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1 Introduction

Secure multiparty computation (MPC) allows n players to jointly compute a functionality, while no
group of (malicious parties) learn anything beyond their inputs and prescribed outputs. Introduced
in the seminal works of [Yao86, GMW87], this model has since been studied extensively. General
constructions for computing any functionality even when a majority of players are adversarial have
been long known. The focus of this work are MPC protocols that only make a black-box use of
cryptographic primitives and maintain security in the concurrent setting where several instances of
the protocol may execute simultaneously.

Black-Box Constructions. General purpose MPC protocols are often non-black-box in nature,
i.e., they use the code of the underlying cryptographic primitives at some stage of the computation.
For example, a common step in such protocols is to use general-purpose zero-knowledge proofs
which perform NP reductions. Non-black use of primitives is usually undesirable since not only is it
computationally expensive, it also renders the protocol useless in situations where such code is not
available (e.g., primitives based on hardware-tokens). One therefore seeks black-box constructions of
such protocols which use the underlying primitives only in black-box way (i.e., only through their
input/output interfaces).

Black-box constructions of general MPC protocols have received considerable attention recently.
In the standalone setting, Ishai et al. [IKLP06] (together with Haitner [Hai08]) presented the first
black-box construction of general purpose MPC under the minimal assumption of semi-honest
oblivious Transfer (OT). Subsequently, Wee [Wee10] reduced the round complexity of these con-
structions to O(log∗ n), and Goyal [Goy11] to only constant rounds. Very recently, Applebaum et
al. [ABG+20] showed that 2-round MPC is unachievable by making only black-box use of 2-round
OT. In the two-party setting, black-box construction were obtained by Pass and Wee [PW09] in
constant-rounds and Ostrovsky et al. [ORS15] in 5 rounds, which is optimal w.r.t. black-box proof
techniques [KO04]. We discuss the concurrent setting next.

Concurrent Security. The standard notion of security for MPC, also called stand-alone security
considers only a single execution of this protocol. While this is sufficient for many applications, other
situations (such as protocol executions over the Internet) require stronger notions of security. This
setting, where there may be many protocols executions at the same time, is called the concurrent
setting. Unfortunately, it is known that stand-alone security does not necessarily imply security in
the concurrent setting [FS90].

To address the above issue, Canetti [Can01] proposed the notion of universally composable
(UC) security where protocols maintain their strong simulation based security guarantees even in
the presence of other arbitrary protocols. Achieving such strong notion of UC-security turned out
to be impossible in the plain model [Can01, CKL03]. Moreover, Lindell [Lin03, Lin04] proved that
even in the special case where only instantiations of the same protocol are allowed, standard notion
of polynomial-time simulation is impossible to achieve. (This is called “self composition” and also
corresponds to the setting in this work.)

These strong negative results motivated the study of alternative notions of security. Our focus
is the plain model where no trusted setup is available. Two directions that are relevant to us in this
model are:

– Bounded-Concurrent Composition: in this model, a bound m is fixed a-priori, and the pro-
tocol design may depend on m. The adversary is allowed to participate in at most m simultaneous
executions of the protocol. We consider security against dishonest majority with interchangeable
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roles, i.e., the adversary can choose an arbitrary subset of (all but one) parties to corrupt in each
session. As in the original (unbounded) setting, the ideal-world simulator is required to run in
(expected) polynomial time. Due to the a-priori bound, it is feasible to bypass the aforementioned
negative results. Lindell presented a m-bounded concurrent two-party protocol in O(m)-rounds
using black-box simulation [Lin03]. Subsequently Pass and Rosen [PR03] presented a constant
round two-party protocol and Pass [Pas04] a constant round MPC protocol (under improved as-
sumptions), using non-black-box simulation. All general-purpose secure-computation protocols
in this setting make non-black-box use of the underlying cryptographic primitives.

– Super-Polynomial Simulation: while it is not directly relevant to this work, we build upon
techniques developed in the context of super-polynomial simulation where the simulator is allowed
to run in super-polynomial time. This relaxation provides somewhat weaker security guarantees
(which are, nonetheless, meaningful for many functionalities), and allows (unbounded) concur-
rent composition. Three different ways to formulate this notion are super-polynomial simulation
(SPS) [Pas03], angel-based security [PS04, CLP10], and security with shielded oracles [BDH+17].
Prabhakaran and Sahai [PS04] provided the initial positive result for SPS security. Although,
these early results [PS04, BS05, MMY06, LPV09] relied on non-standard/sub-exponential as-
sumptions, Canetti, Lin and Pass achieved this notion under standard polynomial-time assump-
tions [CLP10] in polynomially many rounds, and soon after, Garg et al. [GGJS12] in constant
rounds. The works in [PS04, MMY06, CLP10] actually achieve angel-based security, though only
[CLP10] relies on standard polynomial hardness. Subsequently, Goyal et al. [GLP+15] presented
a Õ(log n) round construction under the same assumptions.
Black-box constructions of angel-based secure computation were first presented by Lin and Pass
[LP12] assuming the existence of semi-honest OT, in O(max(nε, ROT)) rounds, where ε > 0 is
an arbitrary constant and ROT is the round complexity of the underlying OT protocol. (Hence,
if the underlying OT protocol has only constant round, the round complexity is O(nε).) Sub-
sequently, Kiyoshima [Kiy14] provided a Õ(log2 n)-round construction under the same assump-
tion. To achieve constant round constructions, Broadnax et al. [BDH+17] proposed security with
shielded oracles, a notion that lies strictly between SPS and angel-based security, along with a
constant-round black-box construction under polynomial hardness assumptions. Recently, Garg,
Kiyoshima, and Pandey [GKP18] presented a constant-round black-box MPC protocol which
achieves SPS security under polynomial hardness assumptions (which are weaker than those in
[BDH+17] at the cost of (weaker) SPS security).

State of the Art. The notion of bounded-concurrent composition requires standard polynomial-
time simulation. It does not follow from security notions that rely on super-polynomial simula-
tion (which are known to have black-box constructions). Consequently, all known constructions of
bounded-concurrent secure MPC rely on non-black-box usage of underlying cryptographic primi-
tives.

1.1 Our Contribution

In this work, we seek to construct general-purpose MPC protocols that make only black-box use of
cryptographic primitives and remain secure under bounded-concurrent self composition. Further-
more, we seek constructions whose security can be proven under standard polynomial hardness
assumptions (although, to the best of our knowledge, such protocols are not known even under,
say, sub-exponential assumptions since the simulator must still run in polynomial time).
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Towards this goal, we first aim to construct a black-box bounded-concurrent oblivious trans-
fer (OT) protocol. At a high level, this construction relies on non-black-box simulation to handle
simulation in the bounded-concurrent setting (along the lines of [Bar01, Pas04]); to ensure that
this does not result in non-black-box use of cryptographic primitives, we implement this idea us-
ing the “black-box non-black-box” protocol of Goyal et al. [GOSV14]. Once we have control over
bounded-concurrent simulation, we rely on the OT protocol of Garg et al. [GKP18] to achieve
the full oblivious transfer functionality. Unfortunately, implementing this idea is somewhat com-
plex, perhaps in part because abstractions such as “straight-line simulation/extraction” are not
straightforward to formalize despite their intuitive appeal. We mitigate this situation by defining
a new abstraction which we call (bounded) robust zero-knowledge; this notion asks for simulators
to work even in the presence of (bounded) external communication which cannot be “rewound”
(and therefore, looks very close to UC zero-knowledge [Can01]). Similar notion has been defined by
[LP09] in the context of non-malleable commitment w.r.t. an external party (see Definition 2 for
more details). Zero-knowledge (ZK) with this robust property allows us to combine the non-black-
box simulation techniques with the SPS based proof techniques of [GKP18] to achieve black-box
bounded-concurrent OT. An additional feature of our protocol is that it has constant rounds.

Along the way, we also present the first “straight-line”4 extractable commitment scheme that
only makes black-box use of semi-honest OTs. This primitive may be useful for other applications,
especially for black-box constructions of MPC protocols from minimal assumption.

Having obtained bounded-concurrent security for OT, we proceed to construct bounded-concurrent
MPC protocols for all functionalities. This step is executed almost identically to a similar step in
[GKP18] and does not require any additional assumptions. It also maintains the black-box and
constant round properties of the original OT protocol. Consequently, we obtain the first general-
purpose bounded-concurrent secure MPC protocol that makes only black-box use of cryptographic
primitives; furthermore, the protocol has constant rounds and relies only on standard polynomial
hardness assumptions.

Theorem 1 (Informal). Assume the existence of constant-round semi-honest oblivious transfer
protocols and collision-resistant hash functions. Then, there exists a constant-round black-box con-
struction of general-purpose MPC that achieves bounded-concurrent security.

The formal statement is given as Theorem 6 in Section 7. This result is essentially a black-box
version of Pass’s result [Pas04].

1.2 Other Related Works

In addition to the works mentioned in the introduction, there are several works that study security
in the concurrent setting. For SPS-security, Pass et al. [PLV12] present a constant-round non-
black-box construction of MPC from constant-round semi-honest OT. Dachman-Soled et al. and
Venkitasubramaniam [DMRV13, Ven14] present a non-black-box construction that satisfies adap-
tive security. And very recently, Badrinarayanan et al. [BGJ+17] present a non-black-box 3-round
construction assuming sub-exponential hardness assumptions. For angel-based security, Kiyoshima
et al. [KMO14] present a constant-round black-box construction albeit under a sub-exponential
hardness assumption, and Hazay and Venkitasubramaniam [HV16] present a black-box construc-
tion that achieves adaptive security.

4 It means the extraction strategy does not involve rewinding techniques.
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We have not discussed works that focus on other security notions, e.g., input-indistinguishable
computation and multiple ideal-query model [Pas04, MPR06, GJ13].

Black-box constructions have been extensively explored for several other primitives such as non-
malleable or CCA-secure encryption, non-malleable commitments, zero-knowledge proofs and so on
(e.g., [CHH+07, PW11, CDSMW17, GLOV12, GOSV14, OSV15]). For concurrent OT, Garay and
MacKenzie [GM00] presented a protocol for independent inputs under the DDH assumption, and
Garg et al. [GKOV12] proved the impossibility of this task for general input distributions.

2 Overview of Our Techniques

Before describing our approach, we first make some observations. We start by noting that in the
context of concurrent secure computation, it is not possible to use rewinding-based simulation
techniques since the simulator will have to provide additional outputs during rewinding but the
ideal functionality does not deliver more than one output. This is in sharp contrast to concurrent
zero-knowledge where the output is simply “yes” since the statement is in the language. While this
can be salvaged for certain functionalities as shown by Goyal [Goy12], it is essential to move to
straight-line simulators for general functionalities. In particular, in the bounded-concurrent setting
we must move to non-black-box simulation techniques [Bar02].

Let us also note that in some situations, particularly in the setting of resettable zero-knowledge,
a long line of work shows that it is possible to perform non-black-box simulation under one-way
functions [BP12, BP13, CPS13]. Furthermore, a black-box version of these simulation techniques
under one-way functions was obtained by Ostrovsky, Scafuro, and Venkitasubramaniam [OSV15].
It therefore seems possible to construct bounded-concurrent MPC under the minimal assumption
of semi-honest OT in a black-box manner.5 Unfortunately, this approach is flawed since all known
non-black-box simulation techniques are based on rewinding and therefore cannot be applied to
the concurrent MPC setting. It is also not at all clear if “straight-line” simulatable zero-knowledge
based only on one-way functions can be constructed from known approaches. Therefore, we stress
that even without the requirement of black-box usage of primitives, constructing bounded-concurrent
MPC under semi-honest OT only remains as a fascinating open problem.

We therefore attempt to obtain a construction that exploits collision-resistant hash functions, in
addition to the minimal assumption of semi-honest OTs. Toward this goal, we build upon techniques
developed in the following two works:

1. Garg, Kiyoshima, and Pandey [GKP18] construct a constant-round black-box MPC protocol
with SPS-security under polynomial hardness assumptions. The simulator works by extracting
crucial information from adversary’s messages via brute-force. The simulator is straight-line and
such extraction steps are the only non-polynomial work in its execution.

2. Goyal et al. [GOSV14] present a black-box implementation of the non-black-box simulation
techniques that rely on adversary’s code [Bar01]. Such techniques often (and certainly those of
[Bar01, GOSV14]) extend to situations where the adversary may receive arbitrary but a-priori
bounded amount of external communication.

At a high level, our main idea is to use the simulation technique of [GOSV14] to replace the
brute-force extraction steps in [GKP18] with polynomial-time extraction using adversary’s code.

5 In some works, when the construction is black-box but the proof of security uses non-black-box techniques (as in
this paper), this is referred to as a semi-black-box protocol.
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The corresponding commitment scheme will be interactive. Since this simulator is polynomial time,
we can hope to get bounded-concurrent MPC (in contrast to SPS MPC). Implementing this idea
turns out to be rather involved. The fact that the commitment protocol is interactive brings its
own issues of non-malleability and also interferes with some key proof steps in [GKP18] which rely
on rewinding. It is also not enough that the underlying commitment protocol be extractable in
a “bounded-concurrent” setting; instead we need a more flexible notion (that, roughly speaking,
mirrors straight-line simulation).

Although we have non-black-box simulation techniques at our disposal, we do not rely on the
multiple slots approach of Pass [Pas04] to build simulation soundness directly into our protocols.
Instead, by relying on the techniques in the aforementioned two works, we obtain a more modular
approach where non-malleability and simulation soundness are obtained with the help of an under-
lying non-malleable commitment. In this sense, the structure of our bounded-concurrent protocol is
fundamentally different from that of [Pas04] to achieve bounded-concurrent MPC. We now provide
more details.

The high-level structure of our protocol is similar to that of [GKP18] where the MPC protocol
is obtained in two steps. First, we obtain a (constant-round) black-box construction of a bounded-
concurrent OT protocol. Next, we compose this OT protocol with an existing constant-round OT-
hybrid UC-secure MPC protocol. We elaborate on each step below. We remark that we consider
concurrent security in the interchangeable-roles setting. So, in the case of OT, the adversary can
participate in a session as the sender while concurrently participating in another session as the
receiver.

2.1 Black-Box (Constant-Round) Bounded-Concurrent OT

Our OT protocol is very similar to the OT protocol of [GKP18] (which in turn is based on the high-
level cut-and-choose structure of [LP12] inspired from [HIK+11, CDMW09, Wee10]) except that we
will implement the basic commitment scheme using a “straight-line extractable” commitment (with
some other properties that we will discussion soon). At a high level, the OT protocol of [GKP18]
proceeds as follows:

1. The protocol is based on cut-and-choose techniques. Therefore, as the first step of the protocol,
the sender S and the receiver R commit to their challenges for future stages in advance. This
step uses a two-round statistically binding commitment scheme Com. This step avoids selective
opening attacks. The ideal-world simulator can extract these challenges by brute-force to per-
form the simulation. This is the only non-polynomial time step of this simulator (and the one
we wish to replace).

2. Next, S and R execute many instances of a semi-honest OT protocol in parallel, where in each
instance S and R use the inputs and the randomness that are generated by a coin-tossing
protocol.

3. Next, S and R use a non-malleable commitment scheme NMCom to set up a “trapdoor state-
ment” which, roughly speaking, commits a witness to the fact that the trapdoor statement
is false. This step, following [GGJS12], makes it possible to commit to a false witness in the
security proof while ensuring (due to non-malleability of NMCom) that the adversary still con-
tinues to commit to a correct witness (so that his statement is still false). The step is performed
by modifying different stages of one session at a time. This ensures that changes in one
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interactive part of the protocol are not affected by what happens in later stages of that same
session.

4. Finally, S and R use OT combiner which allows them to execute an OT with their real inputs
securely when most of the OT instances in the previous steps are correctly executed. To check
that most of the OT instances in the previous steps were indeed correctly executed, S and R do
use cut-and-choose where S (resp., R) chooses a constant fraction of the OT instances randomly
and R (resp., S) reveals the input and randomness that it used in those instances so that S
(resp., R) can verify whether R executed those instances correctly.

2.1.1 Replacing Com with straight-line extractable commitment

Our goal is to eliminate brute-force extraction using code of the adversary. In doing so, we have to
ensure that (1) the interactive nature of the commitment protocol so obtained does not result into
new malleability issues in the proof; and (2) the extraction step can be done in a modular fashion
(especially in straight-line) so that we can keep the overall proof structure of [GKP18] where one
session is modified at a time.

As a starting point, let us consider the Barak-Lindell extractable commitment scheme [BL02].
In their construction, the committer C first sends an enhanced trapdoor permutation f .6 Then the
two parties involve in the following 3-step coin tossing: (1) R sends a commitment Com(r1) to a
random string r1; (2) C replies with a random string r2; (3) R then sends r1 with a ZK argument
on the fact that this r1 is indeed the random string he committed in step (1). Both parties learn
the value r = r1 ⊕ r2 as the output of the coin tossing. To commit to a (single-bit) message σ,
C sends σ masked by the hard-core bit of f−1(r). An extractor can use the ZK simulator to bias
the coin-tossing result to some value r′, for which it knows the preimage of f−1(r′). Thus, it can
extract the committed value.

Straight-Line Extraction. To adapt the above scheme for our purpose, we need to ensure that the
construction is black-box and that the committed value can be extracted in a straight-line fashion.
Toward this goal, we replace R’s commitment and ZK argument with the protocol of Goyal et al.
[GOSV14]. More specifically, [GOSV14] provides a “commit-and-prove” primitive ΠZK where:

– they provide a (non-interactive statistically-binding) commitment scheme7 called VSSCom using
which one can send a commitment y to a string x;

– and later, prove to a verifier, that “y is a commitment to string x such that φ(x) = 1” where φ
is an arbitrary function.

In particular, φ is chosen to be the NP-relation for an NP-complete language in [GOSV14] to get
a black-box version of Barak’s result [Bar01].

In our case, we will choose φ to be the identity function Ix(·).8 Therefore, the Barak-Lindell
commitment protocol mentioned above can be implemented in a black-box manner by ensuring that:
(1) R uses VSSCom to prepare the commitment to r1, and (2) protocol ΠZK is the aforementioned
proof protocol with φ := Ir1(·).
6 In their original construction, C sends a trapdoor permutation (TDP) f and then proves in zero-knowledge that
f is indeed a valid TDP. To make this step black-box, C can send an enhanced TDP instead (without the need of
ZK proof).

7 In [GOSV14], this commitment was required to be statistically-hiding. But it can be replaced with a statistically-
binding scheme if certain modifications are made to the proof phase. See Remark 2 for more details.

8 Note Ix(y) = 1 if and only if y = x is well defined and the “code” of Ix requires only the knowledge of x.
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At a high level, this approach meets our needs for a black-box construction that supports
straight-line extraction. But more caution is needed to handle the actually simulation as we are in
the (bounded) concurrent setting. We will address this concern in Section 2.1.2.

Removing TDPs. Since we aim to have a construction assuming only semi-honest OTs (and
CRHFs), we also want to remove the reliance on the (enhanced) TDPs. As the first attempt, we
ask C to secret-share the message σ to n random shares using exclusive-or. Then let the receiver
learn through a special OT (e.g. an n/2-out-of-n OT) half of these shares. Next, we invoke the above
(black-box) version of coin-tossing in Barak-Lindell protocol to determine another n/2 shares that
C will decommit to. Due to the pseudo-randomness of the coin-tossing result, R will learn the
the shares that “complement” what he learned through OT with only negligible probability. Thus,
we can hope to achieve (computational) hiding. Meanwhile, an extractor could always bias the
coin-tossing result to the complement shares, thus allowing it to extract the value σ.

However, there are several issues with this approach. First, the sender’s (committer’s) input to
the OT must be the decommitment information to the secret shares. Otherwise, a malicious sender
can use arbitrary values in the OT execution, which will disable our extraction strategy.9 Also,
this construction suffers from selective opening attacks (SOAs) as the values in the commitments
are correlated. It is not clear how we can use standard techniques (e.g. asking R to commit to
his challenges in advance, or using another coin-tossing to determine his challenges) to get rid
of SOAs. This is because we need to keep R’s challenges in this stage hidden from C (to ensure
extractability).

To solve this problem, we let C commit to 2n secret shares of σ, denoted as {Com(si,b)}i∈[n],b∈{0,1}.
Then n 1-out-of-2 OT instances are executed in parallel, where R learns (the decommitment to) one
share out of (si,0, si,1) in the i-th OT. Next, we can use the Barak-Lindell coin tossing to determine
an n-bit string r = r1‖ . . . ‖rn. Finally, C decommits to {Com(si,ri)}i∈[n]. In this construction, R’s
input to (a single) OT can be guessed correctly with probability 1/2. By a careful design of hybrids,
we show this is sufficient to get rid of SOAs, thus allowing us to prove hiding property (See Section
5). Moreover, the extractor can still learn all the shares by biasing ri to the complement to its input
in the i-th OT instance (for all i ∈ [n]).

Merging with [GKP18]. Finally, to ensure that the interactive nature does not create non-
malleability issues, we will ask each party to commit to a long-enough random string, using the
above extractable commitment. This step is done as the foremost step in our OT protocol (called
“Step 0”). Then each party will use the long random string as one-time pad to “mask” the values
that they want to commit to during the execution of our OT protocol. Now, we can rely on the
structure of the hybrid proof of [GKP18], which first deals with all stages of a given session and then
moves on to the next session in a specific order (determined by the transcript). The key observation
here is that since Step 0 is performed ahead of all other steps for a fixed session s, changes in later
stages of s cannot affect what happens in Step 0 (for example, issues of malleability and simulation-
soundness do not arise). Furthermore, since any rewinding-based proofs of [GKP18] are only relevant
to later stages, they do not rewind Step 0 of sessions s.

Remark 1. Ostrovsky et al. [OSV15] showed how to achieve the same as [GOSV14] while relaxing
the assumption from CRHFs to one-way functions (OWFs). But we cannot use their approach (or
any of the prior approaches that perform non-black-box simulation under OWFs) since simulators

9 Note that we cannot ask the committer to prove in zero-knowledge that he uses the committed shares as sender’s
input in the OT execution, because such proof will make non-black-box use of both the commitment and OT.
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in these approaches are not straight-line. It uses both the adversary’s code and rewinding to get a
OWF-based construction.

2.1.2 Robust-ZK for dealing with bounded concurrency

The final issue that we need to address is how the non-black-box simulation will actually be per-
formed corresponding to protocol ΠZK (in Step 0) mentioned above. The main issue is that there
are concurrently many sessions of ΠZK executing simultaneously. In particular, if there are m ses-
sions of OT protocol, then there will be ` = 2m sessions of ΠZK . Simply replacing the prover with
the non-black-box simulator may not result in polynomial-time simulation.

An immediate idea is that if ΠZK is bounded-concurrent ZK for up to ` sessions, then we can
use the concurrent non-black-box simulator to simulate Step 0 of all m sessions of the OT protocol
at once. This allows us to bias coin-tossing for all m sessions and then we can design hybrids exactly
as in [GKP18].

Unfortunately, bounded-concurrent ZK only guarantees self composition; i.e., it can only deal
with messages of protocol ΠZK . In our case, ΠZK is part of a larger protocol execution and the
adversary receives messages from different stages of all sessions. We thus need a more robust notion
of non-black-box simulation which, roughly speaking, (a) is straight-line, and (b) enables bounded-
concurrent composition of ZK protocols even in the presence of external messages as long as the
total communication outside the ZK protocol is a-priori bounded.

We formulate this notion explicitly in Section 4 and call it robust zero-knowledge. The notion
requires that the view of a (standalone) verifier V ∗ who interacts with an external party B can be
simulated by a simulator S only on input the code of V ∗. The simulator is not allowed to rewind V ∗

or B. However, both B and S are allowed to see each others messages (which is essential to make
sure that many concurrent instances of the simulators compose seamlessly). This yields a notion
that is similar in spirit to UC zero-knowledge [Can01] and implies bounded-concurrent ZK.

We remark that most ZK protocols based on non-black-box simulation, with suitable adjustment
of parameters, can actually handle arbitrary external messages (and not just the messages of the
same protocol) without any modification. This observation was first used in Barak’s original work
[Bar01], and finds applications in other places [BL02, PR03, Pas04]. In particular, it also holds for
the protocol of Goyal et al. [GOSV14] and is implicit in their security proof. Thus, these protocols
already achieve the (bounded) robust-ZK notion. Robust-ZK is just a convenient tool to help in
the hybrid proofs.

By setting the parameters of ΠZK so that it is `-robust-ZK allows us to replace the provers
of ΠZK with simulator instances in Step 0 of any given session s while maintaining the overall
structure and sequence of hybrids in [GKP18] where stages of one session are handled at any given
time. This gives us m-bounded concurrent OT.

2.2 Composition of OT with OT-hybrid MPC

The final step of our construction is the same as in [GKP18]. Namely, we compose our bounded-
concurrent OT protocol with a OT-hybrid UC-secure MPC protocol (i.e., replace each invocation
of the ideal OT functionality in the latter with an execution of the former), thereby obtaining a
MPC protocol in the plain model. While selecting the parameters, we have to ensure we adjust the
parameters of ΠZK to allow long enough messages so that simulation can be performed for the MPC
protocol instead of the OT protocol. Since we only proved bounded-concurrent self composition for

8



OT (not full UC-security), we do not get a proof for the MPC protocol right away. Hence, we prove
the security by analyzing the MPC protocol directly. In essence, what we do is to observe that the
security proof for our OT protocol (which consists of a hybrid argument from the real world to the
ideal world) still works even after the OT protocol is composed with a OT-hybrid MPC protocol.

3 Preliminaries

We denote the security parameter by n. We use
c
≈ to denote computational indistinguishability

between two distributions. For a set S, we use x
$←− S to mean that x is sampled uniformly at

random from S. ppt denotes probabilistic polynomial time and negl(·) denotes negligible functions.
Some basic terminologies and definitions (e.g. secret sharing schemes, commitment schemes, and
extractable commitment schemes) are given in Section A. In the following, we present the formal
definition for Non-Malleable Commitments and Bounded-Concurrent MPC (with Interchangeable
Roles).

3.1 Non-Malleable Commitment Schemes.

We recall the definition of non-malleable commitment schemes from [LP09]. Let 〈C,R〉 be a tag-
based commitment scheme (i.e., a commitment scheme that takes a n-bit string (a tag) as an
additional input). For any man-in-the-middle adversaryM, consider the following experiment. On
input security parameter 1n and auxiliary input z ∈ {0, 1}∗,M participates in one left and one right
interactions simultaneously. In the left interaction, M interacts with the committer of 〈C,R〉 and
receives a commitment to value v using identity id ∈ {0, 1}n of its choice. In the right interaction,
M interacts with the receiver of 〈C,R〉 and gives a commitment using identity ĩd of its choice. Let
ṽ be the value that M commits to on the right. If the right commitment is invalid or undefined, ṽ
is defined to be ⊥. If id = ĩd, value ṽ is also defined to be ⊥. Let mim(〈C,R〉,M, v, z) be a random
variable representing ṽ and the view of M in the above experiment.

Definition 1. A commitment scheme 〈C,R〉 is non-malleable if for any ppt adversary M, the
following are computationally indistinguishable.

– {mim(〈C,R〉,M, v, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗

– {mim(〈C,R〉,M, v′, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗

The above definition can be generalized naturally so that the adversary gives multiple commit-
ments in parallel in the right interaction. The non-malleability in this generalized setting is called
parallel non-malleability. (It is known that this “one-many” definition implies the “many-many”
one, where the adversary receives multiple commitments in the left session [LPV08].)

Robust non-malleability. We next recall the definition of k-robust non-malleability (a.k.a. non-
malleability w.r.t. k-round protocols) [LP09]. Consider a man-in-the-middle adversaryM that par-
ticipates in one left interaction—communicating with a machine B—and one right interaction—
communicating with a receiver a commitment scheme 〈C,R〉. As in the standard definition of
non-malleability, M can choose the identity in the right interaction. We denote by mimB,M

〈C,R〉(y, z)

the random variable consisting of the view of M(z) in a man-in-the-middle execution when com-
municating with B(y) on the left and an honest receiver on the right, combined with the value
M(z) commits to on the right. Intuitively, 〈C,R〉 is non-malleable w.r.t. B if mimB,M

〈C,R〉(y1, z) and
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mimB,M
〈C,R〉(y2, z) are indistinguishable whenever interactions with B(y1) and B(y2) are indistinguish-

able.

Definition 2. Let 〈C,R〉 be a commitment scheme and B be a ppt ITM. We say that a commit-
ment scheme 〈C,R〉 is non-malleable w.r.t. B if the following holds: For every two sequences
{y1
n}n∈N and {y2

n}n∈N such that y1
n, y

2
n ∈ {0, 1}n, if it holds that for any ppt ITM A,{

〈B(y1
n),A(z)〉(1n)

}
n∈N,z∈{0,1}∗

c
≈
{
〈B(y2

n),A(z)〉(1n)
}
n∈N,z∈{0,1}∗ ,

it also holds that for any ppt man-in-the-middle adversary M,{
mimB,M

〈C,R〉(y1, z)
}
n∈N,z∈{0,1}∗

c
≈
{

mimB,M
〈C,R〉(y2, z)

}
n∈N,z∈{0,1}∗

.

〈C,R〉 is k-robust if 〈C,R〉 is non-malleable w.r.t. any machine that interacts with the adversary
in k rounds. We define parallel k-robustness naturally.

Black-box instantiation. There exists a constant-round black-box construction of a parallel
(actually, concurrent) non-malleable commitment scheme based on one-way functions [GLOV12].
Furthermore, Garg, Kiyoshima, and Pandey [GKP18] show that any parallel non-malleable com-
mitment can be transformed into a parallel k-robust non-malleable one in the black-box way by
using collision-resistant hash functions (more precisely, by using statistically hiding commitment
schemes, which can be constructed from collision-resistant hash functions). If k is constant, the
round complexity of their transformation increases only by a constant factor in this transformation.
Thus, there exists a O(1)-round parallel O(1)-robust nonmalleable commitment scheme assuming
the existence of CRHFs [GLOV12, GKP18].

3.2 Bounded-Concurrent MPC with Interchangeable Roles

We recall the definition of m-bounded concurrent secure computation. Parts of this section are taken
verbatim from [Pas04] with minor modification, following [GGS15], to allow for interchangeable
roles; these in turn are a slight generalization of “security with abort and no fairness” of [GL02]
and concurrent secure two-party computation with adaptive inputs of [Lin04]. The basic formulation
and setup of secure computation follows [GL91, MR92, Bea91, Can00].

We consider the case of self composition where m simultaneous executions of the same MPC
protocol Π take place. We will consider security against interchangeable roles where a party con-
trolled by the adversary can play different roles in different sessions (see description below). We
will only consider the malicious and static setting where the set of corrupted parties is fixed at
the beginning of the protocol and the corrupted parties execute the instructions provided by the
adversary. The scheduling of message delivery is decided by the adversary. Since security against
interchangeable roles is impossible without identities, we assume each party has a unique identity
id ∈ {0, 1}n. Since we do not consider fairness, the adversary will always receive its own output and
can then decide when (if at all) the honest parties will receive their output.

Multi-party computation. A multi-party protocol problem for k parties P1, . . ., Pk is cast by
specifying a random process that maps vectors of inputs to vectors of outputs (one input and
one output for each party). We refer to such a process as a k-ary functionality and denote it
f : ({0, 1}∗)k → ({0, 1}∗)k, where f = (f1, ..., fk). That is, for every vector of inputs x = (x1, ..., xk),
the output-vector is a random variable

(
f1(x), ..., fk(x)

)
ranging over vectors of strings. The output
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of the i’th party (with input xi) is defined to be fi(x). In the context of concurrent composition,
each party actually uses many inputs (one for each execution) and these may be chosen adaptively
based on previous outputs. The fact that m-bounded concurrency is considered relates to the
allowed scheduling of messages by the adversary in the protocol executions; see the description of
the real model below.

Concurrent execution in the ideal model. Next, we describe the concurrent execution of the
protocol in the ideal world. Unlike the stand-alone setting, here the trusted party computes the
functionality many times, each time upon different inputs.

Let Π := (P1, . . . , Pk) be an MPC protocol for computing a k-ary functionality f and n be
the security parameter. For simplicity we assume that the length of the inputs of each party is n.
In total, let there be N parties: Q1, . . . , QN and let P ji denote the party playing the role of Pi in
session j (for i ∈ [k], j ∈ [m]). The adversary can corrupt an arbitrary subset of these parties.

Let I ⊂ [N ] denote the subset of corrupted parties. An ideal execution with an adversary who
controls the parties I proceeds as follows:

Inputs: The inputs of the parties Q1, ..., QN in each session j are determined using ppt machines
M1, ...,Mk which take as input the session number j, some inputs x1, ..., xN , and the outputs that
were obtained from executions that have already concluded. Note that the number of previous
outputs range from zero (when no previous outputs have been obtained) to some polynomial in
n that depends on the number of sessions initiated by the adversary.

Session initiation: When the adversary initiates the session number j ∈ [m] by sending a (start-
session, j) to the trusted party, the trusted party sends (start-session, j) to parties P ji where
i ∈ [k].

Honest parties send inputs to trusted party: Upon receiving (start-session, j) from the trusted
party, each honest party P ji applies its input-selecting machine Mi to its initial input xi, the
session number j and its previous outputs, and obtains a new input xi,j . In the first session
xi,1 = Mi(x, 1). In later sessions j, xi,j = Mi(x, j, αi,1...αi,ω) where ω sessions have concluded

and the outputs of P ji were αi,1, ..., αi,ω. Each honest party P ji then sends (j, xi,j) to the trusted
party.

Corrupted parties send inputs to trusted party: Whenever the adversary wishes it may ask
a corrupted party P ji to send a message (j, x′i,j) to the trusted third party, for any x′i,j ∈ {0, 1}n

of its choice. A corrupted party P ji can send the pairs (j, x′i,j) in any order it wishes and can
also send them adaptively (i.e., choosing inputs based on previous outputs). The only limitation
is that for any j, at most one pair indexed by j can be sent to the trusted party.

Trusted party answers corrupted parties: When the trusted third party has received mes-
sages (j, x′i,j) from all parties (both honest and corrupted) it sets xj = (x′1,j , ..., x

′
k,j). It then

computes f(xj) and sends (j, fi(x
′
j)) to every corrupted P ji .

Adversary instructs the trusted party to answer honest parties: When the adversary sends
a message of the type (send-output, j, i) to the trusted party, the trusted party directly sends
(j, fi(x

′
j)) to party P ji . If all inputs for session j have not yet been received by the trusted party

the message is ignored. If the output has already been delivered to the honest party, or i is the
index so that P ji is a corrupted party, the message is ignored as well.

Outputs: Each honest party always outputs the vector of outputs that it received from the
trusted party. The corrupted parties may output an arbitrary (probabilistic polynomial-time
computable) function of its initial input and the messages obtained from the trusted party.
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Let f : ({0, 1}∗)k → ({0, 1}∗)k be a k-ary functionality, where f = (f1, ..., fk). Let S be a non-
uniform ppt machine (representing the ideal-model adversary) and let I ⊂ [N ] (the set of corrupted
parties) be such that for every i ∈ I, the adversary S controls Qi. Then the ideal execution of f
with security parameter n, input-selecting machines M = M1, ...,Mk, initial inputs x = (x1, ..., xN )
and auxiliary input z to S, denoted IDEALf,I,S,M (n, x, z), is defined as the output vector of the
parties and S resulting from the ideal process described above.

We remark that the definition of the ideal model includes the bound m on the concurrency
although it is possible to define it without it.

Execution in the real model. We next consider the execution of Π in the real world. We assume
that the parties communicate through an asynchronous fully connected and authentic point-to-point
channel but without guaranteed delivery of messages.

Let f , I be as above and let Π be a multi-party protocol for computing f . Furthermore, let A be
a non-uniform ppt machine such that for every i ∈ I, the adversary A controls Qi. Then, the real
m-bounded concurrent execution of Π with security parameter n, input-selecting machines M =
M1, ...,Mk, initial inputs x = (x1, ..., xN ) and auxiliary input z to A, denoted REALmΠ,I,A,M (n, x, z),
is defined as the output vector of the honest parties and the adversary A resulting from the following
process. The parties run concurrent executions of the protocol, where every party initiates a new
session whenever it receives a start-session from the adversary. The honest parties then apply their
input-selecting machines to their initial input, the session number and their previously received
outputs, and obtain the input for this new session. The scheduling of all messages throughout the
executions is controlled by the adversary.

Security as emulation of a real execution in the ideal model. The security of Π under
bounded composition is defined by saying that for every real-model adversary there exists an ideal
model adversary that can simulate an execution of the secure real-model protocol. Formally:

Definition 3 (m-Bounded Concurrent Security in the Malicious Model). Let m = m(n)
be a polynomial and let f, k,N and Π be as above. Protocol Π is said to securely compute f under
m-bounded concurrent composition if for every real-model non-uniform ppt adversary A, there
exists an ideal-model non-uniform probabilistic expected polynomial-time adversary S, such that
for all input-selecting machines M = M1, ...,Mk, every z ∈ {0, 1}∗, every x = (x1, ..., xN ), where
x1, ..., xN ∈ {0, 1}n and every I ⊂ [N ],{

IDEALf,I,S,M (n, x, z)
}
n∈N

c
≈
{

REALmΠ,I,A,M (n, x, z)
}
n∈N

That is, concurrent executions of Π with A cannot be distinguished from concurrent invocations of
f with S in the ideal model.

4 Robust Zero-Knowledge Commit-and-Prove Protocols

Goyal et al. [GOSV14] present a new non-black-box zero-knowledge argument for NP. Their pro-
tocol (with slight modification for the “commit-and-prove” form) is presented in Protocol 1. We
recall briefly how their protocol works.

They first construct a black-box size-hiding commit-and-prove protocol (BBCom,BBProve). In
Protocol 1, the committer commits to the secret shares of the witness via BBCom. The Proof Phase
combines PCP of Proximity (PCPP) [BGH+04] and Barak’s non-black-box ZK protocol [Bar01].
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Protocol 1 `-Robust Commit-and-Prove for φ [GOSV14]
Common Input: Security parameter 1n, robustness parameter `, property φ
Auxiliary Input to C′: String w ∈ {0, 1}n to be committed.
Commit Phase:

1. C′ generate VSS representation of w: VSSw = (wVSS
1 , ..., wVSS

n ).

2. C′ creates commitments to each share with independent randomness ρi ∈ {0, 1}n, to get ci = Com(wVSS
i ; ρi)

for i = 1, ..., n.

3. C′ sends VSSCom(w) := (c1, ..., cn).

Comment: Note that `, φ are not required in this phase. In [GOSV14], the commit-phase is actually a part
of the “proof phase” since the goal is to describe a system for NP. We choose this form to emphasize the
commit-and-prove nature of their protocol.

Proof Phase:

1. Trapdoor-generation:

(a) C′ runs BBCom(0n) with R′. Let z be the commitment so obtained.

(b) R′ sends a random string r of length n + `(n). The public theorem a is defined as: a = (z, r, t). This
message is referred to as the long message.

2. Actual proof for φ:

(a) Commitment of PCPP: C′ runs BBCom(0n) and sends the commitments.

(b) PCPP Queries: R′ sends random tapes r1, ..., r`d from which C′ and R′ compute (qji , p
j
i ) = Qpcpx(a, rj , i)

with i ∈ [k], where k is the security parameter for the PCPP. Let IMj = {qj1, ..., q
j
k} and Iπj = {pj1, ..., p

j
k}.

(c) Proof. C′ runs BBProve(ψ, IM , Iπ), where the predicate ψ is true iff:

– Dpcpx outputs 1 on selected positions of M and π; or

– There exist {(wVSS
i , ρi)}ni=1 such that ci = Com(wVSS

i ; ρi) for all i and φ
(
Recon(wVSS

1 , ..., wVSS
n )

)
= 1.

R′ accepts the proof if and only if the verifier of BBProve accepts.

The committer C ′ (the prover) first sends z which is supposed to be a commitment to a Turing
machine M . An honest prover will just commit to 0n. Once R′ replies with a string r, the trapdoor
theorem is set to a of the pair language LP = {(a := (z, r, t), Y ) : ∃M ∈ {0, 1}∗ s.t. Y ← ECC(M),
and M(z) = r within t steps.} (where ECC(·) is a binary error correcting code tolerating a constant
fraction δ > 0 errors). Then C ′ uses BBProve to prove either the trapdoor theorem is true or
φ(w) = 1.

Note that the proof for the trapdoor theorem is conducted via PCPP. Specifically, commitment
to PCPP proof π is sent to R′ (honest prover commits to 0n, as shown in 2-(a) of Proof Phase).
R′ generates PCPP queries on Y (the private theorem) and π by running algorithm Qpcpx. C

′ then
proves that the PCPP decision algorithm Dpcpx verifies to 1. Details of component protocols such
as BBCom,BBProve, etc. are not necessary and omitted; see [GOSV14] for their details.

This protocol makes only black-box use of CRHF; it is also public-coin, constant-rounds, and
has negligible soundness error. In fact, it enjoys the following properties:

(i) The protocol is actually a “commit-and-prove” protocol for arbitrary polynomial-size circuits φ.
That is, it consists of two phases: in the “commit” phase, the committer commits an arbitrary
string w ∈ {0, 1}n using a special commitment scheme called VSSCom, and later, in the “proof”
phase, it can prove in zero-knowledge that the committed string satisfies φ; i.e., φ(w) = 1
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where w is uniquely determined from the transcript of the commit phase. For concreteness, the
“commit-and-prove” form of [GOSV14] ZK is depicted in Protocol 1.10

(ii) To prove zero-knowledge, the simulator relies on Barak’s technique of committing the verifier’s
code [Bar01]. Consequently, the protocol inherits several properties of Barak’s original proto-
col (e.g., public-coin and constant rounds). In particular, the protocol has a “preamble” phase
where the verifier sends a random string r; the simulator is “straight-line” even in the pres-
ence of arbitrary (external) communication of a-priori bounded length `(n) provided that |r| is
sufficiently bigger than `(n).

Remark 2 (On the Hiding Property of VSSCom). In the Commit Phase of Protocol 1, we define
VSSCom, which consists of statistically-binding commitments Com on each VSS shares of the value
to be committed to (the witness w in our protocol). However, in the original construction of the
[GOSV14] ZK, the underlying Com actually needs to be statistically-hiding. This is because that
their construction relies on the MPC-in-the-head technique, where a subset (verifier’s challenge set)
of the commitments are revealed to the verifier for the view-consistency checking. Moreover, the
security of their construction relies on the hiding of the remaining unopened commitments. Since
the challenge set is picked by the verifier, a statically-hiding commitments must be used to resolve
the selective-opening problem [Hof11].

We remark that there are two alternative ways to avoid the selective-opening problem, while
relying only on statistically-binding commitment:

(1) Ask V to commit to the challenge sets before the P ’s first message, and to decommit to the
challenge sets once it receives P ’s first message. This approach is taken by, e.g., [PW09, GLOV12,
Kiy14].

(2) After P ’s first message, determine the challenge set by a coin-tossing protocol between P and
V , instead of letting V pick the challenge set. This approach appears in [Lin13, CLP20a] (see
[CLP20b, Section 4.1] for a detailed demonstration in the MPC-in-the-head setting).

Both of these approaches can be taken if one wants to replace the statistically-hiding commitment
in VSSCom and BBCom, while maintaining the security of the [GOSV14] construction. But they
were not exploited as [GOSV14] pursued a public-coin construction. As another concern, these
approaches only lead to computational ZK property, while the original construction in [GOSV14]
is statistical ZK.

In contrast, we are able to make use of these approaches in the current work. We take approach
(2) as it not only gives a cleaner construction, but also maintains the (weak) Proof-of-Knowledge
property of the original [GOSV14] ZK. Concretely, we modify the BBProve such that V ’s challenge
set will be determined by the following coin-tossing:

– V first sends an extractable commitment to a random string r1,

– P responds with a random string r1

– V then sends r1 with the decommitment information.

Other parts of BBProve remain unchanged, except that the challenge set is now defined by the
(pseudo)random string r1 ⊕ r2.

10 The protocol for proving x ∈ L for L ∈ NP is obtained by setting w to be a witness for x (under an appropriate
relation R for L) and committing to it as the first step of the proof using “commit” phase, followed by the “proof”
phase for φ(·) := R(x, ·).
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Such a modified BBProve allows us to replace the statistically-hiding commitment with a
statistically-binding one in both BBCom and VSSCom. Thus, we can safely use the statically-binding
VSSCom (as currently presented in Protocol 1).

We also remark that BBCom will not be statistically-binding, even though its underlying com-
mitment is replaced by a statistically-binding one. This is because that BBCom applies the (un-
derlying) commitment to (the paths of) a Merkle hashing tree on the target value, resulting in
information loss.

4.1 Robust Zero-Knowledge

To capture the above property (ii) (i.e., “straight-line simulation in the presence of bounded external
communication”), we define the notion of robust zero-knowledge. It roughly captures the fact that
the simulator does not rewind the external party to perform the simulation. This property is
implicit in the relations defined for bounded-concurrent simulation in [Bar01, PR03]; a related
but very different notion of robustness appears explicitly in the context of non-malleability in
[LPV09, GLP+15]. This notion is useful in constructing security proofs even though it follows from
[Bar01] (and similar protocols).

Let L ∈ NP with witness relation RL, and let RL(x) := {w : RL(x,w) = 1}. Let Π := 〈P, V 〉
be an (efficient) interactive argument system for L and B be an arbitrary ppt itm.

For n ∈ N, L ∈ NP, x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗ and y ∈ {0, 1}∗, we define the following two
experiments:

Real Experiment: The experiment starts the execution of V ∗ on input (1n, x, z) where z denotes
the auxiliary input of V ∗. During its execution, V ∗ can simultaneously participate in two in-
teractions (1) an execution of Π with the honest prover machine P (1n, x, w) and (2) arbitrary
(unspecified) interaction with the machine B(1n, y).

The interaction occurs over a network where each message is processed as follows:

– If V ∗ sends a message of Π (resp., for B), it is delivered to P (resp., to B).

– If P receives a message from V ∗, it prepares the next message of Π, denoted a; a is then
sent to both V ∗ as well as B.

– If B receives a message from V ∗, it prepares the next message (according to the unspecified
interaction protocol between B and V ∗), say b; message b is then sent to V ∗.

The output of this experiment is the (joint) view of V ∗, and denoted as:

Rview
B(y)
Π,n,x〈P (w), V ∗(z)〉.

Simulated Experiment: This experiment is identical to the real experiment except that: (1) the
honest prover algorithm P (1n, x, w) is replaced with a “simulator” algorithm S which receives
the code of V ∗ as input, and (2) any message V ∗ receives from B is also provided to S.

Formally, the experiment starts an execution of V ∗(1n, x, z); V ∗ can simultaneously participate
in two interactions (1) an execution of Π with the simulator machine S(1n, x, code[V ∗], z) and
(2) arbitrary (unspecified) interaction with the machine B(1n, y).

The interaction occurs over a network where each message is processed as follows:

– If V ∗ sends a message of Π (resp., for B), it is delivered to S (resp., to B).
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– If S receives a message from V ∗, it prepares the next message, denoted a; a is sent to both
V ∗ as well as B.

– If B receives a message from V ∗, it prepares the next message (according to the unspecified
interaction protocol between B and V ∗), say b; message b is then sent to both V ∗ and S.

The output of this experiment is the (joint) view of V ∗, and denoted by:

Sview
B(y)
Π,n,x〈S(code[V ∗], z), V ∗(z)〉.

Remark 3. Two important remarks are in order. First, the simulated experiment does not allow
rewinding by definition. Instead, it requires S to “act like the prover” of protocol Π; the only help
S has is the code of V ∗ as well as immediate access to all messages that V ∗ receives. In particular,
rewinding V ∗ may involve rewinding B and this is not allowed by the experiment.

Second, both B and S have access to all messages V ∗ receives from the network. S must have
access to all such messages to simulate in “straight line” (since it does not have the code of B). B
is given access to these messages to facilitate (bounded concurrent) composition. In particular, B
has access to all message S (or P ) sends to V ∗ and S has access to all messages B sends to V ∗.

Protocol Π is robust zero-knowledge if V ∗ cannot tell whether it is in the real experiment or the
simulated one. If it is robust w.r.t. only machines B that send at most ` bits, it is called `-robust
zero-knowledge. Formally:

Definition 4 (Robust Zero-Knowledge). An interactive argument system Π for a language
L ∈ NP is robust ZK w.r.t. a ppt itm B if for all ppt itm V ∗ there exists a ppt itm S (called
the robust simulator), such that:{

Rview
B(y)
Π,n,x〈P (w), V ∗(z)〉

}
n,x,w,z,y

c
≈

{
Sview

B(y)
Π,n,x〈S(code[V ∗], z), V ∗(z)〉

}
n,x,z,y

.

where n ∈ N, x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗, y ∈ {0, 1}∗.
For a polynomial ` : N→ N, Π is `-robust zero-knowledge if it is robust w.r.t. every ppt itm B

that sends at most `(n) bits. Π is robust zero-knowledge if it is `-robust zero-knowledge for every
polynomial `.

Remark 4. We remark that robust (i.e., unbounded) ZK is actually impossible (for non-trivial
languages) in the plain model since, if unbounded external communication was allowed with B, V ∗

can just be a “dummy” adversary so that access to its code provides no advantage to the simulator
to complete the proof. This is akin to the use of dummy adversary in UC setting and impossibility
of UC-ZK for languages outside of bpp [Can01, GK90].

4.1.1 (Bounded) robust ZK implies bounded cZK

We now demonstrate the flexibility of using robust ZK in concurrent settings. More specifically,
we show that any `-robust ZK protocol Π remains ZK under bounded composition of `′ instances
for sufficiently large `.

Recall that in the `′-bounded cZK composition of protocol Π, an adversarial verifier V ∗ par-
ticipates in `′ simultaneous executions of Π while controlling the scheduling of messages of various
sessions. For simplicity (only) we assume that all provers prove the same statement x using same
witness w and let viewΠ,n,x,w,z denote the view of V ∗(n, x, z) in this concurrent execution. We say
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that Π is `′-bounded-cZK for language L if for every such V ∗ there exists a simulator SV ∗ such
that for all x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗:

{
viewΠ,n,x,w,z

}
n,x,w,z

c
≈

{
SV ∗(n, x, z)

}
n,x,z

.

Claim 1. If a protocol Π is `-robust zero-knowledge, then it is `′-bounded cZK, for any `′ such
that `′ ·m ≤ ` where m is the length of all messages sent by the prover of protocol Π.

Proof. We show that a simple composition of individual robust-ZK simulators for each session
yields a simulator for bounded-concurrent composition of Π.

Let V ∗ be a concurrent verifier participating in `′ concurrent sessions of Π. Let S be the robust-
ZK simulator for Π. The bounded-concurrent simulator SV ∗ , on input the code of V ∗, x, and z,
proceeds as follows:

– For each session i, SV ∗ prepares the “fake” prover algorithm Si which behaves identically to the
algorithm S(n, x, code[V ∗], z) with fresh randomness and interacts with V ∗ in session i.

– SV ∗ initiates an execution of V ∗ with fresh randomness, relaying messages between V ∗ and fake
provers (S1, . . . , S`′) as in the bounded-concurrent execution.

– When V ∗ halts, SV ∗ outputs its view.

It is straightforward to see that SV ∗ runs in polynomial time since each Si and V ∗ are polynomial
time. To prove indistinguishability, consider hybrids H0, . . . ,H`′ :

Hybrid H0. The real experiment where V ∗ concurrently interacts with (P1, .., P`′), where Pi
(i ∈ [`′]) denotes the i-th prover instance of Π on input (1n, x, w).

Hybrid Hk (for (k ∈ [`′]). This hybrid is same as Hk−1 except that prover instance Pk is re-

placed by the simulator instance of Sk (defined above). Therefore, V ∗ interacts with algorithms
(S1, ..., Sk, Pk+1, ...P`′), as the “provers.”

Note that H`′ is the simulator SV ∗ . It is easy to see that each Hk is polynomial time. We prove
that Hk−1 ≈c Hk using the robust-ZK property of Π, where k ∈ [`′].

Let Bk be the following machine: Bk incorporates (S1, ..., Sk−1, Pk+1, ..., P`′), and interacts with
V ∗ in the robust-ZK experiment as follows: Bk proceeds identically to Hk−1 so that messages of
all sessions i 6= k, are received from or sent to Bk (which internally simulates Hk−1). All prover
messages of the k-th session are expected to come from an external machine, say M . If M is the
prover instance Pk, the view of V ∗ is distributed identically to Hk−1. Note that a copy of each
message of Pk in this case is also sent to Bk at the same time as V ∗; consequently, the internal
execution of Bk (which includes S1, . . . , Sk−1) continues without any problems. Likewise if M is the
simulator instance Sk, V

∗’s view is distributed identically to Hk; note that a copy of each message
of Sk (resp., Bk) in this case is also sent to Bk (resp., Sk) at the same time as V ∗. Consequently
executions of both Sk and Bk continues without any problems.

Finally, if m is the total communication from a single prover instance, the external communi-
cation to V ∗ from Bk is bounded by m`′ ≤ `; furthermore, this condition also holds from the point
of view of each Si instance internal to Bk (as desired). It follows that if Π is `-robust-ZK, it is also
`′-bounded concurrent. ut
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4.2 Constructions of `-Robust ZK

As noted earlier, Barak’s bounded cZK protocol is also `-robust ZK, although it requires non-black-
box use of hash functions [Bar01]. The variant of Barak’s technique by Goyal et al. [GOSV14] makes
only black-box use of such functions and achieves the same result.11 To summarize, we have the
following theorem from [GOSV14] (restated in our language).

Theorem 2 (Black-Box `-Robust Zero-Knowledge for NP). If there exists a family H of
collision-resistant hash functions, then for every polynomial `, there exists a constant round public
coin `-robust zero-knowledge interactive argument for NP which requires only oracle access to
functions in H.

As noted earlier, the preceding theorem is actually a corollary of the more general theorem that
proof-phase of the commit-and-prove protocol depicted in Protocol 1 is `-robust. We refer the reader
to [GOSV14] for a formal definition of “commit-and-prove” protocols. We only recall the following
properties for Protocol 1:

– The proof-phase is performed only for the statement defined by the transcript of the commit-
phase.

– For each transcript, the receiver gets only one (interactive) proof from the committer during
the proof-phase. The zero-knowledge property (as well as the implicit `-robust zero-knowledge)
is then required only for this single execution of the proof-phase. This suffices for Theorem 2
(by simply repeating the commit-phase before every proof-phase, see footnote 10).

– To get the `-robust ZK property, the length of the challenge from the verifier is modified to
be sufficiently larger than ` (as in bounded cZK in Barak [Bar01]). Note that this requires
modifying the pair language for the universal argument (and PCPP) to allow strings of length
at most `. In particular, this language is the following:
“LP = {(a = (z, r, t), (Y )) : ∃M ∈ {0, 1}∗ and ∃y ∈ {0, 1}∗ such that Y ← ECC(M),M(z, y) = r
within t steps, and |y| ≤ |r| − n.}”

where ECC(·) is a binary error correcting code tolerating a constant fraction δ > 0 of errors, M
is the description of a Turing machine and n is the security parameter. We use RLP to denote
the relation defined on LP .

To summarize, we have the following theorem (from [GOSV14]):

Theorem 3 (Black-Box `-Robust Commit-and-Prove). If there exists a family H of collision-
resistant hash functions, then for every polynomial ` and every polynomial-size circuit φ, there
exists a commit-and-prove protocol such that the commit-phase is statistically binding (with at most
two rounds), the proof-phase is a constant-round public-coin `-robust zero-knowledge interactive
argument for φ, and both phases require only oracle access to functions in H.

Remark 5. We note that [GOSV14] also provides a size-hiding commitment scheme (which cannot
be statistically-binding) along with a `-robust ZK proof-phase for every φ. However, we will not
need this version of their protocol.

11 Although only standalone case is discussed in [GOSV14], their security proof (just like Barak’s) also works for
bounded-concurrent case by increasing the length of verifier’s challenge and slightly modifying the relation for the
uarg appropriately.
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5 Straight-Line Extractable Commitments

In this section, we construct an extractable commitment scheme, assuming black-box access to
any semi-honest oblivious transfer. The construction (shown in Protocol 2) makes black-box use
of a statistically-binding commitment Com and a maliciously-secure oblivious transfer OT. For
the OT, we require (computational) indistinguishability-based security against malicious senders,
and simulation-based security (ideal/real paradigm) against malicious receivers. Such OTs can be
constructed in a black-box manner from any semi-honest OT [Hai08]. To ease the presentation, we
show in Protocol 2 a single-bit commitment, and talk about how to extend it to commit to strings
toward the end of this section (Remark 7).

Theorem 4. Protocol 2 is a straight-line extractable statistically-binding commitment scheme,
which only accesses the underlying primitives in a black-box manner.

5.1 Proof of Theorem 4

The construction is black-box as we use the black-box commit-and-prove protocol from [GOSV14]
(presented in Protocol 1 in Section 4) in the coin-tossing step. Statistically-binding property follows
directly from that of the Step-2 commitment scheme Com. Next, we focus on computationally-hiding
property and extractability.

5.1.1 Computationally-Hiding

Let σ be an arbitrary bit in {0, 1}. For any ppt receiver R∗, we denote by VR∗(n, σ) the distribution
over R∗’s view from an execution 〈C(σ), R∗〉 of Protocol 2, where the honest C commits to the
value σ to R∗. To prove the hiding property, we need to show that for any ppt machine D,

AdvDn :=
∣∣∣Pr[D

(
VR∗(n, 1)

)
= 1]− Pr[D

(
VR∗(n, 0)

)
= 1]

∣∣∣ ≤ negl(n). (1)

In the following, we prove Inequality (1) by a sequence of hybrids.

Hybrid H0(n, σ): in this hybrid, we change the way the values {si,b} are chosen. Specifically, the
hybrid does the following:

(a) It samples independently at random a bit η
$←− {0, 1} and a bit g

$←− {0, 1}.

(b) For i ∈ [n− 1] and b ∈ {0, 1}, it samples independently si,b
$←− {0, 1}.

(c) It defines sn,1−g := η ⊕ σ and

sn,g := (s1,0 ⊕ s1,1)⊕ . . .⊕ (sn−1,0 ⊕ sn−1,1)⊕ η

(d) It then uses the honest commiter’s strategy and {si,b} defined above to finish Step 2 to 6 in
Protocol 2.

(e) Once R∗ terminates, H0 gets the view VR∗0 (n, σ) of R∗ in this execution. It invokes D on input
VR∗0 (n, σ), and outputs whatever D outputs. Let H0(n, σ) also denote the output of this hybrid.

12 We remark that this step can actually happen in parallel with the OT instances in Step 3. It is put here (only)
to ease the presentation of the security proof. In Remark 6, we talk about how the proof can be modified to
accommodate the case where the Step-4 OT happens in parallel with Step 3.
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Protocol 2 `-Robust Extractable statistically-Binding Commitment
Common Input: Security parameter 1n, robustness parameter `
Auxiliary Input to C: A bit σ ∈ {0, 1} to be committed
Commit Phase:

1. C samples 2n random bits {si,b}i∈[n],b∈{0,1}, whose exclusive-or equals σ.

2. C and R involves in 2n independent executions of Com in parallel, where C commits to each values in
{si,b}i∈[n],b∈{0,1} separately. Let ci,b denote the commitment to si,b. Let di,b denote the decommitment in-
formation w.r.t. ci,b.

3. R samples independently n − 1 random bits τ1, . . . , τn−1
$←− {0, 1}n−1. C and R involves in n independent

executions of OT in parallel. For the i-th OT execution (i ∈ [n− 1]), C acts as the sender with the two private

input set to Inp
(i)
0 = di,0 and Inp

(i)
1 = di,1. R acts as the receiver with input τi. Note that at the end of this

stage R learns {di,τi}i∈[n−1]. R rejects if any of these decommitments are invalid.

4. R samples uniformly at random a bit τn
$←− {0, 1}. C and R involves in an execution of OT where C acts as the

sender with the two private input set to Inp
(n)
0 = dn,0 and Inp

(n)
1 = dn,1. R acts as the receiver with input τn.

Note that at the end of this stage R learns dn,τn . R rejects if dn,τn is not a valid decommitment w.r.t. cn,τn .12

5. C and R run a coin-tossing protocol:

(a) R samples a random string r1
$←− {0, 1}n and runs the VSS Commit Phase of Protocol 1 to generate

cr1 = VSSCom(r1). R sends cr1 .

(b) C chooses a random string r2
$←− {0, 1}n and sends r2.

(c) R sends r1 (without decommitment information)

(d) R and C run the Proof Phase of Protocol 1 with robustness parameter `(n) to prove that the string r1
sent by R in Step 5-(c) is indeed the value it committed to in Step 5-(a).

The output of the coin-tossing phase is ch = r1 ⊕ r2. For i ∈ [n], let chi denote the i-th bit of ch.

6. C sends to R the values {di,chi}i∈[n]. Note that these are the decommitments to {ci,chi}i∈[n] in Step 2. R rejects
if any of these decommitments are invalid.

Reveal Phase:

1. C sends to R the values {di,b}i∈[n],b∈{0,1} (aka all the decommitments).

2. R rejects if any of the decommitments is invalid; otherwise, R computes the decommitted value as σ = ⊕i,bsi,b.
(Note that si,b is contained in di,b.)

It is straightforward to see the values {si,b} defined above are identically distributed as in the real
execution 〈C(σ), R∗〉, i.e. they constitute random secret shares whose exclusive-or equals σ. Also,
we note that the value of g does not affect this hybrid at all, as it only introduces syntax changes.

Therefore, we have VR∗0 (n, σ)
id
= VR∗(n, σ), which implies that ∀σ ∈ {0, 1}:

Pr[D
(
VR∗(n, σ)

)
= 1] = Pr[D

(
VR∗0 (n, σ)

)
= 1] = Pr[H0(n, σ) = 1] (2)

Hybrid H1(n, σ): this hybrid is identical to H0(n, σ) except that the n-th OT (in Step 4) are re-
placed with the ideal OT functionality FOT. Concretely, in Step 4, the hybrid emulates FOT internally
in the following way:

– On the committer side, it sets Inp
(n)
0 = dn,0 and Inp

(n)
1 = dn,1 (same as the honest committer).
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– On the receiver side, it invokes the ppt ideal-world simulator SR̂
∗

with oracle access to R̂∗,
which is the residual strategy of R∗ with the view fixed up to the beginning of Step 4. Note
that the existence of S is guaranteed by the security of OT against corrupted receiver.

– During the execution, SR̂
∗

may send a bit b which is meant to the ideal-world receiver’s input
to FOT (the actually input of R∗ “extracted” by S). In this case, the hybrid responds with

Inp
(n)
b = dn,b.

– Once SR̂
∗

stops and outputs the simulated view for R̂∗, the hybrid continues to finish the
execution of Step 5-6 in the same way as in H0(n, σ). (Note that simulated view for R̂∗ contains
necessary information to recover the status of R∗ up to the end of Step 4. The hybrid can then
use it to finish the remaining steps.)

Similar as in H0, we use VR∗1 (n, σ) to denote the view of R∗ in this execution, and use H1(n, σ) to
denote the output of this hybrid. By the security of OT against malicious R∗, the VR∗1 (n, σ) should
be computationally indistinguishable from VR∗0 (n, σ). This implies that ∀σ ∈ {0, 1}:

Pr[H1(n, σ) = 1] = Pr[H0(n, σ) = 1]± negl(n) (3)

Hybrid H2(n, σ): H2(n, σ) is identical to H1(n, σ) except that it aborts and outputs a special

symbol ⊥ if b = 1− g. Recall that b is the query of SR̂
∗

in Step 4 of H1 (and also H2). Recall that
the bit g is picked uniformly at random, independent of the view of R∗. Therefore, H2 aborts with
probability exactly 1/2. This implies ∀σ ∈ {0, 1},

Pr[H2(n, σ)
)

= 1] =
1

2
· Pr[H1(n, σ)

)
= 1] (4)

Hybrid H3(n, σ): H3(n, σ) is identical to H2(n, σ) except that it aborts and outputs a special
symbol ⊥ if chn = 1 − g (note that 1 − g = b in this hybrid). recall that chn is the last bit of the
result of the Step-5 coin-tossing in H2 (and also H3). Since the output of Step-5 coin-tossing should
be pseudo-random, the probability Pr[chn = b] is negligibly close to 1/2. Thus, we have ∀σ ∈ {0, 1},

Pr[H3(n, σ)
)

= 1] =
1

2
· Pr[H2(n, σ)

)
= 1]± negl(n) (5)

where the negl(n) term is due to the negligible possibility that R∗ breaks the security of Step-5
coin-tossing.

We now finish the proof for computationally-hiding property by showing the following claim.

Claim 2. ∣∣Pr[H3(n, 1)
)

= 1]− Pr[H3(n, 0) = 1]
∣∣ ≤ negl(n) (6)

Before presenting the proof for Claim 2, let us show why it closes the proof for computationally-
hiding property of Protocol 2. First, note that Equation (2), (3), (4) and (5) imply that:∣∣Pr[D

(
VR∗(n, 1)

)
= 1]− Pr[D

(
VR∗(n, 0)

)
= 1]

∣∣
=

∣∣Pr[H0(n, 1) = 1]− Pr[H0(n, 0) = 1]
∣∣

=
∣∣Pr[H1(n, 1) = 1]− Pr[H1(n, 0) = 1]± negl(n)

∣∣
= 2 ·

∣∣Pr[H2(n, 1) = 1]− Pr[H2(n, 0) = 1]± negl(n)
∣∣

= 4 ·
∣∣Pr[H3(n, 1) = 1]− Pr[H3(n, 0) = 1]± negl(n)

∣∣
≤ 4 ·

∣∣Pr[H3(n, 1) = 1]− Pr[H3(n, 0) = 1]
∣∣± negl(n) (7)
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Combining Inequality (7) with (6) proves Inequality (1), which finishes the proof for hiding property
of Protocol 2.

In the following, we finish this part by presenting the proof for Claim 2.

Proof for Claim 2. First note that ∀σ ∈ {0, 1}, H3(n, σ) does not need to know dn,1−g, the

decommitment information for cn,1−g = Com(η ⊕ σ). That is because once the query b of SR̂
∗

or
the value chn equals 1 − g, the hybrid H3 will simply abort. Therefore, if Inequality (6) does not
hold, we can build a ppt machine Dcom that breaks the computationally-hiding property of Com.
The distinguisher Dcom runs H3 but define cn,1−g in the following way:

– It forwards two values m0 := η ⊕ 0 and m1 := η ⊕ 1 to the outsider challenger for the hiding
game of Com.

– Once it receives the commitment c∗ from the challenger, it sets cn,1−g = c∗.

Upon the halt of H3, Dcom outputs whatever H3 outputs. From the above description, it is easy to
see that if the outside challenger commits to m0, the view of R∗ is identical to that in H3(n, 0); if
the outside challenger commits to m0, the view of R∗ is identical to that in H3(n, 1). Therefore, if
Equation (6) does not hold, Dcom breaks the computationally-hiding property of Com. This finishes
the proof for Claim 2. ut

Remark 6 (The position of the Step-4 OT.). If the Step-4 OT happens in parallel with Step 3, the
hiding property can be proved using essentially the same hybrids as the above. The only place that

requires extra attention is the ideal-world simulator SR̂
∗
, which is used in H1, H2 and H3. Recall

that the ideal-world simulator only interacts with R̂∗ and does not take any other external message
except for a single reply from FOT to its query. However, when Step-3 OT happens in parallel with

Step 3, SR̂
∗

needs to feed R̂∗ other messages of the other n − 1 OT instances (the original Step-3
OTs) to finish the simulation. So we need to modify S such that it forwards those messages between
R̂∗ and the running hybrid if R̂∗ expects messages of the other OT instances. S may also need to
rewind R̂∗. In this case, S can simply reuse the same messages for the other OT instances in each

rewinding. It can be easily verified that with this modification to SR̂
∗
, all the claims regarding the

above hybrids still hold.

5.1.2 Straight-Line Extractability

At a high level, the extractor E works by biasing the outcome ch = r1⊕r2 of the Step-5 coin-tossing,
such that chi ⊕ τi = 1 for all i ∈ [n]. In this case, E learns the decommitments to all the values
{si,b}i∈[n],b∈{0,1} at the end of Commit Phase, thus being able to extract σ.

Extractor E works as follows:

1. E invokes C∗ and interacts with it using the honest receiver strategy up to the beginning of
Step 5.

2. In Step 5, E acts as follows:

(a) E runs the VSS Commit Phase of Protocol 1 to generate cr1 = VSSCom(0n). R sends cr1 .

(b) E receives from C∗ the value r2.

(c) E sends to C∗ the value r1 := r2 ⊕ (τ1‖ . . . ‖τn), where τ i = 1⊕ τi for i ∈ [n].
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(d) E invokes the (straight-line) simulator of Protocol 1, with the residual C∗ as the verifier, for
the (false) statement that cr1 is a VSSCom commitment to the value r1.

Note that the output of this (biased) coin-tossing is ch = r1 ⊕ r2, which equals τ1‖ . . . ‖τn.

3. E receives from C∗ the values {di,chi}. It aborts if any of these decommitments are invalid;
otherwise, it outputs σ = ⊕i,bsi,b. Note that if it does not abort, E learns all the {si,b} values.
Because it learns {si,τi}i∈[n] from the OT executions in Step 3 and 4; it also learns {si,τ i}i∈[n]

from the Step-6 decommitments.

4. Output: E outputs C∗’s view of the above execution along with σ.

From the above description, it is clear that E runs in expected polynomial-time, because the
simulator of Protocol 1 runs in expected polynomial time and all the remaining steps run in poly-
nomial time. Also, if C∗ does not abort, E will be able to extract the value σ. In the following, we
show that C∗’s behavior (actually its view) will not change (up to negligible probability) between
the real execution and its interaction with E .

We now show that the view output by E is computationally indistinguishable from C∗’s view
in a real execution through the following sequence of hybrids:

– Hybrid H0: This hybrid runs the real execution 〈C∗, R〉 between the (malicious) committer
C∗ and the honest receiver R. At the end of the execution, H1 outputs the view of C∗.

– Hybrid H1: this hybrid is identical to the H0 except that the zero-knowledge argument verified
by C∗ in Step 5-(d) is replaced by a simulated one using the simulator of Protocol 1.

– Hybrid H2: this hybrid is identical to H1 except that the commitment received by C∗ in Step
5-(a) is to 0n rather than to a random string r1;

– Hybrid H3: this hybrid is identical to H2 except that the value r1 in Step 5-(c) is set to
r1 := r2 ⊕ (τ1‖ . . . ‖τn), where τ i = 1 ⊕ τi. (Note that the output of this hybrid is identical to
the view of C∗ output by E).

The computational indistinguishability between (the output of) H0 and H1 can be established
by the ZK property of the proof stage of Protocol 1. The computational indistinguishability between
H1 and H2 can be established by the hiding property of the committing stage of Protocol 1 (simply
by forwarding the commitment on which these two hybrids differ to an outside challenger for the
hiding property of VSSCom).

The computational indistinguishability between H2 and H3 can be established by standard
hybrid arguments. More specifically, we consider the following intermediate hybrids:

– Hybrids H i
3 (i ∈ [n]): this hybrid is identical to H3 except that the value r1 in Step 5-(c) is set

to r1 := r2 ⊕ (τ1‖ . . . ‖τ i‖ui+1‖ . . . ‖un), where τ j = 1⊕ τj (j ∈ [i]) and uk (k ∈ {i+ 1, . . . , n})
is a random bit sampled independently.

Note that Hn
3 is identical to H3. We additional define H0

3 := H2. Then the computational indis-
tinguishability between H i−1

3 and H i
3 (∀i ∈ [n]) follows from the security of OT against malicious

senders. Concretely, the i-th OT execution is forwarded between C∗ and an external OT challenger.
If the view of C∗ between H i−1

3 and H i
3 changes in a non-negligible way, the hybrid constitutes a

ppt machine that tells the secret input of the challenger non-negligibly better than random guess.

Thus, we have H0
c
≈ H1

c
≈ H2

c
≈ H3, which finishes the proof of extractability.

This finishes the proof of Theorem 4.
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Remark 7 (Committing to Strings). One obvious approach to extend Protocol 2 to support multi-
bit strings is to commit to each bit independently in parallel. A more efficient way is to replace
the single-bit commitments in Step 2 and OTs in Step 3 and 4 with their multi-bit version. It
is straightforward to see that same proof for correctness and security holds for this the multi-bit
version.

6 Our Bounded-Concurrent OT Protocol

In this section, we prove the following theorem.

Theorem 5. Assume the existence of constant-round semi-honest oblivious transfer protocols and
collision-resistant hash functions. Let FOT be the ideal oblivious transfer functionality (Figure 1).
Then, for every polynomial m, there exists a constant-round protocol that securely computes FOT

under m-bounded concurrent composition, and it uses the underlying primitives in the black-box
way.

At a high-level, we obtain the OT claimed in Theorem 5 by replacing the statistically-binding
commitment Com in the OT of [GKP18] (denoted as GKP-OT) with a new commitment based on
Protocol 2. In the following, we will first describe the intuition behind our construction in Section
6.1, and then present our protocol in Section 6.2.

6.1 The High-Level Idea

As mentioned in the technical overview (Section 2.1), we want to employ the same simulation
technique for GKP-OT, but with an (efficient) alternative way in which the simulator can “extract”
the value committed in Com. Let us first recall the (only) two places where Com is used in GKP-OT:

1. In the very beginning (Stage 1), S (resp. R) uses Com to commit to a random set ΓS (resp.
ΓR), which is used later for cut-and-chose.

2. Next, S (resp. R) uses Com to commit to a random string aS (resp. aR) in the (Stage-2)
coin tossing, which will later be used as inputs to the parallel execution of several random OT
instances (which are in turned used for an OT-combiner stage later).

Since we now have the straight-line extractable commitment (Protocol 2) at our disposal, we may
replace Com with Protocol 2. We notice that the GKP simulator SimOT can be extended to
our setting by substituting the brute-forcing with the Protocol-2 extractor. However, this method
requires us to insert many intermediate hybrids in carefully-chosen places as we need to ensure
that the extractions happen in time, while not disturbing the adjacent hybrids. We thus take the
following alternative approach.

Our Approach. We add a new step (called Stage 0) in the beginning of GKP-OT, where S (resp.
R) commits using Protocol 2 to two random strings φS and ψS (resp. φR and ψR) of proper length.
We then continue identically as in GKP-OT with the following modifications:

– In Stage 1, when S (resp. R) needs to commit to ΓS (resp. ΓR), he simply sends φS ⊕ΓS (resp.
φR ⊕ ΓR);

– In Stage 2, when S (resp. R) needs to commit to aS (resp. aR), he simply sends ψS ⊕aS (resp.
ψR ⊕ aR).
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Intuitively, we ask both parties commit to random strings which will later be used as one-time pads
to “mask” the values they committed to by Com in the original GKP-OT. The hiding of ΓS and
aS follows straightforwardly. To allow the simulator to extract them efficiently, it is sufficient to
let SimOT use the extractor of Protocol 2 to extract φS and ψS . This can be done based on two
important properties of the extractor for Protocol 2:

1. Straight-line Extraction: this guarantees that SimOT can finish the extraction efficiently,
free of the exponential-time problem due to recursive rewinding (similar as that for concurrent
zero-knowledges [DNS98]).

2. Robustness: since Protocol 2 is based on the `-robust ZK (Section 4), its extractor inherits
the `-robustness. By setting the parameter ` carefully, we make sure that the simulator can
switch from honest receiver’s strategy to the extractor’s strategy session by session, even in the
presence of (bounded-ly) many other sessions.

Since we put the commitments to those masks in the very beginning, all the extractions can
be done before further hybrids are defined. Similar arguments also apply when the receiver is
corrupted. Therefore, we can make use of the GKP technique in a modular way to finish the proof
of Theorem 5.

6.2 Protocol Description

In our protocol, we use the following building blocks.
– The robust-extractable commitment scheme defined in Protocol 2, to which we refer as RobCom.

Note that the commitment protocol is based only on CRHFs and semi-honest OTs in a black-box
manner.

– A four-round statistically-binding extractable commitment ExtCom, which can be constructed
from one-way functions in the black-box way [Nao91, HILL99, PW09].

– A O(1)-round OT protocol mS-OT that is secure against malicious senders and semi-honest
receivers.13 As shown in [HIK+11], such a OT protocol can be obtained from any semi-honest
one in the black-box way.

– A O(1)-round parallel non-malleable commitment NMCom that is parallel k-robust for suffi-
ciently large constant k. (Concretely, we require that k is larger than the round complexity of
the above three building blocks.) Such a non-malleable commitment scheme can be constructed
from CRHFs in the black-box way [GKP18].

Our OT protocol ΠOT is described below. As explained in Section 2.1, (1) our protocol is based on
the OT protocol of [GKP18], which roughly consists of coin-tossing, semi-honest OT, OT combiner,
and cut-and-choose, and relies on non-malleable commitments to make sure adversary cannot setup
the “trapdoor statement” to be true even in the bounded-concurrent setting; and (2) our protocol
additionally uses a black-box “commit-and-prove” protocol that is `-robust-ZK for a suitably large
` to commit a string and later prove in zero-knowledge that the opened value is indeed what was
committed. Below, we give intuitive explanations in italic.

Parameters: The security parameter is n, and the bounded-concurrent composition parameter is
m := m(n).

13 We only requires mS-OT to be secure under a game-based definition (which is preserved under parallel composition).
For details, see the the proofs of Lemma 6 and Claim 8.
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The ideal OT functionality FOT interacts with a sender S and a receiver R.

– Upon receiving a message (sid, sender, v0, v1) from S, where each vi ∈ {0, 1}n, store (v0, v1).

– Upon receiving a message (sid, receiver, u) from R, where u ∈ {0, 1}, check if a (sid, sender, . . .) message was
previously sent. If yes, send (sid, vu) to R and (sid) to the adversary Sim and halt. If not, send nothing to
R.

Fig. 1. The oblivious transfer functionality FOT .

Inputs: The input to the sender S is v0, v1 ∈ {0, 1}n.The input to the receiver R is u ∈ {0, 1}.
The identities of S and R are idS , idR respectively.

Stage 0: (Extractable Commitments to Randomness)

1. Commitments to S’s randomness.

(a) S samples independently two random strings φS and ψS = ψS1 ‖ . . . ‖ψS11n of proper length
(see the comment at the end of this stage).

(b) S and R involve in 11n + 1 executions of RobCom in parallel, where S commits to φS

and ψS1 , . . . , ψ
S
11n respectively.

Note that for the ZK argument in Step 5d of Protocol 2, we set the robustness parameter to
be `(n) = m · νot(n) where νot is defined towards the end. This Proof Phase includes the
long message of Protocol 1. We call this message receiver’s long message. (Note that
although the sender commits in this step, the long message actually flows from the receiver
to the sender. Thus, it is called the receiver’s long message.)

2. Commitments to R’s randomness.

(a) R samples independently two random strings φR and ψR = ψR1 ‖ . . . ‖ψR11n of proper
length (see the comment at the end of this stage).

(b) S and R involve in 11n + 1 executions of RobCom in parallel, where R commits to φR

and ψR1 , . . . , ‖ψR11n respectively.

Note that for the ZK argument in Step 5d of Protocol 2, we set the robustness parameter
to be `(n) = m · νot(n) where νot is defined towards the end. This Proof Phase includes
the long message of Protocol 1. We call this message sender’s long message.

Comment: In step 1 of this Stage, φS will be used in Stage 1-1 as a One-Time Pad to “mask”
the sender’s secrete ΓS (which in turn is used as the sender’s challenge for cut-and-choose).
Similarly, ψS will be used in Stage 2-1 to mask the sender’s secrete aS.
Step 2 is just the symmetric execution of the same protocol where S and R exchange their role.

Stage 1: (Preprocess for cut-and-choose)

1. S samples a random subset ΓS := {γS1 , ..., γSn} ⊂ [11n] of size n.14 It then sends to R the
value ΓS ⊕ φS , i.e. the bit representation of ΓS masked by the string φS using exclusive-or.

2. R samples a random subset ΓR := {γR1 , ..., γRn } ⊂ [11n] of size n. It then sends to S the
value ΓR ⊕ φR.

14 Note that ΓS can be represented using a bit-string of length 11n.
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Comment: As in the OT protocols of [LP12, GKP18], the subsets to for the cut-and-choose
stages are committed in advance to prevent selective opening attacks.

Stage 2: Coin-tossing for sub-protocols

1. (Coin tossing for S) S samples random strings aS = (aS1 , . . . , a
S
11n). It then sends to R

the values zSi := aSi ⊕ ψSi for each i ∈ [11n]. Let dSi be the decommitments w.r.t. the Stage-
0-1 RobCom of φSi . R then sends random strings bS = (bS1 , . . . , b

S
11n) to S. S then defines

rS = (rS1 , . . . , r
S
11n) by rSi

def
= aSi ⊕ bSi for each i ∈ [11n] and parses rSi as si,0 ‖ si,1 ‖ τSi for

each i ∈ [11n].

2. (Coin tossing for R) R samples random strings aR = (aR1 , . . . , a
R
11n). It then sends to

S the values zRi := aRi ⊕ ψRi for each i ∈ [11n]. Let dRi be the decommitments w.r.t. the
Stage-0-2 RobCom of φRi . S then sends random strings bR = (bR1 , . . . , b

R
11n) to R. R then

defines rR = (rR1 , . . . , r
R
11n) by rRi

def
= aRi ⊕ bRi for each i ∈ [11n] and parses rRi as ci ‖τRi for

each i ∈ [11n].

Stage 3: (mS-OTs with random inputs)

S and R execute 11n instances of mS-OT in parallel. In the i-th instance, S uses (si,0, si,1) as
the input and τSi as the randomness, and R uses ci as the input and τRi as the randomness,
where {si,0, si,1, τSi }i and {ci, τRi }i are the random coins that were obtained in Stage 2. The
output to R is denoted by s̃1, . . . , s̃11n, which are supposed to be equal to s1,c1 , . . . , s11n,c11n .

Stage 4: (NMCom and ExtCom for checking honesty of R)

1. R commits to (aR1 , d
R
1 ), . . . (aR11n, d

R
11n) using NMCom and identity idR. Let eR1 , . . . , e

R
11n be

the decommitments.

2. R commits to (aR1 , d
R
1 , e

R
1 ), . . . (aR11n, d

R
11n, e

R
11n) using ExtCom.

Comment: Roughly, the commitments in this stage, along with the cut-and-choose in the next
stage, will be used in the security proof to argue that even cheating R must behave honestly in
most instances of mS-OT in Stage 3. A key point is that given the values that are committed to
in NMCom or ExtCom in this stage, one can obtain the random coins that R obtained in Stage
2 and thus can check whether R behaved honestly in Stage 3.

Stage 5: (Cut-and-choose against R)

1. S reveals ΓS by sending φS and the decommitment information w.r.t. Stage-0-1 RobCom of
φS .

2. For every i ∈ ΓS , R reveals (aRi , d
R
i , e

R
i ) by decommitting the i-th ExtCom commitment in

Stage 4.

3. For every i ∈ ΓS , S checks the following.

(a) ((aRi , d
R
i ), eRi ) is a valid decommitment of the i-th NMCom commitment in Stage 4.

(b) dRi is a valid decommitment of ψRi w.r.t. Stage-0-1 RobCom, and aRi ⊕ ψRi equals the
value zRi it received in Stage-2-1.

(c) R executed the i-th mS-OT in Stage 3 honestly using ci ‖ τRi , which is obtained from
rRi = aRi ⊕ bRi as specified by the protocol.
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Comment: In other words, for each index that it randomly selected in Stage 1, S checks whether
R behaved honestly in Stages 3 and 4 on that index.

Stage 6: (OT combiner) Let ∆ := [11n] \ ΓS .

1. R sends αi := u⊕ ci to S for every i ∈ ∆.

2. S computes a (6n + 1)-out-of-10n secret sharing of v0, denoted by ρ0 = (ρ0,i)i∈∆, and
computes a (6n + 1)-out-of-10n secret sharing of v1, denoted by ρ1 = (ρ1,i)i∈∆. Then, S
sends βb,i := ρb,i ⊕ si,b⊕αi to R for every i ∈ ∆, b ∈ {0, 1}.

3. R computes ρ̃i := βu,i ⊕ s̃i for every i ∈ ∆. Let ρ̃ := (ρ̃i)i∈∆.

Comment: In this stage, S and R execute OT with their true inputs by using the outputs of
mS-OT in Stage 3. Roughly speaking, this stage is secure as long as most instances of mS-OT
in Stage 3 are correctly executed.

Stage 7: (NMCom and ExtCom for checking honesty of S)

1. S commits to (aS1 , d
S
1 ), . . . (aS11n, d

S
11n) using NMCom and identity idS . Let eS1 , . . . , e

S
11n be the

decommitments.

2. S commits to (aS1 , d
S
1 , e

S
1 ), . . . (aS11n, d

S
11n, e

S
11n) using ExtCom.

Stage 8: (Cut-and-choose against S)

1. R reveals ΓR by sending φR and the decommitment information w.r.t. Stage-0-2 RobCom of
φR.

2. For every i ∈ ΓR, S reveals (aSi , d
S
i , e

S
i ) by decommitting the i-th ExtCom commitment in

Stage 7.

3. For every i ∈ ΓR, R checks the following.

(a) ((aSi , d
S
i ), eSi ) is a valid decommitment of the i-th NMCom commitment in Stage 7.

(b) dSi is a valid decommitment of ψSi w.r.t. Stage-0-2 RobCom, and aSi ⊕ψSi equals the value
zSi it received in Stage-2-2.

(c) S executed the i-th mS-OT in Stage 3 honestly using si,0 ‖ si,1 ‖ τSi , which is obtained
from rSi = aSi ⊕ bSi as specified by the protocol.

Parameter νOT: All messages of this OT protocol except the sender’s and receiver’s long messages
are called short messages. Then, νot(n) denotes the total length of all short messages of this
protocol.

Output: R outputs Value(ρ̃, ΓR ∩∆), where Value(·, ·) is the function that is defined in Fig. 2.
Comment: As in the OT protocols of [LP12, GKP18], a carefully designed reconstruction proce-
dure Value(·, ·) is used here so that the simulator can extract correct implicit inputs from cheating
S by obtaining sharing that is sufficiently “close” to ρ̃.

6.3 Security Proof

The security proof for our OT protocol is similar to that of [GKP18], except that we substitute the
“brute-force” extraction of the simulator with polynomial-time straight-line extractions to learn
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Reconstruction Procedure Value(·, ·): For a sharing s = (si)i∈∆ and a set Θ ⊂ ∆, the output of Value(s, Θ)
is computed as follows. If s is 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies si = wi for every i ∈ Θ,
then Value(s, Θ) is the value decoded from w; otherwise, Value(s, Θ) = ⊥.

Fig. 2. The function Value(·, ·).

the adversary’s secrets. As mentioned in the technical overview part, our modification does not
introduce new malleability issues, and the session-by-session substitution in the hybrids of [GKP18]
will still apply (with careful modification). We give the full security proof in Section B.

7 Our Bounded-Concurrent MPC Protocol

In this section, we prove the following theorem.

Theorem 6. Assume the existence of constant-round semi-honest oblivious transfer protocols and
collision-resistant hash functions. Let F be any well-formed functionality. Then, for every polyno-
mial m, there exists a constant-round protocol that securely computes F under m-bounded concur-
rent composition; furthermore, it uses the underlying primitives in the black-box way.

The protocol and the proofs are identical to those in [GKP18] except that we use the bounded-
concurrent secure OT protocol described in previous section. We now provide more details. We
focus on the two-party case below (the MPC case is analogous).

Protocol Description. Roughly speaking, we obtain our bounded-concurrent 2PC protocol by
composing our bounded-concurrent OT protocol in Section 6 with a UC-secure OT-hybrid 2PC
protocol. Concretely, let ΠOT be our `-bounded-concurrent OT protocol in Section 6, and ΠFOT

2PC

be a UC-secure OT-hybrid 2PC protocol with the following property: The two parties use the
OT functionality FOT only at the beginning of the protocol, and they send only randomly chosen
inputs to FOT . Then, we obtain our bounded-concurrent 2PC protocol Π2PC by replacing each
invocation of FOT in ΠFOT

2PC with an execution of ΠOT (i.e., the two parties execute ΠOT instead
of calling to FOT ), where all the executions of ΠOT are carried out in a synchronous manner, i.e.,
in a manner that the first message of all the executions are sent before the second message of any
execution is sent etc.; furthermore, the bounded-concurrency parameter for ΠOT is set to be m′

defined as follows: let ν2PC denote the length of all messages of the hybrid 2PC protocol ΠFOT
2PC

protocol (which does not include the length of messages corresponding to OT calls since we are in
the hybrid model). Then, we set m′ so that the length ` of long messages of ΠOT would be n bits
longer than νOT + ν2PC . This can be ensured by setting m′ = a ·m where a is the smallest integer
that is bigger than max(νOT/ν2PC , ν2PC/νOT).

As the UC-secure OT-hybrid 2PC protocol, we use the constant-round 2PC (actually, MPC)
protocol of Ishai et al. [IPS08], which makes only black-box use of pseudorandom generators (which
in turn can be obtained in the black-box way from any semi-honest OT protocol). (The protocol
of Ishai et al. [IPS08] itself does not satisfy the above property, but as shown in [GKP18], it can
be easily modified to satisfy it.) Since the OT-hybrid protocol of Ishai et al. [IPS08] (as well as its
modification in [GKP18]) is a black-box construction and has only constant number of rounds, our
protocol Π2PC is also a black-box construction and has only constant number of rounds.

The security of this protocol can be proved in a similar way as our OT protocol. The formal
proof is given in Section D.
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Babai, editor, 36th ACM STOC, pages 232–241. ACM Press, June 2004.

PLV12. Rafael Pass, Huijia Lin, and Muthuramakrishnan Venkitasubramaniam. A unified framework for UC
from only OT. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS,
pages 699–717. Springer, Heidelberg, December 2012.

PR03. Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party computation in a constant number
of rounds. In 44th FOCS, pages 404–415. IEEE Computer Society Press, October 2003.

PS04. Manoj Prabhakaran and Amit Sahai. New notions of security: Achieving universal composability without
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Appendix

A Additional Preliminaries

A.1 Shamir’s Secret Sharing

We first recall Shamir’s secret sharing scheme. (In this paper, we use only the (6n + 1)-out-of-
10n version of it.) To compute a (6n + 1)-out-of-10n secret sharing s = (s1, . . . , s10n) of a value

v ∈ GF (2n), we choose random a1, . . . , a6n ∈ GF (2n), let p(z)
def
= v + a1z + · · · + a6nz

6n, and
set si := p(i) for each i ∈ [10n]. Given s, we can recover v by obtaining polynomial p(·) through
interpolation and then computing p(0). We use Decode(·) to denote the function that recovers v
from s as above.

For any positive real number x ≤ 1 and any s = (s1, . . . , s10n) and s′ = (s′1, . . . , s
′
10n), we say

that s and s′ are x-close if |{i ∈ [10n] s.t. si = s′i}| ≥ x · 10n. If s and s′ are not x-close, we say
that they are (1−x)-far. Since the shares generated by (6n+ 1)-out-of-10n Shamir’s secret sharing
scheme are actually a codeword of the Reed-Solomon code with minimum relative distance 0.4, if
a (possibly incorrectly generated) sharing s is 0.8-close to a valid codeword w, we can recover w
from s efficiently by using, for example, the Berlekamp-Welch algorithm.

A.2 Commitment Schemes

Recall that a commitment scheme is a two-party protocol between a committer and a receiver. We
say that a commitment is accepting if the receiver does not abort in the commit phase, and valid
if there exists a value to which the commitment can be decommitted (i.e., if there exists a decom-
mitment that the verifier accepts in the decommit phase). The committed value of a commitment
is the value to which the commitment can be decommitted. We define the committed value of an
invalid commitment as ⊥.

There exists a two-round statistically binding commitment scheme Com based on one-way func-
tions [Nao91, HILL99], and it uses the underlying one-way function in a black-box way.

A.3 Extractable Commitment Schemes

We next recall the definition of extractable commitment schemes from [PW09]. Roughly speaking,
a commitment scheme is extractable if there exists an expected polynomial-time oracle machine,
an extractor, E such that for any adversarial committer C∗ that gives a commitment to honest
receiver, the extractor EC

∗
extracts the committed value of the commitment from C∗ as long as

the commitment is valid. We note that when the commitment is invalid, E can output an arbitrary
garbage value; this is called over-extraction.

Formally, extractable commitment schemes are defined as follows.

Definition 5 (Extractable Commitment). A commitment scheme 〈C,R〉 is extractable if there
exists an expected polynomial-time extractor E such that for any ppt committer C∗, the extractor
EC

∗
outputs a pair (τ, σ) that satisfies the following properties.

– τ is identically distributed with the view of C∗ that interacts with an honest receiver R in the
commit phase of 〈C,R〉. Let cτ be the commitment that C∗ gives in τ .

– If cτ is accepting, then σ 6= ⊥ except with negligible probability.
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– If σ 6= ⊥, then it is statistically impossible to decommit cτ to any value other than σ.

There exists a four-round extractable commitment scheme ExtCom based on one-way functions
[PW09], and it uses the underlying one-way function in a black-box way. Furthermore, ExtCom
satisfies extractability in a stronger sense: It is extractable even against adversarial committers that
give polynomially many ExtCom commitments in parallel. (The extractor outputs (τ, σ1, σ2, . . .) for
such committers.)

B Security Proof For Our OT Protocol

B.1 Simulator SimOT

To prove the security of ΠOT, we consider the following simulator SimOT. Recall that our goal is to
prove that ΠOT securely realizes FOT (see Fig. 1) under m-bounded concurrent (self) composition.
We therefore consider a simulator that works against adversaries that participate in at most (and
w.l.o.g., exactly) m sessions of ΠOT both as senders and as receivers.

Let A be any adversary that participates in m sessions of ΠOT. Our simulator SimOT internally
invokes A and simulates each of the sessions for A as follows.

When R is corrupted: In a session where the receiver R is corrupted, SimOT simulates the
sender S for A by extracting the implicit input u∗ ∈ {0, 1} from A. During the simulation, SimOT

extracts the values φR and ψR (in straight-line, using the code of A) such that it can later extract
the value ΓR and aR in Stages 1 and 2 ; the former extraction is needed to execute most instances
mS-OT in Stage 3 with true randomness (which is crucial to use their security in the analysis),
and the latter extraction is needed to infer what information A obtained in the mS-OT instances
in Stage 3 (which is crucial to extract the implicit input u∗ ∈ {0, 1} from A).

Concretely, SimOT simulates all steps of Stage 0 in the same way as an honest S, except that in
Stage 0-2, SimOT uses the strategy of the (straight-line) extractor for Protocol 2 in its interaction
with A. At the end of this Stage 0-2, it learns the value φR and ψR = ψR1 ‖ . . . ‖ψR11n committed by
A.

Remark 8. Note that SimOT can extract ΓR using φR in Stage 1-2. Likewise, in Stage 2-2 it can
extract aR using relevant parts of ψR.

Next, from Stage 1 to Stage 5, SimOT interacts with A in the same way as an honest S except
for the following.

– For the commitments from A in Stages 1-2 and 2-2, the committed subset ΓR and the committed
strings aR = (aR1 , . . . , a

R
11n) are extracted by SimOT as described in Remark 8.

SimOT then defines rR = (rR1 , . . . , r
R
11n) by rRi

def
= aRi ⊕ bRi for each i ∈ [11n] and parses rRi as

ci ‖τRi for each i ∈ [11n]. (Notice that rR is the outcome of the coin-tossing that A must have
obtained.)

– In Stage 3, the i-th mS-OT is executed with a random input and true randomness rather than
with (si,0, si,1) and τSi for every i 6∈ ΓR.

In Stage 6, SimOT interacts with A as follows.

1. Receive {αi}i∈∆ from A in Stage 6-1.

35



2. Determine the implicit input u∗ of A as follows. Let I0, I1 be the sets such that for b ∈ {0, 1}
and i ∈ ∆, we have i ∈ Ib if and only if:

– i ∈ ΓR, or

– A did not execute the i-th mS-OT in Stage 3 honestly using ci ‖ τRi as the input and
randomness, or

– ci = b ⊕ αi, and A executed the i-th mS-OT in Stage 3 honestly using ci ‖ τRi as the input
and randomness.

Abort the simulation if both of |I0| ≥ 6n + 1 and |I1| ≥ 6n + 1 hold. Otherwise, define u∗ by

u∗
def
= 0 if |I0| ≥ 6n + 1 and u∗

def
= 1 otherwise. (Roughly, |Ib| is the number of strings that A

can obtain out of {si,b⊕αi}i∈∆ by requiring S to reveal them in Stage 8, by cheating in mS-OT,
or by executing mS-OT honestly with input b⊕αi. We remind the readers that {si,b⊕αi}i∈∆ are
the strings that are used to mask ρb = (ρb,i)i∈∆ in Stage 6.)

3. Send u∗ to the ideal functionality and obtains v∗.

4. Subsequently, interact with A in the same way as an honest S assuming that the inputs to S
are vu∗ = v∗ and random v1−u∗ .

From Stage 7 to Stage 8, SimOT interacts with A in the same way as an honest S except that in
Stage 7, an all-zero string is committed in the i-th NMCom rather than (aSi , d

S
i ) for every i 6∈ ΓR,

and an all-zero string is committed in the i-th ExtCom rather than (aSi , d
S
i , e

S
i ) for every i 6∈ ΓR.

When S is corrupted: In a session where the sender S is corrupted, SimOT simulates the receiver
R for A by extracting the implicit input v∗0, v

∗
1 from A. During the simulation, SimOT extracts the

values φS and ψS (in straight-line, using the code of A) such that it can later extract the value
ΓS and aS in Stages 1 and 2; the former extraction is needed to execute most instances mS-OT
in Stage 3 with true randomness (which is crucial to use their security in the analysis), and the
latter extraction is needed to learn what input A used in the mS-OT instances in Stage 3 (which is
crucial to extract the implicit input v∗0, v

∗
1 from A).

Concretely, SimOT simulates all steps of Stage 0 in the same way as an honest R, except that in
Stage 0-1, SimOT uses the strategy of the (straight-line) extractor for Protocol 2 in its interaction
with A. At the end of this Stage 0-1, it learns the value φS and ψS = ψS1 ‖ . . . ‖ψS11n committed by
A.

Remark 9. As in Remark 8, SimOT can extract ΓS and aS in Stage 1-1 and Stage 2-1 respectively.

Next, SimOT interacts with A in the same way as an honest R in all the stages except for the
following.

– For the commitments from A in Stages 1-1, the committed subset ΓS is extracted by SimOT

as described in Remark 9.

– In Stage 3, the i-th mS-OT is executed with a random input and true randomness rather than
with ci and τRi for every i 6∈ ΓS .

– In Stage 4, an all-zero string is committed in the i-th NMCom rather than (aSi , d
S
i ) for every

i 6∈ ΓS , and an all-zero string is committed in the i-th ExtCom rather than (aSi , d
S
i , e

S
i ) for every

i 6∈ ΓS .
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– In Stage 6, αi is a random bit rather than αi = u⊕ ci for every i ∈ ∆, and ρ̃i is not computed
for any i ∈ ∆.

Then, SimOT determines the implicit inputs v∗0, v
∗
1 of A as follows.

1. For the commitments from A in Stage 2-1, the committed strings aS = (aS1 , . . . , a
S
11n) are

extracted by SimOT as described in Remark 9.

2. Define rS = (rS1 , . . . , r
S
11n) by rSi

def
= aSi ⊕ bSi for each i ∈ [11n] and parse rSi as si,0 ‖si,1 ‖τSi for

each i ∈ [11n]. (Notice that rS is the outcome of the coin-tossing that A must have obtained.)

3. Define ρextb = (ρextb,i )i∈∆ for each b ∈ {0, 1} as follows: ρextb,i
def
= βb,i ⊕ si,b⊕αi if A executed the i-th

mS-OT in stage 3 honestly using si,0 ‖si,1 ‖τSi , and ρextb,i
def
= ⊥ otherwise.

4. For each b ∈ {0, 1}, define v∗b
def
= Value(ρextb , ΓR ∩∆).

Then, SimOT sends v∗0, v
∗
1 to the ideal functionality if both of the following hold for each b ∈ {0, 1}:

1. |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n.

2. ρextb is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for every i ∈ ΓR
or 0.14-far from any such valid codeword.

Otherwise (i.e. if there exists b ∈ {0, 1}) such that one of the above does not holds), SimOT aborts
the simulation.

B.2 Proof of Indistinguishability

We show the indistinguishability by using a hybrid argument. Before defining hybrid experiments,
we define special messages, which we use in the definitions of the hybrid experiments. (Essentially,
they are the messages on extracted by the simulator in straight-line using the code of A.)

– first special message is the message sent by S in Stage 1-1 (which is supposed to be ΓS ⊕ φS).

– second special message is the message sent by R in Stage 1-2 (which is supposed to be ΓR⊕φR).

– third special message is the message sent by S in Stage 2-1 (which is supposed to be {zSi }i∈[11n]).

– fourth special message is the message sent by R in Stage 2-2 (which is supposed to be {zRi }i∈[11n]).

B.2.1 Hybrid experiments

Now, we define hybrid experiments. Let m be the bound on the number of the sessions that A
starts. Note that the number of special messages among m sessions can be bounded by 4m. We
order those 4m special messages by the order of their appearances; we use SMk to denote the k-th
special message, and s(k) to denote the session that SMk belongs to.

We start by defining hybrids H0, H∗0 and Hk:1, . . . ,Hk:7 for k ∈ [4m].( For convenience, in what
follows we occasionally denote H∗0 as H0:7.)

Remark 10 (Rough idea of the hybrids). In the sequence of the hybrid experiments, we gradually
modify the real-world experiment to the ideal-world one. We make sure that Hk:i (i ∈ [7]) deviates
from the previous hybrid only after SMk. These properties help us prove the indistinguishability of
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each neighboring hybrids by using the extracted commitment as non-uniform advice and rely on
the non-uniform security of the underlying primitives to prove indistinguishability.15 ♦

Hybrid H0. H0 is the same as the real experiment.

Hybrid H∗0 . Recall that Stage 0-1 (resp. Stage 0-2) contains 11n+ 1 (independent) parallel execu-
tions of RobCom (Protocol 2), where S (resp.R) commits to φS , ψS1 , . . . , ψ

S
11n (resp. φR, ψR1 , . . . , ψ

R
11n).

Hybrid H∗0 is identical to H0 except that for each session i ∈ [m]

– if S is corrupted, SimOT uses the (straight-line) extractor’s strategy of Protocol 2 in all the
11n+ 1 RobCom executions in Stage 0-1b;

– if R is corrupted, SimOT uses the (straight-line) extractor’s strategy of Protocol 2 in all the
11n+ 1 RobCom executions in Stage 0-2b.

Note that in hybrid H∗0 , SimOT extracts all the values φS , ψS1 , ‖ . . . , ψS11n for each session i ∈ [m]
where S is corrupted, and all the values φR, ψR1 , ‖ . . . , ψR11n for each session i ∈ [m] where R is
corrupted. With these values, the hybrid is able to

– (if S is corrupted) extract the values of ΓS and aS that S commits to in Stages 1-1 and 2-1
respectively, as described in Remark 9;

– (if R is corrupted) extracts the values of ΓR and aR that R commits to in Stages 1-2 and 2-2
respectively, as described in Remark 8;

For future use, these extracted values are stored in a global table T with the corresponding session
number.

Hybrid Hk:1. Hk:1 is the same as Hk−1:7 except that in session s(k), if S is corrupted and SMk is
first special message,

– Query table T to get the extracted value ΓS corresponding to session s(k),

– the value committed to in the i-th NMCom commitment in Stage 4 is switched to an all-zero
string for every i 6∈ ΓS ,

– the value committed to in the i-th ExtCom commitment in Stage 4 is switched to an all-zero
string for every i 6∈ ΓS .

Hybrid Hk:2. Hk:2 is the same as Hk:1 except that in session s(k), if S is corrupted and SMk is first
special message, the i-th mS-OT in Stage 3 is executed with a random input and true randomness
for every i 6∈ ΓS .

Hybrid Hk:3. Hk:3 is the same as Hk:2 except that in session s(k), if S is corrupted and SMk is
third special message, the following modifications are made.

1. Query table T to get the extracted value aS corresponding to session s(k). Define rS =

(rS1 , . . . , r
S
11n) by rSi

def
= aSi ⊕ bSi for each i ∈ [11n], and parse rSi as si,0 ‖ si,1 ‖ τSi for each

i ∈ [11n]. Define ρextb = (ρextb,i )i∈∆ for each b ∈ {0, 1} as follows: ρextb,i
def
= βb,i ⊕ si,b⊕αi if A

executed the i-th mS-OT in stage 3 honestly using si,0 ‖si,1 ‖τSi , and ρextb,i = ⊥ otherwise.

15 We remark that, unlike [GKP18], in our case it is possible to get rid of the non-uniform argument by using (a
slightly more involved) averaging argument since in our case, the extraction procedure is polynomial time. The
proof using non-uniform advice is simpler.
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2. R outputs Value(ρextu , ΓR ∩∆) rather than Value(ρ̃, ΓR ∩∆). (Recall that u is the real input to
R.) if both of the following hold for each b ∈ {0, 1}:

(a) |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n.

(b) ρextb is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for every
i ∈ ΓR or 0.15-far from any such valid codeword.

Otherwise (i.e. if there exists b ∈ {0, 1}) such that one of the above does not holds), the execution
of the hybrid is aborted.

Hybrid Hk:4. Hk:4 is the same as Hk:3 except that in session s(k), if S is corrupted and SMk is
third special message, αi is a random bit rather than αi = u ⊕ ci for every i ∈ ∆ in Stage 6-1 and
ρ̃i is no longer computed for any i ∈ ∆ in Stage 6-3.

Hybrid Hk:5. Hk:5 is the same as Hk:4 except that in session s(k), if R is corrupted and SMk is
second special message,

– Query table T to get the extracted value ΓR corresponding to session s(k),

– the value committed in the i-th NMCom commitment in Stage 7 is switched to an all-zero string
for every i 6∈ ΓR,

– the value committed in the i-th ExtCom commitment in Stage 7 is switched to an all-zero string
for every i 6∈ ΓR.

Hybrid Hk:6. Hk:6 is the same as Hk:5 except that in session s(k), if R is corrupted and SMk

is second special message, the i-th mS-OT in Stage 3 is executed with a random input and true
randomness for every i 6∈ ΓR.

Hybrid Hk:7. Hk:7 is the same as Hk:6 except that in session s(k), if R is corrupted and SMk is
fourth special message, the following modifications are made.

1. Query table T to get the extracted value aR corresponding to session s(k). Define rR =

(rR1 , . . . , r
R
11n) by rRi

def
= aRi ⊕ bRi for each i ∈ [11n], and parse rRi as ci ‖ τRi for each i ∈ [11n].

Define u∗ as follows. Let I0 and I1 be the set such that for b ∈ {0, 1} and i ∈ ∆, we have i ∈ Ib
if and only if:

– i ∈ ΓR, or

– A did not execute the i-th mS-OT in Stage 3 honestly using ci ‖ τRi as the input and
randomness, or

– ci = b ⊕ αi, and A executed the i-th mS-OT in Stage 3 honestly using ci ‖ τRi as the input
and randomness.

Abort the execution if both of |I0| ≥ 6n + 1 and |I1| ≥ 6n + 1 hold. Otherwise, define u∗ by

u∗
def
= 0 if |I0| ≥ 6n+ 1 and u∗

def
= 1.

2. In Stage 6, ρ1−u∗ is a secret sharing of a random bit rather than that of v1−u∗ .

We remark that inH4m:7, all the messages from the honest parties and their output are computed
as in SimOT.
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B.2.2 Indistinguishability of each neighboring hybrids

Below, we show that each neighboring hybrids are indistinguishable, and additionally show, for
technical reasons, that an invariant condition holds in each session of every hybrid.

First, we define the invariant condition.

Definition 6 (Invariant Condition (when R is corrupted)). For any session in which R is
corrupted, we say that the invariant condition holds in that session if the following holds when the
cut-and-choose in Stage 5 is accepted.

1. Let (âR1 , d̂
R
1 ), . . . (âR11n, d̂

R
11n) be the values that are committed in NMCom in Stage 4. Let Ibad ⊂

[11n] be the set such that i ∈ Ibad if and only if

(a) (âRi , d̂
R
i ) is not valid in terms of the check in Stage 5-3b, i.e. d̂Ri is not a valid decommitment

of ψRi w.r.t. Stage-0-2 RobCom, or âRi ⊕ψRi does not equal the value zRi it received in Stage-
2-2; or

(b) R does not execute the i-th mS-OT in Stage 3 honestly using ĉi ‖ τ̂Ri as the input and
randomness, where ĉi ‖ τ̂Ri is obtained from r̂Ri = âRi ⊕ bRi .

Then, it holds that |Ibad| < n.

Remark 11. Roughly speaking, this condition guarantees that most of the mS-OTs in Stage 3 are
honestly executed using the outcome of the coin tossing, which in turn guarantees that the cheating
receiver’s input can be extracted by extracting the outcome of the coin tossing. ♦

Remark 12. When Stage 5 is accepted, we also have Ibad ∩ ΓS = ∅ from the definition of Ibad. ♦

Definition 7 (Invariant Condition (when S is corrupted)). For any session in which S is
corrupted, we say that the invariant condition holds in that session if the following hold when the
cut-and-choose in Stage 8 is accepted.

1. Let (âS1 , d̂
S
1 ), . . . (âS11n, d̂

S
11n) be the values that are committed in NMCom in Stage 7. Let Ibad ⊂

[11n] be the set such that i ∈ Ibad if and only if

(a) (âSi , d̂
S
i ) is not valid in terms of the check in Stage 8-3b, i.e. d̂Si is not a valid decommitment

of ψSi w.r.t. Stage-0-1 RobCom, or âSi ⊕ψSi does not equal the value zSi it received in Stage-
2-1; or

(b) S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂Si as the input and
randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂Si is obtained from r̂Si = âSi ⊕ bSi .

Then, it holds that |Ibad| < 0.1n.

2. For each b ∈ {0, 1}, define ρnmb = (ρnmb,i )i∈∆ as follows: ρnmb,i
def
= βb,i ⊕ ŝi,b⊕αi if i 6∈ Ibad and

ρnmb,i
def
= ⊥ otherwise. Then, for each b ∈ {0, 1}, ρnmb is either 0.9-close to a valid codeword

w = (wi)i∈∆ that satisfies wi = ρnmb,i for every i ∈ ΓR or 0.15-far from any such valid codeword.

Remark 13. Roughly speaking, this condition guarantees that the cheating sender’s input can be
extracted from the outcome of the coin tossing. In particular, it guarantees that the sharing that is
computed from the outcome of mS-OTs (i.e., the sharing that is computed by the honest receiver)
and the sharing that is computed from the outcome of the coin tossing (i.e., the sharing that is
computed by the simulator) are very “close” (see Claim 6 below). ♦
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Remark 14. When Stage 8 is accepted, we also have Ibad ∩ ΓR = ∅ from the definition of Ibad. ♦

Next, we show that the invariant condition holds in every session inH0 (i.e., the real experiment).

Definition 8. We say that A cheats in a session if the invariant condition does not hold in that
session.

Next, we establish the computational indistinguishability among hybrids by a sequence of lem-
mata. We start with the following lemma:

Lemma 1. In H0, A does not cheat in every session except with negligible probability.

Proof. The proof of this lemma is identical to the proof in [GKP18]. We include it here for com-
pleteness.

Assume for contradiction that in H0, A cheats in a session with non-negligible probability.
Since the number of the sessions is bounded by a polynomial, there exists a function i∗(·) and a
polynomial p(·) such that for infinitely many n, A cheats in the i∗(n)-th session with probability
at least 1/p(n); furthermore, since A cheats only when either R or S is corrupted, in the i∗(n)-th
session either R is corrupted for infinitely many such n or S is corrupted for infinitely many such
n. In both cases, we derive contradiction by using A to break the hiding property of RobCom.

Case 1. R is corrupted in the i∗(n)-th session. We show that when A cheats, we can break
the hiding property of the RobCom(φS) commitment in Stage 0-1 (i.e., the commitment by which
φS is committed to). From the definition of the invariant condition (Definition 6), when A cheats,
we have |Ibad| ≥ n even though the cut-and-choose in Stage 5 is accepting (and hence Ibad∩ΓS = ∅
as remarked in Remark 12), where Ibad ⊆ [11n] is the set defined from the committed values of the
NMCom commitments in Stage 4. If we can compute Ibad efficiently, we can use it to distinguish ΓS
from a random subset of size n (this is because a random subset Γ of size n satisfies Ibad∩Γ = ∅ only
with negligible probability when |Ibad| ≥ n), so we can use it to break the hiding property of the
RobCom commitment to φS , which is used to mask ΓS . However, Ibad is not efficiently computable
since the committed values of the NMCom commitments are not efficiently computable. We thus
first show that we can “approximate” Ibad by extracting the committed values of the ExtCom
commitments in Stage 4. Details are given below.

First, we observe that if we extract the committed values of the ExtCom commitments in Stage 4
of the i∗(n)-th session, the extracted values (âR1 , d̂

R
1 , ê

R
1 ), . . . , (âR11n, d̂

R
11n, ê

R
11n), satisfy the following

condition.

– Let Îbad ⊂ [11n] be a set such that i ∈ Îbad if and only if

1. ((âRi , d̂
R
i ), êRi ) is not a valid decommitment of the i-th NMCom commitment in Stage 4; or

2. (âRi , d̂
R
i ) is not valid in terms of the check in Stage 5-3b, i.e. d̂Ri is not a valid decommitment

of ψRi w.r.t. Stage-0-2 RobCom, or âRi ⊕ ψRi does not equal the value zRi it received in
Stage-2-2; or

3. R does not execute the i-th mS-OT in Stage 3 honestly using ĉi ‖ τ̂Ri as the input and
randomness, where ĉi ‖ τ̂Ri is obtained from r̂Ri = âRi ⊕ bRi .

Then, |Îbad| ≥ n and Îbad ∩ ΓS = ∅ with probability at least 1/2p(n).
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The extracted values satisfy this condition because when A cheats, we have |Îbad| ≥ n and Îbad ∩
ΓS = ∅ except with negligible probability. (We have |Îbad| ≥ n since we have Ibad ⊂ Îbad from the
definitions of Ibad, Îbad and the binding property of NMCom. We have Îbad ∩ ΓS = ∅ since when
the cut-and-choose in Stage 5 is accepting, for every i ∈ ΓS the i-th ExtCom commitment is a valid
decommitment of the i-th NMCom commitment, and Ibad ∩ ΓS = ∅.)

Based on this observation, we derive contradiction by considering the following adversary
ARobCom against the hiding property of RobCom.

ARobCom receives a RobCom commitment c∗ in which either φ0
S or φ1

S is committed. Then,
ARobCom internally executes the experiment H0 honestly except that in the i∗(n)-th session,
ARobCom uses c∗ as the commitment in Stage 0-1 (i.e., as the RobCom commitment in which
S commits to string which will be used to mask ΓS in Stage 1-1). In Stage 1-1, ARobCom

always use φ1
S to mask ΓS . When the experiment H0 reaches Stage 4 of the i∗(n)-th session,

ARobCom extracts the committed values of the ExtCom commitments in this stage by using
its extractability.16 Let Îbad ⊂ [11n] be the set that is defined as above from the extracted
values. Then, ARobCom outputs 1 if and only if |Îbad| ≥ n and Îbad ∩ ΓS = ∅.

If ARobCom receives a commitment to φ1
S , ARobCom outputs 1 with probability at least 1/2p(n) (this

follows from the above observation). In contrast, if ARobCom receives a commitment to φ0
S , ARobCom

outputs 1 with exponentially small probability (this is because φS1 ⊕ ΓS is a pure random string
now, so the probability that |Îbad| ≥ n but Îbad ∩ Γ 1

S = ∅ is exponentially small). Hence, ARobCom

breaks the hiding property of RobCom.

Case 2. S is corrupted in the i∗(n)-th session. The proof for this case is similar to (but a
little more complex than) the one for Case 1. Specifically, we show that if the invariant condition
does not hold, we can break the hiding property of RobCom(φR) in Stage 0-2 by approximating
Ibad using the extractability of ExtCom. We give a formal proof for this case in Section C.1. (A
somewhat similar proof is given as the proof of Claim 5 later.) ut

Next, we show the indistinguishability between each neighboring hybrids.

Lemma 2. Hybrids H0 and H∗0 are indistinguishable, and in H∗0 , A does not cheat in every sessions
except with negligible probability.

Proof. We first prove the indistinguishability by a sequence of intermediate hybrids where the
RobCom is replaced one-by-one. This relies on the robust extractability of RobCom. Then, using
the established indistinguishability and the robust non-malleability of NMCom, we show that A
does not cheat in H∗0 .

We first set Ĥ0
0 = H0. Then, we define the following sequence of m intermediate hybrids:

Hybrid Ĥ i
0 (i ∈ [m]). This hybrid is identical to Ĥ i−1

0 except that in session i,

– if S is corrupted, SimOT uses the (straight-line) extractor’s strategy of Protocol 2 in all the
11n+ 1 RobCom executions in Stage 0-1b (in session i);

– if R is corrupted, SimOT uses the (straight-line) extractor’s strategy of Protocol 2 in all the
11n+ 1 RobCom executions in Stage 0-2b (in session i);

16 This extraction involves rewinding the execution of the whole experiment, i.e., the adversary as well as all the
other parties.
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It is easy to see that Ĥm
0 = H∗0 . Thus, to prove Lemma 2, we only need to show that each adjacent

Ĥ i
0 and Ĥ i+1

0 is indistinguishable and A does not cheat in Ĥ i
0 for all i ∈ [m]. For this purpose,

we provide a proof for Ĥ0
0 (i.e. H0) and Ĥ1

0 in the following Claim 3. The same argument extends
straightforwardly to other adjacent Ĥ i

0 and Ĥ i+1
0 .

Claim 3. Hybrids Ĥ0
0 and Ĥ1

0 are indistinguishable, and in Ĥ1
0 , A does not cheat in every sessions

except with negligible probability.

Proof. Note that our OT protocol contains 11n + 1 RobCom executions in Stage 0-1b (and in
Stage 0-2b). To conduct the proof, we actually need a finer-grained sequence of hybrids, which is
listed in the following. To provide an intuitive explanation, the following hybrids are obtained by
inserting 11n+1 hybrids between Ĥ0

0 and Ĥ1
0 , where the 11n+1 RobCom instances are substituted

one-by-one.

Hybrid Ĥ0:i
0 (i ∈ [11n+ 1]). this hybrid is the same as Ĥ0

0 except that

– if S is corrupted in session 1, SimOT uses the (straight-line) extractor’s strategy of Protocol 2
in the first i of the 11n+ 1 RobCom executions in Stage 0-1b;

– if R is corrupted in session 1, SimOT uses the (straight-line) extractor’s strategy of Protocol 2
in the first i of the 11n+ 1 RobCom executions in Stage 0-2b;

It is easy to see that Ĥ0:11n+1
0 = Ĥ1

0 . To prove Claim 3, we need to show that each adjacent Ĥ0:i
0

and Ĥ0:i+1
0 is indistinguishable and A does not cheat in Ĥ0:i

0 for all i ∈ [11n+ 1]. In the following,
we focus on the switch between Ĥ0:0

0 and Ĥ0:1
0 (the same argument extends to the switch from

Ĥ0:i−1
0 to Ĥ0:i

0 for all i ∈ [11n+ 1]). Concretely, in the following we prove that:

– Ĥ0:0
0 and Ĥ0:1

0 are indistinguishable, and A does not cheat in Ĥ0:1
0 .

Let us stress that the only difference between Ĥ0:0
0 and Ĥ0:1

0 lies in the first RobCom in Stage 0-1b
of session 1 (if A corrupts S in session 1), or in Stage 0-2b of session 1 (if A corrupts R in session
1).

Indistinguishability. First note that, in session 1, if no party is corrupted, Ĥ0:0
0 and Ĥ0:1

0 are identical.
So the statement holds trivially.

When one party is corrupted (S or R), we prove the indistinguishability based on the robust
extractability of RobCom.

The argument is actually identical to the proof of the extractability for Protocol 2 (Section
5.1.2), with the only difference that there are other sessions running besides the RobCom under
our consideration. To deal with this, we note that Step 5d in Protocol 2 is instantiated with the
commit-and-proof scheme shown in Protocol 1, whose Proof Phase gives us `-robustness (as we
proved in Theorem 3). In the design of our OT, we set the robustness to be `(n) = m · νot(n),
which is large enough to encompass all the messages from the remaining part of the execution.
With this modification, the same sequence of hybrids for the extractability of Protocol 2 also works
for proving indistinguishability among Ĥ0:0

0 to Ĥ0:1
0 . More specifically, we only need to modify the

switch from H0 to H1 (where we switch from the real prover to the robust-ZK simulator in Step
5d) in Section 5.1.2, by relying additional on the `-robustness. For completeness, we provide the
full proof for this switch in the following.

Assume for contradiction that the indistinguishability does not hold due to the switch from
the real prover to the robust-ZK simulator (from H0 to H1 as mentioned above). We can then
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construct a robust-ZK verifier V ∗ and a machine B, who interact with either a prover or the
simulator SZK(code[A]) and violate the robust-ZK property, as follows.

Machine B: incorporates all honest parties, including the honest party for session 1. B performs
all steps honestly for each party except the corresponding Step 5d in session 1; the messages of
this phase are expected to come from an external machine (either the prover or the simulator).
The messages of B are sent to the network which delivers them appropriately to the cheating
verifier (specified below). We note that, by definition of robust-ZK B receives a copy of all
messages that V ∗ receives.

Verifier V ∗: this algorithm is just the adversary A, with the understanding that all messages that
do not belong to the corresponding Step 5d in session 1 are viewed as external messages sent
to (or received from) machine B.

Observe that B is polynomial time, and since it receives a copy of all messages sent to V ∗ (by
the prover or the simulator), it can indeed function correctly even though it runs the simulator
algorithm for the ZK-proof stage in all sessions different from session 1. (This is not necessary
in the switch from Ĥ0

0 to Ĥ1
0 , as the only session 1 contains simulated RobCom. But it will be

important in later hybrids as more sessions contain simulated (Step 5d of) RobCom.)
Notice that if V ∗ interacts with honest prover of the robust-ZK, then this experiment is identical

to the aforementioned H0. On the other hand, if it interacts with SZK then the experiment is
identical to the aforementioned H1;17 furthermore, since SZK receives a copy of all messages that
V ∗ receives from B, it can indeed run in polynomial time.

It follows that if the output of hybrids are not indistinguishable, we violate the robust-ZK
property.

Remark 15 (On the Bound `(n)). The above argument relies on the assumption that the size of
messages coming from B to V ∗ is bounded by `(n) (the definition of `(n)-robust ZK). As a vigilant
reader may have realized already, this is not quite true for our definition of V ∗. More specifically,
consider all the messages coming from B to V ∗. There must be one long message for each session
where V ∗ plays the role of RobCom sender (note that the other long message in the same session
comes from V ∗ to B, so we do not need to worry)18. Recall that we set `(n) = m · νot(n). This is
enough to capture all the short messages, but not these long messages (from B to V ∗). This can be
resolved in the following way. Note that the long messages coming from B to V ∗ are nothing more
than random strings. Thus, we can extend V ∗ to incorporate the subroutine in B that samples these
random strings. Let us denote this extended adversary as Ṽ ∗. We modify the above argument by
passing the code of Ṽ ∗ to the ZK simulator. Now everything works as the size of messages flowing
from B to Ṽ ∗ is bounded by `(n).

Invariant Condition. We next show that in Ĥ0:1
0 , A does not cheat. Assume for contradiction that

A cheats in some session i∗(n) ∈ [m] with non-negligible probability. Note that the only difference
between Ĥ0:0

0 and Ĥ0:1
0 is that the adversary in session 1 sees a real proof in RobCom of Ĥ0:0

0 , but a
simulated one (from the straight-line extractor) in RobCom of Ĥ0:1

0 . Then, by expecting this stage

17 We stress that the H0 and H1 here are the ones as defined in Section 5.1.2, but in our current context of the
concurrent OT setting. They should not be confused with other hybrids defined in this section

18 More accurately, using our definition for B and V ∗, in any session, if S is corrupted, then V ∗ will incorporate S
and the receiver’s long massages flows from B to V ∗; if R is corrupted, the sender’s long massages flows
from B to V ∗.
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in session 1 from an external prover or simulator (RobCom extractor), we can break the robust
non-malleability of NMCom in session i∗(n). We elaborate on this argument in the following.

The man-in-the-middle adversary ANMCom internally executes Ĥ0:0
0 . If S (resp. R) is cor-

rupted in session 1, then in Stage 0-1b (resp. Stage 0-2b ) of session 1, ANMCom forward
the message between the external party, which is either the honest RobCom receiver or the
straihgt-line simulator. Also, in session i∗(n), ANMCom forwards the NMCom commitments
from A to the external receiver (specifically, the NMCom commitments in Stage 4 if R is cor-
rupted in session i∗(n), and in Stage 7 if S is corrupted in session i∗(n)). After the execution
of Ĥ0:0

0 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the values committed by
ANMCom (which are equal to the values committed to by A in session i∗(n) in the internally
executed experiment). DNMCom then outputs 1 if and only if A cheated in session i∗(n).
(Notice that given the committed values of the NMCom commitments, DNMCom can check
whether A cheated or not in polynomial time.)

When the external party mentioned above is the honest RobCom receiver, the view of A is identical
to that in Ĥ0:0

0 ; whereas when the external party mentioned above is the extractor for RobCom, the
view of A is identical to that in Ĥ0:1

0 . Hence, from the assumption that A cheats in session i∗(n)
with negligible probability in Ĥ0:0

0 but with non-negligible probability in Ĥ0:1
0 , ANMCom breaks the

robust non-malleability of NMCom.
This finishes the proof for Claim 3. ut

This finishes the proof for Lemma 2. ut

From here onwards, the proof of indistinguishability of hybrids is very similar to the proofs in
[GKP18] (with minor notational changes) except that we do not require brute-force extraction of
inputs; instead they are accessed directly from table T . We provide the proofs here for completeness.

Lemma 3. Assume that in Hk−1:7 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except
with negligible probability. Then,

– Hk−1:7 and Hk:1 are indistinguishable, and

– in Hk:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. This proof for this lemma is identical to that in [GKP18], except that the hybrid uses the
table T to get the extracted values it needs, instead of extracting by brute force. We present the
full proof here for completeness.

We prove the lemma by using a hybrid argument. Specifically, we consider the following inter-
mediate hybrid H ′k−1:7.

Hybrid H ′k−1:7. H
′
k−1:7 is the same as Hk−1:7 except that in session s(k), if S is corrupted and

SMk is first special message,

– the committed subset ΓS is extracted by querying T in Stage 1-1, and

– the value committed to in the i-th ExtCom commitment in Stage 4 is switched to an all-zero
string for every i 6∈ ΓS .

Claim 4. Assume that in Hk−1:7, A does not cheat in sessions s(k), . . . , s(4m) except with negligible
probability. Then,
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– Hk−1:7 and H ′k−1:7 are indistinguishable, and

– in H ′k−1:7, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We first show the indistinguishability between Hk−1:7 and H ′k−1:7. Assume for contradiction
that Hk−1:7 and H ′k−1:7 are distinguishable. From an average argument, we can fix the execution
of the experiment up until SMk (inclusive) in such a way that even after being fixed, Hk−1:7 and
H ′k−1:7 are still distinguishable. By considering the transcript (including the inputs and randomness
of all the parties) up until SMk and the table T as non-uniform advice, we can break the hiding
property of ExtCom as follows.

The adversaryAExtCom internally executes Hk−1:7 from SMk using the non-uniform advice. In
Stage 4 of session s(k), AExtCom sends (aRi , d

R
i , e

R
i )i 6∈ΓS and (0, 0, 0)i 6∈ΓS to the external com-

mitter, receives back ExtCom commitments (in which either (aRi , d
R
i , e

R
i )i 6∈ΓS or (0, 0, 0)i 6∈ΓS

are committed to), and feeds them into Hk−1:7. After the execution of Hk−1:7 finishes,
AExtCom outputs whatever Z outputs in the experiment.

When AExtCom receives commitments to (aRi , d
R
i , e

R
i )i 6∈ΓS , the internally executed experiment is

identical with Hk−1:7, whereas when AExtCom receives a commitments to (0, 0, 0)i 6∈ΓS , the inter-
nally executed experiment is identical with H ′k−1:7. Hence, from the assumption that Hk−1:7 and
H ′k−1:7 are distinguishable (even after being fixed up until SMk), AExtCom distinguishes ExtCom
commitments.

We next show that in H ′k−1:7, A does not cheat in sessions s(k), . . . , s(4m). Assume for con-
tradiction that in H ′k−1:7, A cheats in one of those sessions, say, session s(j), with non-negligible
probability. Then, from an average argument, we can fix the execution of the experiment up un-
til SMk (inclusive) in such a way that even after being fixed, A cheats in session s(j) only with
negligible probability in Hk−1:7 but with non-negligible probability in H ′k−1:7.

Then, by considering the transcript up until SMk and the table T as non-uniform advice, we
can break the robust non-malleability of NMCom as follows.

The man-in-the-middle adversary ANMCom internally executes Hk−1:7 from SMk using the
non-uniform advice. In Stage 4 of session s(k),ANMCom sends (aRi , d

R
i , e

R
i )i 6∈ΓS and (0, 0, 0)i 6∈ΓS

to the external committer, receives back ExtCom commitments (in which either (aRi , d
R
i , e

R
i )i 6∈ΓS

or (0, 0, 0)i 6∈ΓS are committed to), and feeds them into Hk−1:7. Also, in session s(j), ANMCom

forwards the NMCom commitments from A to the external receiver (specifically, the NMCom
commitments in Stage 4 if R is corrupted and in Stage 7 if S is corrupted). After the exe-
cution of Hk−1:7 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the values committed by
ANMCom (which are equal to the values committed to by A in session s(j) in the internally
executed experiment). DNMCom then outputs 1 if and only if A cheated in session s(j).
(Notice that given the committed values of the NMCom commitments, DNMCom can check
whether A cheated or not in polynomial time.)

When ANMCom receives commitments to (aRi , d
R
i , e

R
i )i 6∈ΓS , the internally executed experiment is

identical with Hk−1:7, whereas when ANMCom receives a commitments to (0, 0, 0)i 6∈ΓS , the internally
executed experiment is identical with H ′k−1:7. Hence, from the assumption that A cheats in session
s(j) with negligible probability in Hk−1:7 but with non-negligible probability in H ′k−1:7, ANMCom

breaks the robust non-malleability of NMCom.
This completes the proof of Claim 4. ut
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Claim 5. Assume that in H ′k−1:7, A does not cheat in sessions s(k), . . . , s(4m) except with negligible
probability. Then,

– H ′k−1:7 and Hk:1 are indistinguishable, and

– in Hk:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

This claim can be proven very similarly to Claim 4 (the only difference is that we use the hiding
property of NMCom rather than that of ExtCom in the first part, and use the non-malleability of
NMCom rather than its robust non-malleability in the second part). We thus omit the proof.

This completes the proof of Lemma 3. ut

Lemma 4. Assume that in Hk:1 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except
with negligible probability. Then,

– Hk:1 and Hk:2 are indistinguishable, and

– in Hk:2, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Recall that hybrids Hk:1, Hk:2 differ only in the input and the randomness that are used in some of
the mS-OTs in Stage 3, where those that are derived from the outcomes of the coin tossing is used
in Hk:1 and random inputs and true randomness are used in Hk:2. Intuitively, we prove this lemma
by using the security of the Stage-2-2 coin tossing (which is guaranteed by the hiding property of
RobCom(ψRi )’s) because it guarantees that the outcome of the coin tossing is pseudorandom. The
proof is quite similar to the proof of Claim 4 (we use the hiding of RobCom(ψRi )’s rather than that
of ExtCom), and given in Section C.2.

Lemma 5. Assume that in Hk:2 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except
with negligible probability. Then,

– Hk:2 and Hk:3 are indistinguishable, and

– in Hk:3, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. Recall that Hk:2 and Hk:3 differ only in that in session s(k) of Hk:3, if S is corrupted and
SMk is third special message, either R outputs Value(ρextu , ΓR ∩∆) rather than Value(ρ̃, ΓR ∩∆) or
the hybrid is aborted.

For proving the lemma, it suffices to show that in session s(k) of Hk:3,

1. the hybrid is not aborted except with negligible probability, and

2. if the hybrid is not aborted we have Value(ρextu , ΓR ∩∆) = Value(ρ̃, ΓR ∩∆)

To see that showing these two is indeed sufficient for proving the lemma, observe the following.
First, these two imply that in session s(k) of Hk:3, the probability that the hybrid is aborted or we
have Value(ρextu , ΓR ∩∆) = Value(ρ̃, ΓR ∩∆) is negligible, so Hk:2 and Hk:3 are statistically close.
Second, since Hk:2 and Hk:3 proceed identically until the end of session s(k), and

1. if the experiment is not aborted in session s(k), Hk:2 and Hk:3 continue to proceed identically
after the end of session s(k), and

2. if the hybrid is aborted in session s(k), A clearly does not cheat in any session after the end of
session s(k)
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the probability that A cheats in sessions s(k), ..., s(4m) is not increased in Hk:3.

Now, we first show that in session s(k) of Hk:3, the hybrid is not aborted except with negligible
probability. Since Hk:2 and Hk:3 proceed identically until the end of session s(k), we have that in
Hk:3, A does not cheat in session s(k) except with negligible probability. So, it suffices to show that
when session s(k) is accepting and A does not cheat in session s(k), the hybrid is not aborted in
session s(k). Recall that if A does not cheat in an accepting session (in which S is corrupted), we
have the following.

1. Let (âS1 , d̂
S
1 ), . . . (âS11n, d̂

S
11n) be the values that are committed in NMCom in Stage 7. Let Ibad ⊂

[11n] be the set such that i ∈ Ibad if and only if

(a) (âSi , d̂
S
i ) is not valid in terms of the check in Stage 8-3b, i.e. d̂Si is not a valid decommitment of

ψSi w.r.t. Stage-0-1 RobCom, or âSi ⊕ψSi does not equal the value zSi it received in Stage-2-1;
or

(b) S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂Si as the input and
randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂Si is obtained from r̂Si = âSi ⊕ bSi .

Then, it holds that |Ibad| < 0.1n.

2. For each b ∈ {0, 1}, define ρnmb = (ρnmb,i )i∈∆ as follows: ρnmb,i
def
= βb,i ⊕ ŝi,b⊕αi if i 6∈ Ibad and

ρnmb,i
def
= ⊥ otherwise. Then, for each b ∈ {0, 1}, ρnmb is either 0.9-close to a valid codeword

w = (wi)i∈∆ that satisfies wi = ρnmb,i for every i ∈ ΓR or 0.15-far from any such valid codeword.

We show that the above two imply that the hybrid is not aborted at the end of the session, i.e.
that both of the following hold for each b ∈ {0, 1}.

1. |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n.

2. ρextb is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for every i ∈ ΓR
or 0.14-far from any such valid codeword.

Fix any b ∈ {0, 1}. First, we notice that we can obtain |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n from
|Ibad| < 0.1n since we have {i ∈ ∆ s.t. ρextb,i 6= ⊥} ⊆ Ibad from the definition of ρextb and Ibad. Next,
we observe that ρextb is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i
for every i ∈ ΓR or 0.14-far from any such valid codeword. From the assumption that A does not
cheat, it suffices to consider the following two cases.

Case 1. ρnmb is 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb,i for every
i ∈ ΓR ∩ ∆: In this case, ρextb is 0.9-close to w, and wi = ρextb,i holds for every i ∈ ΓR. This is
because for every i such that ρnmb,i = wi, we have ρnmb,i 6= ⊥ and thus we have ρnmb,i = ρextb,i from the
definition of ρnmb .

Case 2. ρnmb is 0.15-far from any valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb,i
for every i ∈ ΓR ∩∆: In this case, ρextb is 0.14-far from any valid codeword w′ that satisfies
w′i = ρextb,i for every i ∈ ΓR ∩ ∆. This can be seen by observing the following: (1) for every
i ∈ ΓR ∩∆, we have i 6∈ Ibad (this is because the session is accepting) and hence ρextb,i = ρnmb,i ; (2)
therefore, for any valid codeword w′ that satisfies w′i = ρextb,i for every i ∈ ΓR ∩∆, we have that
w′ also satisfies w′i = ρnmb,i for every i ∈ ΓR ∩∆; (3) then, from the assumption of this case, ρnmb
is 0.15-far from w′; (4) now, since ρnmb and ρextb are 0.99-close (this follows from |Ibad| < 0.1n),
ρextb is 0.14-far from w′.
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We therefore conclude that when session s(k) is accepting and A does not cheat in session s(k),
the hybrid is not aborted in session s(k).

Next, we show that in session s(k) of Hk:3 if the hybrid is not aborted, we have Value(ρextu , ΓR∩
∆) = Value(ρ̃, ΓR ∩∆). To show this, it suffices to show the following two claims.

Claim 6. For any x = (xi)i∈∆,y = (yi)i∈∆ and a set Θ, we have Value(x, Θ) = Value(y, Θ) if the
following conditions hold.

1. x and y are 0.99-close, and xi = yi holds for every i ∈ Θ.

2. If xi 6= ⊥, then xi = yi.

3. x is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = xi for every i ∈ Θ or
0.14-far from any such valid codeword.

Claim 7. In session s(k) of Hk:3, if the sender S is corrupted, the session is accepting, and the
session is not aborted the following hold.

1. ρextu and ρ̃ are 0.99-close, and ρextu,i = ρ̃i holds for every i ∈ ΓR ∩∆.

2. If ρextu,i 6= ⊥, then ρextu,i = ρ̃i.

3. ρextu is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextu,i for every
i ∈ ΓR ∩∆ or 0.14-far from any such valid codeword.

We prove each of the claims below.

Proof (of Claim 6). We consider the following two cases.

Case 1. x is 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = xi for every
i ∈ Θ: First, we observe that y is 0.9-close to w. Since w is a valid codeword, we have wi 6= ⊥
for every i ∈ ∆; thus, for every i such that xi = wi, we have xi 6= ⊥. Recall that from the
assumed conditions, for every i such that xi 6= ⊥, we have xi = yi. Therefore, for every i such
that xi = wi, we have yi = wi, which implies that y is 0.9-close to w.
Next, we observe that w satisfies wi = yi for every i ∈ Θ. From the assumed conditions, we
have xi = yi for every i ∈ Θ. Also, from the condition of this case, w satisfies wi = xi for every
i ∈ Θ. From these two, we have that w satisfies wi = yi for every i ∈ Θ.
Now, from the definition of Value(·, ·), we have Value(x, Θ) = Value(y, Θ) = Decode(w).

Case 2. x is 0.14-far from any valid codeword w = (wi)i∈∆ that satisfies wi = xi for every
i ∈ Θ: For any valid codeword w′ = (w′i)i∈∆ that satisfies w′i = yi for every i ∈ Θ, we observe
that y is 0.1-far from w′. Since we assume that xi = yi holds for every i ∈ Θ, we have w′i = xi
for every i ∈ Θ. Therefore, from the assumption of this case, x is 0.14-far from w′. Now, since
we assume that x and y are 0.99-close, y is 0.1-far from w′.
Now, from the definition of Value(·, ·), we conclude that:

Value(x, Θ) = Value(y, Θ) = ⊥.

Notice that from the assumed conditions, either Case 1 or Case 2 is true. This concludes the proof
of Claim 6. ut

Proof (of Claim 7). Recall that if the hybrid is not aborted in an accepting session in which S is
corrupted, we have the following for each b ∈ {0, 1} in that session.
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1. |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n.

2. ρextb is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for every i ∈ ΓR
or 0.14-far from any such valid codeword.

Thus, it suffices to show that the above two imply the first condition in the claim statement.

First, we show that ρextu and ρ̃ are 0.99-close and that ρextu,i = ρ̃i holds for every i ∈ ΓR∩∆. From
the definition of ρextu , we have ρextu,i = ρ̃i for every i such that ρextb,i 6= ⊥ (this is because for every such
i, A executed the i-th mS-OT in Stage 3 honestly using the coin obtained in Stage 2-1, which implies
that the value s̃i that was obtained from the i-th mS-OT is equal to the value si,ci that was obtained
by extracting the coin in Stage 2-1 by brute-force). Then, since |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n and
{i ∈ ∆ s.t. ρextb,i 6= ⊥} ∩ ΓR = ∅ (the latter holds since the session would be rejected otherwise), we
have that ρextu and ρ̃ are 0.99-close and that ρextu,i = ρ̃i holds for every i ∈ ΓR ∩∆.

Next, we show that if ρextu,i 6= ⊥ then ρextu,i = ρ̃i. From the definition of ρextu , if ρextu,i 6= ⊥, A executed
the i-th mS-OT in Stage 3 honestly using the coin obtained in Stage 2-1, so we have ρextu,i = ρ̃i from
the argument same as above.

This concludes the proof of Claim 7. ut

This concludes the proof of Lemma 5. ut

Lemma 6. Assume that in Hk:3 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except
with negligible probability. Then,

– Hk:3 and Hk:4 are indistinguishable, and

– in Hk:4, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Recall that Hk:3 and Hk:4 differ only in that in session s(k) of Hk:4, if S is corrupted and SMk

is third special message, αi is a random bit rather than αi = u ⊕ ci for every i ∈ ∆ in Stage 6-1.
Intuitively, we can prove this lemma by using the security of mS-OT: For every i 6∈ ΓS , the choice bit
ci of the i-th mS-OT in Stage 3 is hidden from A and hence αi = u⊕ ci in Hk:3 is indistinguishable
from a random bit. Formally, we prove this Lemma in the same way as we do for Claim 4 (we use
the security of mS-OT rather than the hiding of ExtCom); the proof is given in Section C.3.

The next lemma is the counterpart of Lemma 3 when R is corrupted.

Lemma 7. Assume that in Hk:4 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except
with negligible probability. Then,

– Hk:4 and Hk:5 are indistinguishable, and

– in Hk:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Note that hybrids Hk:4 and Hk:5 differ only in the values committed to in NMCom and ExtCom
for the indices outside of ΓR, in session s(k), when R is corrupted. This lemma can be proven
identically with Lemma 3. For completeness, we give a formal proof in Section C.4.

Lemma 8. Assume that in Hk:5 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except
with negligible probability. Then,

– Hk:5 and Hk:6 are indistinguishable, and

– in Hk:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.
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Since hybrids Hk:5, Hk:6 differ only in the inputs and the randomness that are used in some of the
mS-OTs in Stage 3, this lemma can be proven identically with Lemma 4 (which in turn can be
proven quite similarly to Lemma 3). For completeness, we give a formal proof in Section C.5.

Lemma 9. Assume that in Hk:6 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except
with negligible probability. Then,

– Hk:6 and Hk:7 are indistinguishable, and

– in Hk:7, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We prove the lemma by considering the following intermediate hybrids H ′k:6, H ′′k:6, and H ′′′k:6.

Hybrid H ′k:6. H
′
k:6 is the same as Hk:6 except that in session s(k), if R is corrupted and SMk is

fourth special message, the following modifications are made.

1. As in Hk:7, the committed strings aR = (aR1 , . . . , a
R
11n) are extracted by querying table T ,

rR = (rR1 , . . . , r
R
11n) is defined by rRi

def
= aRi ⊕ bRi for each i ∈ [11n], and rRi is parsed as ci ‖ τRi

for each i ∈ [11n]. Also, I0, I1, and u∗ are defined as in Hk:7.

2. In Stage 6, βb,i is a random bit rather than βb,i = ρb,i⊕si,b⊕αi for every b ∈ {0, 1} and i ∈ ∆\Ib.
(Recall that, roughly, Ib ⊂ ∆ is the set of indices on which A could have obtained si,b⊕αi .)

Hybrid H ′′k:6. H
′′
k:6 is the same as H ′k:6 except that in session s(k), if R is corrupted and SMk is

fourth special message, the following modification is made.

1. The execution of the hybrid is aborted if both of |I0| ≥ 6n+ 1 and |I1| ≥ 6n+ 1 holds.

2. In Stage 6, ρ1−u∗ = {ρ1−u∗,i}i∈∆ is a secret sharing of a random bit rather than that of v1−u∗ .

Hybrid H ′′′k:6. H
′′′
k:6 is the same as H ′′k:6 except that in session s(k), if R is corrupted and SMk is

fourth special message, the following modification is made.

1. In Stage 6, βb,i is βb,i = ρb,i⊕si,b⊕αi rather than a random bit for every b ∈ {0, 1} and i ∈ ∆\Ib.

Notice that H ′′′k:6 is identical with Hk:7.

Claim 8. Assume that in Hk:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible
probability. Then,

– Hk:6 and H ′k:6 are indistinguishable, and

– in H ′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Recall that Hk:6 and H ′k:6 differ only in that in session s(k) of H ′k:6, if R is corrupted and SMk

is fourth special message, βb,i is a random bit rather than βb,i = ρb,i ⊕ si,b⊕αi for every b ∈ {0, 1}
and i ∈ ∆ \ Ib. Intuitively, we can prove this claim by using the security of mS-OT: For every
i ∈ ∆ \ Ib, A executed the i-th mS-OT honestly with choice bit (1− b)⊕αi, and the sender’s input
and randomness of this mS-OT are not revealed in Stage 8; therefore, the value of si,b⊕αi is hidden
from A and thus βb,i = ρb,i⊕ si,b⊕αi is indistinguishable from a random bit. Formally, we prove this
claim in the same way as we do for Claim 4 (we use the security of mS-OT rather than the hiding
of ExtCom); a formal proof is given in Section C.6.

Claim 9. Assume that in H ′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible
probability. Then,
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– H ′k:6 and H ′′k:6 are indistinguishable, and

– in H ′′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. Recall that hybrid H ′′k:6 differs from H ′k:6 in that in Stage 6 of session s(k), either the hybrid
is aborted or ρ1−u∗ = {ρ1−u∗,i}i∈∆ is a secret sharing of a random bit rather than that of v1−u∗ .

For proving the lemma, it suffices to show that in session s(k) of H ′′k:6, the hybrid is not aborted
(i.e. we have |I0| ≤ 6n or |I1| ≤ 6n) except with negligible probability. To see that showing this is
indeed sufficient for proving the lemma, observe the following: First, if the hybrid is not aborted,
we have |I1−u∗ | ≤ 6n, so β1−u∗,i is a random bit on at least 4n indices and thus ρ1−u∗,i is hidden
on at least 4n indices, which implies that H ′k:6 and H ′′k:6 are statistically indistinguishable. Second,
since H ′k:6 and H ′′k:6 proceed indentically until the beginning of Stage 6-2 of session s(k), and

1. if the experiment is not aborted in session s(k), H ′k:6 and H ′′k:6 continue to proceed identically
after Stage 6-2 of session s(k), and

2. if the hybrid is aborted in session s(k), A clearly does not cheat in any session after Stage 6-2
of session s(k),

the probability that A cheat in sessions s(k), ..., s(4m) is not increased in H ′′k:6.
Hence, we show that in sessoion s(k) of H ′′k:7, the hybrid is not aborted in except with negligible

probability, or equivalently, that we have |I0| ≤ 6n or |I1| ≤ 6n except with negligible probability.
Since H ′′k:7 proceeds identically with H ′k:7 until Stage 6-2 of session s(k), we have that A does not
cheat in session s(k) of H ′′k:7 except with negligible probability, so it suffices to show that in session
s(k) of H ′′k:7, we have either |I0| ≤ 6n or |I1| ≤ 6n whenever A does not cheat. Assume that A does
not cheat in session s(k) of H ′′k:7. Then, since |ΓR| = n and that the number of indices on which A
does not execute mS-OT using the outcome of coin-tossing is at most n, we have |I0 ∩ I1| ≤ 2n.
Now, since I0, I1 ⊂ ∆ and thus |I0 ∪ I1| ≤ |∆| = 10n, we have |I0|+ |I1| ≤ 12n, and hence, we have
either |I0| ≤ 6n or |I1| ≤ 6n. ut

Claim 10. Assume that in H ′′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible
probability. Then,

– H ′′k:6 and H ′′′k:6 are indistinguishable, and

– in H ′′′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. This claim can be proven identically with Claim 8. ut

This completes the proof of Lemma 9. ut

From Lemmas 3 to 9, we conclude that the output of H0 and that of H4m:7 are indistinguishable,
i.e., the output of the real world and that of the ideal world are indistinguishable. This concludes
the proof of Theorem 5.

C Omitted Proofs

C.1 The Second Half of Proof of Lemma 1

Case 2. S is corrupted in the i∗(n)-th session. We show that when A cheats, we can break
the hiding property of the RobCom(φS) commitment in Stage 0-2 (i.e., the commitment by which
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φR is committed to). From the definition of the invariant condition (Definition 7), when A cheats,
we have Ibad ∩ ΓR = ∅ and either |Ibad| ≥ 0.1n or ∃b ∈ {0, 1} s.t. ρnmb is 0.85-close to but 0.1-far
from a valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb,i for every i ∈ ΓR, where Ibad and ρnmb
are defined from the committed values of the NMCom commitments in Stage 7. Similar to Case 1,
we first show that we can “approximate” Ibad and ρnmb by extracting the committed values of the
ExtCom commitments in Stage 7 using its extractability.

First, we observe that if we extract the committed values of the ExtCom commitments in Stage 7
of the i∗(n)-th session, the extracted values, (âS1 , d̂

S
1 , ê

S
1 ), . . . , (âS11n, d̂

S
11n, ê

S
11n), satisfy the following.

– Let Îbad ⊂ [11n] be a set such that i ∈ Îbad if and only if

1. ((âS1 , d̂
S
1 ), êS1 ) is not a valid decommitment of the i-th NMCom commitment in Stage 7, or

2. (âSi , d̂
S
i ) is not valid in terms of the check in Stage 8-3b, i.e. d̂Si is not a valid decommitment of

ψSi w.r.t. Stage-0-1 RobCom, or âSi ⊕ψSi does not equal the value zSi it received in Stage-2-1;
or

3. S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂Si as the input and
randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂Si is obtained from r̂Si = âSi ⊕ bSi .

Also, for each b ∈ {0, 1}, let ρ̂b = (ρ̂b,i)i∈∆ be defined as follows: ρ̂b,i
def
= βb,i ⊕ ŝi,b⊕αi if i 6∈ Îbad

and ρ̂b,i
def
= ⊥ otherwise. Then, we have

• Îbad ∩ ΓR = ∅, and

• either |Îbad| ≥ 0.1n or there exists b ∈ {0, 1} such that ρ̂b is 0.8-close to but 0.1-far from a
valid codeword w = (wi)i∈∆ that satisfies wi = ρ̂b,i for every i ∈ ΓR

with probability at least 1/2p(n).

More precisely, we observe that when A cheats in the i∗(n)-th session, the extracted values satisfied
the above condition except with negligible probability. Recall that when A cheats, the cut-and-
choose in Stage 8 is accepting but we have

– |Ibad| ≥ 0.1n, or

– ∃b ∈ {0, 1} s.t. ρnmb is 0.85-close to but 0.1-far from a valid codeword w = (wi)i∈∆ that satisfies
wi = ρnmb,i for every i ∈ ΓR.

Also, notice that we have Îbad ∩ ΓR = ∅ when the cut-and-choose in Stage 8 is accepting, and
have |Îbad| ≥ 0.1n when |Ibad| ≥ 0.1n (this is because we have Ibad ⊆ Îbad from the definitions of
Ibad, Îbad). Hence, to show that the extracted values satisfy the above condition when A cheats, it
suffices to show that when ∃b∗ ∈ {0, 1} s.t. ρnmb∗ is 0.85-close to but 0.1-far from a valid codeword

w = (wi)i∈∆ that satisfies wi = ρnmb∗,i for every i ∈ ΓR, we have either |Îbad| ≥ 0.1n or ρ̂b∗ is 0.8-close
to but 0.1-far from w and satisfies wi = ρ̂b∗,i for every i ∈ ΓR. This can be shown as follows.

– If |Îbad| ≥ 0.1n, we are done.

– If |Îbad| < 0.1n, we have that ρ̂b∗ is 0.8-close to but 0.1-far from w and satisfies wi = ρ̂b∗,i for

every i ∈ ΓR. This is because if |Îbad| < 0.1n,

1. ρ̂b∗ is 0.8-close to w since it is 0.99-close to ρnmb∗ when |Îbad| < 0.1n, and ρnmb∗ is 0.85-close
to w,
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2. ρ̂b∗ is 0.1-far from w since for every i such that ρnmb∗,i 6= wi, we have ρ̂b∗,i 6= wi from the
definition of ρ̂, and

3. ρ̂b∗ satisfies wi = ρ̂b∗,i for every i ∈ ΓR since we have ρ̂b∗,i = ρnmb∗,i for every i ∈ ΓR when the
cut-and-choose in Stage 8 is accepting, and ρnmb∗ satisfies wi = ρnmb∗,i for every i ∈ ΓR.

Based on this observation, we derive contradiction by considering the following adversary
ARobCom against the hiding property of RobCom.

ARobCom receives a RobCom commitment c∗ in which either φ0
R or φ1

R is committed. Then,
ARobCom internally executes the experiment H0 honestly except that in the i∗(n)-th session,
ARobCom uses c∗ as the commitment in Stage 0-2 (i.e., as the RobCom commitment in which
R commits to string which will be used to mask ΓR in Stage 1-2). In Stage 1-2, ARobCom

always use φ1
R to mask ΓR. When the experiment H0 reaches Stage 7 of the i∗(n)-th session,

ARobCom extracts the committed values of the ExtCom commitments in this stage by using
its extractability. Let Îbad and ρ̂b (b ∈ {0, 1}) be defined as above from the extracted values.
Then, ARobCom outputs 1 if and only if

– Îbad ∩ ΓR = ∅, and

– either |Îbad| ≥ 0.1n or there exists b ∈ {0, 1} such that ρ̂b is 0.8-close to but 0.1-far from
a valid codeword w = (wi)i∈∆ that satisfies wi = ρ̂b,i for every i ∈ ΓR.

When ARobCom receives a commitment to φ1
R, ARobCom outputs 1 with probability 1/2p(n) (this

follows from the above observation). It thus suffices to see that whenARobCom receives a commitment
to φ0

R, ARobCom outputs 1 with exponentially small probability. This can be seen by noting that
φR1 ⊕ΓR is a pure random string now, and thus the following probabilities are exponentially small.

1. the probability that |Îbad| ≥ 0.1n but Îbad ∩ ΓR = ∅

2. the probability that there exists b ∈ {0, 1} such that ρ̂b is 0.8-close to but 0.1-far from a valid
codeword w = (wi)i∈∆ that satisfies wi = ρ̂b,i for every i ∈ ΓR

Hence, ARobCom breaks the hiding property of RobCom.

C.2 Proof of Lemma 4

Proof. Recall that hybrids Hk:1, Hk:2 differ only in the input and the randomness that are used
in some of the mS-OTs in Stage 3, where those that are derived from the outcomes of the coin
tossing is used in Hk:1 and random inputs and true randomness are used in Hk:2. We first show the
indistinguishability between Hk:1 and Hk:2, relying on the hiding property of RobCom.

Assume for contradiction that Hk:1 and Hk:2 are distinguishable. We build an efficient adversary
ARobCom that breaks the hiding property of RobCom.

The adversary ARobCom internally executes Hk:1 with the following modification: in Stage
0-2 of session s(k), it picks two random strings ψR = ψR1 ‖ . . . , ψR11n and ψ̃R = ψ̃R1 ‖ . . . , ψ̃R11n

and sends {ψRi }i/∈ΓS and {ψ̃Ri }i/∈ΓS to the external committer and receives back RobComfR

commitments (in which either {ψRi }i/∈ΓS or {ψ̃Ri }i/∈ΓS are committed in parallel). Then in
Stage 2-2 of session s(k), ARobCom always use ψRi ’s to mask aRi (i.e. zRi := aRi ⊕ ψRi for
all i ∈ [11n]). in the subsequent stages, A proceeds the experiment as in Hk:1. After the
execution of Hk:1 finishes, ARobCom outputs whatever Z outputs in the experiment.
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When ARobCom receives commitments to {ψRi }i 6∈ΓS , the internally executed experiment is identical
with Hk:1, whereas when ARobCom receives commitments to {ψ̃Ri }i 6∈ΓS , the internally executed ex-
periment is identical with Hk:2 (this is because when ARobCom receives commitments to (ψ̃Ri )i 6∈ΓS ,
the values zRi = ψRi ⊕ aRi (thus the values rRi = aRi ⊕ bRi ) for each i 6∈ ΓS are uniformly random
for A. Hence the mS-OT for each i 6∈ ΓS is executed with a random input and true randomness).
Hence, from the assumption that Hk:1 and Hk:2 are distinguishable, ARobCom distinguishes RobCom
commitments.

We next show that in Hk:2, A does not cheat in sessions s(k), . . . , s(4m). Assume for contradic-
tion that in Hk:2, A cheats in one of those sessions, say, session s(j), with non-negligible probability.
Then, from an average argument, we can fix the execution of the experiment up until SMk (inclusive)
in such a way that even after being fixed, A cheats in session s(j) only with negligible probability
in Hk:1 but with non-negligible probability in Hk:2. Then, we can break the robust non-malleability
of NMCom as follows.

The adversary ANMCom, who interacts with a committer of RobCom and a receiver of
NMCom, internally executes Hk:1 from SMk using the non-uniform advice. In Stage 0-
2 of session s(k), ANMCom chooses random strings ψ̃R = ψ̃R1 ‖ . . . ‖ψ̃R11n in addition to
ψR = ψR1 ‖ . . . ‖ψR11n, sends {ψRi }i 6∈ΓS and {ψ̃Ri }i 6∈ΓS to the external committer and receives
back parallel RobCom commitments (in which either {ψRi }i 6∈ΓS or {ψ̃Ri }i 6∈ΓS are committed
to), and feeds them into Hk:1. Then in Stage 2-2 of session s(k), ANMCom always use ψRi ’s
to mask aRi (i.e. zRi := aRi ⊕ψRi for all i ∈ [11n]). Also, in session s(j), ANMCom forwards the
NMCom commitments from A to the external receiver. After the execution of Hk:1 finishes,
ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the values committed by
ANMCom (which are equal to the values committed to by A in session s(j) in the internally
executed experiment). DNMCom then outputs 1 if and only if A cheated in session s(j).

When ANMCom receives commitments to {ψRi }i 6∈ΓS , the internally executed experiment is identi-
cal with Hk:1, whereas when ACom receives commitments to {ψ̃Ri }i 6∈ΓS , the internally executed
experiment is identical with Hk:2. Hence, from the assumption that A cheats in session s(j) with
negligible probability in Hk:1 but with non-negligible probability in Hk:2, ANMCom breaks the robust
non-malleability of NMCom.

This completes the proof of Lemma 4. ut

C.3 Proof of Lemma 6

Proof. Recall that Hk:3 and Hk:4 differ only in that in session s(k) of Hk:4, if S is corrupted and
SMk is third special message, αi is a random bit rather than αi = u ⊕ ci for every i ∈ ∆ in Stage
6-1.

We first show the indistinguishability between Hk:3 and Hk:4. Intuitively, the indistinguishability
follows from the security of mS-OT: For every i 6∈ ΓS , the choice bit ci of the i-th mS-OT in Stage
3 is hidden from A and hence αi = u⊕ ci in Hk:3 is indistinguishable from a random bit. Formally,
we consider the following security game against cheating sender S∗ of mS-OT.

The cheating sender S∗ first participates in 10n instances of mS-OTs in parallel with an
honest receiver R, who uses a random input ci ∈ {0, 1} in the i-th instance. After the
execution with R, S∗ receives either the choice bits {ci} or random bits and then guesses
which is the case. If S∗ guesses correctly, we say that S∗ wins the game.
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From the security of mS-OT against malicious senders, any cheating S∗ wins the game with proba-
bility at most 1/2+negl(n). Now, we assume for contradiction thatHk:3 andHk:4 are distinguishable,
and we derive a contradiction by constructing an adversary who wins the above game with prob-
ability non-negligibly higher than 1/2. From an average argument, we can fix the execution of the
experiment up until SMk (inclusive) in such a way that even after being fixed, Hk:3 and Hk:4 are still
distinguishable. Then, by considering the transcript up until SMk and the table T as non-uniform
advice, we can obtain an adversary who wins the above game with probability non-negligibly higher
than 1/2 as follows.

The adversary AOT internally executes Hk:3 from SMk using the non-uniform advice. In
Stage 3 of session s(k), AOT executes the i-th mS-OT by itself for every i ∈ ΓS but obtains
the other 10n instances of mS-OT from the external receiver. (Recall that in Hk:3, the subset
ΓS is extracted in Stage 1-1.) Then, in Stage 6 of session s(k), AOT receives bits {c∗i }i∈∆
from the external receiver and uses them to compute {α}i∈∆, i.e., αi

def
= u ⊕ c∗i . After the

execution of Hk:3 finishes, AOT outputs whatever Z outputs in the experiment.

When AOT receives the choice bits of the mS-OTs as {c∗i }i∈∆, the internally executed experiment is
identical with Hk:3, whereas when AOT receives random bits as {c∗i }i∈∆, the internally executed ex-
periment is identical with Hk:4. Hence, from the assumption that Hk:3 and Hk:4 are distinguishable,
AOT wins the game with probability non-negligibly higher than 1/2.

We next show that in Hk:4, A does not cheat in sessions s(k), . . . , s(4m). (The argument below
is similar to the one in the proof of Lemma 3.) Assume for contradiction that in Hk:4, A cheats
in one of those sessions, say, session s(j), with non-negligible probability. Then, from an average
argument, we can fix the execution of the experiment up until SMk (inclusive) in such a way that
even after being fixed, A cheats in session s(j) only with negligible probability in Hk:3 but with
non-negligible probability in Hk:4. Then, by considering the transcript up until SMk and the table
T as non-uniform advice, we can break the robust non-malleability of NMCom as follows.

The adversary ANMCom, who participates in the above game of mS-OT while interacting
with a receiver of NMCom, internally executes Hk:3 from SMk using the non-uniform advice.
In Stage 3 of session s(k), AOT executes the i-th mS-OT by itself for every i ∈ ΓS but
obtains the other 10n instances of mS-OT from the external receiver. Then, in Stage 6 of
session s(k), AOT receives bits {c∗i }i∈∆ from the external receiver and uses them to compute

{α}i∈∆, i.e., αi
def
= u⊕ c∗i . Also, in session s(j), ANMCom forwards the NMCom commitments

from A to the external receiver. After the execution of Hk:3 finishes, ANMCom outputs its
view.

The distinguisher DNMCom takes as input the view of ANMCom and the values committed by
ANMCom (which are equal to the values committed to by A in session s(j) in the internally
executed experiment). DNMCom then outputs 1 if and only if A cheated in session s(j).

When AOT receives the choice bits of the mS-OTs as {c∗i }i∈∆, the internally executed experiment
is identical with Hk:3, whereas when AOT receives random bits as {c∗i }i∈∆, the internally executed
experiment is identical with Hk:4. Hence, from the assumption that A cheats in session s(j) with
negligible probability in Hk:3 but with non-negligible probability in Hk:4, ANMCom breaks the robust
non-malleability of NMCom.

This completes the proof of Lemma 6. ut
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C.4 Proof of Lemma 7

Proof. Recall that hybrids Hk:4, Hk:5 differ only in the values committed to in NMCom and ExtCom
for the indices outside of ΓR. Since the binding property of RobCom guarantees that the subset
opened in Stage 7 is equal to ΓR, those commitments are never opened, and the check in Stage 8
does not fail in both hybrids.

We prove the lemma by using a hybrid argument. Specifically, we consider the following inter-
mediate hybrid H ′k:5.

– H ′k:5 is the same as Hk:4 except that in session s(k), if R is corrupted and SMk is second special
message,

• the committed subset ΓR is extracted by querying the table T , and

• the value committed in the i-th ExtCom commitment in Stage 7 is switched to an all-zero
string for every i 6∈ ΓR.

Claim 11. Assume that in Hk:4, A does not cheat in sessions s(k), . . . , s(4m) except with negligible
probability. Then,

– Hk:4 and H ′k:5 are indistinguishable, and

– in H ′k:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We first show the indistinguishability between Hk:4 and H ′k:5. Assume for contradiction
that Hk:4 and H ′k:5 are distinguishable. From an average argument, we can fix the execution of the
experiment up until SMk (inclusive) in such a way that even after being fixed, Hk:4 and H ′k:5 are still
distinguishable. Then, by considering the transcript up until SMk and the table T as non-uniform
advice, we can break the hiding property of ExtCom as follows.

The adversary AExtCom internally executes Hk:4 from SMk using the non-uniform advice. In
Stage 7 of session s(k), AExtCom sends (aSi , d

S
i , e

S
i )i 6∈ΓR and (0, 0, 0)i 6∈ΓR to the external com-

mitter, receives back ExtCom commitments (in which either (aSi , d
S
i , e

S
i )i 6∈ΓR or (0, 0, 0)i 6∈ΓR

are committed to), and feeds them into Hk:4. After the execution of Hk:4 finishes, AExtCom

outputs whatever Z outputs in the experiment.

When AExtCom receives commitments to (aSi , d
S
i , e

S
i )i 6∈ΓR , the internally executed experiment is

identical with Hk:4, whereas when AExtCom receives a commitments to (0, 0, 0)i 6∈ΓR , the internally
executed experiment is identical with H ′k:5. Hence, from the assumption that Hk:4 and H ′k:5 are
distinguishable (even after being fixed up until SMk), AExtCom distinguishes ExtCom commitments.

We next show that in H ′k:5, A does not cheat in sessions s(k), . . . , s(4m). Assume for contradic-
tion that in H ′k:5, A cheats in one of those sessions, say, session s(j), with non-negligible probability.
Then, from an average argument, we can fix the execution of the experiment up until SMk (inclusive)
in such a way that even after being fixed, A cheats in session s(j) only with negligible probability
in Hk:4 but with non-negligible probability in H ′k:5. Then, by considering the transcript up until
SMk and the table T as non-uniform advice, we can break the robust non-malleability of NMCom
as follows.

The man-in-the-meddle adversary ANMCom internally executes Hk:4 from SMk using the non-
uniform advice. In Stage 7 of session s(k), ANMCom sends (aSi , d

S
i , e

S
i )i 6∈ΓR and (0, 0, 0)i 6∈ΓR to

the external committer, receives back ExtCom commitments (in which either (aSi , d
S
i , e

S
i )i 6∈ΓR
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or (0, 0, 0)i 6∈ΓR are committed to), and feeds them into Hk:4. Also, in session s(j), ANMCom

forwards the NMCom commitments from A to the external receiver. After the execution of
Hk:4 finishes, ANMCom outputs its view.

The distinguisher DNMCom takes as input the view of ANMCom and the values committed by
ANMCom (which are equal to the values committed to by A in session s(j) in the internally
executed experiment). DNMCom then outputs 1 if and only if A cheated in session s(j).

When ANMCom receives commitments to (aSi , d
S
i , e

S
i )i 6∈ΓR , the internally executed experiment is

identical with Hk:4, whereas when ANMCom receives a commitments to (0, 0, 0)i 6∈ΓR , the internally
executed experiment is identical with H ′k:5. Hence, from the assumption that A cheats in session
s(j) with negligible probability in Hk:4 and H ′k:5, ANMCom breaks the non-malleability of NMCom.

ut

Claim 12. Assume that in H ′k:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible
probability. Then,

– H ′k:5 and Hk:5 are indistinguishable, and

– in Hk:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We first notice that the indistinguishability between H ′k:5 and Hk:5 can be shown as in the
proof of Claim 11. (The only difference is that we use the hiding property of NMCom rather than
that of ExtCom.)

We next show that in Hk:5, A does not cheat in sessions s(k), . . . , s(4m). Assume for contradic-
tion that in Hk:5, A cheats in one of those sessions, say, session s(j), with non-negligible probability.
Then, from an average argument, we can fix the execution of the experiment up until SMk (inclusive)
in such a way that even after being fixed, A cheats in session s(j) only with negligible probability in
H ′k:5 but with non-negligible probability in Hk:5. Then, by considering the transcript up until SMk

and the table T as non-uniform advice, we can break the non-malleability of NMCom as follows.

The man-in-the-meddle adversary ANMCom internally executes H ′k:5 from SMk using the
non-uniform advice. In Stage 7 of session s(k), ANMCom sends (aSi , d

S
i )i 6∈ΓR and (0, 0)i 6∈ΓR to

the external committer, receives back NMCom commitments (in which either (aSi , d
S
i )i 6∈ΓR

or (0, 0)i 6∈ΓR are committed to), and feeds them into H ′k:5. Also, in session s(j), ANMCom

forwards the NMCom commitments from A to the external receiver. After the execution of
H ′k:5 finishes, ANMCom outputs its view.

The distinguisher DNMCom takes as input the view of ANMCom and the values committed by
ANMCom (which are equal to the values committed to by A in session s(j) in the internally
executed experiment). DNMCom then outputs 1 if and only if A cheated in session s(j).

WhenANMCom receives commitments to (aSi , d
S
i )i 6∈ΓR , the internally executed experiment is identical

with H ′k:5, whereas when ANMCom receives a commitments to (0, 0)i 6∈ΓR , the internally executed
experiment is identical with Hk:5. Hence, from the assumption that A cheats in session s(j) with
negligible probability in H ′k:5 but with non-negligible probability in Hk:5, ANMCom breaks the non-
malleability of NMCom. ut

This completes the proof of Lemma 7. ut
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C.5 Proof of Lemma 8

Proof. Recall that hybrids Hk:5, Hk:6 differ only in the inputs and the randomness that are used in
some of the mS-OTs in Stage 3, where those that are derived from the outcomes of the coin tossing
is used in Hk:5 and random inputs and true randomness are used in Hk:6.

First, we show the indistinguishability. Assume for contradiction that Hk:5 and Hk:6 are compu-
tationally distinguishable. We build an efficient adversary ARobCom that breaks the hiding property
of RobCom.

The adversary ARobCom internally executes Hk:5 with the following modification: in Stage
0-1 of session s(k), it picks two random strings ψS = ψS1 ‖ . . . , ψS11n and ψ̃S = ψ̃S1 ‖ . . . , ψ̃S11n

and sends {ψSi }i/∈ΓR and {ψ̃Si }i/∈ΓR to the external committer and receives back RobCom

commitments (in which either {ψSi }i/∈ΓR or {ψ̃Si }i/∈ΓR are committed in parallel). Then in
Stage 2-1 of session s(k), ARobCom always use ψSi ’s to mask aSi (i.e. zSi := aSi ⊕ ψSi for
all i ∈ [11n]). in the subsequent stages, A proceeds the experiment as in Hk:1. After the
execution of Hk:1 finishes, ARobCom outputs whatever Z outputs in the experiment.

When ARobCom receives commitments to {ψSi }i 6∈ΓR , the internally executed experiment is identical
with Hk:5, whereas when ARobCom receives commitments to {ψ̃Si }i 6∈ΓR , the internally executed ex-
periment is identical with Hk:6 (this is because when ARobCom receives commitments to (ψ̃Si )i 6∈ΓR ,
the values zSi = ψSi ⊕ aSi (thus the values rSi = aSi ⊕ bSi ) for each i 6∈ ΓR are uniformly random
for A. Hence the mS-OT for each i 6∈ ΓR is executed with a random input and true randomness).
Hence, from the assumption that Hk:5 and Hk:6 are distinguishable, ARobCom distinguishes RobCom
commitments.

We next show that in Hk:6, A does not cheat in sessions s(k), . . . , s(4m). Assume for contradic-
tion that in Hk:6, A cheats in one of those sessions, say, session s(j), with non-negligible probability.
Then, from an average argument, we can fix the execution of the experiment up until SMk (inclusive)
in such a way that even after being fixed, A cheats in session s(j) only with negligible probability
in Hk:5 but with non-negligible probability in Hk:6. Then, we can break the robust non-malleability
of NMCom as follows.

The adversary ANMCom, who interacts with a committer of RobCom and a receiver of
NMCom, internally executes Hk:5 from SMk using the non-uniform advice. In Stage 0-1
of session s(k), ANMCom chooses random strings ψ̃S = ψ̃S1 ‖ . . . ‖ψ̃S11n in addition to ψS =
ψS1 ‖ . . . ‖ψS11n, sends {ψSi }i 6∈ΓR and {ψ̃Si }i 6∈ΓR to the external committer and receives back
parallel RobCom commitments (in which either {ψSi }i 6∈ΓR or {ψ̃Si }i 6∈ΓR are committed to),
and feeds them into Hk:5. Then in Stage 2-1 of session s(k), ANMCom always use ψSi ’s to
mask aSi (i.e. zSi := aSi ⊕ ψSi for all i ∈ [11n]). Also, in session s(j), ANMCom forwards the
NMCom commitments from A to the external receiver. After the execution of Hk:5 finishes,
ANMCom outputs its view.

The distinguisher DNMCom takes as input the view of ANMCom and the values committed by
ANMCom (which are equal to the values committed to by A in session s(j) in the internally
executed experiment). DNMCom then outputs 1 if and only if A cheated in session s(j).

When ANMCom receives commitments to {ψSi }i 6∈ΓR , the internally executed experiment is identi-
cal with Hk:1, whereas when ACom receives commitments to {ψ̃Si }i 6∈ΓR , the internally executed
experiment is identical with Hk:6. Hence, from the assumption that A cheats in session s(j) with
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negligible probability in Hk:5 but with non-negligible probability in Hk:6, ANMCom breaks the robust
non-malleability of NMCom.

This completes the proof of Lemma 8. ut

C.6 Proof of Claim 8

Proof. Recall that Hk:6 and H ′k:6 differ only in that in session s(k) of H ′k:6, if R is corrupted and
SMk is fourth special message, βb,i is a random bit rather than βb,i = ρb,i⊕si,b⊕αi for every b ∈ {0, 1}
and i ∈ ∆ \ Ib.

First, we show the indistinguishability between Hk:6 and H ′k:6. Roughly, we prove the indis-
tinguishability using the security of mS-OT: For every i ∈ ∆ \ Ib, A executed the i-th mS-OT
honestly with choice bit (1− b)⊕αi, and the sender’s input and randomness of this mS-OT are not
revealed in Stage 8; therefore, the value of si,b⊕αi is hidden from A and thus βb,i = ρb,i ⊕ si,b⊕αi
is indistinguishable from a random bit. Formally, we consider the following security game against
cheating receiver R∗ of mS-OT.

The cheating receiver R∗ gets random input-randomness pairs (ci, τ
R
i )i of mS-OT instances

as input. R∗ then participates in 9n instances of mS-OTs in parallel with an honest sender
S, who uses a random input (si,0, si,1) in the i-th instance. After the execution with S, R∗

receives bits (s∗i,0, s
∗
i,1)i that are defined as follows: Let b∗ ∈ {0, 1} be a randomly chosen bit;

if b∗ = 0, then for every i, s∗i,0
def
= si,0 and s∗i,1

def
= si,1; if b∗ = 1, then for every i such that R∗

behaved honestly in the i-th mS-OT using (ci, τ
R
i ) as input and randomness, s∗i,ci

def
= si,ci but

s∗i,1−ci is a random bit, and for every other i, s∗i,0
def
= si,0 and s∗i,1

def
= si,1. Then, R∗ guesses

the value of b∗, and if the guess is correct, we say that R∗ wins the game.

From the security of mS-OT against semi-honest receivers, any cheating R∗ wins the game with
probability at most 1/2 + negl(n). Now, we assume for contradiction that Hk:6 and H ′k:6 are distin-
guishable, and we derive a contradiction by constructing an adversary who wins the above game
with probability non-negligibly higher than 1/2. From an average argument, we can fix the exe-
cution of the experiment up until SMk (inclusive) in such a way that even after being fixed, Hk:6

and H ′k:6 are still distinguishable. Then, by considering the transcript up until SMk and the table
T as non-uniform advice, we can obtain an adversary who wins the above game with probability
non-negligibly higher than 1/2 as follows.

The adversary R∗ gets random input-randomness pairs (ci, τ
R
i )i∈∆\ΓR of mS-OT instances

as its input, and internally executes H ′k:6 from SMk using the non-uniform advice. In Stage
2-2, R∗ chooses bR = (bR1 , . . . , b

R
11n) in such a way that rR = (rR1 , . . . , r

R
11n) satisfies rRi =

ci ‖ τRi for every i ∈ ∆ \ ΓR, namely, chooses bR such that bRi = aRi ⊕ (ci ‖ τRi ) for every
i ∈ ∆ \ ΓR. (Recall that in H ′k:6, the subset ΓR and the strings aR = (aR1 , . . . , a

R
11n) are

extracted by brute force and they are included in the non-uniform advice.) In Stage 3 of
session s(k), ANMCom obtains the i-th mS-OT from the external sender for every i ∈ ∆ \ΓR
and executes other instances of mS-OT by itself. Then, in Stage 6 of session s(k), R∗ receives
bits (s∗i,0, s

∗
i,1)i∈∆\ΓR from the external sender and uses them to compute βb,i for every

i ∈ ∆ \ ΓR, i.e., βb,i := ρb,i ⊕ s∗i,b⊕αi . After the execution of H ′k:6 finishes, R∗ outputs
whatever Z outputs in the experiment.
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When b∗ = 0 in the security game (and hence s∗i,b⊕αi = si,b⊕αi for every i and b), the internally
executed experiment is identical with Hk:6, whereas when b∗ = 1 (and hence s∗i,b⊕αi is a random bit
if i ∈ ∆ \ Ib and s∗i,b⊕αi = si,b⊕αi otherwise), the internally executed experiment is identical with
H ′k:6. Hence, from the assumption that Hk:6 and H ′k:6 are distinguishable, R∗ wins the game with
probability non-negligibly higher than 1/2.

Next, we show that in H ′k:6, A does not cheat in sessions s(k), . . . , s(4m). (The argument below
is similar to the one in the proof of Lemma 3.) Assume for contradiction that in H ′k:6, A cheats
in one of those sessions, say, session s(j), with non-negligible probability. Then, from an average
argument, we can fix the execution of the experiment up until SMk (inclusive) in such a way that
after being fixed, A cheats in session s(j) only with negligible probability in Hk:6 but with non-
negligible probability in H ′k:6. Then, by considering the transcript up until SMk and the table T as
non-uniform advice, we can break the robust non-malleability of NMCom as follows.

The adversary ANMCom, who participates in the above game while interacting with a receiver
of NMCom, gets random input-randomness pairs (ci, τ

R
i )i∈∆\ΓR of mS-OT instances as its

input, and internally executes H ′k:6 from SMk using the non-uniform advice. In Stage 2-
2, ANMCom chooses bR = (bR1 , . . . , b

R
11n) in such a way that rR = (rR1 , . . . , r

R
11n) satisfies

rRi = ci ‖ τRi for every i ∈ ∆ \ ΓR, namely, chooses bR such that bRi = aRi ⊕ (ci ‖ τRi ) for
every i ∈ ∆ \ ΓR. In Stage 3 of session s(k), ANMCom obtains the i-th mS-OT from the
external sender for every i ∈ ∆ \ΓR and executes other instances of mS-OT by itself. Then,
in Stage 6 of session s(k), ANMCom receives bits (s∗i,0, s

∗
i,1)i∈∆\ΓR from the external sender

and uses them to compute βb,i for every i ∈ ∆ \ΓR, i.e., βb,i := ρb,i⊕ s∗i,b⊕αi . Also, in session
s(j), ANMCom forwards the NMCom commitments from A to the external receiver. After the
execution of H ′k:6 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the values committed by
ANMCom (which are equal to the values committed to by A in session s(j) in the internally
executed experiment). DNMCom then outputs 1 if and only if A cheated in session s(j).

When b∗ = 0 in the security game (and hence s∗i,b⊕αi = si,b⊕αi for every i and b), the internally
executed experiment is identical with Hk:6, whereas when b∗ = 1 (and hence s∗i,b⊕αi is a random bit
if i ∈ ∆ \ Ib and s∗i,b⊕αi = si,b⊕αi otherwise), the internally executed experiment is identical with
H ′k:6. Hence, from the assumption that A cheats in session s(j) with negligible probability in Hk:6

but with non-negligible probability in H ′k:6, ANMCom breaks the robust non-malleability of NMCom.
This completes the proof. ut

D Security Proof for Our MPC Protocol

Simulator Sim. As in Section B.1, we consider a simulator that works against any adversary, say
A, that participates in m sessions of Π2PC. Our simulator Sim internally invokes the adversary A,
and simulates each of the sessions by using the simulator of ΠOT (Section B.1) and that of ΠFOT

2PC

as follows.

1. In each execution of ΠOT at the beginning of Π2PC, Sim simulates the honest party’s messages
for A in the same way as SimOT.
Recall that SimOT makes a query to FOT during the simulation. When SimOT makes a query
to FOT , Sim sends those queries to the simulator of ΠFOT

2PC in order to simulate the answer from

FOT . (Recall that the simulator of ΠFOT
2PC simulates FOT for the adversary.)
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2. In the execution of ΠFOT
2PC during Π2PC, Sim simulates the honest party’s messages for A by

using the simulator of ΠFOT
2PC , who obtained the queries to FOT as above.

We remark that here we use the simulator of ΠFOT
2PC in the setting where multiple sessions of ΠFOT

2PC

are concurrently executed. However, the use of it in this setting does not cause any problem because
it runs in the black-box straight-line manner.

D.1 Proof of Indistinguishability.

We show that the view of the adversary in the real world and the view output by the simulator
in the ideal world are indistinguishable. The proof proceeds very similarly to the proof for our
bounded concurrent OT protocol (Section 6). To simplify the exposition, below we assume that
ΠFOT

2PC makes only a single call to FOT . (The proof can be modified straightforwardly when ΠFOT
2PC

makes multiple calls to FOT .)

Recall that Π2PC is obtained by composing our OT protocol ΠOT with an OT-hybrid 2PC
protocol ΠFOT

2PC . Roughly, we consider a sequence of hybrid experiments in which:

– Each execution of ΠOT is gradually changed to simulation as in the sequence of hybrid experi-
ments that we considered in the proof of ΠOT (Section B.2.1).

– Once the execution of ΠOT in a session of Π2PC is changed to simulation completely, the
execution of ΠFOT

2PC in that session is changed to simulation.

More concretely, we consider hybrids H0, H∗0 and Hk:1, . . . ,Hk:9 for k ∈ [4m], where hybrids Hk:8

and Hk:9 are defined in the following, and the others are defined as in Section B.2.1;.

Hybrid Hk:8. Hk:8 is the same as Hk:7 except that in session s(k), if S is corrupted and SMk is third
special message, all the messages of ΠFOT

2PC from R are generated by the simulator of ΠFOT
2PC . More

concretely, the messages of ΠFOT
2PC from R are generated as follows. Recall that from the definition

of Hybrid Hk:3, the implicit input v∗b
def
= Value(ρextb , ΓR ∩∆) (b ∈ {0, 1}) to ΠOT is extracted from

the adversary in session s(k) (as ρextb are computed for both b ∈ {0, 1}). Now, the messages of ΠFOT
2PC

from R are simulated by feeding those extracted implicit input and the subsequent messages to the
simulator of ΠFOT

2PC .

Hybrid Hk:9. Hk:9 is the same as Hk:8 except that in session s(k), if R is corrupted and SMk is
fourth special message, all the messages of ΠFOT

2PC from S are generated by the simulator of ΠFOT
2PC .

Lemma 10. Assume that in Hk:7 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except
with negligible probability. Then,

– Hk:7 and Hk:8 are indistinguishable, and

– in Hk:8, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Lemma 11. Assume that in Hk:8 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except
with negligible probability. Then,

– Hk:8 and Hk:9 are indistinguishable, and

– in Hk:9, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.
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Lemma 11 can be proven identically with Lemma 10, and Lemma 10 can be proven quite
similarly to Claim 4 (Section B.2); the only difference is that we use the security of ΠFOT

2PC rather
than the hiding of ExtCom. We give a proof of Lemma 10 in Section D.2.

By combining Lemmas 10 and 11 with Lemma 3 to 9 in Section B.2, we conclude that the
output of H0 and that of H4m:9 are indistinguishable, i.e., the output of the real world and that of
the ideal world are indistinguishable. This concludes the proof of Theorem 6.

D.2 Proof of Lemma 10

Proof (of Lemma 10). We first show the indistinguishability between Hk:7 and Hk:8. Assume for
contradiction that Hk:7 and Hk:8 are distinguishable. From an average argument, we can fix the
execution of the experiment up until SMk (inclusive) in such a way that even after being fixed, Hk:7

and Hk:8 are still distinguishable. Then, by considering the transcript up until SMk and the table
T as non-uniform advice, we can break the UC security of ΠFOT

2PC as follows.

The environment Z internally executes Hk:7 from SMk using the non-uniform advice while
externally participating in a single session of ΠFOT

2PC via the dummy adversary that corrupts

S. In session s(k), Z forwards all the messages of ΠFOT
2PC from the internal A to the external

dummy adversary (including the query to FOT ),19 and those from the external dummy
adversary to the internal A. After the execution of Hk:7 finishes, Z outputs the output of
the internally emulated experiment.

When Z interacts with the dummy adversary, the internally executed experiment is identical with
Hk:7, whereas when Z interacts with the simulator of ΠFOT

2PC , the internally executed experiment is
identical with Hk:8. Hence, from the assumption that Hk:7 and Hk:8 are distinguishable, Z breaks
the security of ΠFOT

2PC

We next show that in Hk:8, A does not cheat in sessions s(k), . . . , s(4m). Assume for contradic-
tion that in Hk:8, A cheats in one of those sessions, say, session s(j), with non-negligible probability.
Then, from an average argument, we can fix the execution of the experiment up until SMk (inclusive)
in such a way that even after being fixed, A cheats in session s(j) only with negligible probability
in Hk:7 but with non-negligible probability in Hk:8. Then, by considering the transcript up until
SMk and the table T as non-uniform advice, we can break the robust non-malleability of NMCom
as follows.

The adversaryANMCom, who participates in an execution of ΠFOT
2PC as the environment (where

the dummy adversary corrupts S) while interacting with a receiver of NMCom, internally
executes Hk:7 from SMk using the non-uniform advice. In session s(k), ANMCom forwards all
the messages of ΠFOT

2PC from the internal A to the external dummy adversary (including the
query to FOT ), and those from the external dummy adversary to the internal A. Also, in
session s(j), ANMCom forwards the NMCom commitments from A to the external receiver.
After the execution of Hk:7 finishes, ANMCom outputs the output of the internally emulated
experiment.

The distinguisher DNMCom takes as input the view of ANMCom and the values committed by
ANMCom (which are equal to the values committed to by A in session s(j) in the internally
executed experiment). DNMCom then outputs 1 if and only if A cheated in session s(j).

19 Note that these messages appear after SMk
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When ANMCom interacts with the dummy adversary in the execution of ΠFOT
2PC , the internally exe-

cuted experiment is identical with Hk:7, whereas when ANMCom interacts with the simulator there,
the internally executed experiment is identical with Hk:8. Hence, from the assumption that A
cheats in session s(j) with negligible probability in Hk:7 but with non-negligible probability in
Hk:8, ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Lemma 10. ut
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