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Abstract. Auxiliary-input (AI) idealized models, such as auxiliary-input
random oracle model (AI-ROM) and auxiliary-input random permuta-
tion model (AI-PRM), play a critical role in assessing non-uniform se-
curity of symmetric key and hash function constructions. However, ob-
taining security bounds in these models is often much more challenging.
The presampling technique, initially introduced by Unruh (CRYPTO’
07) for AI-LROM and later exported to several other models by Coretti
et al. (EUROCRYPT’ 18). It generically reduces security proofs in Al
models to much simpler bit-fixing (BF) models, making it much easier to
obtain concrete bounds in AT models. As a result, the presampling tech-
nique has leads to simpler proofs for many known bounds (e.g. one-way
functions), and has been applied to many settings where the compression
technique appears intractable (e.g., Merkle-Damgard hashing).

We study the possibility of leveraging the presampling technique to the
quantum world. To this end,

— We show that such leveraging will resolve a major open problem in
quantum computing, which is closely related to the famous Aaronson-
Ambainis conjecture (ITCS’ 11).

— Faced with this barrier, we give a new but equivalent bit-fixing model
and a simple proof of presampling techniques for arbitrary oracle dis-
tribution in the classical setting, including AI-ROM and AI-PRM.
Our theorem matches the best-known security loss and unifies pre-
vious presampling techniques by Coretti et al. (EUROCRYPT’ 18)
and Coretti et al. (CRYPTO’ 18).

— Finally, we leverage our new classical presampling techniques to
a novel “quantum bit-fixing” version of presampling. It matches
the optimal security loss of the classical presampling. Using our
techniques, we give the first post-quantum non-uniform security for
salted Merkle-Damgard hash functions and reprove the tight non-
uniform security for function inversion by Chung et al. (FOCS’ 20).
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1 Introduction

Practical symmetric-key and hash-function constructions are typically designed
and analyzed in idealized models, such as random oracle model (ROM), ran-
dom permutation model (RPM), ideal-cipher model (ICM). Since most con-
structions of block ciphers and hash functions lack solid theoretical foundations,
security bounds in idealized models provide an essential (heuristic) justification
and guidelines for their security in the standard model.

However, traditional idealized models fail to capture preprocessing attacks.
The obtained bounds in idealized models are inaccurate or not applicable at all
once preprocessing is allowed. For example, Hellman [Hel80] showed a prepro-
cessing attack that takes S bits of advice and makes T" queries to a permutation
over [N], can invert a random element with probability roughly ST /N.|’| Hence,
a permutation cannot be one-way against attacks beyond S = T = N'/2. How-
ever, it is easy to derive in RPM that an image of a random permutation is
invertible with probability at most T'/N, suggesting security against attacks up
to size N. Notice that the gap between N and N'/2 matters for practical con-
structions. For example, while N suggests 128-bit level security for 128-bit block
cipher (e.g., 128-bit AES), N'/2 only suggests 64-bit security.

Auziliary-input models. To address the mismatch between idealized models and
preprocessing attacks, auxiliary-input extensions of idealized models are pro-
posed, such as auxiliary-input random oracle model (AI-ROM), auxiliary-input
random permutation model (AI-RPM), and auxiliary-input ideal cipher model
(AI-ICM) [Unr07IDGKI7ZICDGSISICDGIE]. In Al models, an attacker can ob-
tain arbitrary S bits of leakage about the idealized primitive before attacking
the system, then make additional T" queries to the primitive. Similar to that in
the idealized models, security bounds obtained in AI models become the main
source of justification and guidelines of the security level against preprocessing
attacks (or, more generally, non-uniform attacks).

While AT models are simple extensions of well studied idealized models, they
often do not offer simple and intuitive ways to prove security bounds. For exam-
ple, it is not straightforward how we should analyze inverting a random permu-
tation over [N] given S-bit advice (even for S = 1) and T' queries in AI-RPM,
let alone proving a ST/N bound, matching Hellman’s attack.

The compression technique. Specifically for permutation inversion, an optimal
ST/N bound was first proved [DTTI10] via the “compression paradigm”, as
introduced by Yao [Ya090], Gennaro and Trevisan [GT00] (and later adopted
by [Wee05]). The main idea is to argue that if an attacker succeeds with “high
probability” in inverting a random permutation, we can use this attacker to
build a shorter representation of (i.e., compress) the random permutation than
what is possible from an information-theoretical point of view. The compres-
sion paradigm is a general technique that can be applied to different problems

® For simplicity, we ignore big O or O notations in the introduction.
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in auxiliary-input models. The compression paradigm has been successfully ap-
plied to AI-ROM by Dodis et al. [DGK17], and auxiliary-input Generic Group
Model (AI-GGM) by Corrigan-Gibbs and Kogan [CKI18]. While compression-
based proofs often lead to optimal bounds, they are usually quite laborious. For
every cryptographic construction, we need to carefully examine the property of
the construction together with its security definition to compress the idealized
primitive.

The presampling technique. Coretti et al. [CDGI§| give a simple and intuitive
proof for permutation inversion by adapting the “presampling” approach taken
by Coretti et al. [CDGS1§| (first introduced in [Unr07]) in the ROM. The pre-
sampling technique can be viewed as a general reduction from AI models to a
much simpler bit-fixing (BF) model. In the BF model, an oracle is arbitrarily
fixed on at most P coordinates chosen by the attacker and the remaining coordi-
nates are chosen at random and independently of the fixed coordinates. Notably,
the online attacker only knows the fixed coordinates. The BF model is easy to
work with, because most proof techniques for idealized models can be applied
as long as we avoid these fixed coordinates.

Specifically, Coretti et al. [CDG18] and Coretti et al. [CDGS18] show that any
attack with S-bit advice and T oracle queries in AIROM/RPM/ICM/GGM will
have similar advantages in their corresponding P-BF models for an appropriately
chosen P, up to an additive loss of 6(S,T, P) = ST/P (which is optimal shown
by Dodis et al. [DGKI7]). For unpredictability applications (such as one-way
functions), additive loss such as ST/P is not preferable. They show that one
can set P to rough ST and achieve a multiplicative factor of 2 in the exact
security.

These previous works result in a general way for proving security in AT mod-
els. For a cryptographic application in Al-model, we can first analyze its security
in the corresponding P-BF model and obtain security bounds (S, T, P), then
choose P to optimize 6(S, T, P)+¢(S, T, P). For an unpredictability application,
its security in the AI model is roughly 2 - (S, T, ST), i.e., twice its security in
the (ST')-BF model. As an example, in the (ST)-BF-RPM, it can be shown that
a random image of a random permutation f over [N] is invertible with probabil-
ity at most O(ST/N) [f| which immediately gives the optimal O(ST/N) bound
(matching Hellman’s attack) in AI-RPM.

The presampling technique offers a more straightforward approach for prov-
ing security bounds in AI models than the compression technique. By presam-
pling techniques, Coretti et al. [CDGI8|] and Coretti et al. [CDG18], reprove
the AI-ROM/RPM/GGM security bounds obtained by the compression tech-
nique [DTTIODGKITICKIS], and give the first non-uniform bounds for many
practical applications (in which compression appears intractable).

5 If the challenge f(z) does not come from the fixed coordinates, then a proof by stan-
dard techniques bounds the probability of finding f(z) by O(T/N). The probability
that f(x) comes from the fixed coordinates is at most ST/N when z is uniformly
chosen from [N]. Therefore, the overall probability of inverting f(z) is O(ST/N).
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We remark that the optimal additive loss and multiplicative version of pre-
sampling techniques in [CDGI8ICDGSI18] are crucial for obtaining exact (tight)
bounds. As shown by Dodis et al. [DGKI7], the presampling technique by Un-
rub [Unr07] with additive security loss /ST /P yields sub-optimal bounds for
many applications. Moreover, even with optimal additive loss, the indistinguisha-
bility version of presampling only yields suboptimal bounds for unpredictable
applications, such as 1/ST/N security bounds for one-way functions.

A new challenge: quantum adversaries. Quantum algorithms can efficiently break
many widely used assumptions for public-key cryptography (such as factoring).
Can they break practical symmetric-key and hash-function constructions? How
much security do these constructions have to compromise for quantum adver-
saries? What if preprocessing is allowed?

To capture quantum adversaries, quantum extensions of idealized models
have been considered, such as quantum random oracle model (QROM) [BDEF"11],
in which the attacker makes T superposition queries to the idealized primitive.
Very recently, demanded by assessing post-quantum non-uniform security of
symmetric-key cryptography and hash functions, quantum versions of AI models
have been proposed and studied [NABTISHXYT9ICLQIIICGLQ20], in which
the adversary is allowed to obtain S-(qu)bit precomputed advice about the ide-
alized primitive.

By leveraging classical compression proofs, [NABTI5HXYT9ICLQ19] obtain
many non-uniform security bounds. However, they only manage to analyze basic
applications such as one-way functions. Even for the basic question like inverting
a random permutation with S-bit (classical) advice and T quantum queries,
compression proofs give a sub-optimal bound ST2/N. The success of presampling
techniques in the classical setting motivates the main question we study in this

paper:
Can we leverage presampling techniques to the quantum setting?

Specifically, we hope to reduce the Al quantum models to more straightfor-
ward “BF quantum models”, then export similar proofs from quantum idealized
models.

Recently, Chung et al. [CGLQ20] gave a new technique for analyzing AT mod-
els with quantum adversaries. This technique reduces (Q)AI securityﬂ against at-
tackers with (quantum) advice to analyzing multi-instance (MI) security against
attackers without advice. They use this technique to prove the tight bound
ST/N + T?/N for inverting random functions in the AI-QROM model. Al-
though the new approach is quite general and easier to use than compression,
it inherently requires a proof of direct product type statement to show the se-
curity of multiple-instance game has an exponential decay in the number of
instances. For practical symmetric-key and hash-function constructions, proving
such statements may be challenging. By contrast, analyzing a single-instance in
the BF-model is considerably simpler.

" Here, QAI allows quantum states as advice.
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1.1 Owur Results

One natural attempt to develop quantum presampling is to leverage the pre-
sampling theorem of Coretti et al. [CDGS18] for AI-ROM. In this work, we first
show that such direct leveraging is difficult, which will resolve a major open
problem in quantum computing [AAT1]. In light of the barrier, we revisit the
classical presampling techniques and give a simpler and unified proof for the clas-
sical presampling theorems. Finally, following the new classical proof, we give
the first quantum presampling theorem and several non-uniform lower bounds
as applications.

Barriers for leveraging presampling to the quantum setting. In Section
we show that such leveraging has a technical barrier: it will resolve a major
open problem in quantum computing [AATI], which asserts that any quantum
algorithm can be approximated on most inputs by an efficient classical algo-
rithmﬂ This open problem, dating back to (according to [AAII]) 1999 or earlier,
was included twice in Aaronson’s list of “ten semi-grand challenges for quantum
computing theory” [Aar05blAarT0].

In [AATI], Aaronson and Ambainis proposed an approach, which became
well-known as the Aaronson-Ambainis conjecture, towards this open problem
via Boolean function analysis. Specifically, Aaronson-Ambainis conjecture as-
serts that any bounded low-degree function on the discrete cube has a vari-
able with influence poly(Var[f]/ deg(f)) (see Conjecture [2)). Despite much effort
[DFKO06/Bac12lOYTEIMAT2IKKTI], this open problem and the closely related
Aaronson-Ambainis conjecture seem still quite open. They are proven only for
some class of functions [BacI2JOSSS05IMA12]. The best-known bound for gen-
eral functions is exponentially far from conjectured [DFKO06/OY16/DMP19].

Remark 1. Note that the barrier does not contradict our quantum presampling
theorem. Direct leveraging will give us a better presampling theorem than ours,
which pre-fixes at most P coordinates classically. Whereas, our presampling
theorem requires to pre-fix P coordinates “quantumly”.

Ideally, we would like to show a statement similar to classical presampling:
AI-QROM can be reduced to BF-QROM, where the random oracle is fixed clas-
sically on at most P coordinates. However, what we obtain in this work is (in-
formally): AI-QROM can be reduced to BF-QROM, where the random oracle
is fixed “quantumly” on at most P coordinates. We will show in the following
paragraph why this ideal presampling statement is better than the presampling
statement obtained in this work. Our first contribution points out a barrier to
prove the above ideal version (with connections to AA conjecture). In light of
the barrier, we present our quantum presampling theorem.

If the ideal presampling holds, we can get the lower bound of function in-
version in the AI-QROM easily, without using any involved techniques. Because

8 It will be only polynomially slower than the quantum algorithm in terms of query
complexity
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either the challenge image is in one of the fixed coordinates (with probability
ST/N), or it is outside the fixed coordinates, in which we argue the success
probability by simply using the existing lower bound of Grover’s search. This
will give an much easier proof for the lower bound of function inversion in the
AI-QROM, which is ST/N + T?/N, reproves the result by Chung et al.

Unifying presampling via concentration bounds. Faced with this barrier,
we revisit the presampling techniques in the classical setting. To this end, with
only standard concentration bounds, we give a simpler and unified proof for
the classical presampling theorems of both ROM [CDGSI§| and RPM [CDG18§],
using an equivalent characterization of P-BF-ROM/P-BF-RPM.

Instead of viewing P-BF-ROM as a random function with at most P pre-
fixed inputs/outputs, we give an equivalent formulation with respect to a classical
randomized algorithm f making at most P queries. The security game is then
under the oracle access to the function H, where H is given by rejection sampling
a fully random oracle H, but conditional on f¥ = 1. This definition naturally
extends to P-BF-RPM by rejection sampling a random permutation H.

We show a unified proof for the classical presampling theorems with the al-
ternative definition and basic concentration bounds. The proof is much simpler
than the original proof [CDGS18], as the original proof needs to first decompose
a random oracle distribution with advice into dense distributions (a technique
used in the area of communication complexity [GLM™'16]), and then argue in-
distinguishability between a dense distribution and a uniform distribution. With
almost no additional effort, the proof can be used to achieve the theorem for Al-
RPM, in [CDGI18]. Note that our proof achieves optimal bounds, as it matches
the optimal bounds in [CDGSIS].

Quantum presampling and applications to quantum random oracles.
With the new definition, it is natural to adapt the definition of P-BF-ROM
to P-BF-QROM. P-BF-QROM is defined by a P-query quantum algorithm f
making superposition queries. Similarly, the random function is sampled in the
following way: sample a random H, compute f¥; restart the whole procedure
(including sampling a random function H) if the output of f is not 1.

Using our proof for classical presampling, we obtain the quantum presam-
pling.

Theorem 1. For any P € N and every v > 0, if a security game G is e(T)-
secure in the P-BF-QROM, then it is €' (S, T)-secure in the AI-QROM, where

(S 4 log,yfl)Tcomb
P

In particular, if G is e(T)-secure in the P-BF-QROM for P > (S + log~y~1)T<™,
then it is €'(S,T)-secure in the AI-QROM, where

e'(S,T) <e(T)+

+ .

e'(S,T)<2-¢(T) + 1.
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Teomb — T 4 T is the combined query complezity and Tye is the query com-

plexity for the challenger to verify a solution.

Note that it is optimal in the sense that it matches the optimal classical
presampling theorem by Coretti et al. [CDGSIS].

Therefore, to obtain security in the AI-QROM, it is sufficient to obtain its
security in the P-BF-QROM. We use Zhandry’s compressed oracle [Zhal9] in
the P-BF-QROM, and present the first non-trivial security analysis of (salted)
Merkle-Damgard Hash Functions (MDHF) in the AI-QROM.

Theorem 2. Gupnr is £(S,T) = O(ST?/M)-secure in the AI-QROM.

Here, Gumpnr denotes the security game of MDHF (See Section .

In the classical setting, Coretti et al. [CDGS18] show an attack with ad-
vantage 2(ST?/M) (which is optimal), and Akshima et al. [ACDW20] show an
attack for 2-block MDHF with advantage 2((ST+T?)/M). We observe that the
attack by Akshima et al. [ACDW20] can be extended to the quantum setting,
and yield an attack with advantage ST2/M + T3/M. However, it is not clear if
the attack of Coretti et al. [CDGSIS] can be extended to the quantum setting
because of the usage of function iteration in the attack. Our bound suggests that,
the speedup of quantum adversaries is limited to a factor 7. Further closing this
gap is an intriguing question.

Finally, to show the simplicity and generality of our quantum presampling
technique, we additionally reprove that function inversion has security O((ST +
T?)/N) in the AI-QROM [CGLQ20] (See Section [5.3)).

1.2 Open Problems

Optimal Presampling for Quantum Advice. While our work provides a frame-
work for the presampling technique for classical advice, we are not able to give
presampling techniques for quantum advice. The difficulty comes from the fact
that quantum advice would be completely destroyed once a single round of online
computation was done. Note that the barrier would be overcome using the sim-
ilar idea in [CGLQ20], by boosting the success probability and applying Gentle
Measurement Lemma [Aar05a]. However, we suspect that the resulting state-
ment may not be optimal.

Bit-Fizing Security of Random Permutations. While P-BF-QRPM (quantum
random permutation model) is well defined following our definition for P-BF-
QROM, it is not clear how to prove the security in this model. We hope one
of the following two approaches would work: (1) analyzing the probability dis-
tribution of the permutations in P-BF-QRPM, and using one-way to hiding
lemma [AHUT9] to derive the bound for the online computation; (2) with “com-
pressed permutation” techniques similar to Zhandry’s compressed oracle tech-
niques, a similar proof to that in the P-BF-QROM would be possible.
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Closing the gap for MDHF'. As discussed in the previous section, closing the gap
for the security of MDHF in the AI-QROM is also an intriguing question.

2 Preliminaries

For any n € N, we denote [n] to be the set {1,2,...,n}. We denote Z/nZ =
{0,1,...,n — 1} as the ring of integers modulo n, and Fy = {0,1} as the binary
finite field. For a complex vector x € C", we denote the L?-norm |x| = |x|, =

Zie[n] ;T;. In algorithms, we denote a <—g A to be taking a as a uniformly

independently sampled element of A.
Next, we recall some basic facts about quantum computation and review the
relevant literature on the quantum random oracle model.

2.1 Quantum Computation

A quantum system @ is defined over a finite set B of classical states. A pure
state over () is a unit vector in C!/Z!, which assigns a complex number to each
element in B. In other words, let |¢) be a pure state in @, we can write |¢) as a

column vector:
|¢> = Z az|$>
reB

where > 5 o2 = 1 and {|2)},ep is called the “computational basis” of CIZI.
The computational basis forms an orthonormal basis of C!Zl. We define (4| to
be the row vector that is the conjugate of |¢).

Given two quantum systems ()1 over By and (2 over By, we can define a
product quantum system ()1 ® Q2 over the set By x By. Given |¢1) € @1 and
|p2) € Q2, we can define the product state |¢1) ® |d2) € Q1 ® Qa.

We say |¢) € Q1 ® Q2 is entangled if there does not exist |¢1) € @ and
|p2) € Q2 such that |¢) = |p1) ® |¢2). For example, consider By = By = {0,1}
and Q1 = Qo = C?% |¢) = % is entangled. Otherwise, we say |¢) is
unentangled.

A state |¢) € Q can be manipulated by a unitary operator U € CIBI*IB| The
resulting state |¢’) = U|¢). We denote the trace norm ||U]|,, to be 2 TrvVUTU.

We extract classical information from a quantum state |¢) by performing a
measurement. A measurement is specified by an orthonormal basis, typically the
computational basis, and the probability of getting result z is |(z|¢)|?. After the
measurement, |¢) “collapses” to the state |z) if the result is x.

For example, given the pure state |¢) = 2|0) + 2|1) measured under {|0), [1)},
with probability 9/25 the result is 0 and |¢) collapses to |0); with probability
16/25 the result is 1 and |¢) collapses to |1).

We assume that quantum circuits can implement any unitary transformation
(by using these basic gates, Hadamard, phase, CNOT and % gates).
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2.2 Quantum Random Oracle Model

Here, for the completeness of the paper, we recall the background of quantum
random oracle model and the compressed oracle technique introduced by [Zhal9].
This section is taken verbatim from Section 2.2 of [CGLQ20).

An oracle-aided quantum algorithm can perform quantum computation as
well as quantum oracle queries. A quantum oracle query for an oracle f : [N] —
[M] is modeled as a unitary Uy : |z)|u) = |z)|u+ f(z)), where + denotes
addition in the integer ring Z/MZ (we take the natural bijection that M =~ 0,
but any bijection [M] +» Z/MZ suffices for our purposes).

A random oracle is a random function H : [N] — [M]. The random function
H is chosen at the beginning. A quantum algorithm making T oracle queries
to H can be modeled as the following: it has three registers |x),|u) , |z), where
x € [N],u € Z/MZ and =z is the algorithm’s internal working memory; it starts
with some input state |0) |0) |¢), then it applies a sequence of unitary to the state:
Uo,Ug,Uy, Uy, -+, Upr_1, Uy, Ur and a final measurement over computational
basis. Each Uy is the quantum oracle query unitary: Uy |z) |u) = |z) |u + H(z))
and U; is the local quantum computation that is independent of H. We can
always assume there is only one measurement which is a measurement on com-
putational basis and applied at the last step of the algorithm.

2.3 Compressed Oracle

Here we briefly recall some backgrounds about compressed oracle techniques,
which was first introduced in [Zhal9]. More details are provided in Appendix

Intuitively, compressed oracle is an analogy of the classical lazy sampling
method. To simulate a random oracle, one can sample H(z) for all inputs « and
store everything in quantum accessible registers. Such an implementation of a
random oracle is inefficient, and security games based on such an implementation
are usually hard to analyze. Therefore, instead of recording all the information
of H in the registers, Zhandry provides a solution to argue the amount of infor-
mation an algorithm knows about the random oracle.

The oracle register records a database/list that contains the output on each
input z; the output is an element in Z/MZ U { L}, where L is a special symbol
denoting that the value is “uninitialized”. The database is initialized as an empty
list Dy of length N, in other words, it is initialized as the pure state |()) :=
|L,L,---,L1). Let | D| denote the number of entries in D that are not L. Define
D(x) to be the z-th entry. Intuitively, D(z) can be seen as the output of the
oracle on x if D(x) # L; otherwise, the oracle’s output on z is still undetermined.

For any D and z such that D(z) = L, we define DU(x, u) to be the database
D’, such that for every o’ # x, D'(z’) = D(z) and at the input x, D'(x) = u.

The compressed standard oracle is the unitary CStO := StdDecomp o CS5tQ’ o
StdDecomp operating on the joint system of the algorithm’s registers and oracle’s
registers, where
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— CStO' |z, u)|D) = |x,u+ D(x))|D) when D(z) # L, which writes the output
of x defined in D to the u register. This operator will never be applied on
an x, D where D(z) = L.

— StdDecomp(|z)®|D)) := |z)®@StdDecomp,, | D), where StdDecomp,, | D) works
on the z-th register of the database D(x). Intuitively, it swaps a uniform
superposition ﬁ >, ly) with [ L) on the z-th register. Formally,

o If D(z) = L, Std Decompx maps |L) to ﬁ >, [y), or equivalently,
StdDecomp, |D) = f >, |D U (z,y)). Intuitively, if the database does
not contain information about x, it samples a fresh y as the output of z.

o If D(x) # L, StdDecomp,, works on the a-th register, and it is an iden-
tity on ﬁ >, war |y) for all u # 0; it maps the uniform superposition

L5l to |,
More formally, for a D’ such that D'(z) = L,

StdDecomp, —— E wilID U (z,y)) E wi/|D" U (z,y)) for any u # 0,
\/— M \/—
and,

1
Sthecompxﬁ E |ID"U (2,y)) = |D).
y

Since all W >, war y) and | L) form a basis, these requirements define a
unique unitary operatlon.

A quantum algorithm making 7" oracle queries to a compressed oracle can be
modeled as the following: the algorithm has three registers |z}, |u),|z), where
x € [N],u € Z/MZ and z is the algorithm’s internal working memory; it starts
with some input state |0) |0) |¢)); the joint state of the algorithm and the com-
pressed oracle is |0) |0) |¢/) ® |@). It then applies a sequence of unitary to the
state: Uy, CStO, Uy, CStO, -+, Ur_q1, CStO, Ur and a final measurement over
computational basis.

Zhandry proves that the quantum random oracle model and the compressed
standard oracle model are perfectly indistinguishable by any unbounded quantum
algorithm.

In this work, we only consider query complexity, and thus simulation effi-
ciency is irrelevant to us. Looking ahead, we simulate a random oracle as a
compressed standard oracle to help us analyze security games with the help
from the following lemmas. Both lemmas are proven in [Zhal9/CGLQ20].

The first lemma gives a general formulation of the overall state of A and
the compressed standard oracle after .4 makes T queries, even conditioned on
arbitrary measurement results. Looking ahead, it gives a characterization of P-
BF-QROM (defined in Section if the oracle is simulated as a compressed
standard oracle.
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Lemma 1. If A makes at most T queries to a compressed standard oracle, as-
suming the overall state of A and the compressed standard oracle is . , a.,p |2) A|D)u
where |z) is A’s registers and |D) is the oracle’s registers, then it only has sup-

port on all D such that |D| < T'. In other words, the overall state can be written

as,

Z a:pl|2)a®|D)g.

z,D:|D|<T

Moreover, it is true even if the state is conditioned on arbitrary outcomes (with
non-zero probability) of A’s intermediate measurements.

The second lemma provides a quantum analogue of lazy sampling in the
classical ROM.

Lemma 2 ([Zhal9, Lemma 5]). Let H be a random oracle from [N] — [M].
Consider a quantum algorithm A making queries to the standard oracle and
outputting tuples (X1, ,Tp, Y1, "+ , Yk, 2). Suppose the random function H is
measured after A produces its output. Let R be an arbitrary set of such tuples.
Suppose with probability p, A outputs a tuple such that (1) the tuple is in R
and (2) H(x;) = y; for all i. Now consider running A with the compressed
standard oracle CStO, and suppose the database D is measured after A produces
its output. Let p’' be the probability that (1) the tuple is in R and (2) D(x;) = y;
(in particular, D(x;) # L) for all i. Then \/p < /D' + \/k/M.

Moreover, it is true even if it is conditioned on arbitrary outcomes (with
non-zero probability) of A’s intermediate measurements.

2.4 Security Game with Classical Advice

In this paper, we focus on the case where advice is classical. Therefore in the
rest of the presentation, “advice” simply means “classical advice”. The following
definitions are defined in [CGLQ20].

Definition 1 (Algorithm with Advice). An (S,T) (query) classical/quantum
algorithm A = (A;, As) with (oracle-dependent) advice consists of two proce-
dures:

— let H,H be two oracles accessed by A1, As respectively in the offline and
online phases;

— a < Ai(H), which is an arbitrary (unbounded) function of H, and outputs
an S-bit o;

— |ans) + A («,ch), which is an unbounded algorithm that takes advice o, a
challenge ch, makes at most T (classical or quantum respectively) queries to
f[, and outputs an answer, which we measure in the computational basis to
obtain the classical answer ans.
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Note that we do not need to tell if A; is classical or quantum because it is un-
bounded. We say A is quantum if A, makes quantum queries to H and otherwise
A is classical. In this work, we will mainly focus on A being quantum and the
case of A being classical will be provided mainly in the preliminary Section [2.5

Below, we will use the words “adversary” and “algorithm” interchangeably.

Definition 2 (Security Game). Let H be a random oracle [N] — [M].
A (non-interactive) security game G = (C) is specified by a challenger C' =
(Samp, Query, Ver), where:

1. ch « Samp(r) is a classical algorithm that takes randomness r € R as
input, and outputs a challenge ch.

2. QueryH(r, 1) is a deterministic classical algorithm that hardcodes the ran-
domness v and provides adversary’s online queriezﬂ

3. b+ VerH(r,ans) 18 a determanistic classical algorithm that takes the input
ans and outputs a decision b indicating whether the game is won.

For every algorithm with advice, i.e. A= (A1, As) , we define
A= C(H) := Ver (r, AR (A, (H), SampH(r)))

to be the binary variable indicating whether A successfully makes the challenger
output 1, or equivalently if A wins the security game, where H(-) :== Query™ (r,-).
Additionally, we define Tye, be the query complexity of computing Ver™.

Definition 3 (Security in the AI-ROM/AI-QROM). We define the secu-
rity in the AI-ROM/AI-QROM of a security game G = (C) to be

§=06(5,T):=sup Pr [A< C(H)=1],
A HrA
where A in the probability denotes the randomness of the algorithm, and supre-

mum is taken over all classical or quantum (S,T) algorithm A in the AI-ROM
or AI-QROM respectively.

Additionally, we say a security game G is d-secure if its security is at most 9.

Definition 4. We call the security game a decision game if an adversary is
supposed to produce a binary ans € {0,1}.

Definition 5 (Advantage against Decision Games). We define the advan-
tage of A for a decision game G to be

e=¢(5,T):=46(5T)—-1/2,
if it has winning probability 6(S,T).

Definition 6 (Best Advantage of Decision Games). We define the best ad-
vantage of a decision game G in AI-ROM/AI-QROM to be e(S,T) := §(S,T) —
1/2 if G has security 6(S,T) 