# 4-Uniform Permutations with Null Nonlinearity

Christof Beierle, Gregor Leander

Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany

firstname.lastname@rub.de

#### Abstract

We consider n-bit permutations with differential uniformity of 4 and null non-linearity. We first show that the inverses of Gold functions have the interesting property that one component can be replaced by a linear function such that it still remains a permutation. This directly yields a construction of 4-uniform permutations with trivial nonlinearity in odd dimension. We further show their existence for all n=3 and  $n\geq 5$  based on a construction in [1]. In this context, we also show that 4-uniform 2-1 functions obtained from admissible sequences, as defined by Idrisova in [8], exist in every dimension n=3 and  $n\geq 5$ . Such functions fulfill some necessary properties for being subfunctions of APN permutations. Finally, we use the 4-uniform permutations with null nonlinearity to construct some 4-uniform 2-1 functions from  $\mathbb{F}_2^n$  to  $\mathbb{F}_2^{n-1}$  which are not obtained from admissible sequences. This disproves a conjecture raised by Idrisova.

 $\bf Keywords:$  Boolean function, Cryptographic S-boxes, APN permutations, Gold functions

### 1 Introduction

It is well known that an APN function, i.e., a differentially 2-uniform function, must have non-trivial nonlinearity (see, e.g., [3, Prop. 13]). For functions with slightly worse differential properties, this does not necessarily need to hold. In particular, there exist differentially 4-uniform permutations with trivial nonlinearity of 0. Although this is not a new result of ours, we think that it is worth highlighting and studying such functions in more detail. For example, one possible application would be to construct other 4-uniform permutations, but with higher nonlinearity. In particular, one can reduce any permutation with trivial nonlinearity to a 2-1 function of the same uniformity and extend it back to a permutation in many possible ways.

Having a function with differential uniformity d, replacing one component by a linear function trivially yields a function with differential uniformity at most 2d and null nonlinearity. However, the crucial part is that the function constructed in that way is

This is a preprint of an article published in Cryptography and Communications. The final authenticated version is available online via https://doi.org/10.1007/s12095-020-00434-2.

again a permutation. We were therefore interested in the following question: Can we find APN permutations for which one component can be replaced by a linear function such that it still remains a permutation?

In the first part of this work, we show that the inverses of Gold functions (see [7, 9]), i.e., the inverses of power permutations  $x \mapsto x^{2^i+1}$  in  $\mathbb{F}_{2^n}$  with  $\gcd(i,n)=1$ , have such a property. Thus, they yield a construction of 4-uniform permutations with null nonlinearity. We remark that this observation directly leads to the construction of the APN function CCZ-equivalent to  $x \mapsto x^{2^i+1}$  and EA-inequivalent to any power function constructed in [2]. Since the Gold functions are permutations only in odd dimension, we further observe that the differentially 4-uniform 2-1 function constructed in [1], which is defined in even and odd dimension (except for n=4), can also be extended by a linear coordinate in order to obtain a 4-uniform permutation. By showing that such a 2-1 function exists for all n=3 and  $n\geq 5$ , we therefore conclude that 4-uniform permutations with trivial nonlinearity exist for all n=3 and  $n\geq 5$ .

In the second part of the paper we focus on 2-1 subfunctions of permutations, that are obtained by discarding one coordinate function. In [8], Idrisova has shown a necessary property on the subfunctions of APN permutations. In particular, for a subfunction  $S \colon \mathbb{F}_2^n \to \mathbb{F}_2^{n-1}$  of an APN permutation, she showed that, for all non-zero  $\alpha \in \mathbb{F}_2^n$ , the following two conditions hold:

- 1. If  $\{S(x), S(x+\alpha)\}=\{S(y), S(y+\alpha)\}$ , then either x=y or  $x=y+\alpha$ .
- 2. If  $S(x) = S(x + \alpha)$  and  $S(y) = S(y + \alpha)$ , then either x = y or  $x = y + \alpha$ .

We show that the above mentioned 4-uniform 2-1 function family constructed in [1], which is defined for n=3 and  $n\geq 5$ , always fulfills this necessary property. Therefore, and interestingly, 4-uniform 2-1 functions from  $\mathbb{F}_{2^n}$  to  $\mathbb{F}_{2^{n-1}}$  fulfilling this property do not exist only for those n for which we know (at the time of writing) that no APN permutation exists. In her work, Idrisova conjectured that all 4-uniform 2-1 functions from  $\mathbb{F}_{2^n}$  to  $\mathbb{F}_{2^{n-1}}$  fulfill this property. By using the 4-uniform permutations with null nonlinearity constructed in the first part, we provide counterexamples to that conjecture in the final part of the paper.

#### 1.1 Notation and Preliminaries

Let  $\mathbb{F}_2 = \{0,1\}$  denote the field with two elements and let  $\mathbb{F}_{2^n}$  denote its extension field of dimension n. By Tr, we denote the *trace function* over  $\mathbb{F}_{2^n}$  relative to  $\mathbb{F}_2$ , i.e.,  $\text{Tr} \colon \mathbb{F}_{2^n} \mapsto \mathbb{F}_2, x \mapsto x + x^2 + x^{2^2} + \cdots + x^{2^{n-1}}$ . Note that the trace function is  $\mathbb{F}_2$ -linear.

A function  $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$  is called differentially d-uniform if d is the smallest number such that, for every  $a \in \mathbb{F}_{2^n} \setminus \{0\}$  and every  $b \in \mathbb{F}_{2^m}$ , the equation F(x) + F(x+a) = b has at most d solutions for  $x \in \mathbb{F}_{2^n}$ . A differentially 2-uniform function is called Almost Perfect Nonlinear (APN). The nonlinearity of F, denoted nl(F), is defined as the minimum Hamming distance of any non-trivial component function to all affine Boolean functions.

There are several well-known equivalence relations on vectorial Boolean functions. The function  $G: \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$  is called affine equivalent to F if there exist affine permutations  $A: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$  and  $B: \mathbb{F}_{2^m} \to \mathbb{F}_{2^m}$  such that  $F \circ A = B \circ G$ . The function G is called extended affine equivalent (EA-equivalent) to F if there exist affine permutations  $A: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$  and  $B: \mathbb{F}_{2^m} \to \mathbb{F}_{2^m}$  and an affine function  $C: \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$  such that  $F \circ A = B \circ (G + C)$ . We finally recall the notion of CCZ-equivalence. Let  $\Gamma_F := \{(x, F(x)) \mid x \in \mathbb{F}_{2^n}\}$  be the function graph of F. The functions F and G are called CCZ-equivalent (see [4, 2]), if there exist an affine permutation  $\mathcal{L}: \mathbb{F}_{2^n} \times \mathbb{F}_{2^m} \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^m}$  such that  $\Gamma_G = \mathcal{L}(\Gamma_F)$ . The differential uniformity and the nonlinearity are invariant under all of the above equivalence relations.

# 2 Some 4-Uniform Permutations

In this section, we give two example families of differentially 4-uniform permutations with trivial nonlinearity.

## 2.1 Inverses of Gold Functions: The Case of n Odd

An interesting construction can be obtained by the inverses of quadratic APN power permutations. For those, it is possible to replace a component function by a linear function and still obtain a permutation.

**Proposition 1.** Let  $n \geq 3$  be odd, let  $\alpha \in \mathbb{F}_{2^n}$  with  $\operatorname{Tr}(\alpha) = 1$ , and let  $d = (2^i + 1)^{-1} \mod 2^n - 1$  with  $\gcd(i, n) = 1$ . Then, the mapping

$$G_{\alpha,d} \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}, \quad x \mapsto x^d + \operatorname{Tr}(\alpha x^d + x)$$

is a differentially 4-uniform permutation with null nonlinearity. The inverse can be given as

$$G_{\alpha,d}^{-1} \colon x \mapsto x^{2^{i+1}} + (x^{2^{i}} + x + 1) \operatorname{Tr}(\alpha x + x^{2^{i+1}})$$
.

*Proof.* To show that  $G_{\alpha,d}$  is a permutation, we show that the mapping

$$G'_{\alpha,d}(x) := G_{\alpha,d}(x^{2^i+1}) = x + \operatorname{Tr}(\alpha x + x^{2^i+1})$$

is an involution. Indeed, we can write  $G'_{\alpha,d}(G'_{\alpha,d}(x))$  as

$$x + \text{Tr}(x^{2^{i}+1}) + \text{Tr}(\alpha)\text{Tr}(\alpha x + x^{2^{i}+1}) + \text{Tr}\left(\left(x + \text{Tr}(\alpha x + x^{2^{i}+1})\right)^{2^{i}+1}\right)$$

$$= x + \text{Tr}(x^{2^{i}+1}) + \text{Tr}(\alpha)\text{Tr}(\alpha x + x^{2^{i}+1}) + \text{Tr}(x^{2^{i}+1}) + \text{Tr}\left(\text{Tr}(\alpha x + x^{2^{i}+1})\right)$$

$$= x + \text{Tr}(\alpha)\text{Tr}(\alpha x + x^{2^{i}+1}) + \text{Tr}(1)\text{Tr}(\alpha x + x^{2^{i}+1}) = x,$$

where the last equality follows from the fact that  $\text{Tr}(1) = \text{Tr}(\alpha) = 1$  for odd n. The expression for the inverse of  $G_{\alpha,d}$  follows because it can be given as  $G_{\alpha,d}^{-1}(x) = G'_{\alpha,d}(x)^{2^i+1}$ .

The 4-uniformity follows because  $x \mapsto x^d$  is APN as the inverse of the APN permutation  $x \mapsto x^{2^{i+1}}$  (see [9]). To see that  $\operatorname{nl}(G_{\alpha,d}) = 0$ , we observe that  $\operatorname{Tr}(x) = \operatorname{Tr}(\alpha \cdot G_{\alpha,d}(x))$ .

**Remark 1.** If we define  $F_d(x) := x + \text{Tr}(x^d + x)$ , the function  $H_d(x) := F_d(G_{1,d}^{-1}(x))$  is CCZ-equivalent to  $x \mapsto x^d$  by construction via the involution

$$\mathcal{L} : \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n}, \quad (x,y) \mapsto (y + \operatorname{Tr}(y) + \operatorname{Tr}(x), x + \operatorname{Tr}(x) + \operatorname{Tr}(y))$$

operating on the function graph of  $x \mapsto y = x^d$ . By using the fact that  $H_d(x) = F_d(G'_{1,d}(x)^{2^i+1})$ , one can easily see that  $H_d(x) = x^{2^i+1} + (x^{2^i} + x)\operatorname{Tr}(x + x^{2^i+1})$ , which is equal to the function CCZ-equivalent to  $x \mapsto x^{2^i+1}$  and EA- inequivalent to any power function, constructed in [2].

**Remark 2.** The existence of differentially 4-uniform permutations with trivial nonlinearity is not a new result. In particular, it was shown in [6] that the mapping

$$P_n \colon x \mapsto x + x^{2^{\frac{n+1}{2}} - 1} + x^{2^n - 2^{\frac{n+1}{2}} + 1}$$

is a permutation in  $\mathbb{F}_{2^n}$  for odd  $n \geq 3$ . It was shown in [10] that this permutation is differentially 4-uniform. Although that, to the best of our knowledge, the null nonlinearity of  $P_n$  was not mentioned in previous work, it is trivial to observe. It simply holds because  $P_n$  is of the form  $x \mapsto x + x^{d-1} + (x^{d-1})^d$  for  $d = 2^{\frac{n+1}{2}}$  and thus,  $\operatorname{Tr}(P_n(x)) = \operatorname{Tr}(x)$ . Note that  $2^{\frac{n+1}{2}-1}$  is the multiplicative inverse of  $2^{\frac{n+1}{2}+1}$  modulo  $2^n - 1$ , so this construction is also related to Gold functions.

#### 2.2 A Construction Covering the Case of n Even

In [1] Alsalami presented the following family of 4-uniform 2-1 functions, constructed by the finite field inversion.

**Proposition 2** ([1]). Let  $n \geq 3$  and let  $\gamma \in \mathbb{F}_{2^{n-1}}, \gamma \notin \{0,1\}$  with  $\text{Tr}(\gamma) = \text{Tr}(\gamma^{-1}) = 1$ . The function

$$S_{\gamma} \colon \mathbb{F}_{2^{n-1}} \times \mathbb{F}_2 \to \mathbb{F}_{2^{n-1}}, \quad (x, x_n) \mapsto \gamma^{x_n} x^{2^{n-1} - 2}$$

is a differentially 4-uniform 2-1 function.

Note that such a function  $S_{\gamma}$  does not exist for n=4, because there is no element  $\gamma \in \mathbb{F}_{2^3} \setminus \{0,1\}$  with  $\operatorname{Tr}(\gamma) = \operatorname{Tr}(\gamma^{-1})$ . More generally, Idrisova remarked in [8] that no 4-uniform 2-1 function from  $\mathbb{F}_{2^4}$  to  $\mathbb{F}_{2^3}$  exists. However,  $S_{\gamma}$  exists for all other dimensions n=3 and  $n\geq 5$  as shown in the following lemma.

**Lemma 1.** For m=2 and  $m\geq 4$ , there exist an element  $\gamma\in\mathbb{F}_{2^m}\setminus\{0,1\}$  with  $\mathrm{Tr}(\gamma)=\mathrm{Tr}(\gamma^{-1})=1$ .

*Proof.* We first consider the case of even m. Since no element in  $\mathbb{F}_{2^m} \setminus \{0,1\}$  is self-inverse,  $\mathbb{F}_{2^m} \setminus \{0,1\}$  can be partitioned into  $2^{m-1}-1$  sets of the form  $\{\gamma,\gamma^{-1}\}$ . Since exactly half of the elements in  $\mathbb{F}_{2^m}$  have trace 1 and since  $\operatorname{Tr}(0) = \operatorname{Tr}(1) = 0$ , there are  $2^{m-1}$  elements in  $\mathbb{F}_{2^m} \setminus \{0,1\}$  with trace 1. From the pigeonhole principle, there is at least one such set  $\{\gamma,\gamma^{-1}\}$  with  $\operatorname{Tr}(\gamma) = \operatorname{Tr}(\gamma^{-1}) = 1$ .

Let now m be odd. Let us define the Boolean functions

$$\iota \colon \mathbb{F}_{2^m} \to \mathbb{F}_2, x \mapsto \operatorname{Tr}(x^{2^m-2}) \quad \kappa \colon \mathbb{F}_{2^m} \to \mathbb{F}_2, x \mapsto \begin{cases} x & \text{if } x \in \mathbb{F}_2 \\ \operatorname{Tr}(x) + 1 & \text{if } x \notin \mathbb{F}_2 \end{cases}.$$

Suppose there do not exist  $\gamma \in \mathbb{F}_{2^m} \setminus \{0,1\}$  with  $\text{Tr}(\gamma) = \text{Tr}(\gamma^{-1})$ , then,  $\forall \gamma \in \mathbb{F}_{2^m} \setminus \{0,1\}$ , it is  $\text{Tr}(\gamma) = \text{Tr}(\gamma^{-1}) + 1$  and therefore  $\iota = \kappa$  because of the definitions of the above functions. However, it is  $\text{nl}(\kappa) \leq 2$ , since  $\kappa$  has Hamming distance 2 from the affine function  $x \mapsto \text{Tr}(x) + 1$ . Further, it is well known that  $\text{nl}(\iota) \geq 2^{m-1} - 2^{\frac{m}{2}} - 2$  (see [3, p. 50], [5]). This is a contradiction if  $m \geq 5$  and thus, there exists  $\gamma \in \mathbb{F}_{2^m} \setminus \{0,1\}$  with  $\text{Tr}(\gamma) = \text{Tr}(\gamma^{-1})$ .

Suppose that  $\operatorname{Tr}(\gamma) = \operatorname{Tr}(\gamma^{-1}) = 0$ . Similarly as in the case of even m, we can partition  $\mathbb{F}_{2^m} \setminus \{0, 1, \gamma, \gamma^{-1}\}$  into  $2^{m-1} - 2$  sets of the form  $\{\tilde{\gamma}, \tilde{\gamma}^{-1}\}$ . Since exactly half of the elements in  $\mathbb{F}_{2^m}$  have trace 1 and since  $\operatorname{Tr}(0) \neq \operatorname{Tr}(1)$ , there are  $2^{m-1} - 1$  elements in  $\mathbb{F}_{2^m} \setminus \{0, 1, \gamma, \gamma^{-1}\}$  with trace 1. From the pigeonhole principle, there is at least one such set  $\{\tilde{\gamma}, \tilde{\gamma}^{-1}\}$  with  $\operatorname{Tr}(\tilde{\gamma}) = \operatorname{Tr}(\tilde{\gamma}^{-1}) = 1$ .

The 2-1 functions  $S_{\gamma}$  as given in Proposition 2 can trivially be extended to permutation on  $\mathbb{F}_{2^n}$ . Let  $f \colon \mathbb{F}_{2^n} \to \mathbb{F}_2$  be a Boolean function with  $|\text{supp}(f)| = 2^{n-1}$  and  $S_{\gamma}(\text{supp}(f)) = \mathbb{F}_{2^{n-1}}$ , the function

$$R_{\gamma,f} \colon \mathbb{F}_2^n \to \mathbb{F}_2^n, \quad x \mapsto (S_{\gamma}(x), f(x))$$

is a permutation on  $\mathbb{F}_{2^n}$ . By choosing  $f(x) = x_n$ , we obtain a 4-uniform permutation with a linear component, i.e.,  $\operatorname{nl}(R_{\gamma,f}) = 0$ .

# 3 APN Admissible Functions

Let  $S = (S_1, \ldots, S_n)$  be a vectorial Boolean function defined by its coordinates  $S_i \colon \mathbb{F}_2^n \to \mathbb{F}_2$ . For  $j \in \{1, \ldots, n\}$ , we define  $S_{(j)} = (S_1, \ldots, S_{j-1}, S_{j+1}, \ldots, S_n)$  as the subfunction from  $\mathbb{F}_2^n$  to  $\mathbb{F}_2^{n-1}$  of S obtained by omitting the j-th coordinate. In [8], necessary properties on the subfunctions of APN permutations were given in terms of so-called *admissible sequences*. We slightly reformulate this definition by directly considering the properties of functions and not sequences.

**Definition 1** (see [8]). A 4-uniform 2-1 function  $S: \mathbb{F}_2^n \to \mathbb{F}_2^{n-1}$  is called APN admissible, if, for all non-zero  $\alpha \in \mathbb{F}_2^n$ , the following two conditions hold:

1. If 
$$\{S(x), S(x+\alpha)\} = \{S(y), S(y+\alpha)\}$$
, then either  $x = y$  or  $x = y + \alpha$ .

2. If 
$$S(x) = S(x + \alpha)$$
 and  $S(y) = S(y + \alpha)$ , then either  $x = y$  or  $x = y + \alpha$ .

The following fact for APN permutation was shown by Idrisova.

**Proposition 3** (Prop. 5 of [8]). Let S be a subfunction of an APN permutation, i.e.,  $S = T_{(i)}$  for an APN permutation  $T: \mathbb{F}_2^n \to \mathbb{F}_2^n$ . Then S is APN admissible.

# 3.1 The Existence of APN Admissible Functions

If we have an APN permutation in n bit, one directly obtains an APN admissible function according to Proposition 3 by removing one coordinate. One can ask whether APN admissible functions exist in dimensions for which we don't know APN permutations. For n = 4, APN admissible functions do not exist. In the following, we show that APN admissible functions exist for all n = 3 and  $n \ge 5$  by showing that  $S_{\gamma}$  is APN admissible.

**Proposition 4.** The function  $S_{\gamma}$  for  $\gamma \in \mathbb{F}_{2^{n-1}} \setminus \{0,1\}$  with  $\text{Tr}(\gamma) = \text{Tr}(\gamma^{-1}) = 1$  is APN admissible.

*Proof.* Since  $S_{\gamma}$  is 2-1 and 4-uniform, we only need to show that the two conditions of Definition 1 are met. We first show Condition 1. Let  $x, y, \alpha \in \mathbb{F}_{2^{n-1}}$  and  $x_n, y_n, \alpha_n \in \mathbb{F}_2$  with  $(\alpha, \alpha_n) \neq (0, 0)$  such that

$$\{S_{\gamma}(x,x_n), S_{\gamma}(x+\alpha, x_n+\alpha_n)\} = \{S_{\gamma}(y,y_n), S_{\gamma}(y+\alpha, y_n+\alpha_n)\}. \tag{1}$$

If x=0, then  $S_{\gamma}(x,x_n)=0$ . Since the only preimages of 0 are (0,0) and (0,1), Equation 1 implies y=0 or  $y+\alpha=0$ . It can easily be derived that  $(y,y_n)=(0,x_n)$  or  $(y,y_n)=(\alpha,x_n+\alpha_n)$  from the fact that  $S_{\gamma}(z,z_n)=S_{\gamma}(z,z_n+1)$  only holds if z=0. Thus, Condition 1 is met for x=0. A similar argument holds for  $y=0,x+\alpha=0$ , and  $y+\alpha=0$ . Let us therefore assume that  $x\notin\{0,\alpha\}$  and  $y\notin\{0,\alpha\}$ . Equation 1 is equivalent to

$$\{x(x+\alpha)y(y+\alpha)S_{\gamma}(x,x_n), x(x+\alpha)y(y+\alpha)S_{\gamma}(x+\alpha,x_n+\alpha_n)\}\$$

$$= \{x(x+\alpha)y(y+\alpha)S_{\gamma}(y,y_n), x(x+\alpha)y(y+\alpha)S_{\gamma}(y+\alpha,y_n+\alpha_n)\}\$$

which simplifies to

$$\{\gamma^{x_n}(x+\alpha)y(y+\alpha), \gamma^{x_n\oplus\alpha_n}xy(y+\alpha)\} = \{\gamma^{y_n}x(x+\alpha)(y+\alpha), \gamma^{y_n\oplus\alpha_n}x(x+\alpha)y\}.$$

This holds if either

$$\gamma^{x_n} y = \gamma^{y_n} x$$
 and  $\gamma^{x_n \oplus \alpha_n} (y + \alpha) = \gamma^{y_n \oplus \alpha_n} (x + \alpha)$ ,

or

$$\gamma^{x_n}(y+\alpha) = \gamma^{y_n \oplus \alpha_n} x$$
 and  $\gamma^{x_n \oplus \alpha_n} y = \gamma^{y_n}(x+\alpha)$ .

In both of the above cases, by distinguishing all eight cases of  $(\alpha_n, x_n, y_n)$ , one can derive that either  $(x, x_n) = (y, y_n)$  or  $(x, x_n) = (y + \alpha, y_n + \alpha_n)$ .

To show Condition 2, let  $x, y, \alpha \in \mathbb{F}_{2^{n-1}}$  and  $x_n, y_n, \alpha_n \in \mathbb{F}_2$  with  $(\alpha, \alpha_n) \neq (0, 0)$  such that

$$S_{\gamma}(x, x_n) = S_{\gamma}(x + \alpha, x_n + \alpha_n)$$
 and  $S_{\gamma}(y, y_n) = S_{\gamma}(y + \alpha, y_n + \alpha_n)$ . (2)

Condition 2 is trivially met when  $x \in \{0, \alpha\}$  or  $y \in \{0, \alpha\}$ . Let therefore, again,  $x, y \notin \{0, \alpha\}$ . Equation 2 is equivalent to

$$\gamma^{x_n}(x+\alpha) = \gamma^{x_n \oplus \alpha_n} x$$
 and  $\gamma^{y_n}(y+\alpha) = \gamma^{y_n \oplus \alpha_n} y$ .

For  $\alpha_n = 0$ , it follows that  $\alpha = 0$ , which is a contratiction to  $(\alpha, \alpha_n) \neq (0, 0)$ . For  $\alpha_n = 1$ , one can easily derive that  $(x, x_n) = (y, y_n)$  or  $(x, x_n) = (y + \alpha, y_n + \alpha_n)$  by checking all four cases for  $(x_n, y_n)$ .

# 3.2 Idrisova's Conjecture

Idrisova conjectured that every 4-uniform 2-1 function from  $\mathbb{F}_2^n$  to  $\mathbb{F}_2^{n-1}$  is APN admissible [8, Conjecture 2]. That conjecture was experimentally verified for the case  $n \leq 4$ . We now use the 4-uniform permutations with null nonlinearity defined above to construct counterexamples to that conjecture. The constructions are based on the following observation.

By  $e_i$  we denote the *i*-th unit vector in  $\mathbb{F}_2^n$ , i.e.,  $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ , where the 1 is set at position *i*.

**Proposition 5.** Let S be an n-bit permutation with a linear or affine component  $\langle \gamma, S \rangle$ ,  $\gamma \in \mathbb{F}_2^n$ . Then, for  $j \in \{1, ..., n\}$ , if the vectors

$$e_1, e_2, \ldots, e_{j-1}, e_{j+1}, e_{j+2}, \ldots, e_n, \gamma$$

are linearly independent, the subfunction  $S_{(j)}$  is 2-1 and the differential uniformity of  $S_{(j)}$  is equal to the differential uniformity of S.

*Proof.* W.l.o.g., let j=n. It is obvious that  $S_{(n)}$  is 2-1. Let  $T:=\sum_{i=1}^n \gamma_i S_i$ , which is linear or affine, i.e., there exists an  $\epsilon \in \{0,1\}$  such that, for all  $x,y \in \mathbb{F}_2^n$ ,  $T(x)+T(y)=T(x+y)+\epsilon$ . Now, let  $x,\alpha \in \mathbb{F}_2^n$  and  $\beta \in \mathbb{F}_2^{n-1}$  be such that

$$S_{(n)}(x) + S_{(n)}(x + \alpha)$$
  
=  $(S_1(x), \dots, S_{n-1}(x)) + (S_1(x + \alpha), \dots, S_{n-1}(x + \alpha)) = \beta$ .

This holds if and only if

$$(S_1(x), \dots, S_{n-1}(x), T(x)) + (S_1(x+\alpha), \dots, S_{n-1}(x+\alpha), T(x+\alpha))$$
  
=  $(\beta, T(\alpha) + \epsilon)$ .

If  $e_1, \ldots, e_{n-1}, \gamma$  are linearly independent, the function  $(S_1, \ldots, S_{n-1}, T)$  is linear equivalent to S. It follows that the uniformity of  $S_{(n)}$  must be equal to the uniformity of S.

**Example 1.** Let n = 5 and consider the function  $G_{1,3} \colon \mathbb{F}_{2^5} \to \mathbb{F}_{2^5}$ . By representing  $\mathbb{F}_{2^5}$  as  $\mathbb{F}_2[X]/_{(X^5+X^2+1)}$ , a representation of  $G_{1,3}$  can be given by the look-up table

$$G = [00, 01, 19, 0A, 06, 0E, 0B, 1C, 03, 0D, 05, 1B, 13, 1D, 11, 02, 14, 1E, 10, 1A, 0F, 17, 12, 07, 15, 09, 08, 16, 18, 1F, 0C, 04]$$

In this example,  $\langle (0,1,0,0,1), G \rangle$  is linear, therefore

$$G_{(2)} = [\mathit{0}, \mathit{1}, \mathit{9}, \mathit{2}, \mathit{6}, \mathit{6}, \mathit{3}, \mathit{C}, \mathit{3}, \mathit{5}, \mathit{5}, \mathit{B}, \mathit{B}, \mathit{D}, \mathit{9}, \mathit{2},$$
 
$$\mathit{C.E. 8.A. 7.F. A. 7.D. 1. 0. E. 8. F. 4. 4}]$$

is a differentially 4-uniform 2-1 function according to Proposition 5. However, it is  $\{G_{(2)}(O2), G_{(2)}(O2 + O1)\} = \{G_{(2)}(OE), G_{(2)}(OE + O1)\} = \{O2, O9\}$ , so it is not APN admissible. This is a counterexample to Conjecture 2 of [8].

**Example 2.** Let n = 6 and let  $\mathbb{F}_{2^5}$  be represented as  $\mathbb{F}_2[X]/_{(X^5+X^2+1)}$ . Let  $\gamma = \alpha + 1 \in \mathbb{F}_{2^5}$ , where  $\alpha$  is a root of  $X^5 + X^2 + 1$ . By choosing  $f(x) = x_n$ , the function  $R_{\gamma,f}$  has a linear component by construction. It is linear equivalent to

$$R = \begin{bmatrix} 00, 23, 13, 3C, 3B, 17, 2E, 34, 1F, 24, 39, 15, 27, 31, 2A, 2D, \\ 3D, 18, 22, 02, 1E, 0B, 38, 05, 11, 3E, 1A, 3F, 25, 33, 14, 08, \\ 20, 21, 12, 01, 09, 1C, 32, 0C, 36, 2C, 0E, 30, 29, 0F, 06, 37, \\ 2B, 0D, 26, 1D, 07, 3A, 28, 2F, 16, 0A, 35, 04, 03, 10, 19, 1B \end{bmatrix},$$

which has the linear component  $\langle (1,1,1,1,1,1), R \rangle$ . Considering the linear equivalent permutation R allows us to remove an arbitrary coordinate function in order to obtain a 4-uniform 2-1 function by Proposition 5. In particular,

$$\begin{split} R_{(6)} = [\textit{00, 11, 09, 1E, 1D, 0B, 17, 1A, 0F, 12, 1C, 0A, 13, 18, 15, 16,} \\ \textit{1E, 0C, 11, 01, 0F, 05, 1C, 02, 08, 1F, 0D, 1F, 12, 19, 0A, 04,} \\ \textit{10, 10, 09, 00, 04, 0E, 19, 06, 1B, 16, 07, 18, 14, 07, 03, 1B,} \\ \textit{15, 06, 13, 0E, 03, 1D, 14, 17, 0B, 05, 1A, 02, 01, 08, 0C, 0D} \end{split}$$

is differentially 4-uniform and 2-1, but

$$\{R_{(6)}(01), R_{(6)}(01+02)\} = \{R_{(6)}(10), R_{(6)}(10+02)\} = \{11, 1E\},$$

so it is not APN admissible. This is another counterexample to the Conjecture.

We expect that similar counterexamples can be constructed for all  $n \geq 5$ .

# 4 Conclusion

We have seen that 4-uniform permutations with null nonlinearity exist for all n = 3 and  $n \ge 5$ , where an interesting construction can be given by the inverses of Gold functions.

Moreover, 4-uniform 2-1 functions obtained from admissible sequences, as defined by Idrisova, exist for all n = 3 and  $n \ge 5$ . It is interesting to observe that n = 4 defines a special case for which none of the above exist.

For future work it would be interesting to find more constructions of 4-uniform permutations with null nonlinearity and use them to construct 4-uniform permutations (or even APN permutations) with high nonlinearity. Such a construction can be achieved by the following procedure: Let F be a 4-uniform permutation in n bit with trivial nonlinearity.

- 1. Choose a permutation G affine equivalent to F.
- 2. Discard a coordinate of G to obtain a 4-uniform 2-1 function G' from  $\mathbb{F}_2^n$  to  $\mathbb{F}_2^{n-1}$  by Proposition 5.
- 3. Choose an *n*-bit Boolean function f with  $|\operatorname{supp}(f)| = 2^{n-1}$  for which  $G'(\operatorname{supp}(f)) = \mathbb{F}_2^{n-1}$  and construct the permutation  $H \colon x \mapsto (G'(x), f(x))$ .

Note that Step 2 and 3 of the above procedure were already suggested in [8]. However, starting from a 4-uniform permutation with trivial nonlinearity allows more freedom to obtain a 4-uniform 2-1 function. For  $n \in \{6,7,8\}$  we checked all the constructions of Proposition 2 whether they can be extended to an APN permutation by Step 3 of the above algorithm. The answer is negative in all cases. We used an exhaustive tree search for constructing the last coordinate function.

# Acknowledgements

This work was funded by *Deutsche Forschungsgemeinschaft (DFG)*; project number 411879806, and by DFG under Germany's Excellence Strategy - EXC 2092 CASA - 390781972.

#### References

- [1] Y. Alsalami. Constructions with high algebraic degree of differentially 4-uniform (n, n 1)-functions and differentially 8-uniform (n, n 2)-functions. *Cryptography and Communications*, 10(4):611–628, 2018.
- [2] L. Budaghyan, C. Carlet, and A. Pott. New classes of almost bent and almost perfect nonlinear polynomials. *IEEE Trans. Information Theory*, 52(3):1141–1152, 2006.
- [3] C. Carlet. Vectorial boolean functions for cryptography. Boolean models and methods in mathematics, computer science, and engineering, 134:398–469, 2010.
- [4] C. Carlet, P. Charpin, and V. A. Zinoviev. Codes, bent functions and permutations suitable for des-like cryptosystems. *Des. Codes Cryptogr.*, 15(2):125–156, 1998.

- [5] L. Carlitz and S. Uchiyama. Bounds for exponential sums. *Duke mathematical journal*, 24(1):37–41, 1957.
- [6] C. Ding, L. Qu, Q. Wang, J. Yuan, and P. Yuan. Permutation trinomials over finite fields with even characteristic. SIAM Journal on Discrete Mathematics, 29(1):79– 92, 2015.
- [7] R. Gold. Maximal recursive sequences with 3-valued recursive cross-correlation functions. *IEEE transactions on Information Theory*, 14(1):154–156, 1968.
- [8] V. Idrisova. On an algorithm generating 2-to-1 APN functions and its applications to "the big APN problem". Cryptography and Communications, 11(1):21–39, 2019.
- [9] K. Nyberg. Differentially uniform mappings for cryptography. In T. Helleseth, editor, Advances in Cryptology EUROCRYPT '93, Workshop on the Theory and Application of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, volume 765 of Lecture Notes in Computer Science, pages 55-64. Springer, 1993.
- [10] X. Zhu, X. Zeng, and Y. Chen. Some binomial and trinomial differentially 4-uniform permutation polynomials. *International Journal of Foundations of Computer Science*, 26(4):487–497, 2015.