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Abstract. Auxiliary-input (AI) idealized models, such as auxiliary-input
random oracle model (AI-ROM) and auxiliary-input random permuta-
tion model (AI-PRM), play a critical role in assessing non-uniform se-
curity of symmetric key and hash function constructions. However, ob-
taining security bounds in these models is often much more challenging.
The presampling technique, initially introduced by Unruh (CRYPTO’
07) for AI-ROM and later exported to several other models by Coretti
et al. (EUROCRYPT’ 18). It generically reduces security proofs in AI
models to much simpler bit-fixing (BF) models, making it much easier to
obtain concrete bounds in AI models. As a result, the presampling tech-
nique has leads to simpler proofs for many known bounds (e.g. one-way
functions), and has been applied to many settings where the compression
technique appears intractable (e.g., Merkle-Damg̊ard hashing).
We study the possibility of leveraging the presampling technique to the
quantum world. To this end,

– We show that such leveraging will resolve a major open problem in
quantum computing, which is closely related to the famous Aaronson-
Ambainis conjecture (ITCS’ 11).

– Faced with this barrier, we give a new but equivalent bit-fixing model
and a simple proof of presampling techniques for arbitrary oracle dis-
tribution in the classical setting, including AI-ROM and AI-PRM.
Our theorem matches the best-known security loss and unifies pre-
vious presampling techniques by Coretti et al. (EUROCRYPT’ 18)
and Coretti et al. (CRYPTO’ 18).

– Finally, we leverage our new classical presampling techniques to
a novel “quantum bit-fixing” version of presampling. It matches
the optimal security loss of the classical presampling. Using our
techniques, we give the first post-quantum non-uniform security for
salted Merkle-Damg̊ard hash functions and reprove the tight non-
uniform security for function inversion by Chung et al. (FOCS’ 20).
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1 Introduction

Practical symmetric-key and hash-function constructions are typically designed
and analyzed in idealized models, such as random oracle model (ROM), ran-
dom permutation model (RPM), ideal-cipher model (ICM). Since most con-
structions of block ciphers and hash functions lack solid theoretical foundations,
security bounds in idealized models provide an essential (heuristic) justification
and guidelines for their security in the standard model.

However, traditional idealized models fail to capture preprocessing attacks.
The obtained bounds in idealized models are inaccurate or not applicable at all
once preprocessing is allowed. For example, Hellman [Hel80] showed a prepro-
cessing attack that takes S bits of advice and makes T queries to a permutation
over [N ], can invert a random element with probability roughly ST/N . 5 Hence,
a permutation cannot be one-way against attacks beyond S = T = N1/2. How-
ever, it is easy to derive in RPM that an image of a random permutation is
invertible with probability at most T/N , suggesting security against attacks up
to size N . Notice that the gap between N and N1/2 matters for practical con-
structions. For example, while N suggests 128-bit level security for 128-bit block
cipher (e.g., 128-bit AES), N1/2 only suggests 64-bit security.

Auxiliary-input models. To address the mismatch between idealized models and
preprocessing attacks, auxiliary-input extensions of idealized models are pro-
posed, such as auxiliary-input random oracle model (AI-ROM), auxiliary-input
random permutation model (AI-RPM), and auxiliary-input ideal cipher model
(AI-ICM) [Unr07,DGK17,CDGS18,CDG18]. In AI models, an attacker can ob-
tain arbitrary S bits of leakage about the idealized primitive before attacking
the system, then make additional T queries to the primitive. Similar to that in
the idealized models, security bounds obtained in AI models become the main
source of justification and guidelines of the security level against preprocessing
attacks (or, more generally, non-uniform attacks).

While AI models are simple extensions of well studied idealized models, they
often do not offer simple and intuitive ways to prove security bounds. For exam-
ple, it is not straightforward how we should analyze inverting a random permu-
tation over [N ] given S-bit advice (even for S = 1) and T queries in AI-RPM,
let alone proving a ST/N bound, matching Hellman’s attack.

The compression technique. Specifically for permutation inversion, an optimal
ST/N bound was first proved [DTT10] via the “compression paradigm”, as
introduced by Yao [Yao90], Gennaro and Trevisan [GT00] (and later adopted
by [Wee05]). The main idea is to argue that if an attacker succeeds with “high
probability” in inverting a random permutation, we can use this attacker to
build a shorter representation of (i.e., compress) the random permutation than
what is possible from an information-theoretical point of view. The compres-
sion paradigm is a general technique that can be applied to different problems

5 For simplicity, we ignore big O or Õ notations in the introduction.
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in auxiliary-input models. The compression paradigm has been successfully ap-
plied to AI-ROM by Dodis et al. [DGK17], and auxiliary-input Generic Group
Model (AI-GGM) by Corrigan-Gibbs and Kogan [CK18]. While compression-
based proofs often lead to optimal bounds, they are usually quite laborious. For
every cryptographic construction, we need to carefully examine the property of
the construction together with its security definition to compress the idealized
primitive.

The presampling technique. Coretti et al. [CDG18] give a simple and intuitive
proof for permutation inversion by adapting the “presampling” approach taken
by Coretti et al. [CDGS18] (first introduced in [Unr07]) in the ROM. The pre-
sampling technique can be viewed as a general reduction from AI models to a
much simpler bit-fixing (BF) model. In the BF model, an oracle is arbitrarily
fixed on at most P coordinates chosen by the attacker and the remaining coordi-
nates are chosen at random and independently of the fixed coordinates. Notably,
the online attacker only knows the fixed coordinates. The BF model is easy to
work with, because most proof techniques for idealized models can be applied
as long as we avoid these fixed coordinates.

Specifically, Coretti et al. [CDG18] and Coretti et al. [CDGS18] show that any
attack with S-bit advice and T oracle queries in AI-ROM/RPM/ICM/GGM will
have similar advantages in their corresponding P -BF models for an appropriately
chosen P , up to an additive loss of δ(S, T, P ) = ST/P (which is optimal shown
by Dodis et al. [DGK17]). For unpredictability applications (such as one-way
functions), additive loss such as ST/P is not preferable. They show that one
can set P to rough ST and achieve a multiplicative factor of 2 in the exact
security.

These previous works result in a general way for proving security in AI mod-
els. For a cryptographic application in AI-model, we can first analyze its security
in the corresponding P -BF model and obtain security bounds ε(S, T, P ), then
choose P to optimize δ(S, T, P )+ε(S, T, P ). For an unpredictability application,
its security in the AI model is roughly 2 · ε(S, T, ST ), i.e., twice its security in
the (ST )-BF model. As an example, in the (ST )-BF-RPM, it can be shown that
a random image of a random permutation f over [N ] is invertible with probabil-
ity at most O(ST/N) 6 which immediately gives the optimal O(ST/N) bound
(matching Hellman’s attack) in AI-RPM.

The presampling technique offers a more straightforward approach for prov-
ing security bounds in AI models than the compression technique. By presam-
pling techniques, Coretti et al. [CDG18] and Coretti et al. [CDG18], reprove
the AI-ROM/RPM/GGM security bounds obtained by the compression tech-
nique [DTT10,DGK17,CK18], and give the first non-uniform bounds for many
practical applications (in which compression appears intractable).

6 If the challenge f(x) does not come from the fixed coordinates, then a proof by stan-
dard techniques bounds the probability of finding f(x) by O(T/N). The probability
that f(x) comes from the fixed coordinates is at most ST/N when x is uniformly
chosen from [N ]. Therefore, the overall probability of inverting f(x) is O(ST/N).
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We remark that the optimal additive loss and multiplicative version of pre-
sampling techniques in [CDG18,CDGS18] are crucial for obtaining exact (tight)
bounds. As shown by Dodis et al. [DGK17], the presampling technique by Un-
ruh [Unr07] with additive security loss

√
ST/P yields sub-optimal bounds for

many applications. Moreover, even with optimal additive loss, the indistinguisha-
bility version of presampling only yields suboptimal bounds for unpredictable
applications, such as

√
ST/N security bounds for one-way functions.

A new challenge: quantum adversaries. Quantum algorithms can efficiently break
many widely used assumptions for public-key cryptography (such as factoring).
Can they break practical symmetric-key and hash-function constructions? How
much security do these constructions have to compromise for quantum adver-
saries? What if preprocessing is allowed?

To capture quantum adversaries, quantum extensions of idealized models
have been considered, such as quantum random oracle model (QROM) [BDF+11],
in which the attacker makes T superposition queries to the idealized primitive.
Very recently, demanded by assessing post-quantum non-uniform security of
symmetric-key cryptography and hash functions, quantum versions of AI models
have been proposed and studied [NABT15,HXY19,CLQ19,CGLQ20], in which
the adversary is allowed to obtain S-(qu)bit precomputed advice about the ide-
alized primitive.

By leveraging classical compression proofs, [NABT15,HXY19,CLQ19] obtain
many non-uniform security bounds. However, they only manage to analyze basic
applications such as one-way functions. Even for the basic question like inverting
a random permutation with S-bit (classical) advice and T quantum queries,
compression proofs give a sub-optimal bound ST 2/N . The success of presampling
techniques in the classical setting motivates the main question we study in this
paper:

Can we leverage presampling techniques to the quantum setting?

Specifically, we hope to reduce the AI quantum models to more straightfor-
ward “BF quantum models”, then export similar proofs from quantum idealized
models.

Recently, Chung et al. [CGLQ20] gave a new technique for analyzing AI mod-
els with quantum adversaries. This technique reduces (Q)AI security7 against at-
tackers with (quantum) advice to analyzing multi-instance (MI) security against
attackers without advice. They use this technique to prove the tight bound
ST/N + T 2/N for inverting random functions in the AI-QROM model. Al-
though the new approach is quite general and easier to use than compression,
it inherently requires a proof of direct product type statement to show the se-
curity of multiple-instance game has an exponential decay in the number of
instances. For practical symmetric-key and hash-function constructions, proving
such statements may be challenging. By contrast, analyzing a single-instance in
the BF-model is considerably simpler.

7 Here, QAI allows quantum states as advice.
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1.1 Our Results

One natural attempt to develop quantum presampling is to leverage the pre-
sampling theorem of Coretti et al. [CDGS18] for AI-ROM. In this work, we first
show that such direct leveraging is difficult, which will resolve a major open
problem in quantum computing [AA11]. In light of the barrier, we revisit the
classical presampling techniques and give a simpler and unified proof for the clas-
sical presampling theorems. Finally, following the new classical proof, we give
the first quantum presampling theorem and several non-uniform lower bounds
as applications.

Barriers for leveraging presampling to the quantum setting. In Section
3, we show that such leveraging has a technical barrier: it will resolve a major
open problem in quantum computing [AA11], which asserts that any quantum
algorithm can be approximated on most inputs by an efficient classical algo-
rithm8. This open problem, dating back to (according to [AA11]) 1999 or earlier,
was included twice in Aaronson’s list of “ten semi-grand challenges for quantum
computing theory” [Aar05b,Aar10].

In [AA11], Aaronson and Ambainis proposed an approach, which became
well-known as the Aaronson-Ambainis conjecture, towards this open problem
via Boolean function analysis. Specifically, Aaronson-Ambainis conjecture as-
serts that any bounded low-degree function on the discrete cube has a vari-
able with influence poly(Var[f ]/ deg(f)) (see Conjecture 2). Despite much effort
[DFKO06,Bac12,OY16,MA12,KK19], this open problem and the closely related
Aaronson-Ambainis conjecture seem still quite open. They are proven only for
some class of functions [Bac12,OSSS05,MA12]. The best-known bound for gen-
eral functions is exponentially far from conjectured [DFKO06,OY16,DMP19].

Remark 1. Note that the barrier does not contradict our quantum presampling
theorem. Direct leveraging will give us a better presampling theorem than ours,
which pre-fixes at most P coordinates classically. Whereas, our presampling
theorem requires to pre-fix P coordinates “quantumly”.

Ideally, we would like to show a statement similar to classical presampling:
AI-QROM can be reduced to BF-QROM, where the random oracle is fixed clas-
sically on at most P coordinates. However, what we obtain in this work is (in-
formally): AI-QROM can be reduced to BF-QROM, where the random oracle
is fixed “quantumly” on at most P coordinates. We will show in the following
paragraph why this ideal presampling statement is better than the presampling
statement obtained in this work. Our first contribution points out a barrier to
prove the above ideal version (with connections to AA conjecture). In light of
the barrier, we present our quantum presampling theorem.

If the ideal presampling holds, we can get the lower bound of function in-
version in the AI-QROM easily, without using any involved techniques. Because

8 It will be only polynomially slower than the quantum algorithm in terms of query
complexity
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either the challenge image is in one of the fixed coordinates (with probability
ST/N), or it is outside the fixed coordinates, in which we argue the success
probability by simply using the existing lower bound of Grover’s search. This
will give an much easier proof for the lower bound of function inversion in the
AI-QROM, which is ST/N + T 2/N , reproves the result by Chung et al.

Unifying presampling via concentration bounds. Faced with this barrier,
we revisit the presampling techniques in the classical setting. To this end, with
only standard concentration bounds, we give a simpler and unified proof for
the classical presampling theorems of both ROM [CDGS18] and RPM [CDG18],
using an equivalent characterization of P -BF-ROM/P -BF-RPM.

Instead of viewing P -BF-ROM as a random function with at most P pre-
fixed inputs/outputs, we give an equivalent formulation with respect to a classical
randomized algorithm f making at most P queries. The security game is then
under the oracle access to the function H, where H is given by rejection sampling
a fully random oracle H, but conditional on fH = 1. This definition naturally
extends to P -BF-RPM by rejection sampling a random permutation H.

We show a unified proof for the classical presampling theorems with the al-
ternative definition and basic concentration bounds. The proof is much simpler
than the original proof [CDGS18], as the original proof needs to first decompose
a random oracle distribution with advice into dense distributions (a technique
used in the area of communication complexity [GLM+16]), and then argue in-
distinguishability between a dense distribution and a uniform distribution. With
almost no additional effort, the proof can be used to achieve the theorem for AI-
RPM, in [CDG18]. Note that our proof achieves optimal bounds, as it matches
the optimal bounds in [CDGS18].

Quantum presampling and applications to quantum random oracles.
With the new definition, it is natural to adapt the definition of P -BF-ROM
to P -BF-QROM. P -BF-QROM is defined by a P -query quantum algorithm f
making superposition queries. Similarly, the random function is sampled in the
following way: sample a random H, compute fH ; restart the whole procedure
(including sampling a random function H) if the output of fH is not 1.

Using our proof for classical presampling, we obtain the quantum presam-
pling.

Theorem 1. For any P ∈ N and every γ > 0, if a security game G is ε(T )-
secure in the P -BF-QROM, then it is ε′(S, T )-secure in the AI-QROM, where

ε′(S, T ) ≤ ε(T ) +
(S + log γ−1)T comb

P
+ γ.

In particular, if G is ε(T )-secure in the P -BF-QROM for P ≥ (S + log γ−1)T comb,
then it is ε′(S, T )-secure in the AI-QROM, where

ε′(S, T ) ≤ 2 · ε(T ) + γ.
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T comb = T + TVer is the combined query complexity and TVer is the query com-
plexity for the challenger to verify a solution.

Note that it is optimal in the sense that it matches the optimal classical
presampling theorem by Coretti et al. [CDGS18].

Therefore, to obtain security in the AI-QROM, it is sufficient to obtain its
security in the P -BF-QROM. We use Zhandry’s compressed oracle [Zha19] in
the P -BF-QROM, and present the first non-trivial security analysis of (salted)
Merkle-Dam̊gard Hash Functions (MDHF) in the AI-QROM.

Theorem 2. GMDHF is ε(S, T ) = Õ(ST 3/M)-secure in the AI-QROM.

Here, GMDHF denotes the security game of MDHF (See Section 5.2).

In the classical setting, Coretti et al. [CDGS18] show an attack with ad-
vantage Ω(ST 2/M) (which is optimal), and Akshima et al. [ACDW20] show an
attack for 2-block MDHF with advantage Ω((ST+T 2)/M). We observe that the
attack by Akshima et al. [ACDW20] can be extended to the quantum setting,
and yield an attack with advantage ST 2/M + T 3/M . However, it is not clear if
the attack of Coretti et al. [CDGS18] can be extended to the quantum setting
because of the usage of function iteration in the attack. Our bound suggests that,
the speedup of quantum adversaries is limited to a factor T . Further closing this
gap is an intriguing question.

Finally, to show the simplicity and generality of our quantum presampling
technique, we additionally reprove that function inversion has security O((ST +
T 2)/N) in the AI-QROM [CGLQ20] (See Section 5.3).

1.2 Open Problems

Optimal Presampling for Quantum Advice. While our work provides a frame-
work for the presampling technique for classical advice, we are not able to give
presampling techniques for quantum advice. The difficulty comes from the fact
that quantum advice would be completely destroyed once a single round of online
computation was done. Note that the barrier would be overcome using the sim-
ilar idea in [CGLQ20], by boosting the success probability and applying Gentle
Measurement Lemma [Aar05a]. However, we suspect that the resulting state-
ment may not be optimal.

Bit-Fixing Security of Random Permutations. While P -BF-QRPM (quantum
random permutation model) is well defined following our definition for P -BF-
QROM, it is not clear how to prove the security in this model. We hope one
of the following two approaches would work: (1) analyzing the probability dis-
tribution of the permutations in P -BF-QRPM, and using one-way to hiding
lemma [AHU19] to derive the bound for the online computation; (2) with “com-
pressed permutation” techniques similar to Zhandry’s compressed oracle tech-
niques, a similar proof to that in the P -BF-QROM would be possible.
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Closing the gap for MDHF. As discussed in the previous section, closing the gap
for the security of MDHF in the AI-QROM is also an intriguing question.

2 Preliminaries

For any n ∈ N, we denote [n] to be the set {1, 2, ..., n}. We denote Z/nZ =
{0, 1, ..., n − 1} as the ring of integers modulo n, and F2 = {0, 1} as the binary
finite field. For a complex vector x ∈ Cn, we denote the L2-norm |x| = |x|2 =√∑

i∈[n] xixi. In algorithms, we denote a ←$ A to be taking a as a uniformly

independently sampled element of A.
Next, we recall some basic facts about quantum computation and review the

relevant literature on the quantum random oracle model.

2.1 Quantum Computation

A quantum system Q is defined over a finite set B of classical states. A pure
state over Q is a unit vector in C|B|, which assigns a complex number to each
element in B. In other words, let |φ〉 be a pure state in Q, we can write |φ〉 as a
column vector:

|φ〉 =
∑
x∈B

αx|x〉

where
∑
x∈B |αx|2 = 1 and {|x〉}x∈B is called the “computational basis” of C|B|.

The computational basis forms an orthonormal basis of C|B|. We define 〈φ| to
be the row vector that is the conjugate of |φ〉.

Given two quantum systems Q1 over B1 and Q2 over B2, we can define a
product quantum system Q1 ⊗ Q2 over the set B1 × B2. Given |φ1〉 ∈ Q1 and
|φ2〉 ∈ Q2, we can define the product state |φ1〉 ⊗ |φ2〉 ∈ Q1 ⊗Q2.

We say |φ〉 ∈ Q1 ⊗ Q2 is entangled if there does not exist |φ1〉 ∈ Q1 and
|φ2〉 ∈ Q2 such that |φ〉 = |φ1〉 ⊗ |φ2〉. For example, consider B1 = B2 = {0, 1}
and Q1 = Q2 = C2, |φ〉 = |00〉+|11〉√

2
is entangled. Otherwise, we say |φ〉 is

unentangled.
A state |φ〉 ∈ Q can be manipulated by a unitary operator U ∈ C|B|×|B|. The

resulting state |φ′〉 = U |φ〉. We denote the trace norm ‖U‖tr to be 1
2 Tr
√
U†U .

We extract classical information from a quantum state |φ〉 by performing a
measurement. A measurement is specified by an orthonormal basis, typically the
computational basis, and the probability of getting result x is |〈x|φ〉|2. After the
measurement, |φ〉 “collapses” to the state |x〉 if the result is x.

For example, given the pure state |φ〉 = 3
5 |0〉+

4
5 |1〉 measured under {|0〉, |1〉},

with probability 9/25 the result is 0 and |φ〉 collapses to |0〉; with probability
16/25 the result is 1 and |φ〉 collapses to |1〉.

We assume that quantum circuits can implement any unitary transformation
(by using these basic gates, Hadamard, phase, CNOT and π

8 gates).
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2.2 Quantum Random Oracle Model

Here, for the completeness of the paper, we recall the background of quantum
random oracle model and the compressed oracle technique introduced by [Zha19].
This section is taken verbatim from Section 2.2 of [CGLQ20].

An oracle-aided quantum algorithm can perform quantum computation as
well as quantum oracle queries. A quantum oracle query for an oracle f : [N ]→
[M ] is modeled as a unitary Uf : |x〉 |u〉 = |x〉 |u+ f(x)〉, where + denotes
addition in the integer ring Z/MZ (we take the natural bijection that M ' 0,
but any bijection [M ]↔ Z/MZ suffices for our purposes).

A random oracle is a random function H : [N ]→ [M ]. The random function
H is chosen at the beginning. A quantum algorithm making T oracle queries
to H can be modeled as the following: it has three registers |x〉 , |u〉 , |z〉, where
x ∈ [N ], u ∈ Z/MZ and z is the algorithm’s internal working memory; it starts
with some input state |0〉 |0〉 |ψ〉, then it applies a sequence of unitary to the state:
U0, UH , U1, UH , · · · , UT−1, UH , UT and a final measurement over computational
basis. Each UH is the quantum oracle query unitary: UH |x〉 |u〉 = |x〉 |u+H(x)〉
and Ui is the local quantum computation that is independent of H. We can
always assume there is only one measurement which is a measurement on com-
putational basis and applied at the last step of the algorithm.

2.3 Compressed Oracle

Here we briefly recall some backgrounds about compressed oracle techniques,
which was first introduced in [Zha19]. More details are provided in Appendix A.

Intuitively, compressed oracle is an analogy of the classical lazy sampling
method. To simulate a random oracle, one can sample H(x) for all inputs x and
store everything in quantum accessible registers. Such an implementation of a
random oracle is inefficient, and security games based on such an implementation
are usually hard to analyze. Therefore, instead of recording all the information
of H in the registers, Zhandry provides a solution to argue the amount of infor-
mation an algorithm knows about the random oracle.

The oracle register records a database/list that contains the output on each
input x; the output is an element in Z/MZ ∪ {⊥}, where ⊥ is a special symbol
denoting that the value is “uninitialized”. The database is initialized as an empty
list D0 of length N , in other words, it is initialized as the pure state |∅〉 :=
|⊥,⊥, · · · ,⊥〉. Let |D| denote the number of entries in D that are not ⊥. Define
D(x) to be the x-th entry. Intuitively, D(x) can be seen as the output of the
oracle on x if D(x) 6= ⊥; otherwise, the oracle’s output on x is still undetermined.

For any D and x such that D(x) = ⊥, we define D∪(x, u) to be the database
D′, such that for every x′ 6= x, D′(x′) = D(x) and at the input x, D′(x) = u.

The compressed standard oracle is the unitary CStO := StdDecomp ◦CStO′ ◦
StdDecomp operating on the joint system of the algorithm’s registers and oracle’s
registers, where
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– CStO′ |x, u〉|D〉 = |x, u+D(x)〉|D〉 when D(x) 6= ⊥, which writes the output
of x defined in D to the u register. This operator will never be applied on
an x,D where D(x) = ⊥.

– StdDecomp(|x〉⊗|D〉) := |x〉⊗StdDecompx |D〉, where StdDecompx |D〉 works
on the x-th register of the database D(x). Intuitively, it swaps a uniform
superposition 1√

M

∑
y |y〉 with |⊥〉 on the x-th register. Formally,

• If D(x) = ⊥, StdDecompx maps |⊥〉 to 1√
M

∑
y |y〉, or equivalently,

StdDecompx|D〉 = 1√
M

∑
y |D ∪ (x, y)〉. Intuitively, if the database does

not contain information about x, it samples a fresh y as the output of x.

• If D(x) 6= ⊥, StdDecompx works on the x-th register, and it is an iden-
tity on 1√

M

∑
y ω

uy
M |y〉 for all u 6= 0; it maps the uniform superposition

1√
M

∑
y |y〉 to |⊥〉.

More formally, for a D′ such that D′(x) = ⊥,

StdDecompx
1√
M

∑
y

ωuyM |D
′ ∪ (x, y)〉 =

1√
M

∑
y

ωuyM |D
′ ∪ (x, y)〉 for any u 6= 0,

and,

StdDecompx
1√
M

∑
y

|D′ ∪ (x, y)〉 = |D′〉.

Since all 1√
M

∑
y ω

uy
M |y〉 and |⊥〉 form a basis, these requirements define a

unique unitary operation.

A quantum algorithm making T oracle queries to a compressed oracle can be
modeled as the following: the algorithm has three registers |x〉 , |u〉 , |z〉, where
x ∈ [N ], u ∈ Z/MZ and z is the algorithm’s internal working memory; it starts
with some input state |0〉 |0〉 |ψ〉; the joint state of the algorithm and the com-
pressed oracle is |0〉 |0〉 |ψ〉 ⊗ |∅〉. It then applies a sequence of unitary to the
state: U0, CStO, U1, CStO, · · · , UT−1, CStO, UT and a final measurement over
computational basis.

Zhandry proves that the quantum random oracle model and the compressed
standard oracle model are perfectly indistinguishable by any unbounded quantum
algorithm.

In this work, we only consider query complexity, and thus simulation effi-
ciency is irrelevant to us. Looking ahead, we simulate a random oracle as a
compressed standard oracle to help us analyze security games with the help
from the following lemmas. Both lemmas are proven in [Zha19,CGLQ20].

The first lemma gives a general formulation of the overall state of A and
the compressed standard oracle after A makes T queries, even conditioned on
arbitrary measurement results. Looking ahead, it gives a characterization of P -
BF-QROM (defined in Section 4.1) if the oracle is simulated as a compressed
standard oracle.
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Lemma 1. If A makes at most T queries to a compressed standard oracle, as-
suming the overall state of A and the compressed standard oracle is

∑
z,D αz,D |z〉A|D〉H

where |z〉 is A’s registers and |D〉 is the oracle’s registers, then it only has sup-
port on all D such that |D| ≤ T . In other words, the overall state can be written
as, ∑

z,D:|D|≤T

αz,D |z〉A ⊗ |D〉H .

Moreover, it is true even if the state is conditioned on arbitrary outcomes (with
non-zero probability) of A’s intermediate measurements.

The second lemma provides a quantum analogue of lazy sampling in the
classical ROM.

Lemma 2 ([Zha19, Lemma 5]). Let H be a random oracle from [N ]→ [M ].
Consider a quantum algorithm A making queries to the standard oracle and
outputting tuples (x1, · · · , xk, y1, · · · , yk, z). Suppose the random function H is
measured after A produces its output. Let R be an arbitrary set of such tuples.
Suppose with probability p, A outputs a tuple such that (1) the tuple is in R
and (2) H(xi) = yi for all i. Now consider running A with the compressed
standard oracle CStO, and suppose the database D is measured after A produces
its output. Let p′ be the probability that (1) the tuple is in R and (2) D(xi) = yi
(in particular, D(xi) 6= ⊥) for all i. Then

√
p ≤
√
p′ +

√
k/M .

Moreover, it is true even if it is conditioned on arbitrary outcomes (with
non-zero probability) of A’s intermediate measurements.

2.4 Security Game with Classical Advice

In this paper, we focus on the case where advice is classical. Therefore in the
rest of the presentation, “advice” simply means “classical advice”. The following
definitions are defined in [CGLQ20].

Definition 1 (Algorithm with Advice). An (S, T ) (query) classical/quantum
algorithm A = (A1,A2) with (oracle-dependent) advice consists of two proce-
dures:

– let H, H̃ be two oracles accessed by A1,A2 respectively in the offline and
online phases;

– α ← A1(H), which is an arbitrary (unbounded) function of H, and outputs
an S-bit α;

– |ans〉 ← AH̃2 (α, ch), which is an unbounded algorithm that takes advice α, a
challenge ch, makes at most T (classical or quantum respectively) queries to
H̃, and outputs an answer, which we measure in the computational basis to
obtain the classical answer ans.
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Note that we do not need to tell if A1 is classical or quantum because it is un-
bounded. We say A is quantum if A2 makes quantum queries to H̃ and otherwise
A is classical. In this work, we will mainly focus on A being quantum and the
case of A being classical will be provided mainly in the preliminary Section 2.5.

Below, we will use the words “adversary” and “algorithm” interchangeably.

Definition 2 (Security Game). Let H be a random oracle [N ] → [M ].
A (non-interactive) security game G = (C) is specified by a challenger C =
(Samp,Query,Ver), where:

1. ch ← SampH(r) is a classical algorithm that takes randomness r ∈ R as
input, and outputs a challenge ch.

2. QueryH(r, ·) is a deterministic classical algorithm that hardcodes the ran-
domness r and provides adversary’s online queries9.

3. b ← VerH(r, ans) is a deterministic classical algorithm that takes the input
ans and outputs a decision b indicating whether the game is won.

For every algorithm with advice, i.e. A = (A1,A2) , we define

A ⇐⇒ C(H) := VerH
(
r,AH̃2 (A1(H),SampH(r))

)
to be the binary variable indicating whether A successfully makes the challenger
output 1, or equivalently if A wins the security game, where H̃(·) := QueryH(r, ·).
Additionally, we define TVer be the query complexity of computing VerH .

Definition 3 (Security in the AI-ROM/AI-QROM). We define the secu-
rity in the AI-ROM/AI-QROM of a security game G = (C) to be

δ = δ(S, T ) := sup
A

Pr
H,r,A

[A ⇐⇒ C(H) = 1] ,

where A in the probability denotes the randomness of the algorithm, and supre-
mum is taken over all classical or quantum (S, T ) algorithm A in the AI-ROM
or AI-QROM respectively.

Additionally, we say a security game G is δ-secure if its security is at most δ.

Definition 4. We call the security game a decision game if an adversary is
supposed to produce a binary ans ∈ {0, 1}.

Definition 5 (Advantage against Decision Games). We define the advan-
tage of A for a decision game G to be

ε = ε(S, T ) := δ(S, T )− 1/2,

if it has winning probability δ(S, T ).

Definition 6 (Best Advantage of Decision Games). We define the best ad-
vantage of a decision game G in AI-ROM/AI-QROM to be ε(S, T ) := δ(S, T )−
1/2 if G has security δ(S, T ) in AI-ROM/AI-QROM.
9 As an example, for most applications, QueryH(r, ·) = H(·).
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2.5 Presampling Techniques for Random Oracles

We recall classical presampling techniques for random oracles from [CDGS18].

Definition 7 ((N,M)-source). An (N,M)-source is a random variable X on
[M ]N .

Since any oracle O : [N ] → [M ] can be represented by a string in [M ]N , we
also treat an oracle as an element in [M ]N . Drawing an oracle from a certain
distribution is equivalent to sampling a random variable from the corresponding
(N,M)-source.

Definition 8 (P -bit-fixing). An (N,M)-source is called P -bit-fixing if it is
fixed on at most P coordinates and uniform on the rest.

Coretti et al. [CDGS18] then defined security in the P -BF-ROM.

Definition 9 (P -BF-ROM). A security game in the P -BF-ROM consists of
the following two procedures:

– Before the challenge phase, the offline algorithm A1 runs a (randomized)
algorithm to generate a list L = {(xi, yi)}i∈[P ] containing at most P input-
output pairs (all xis are distinct).

– In the challenge phase, the security game (see Definition 2) is executed with
an online algorithm A2 and oracle access to H. H is a function drawn from
the P -bit-fixing distribution and the pre-fixed inputs/outputs are L.

Remark 2. Note thatA2 knows the strategy ofA1. In [CDGS18], the definition of
P -BF-ROM allows A2 to obtain the list L generated by A1. In our definition, A2

only knows the strategy of the offline algorithm A1. We observe that Definition 9
is a weaker definition and is enough for deriving their main theorem Theorem 3.

The following lemma was given in [CDGS18]. It shows that a random oracle
distribution conditioned on advice is very close to a convex combination of P -
bit-fixing distributions.

Lemma 3. Let X be distributed uniformly over [M ]N and Z := f(X), where
f : [M ]N → {0, 1}S is an arbitrary function. For any γ > 0 and P ∈ N, there
exists a family {Yz}z∈{0,1}S of convex combinations Yz of P -bit-fixing (N,M)-
sources such that for any classical distinguisher D taking an S-bit input and
querying at most T < P coordinates of its oracle,∣∣Pr

[
DX(f(X)) = 1

]
− Pr

[
DYf(X)(f(X)) = 1

]∣∣ ≤ (S + log 1/γ) · T
P

+ γ

and

Pr
[
DX(f(X)) = 1

]
≤ 2(S+log 1/γ)T/P · Pr

[
DYf(X)(f(X)) = 1

]
+ γ.

Note that the case of getting X,Z := f(X) is the AI-ROM, and the case
of getting YZ , Z is the P -BF-ROM. The lemma implies the two main theorems
(Theorem 5, 6) of [CDGS18].
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Theorem 3. For any P ∈ N and every γ > 0, if a security game G is ε(T )-
secure in the P -BF-ROM, then it is ε′(S, T )-secure in the AI-ROM, where

ε′(S, T ) ≤ ε(T ) +
(S + log γ−1)T comb

P
+ γ.

In particular, if G is ε(T )-secure in the P -BF-ROM for P ≥ (S + log γ−1)T comb,
then it is ε′(S, T )-secure in the AI-ROM, where

ε′(S, T ) ≤ 2 · ε(T ) + γ.

T comb = T + TVer is the combined query complexity and TVer is the query com-
plexity for the challenger .

Built upon the above theorems, [CDGS18] proved the security of several
cryptographic applications in the AI-ROM. The idea is to first switch to the
P -BF-ROM and then argue its security in this model. To prove the security of
one-way functions (OWF) in the AI-ROM, they can instead argue the security
in the P -BF-ROM, which is much easier to argue than that in the AI-ROM.
Informally, if the challenge y is not in the list L, to invert y in the P -BF-ROM
is as difficult as that in the ROM. Therefore, the overall security is at most
(P + T )/min{N,M} in the P -BF-ROM. Combining with Theorem 3, they get
the desired bound for the security of OWF in the AI-ROM.

2.6 Aaronson-Ambainis Conjecture

A major open problem in quantum computing is whether polynomial quantum
speedups need the input to be “structured”–that is, the domain includes only in-
puts that satisfy a stringent promise. This question is formalized as the following
conjecture.

Conjecture 1 (folklore, see [AA11]). Let A be a quantum algorithm making T
queries to a Boolean input x = (x1, · · · , xn). For any ε > 0, there is a deter-
ministic classical algorithm that makes poly(T, 1/ε, 1/δ) queries to the xi’s, and
that approximates A’s acceptance probability within an additive error ε on a
(1− δ) fraction of inputs.

This conjecture is a central open problem in the area of quantum computing
[Aar05b,Aar10]. In the paper [AA11], Aaronson and Ambainis proposed a new
conjecture (a.k.a Aaronson-Ambainis conjecture) which is sufficient to affirm
Conjecture 1. Specifically, they conjectured that any low-degree function f :
{−1, 1}n → [0, 1] has an influential variable.

Conjecture 2 ([AA11]). Let f : {−1, 1}n → [0, 1] be a degree-d polynomial.

We define its variance as Var[f ] := Ex[f(x)2] − (Ex[f(x)])
2
. For each i ∈ [n],

its influence is defined as Ii(f) := Ex
[(
f(x)− f(xi)

)2]
, where xi is the string

obtained by flipping the i-th bit of x. Then there is an i ∈ [n] such that

Ii(f) = (Var [f ] /d)
O(1)

.
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Despite much effort [DFKO06,Bac12,OY16,MA12,KK19], both Conjecture 1
and Conjecture 2 are still quite open , and they are proven only for some class of
functions [Bac12,OSSS05,MA12]. The best known bound for general functions
is still exponentially far from conjectured [DFKO06,OY16,DMP19].

The paper [KK19] implicitly provided an equivalent form of Conjecture 1,
which seems easier to prove and will be used in this paper. Given a (classi-
cal or quantum) distinguisher A, let E[A] = EX

[
Pr[AX = 1]

]
and Var[A] =

EX
[
Pr[AX = 1]− E[A]

]2
. Here, X is uniformly distributed over {0, 1}N .

Conjecture 3. Let A be a quantum distinguisher that makes T queries to an
oracle [N ]→ {0, 1}. Then there exists a poly(T/Var[A])-bit-fixing (2, N)-source
Y (i.e., there is a list L containing at most poly(T/Var[A]) input-output pairs,
and Y is uniformly distributed over {0, 1}N conditioned on some coordinates are
fixed according to L) such that∣∣Pr

[
AY = 1

]
− E[A]

∣∣ ≥ poly(Var [A] /T ).

For the sake of completeness, we present the proof of the equivalence between
Conjecture 1 and Conjecture 3 in the appendix. The nontrivial direction is to
show how Conjecture 3 implies Conjecture 1. It follows the general strategy of
the argument of Midrijanis [Mid04] which shows that any Boolean function can
be computed by a classical decision tree of depth at most the block sensitivity
times the polynomial degree.

2.7 Concentration Bounds

The following claim and lemmas of concentration bounds will be used in our
proof. We prove them in this section. The following proof uses the same idea as
Theorem 3.1 in [IK10].

Claim 1. Let X1, . . . , XN be indicators (potentially correlated, binary random
variables). Let Y1, . . . , Yg be binary variables such that each Yi is uniformly ran-
domly sampled from X1, . . . , XN . Suppose that

Pr[Y1 = 1 ∧ · · · ∧ Yg = 1] ≤ αg,

then

Pr

∑
i∈[N ]

Xi ≥ δN

 ≤ (α
δ

)g
.

Proof. Let E denote the event Y1 = 1 ∧ · · · ∧ Yg = 1. We have,

Pr

∑
i∈[N ]

Xi ≥ δN

 ≤ Pr[E]

Pr
[
E
∣∣∣∑i∈[N ]Xi ≥ δN

] ≤ αg

δg
,

where the second inequality is because the probability that Y1, . . . , Yg are all 1 is
at least δg conditioning on that there are at least δN ones among X1, . . . , XN .
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We first define random variables Y<i: Y<i = 1 if and only if Y1 = Y2 = · · · =
Yi−1 = 1. Y<1 is always equal to 1. We then show two concentration bounds
using the claim above. The first one is a multiplicative bound and the second
one is an additive bound.

Lemma 4. Define Xi, Yi as in Claim 1. Let S′, T, g be arbitrary integers, and
P := gT . Suppose that, for every i ∈ [g],

Pr[Yi = 1|Y<i = 1] ≤ ε,

then,

Pr

 1

N

∑
i∈[N ]

Xi ≥ 2S
′T/P · ε

 ≤ 2−S
′
.

Proof. Let α := ε, and δ := 2S
′T/P · ε. Note that,

Pr[Y1 = 1 ∧ · · · ∧ Yg = 1] =

g∏
i=1

Pr[Yi = 1|Y<i = 1] ≤ αg .

By Claim 1,

Pr

∑
i∈[N ]

Xi ≥ δN

 ≤ (α
δ

)g
=
( ε

2S′T/P · ε

)g
= 2−S

′
.

Lemma 5. Define Xi, Yi as in Claim 1. Let S′, T, g be arbitrary integers, and
P := gT . Suppose that, for every i ∈ [g],

Pr[Yi = 1|Y<i = 1] ≤ ε,

then,

Pr

 1

N

∑
i∈[N ]

Xi ≥ ε+
S′T

P

 ≤ 2−S
′
.

Proof. Let α := ε, and δ := ε+S′T/P . We assume that ε+S′T/P ≤ 1, otherwise
the statement is trivially true. Note that,

Pr[Y1 = 1 ∧ · · · ∧ Yg = 1] =

g∏
i=1

Pr[Yi = 1|Y<i = 1] ≤ αg .

By Claim 1,

Pr

∑
i∈[N ]

Xi ≥ δN

 ≤ ( ε

ε+ S′T/P

)g
≤
(

1− S′T

P

)g
≤ 2−S

′
,



Unifying Presampling via Concentration Bounds 17

where the second inequality uses the assumption that ε+ S′T/P ≤ 1, the third
inequality uses the fact 1− x ≤ 2−x for any x ≥ 0 and P = gT .

3 Barriers for Leveraging Presampling Techniques

As we have seen the simple and easy-to-use tools (presampling techniques) in the
preliminary Section 2.5, we ask the question: is it possible to leverage Lemma 3
(and Theorem 3) to the quantum world? The following conjecture formally states
that the presampling technique could reduce security proofs in AI-QROM to
those in the simpler “P -BF-QROM”10. The conjecture requires a much weaker
bound than that in Lemma 3.

Conjecture 4. Let X be distributed uniformly over [M ]N and Z := f(X), where
f : [M ]N → {0, 1}S is an arbitrary function. For any P ∈ N, there exists a family
{Yz}z∈{0,1}S of convex combinations Yz of P -bit-fixing (N,M)-sources such that
for any quantum distinguisher A taking an S-bit input and making T quantum
queries of its oracle,

∣∣Pr[AX(f(X)) = 1]− Pr[AYf(X)(f(X)) = 1]
∣∣ ≤ h(S) · T ·

(
logM

P

)C
.

Here C is a universal constant and h : N→ R+ can be any function.

Note that this conjecture is weaker than Section 2.5 in the sense that the
dependency on S can be arbitrary, but Lemma 3 is polynomial in S.

In this section, we show that even requiring a much weaker bound (Conjecture
4) implies Conjecture 1, which reveals a barrier for leveraging Lemma 3 to the
quantum world.

Theorem 4. Conjecture 4 implies Conjecture 3, then Conjecture 1.

Proof. In fact, we will prove Conjecture 3 only assuming that Conjecture 4
holds for S = 1. Let A be a quantum distinguisher that makes T queries of an
oracle in {0, 1}N . We will show that there exists a poly(T/Var[A])-bit-fixing
source Y such that the gap between Pr[AY = 1] and E[A] is at least σ/4. Here,
σ =

√
Var[A].

The basic idea is as follows. Let f : {0, 1}N → {0, 1} indicate whether the ac-
ceptance probability of A access to the oracle O ∈ {0, 1}N is high (say, f(O) = 1
if and only if Pr[AO = 1] − E[A] ≥ σ/2). Let A1 be another quantum distin-
guisher which (i) takes the bit f(O) as advice, (ii) simulates A if f(O) = 1, and
(iii) makes no queries and rejects if f(O) = 0. On one hand, A1 and A have
the same acceptance probability when access to any O ∈ f−1(1). On the other
hand, according to Conjecture 4, for an oracle randomly sampled from f−1(1),

10 We have not defined what is P -BF-QROM yet. Since we will show a barrier and
the following Conjecture 4 does not require a formal definition, we will not formally
define it in this section.
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A1 has the similar acceptance probability with oracle access to some bit-fixing
source.

More formally, let X be uniformly distributed over {0, 1}N . For simplicity of
notations, we abbreviate Pr[AO = 1] to AO. Noting that |AO − E[A]| ≤ 1 for
any O ∈ {0, 1}N , we have

σ2 = EX
[∣∣AX − E[A]

∣∣2]
≤Pr

X

[
|AX − E[A]| ≥ σ/2

]
+ Pr

X

[
|AX − E[A]| ≤ σ/2

]
· σ2/4

≤Pr
X

[
|AX − E[A]| ≥ σ/2

]
+ σ2/4.

So PrX
[
|AX − E[A]| ≥ σ/2

]
≥ 3σ2/4. By symmetry, we assume

Pr
X

[
AX − E[A] ≥ σ/2

]
≥ 3σ2/8. (1)

Let f : {0, 1}N → {0, 1} be defined as follows: f(X) = 1 if and only if
AX − E[A] ≥ σ/2. Inequality 1 says that PrX [f(X) = 1] ≥ 3σ2/8. Let X1 be
the distribution of X conditioned on f(X) = 1. Let {Y0, Y1} be the family of
convex combinations of P -bit-fixing sources guaranteed by Conjecture 4. Let A1

be another quantum distinguisher that (i) takes a 1-bit input, (ii) simulates A
if the input bit is 1, and (iii) makes no queries and rejects if the input bit is 0.
It has that

h(1) · T
PC

≥
∣∣∣EX [AX1 (f(X))

]
− EX

[
AYf(X)

1 (f(X))
]∣∣∣ ≥ Pr

X
[f(X) = 1] ·

∣∣AX1 −AY1
∣∣

That is,
∣∣AX1 −AY1

∣∣ ≤ 8h(1) · T/(3σ2PC). In particular, there is a P -bit-fixing

source Y such that
∣∣AX1 −AY

∣∣ ≤ 8h(1) · T/(3σ2PC). Let P = d
( 32h(1)·T

3σ3

)1/Ce,
then 8h(1) · T/(3σ2PC) ≤ σ/4. Finally, by the triangle inequality,∣∣AY − E[A]

∣∣ ≥∣∣AX1 − E[A]
∣∣− ∣∣AY −AX1

∣∣ ≥ σ/2− σ/4 = σ/4.

This completes the proof.

4 Unifying Presampling via Concentration Bounds

As discussed in the last section, the natural extension of Lemma 3 does not work
in the quantum world; otherwise, we can prove AA conjecture. In this section,
we will give a much simpler proof for (classical) Theorem 3 directly, using only
concentration bounds, which also unifies the proof for both AI-ROM [CDGS18]
and AI-RPM (random permutation model) [CDG18]. The core of the proof is to
use an equivalent characterization of the P -BF-ROM. We will then generalize
this definition for AI-QROM in the next section.
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4.1 A New Characterization of Bit-Fixing

The P -BF-ROM fixes at most P input-output pairs of a random oracle. The
failed attempt in the last section tries to classically fix P input-output pairs
of a quantum random oracle (which will be queried in superposition later). To
overcome the barrier, we may need to ‘quantumly ’ fix P input-output pairs and
avoid the AA conjecture barrier. However, it is not clear how to ‘fix quantumly’
or ‘fix in superposition’.

To overcome the barrier in the quantum setting, we first realize that the
classical definition P -BF-ROM can be defined by a bounded query algorithm.
We find this equivalent definition is much easier to work with and is helpful for
generalizing to the quantum setting.

Definition 10 (P -BF-ROM, revisited). A security game in the P -BF-ROM
consists of the following two procedures:

– Before the challenge phase, the offline adversary A1 prepares a (randomized)
algorithm f , and then interacts with a challenger:
1. The challenger samples a random function H;
2. A1 computes fH which makes at most P queries to H.
3. A1 gets a single bit output z of fH . If z 6= 1, it restarts the whole proce-

dure (including sampling a new random function H at the beginning).
– In the challenge phase, the security game is executed with an online algorithm
A2 and oracle access to the function H.

Note that the algorithm f can be inefficient, including running time of f and
time for sampling a random H conditioned on fH = 1, except the number of
queries are bounded by P .

Definition 10 says that the oracle distribution in the online phase is deter-
mined by a P -query bounded algorithm in the pre-computation stage, condi-
tioned on the output of the algorithm fH being 1. Later the security game will
be executed under oracle access to H. This definition can be easily extended to
P -BF-RPM, by simply replacing H with a random permutation.

Next, we show that the P -BF-ROM defined above is exactly equivalent to
that defined in Definition 9. In other words, any oracle distribution in the online
phase that can be generated in the offline phase of Definition 9, can also be
generated in Definition 10, and vice versa.

Lemma 6. Definition 9 is equivalent to Definition 10.

Proof. We first show the easy direction: any oracle distribution in the online
phase that can be generated in the offline phase of Definition 9, can also be
generated in Definition 10.

Assume an algorithm g samples a list L of at most P input-output pairs and
L defines the P -bit-fixing oracle distribution in Definition 9. We show such a
distribution can be generated by conditioning on some algorithm fH outputting
1. Let f be the following algorithm:
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– f runs g as a subroutine and obtains L = {(xi, yi)} for at most P distinct
xis.

– fH queries x1, x2, · · · one by one and it outputs 1 if and only if for all i,
H(xi) = yi.

It is easy to see that the oracle distribution defined by f in Definition 10 is the
same as that defined by g in Definition 9, which is a uniform distribution over
all oracles that are compatible with L (also taken the randomness of L).

Now we focus on the opposite direction: any oracle distribution in the online
phase that can be generated in the offline phase of Definition 10, can also be
generated in Definition 9.

We first assume f is a deterministic algorithm. Without loss of generality,
f will never query the same input twice as it can simply record all queries it
made. A transcript τ of f is defined as a set containing all input-output pairs
queried by f . Each transcript will be marked as accepting or rejecting depending
on whether f outputs 1 or 0 respectively.

For a transcript τ and an oracle H, we say they are compatible if for every
(x, y) ∈ τ , H(x) = y. Fix any transcript τ , let Xτ be the oracle distribution
that is a uniform distribution over all oracles that are compatible with τ . Thus,
conditioned on f producing transcript τ , the oracle will have distribution Xτ .

Note that every pair of transcripts τ, τ ′ (produced by f) is ‘disjoint’. Namely,
for any τ, τ ′, there always exists an input x and y 6= y′ such that (x, y) ∈ τ and
(x, y′) ∈ τ ′. Then Xτ and Xτ ′ have disjoint support. We further notice that the
support of Xτ for all τ is indeed a partition of all possible oracles.

Therefore, we can construct the algorithm g as follows:

– g uses f as a subroutine. It obtains all transcripts T = {τ}.
– g samples a transcript τ with probabilityM−|τ |. Note thatM−|τ | = |Xτ |/MN ,

because the support of {Xτ}τ is a partition of all possible oracles, we have∑
τ∈T M

−|τ | = 1.
– If τ is not an accepting transcript, g restarts everything. Otherwise, it out-

puts L = τ .

In other words, the distribution generated by g is a bit-fixing source correspond-
ing to all accepting transcripts. We observe that it is a uniform distribution
over all oracles in {Mτ} for τ being an accepting transcript. This is exactly the
distribution defined by f .

If f is a randomized algorithm, we construct g in the following way:

– g uses f as a subroutine. It first samples uniform randomness r. It obtains
all transcripts T = {τ} corresponding to f(; r) (which is deterministic).

– g samples a transcript τ with probability M−|τ |.
– If τ is not an accepting transcript, g restarts everything (including sampling

randomness r). Otherwise, it outputs L = τ .

The proof is almost identical to the deterministic case.
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4.2 A Simpler Proof for Theorem 3

We reprove Theorem 3 using concentration bounds. The proof is much simpler
than the original proof [CDGS18], as the original proof needs to first decompose
a random oracle distribution H with advice into dense distributions (a technique
used in the area of communication complexity [GLM+16]), and then argue in-
distinguishability between a dense distribution and a uniform distribution.

We first recall the theorem.

Theorem 3. For any P ∈ N and every γ > 0, if a security game G is ε(T )-
secure in the P -BF-ROM, then it is ε′(S, T )-secure in the AI-ROM, where

ε′(S, T ) ≤ ε(T ) +
(S + log γ−1)T comb

P
+ γ.

In particular, if G is ε(T )-secure in the P -BF-ROM for P ≥ (S + log γ−1)T comb,
then it is ε′(S, T )-secure in the AI-ROM, where

ε′(S, T ) ≤ 2 · ε(T ) + γ.

T comb = T + TVer is the combined query complexity and TVer is the query com-
plexity for the challenger .

Reprove Theorem 3. Let G be a security game with random coin space R. As
defined in Definition 2, randomness i ∈ R is for generating a challenge.

We first prove the second half of the theorem. Fix any (S, T ) algorithm A
for G. For a given advice α ∈ {0, 1}S , let Xα

i be the random variable indicating
if A(α, ·) wins the game G with randomness i ∈ R. More precisely, Xα

i is the
following:

– H is sampled at the beginning;
– A(α) plays the game G, where the challenge ch is sampled by SampH(i) for

this fixed i;
– Xα

i = 1 if and only if the game is won by A(α).

Note that Xα
i and Xα

i′ use the same random H.
Similarly, we define Y αj to be the random variable that is uniformly at random

sampled from {Xα
i }i∈R. Y αj is the random variable indicating if an algorithm

A(α) wins the game for the j-th instance, with a uniformly chosen challenge.
We also define Y α<j in a similar way in Section 2.7: it is 1 if and only if all

Y α1 = · · · = Y αj−1 = 1. Y α<j is the random variable indicating if an algorithm A(α)
wins all games in the first (j − 1) instances, with uniformly chosen challenges
for each instance.

Since G is ε-secure in the P -BF-ROM for P ≥ (S + log γ−1)T comb = gT comb,
we have the following claim:

Claim 2. For all j ≤ g := (S + log γ−1),

Pr
[
Y αj = 1 |Y α<j = 1

]
≤ ε.
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Proof. Fixing a j ≤ g. Let f be an algorithm that computes Y α<j . We know
that Y α<j = 1 if and only if Y α1 = · · · = Y αj−1 = 1. To compute each Y αk for
k ∈ {1, 2, · · · , j−1}, the total number of queries to make is (T +TVer). Thus, the
total number of queries to compute Y α<j (or compute f) is at most (j − 1)(T +

TVer) = (j − 1)T comb < gT comb.
Thus, the oracle distribution conditioned on f outputting 1 is a distribution

generated in the P -BF-ROM for P ≥ (S + log γ−1)T comb. Because G is ε-secure
in the P -BF-ROM, by definition we have,

Pr
[
Y αj = 1 |Y α<j = 1

]
= Pr

H

[
Y αj = 1 | fH = 1

]
≤ ε.

It holds for all j ≤ g.

By Lemma 4, for any advice α, let S′ = S + log γ−1, we have that

Pr

 1

|R|
∑
i∈[R]

Xα
i ≥ 2ε

 ≤ 2−S
′

= 2−S · γ.

Applying union bound, we have

Pr

∃α ∈ {0, 1}S , 1

|R|
∑
i∈[R]

Xα
i ≥ 2ε

 ≤ γ.
Therefore, we have for any (S, T ) algorithm A,

Pr
[
∃α ∈ {0, 1}S , A(α, ·) wins the game

]
≤ 2ε+ γ.

We finish the proof for the second part.

We then prove the first half of the theorem. If P < (S + log γ−1)T comb, the
statement is trivially true. Otherwise, let g = P/T comb.

Fix any (S, T ) algorithm A for G. For a given advice α ∈ {0, 1}S , we define
Xα
i , Y αj and Y α<j as above.

Since G is ε-secure in the P -BF-ROM, similar to Claim 2, we have,

Pr
[
Y αj = 1 |Y α<j = 1

]
≤ ε for all j ≤ g = P/T comb.

By Lemma 5, for any advice α, let S′ = S + log γ−1, we have that

Pr

[
1

|R|
∑
i∈R

Xα
i ≥ ε+ S′T comb/P

]
≤ 2−S

′
= 2−S · γ.

Applying union bound, we have

Pr

[
∃α ∈ {0, 1}S , 1

|R|
∑
i∈R

Xα
i ≥ ε+ S′T comb/P

]
≤ γ.
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Therefore, we have for any (S, T ) algorithm A,

Pr
[
∃α ∈ {0, 1}S , A(α, ·) wins the game

]
≤ ε+

(S + γ−1)T comb

P
+ γ.

Note that if we assume the underlying G is secure in the P -BF-RPM, we can
prove its security in the AI-RPM with the same parameter.

5 Applications to AI-QROM

In this section, we leverage presampling techniques to the quantum setting, and
obtain a presampling theorem for quantum oracles (Theorem 1). To illustrate the
power of the presampling techniques, we give the first post-quantum non-uniform
security bounds for salted Merkle-Damg̊ard hash functions (Theorem 2).

5.1 Presampling Techniques for Quantum Random Oracles

The classical P -BF-ROM is defined by a P -query classical algorithm f . We now
extend it to the quantum case. The quantum P -BF-QROM is similarly defined
by a P -query quantum algorithm.

Definition 11 (P -BF-QROM). A security game in the P -BF-QROM con-
sists of the following two procedures:

– Before the challenge phase, the offline adversary A1 prepares a quantum
algorithm f , and then interacts with a challenger:
1. The challenger samples a random function H;
2. A1 computes fH which makes at most P superposition queries to H.
3. A1 gets a single bit output z of fH . If z 6= 1, it restarts the whole proce-

dure (including sampling a new random function H at the beginning).
– In the challenge phase, the security game is executed with an online algorithm
A2 and oracle access to the function H.

Note that the algorithm f can be inefficient, including running time of f and
time for sampling a random H conditioned on fH = 1, except the number of
queries are bounded by P .

Equivalently, the definition says that the oracle distribution in the online
phase is determined by a P -query bounded quantum algorithm in the pre-
computation stage, conditioned on the output of the algorithm fH being 1.

Note that a random oracle distribution defined by a P -query f outputting 1
can be described by a joint state as in Lemma 1 if the random oracle is simulated
as a compressed oracle. This will be useful when we prove security in the P -BF-
QROM.

With the definition above, we can lift Theorem 3 to the quantum setting.
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Theorem 1. For any P ∈ N and every γ > 0, if a security game G is ε(T )-
secure in the P -BF-QROM, then it is ε′(S, T )-secure in the AI-QROM, where

ε′(S, T ) ≤ ε(T ) +
(S + log γ−1)T comb

P
+ γ.

In particular, if G is ε(T )-secure in the P -BF-QROM for P ≥ (S + log γ−1)T comb,
then it is ε′(S, T )-secure in the AI-QROM, where

ε′(S, T ) ≤ 2 · ε(T ) + γ.

T comb = T + TVer is the combined query complexity and TVer is the query com-
plexity for the challenger to verify a solution.

The proof is identical to that for Theorem 3, except Xα
i , Y

α
j , Y

α
<j are defined

for a quantum algorithm A with a classical advice α. Therefore, we omit the
proof here.

By replacing H with a random permutation, the definition can be easily
extended to P -BF-QRPM. We present a similar presampling theorem for AI-
QRPM. More details are provided in Appendix D.

5.2 Post-quantum Non-uniform Security of Merkle-Dam̊gard Hash
Functions (MDHF)

Collision resistant hash functions are an important cryptographic primitive. Let
H be a (collision-resistant) hash function. It is required that finding two distinct
inputs x 6= x′ such that H(x) = H(x′) is hard. However, this definition can
not be achieved in the AI-QROM. An attack would simply find a collision in
the pre-processing stage and make the security trivial. Thus in practice, one
considers a family of collision-resistant functions, with a public key called salt
that determines which function is chosen. More formally, a hash function is
H : [K]× [N ]→ [M ] that takes a salt a ∈ [K] and an input x ∈ [N ]. Its collision

resistance is defined as, given a uniformly random a
$← [K], finding two distinct

x 6= x′ such that H(a, x) = H(a, x′) is hard.
In practice, a hash function usually takes inputs of different lengths. Many

hash functions used, including MD5, SHA-2, are based on the Merkle-Dam̊gard
construction. It transforms a hash function with fixed input lengths to a hash
function with arbitrary input lengths (as long as the length is still a polyno-
mial). More formally, let H be a collision-resistant hash function with fixed
input lengths, modeled as a random oracle H : [M ]× [N ]→ [M ]. Note that the
salt space [K] is the same as its image [M ]. Let a message y = (y1, · · · , yB) be
a B-block message with each yi ∈ [N ]. The function HMD(a, y) evaluates as the
follows:

HMD(a, y) = HB
MD(a, (y1, · · · , yB)) =

{
H(HB−1

MD (a, (y1, · · · , yB−1)), yB) B > 1

H(a, y1) B = 1
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In other words, it applies the fixed-length hash function H on the salt a and the
first block y1 to get a2 as the salt for the next step; it then applies H on a2 and
y2 to get a3 and so on.

Definition 12 (GMDHF). The security game GMDHF = (CMDHF) is defined as
the following, where the challenger CMDHF is specified by these procedures:

– SampH(r): it takes r ∈ [M ] as randomness and outputs a salt a = r;
– QueryH(a, ·) = H(·);
– VerH(a, (x, x′)) = 1 if and only if x 6= x′ and HMD(a, x) = HMD(a, x′).

Recall the definition of a security game is defined in Section 2.4. In other
words, an algorithm gets access to the random oracle H in the pre-processing
stage; in the online phase, it has the advice computed in the pre-processing
stage and is given a random salt a; its goal is to find x 6= x′ (either they are
of different lengths or they are different inputs of the same length) such that
HMD(a, x) = HMD(a, x′).

In the AI-ROM, a tight bound Õ(S/M+T 2/M) for the caseB = 1 was proven
by [DGK17]. Later Dodis et al. [CDGS18] proved a tight bound Õ(ST 2/M)
for the general MDHF case. More recently, [ACDW20] studied finding short
collisions of MDHFs in the AI-ROM. In the rest of the section, we are going to
show the first non-trivial bound in the AI-QROM.

We prove the following theorem:

Theorem 2. GMDHF is ε(S, T ) = Õ(ST 3/M)-secure in the AI-QROM.

In order to prove the theorem, we show the following lemma. Combining with
Theorem 1, we have the first non-trivial bound for the security of MDHF in the
AI-QROM.

Lemma 7. GMDHF is O((PT 2 + T 3)/M)-secure in the P -BF-QROM.

Proof. To prove this lemma, we assume a random oracle is implemented as a
compressed standard oracle, which is identical to a truly random oracle from the
adversary’s view, by Corollary 1 (see the appendix for more details).

In the P -BF-QROM, the oracle distribution in the challenge phase is a uni-
form random oracle distribution conditioned on a P -query quantum algorithm
f outputting 1. As stated in Lemma 1, the overall state of the algorithm f and
the oracle conditioned on the measurement of the first P queries:

|ψ0〉 =
∑

z,D:|D|≤P

αz,D |z〉 |D〉 ,

where Z register is the state of the algorithm f and D register is the state for
compressed standard oracle.

For every salt a ∈ [M ], define a projection Qa that finds if a is in the database
D. In other words,

Qa =
∑

z,D:∃x,D(a,x)6=⊥

|z,D〉〈z,D|.
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Thus, the probability that a fixed salt a in D is pa = |Qa |ψ0〉 |2. Since |ψ0〉
only has support on all databases D with at most P entries, each z,D will
contribute |αz,D|2 to at most P different probabilities pa. Therefore, if a random
challenging salt a is chosen, the probability of a in the database is at most
Ea[pa] = 1

M

∑
a pa ≤

P
M .

In the online phase, the algorithm and the challenger are doing the follows:

– The challenger samples a random salt a and gives it to A;

– A upon receiving a, for i = 1, · · · , T ,

• It applies a unitary Ui−1 (depends on a), |ψ′i〉 = (Ui−1 ⊗ I) |ψi−1〉;
• It makes an oracle query to H (i.e CStO), |ψi〉 = CStO |ψ′i〉.

– A measures its registers and outputs distinct {(xi, yi)}Bi=1 and {(x′i, y′i)}B
′

i=1.
It wins if and only if they form an MDHF collision respect to a: let y0 = y′0 =
a, it should satisfy: (1) ∀i ∈ [B], H(yi−1, xi) = yi; (2) ∀j ∈ [B′], H(y′j−1, x

′
j) =

y′j ; (3) yB = y′B′ .

From Lemma 2, let the probability that A finds an MDHF collision as de-
scribed above be qa, the probability that D contains an MDHF collision be

q′a, we have
√
qa ≤

√
q′a +

√
B+B′

M . Without loss of generality we can assume

B +B′ ≤ T , therefore
√
qa ≤

√
q′a +

√
T
M .

To bound qa, we only need to focus on the probability q′a that D contains
an MDHF collision. Define Ra be a projection that check if D has an MDHF
collision with respect to a. We observe that |Ra |ψ0〉 | ≤ |Qa |ψ0〉 |, because a
database contains an MDHF collision with respect to a only if it contains entries
starting with a.

First, we know that applying a unitary only on A’s register does not affect
the projection Ra:

Lemma 8. |Ra |ψ′i〉 | = |Ra |ψi−1〉 | for all i ∈ [T ].

Proof. By the definition of |ψ′i〉, we have |Ra |ψ′i〉 | = |Ra(Ui−1⊗I) |ψi−1〉 |. Since
Ra is a projection applied on the second half of the state but Ui−1 is applied only
on the first half of the state, it does not affect the overall probability. Therefore,
|Ra |ψ′i〉 | = |Ra |ψi−1〉 |.

Lemma 9. |Ra |ψi〉 | ≤ |Ra |ψ′i〉 |+ 3
√

2 ·
√

P+i−1
M for all i ∈ [T ].

Proof. We first give the following claim. Let D be a database that does not
contain an MDHF collision and x = (ã||x̃) ∈ [M ] × [N ] be a query not in D.
Define Gx,D be the set of images y ∈ [M ] such that D ∪ {(x, y)} contains an
MDHF collision.

Claim 3. For any database D that does not contain an MDHF collision and a
query x = (ã||x̃), |Gx,D| ≤ |D|.
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We give the proof for the above claim. By making the query, the only possi-
bility that an MDHF collision appears in a database D which previously did not
contain any MDHF collision is the following case: assume the resulting database
contains distinct {(xi, yi)}Bi=1 and {(x′i, y′i)}B

′

i=1 (assuming y0 = y′0 = a) which
form an MDHF collision; the query (ã, x̃) must be part of either of {(xi, yi)}Bi=1

or {(x′i, y′i)}B
′

i=1; in other words, there must exist either an i ∈ [B] or a j ∈ [B′]
such that (ã, x̃, H(ã, x̃)) = (yi−1, xi, yi) or (y′j−1, x

′
j , y
′
j). Thus, the necessary

condition to form an MDHF collision is that the image H(ã, x̃) is already in the
database. We conclude that |Gx,D| ≤ |D|.

Before looking at the proof for quantum case, let us sketch the classical proof.
Classically, if we have a database D that contains no MDHF collisions, we want
to bound the probability that after making a new query, the database contains
an MDHF collision. Assume the algorithm makes a new query x, by the above
discussion, we know that the necessary condition for having an MDHF collision
is that H(x) ∈ Gx,D. Since |Gx,D| ≤ |D| and H(x) is not queried so far, the
probability of having an MDHF collision after this query is at most |D|/M .

The lemma we want to prove is a quantum analogy of the classical statement
mentioned before. Unlike the classical statement, a new query does not con-
tribute to the success probability, but it contributes to the amplitude. Formally,

– |ψ′i〉 is the state before the i-th query, thus |Ra |ψ′i〉 | is the amplitude that
the compressed oracle database containing an MDHF collision before making
the query;

– Similarly, |Ra |ψi〉 | is the amplitude that the compressed oracle database
containing an MDHF collision after the algorithm makes the i-th query;

– 3
√

2 ·
√

P+i−1
M is the maximal increase that the i-th query can contribute to

the amplitude, here (P + i− 1) is the maximal cardinality of databases.

We prove our main lemma for compressed phase oracle CPhO. The same
argument holds for compressed standard oracle CStO since they are equivalent.
The proof follows the same structure of the proof for Theorem 1 in [Zha19].

First recall that CPhO = StdDecomp ◦ CPhO′ ◦ StdDecomp. CPhO′ is defined
as follows:

CPhO′ |x, y, z,D〉 = ω
yD(x)
M |x, y, z,D〉 .

Here D has range [M ], and y · ⊥ is defined as 0.
We define Ra as the projection on databases that contain an MDHF collision

starting with salt a. By definitions of |ψ′i〉 and |ψi〉 (they are states before or
after making the i-th queries to a random oracle), we have:

|Ra |ψi〉 | = |RaCPhO |ψ′i〉| .

Without loss of generality, we assume the state |ψ′i〉 is the following:

|ψ′i〉 =
∑

x,y,z,D:|D|≤P+i−1

αx,y,z,D |x, y, z〉 ⊗ |D〉 .
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Here x is the input registers, y is the output registers, z is the algorithm’s private
registers, and D is the registers for compressed phase oracle. Moreover, it only
has non-zero weight over D such that |D| ≤ P + i− 1. This is because |φ0〉 has
support over D whose cardinality is at most P and each query to CPhO only
increases the size by at most 1.

We then define three more projections on all registers:

– Wa: it projects to the following space: (1) D does NOT contain an MDHF
collision starting with salt a; (2) y 6= 0; (3) D(x) = ⊥.

– W ′a: it projects to the following space: (1) (2) in Wa, but D(x) 6= ⊥.

– W ′′a : (1) in Wa, but y = 0.

It is easy to see that Ra + Wa + W ′a + W ′′a = I (in the proof for Theorem 1 of
[Zha19], they used the notations P,Q,R, S respectively; since we have already
used some of these letters, we choose a set of different notations).

Therefore, we have:

|RaCPhO |ψ′i〉 | =|RaCPhO (Ra +Wa +W ′a +W ′′a ) |ψ′i〉 |
≤|RaCPhORa |ψ′i〉 |+ |RaCPhOWa |ψ′i〉 |

+ |RaCPhOW ′a |ψ′i〉 |+ |RaCPhOW ′′a |ψ′i〉 |.

By triangle inequality, we can bound them separately:

Part 1. |RaCPhORa |ψ′i〉| ≤ |CPhORa |ψ′i〉| = |Ra |ψ′i〉|.
It is an easy case because removing the first projection Ra does not increase

the norm. The second equality is simply because unitary CPhO does not change
the norm.

Part 2. |RaCPhOWa |ψ′i〉 | ≤
√

P+i−1
M |Wa |ψ′i〉 |.

Since it is in the space defined by Wa, the database does not contain an
MDHF collision for salt a, and the queried point x is not in the database. We
have Wa |ψ′i〉 is the following:

Wa |ψ′i〉 =
∑

D∈DMDHF:|D|≤P+i−1
x 6∈D,y 6=0,z

αx,y,z,D |x, y, z〉 ⊗ |D〉 .

Here DMDHF is the set of databases that do not contain an MDHF collision. By
making the next query, we have,

CPhOWa |ψ′i〉 =
∑

D∈DMDHF:|D|≤P+i−1
x 6∈D,y 6=0,z

αx,y,z,D |x, y, z〉 ⊗

 1√
M

∑
w∈[M ]

ωwyM |D ∪ (x,w)〉

 .

Intuitively, a uniformly random output of x will be sampled.
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Since D does not contain an MDHF collision, applying Ra to the state
CPhOWa |ψ′i〉 will force w ∈ Gx,D (see the definition of Gx,D at the beginning
of this proof). Formally,

RaCPhOWa |ψ′i〉 =
∑

D∈DMDHF:|D|≤P+i−1
x 6∈D,y 6=0,z

αx,y,z,D |x, y, z〉

⊗

 1√
M

∑
w∈Gx,D

ωwyM |D ∪ (x,w)〉

 .

Notice that the images of the different basis states are orthogonal, and |Gx,D| ≤
|D| ≤ (P + i− 1). We conclude that |RaCPhOWa |ψ′i〉 | ≤

√
P+i−1
M |Wa |ψ′i〉 |.

Part 3. |RaCPhOW ′a |ψ′i〉 | ≤ 3
√

2 ·
√

P+i−1
M |W ′a |ψ′i〉 |.

For basis states |x, y, z〉 ⊗ |D〉 that is in the space defined by W ′a, we know
that D does not contain an MDHF collision for salt a, y is not 0 and D(x) is
not ⊥. Let w be D(x). Let D′ be the database with x removed. Then by some
algebraic manipulations (the same tricks in the proof of Theorem 1 in [Zha19]),
we have CPhO |x, y, z〉 ⊗ |D ∪ (x,w)〉 is:

|x, y, z〉⊗
(
ωwyM

(
|D′ ∪ (x,w)〉+

1√
M
|D′〉

)
+

1

M

∑
y′

(
1− ωwyM − ω

y′y
M

)
|D′ ∪ (x, y′)〉

)
.

Since [Zha19] does not give an explicit proof, we include the proof for the above
statement in the Appendix C.

First, both D′ ∪ (x,w) and D′ do not contain an MDHF collision. This is by
the assumption that the basis states are in the space defined by W ′a. We write
W ′a |ψ′i〉 as:

W ′a |ψ′i〉 =
∑

x,y,z,D′,w

βx,y,z,D′,w |x, y, z〉 ⊗ |D′ ∪ (x,w)〉 .

Thus, |RaCPhOW ′a |ψ′i〉 |2 can be bounded as:

|RaCPhOW ′a |ψ′i〉 |2 =
1

M2

∑
x,y,z,D′

y′∈Gx,D

∣∣∣∣∣∑
w

βx,y,z,D′,w(1− ωwyM − ω
y′y
M )

∣∣∣∣∣
2

≤ 9

M

∑
x,y,z,D′

y′∈Gx,D

|βx,y,z,D′,w|2

=
9(P + i− 1)

M
|W ′a |ψ′i〉 |2.
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The inequality on the second line follows by Cauchy-Schwarz inequality. The
conclusion of Part 3 follows by taking square root on both sides of the above
inequality.

Part 4. |RaCPhOW ′′a |ψ′i〉 | = 0.
It is also an easy case. Because for all basis states |x, y, z〉 ⊗ |D〉 in the space

defined by W ′′a , y = 0 and D does not contain an MDHF collision. When y = 0,
D will not get updated after the next oracle query. Thus the conclusion follows.

Finally, we combine all the statements above:

|RaCPhO |ψ′i〉 | ≤|RaCPhORa |ψ′i〉 |+ |RaCPhOWa |ψ′i〉 |
+ |RaCPhOW ′a |ψ′i〉 |+ |RaCPhOW ′′a |ψ′i〉 |

≤|Ra |ψ′i〉 |+ 3

√
P + i− 1

M
(|Wa |ψ′i〉 |+ |W ′a |ψ′i〉 |)

≤|Ra |ψ′i〉 |+ 3
√

2 ·
√
P + i− 1

M
.

The last equality follows by |Wa |ψ′i〉 |2 + |W ′a |ψ′i〉 |2 ≤ 1 and Cauchy-Schwarz
inequality. This concludes the proof of the lemma.

Therefore, combining it with the above lemmas, we conclude that:

|Ra |ψT 〉 | ≤ |Ra |ψT−1〉 |+ 3
√

2 ·
√
P + T − 1

M

≤ 3
√

2 ·
T∑
i=1

√
P + i− 1

M
+ |Ra |ψ0〉 |.

By Lemma 2, we have,

√
qa ≤

√
q′a +

√
T/M

= |Ra |ψT 〉 |+
√
T/M

≤ 3
√

2 ·
T∑
i=1

√
P + i− 1

M
+ |Ra |ψ0〉 |+

√
T/M

≤ 3
√

2 ·
T∑
i=1

√
P + i− 1

M
+ |Qa |ψ0〉 |+

√
T/M.

By Cauchy-Schwarz,

qa ≤ O
(
(T + PT 2 + T 3)/M

)
+ 2 · |Qa |ψ0〉 |2 = O

(
(PT 2 + T 3)/M

)
+ 2pa.

Averaging over a, Ea[qa] ≤ O
(
(PT 2 + T 3)/M

)
+ Ea[pa] = O

(
(PT 2 + T 3)/M

)
.

Thus MDHF is O
(
PT 2+T 3

M

)
-secure in the P -BF-QROM.
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5.3 Post-quantum Non-uniform Security of One-way Functions
(OWF)

In this section, we show the simplicity and generality of our theorem by reprov-
ing results in [CGLQ20]. We only prove one of the main results in [CGLQ20],
namely the almost optimal bound of OWF in the AI-QROM. Other results can
be reproved with almost no extra effort, in a similar way.

Definition 13 (GOWF). The security game GOWF = (COWF) is defined as the
following, where the challenger CMDHF is specified by these procedures:

– SampH(r): which takes randomness r = x ∈ [N ] and outputs the challenge
ch = y = H(x).

– QueryH(r, x′): it ignores the randomness and simply outputs H(x′).
– VerH(r, x′): it outputs 1 if and only if H(x′) = H(x) where x = r.

Namely, the challenger samples a random input x and the challenge is y =
H(x). An adversary wins the game if and only if it finds any preimage of y.

We reprove the following theorem.

Theorem 8. GOWF is ε(S, T ) = Õ((ST + T 2)/min{N,M})-secure in the AI-
QROM.

By Theorem 1, we only need to prove its security in the P -BF-QROM.

Lemma 10. GOWF is O((P + T 2)/min{N,M})-secure in the P -BF-QROM.

Proof. To prove it, we first recall Lemma 1.5 in [CGLQ20]. Note that although
the original statement for the following lemma only considers H having the same
domain and range, it indeed works for any H : [N ]→ [M ] and the proofs are in
Lemma 5.6 and Lemma 5.9 of [CGLQ20].

Lemma 11 (Lemma 1.5, [CGLQ20]). For any quantum algorithm making
q0 +q queries to a random function H : [N ]→ [M ], if H(x) is sampled and given
after the q0-th query, conditioned on arbitrary outcomes (with non-zero proba-
bility) of the algorithm’s measurement during the first q0 queries, the probability
of inverting H(x) is at most O((q0 + q2)/min{N,M}).

By letting the computation for the first q0 queries to be an evaluation of f
and measuring if fH = 1, we realize it is exactly the statement for its security
in the q0-BF-QROM. By letting q0 = P and q = T , we prove our lemma.
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A More on Quantum Random Oracle Model

This section is taken verbatim from Section 2.3 of [CGLQ20]. In this subsection,
we recall the technique introduced by Zhandry [Zha19]. We will explain how to
purify a random oracle in the quantum setting first, and then give equivalent
forms of a quantum random oracle, namely standard oracle StO, phase oracle
PhO and compressed standard oracle CStO. All these oracles are equivalent in
the sense that for every (even unbounded) algorithm making queries to one
of these oracles, the output distribution of the algorithm is exactly identical
regardless of which oracle is given. Then Zhandry shows dealing with compressed
standard oracle is usually easier. Roughly speaking, Zhandry shows that with
compressed standard oracle, one could quantify the amount of the information
about the random oracle learned by any quantum algorithm, analogous to the
lazy sampling technique that is very commonly used for classical random oracles.

Note that in Zhandry’s work [Zha19], they originally only considered output
of size M = 2m, and implementing a quantum random oracle as UH : |x〉 |u〉 =
|x〉 |u⊕H(x)〉 where ⊕ is bit-wise XOR, or the addition over Fm2 . Therefore,
their description of the compressed oracle technique is different since the range
is defined as Fm2 instead of Z/MZ considered in this paper. Two oracles are
equivalent as we can simulate one with the other using two queries. For the
completeness of the paper, we will reprove some of the useful lemmas under the
integer ring Z/MZ.

Also note that Zhandry also showed that a compressed oracle can be ef-
ficiently implemented by a quantum computer, i.e. the running time is only
polynomial in the number of queries and logN, logM . In this work, since we
mainly consider query complexity and for presentation, we ignore the issue of
efficiency for a simpler presentation.
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Purification: standard oracle. Let H be a random oracle [N ]→ [M ]. The func-
tion H is sampled at the very beginning, or equivalently, initially we prepare
a maximally mixed state η

∑
H |H〉 〈H| up to some normalization factor η, and

each query can be implemented by another unitary U , which reads the func-
tion H and applies UH . However, we can “purify” the random oracle, meaning
that we can replace the mixed state of |H〉 with a uniform superposition of
all possible functions, i.e.

√
η
∑
H |H〉. Consider the truth table of H, that is

|H〉 = |H(1)〉 |H(2)〉 · · · |H(N)〉. Let A be any quantum algorithm. We say the
algorithm can query the standard oracle if we treat the algorithm’s registers and
|H〉 as a whole system, initialized as |0〉 |ψ〉 ⊗ 1

MN/2

∑
H |H〉. An oracle query

StO in this purified state is defined as,

StO |x〉 |u〉 |z〉 ⊗ |H〉 = |x〉 |u+H(x)〉 |z〉 ⊗ |H〉 ,

where |x〉 , |u〉 are the input and output register, |z〉 is an arbitrary working
register and |H〉 is the random oracle. Each local quantum computation is Ui⊗I
which only operates on A’s registers |x〉 |u〉 |z〉. Therefore the computation of any
A can be described as a sequence of: U0⊗I, StO, · · · , UT−1⊗I, StO, UT ⊗I, and
a final computational measurement over A’s register. The following proposition
tells that the output distribution using a standard oracle is exactly the same as
using a random oracle.

Lemma 12 ([Zha19, Lemma 2]). Let A be an (unbounded) quantum algo-
rithm making oracle queries. The output of A given a random function H is
exactly identical to the output of A given access to a standard oracle. There-
fore, a random oracle with quantum query access can be perfectly simulated as a
standard oracle.

Phase kickback: phase oracle. Define a unitary V as (Ix ⊗ QFT†M ⊗ IH) which

applies QFT†M on the output register |u〉. Define the phase oracle operator
PhO := V † · StO · V .

PhO |x〉 |u〉 ⊗ |H〉 = V † · StO · 1√
M

∑
y

ω−uyM |x〉 |y〉 ⊗ |H〉

= V † · 1√
M

∑
y

ω−uyM |x〉 |y +H(x)〉 ⊗ |H〉

=
1

M

∑
y,y′

ω
−uy+(y+H(x))y′

M |x〉 |y′〉 ⊗ |H〉

=
1

M
ω
uH(x)
M

∑
y,y′

ω
(y+H(x))(y′−u)
M |x〉 |y′〉 ⊗ |H〉

= |x〉 |u〉 ⊗ ωuH(x)
M |H〉 .

Similarly, we override the notation PhO such that for any auxiliary register |z〉,
PhO |x〉 |u〉 |z〉 ⊗ |H〉 = |x〉 |u〉 |z〉 ⊗ ωuH(x)

M |H〉.
Observing that V V † = I, the following lemma tells that we can efficiently

convert between a standard oracle algorithm and a phase oracle algorithm.
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Lemma 13 ([Zha19, Lemma 3]). Let A be an (unbounded) quantum algo-
rithm making queries to a standard oracle. Let B be the algorithm that is identical
to A, except it performs V and V † before and after each query. Then the output
distributions of A (given access to a standard oracle) and B (given access to a
phase oracle) are identical. Therefore, a quantum random oracle can be perfectly
simulated as a phase oracle.

We then have the following lemma for the phase oracle, that formulates
the behavior of a quantum algorithm making at most T queries to the phase
oracle. We have seen that every PhO query will add a phase to the |H〉 reg-

ister, i.e., PhO |x〉 |u〉 ⊗ |H〉 = |x〉 |u〉 ⊗ ω
uH(x)
M |H〉. Define D as a truth ta-

ble, or equivalently a vector in (Z/MZ)N and D(x) be the x-th entry of D.
Define |D| be the number of non-zero entries in D. For any D, we define

|φD〉 = 1
MN/2

∑
H ω
〈D,H〉
M |H〉 for all D ∈ (Z/MZ)N where 〈D,H〉 is defined

to be the inner product
∑
x∈[N ]D(x)H(x). Note that we will only use this inner

product on the exponent of ωM so it is irrelevant whether we are computing it
on the integer ring or the ring modulo M .

Lemma 14. Let A be a quantum algorithm making at most T queries to a
phase oracle. The overall state of A and the phase oracle can be written as∑
z,D:|D|≤T αz,D |z〉 ⊗

1
MN/2

∑
H ω
〈D,H〉
M |H〉 =

∑
z,D:|D|≤T αz,D |z〉 ⊗ |φD〉.

Moreover, it is true even if the state is conditioned on arbitrary outcomes
(with non-zero probability) of A’s intermediate measurements.

Compressed standard oracle. Intuitively, compressed oracle is an analogy of clas-
sical lazy sampling method. Instead of recording all the information of H in the
registers (like what it does in the standard oracle or the phase oracle), Zhandry
provides a better solution which is useful to argue the amount of the information
an algorithm knows about the random oracle.

The oracle register records a database/list that contains the output on each
input x, the output is an element in Z/MZ ∪ {⊥}, where ⊥ is a special symbol
denoting that the value is “uninitialized”. The database is initialized as an empty
list D0 of length N , in other words, it is initialized as the pure state |∅〉 :=
|⊥,⊥, · · · ,⊥〉. Let |D| denote the number of entries in D that are not ⊥. Define
D(x) to be the x-th entry.

For any D and x such that D(x) = ⊥, we define D∪(x, u) to be the database
D′, such that for every x′ 6= x, D′(x′) = D(x) and at the input x, D′(x) = u.

The compressed standard oracle is the unitary CStO := StdDecomp ◦CStO′ ◦
StdDecomp, where

– CStO′ |x, u〉|D〉 = |x, u+D(x)〉|D〉 when D(x) 6= ⊥, which writes the output
of x defined in D to the u register. This operator will never be applied on
an x,D where D(x) = ⊥.

– StdDecomp(|x〉⊗|D〉) := |x〉⊗StdDecompx |D〉, where StdDecompx |D〉 works
on the x-th register of the database D(x). Intuitively, it swaps a uniform
superposition 1√

M

∑
y |y〉 with |⊥〉 on the x-th register. Formally,
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• If D(x) = ⊥, StdDecompx maps |⊥〉 to 1√
M

∑
y |y〉, or equivalently,

StdDecompx|D〉 = 1√
M

∑
y |D ∪ (x, y)〉. Intuitively, if the database does

not contain information about x, it samples a fresh y as the output of x.
• If D(x) 6= ⊥, StdDecompx works on the x-th register, and it is an iden-

tity on 1√
M

∑
y ω

uy
M |y〉 for all u 6= 0; it maps the uniform superposition

1√
M

∑
y |y〉 to |⊥〉.

More formally, for a D′ such that D′(x) = ⊥,

StdDecompx
1√
M

∑
y

ωuyM |D
′ ∪ (x, y)〉 =

1√
M

∑
y

ωuyM |D
′ ∪ (x, y)〉 for any u 6= 0,

and,

StdDecompx
1√
M

∑
y

|D′ ∪ (x, y)〉 = |D′〉.

Since all 1√
M

∑
y ω

uy
M |y〉 and |⊥〉 form a basis, these requirements define a

unique unitary operation.

Zhandry proves that, StO and CStO are perfectly indistinguishable by any un-
bounded quantum algorithm.

Lemma 15 ([Zha19, Lemma 4]). Let A be an (unbounded) quantum algo-
rithm making oracle queries. The output of A given access to the standard ora-
cle is exactly identical to the output of A given access to a compressed standard
oracle.

Combining this lemma with Lemma 12, we obtain the following corollary.

Corollary 1. A quantum random oracle can be perfectly simulated as a com-
pressed standard oracle.

In this work, we only consider query complexity, and thus simulation effi-
ciency is irrelevant to us. Looking ahead, we simulate a random oracle as a
compressed standard oracle to help us analyze security of different games with
the help from the following lemmas.

The first lemma gives a general formulation of the overall state of A and the
compressed standard oracle after A makes T queries, analogous to Lemma 14
for phase oracle.

Lemma 16. If A makes at most T queries to a compressed standard oracle, as-
suming the overall state of A and the compressed standard oracle is

∑
z,D αz,D |z〉A|D〉H

where |z〉 is A’s registers and |D〉 is the oracle’s registers, then it only has sup-
port on all D such that |D| ≤ T . In other words, the overall state can be written
as, ∑

z,D:|D|≤T

αz,D |z〉A ⊗ |D〉H .

Moreover, it is true even if the state is conditioned on arbitrary outcomes (with
non-zero probability) of A’s intermediate measurements.
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The second lemma provides a quantum analogue of lazy sampling in the
classical ROM.

Lemma 17 ([Zha19, Lemma 5]). Let H be a random oracle from [N ]→ [M ].
Consider a quantum algorithm A making queries to the standard oracle and
outputting tuples (x1, · · · , xk, y1, · · · , yk, z). Suppose the random function H is
measured after A produces its output. Let R be an arbitrary set of such tuples.
Suppose with probability p, A outputs a tuple such that (1) the tuple is in R
and (2) H(xi) = yi for all i. Now consider running A with the compressed
standard oracle CStO, and suppose the database D is measured after A produces
its output. Let p′ be the probability that (1) the tuple is in R and (2) D(xi) = yi
(in particular, D(xi) 6= ⊥) for all i. Then

√
p ≤
√
p′ +

√
k/M .

Moreover, it is true even if it is conditioned on arbitrary outcomes (with
non-zero probability) of A’s intermediate measurements.

B Equivalence between Conjecture 1 and Conjecture 3

We first present some notations and basic facts in Boolean function analysis
that will be used. Let f : {−1, 1}n → R be a function, we make the following
notations.

1. We define the zero vector as 0 := (0, . . . , 0) ∈ Rn.
2. The expectation of f is defined as f(0) := Ex∼{−1,1}n [f(x)]

3. The variance of f is defined as Var[f ] := Ex
[
(f(x)− f(0))2

]
.

4. The degree of f is defined as deg(f) = max{|S| : f̂(S) 6= 0}. Here f̂(S) :=
Ex[f(x)

∏
i∈S xi] represents the Fourier coefficient of f .

5. For every set J ⊆ [n], we denote its complement as J̄ := [n] \ J .
6. For each J ⊆ [n] and x′J ∈ {−1, 1}J , the restricted function f |x′

J
: {−1, 1}J̄ →

R is defined as f |x′
J
(xJ̄) = f(x′J , xJ̄). Besides, we denote as f(xJ ,0J̄) =

ExJ̄
[f(xJ , xJ̄)].

7. For every x ∈ {−1, 1}n and J ⊂ [n], let xJ ∈ {−1, 1}n denote the string
obtained by flipping all bits in J .

Definition 14 (Smooth function). Let t be a positive integer and δ > 0.
A function f : {−1, 1}n → R is called (t, δ)-smooth if for any |J | ≤ t and
xJ ∈ {−1, 1}J , it has that

|f(xJ ,0J̄)− f(0)| ≤ δ.

Definition 15. Let f : {−1, 1}n → R be a function. For each x ∈ {−1, 1}n, the
block-sensitivity of f at x is defined as

bs(f, x) = max
k,J1t···tJk

∑
i∈[k]

|f(xJi)− f(x)|/2.

The block-sensitivity of f is defined as max
x
{bs(f, x)}.
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Nisan and Szegedy [NS94] proved that bs(f) = O(deg(f)2) for any Boolean
function f : {−1, 1}n → {0, 1}. This result can be further generalized to bounded
functions, see [KK19] for a formal proof.

Claim 4 ([NS94,KK19]). Let f : {−1, 1}n → [0, 1] be a bounded degree-d
polynomial, then bs(f) = O(d2).

Let f : {−1, 1}n → [0, 1] be the acceptance probability of some quantum
algorithm that makes T queries to a Boolean string x = (x1, · · · , xn), a basic
result shown by Beals et al. [BBC+01] says that deg(f) ≤ 2T . Furthermore,
according to Claim 4, we have bs(f) = O(T 2).

It is more convenient to use the following restates of Conjecture 1 and Con-
jecture 3.

Conjecture 5 (restate of Conjecture 1). There is a constant C > 0. For the
acceptance probability f : {−1, 1}n → [0, 1] of any quantum algorithm that
makes T queries to a Boolean string x = (x1, · · · , xn) and any ε > 0, there is a
decision tree g : {−1, 1}n → [0, 1] of depth (T/ε)C such that ‖g − f‖2 ≤ ε.

The equivalence between Conjecture 1 and Conjecture 5 is based on the fact
that ‖g − f‖22 ≤ ‖g − f‖1 ≤ ‖g − f‖2 as ‖g − f‖∞ ≤ 1.

Conjecture 6 (restated of Conjecture 3). There is a constant C > 0. For the
acceptance probability f : {−1, 1}n → [0, 1] of any quantum algorithm that
makes T queries to a Boolean string x = (x1, · · · , xn) and any δ > 0, if f is(
(T/δ)C , (δ/T )C

)
-smooth, then Var[f ] ≤ δ.

The following claim will be used.

Claim 5. Let J ⊂ [n] be any set. Then

E
xJ

[
E
xJ̄

[bs(f |xJ
, xJ̄)]

]
≤ E

x
[bs(f, x)]−max

xJ

{|f(xJ ,0J̄)− f(0)|/4} .

Proof. Let r := max
xJ

{|f(xJ ,0J̄)− f(0)|} and let x∗J be the input reaching

it. Since f(0) = ExJ
[f(xJ ,0J̄)], there is a string x′J ∈ {−1, 1}J such that

|f(x∗J ,0J̄)− f(x′J ,0J̄)| ≥ r. Hence

r ≤
∣∣E
xJ̄

[f(x∗J , xJ̄)− f(x′J , xJ̄)]
∣∣

≤ E
xJ ,xJ̄

[|f(x∗J , xJ̄)− f(xJ , xJ̄)|+ |f(x′J , xJ̄)− f(xJ , xJ̄)|]

≤2 · E
xJ ,xJ̄

[
max

zJ∈{−1,1}J
{|f(zJ , xJ̄)− f(xJ , xJ̄)|}

]
.

On the other hand, according to the definition of block-sensitivity, it has

bs(f |xJ
, xJ̄) + max

zJ∈{−1,1}J
{|f(zJ , xJ̄)− f(xJ , xJ̄)|/2} ≤ bs(f, x).
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Putting these together, we conclude that

E
xJ ,xJ̄

[bs(f |xJ
, xJ̄)] ≤E

x
[bs(f, x)]− E

xJ ,xJ̄

[
max

zJ∈{−1,1}J
{|f(zJ , xJ̄)− f(xJ , xJ̄)|/2}

]
≤E
x

[bs(f, x)]− r/4.

Theorem 9. Conjecture 6 implies Conjecture 5.

Proof. Assuming Conjecture 6 holds, and let C0 be the constant from this con-
jecture. For the acceptance probability f : {−1, 1}n → [0, 1] of any quantum
algorithm that makes T queries to a Boolean string x = (x1, · · · , xn) and any
ε > 0, we construct a small depth decision tree g that ε-approximates f as fol-
lows: given any function f , we continually query non-smooth set, a set J of size
(T/ε)C0 such that |f(xJ ,0J̄) − f(0)| ≥ (ε/T )C0 , until reaches a small variance
function. We formalize the idea as follows:

1. Define f0 = f and B := c1 · TC0+2/εC0+1, where c1 is a large constant
to be determined later.

2. Given a function fi : {−1, 1}Si → [0, 1], if Var[fi] ≤ ε or i ≥ B, then
output T (x) = E[fi];

3. Otherwise, since fi is a restricted function of f , fi is also the acceptance
probability of some quantum algorithm that makes at most T queries.
Then Conjecture 6 guarantees the existence of J of size at most (T/ε)C0

and x∗J ∈ {−1, 1}J s.t. |fi(x∗J ,0Si\J) − fi(0)| ≥ (ε/T )C0 . Deterministi-

cally choose such a J , query xJ and define fi+1 : {−1, 1}Si\J → [0, 1]
by fi+1(y) = fi(xJ , y). Repeat Stage 2 with fi+1.

Obviously the depth of g is at most B · (T/ε)C0 = c1 · T 2C0+2/ε2C0+1. What
remains is to show that g approximates f , i.e., ‖f−g‖22 ≤ 2ε. Let I be a random
variable counting the number of iterations on a random input x. Then

‖f − g‖22 =Ex
[
(fI(x)− E(fI))

2
]

= Ex[Var [fI ]]

= Pr [I < B] · Ex[Var [fI ] |I < B] + Pr[I = B] · Ex[Var [fI ] |I = B]

≤Ex[Var [fI ] |I < B] + Pr [I = B]

≤ε+ Pr [I = B] ,

where the last inequality is due to that Var[fI ] ≤ ε if I < B. In the following,
we show that Pr(I = B) ≤ ε, and then finish the proof.

By contradiction, suppose Pr[I = B] > ε. For convenience, we pretend that
the algorithm iterates exactly B times on every input x, in the way that for any
I < i ≤ B, the algorithm queries nothing. Fix any i < B, let J ⊂ [n] (and fi
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resp.) be the random set queried (and the random resulted subfunction resp.) in
the i-th iteration on a random input x. Note that fi+1 = fi|xJ

, then according
to Claim 5, we have

Ex[bs(fi+1, x)]

=EfiEx[bs(fi+1, x)|fi] = EfiEx[bs(fi|xJ
, x)|fi]

≤EfiEx[bs(fi, x)|fi]−
1

4
· EfiEx

[
max

xJ∈{−1,1}J

{
|fi(xJ ,0Si\J)− f(0Si

)|
} ∣∣fi]

=Ex[bs(fi, x)]− 1

4
· Ex

[
max

xJ∈{−1,1}J

{
|fi(xJ ,0Si\J)− f(0Si)|

}]
≤Ex[bs(fi, x)]− 1

4
· Pr(I > i) · Ex

[
max

xJ∈{−1,1}J

{
|fi(xJ ,0Si\J)− f(0Si

)|
} ∣∣I > i

]
≤Ex[bs(fi, x)]− 1

4
· εC0+1/TC0 .

By induction, we have that Ex[bs(fi, x)] ≤ Ex[bs(f0, x)]− i
4 · ε

C0+1/TC0 . Partic-
ularly,

Ex[bs(fB , x)] ≤Ex[bs(f0, x)]− B

4
· εC0+1/TC0

≤Ex[bs(f0, x)]− c1
4
· T 2 < 0,

if c1 is sufficiently large. A contradiction.

We then prove the other direction.

Theorem 10. Conjecture 5 implies Conjecture 6.

Proof. Assuming Conjecture 5 holds, and let C0 be the constant. For the accep-
tance probability f : {−1, 1}n → [0, 1] of any quantum algorithm that makes T
queries to a Boolean string x = (x1, · · · , xn), we show there is a set J ⊂ [n] of
size |J | ≤ (T/Var[f ])C0 and a string xJ ∈ {−1, 1}J such that

|f(xJ ,0J̄)− f(0)| ≥ Var [f ] /4.

Let ε = Var[f ]/4, then by Conjecture 5, there is a decision tree g of depth
(T/ε)C0 such that ‖f − g‖2 ≤ ε. For each x ∈ {−1, 1}n, let Qx ⊂ [n] denote the
set of variables queried by g on input x. Notice that,

Ex[|f(x)−f(xQx ,0Q̄x
)|] ≤ Ex[|f(x)−g(x)|] = ‖f−g‖1 ≤ ‖f−g‖2 ≤ Var [f ] /4.

Since |f(x)− f(0)| ≤ 1,

Ex [|f(x)− f(0)|] ≥ Ex
[
|f(x)− f(0)|2

]
= Var [f ] .

By combining them, we have that

E
x

[
|f(xQx

,0Q̄x
)− f(0)|

]
≥E
x

[|f(x)− f(0)|]− E
x

[
|f(xQx

,0Q̄x
)− f(x)|

]
≥3 Var [f ] /4.
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Since the set Qx has size at most (T/ε)C0 for every input x. There is a pair
(x,Qx) that certifies Conjecture 6.

C Omitted Details for Compressed Phase Oracles

In this section, we show that CPhO |x, y, z〉 ⊗ |D ∪ (x,w)〉 is:

|x, y, z〉⊗
(
ωwyM

(
|D′ ∪ (x,w)〉+

1√
M
|D′〉

)
+

1

M

∑
y′

(
1− ωwyM − ω

y′y
M

)
|D′ ∪ (x, y′)〉

)
.

First notice that CPhO = StdDecomp◦CPhO′ ◦StdDecomp where StdDecomp
is defined in Appendix A. CPhO′ is defined as follows:

CPhO′ |x, y, z,D〉 = ω
yD(x)
M |x, y, z,D〉 .

Here D has range [M ], and y · ⊥ is defined as 0.

We first note that

|D′ ∪ (x,w)〉 =
1

M

∑
z

ωwzM

∑
y′

ω−y
′z

M |D′ ∪ (x, y′)〉

 .

For any x, y, z and D′ ∪ (x,w), we have:

1. Applying StdDecomp, we have:

StdDecomp |x, y, z〉 ⊗ |D′ ∪ (x,w)〉

=StdDecomp |x, y, z〉 ⊗

 1

M

∑
z

ωwzM

∑
y′

ω−y
′z

M |D′ ∪ (x, y′)〉


=StdDecomp |x, y, z〉 ⊗

 1

M

∑
z 6=0

ωwzM

∑
y′

ω−y
′z

M |D′ ∪ (x, y′)〉

+
1

M

∑
y′

|D′ ∪ (x, y′)〉


= |x, y, z〉 ⊗

 1

M

∑
z 6=0

ωwzM

∑
y′

ω−y
′z

M |D′ ∪ (x, y′)〉

+
1√
M
|D′〉

 .

2. Applying CPhO′, we have:

|x, y, z〉 ⊗

 1

M

∑
z 6=0

ωwzM

∑
y′

ω
y′(y−z)
M |D′ ∪ (x, y′)〉

+
1√
M
|D′〉

 .
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3. Applying StdDecomp again, we have:
(a) 1√

M
|D′〉 becomes 1

M

∑
y′ |D′ ∪ (x, y′)〉;

(b) 1
M

∑
z 6=0 ω

wz
M

(∑
y′ ω

y′(y−z)
M |D′ ∪ (x, y′)〉

)
becomes:

1√
M
ωwyM |D

′〉+ ωwy |D′ ∪ (x,w)〉 − 1

M

∑
y′

(ωyy
′

M + ωwyM ) |D ∪ (x, y′)〉 .

Wo do the last step by calculating each of the following summations: (1)
summation over z = y, and (2) summation over z 6= 0 and z 6= y.
For summation over z = y, after applying StdDecomp, we have:

StdDecomp
1

M
ωwyM

∑
y′

|D′ ∪ (x, y′)〉


=

1√
M
ωwyM |D

′〉 .

For summation over z 6= y, z 6= 0, the state does not change after apply-
ing StdDecomp, which is:

1

M

∑
z 6=0,z 6=y

ωwzM

∑
y′

ω
y′(y−z)
M |D′ ∪ (x, y′)〉

 .

We simplify it by first calculating the summation over all z ∈ [M ], then
minus the summation over z = 0 and z = y. This gives ωwy |D′ ∪ (x,w)〉−
1
M

∑
y′(ω

yy′

M + ωwyM ) |D ∪ (x, y′)〉.
Combining and rearranging all the terms, we conclude the statement.

D Applications to AI-QRPM

In this section, we define P -BF-QRPM (quantum random permutation model)
and present the presampling theorem for quantum random permutations. Similar
to P -BF-QROM, P -BF-QRPM is defined by a P -query quantum algorithm f .

Definition 16 (P -BF-QRPM). A security game in the P -BF-QRPM con-
sists of the following two procedures:

– Before the challenge phase, the offline adversary A1 prepares a quantum
algorithm f , and then interacts with a challenger:
1. The challenger samples a random permutation H;
2. A1 computes fH which makes at most P superposition queries to H.
3. A1 gets a single bit output z of fH . If z 6= 1, it restarts the whole proce-

dure (including sampling a new random permutation H at the beginning).
– In the challenge phase, the security game is executed with an online algorithm
A2 and oracle access to the function H.
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Note that the algorithm f can be inefficient, including running time of f and
time for sampling a random H conditioned on fH = 1, except the number of
queries are bounded by P .

Equivalently, the definition says that the permutation distribution in the
online phase is determined by a P -query bounded quantum algorithm in the
pre-computation stage, conditioned on the output of the algorithm fH being 1.

With the definition above, we obtain the following theorem.

Theorem 11. For any P ∈ N and every γ > 0, if a security game G is ε(T )-
secure in the P -BF-QRPM, then it is ε′(S, T )-secure in the AI-QRPM, where

ε′(S, T ) ≤ ε(T ) +
(S + log γ−1)T comb

P
+ γ.

In particular, if G is ε(T )-secure in the P -BF-QRPM for P ≥ (S + log γ−1)T comb,
then it is ε′(S, T )-secure in the AI-QRPM, where

ε′(S, T ) ≤ 2 · ε(T ) + γ.

T comb = T + TVer is the combined query complexity and TVer is the query com-
plexity for the challenger .

One major question raised by [CGLQ20] is the optimal security of OWF in
the AI-QRPM. They prove an almost optimal bound for OWF in the AI-QROM
(reproved in Section 5.3 of this work), but their tools can not handle AI-QRPM.
We give a sufficient condition for achieving the optimal security bound of OWF
in the AI-QRPM, which is the conjecture below.

Conjecture 7. GOWF is O((P + T 2)/N)-secure in the P -BF-QRPM.

If we can prove the conjecture, an optimal security bound of OWF in the
AI-QRPM can be achieved, following from Theorem 11.

Theorem 12. Assume the above conjecture, GOWF is ε(S, T ) = Õ((ST+T 2)/N)-
secure in the AI-QRPM.
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