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Abstract

Recent work using groups of unknown order to construct verifiable delay functions, polynomial
commitment schemes and non interactive zero knowledge proofs have provoked fresh interest in the
construction of efficient cryptographic groups of unknown order. It has been suggested that the Jacobian
of hyperelliptic curves of genus 3 could be suitable for this purpose. Regrettably, efficient algorithms to
compute the order of the Jacobian of a hyperelliptic curve are known. Concretely, it is unclear whether
these groups are competitive with RSA groups or class groups at or above the 128 bit security level.

1 Background

There has been recent burst of interest in cryptographic groups of unknown order, stemming in part from
their use in the construction of accumulators, verifiable delay functions, integer and polynomial commitments
[8, 9, 11, 16, 17, 22]. Long standing examples of groups of unknown order are RSA groups (Z/NZ)

×

for N = pq semiprime, and the ideal class group of the imaginary quadratic fields Q(
√
−D) for D > 0.

We refer the reader to [6, 7, 10, 14] for details of these groups. In both cases there are index-calculus
methods [7, 20, 21] which permit the computation of the order n ∼ N ,

√
D of these groups in time

Ln(a, b) = exp((b + o(1)) loga n(log log n)
1−a

) for a = 1/3, 1/2 respectively and b = O(1). As a result,
current estimates [5, 7] suggest logN ∼ 3072 or logD ∼ 1827 for the 128 bit security level.

Recently, Dobson and Galbraith [17] suggest that Jacobians of hyperelliptic curves, particularly of genus
3 over Fq , may be candidate groups of this form. In particular, they note that solving the DLP in these

groups is not known to be solvable in less that O(q4/3 logO(1) q) time, and conjecture that it is conservative

to assume computing the group order requires O(q logO(1) q) operations. Concretely, they suggest log q ∼ 100
might be sufficient in practice.

2 Jacobians of curves

Let k be a field with char(k) 6= 2. Then a hyperelliptic curve C of genus g is the smooth completion of the
affine curve given by y2 = f (x ) with f monic, square-free, deg(f ) = 2g + 1. Concretely the smooth completion
adds a point at infinity. Let k be the algebraic closure of k . A divisor on C is an element of the free Z-module
over C i.e. a formal sum of points D =

∑
P∈C mP [P ] where all but finitely many of the mP are zero.

The degree of D is the
∑

P∈C mP , and the degree 0 divisors are a group Div0(C ) under addition. For

any g ∈ k(C ) = k [X ,Y ]/(Y 2 − f (X )), we can define a divisor (g) =
∑

P∈C ordP (g)[P ] where ordP (g) is
the order of zero or pole of g at P . Since ordP (rs) = ordP (r) + ordP (s), the set of divisors of this form are
a subgroup of Div0(C ), called the principal divisors P(C ). The quotient Div0(C )/P(C ) is a group, called

the Jacobian J (C ). The Hasse-Weil bound gives (q1/2 − 1)
2g ≤ |J (C )| ≤ (q1/2 + 1)

2g
. Concretely, one may

represent any element of J (C ) with a divisor of form
∑

i∈{1,...,g}[Pi ]− g∞. For any (x , y) in the affine part
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of C , the function g(X ,Y ) = X − x implies that [(x , y)] + [(x ,−y)]− 2[∞] ∈ P(C ). So we can insist that
the x -coordinates of the Pi are distinct.

In elliptic curves, g = 1 and there is a trival map between divisors Di = [Pi ]− [∞] and points Pi ∈ C .
The classical geometric interpretation of point addition by equating the relationship P1 + P2 + P3 = 0 with
P1,P2,P2 lying on a line naturally extends to the existence of a linear function vanishing on C only at
P1,P2,P3, i.e. that the divisor [P1]+ [P2]+ [P3]−3[∞] is principal. For g > 1, this generalizes to the existence
of a polynomial in k(C ) with zeros given by the affine part of the sum of the divisors D1,D2,D3. For the
g > 1 case, it is convenient to use the Mumford representation, where a divisor D is represented by a pair
of polynomials r , s ∈ k [X ] with deg(s) < deg(r) ≤ g . If the affine part of D is

∑
i [Pi ], Pi = (xi , yi), then

r =
∏

i(X − xi) and s(Xi) = yi . Cantor [12] gave explicit formulae for computation of group operations in
this representation, since substantially optimized [15].

3 Schoof-Pila type algorithms

We give a brief presentation of the key points of the Schoof-Pila type algorithms, and refer the interested
reader to [1, 23, 24] for a more in depth discussion.

Let k be a finite field Fq . Given a hyperelliptic curve C over k , J = J (C ) is a variety over k , and we
can naturally also consider J over k . Then J/k is the restriction of J/k to the fixed points of the Frobenius
endomorphism π : z → z q . Let χ ∈ k [X ] be the characteristic polynomial of π; |J (C )| = χ(1). The complex
roots of χ are guaranteed to have modulus q1/2 and deg(χ) ≤ 2g , so the χ are bounded by 2

(
2g
g

)
qg ∼ 22g+1qg .

So to find χ(1) it suffices to reconstruct χ mod ` for most primes ≤ O(g log q). π acts on the `-torsion points
J [`] ⊂ J/k , a 2g-dimensional vector space over k , with characteristic polynomial χ mod `. Since ` is small,
one can compute a basis of J [`] explicitly and decompose points in J [`] in such a basis. In this basis the
action is a 2g × 2g matrix.

It remains to compute the action of π on the basis of J [`], without computing dense polynomials of linear
degree. To do this one uses a iterative square-and-multiply modulo `J . This is done by finding some set of
functions vanishing on J [`], and reducing all intermediate results modulo these functions. For the g = 1 case,
these are the multivariate division polynomials ψ`, with d = deg(ψ`) = O(`2). Following Elkies, for ∼ 1/2
of all primes one can instead work modulo a polynomial of degree d = O(`) which reduces the asymptotic
complexity substantially. For g > 1, Cantor gives analogous polynomials for the Mumford form [13], and
Abelard [1] proves that these polynomials have degree d = Og(`3) in general, and d = O(`2) for g = 3. This
allows the complexity to be effectively bounded. Abelard also shows that for curves with real multiplication,
the degree is reduced to d = O(`3/g).

4 Asymptotic complexities of existing results

We write Õ(x ) for O(x logc x ) for some constant c. We collect a range of results [1, 4, 18, 24, 27]. Note that
these results count bit operations under the asymptotic that operations in Fq cost Õ(log q) bit operations.

Genus g Simple Fast Resultants [27] With RM [3, 2]

g = 1 [24] Õ(log4(q)) — —

g = 2 [18] Õ(log8(q)) Õ(log8−2/ω(q)) Õ(log5(q))

g = 3 [1] Õ(log14(q)) Õ(log14−4/ω(q)) Õ(log6(q))

g > 3 [4] Õg(logO(g)(q)) — Õg(log9(q))

Figure 1: Asymptotic complexity of finding group orders for Jacobians of curves of genus g over Fq .

The value ω is associated to the multiplication of n × n matrices for n ∼ (log q)
2(g−1)/ω

matrices.

Neglecting the fast resultant optimization, in general these bounds have the form Õg(d4g logO(1) q), which is
to be expected as the bottleneck is reduction by 2g polynomials of degree d , which is naturally quadratic in
d2g ; loops and replacement of arithmetic in k with bit operations account for the logO(1) q . For g > 3, the
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natural conjecture is that the number of bit operations is Õg(log6g+3(q)). It should be noted that to prove
these results, one uses resultant-based techniques [1]. In practice, Gröbner basis reduction is likely to be
more efficient, but it is difficult to rigorously prove polynomial-time bounds on these algorithms.

5 Security implications of point counting

It has been recently proposed [17] that taking g = 3, q ∼ 2100 provides an effective set of parameters. They
estimate the cost of finding discrete logs in this group with the methods of Laine and Lauter [19] to be around
2113 field operations; this estimate neglects the implied log factors in Õ notation and so is conservative.

However, Abelard [1] provides algorithms to compute the order of this group that are polynomial in
log q ∼ 100. Taking ω = 3, the number of bit operations required to compute the order of the group is
on paper only Õ(log38/3 q). Neglecting the Õ as in [17] leads to an estimate of only ∼ 284 bit operations
to compute the order of the group. To obtain an estimate of 2128 bit operations for g = 3 would require
log q ∼ 1100. Using point compression, this suggests the size of a group element would be ∼ 3300 bits.

λ RSA (log2 N ) [5] Class Group (log2 D) [7] Genus 3 (log2 |J (C )|)
128 3072 1827 3300
192 7680 3598 110000

Figure 2: Group sizes implying an estimate λ bits of security for various candidate groups of unknown order.

However, these naive estimates neglect large constant factors. In [1], a computation with real multiplication
with q = 264 − 19, ` = 13, g = 3 is reported, taking ∼ 9 days on a 14 core 2.20GHz machine. An additional
computation without use of the real multiplication for q = 264− 19, ` = 3, g = 3 is reported, taking ∼ 14 days
on the same machine. In both cases the number of field operations is Õ(d4g), where d = O(`2/3) with real
multiplication and d = O(`2) without. These results suggest an estimate for the number of cycles to compute
χ mod ` for each log q ∼ ` < 60 of ∼ 2108−112 cycles on one core. This would reduce the set of candidate
group orders from an interval of size ∼ 2250 Hasse-Weil interval to a collection of arithmetic progressions of
size ∼ 2180, which is amenable to a O(290) square root attack. This suggests that direct computation of the
group order may be at least competitive with finding discrete logs.

It should also be noted that this naive estimate assumes no future advances. In the case of Schoof’s
algorithm, improvements of Elkies and Atkin allowed for the replacement of division polynomials of degree
O(`2) by polynomials of degree O(`) for some primes. For curves with real multiplication, this splitting can
be proved generically for all ` and all genera, leading to the improved complexities of Õ(log q6) in the genus
3 case [3]. Any development extending this kind of splitting to a non-trivial fraction of primes for generic
curves of genus 3 would immediately reduce the complexity of order finding substantially.

6 Security of Trustless Setup

In [17], it is suggested that choosing f ∈ k [X ] a uniformly random monic, squarefree, degree 2g +1 polynomial
may be suitable as a way to pick a “nothing-up-my-sleeve” curve. Concretely one might derive the coefficients
from the keystream of some stream cipher. It is natural to expect that curves of this form have |J (C )| roughly
uniform in their Hasse-Weil interval, and so for at least a subexponential fraction of curves the curve order
will be smooth. In this case, a malicious party can generate many curves, and use generic group methods to
find a curve of smooth order in time Lq3(1/2,

√
2).

Sutherland [25] relates |J (C )| to the size of related Jacobians over extension fields. This is used directly
to find Jacobians of known, near-prime order. These are distinguished by the existence of a related Jacobian
whose order happens to be smooth. The additional complexity of this transformation in genus 3 is O(q1/4).
Concretely, at log q ∼ 50, Sutherland has to test ∼ 600 curves before finding the order of a curve, taking ∼ 4
hours on one core, and for log q ∼ 61 similar results are obtained in ∼ 8 days on one core. This suggests the
following attack. A malicious actor runs the setup, and has some limited ability to choose a seed. They use
these techniques to relate |J (C )| to |J (C ′)|, and hope that |J (C ′)| is smooth. In this case, they find |J (C ′)|
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and deduce |J (C )|. However, |J (C )| is still generic. In particular a recipient of J (C ) cannot simply check
whether |J (C )| is itself smooth, but must know which related Jacobian to check.

Broadly, this suggests that for the setup phase of hyperelliptic curves to be trustless, either the setup must be
rigid or the group must be large enough to protect against these subexponential attacks. Matching Lq3(1/2,

√
2)

to the LD(1/2, 3/2
√

2) attacks on the class group suggests that for non-rigid Jacobians log(q3) ∼ 1100 is
required for 128 bit security.

7 Conclusions

The existence of polynomial time algorithms to compute the order of Jacobians on curves of fixed genus may
pose a substantial challenge to the use of these groups as groups of unknown order in a cryptographic setting.
The largest computations of this form are of only a few core-days, whilst the largest public factorization and
discrete log computations are ∼ 1000 core-year computations. It is unclear whether practical improvements
to the current algorithms will be forthcoming, as has happened with index calculus or with the Elkies-Atkin
improvements to Schoof’s algorithm [26, 24].

Choosing parameters to be conservative on paper at the 128 bit level causes genus 3 curves to be of
comparable size to RSA or Class groups. More work is needed before the Jacobian groups of genus 3 curves
can be recommended as efficient, secure groups of unknown order.
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