} be the set of polynomials in R2 with Hamming weight w. Then,
the HQC scheme works as follows.

• gen: Sample (sk, d)←$S2
wsk

and A←$R2. Set pk = (A,B = A× sk + d).
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Oracle OG0(x)

1 : w ← ‖δ‖
2 : if ‖x‖ > ρ+ w then

3 : return 1‖δ‖+‖x‖≤ρ = 0

4 : end if

5 : if supp(x) ∩ supp(δ) 6= {0} or

6 : supp(xT ) ∩ supp(δT ) 6= {0} then

7 : return 1‖δ+x‖≤ρ

8 : end if

9 : return 1‖δ‖+‖x‖≤ρ

Oracle OG1(x)

1 : return 1‖δ‖+‖x‖≤ρ

Fig. 7: Oracles of games G0 and G1.

• enc(pk,m ∈ {0, 1}k): Sample (t, e, f)←$S2
wt × Swf . Then, the ciphertext is

(U, V ) = (t×A+ e, t×B + f +mG) where G is a generator matrix in Zk,n2

for some linear [k, n]-code C.
• dec(sk, U, V ): output decode(V −U × sk) where decode is the decoding func-

tion of the code C generated by G.

Now, we have V − U × sk = mG + δ with δ = t × d + f − e × sk. Thus, the
decoding (hence the decryption) is correct iff ‖δ‖ = ‖t× d+ f − e× sk‖ < ρ for
some ρ. The goal is to recover δ and use the known relation B = A × sk + d.
Then, (t× A+ e)× sk = t× B + f − δ gives n linear equations in n unknowns
in Zq and we can solve for sk.

The code used in HQC is a composition of a d-repetitions code and BCH
code. Namely,

decode = decodeBCH (decodeREP(c)) .

This is the same decoding function as the one in Lepton [32] and therefore one can
use the same learning algorithm to deduce δ and thus obtain n linear equations
in sk. A learning algorithm against Lepton decoding function was described in
[3]. For HQC-128, it requires

n+
n

d
log2 d+

n

d
+ log2

n

d
≈ 215

oracle queries to recover sk, with n = 24 677 and d = 31. In the revised version
of HQC for the round 2, the polynomial V is truncated to fit into nc coefficients
at the end of the encryption, where nc is the length of the code. Similarly, it
is expanded by ` coefficients set to 0 before decryption, with ` = n − nc. As n
is picked as the least prime larger than nc, the value ` is typically very small
(e.g. ` = 1 for HQC-128). Still, this implies that we can only get nc equations
for n unknowns at the end of the attack. We can run twice the attack to obtain
enough equations or use a bruteforce technique (if ` is small) to recover the full
key sk.
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