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Abstract. It has been suspected that in supersingular isogeny-based
cryptosystems the two ending elliptic curves computed by the participants
are exactly equal. Resolving this open problem has not been pressing
because the elliptic curves are known to be isomorphic, and therefore
share a j-invariant which can be used as a shared secret. However, this
is still an interesting independent problem as other values of the elliptic
curves may be valuable as shared information as well. This note answers
this open problem in the affirmative.

1 Introduction

In 1971 Vélu [1] gave formulae for computating isogenies, rational maps between
elliptic curves, given a representation of their kernel. In the initial supersingular
isogeny-based key agreement protocol, SIDH [2], the two parties each compute a
finite sequence of isogenies during key establishment and then use the final elliptic
curve in each sequence to derive a shared secret key, see Figure 1. However, it
has been unclear if the two participants will compute the exact same final elliptic
curves, or just elliptic curves in the same isomorphism class. The former has been
suspected (with evidence from empirical tests), but only the latter was proven.
For this reason, an isomorphism-class invariant (the j-invariant) has always been
used instead of, say, the coefficients of the final elliptic curves. We begin by
proving that the two participants will achieve the same final elliptic curves if the
degrees of their isogenies are 2 and 3, respectively, and if Vélu’s formulae are
used. This is sufficient to show that users of the KEM SIKE will have a shared
secret elliptic curve (instead of only a shared secret j-invariant).
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Fig. 1: The SIDH Key Agreement Protocol

We then show the more generic result: for any two finite subgroups of E with
coprime size, say G1 and G2, the two elliptic curves (E/G1) /G2 and (E/G2) /G1



are equal when Vélu’s formulae are used. We conclude by noting that this proves
that parties of any SIDH key-agreement protocol will have a shared final elliptic
curve.

2 Preliminaries

The affine representation of elliptic curves will be used throughout. For P ∈ E(K),
we will use 〈P 〉 to denote the subgroup generated by P . Let x(P ) mean the
x-coordinate of P (and similar for y(P )). For an integer m, let E[m] be the
subgroup of points P such that [m]P =∞.

Vélu’s 1971 formulae [1] for computing an isogeny φ when given the domain
elliptic curve E/K and finite kernel G ⊂ E(K) is as follows. Let G2 be the order
2 points in G\{∞}. Let G+ be a set such that G\(G2∪{∞}) = G+∪ (−G+) and
G+∩ (−G+) = {∞}. Finally, set G∗ = G2∪G+. Then, the isogeny φ : E → E/G
maps a point P as

x(φ(P )) = x(P ) +
∑

R∈G∗

x(P +R)− x(R), (1)

y(φ(P )) = y(P ) +
∑

R∈G∗

y(P +R)− y(R) (2)

(see Equations 12.2 and 12.3 [3, 12.16]). Note, that these equations apply to the
generalized Weierstrass equation (which includes short Weierstrass, Montgomery,
Hessian, etc.).

3 Results

To outline the proof technique, we begin with a simple case: when the isogenies
have degrees 2 and 3. However, it is not necessary for the proof of the main
result.

Lemma 1 Let E be an elliptic curve over some field K. Suppose K2,K3 ∈ E(K)
have order 2 and 3, respectively. Let φ2 : E → E2 be an isogeny with kernel 〈K2〉,
and φ3 : E → E3 an isogeny with kernel 〈K3〉. Further, let φ2,3 : E2 → E2,3 be
an isogeny with kernel 〈φ2(K3)〉, and φ3,2 : E3 → E3,2 an isogeny with kernel
〈φ3(K2)〉. When computed with Vélu’s formulae, φ2,3 ◦ φ2 = φ3,2 ◦ φ3.

Proof. We show this by proving that for any P ∈ E(K), we have

φ2,3(φ2(P )) = φ3,2(φ3(P )).

By Equations 1 and 2, for an isogeny φ with kernel R of order either 2 or 3,
we can write

x(φ(P )) = x(P ) + x(P +R)− x(R),

y(φ(P )) = y(P ) + y(P +R)− y(R).

Observe,

x(φ2,3 ◦ φ2(P )) = x(φ2,3(x(φ2(P )), y(φ2(P )))).
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Applying Vélu to φ2,3 gives

x(φ2,3 ◦ φ2(P )) = x(φ2(P )) + x(φ2(P ) + φ2(K3))− x(φ2(K3)).

By the linearity of φ2,

x(φ2,3 ◦ φ2(P )) = x(φ2(P )) + x(φ2(P +K3))− x(φ2(K3)).

Applying Vélu to φ2 three times gives

x(φ2,3 ◦ φ2(P )) = (x(P ) + x(P +K2)− x(K2))

+ (x(P +K3) + x(P +K3 +K2)− x(K2))

− (x(K3) + x(K3 +K2)− x(K2)) .

Cancelling gives

x(φ2,3 ◦ φ2(P )) = x(P ) + x(P +K2) + x(P +K3) + x(P +K2 +K3)

− x(K2)− x(K3)− x(K2 +K3).

With the exact same expanding, we see that

x(φ3,2 ◦ φ3(P )) = x(P ) + x(P +K2) + x(P +K3) + x(P +K2 +K3)

− x(K2)− x(K3)− x(K2 +K3).

A similar argument can be given for the y-coordinate. Hence, φ2,3(φ2(P )) =
φ3,2(φ3(P )). Since the domains are the same, and the images of all points are equal,
the isogenies themselves must be equal (by, for instance, Cauchy interpolation).

ut

Corollary 1 Consider the setup of SIKE key-exchange mechanism [4]. The
ending elliptic curves are equal.

Proof. Using the notation of [2, §3.2], call the ending elliptic curves EAB and
EBA. Decompose φA = φA,eA ◦· · ·◦φA,1, where each φA,i has degree 2. Use similar
notation for φB , φ

′
A, and φ′B, where each φB,i has degree 3. Then repeatedly

applying Lemma 1 allows us to rearrange

φ′B ◦ φA = φ′B,eB ◦ · · · ◦ φ
′
B,1 ◦ φA,eA ◦ · · · ◦ φA,1

into

φ′A,eA ◦ · · · ◦ φ
′
A,1 ◦ φB,eB ◦ · · · ◦ φB,1 = φ′A ◦ φB .

This implies that EAB = EBA.
The formulae used in SIKE are for elliptic curves in projective coordinates.

However, the equations are still derived from Vélu’s formulae, and so the elliptic
curves will still be equal. ut

We now present a more generic version of Lemma 1.

Theorem 3.1. Let E be an elliptic curve over some field K. Suppose G0, G1 ⊂
E(K) are finite subgroups with gcd(#G0,#G1) = 1. Let φ0 : E → E0 be an
isogeny with kernel G0, and φ1 : E → E1 an isogeny with kernel G1. Further,
let φ0,1 : E1 → E0,1 be an isogeny with kernel φ0(G1), and φ1,0 : E1 → E1,0 an
isogeny with kernel φ1(G0). When computed with Vélu’s formulae, φ0,1 ◦ φ0 =
φ1,0 ◦ φ1.
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Proof. We show this by proving that for any P ∈ E(K), we have

φ0,1(φ0(P )) = φ1,0(φ1(P )).

Let G∗0 and G∗1 be the subsets of G0 and G1 that will be used in Vélu’s
formulae (as described in the preliminaries). By Equations 1 and 2, for i = 0, 1
we can write

x(φi(P )) = x(P ) +
∑

Q∈G∗
i

x(P +Q)− x(Q),

y(φi(P )) = y(P ) +
∑

Q∈G∗
i

y(P +Q)− y(Q).

Similar to the proof of Lemma 1, observe

x(φ0,1 ◦ φ0(P )) = x(φ0,1(x(φ0(P )), y(φ0(P ))))

= x(φ0(P )) +
∑

R∈G∗
1

x(φ0(P ) + φ0(R))− x(φ0(R))

= x(φ0(P )) +
∑

R∈G∗
1

x(φ0(P +R))− x(φ0(R))

=
(
x(P ) +

∑
Q∈G∗

0

x(P +Q)− x(Q)
)

+
∑

R∈G∗
1

(
x(P +R) +

∑
Q∈G∗

0

(
x(P +R+Q)− x(Q)

)
−
(
x(R) +

∑
Q∈G∗

0

x(R+Q)− x(Q)
))

= x(P ) +
∑

Q∈G∗
0

x(P +Q) +
∑

R∈G∗
1

x(P +R)

+
∑

Q∈G∗
0

∑
R∈G∗

1

x(P +Q+R)

−
( ∑

Q∈G∗
0

x(Q) +
∑

R∈G∗
1

x(R) +
∑

Q∈G∗
0

∑
R∈G∗

1

x(Q+R)

)
.

If we accept the convention that x(∞) = 0, then we can write the simpler
expression

x(φ0,1 ◦ φ0(P )) =
∑

Q∈G∗
0∪{∞}

∑
R∈G∗

1∪{∞}

x(P +Q+R)− x(Q+R).

Notice this is symmetric in G∗0 and G∗1. With the exact same expanding, we
see as well that

x(φ1,0 ◦ φ1(P )) =
∑

Q∈G∗
0∪{∞}

∑
R∈G∗

1∪{∞}

x(P +Q+R)− x(Q+R).

A similar argument can be given for the y-coordinate. Hence, φ0,1(φ0(P )) =
φ1,0(φ1(P )). Since the domains are the same, and the images of all points are
equal, the isogenies themselves must be equal. ut
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Corollary 2 Consider the setup of the SIDH [2, §3.2] key-agreement protocol.
When computed with Vélu’s formulae, the elliptic curves EAB and EBA are equal.

A natural question to ask is if the coefficients of the elliptic curve EAB would
be more practical as a seed than j(EAB) in the SIDH key-agreement protocol,
public key encryption scheme, and KEM. The proofs of security [2, §6.1] appear
to go through when this change is made, and so the protocols should remain
secure.
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