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Abstract. We have proposed before a multivariate public key cryptosystem (MPKC)
that does not rely on the difficulty of prime factorization, and whose modulus is the
product of many small prime numbers. In this system, the prime factorization by the
attackers is self-trivial, and the structure of the secret key is based on CRT (Chinese
Remainder Theorem). In this paper we propose MPKC with security of IND-CPA
by adding random numbers to central transformation vectors in the system proposed
before.
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1 Introduction

Multivariate public key cryptography is a post-quantum cryptography proposed from Japan. First,
in 1983, the Imai laboratory at Yokohama National University (at that time) proposed a multi-
variate public key cryptosystem known internationally as the MI (Matsumoto-Imai) cryptosystem
[7, 8]. Subsequently, in 1985, Tsujii proposed a multivariate public key cryptosystem named se-
quential solution method [11, 12, 13]. Sequential solution method is inspired by the sequential
analysis in circuit analysis. In 1993, Shamir proposed a signature scheme similar to the sequential
solution method, independent of Tsujii [9]. Multivariate public key cryptography in Japan in the
1980s was not conscious of post-quantum, however, in 1994, both RSA cryptosystem and elliptic
curve cryptosystem, which is now the basis of blockchain, were theoretically revealed to be broken
by the practical application of quantum computers. Both the MI cryptosystem and the sequential
solution method were cryptanalyzed by Gröbner basis attack etc., and many studies have been
continued since then [3, 5, 6].

The authors first proposed the multivariate public key cryptosystem (hereinafter referred to as
Without Random Vector Version [15]) that uses the product of many small prime numbers without
relying on the difficulty of prime factorization for the post-quantum computer era, where prime
factorization is obvious by an attacker. In the construction of the cryptosystem, the secret key is
based on the CRT (Chinese Remainder Theorem) and the scheme can withstand all possible known
attacks. The central map proposed in Without Random Vector Version is composed of a main part
and an auxiliary part, and the main part has a form obtained by adding a random quadratic
polynomial to the sequential solution type polynomial. In order to remove random quadratic
polynomials from the main part in the decryption process, the auxiliary part is constructed using
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Figure 1: Multivariate public key cryptosystem

CRT based on several products of subsets of primes secretly classified from a set of many primes.
We confirmed the security against Gröbner basis attacks, attacks using lattice basis reduction
algorithms, rank attacks, and so on. In this paper, we show that IND-CPA security is ensured by
adding random vector to the central map, under the assumption that the one-wayness of Without
Random Vector Version is guaranteed.

2 Preliminaries

2.1 Notation

Let Zq be an integer ring modulo q. For a prime number or its power p, let Fp be a finite field of
order p. A commutative ring, such as Zq, Fp, is generally expressed as R. Let R[x1, . . . , xk] be the
set of all polynomials with the coefficient ring R and x1, x2, . . . , xk as variables.

For any non-empty set S and any positive integer k, l, let Sk×l be the set of all k × l matrices
with elements in S, and let Sk be the set of all column vectors consisting of k elements of S.
Column vectors are written in bold italics, such as p, E, X, and row vectors are written in bold
(not italic), such as b. For any matrix A ∈ Sk×l, let tA ∈ S l×k be the transposed matrix of A. Let
Ok,l ∈ Sk×l and 0k ∈ Sk be k × l matrix and k dimensional column vector, with all elements zero,
respectively.

Let
f = t(f1, . . . , fm), g = t(g1, . . . , gk)

be polynomial vectors in (R[x1, . . . , xk])
m, (R[x1, . . . , xn])

k, respectively. Here, f1, . . . , fm ∈ R[x1, . . . , xk]
and g1, . . . , gk ∈ R[x1, . . . , xn]. We define the substitution f(g) ∈ (R[x1, . . . , xn])

m of g for f as

f(g) =
def

t(h1, . . . , hm),

where each hi is an element of R[x1, . . . , xn], and can be obtained by assigning g1, . . . , gk to variable
x1, . . . , xk of each fi.

2.2 Schemes of Multivariate Public Key Cryptosystems

The general form of multivariate public key cryptosystem (Figure 1) is described below. A plaintext
is represented by a column vector x = t(x1, . . . , xn) ∈ Rn, and a ciphertext is represented by
a column vector y = t(y1, . . . , ym) ∈ Rm, where the components xi and yi are in R. Then
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a polynomial vector E ∈ (R[x1, . . . , xn])
m and parameters q, n, m form the public key in the

cryptosystem. The encryption is given by the following transformation from x to y (Figure 2):

y = E(x).

The secret key is an efficient method to solve the equation E = y on (x1, . . . , xn) for any given
y ∈ Rm (Figure 3). Thus, E has to be constructed so that, without the knowledge about this
method, it is difficult to find x for any y in polynomial-time.

Let us consider the situation that Bob has the secret key and Alice transmits her ciphertext
y = E(x) to Bob. When Bob receives the ciphertext y, using the secret key he can efficiently
decipher it to obtain the plaintext x. On the other hand, it is intractable for an eavesdropper,
Catherine, to recover x from y.

In most multivariate public key cryptosystems, the public key E ∈ (R[x1, . . . , xn])
m has the

following form:
E = T0G(S0x), (1)

where x = t(x1, . . . , xn) ∈ (R[x1, . . . , xn])
n. Here S0 and T0 are non-singular matrices over Rn×n

and Rm×m, respectively. G is a polynomial vector in (R[x1, . . . , xn])
m such that the components

in G are polynomials in R[x1, . . . , xn], and variables of G is substituted with the polynomial vector
S0x ∈ (R[x1, . . . , xn])

n. Bob keeps S0, T0, and generally G as secret, and publishes the result of
organizing the right-hand side of the equation (1) as the public key E.

3 Proposed Scheme

Parameters:

• n: number of plaintext variables.

• m = 2n: number of ciphertext variables (e.g., n = 100, m = 200).

• β: number of bits of prime pi.

• π : total number of primes pi.
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Public key:

• pi (i = 1, . . . , π): β bit primes.

• q =

π∏
i=1

pi: composite number as the modulus.

• E(x): nonlinear transformation expressed by public key polynomial tuple.

Secret key:

• q1, q2: product of elements of a subset of primes that is obtained by secret classification
of multi prime numbers {p1, . . . , pπ}. They need to satisfy q = q1q2, q1 ≈ q2, and q1 < q2.

• r : h′ 7→ Rh′ : (Zq)
2n → (Zq)

n: singular linear transformation over Zq.

• s : x 7→ Sx : (Zq)
n → (Zq)

n: non-singular linear transformation over Zq.

• t : w 7→ Tw : (Zq)
m → (Zq)

m: non-singular linear transformation over Zq.

Plaintext vector: x = t(x1, x2, . . . , xn)

For i = 1, . . . , n, the value of the plaintext variable xi are restricted so that the following
condition (4) is satisfied.

Random vector: b = t(b1, b2, . . . , bn)

For i = 1, . . . , n, the value of the random variable bi are restricted so that the following
condition (4) is satisfied.

In the following, the concatenation of the plaintext vector and the random vector is denoted
as x′ = t(x1, . . . , xn, b1, . . . , bn).

Random quadratic polynomial vector:

f ′ = t(f ′
1, f

′
2, . . . , f

′
n) ∈ (R[x1, . . . , xn, b1, . . . , bn])

n,

g′ = t(g′1, g
′
2, . . . , g

′
n) ∈ (R[x1, . . . , xn, b1, . . . , bn])

n

Intermediate vector:

• v = t(v1, v2, . . . , vn)
v = Sx (2)

• w = t(w1, w2, . . . , wn, wn+1, . . . , wm)

w1 = q1v1 + q2 · (vn + g1(v1, . . . , vn−1)) + h1

w2 = q1(v2 + f2(v1))

+ q2 · (vn−1 + g2(v1, . . . , vn−2)) + h2
...

wn = q1(vn + fn(v1, . . . , vn−1)) + q2v1 + hn (3)

wn+1 = q1 · (q−1
1 mod q2)f

′
1 + q2 · (q−1

2 mod q1)g
′
1

...

wm = q1 · (q−1
1 mod q2)f

′
n + q2 · (q−1

2 mod q1)g
′
n,
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where h′ = t(f ′
1, . . . , f

′
n, g

′
1, . . . , g

′
n) and h = t(h1, . . . , hn) = Rh′.

Fig. 4, Fig. 5, Fig. 6 show the trapdoor structure of the central map of the proposed
scheme.

Remark 1 In order for plaintext x to be decrypted correctly,

f ′
i(x

′) < q2, g′i(x
′) < q1 (4)

must be satisfied for all i = 1, . . . , n.

Ciphertext vector: y = t(y1, y2, . . . , ym),

y = Tw (5)

Encryption:
y = E(x′) (6)

Decryption:

1. Compute
w = T−1y. (7)

In the following, let

w′′ = t(w1, . . . , wn),w′′′ = t(wn+1, . . . , wm).
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2. Compute
f ′(x′) = t(wn+1 mod q2, . . . , wm mod q2)

and
g′(x′) = t(wn+1 mod q1, . . . , wm mod q1).

Then,
h′(x′) = t(f ′

1(x
′), . . . , f ′

n(x
′), g′1(x

′), . . . , g′n(x
′)).

3. Compute h(x′) = Rh′(x′).

4. Compute v from w′′ − h(x′) by the sequential solution method.

5. Compute
x = S−1v. (8)

Here, the meaning of using CRT is explained. In order to remove the random part from the
main part, the auxiliary part is used. If the auxiliary part and the random part have a non-singular
linear relationship, vulnerability to Gröbner attacks increases. However, if the polynomial in the
auxiliary part is raised to the power of 2, and the polynomial in the random part is made a quartic
polynomial, it will be extremely inefficient.

Therefore,

(i) in the auxiliary part, for example, for the polynomial consisting of the addition of the f ′
1(x

′)
term and g′1(x

′) term of the first equation, g′1(x
′) is deleted using CRT, leaving only the f ′

1(x
′)

term,

(ii) for polynomials consisting of f ′
2(x

′) and g′2(x
′) terms in the second equation, CRT is used to

eliminate the f ′
2(x

′) term and leave only the g′2(x
′) term,
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(iii) construct a new polynomial consisting of a linear combination of the f ′
1(x

′) and g′2(x
′) terms,

and use it as the polynomial of the random part.

The CRT operation on the polynomial vector is such that the auxiliary part and the random part
do not have a non-singular linear relationship.

Without Random Vector Version [15] is a scheme in which all the random numbers in the above
proposed scheme are replaced with 0 and removed. See [15] for details.

4 Consideration of Security

4.1 Consideration of IND-CPA Security

In Without Random Vector Version [15], we presented the results of a study on one-wayness of our
proposed scheme. It is ideal if the equivalence between solving of random quadratic multivariate
equation and the proposed scheme can be proved, but this is as difficult as other public key cryp-
tosystems. Therefore, theoretical considerations and experiments (simulations) were conducted for
all possible attack methods, namely, the Gröbner basis attack, the Gröbner basis attack using CRT,
the rank attack, and the attack using the lattice basis reduction algorithm. We assume one-wayness
holds for Without Random Vector Version [15].

Therefore, in this paper, we have proposed a scheme that aims at IND-CPA security by adding
random vector to the central polynomial of Without Random Vector Version [15] on the assumption
that such one-wayness is established also for this proposed scheme. The following shows that the
proposed scheme is IND-CPA secure on this assumption.
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IND-CPA Game

1. The attacker sends plaintext M1 and M2 to the challenger.

2. The challenger returns Ca (ciphertext that corresponds to M1 or M2) to the attacker.

3. If the attacker cannot distinguish whether ciphertext Ca corresponds to M1 or M2 (if
the probability is less than a negligible function), it is IND-CPA secure.

In case of proposed scheme

The challenger returns to the attacker the ciphertext with the value of M1 or M2 assigned to
the ciphertext polynomial. Therefore, the attacker tries to solve the following two multivariate
polynomials with random numbers as variables:

(I) Ciphertext polynomial C1 consisting of random variables with M1 assigned to plaintext
variables,

(II) Ciphertext polynomial C2 consisting of random variables with M2 assigned to plaintext
variables.

If the plaintext sent by the challenger is M1, and if the attacker has the ability to solve (I),
then the correspondence between plaintext and ciphertext can be obtained, and IND-CPA security
does not hold. If the plaintext sent by the challenger is M2, there is no solution corresponding to
C1, so the attacker tries to solve C2. If the attacker cannot solve the random polynomial for both
C1 and C2, the IND-CPA security of the proposed scheme holds based on the assumption of the
one-wayness and the introduction of random vector which is different for each plaintext.

4.2 Attacks Using Gröbner Basis Computation

We call algebraic attack against multivariate public key cryptosystem over an integer ring to solve
e1(x1, x2, . . . , xn) = y1
e2(x1, x2, . . . , xn) = y2

...
em(x1, x2, . . . , xn) = ym,

(9)

when public key
E = t(e1(x), e2(x), . . . , em(x)) ∈ (Zq[x1, . . . , xn])

m

and ciphertext y = t(y1, y2, . . . , ym) ∈ (Zq)
m are given. In particular, the algebraic attack that

solves the equation (9) by computing the Gröbner basis of ideal

I = 〈e1 − y1, . . . , em − ym〉 ⊂ Zq[x1, . . . , xn] (10)

is called Gröbner basis attack.
In addition, we call the Gröbner basis attack using CRT to compute the Gröbner basis of the

ideal
I ′ = 〈e′1 − y′1, . . . , e

′
m − y′m〉 ⊂ Fpk [x1, . . . , xn] (11)

over the polynomial ring Fpk [x1, . . . , xn], where the subfield Fpk of Zq is the coefficient field, in
order to solve the equation (9), and to compute the solution from the obtained results using CRT.
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We explain the case where the value xj of the plaintext variable xj is limited by the constant c
and c � q. First, the attacker sets a subset of {p1, . . . , pπ} consisting of prime factors of q to be P ′.
Next, a composite number q′ with c < q′ � q consisting of #P ′ products of pi is selected. Then,
for the prime factor p′i of q

′, xj mod p′i is computed by the Gröbner basis computation described
above. From the obtained results, the attacker can recover xj mod q′ = xj mod q with CRT.

例 1 As a small example for illustration, let xj = 23, and the public key of the cryptosystem be
q = 105 = p1p2p3, p1 = 3, p2 = 5, p3 = 7, where total number π of primes pi is 3. First, the
attacker sets p′1 = p2 = 5, p′2 = p3 = 7, P ′ = {5, 7}, q′ = 35. While xj < q′, if the attacker knows
xj mod p′1 = 23 mod 5 = 3 and xj mod p′2 = 23 mod 7 = 2, using CRT,

xj = (xj mod p′1)p
′
2((p

′
2)

−1 mod p′1)

+ (xj mod p′2)p
′
1((p

′
1)

−1 mod p′2)

= 3 · 7 · (7−1 mod 5) + 2 · 5 · (5−1 mod 7)

= 93 = 23 mod 35

can be computed. In other words, the value of xj can be uniquely computed if the value of xj is
limited to a certain value, without using all the prime factors of q.

4.3 Security against Gröbner Basis Attack Using CRT

In the following, the product of 40 primes of about 15 bits is assumed to be q. That is, log q ≈
15× 40 = 600. Also, the number of bits in plaintext is the same as the number of bits in random
numbers. For the proposed scheme and the case where the intermediate polynomial wi is a random
quadratic polynomial, Table 1 shows a comparison of the computation time for the Gröbner basis
attack using CRT and the maximum degree of S-polynomial obtained during the computation. The
experimental environment in which the computer experiment for Gröbner basis computation was
performed is as follows.

• processor: 0.80GHz Intel Core M-5Y10c

• memory: 4GB RAM

• computer algebra system: Magma V2.24-6 [1]

• Gröbner basis computation algorithm: F4 [4]

• term order (monomial order): degree reverse lexicographic ordering (DRL; grevlex)

Note that options on Magma were not used.
From the Table 1, the time complexity for the Gröbner basis attack using CRT is almost the

same for both the proposed scheme and the random system. It has also been confirmed that there
is no difference in the maximum degree of S-polynomial obtained in Gröbner basis computations.
Therefore, the proposed scheme is sufficiently secure against the Gröbner basis attacks using CRT.
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Table 1: Security comparison against Gröbner basis attack using CRT
parameters

n = 3, n = 4, n = 5, n = 6,
m = 6 m = 8 m = 10 m = 12

proposed computation time (seconds) 0.31 4 228 cannot compute
scheme maximum degree of S-polynomial 8 10 12 due to lack of memory
random computation time (seconds) 0.36 6 250 cannot compute
system maximum degree of S-polynomial 8 10 12 due to lack of memory

4.4 Security against Attacks Using Lattice Reduction Algorithms

The value of the plaintext variable xi in the multivariate public key cryptosystem on the integer
ring is limited by the constant c and may be c � q. Moreover, even if the public key polynomials
are all quadratic polynomials for xi, they can be regarded as linear polynomials, as in the case of
the XL algorithm [2], e.g., by considering quadratic monomial x1x2 as linear monomial z1,2,

In such a case, as described below, an attack that recovers the plaintext from such a public
key polynomial and ciphertext using a lattice basis reduction algorithm can be considered. First,
suppose that the term order in the public key polynomial is, for example, graded lexicographic
order. For j = 1, . . . ,m, the public key polynomial ej and ciphertext yj , let ej = ej − yj , and
a vector consisting of the coefficients of each monomial according to the order be ej . In such a
setting, the attacker will try to find a solution of the simultaneous quadratic equation

ej = ej − yj = 0 (j = 1, . . . ,m). (12)

Let the dimension of ej be δ and ej = t
(
e
(1)
j , . . . , e

(δ)
j

)
. The attacker constructs the (δ + m)

dimensional matrix B as follows:

B =



1
. . .

1
c γe1 · · · γem

. . .

c
β

γq

Om,δ
. . .

γq



=


b1
...
bδ
...

bδ+m


and applies the lattice basis reduction algorithm to the lattice L(B) =

{
δ+m∑
i=1

αibi | αi ∈ Z

}
with
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B as the basis matrix, where Om,δ is m × δ zero matrix, and β, γ are weights. For αi ∈ Z
(i = 1, . . . , δ +m), the linear combination α1b1 + · · ·+ αδbδ + · · ·+ αδ+mbδ+m of the row vectors
of B is

(α1, . . . , αδ−n−1, cαδ−n, . . . , cαδ−1, βαδ,

γ(α1e
(1)
1 + · · ·+ αδe

(δ)
1 + αδ+1q), . . . ,

γ(α1e
(1)
m + · · ·+ αδe

(δ)
m + αδ+mq)) (13)

and all vectors in the lattice L(B) can be expressed as in the equation (13).

Suppose that the value of the δ-th element b̂δ of the vector b̂ = (̂b1, . . . , b̂δ+m), which is obtained
by reducing the basis of the lattice L(B), αδ = 1 and for all j = 1, . . . ,m,

γ(α1e
(1)
j + · · ·+ αδe

(δ)
j + αδ+jq) = 0

=⇒ α1e
(1)
j + · · ·+ αδe

(δ)
j = −αδ+jq

=⇒ α1e
(1)
j + · · ·+ αδe

(δ)
j = 0 (mod q). (14)

From the equation (14), it can be seen that α = (αδ−n, . . . , αδ−1) in this case is the value corre-
sponding to the solution of (12), that is, the value corresponding to the plaintext variable x1, . . . , xn.
α1, . . . , αδ−n−1 are values corresponding to quadratic monomials (e.g., x21, x1x2, . . . ) for plaintext
variables.

Using b̂δ−n, . . . , b̂δ−1 and (13) in this basis vector,(
b̂δ−n/c, . . . , b̂δ−1/c

)
= (αδ−n, . . . , αδ−1),

that is, the value obtained by dividing each element of vector (̂bδ−n, . . . , b̂δ−1) by c, can be considered
as a plaintext candidate corresponding to the ciphertext.

It has been confirmed through computer experiments that attackers cannot recover the plaintext
by the attack using the above-mentioned lattice basis reduction algorithm in the proposed scheme.
In the proposed scheme, it is not possible to obtain each value of the intermediate variable vi by
simply adding and subtracting multiples of each element of the intermediate variable vector w.
Therefore, it is considered to be secure against attacks using the lattice reduction algorithm, which
mainly performs such operations.

5 Future Work — Computing on Encrypted Data Using Multi-
variate Public Key Cryptography

Although lattice-based cryptography, code-based cryptography, isogeny-based cryptography, and
multivariate public key cryptography are candidates for post-quantum cryptography, homomorphic
mapping is difficult in multivariate public key cryptography. However, based on the multi-prime
method proposed in this paper, the classification of a large number of primes is kept secret, the
user distributes the data in the cloud and keeps it secret, and, if necessary, it is possible to make a
secret computation on encrypted data.

For example, it is assumed that secret storage is performed in four clouds A, B, C, and D, and
if any one of them is damaged, there is no problem. For example, N is secretly divided into four
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prime products Na, Nb, Nc, Nd of the same size as much as possible, and Na ·Nb ·Nc is the smallest
of the four types of three products. In this case, if the variable x is less than or equal to Na ·Nb ·Nc,
processing on encrypted data based on CRT becomes possible [10]. The proposed scheme is also
possible to apply to digital signature, which will be explained in near future.
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