
Oblivious Pseudorandom Functions
from Isogenies

Dan Boneh1, Dmitry Kogan1, and Katharine Woo1,2

1 Stanford University, Stanford, CA, USA
{dabo,dkogan}@cs.stanford.edu

2 Princeton University, Princeton, NJ, USA
khwoo@princeton.edu

Abstract. An oblivious PRF, or OPRF, is a protocol between a client
and a server, where the server has a key k for a secure pseudorandom
function F , and the client has an input x for the function. At the end of the
protocol the client learns F (k, x), and nothing else, and the server learns
nothing. An OPRF is verifiable if the client is convinced that the server
has evaluated the PRF correctly with respect to a prior commitment to k.
OPRFs and verifiable OPRFs have numerous applications, such as private-
set-intersection protocols, password-based key-exchange protocols, and
defense against denial-of-service attacks. Existing OPRF constructions
use RSA-, Diffie-Hellman-, and lattice-type assumptions. The first two
are not post-quantum secure.

In this paper we construct OPRFs and verifiable OPRFs from isogenies.
Our main construction uses isogenies of supersingular elliptic curves
over Fp2 and tries to adapt the Diffie-Hellman OPRF to that setting.
However, a recent attack on supersingular-isogeny systems due to Gal-
braith et al. [ASIACRYPT 2016] makes this approach difficult to secure.
To overcome this attack, and to validate the server’s response, we develop
two new zero-knowledge protocols that convince each party that its peer
has sent valid messages. With these protocols in place, we obtain an
OPRF in the SIDH setting and prove its security in the UC framework.

Our second construction is an adaptation of the Naor-Reingold PRF
to commutative group actions. Combining it with recent constructions
of oblivious transfer from isogenies, we obtain an OPRF in the CSIDH
setting.

1 Introduction

Let F : K × X → Y be a secure pseudorandom function (PRF) [GGM86]. An
oblivious PRF, or OPRF, is a protocol between a client who has an input x ∈ X ,
and a server who has a key k ∈ K. At the end of the protocol the client learns
F (k, x) and nothing else, and the server learns nothing at all [NR97,FIPR05].
Intuitively, an OPRF needs to be secure against a malicious client who is trying
to learn more information about the server’s key k, and a malicious server
who is trying to learn more information about the client’s input x. Earlier

works [FIPR05,JL09] defined an OPRF as the secure computation of the above
two-party functionality, and Jarecki et al. [JKK14,JKKX16] later gave strong
but flexible security definitions for an OPRF in the UC framework [Can01].

An OPRF is said to be verifiable if the server commits to its key k by publishing
some public parameters derived from k. At the end of the OPRF protocol, the
client should be convinced that the obtained value y ∈ Y satisfies y = F (k, x)
with respect to the server’s committed key k. One benefit of verifiability is that
it allows a group of clients to verify that the values they each obtain are all
consistent with the same PRF key. Without verifiability, in applications where a
client later reveals the obtained value to the server, a malicious server can link
values with previous evaluations by using a different key for each evaluation.

Oblivious PRFs have many real-world applications. They are used in private-
set-intersection protocols [JL09,PSZ14,KKRT16,KLS+17,PSZ18,PRTY19], in
password-management systems [ECS+15,JKKX16], in adaptive oblivious trans-
fer [JL09], in de-duplication systems [KBR13], in password-authenticated key
exchange [JKX18], and are deployed at Cloudflare to defend against Denial of
Service attacks [DGS+18]. As a result, there is an ongoing effort to standardize
OPRFs at the Crypto Forum Research Group [DSW19].

An OPRF can be built from general secure two-party computation. A much
simpler and widely used OPRF, called DH-OPRF, is built from a PRF whose
security is based on the Decisional Diffie-Hellman (DDH) assumption in the
random-oracle model. Let G be a cyclic group of prime order q, and letH : X → G
be a hash function. For k ∈ Zq and x ∈ X , the PRF is defined as F (k, x) = H(x)k.
This PRF is secure, assuming DDH holds in G and H is a random oracle [NPR99].
This PRF then supports the following OPRF protocol: a client computes H(x),
blinds it as u ← H(x)r for a random r ←R Zq, and sends u to the server. The
server responds with v ← uk. The client then computes the unblinded PRF
value y ← v1/r = H(x)k. Appropriate modifications can make this OPRF
verifiable. Security of the resulting OPRF relies on the one-more discrete-log
assumption [BNPS03]. Jarecki et al. [JKK14, JKKX16] showed this OPRF is
secure in the Universally Composable framework [Can01].

Another simple verifiable OPRF in the random-oracle model, called RSA-
OPRF, is derived directly from RSA blind signatures [Cha82,BNPS03]. Since
there are quantum-polynomial-time algorithms for the DDH and RSA problems,
neither of these OPRFs is post-quantum secure.

Building an efficient post-quantum secure OPRF is more challenging. One
solution is to use a generic post-quantum secure two-party-computation protocol
to evaluate a PRF. For example, instantiating Yao’s garbled-circuits protocol
with a post-quantum-secure oblivious transfer results in a post-quantum-secure
two-party computation protocol [BDK+20] that can then be used to obliviously
evaluate an AES circuit. The downside is that the communication in generic
protocols is proportional to the circuit size, which motivates the search for
efficient special-purpose OPRF protocols from post-quantum primitives. Albrecht
et al. [ADDS19] recently proposed an OPRF based on the ring learning-with-errors
problem and the short-integer-solution problem in one dimension.

2

Our contributions. In this paper we give another path towards a simple post-
quantum secure OPRF by constructing several OPRFs from hard problems on
isogenies of elliptic curves, in the random-oracle model.

Our first set of constructions operates on supersingular elliptic-curve isogenies
over a field Fp2 . Starting with a simple idea for an OPRF in the honest-but-
curious setting, based on the SIDH key-exchange protocol of De Feo, Jao, and
Plût [DJP14], we then show how to elevate this OPRF to the setting of a malicious
client and malicious server, and to make the OPRF verifiable. Our security proofs
are set in the UC framework [Can01] in the random-oracle model. We describe our
construction using an abstraction we call an augmentable commitment, defined
in Section 2. These commitments abstract away many of the complexities of
working with supersingular-curves isogenies, and they may be of independent
interest.

To ensure that our OPRF is secure against a malicious client, we construct
a zero-knowledge proof of knowledge for proving that the first message the
client sends to the server is well formed. Here, a well formed message should
contain an elliptic curve, obtained by correctly applying an isogeny to some
base curve, together with points on that curve, obtained by applying that same
isogeny to predetermined points on the base curve. To secure against a malicious
server and obtain a verifiable OPRF, we construct an additional zero-knowledge
proof of knowledge for proving that four elliptic curves (E,Ea, Eb, Eab) form
an isogeny DDH tuple, where the prover only knows the isogenies φa:E → Ea
and φ′a:Eb → Eab, whereas the isogeny φa:E → Ea is private to the client. Our
complete protocol requires up to 2MB of communication for 128-bit security, with
the main bottleneck being the cut-and-choose repetitions in our zero-knowledge
proofs of knowledge. We describe this protocol, using the language of augmentable
commitments, in Section 6.

Our second class of OPRF protocols, presented in Section 8, builds an OPRF
from a commutative group action, such as the one obtained from isogenies of
ordinary elliptic curves [Cou06,RS06] or from isogenies of supersingular curves
over Fp as in CSIDH [CLM+18]. Commutative group actions give rise to a
generalized Diffie-Hellman problem, yet a construction similar to the DH-OPRF
is not currently possible. The reason is that there is no known way to construct a
hash function that maps its inputs to uniformly sampled elements in an isogeny
class, without learning additional information about the output elements. This
additional information would allow the client to evaluate the PRF at any point
of its choice from just a single response from the server, breaking the security
requirement. Therefore, an OPRF from commutative group actions requires a
very different approach.

Our construction makes use of two observations. First, we adapt the Naor-
Reingold PRF [NR97] to the setting of a commutative group action. This requires
a new proof of security because the original proof of security in [NR97] relies
on the DDH assumption and its random self-reduction. The difficulty is that
the DDH problem for a commutative group action does not have the required
random self-reduction. We nevertheless prove PRF security based on the DDH

3

assumption for such group actions; however the security reduction is not as efficient
as for DDH over groups. Second, we observe that, similarly to the original PRF
construction [NR97], this group-action variant admits an oblivious evaluation.
The resulting OPRF scheme makes use of a 1-out-of-2 oblivious-transfer protocol,
but such protocols are already known from isogeny problems [BOB18,DOPS18,
Vit19,DOPS18,LGD20]. We thus obtain an OPRF from a commutative group
action.

Between the two constructions, the supersingular construction is asymptoti-
cally more efficient, in the sense that it requires asymptotically less communication
between the client and the server. The reason is a sub-exponential quantum
algorithm for the discrete-log problem for a commutative group action due to
Kuperberg [Kup05,Kup13]. Kuperberg’s attack applies to commutative group
actions, which underpin our second construction, yet it does not apply to the
non-commutative structure of supersingular isogenies over Fp2 , which underpin
our first construction. As a result, the first construction allows using smaller
fields, which results in less communication asymptotically (in the security pa-
rameter). Its exponential security also makes it more robust to improvements
in attacks. However, the second construction has better (i.e., smaller) constants,
and as a result, the second construction is more efficient concretely: 424KB of
communication vs. 2MB for the first construction.

1.1 Background and notation

Let E be an elliptic curve y2 = x3 +Ax+B. The j-invariant of E is given by
j(E) := 1728 · (4a3)/(4a3 + 27b2). The j-invariant of an elliptic curve almost fully
determines the curve; if E and E′ are two elliptic curves defined over a field F,
then j(E) = j(E′) if and only if E and E′ are isomorphic (there exists a linear
change of coordinates between the curves) over the algebraic closure of F.

A surjective morphism between two elliptic curves E and E′ is called an
isogeny. A certain class of isogenies, called separable isogenies, are fully determined
by their kernels. The degree of an isogeny is its degree as a rational map, and
for separable isogenies, it is also the number of elements in the isogeny’s kernel.
Additionally, for every isogeny φ:E → E′, there exists a unique dual isogeny
φ̂:E′ → E such that φ̂ ◦ φ = [deg(φ)], the multiplication map by the degree of
the isogeny. We say that two curves E and E′ are isogenous if there exists an
isogeny between them.

Associated to every elliptic curve E is an endomorphism ring End(E), the
set of isogenies from E to itself and the multiplication-by-0 map. If End(E) is
an order of an imaginary quadratic field, then E is called ordinary. Otherwise,
End(E) is a maximal order in a quaternion algebra, and E is called supersingular.

Let E be a supersingular elliptic curve over Fp2 , and let φ:E → E′ be a degree-
d isogeny with kernel G = ker(φ), which is a subgroup of order d of E(F̄p). In the
special case when G is a cyclic subgroup of E(Fp2), we can succinctly represent
φ by specifying a generator K ∈ E(Fp2) of the kernel G. The generator K is an
element of the d-torsion of E(Fp2). Velu’s formulae [Vél71] give a algorithm to
compute an isogeny given its kernel, in time polynomial in the size of the kernel.

4

We follow de Saint Guilhem, Orsini, Petit, and Smart [DOPS18] and use
the following notation to represent degree-d isogenies. Recall that the projective
line Pd is the set of all equivalence classes [x: y], where x, y ∈ Zd, and the ideal
generated by x and y is all of Zd. We specify an isogeny of degree d using an
element k ∈ Pd. For k = [kp: kq] ∈ Pd, and generators Pd, Qd of the d-torsion
E[d], the notation 〈k · (Pd, Qd)〉 refers to the order-d cyclic group generated by
kpPd + kqQd ∈ E[d].

For a more detailed self-contained overview of isogeny-based cryptography,
see also [De 17]. For a comprehensive reference, see [Sil09].

1.2 Overview of our techniques

Our main result is an OPRF from isogenies on supersingular elliptic curves. We
briefly summarize the main technical ideas, and refer to Sections 2–7 for the
details.

Let E/Fp2 be a fixed supersingular elliptic curve, and let NK, NM, NR be
positive integers such that E[NK × NM × NR] is contained in E(Fp2), where
p,NK, NM, NR are pairwise relatively prime. Let us derive a PRF F : K×X → Y
from the SIDH key-exchange protocol of [DJP14]. The PRF makes use of two
hash functions H1 : X → PNM

and H2 : X × Fp2 → Y, and works as follows:
– The domain is X . For each x ∈ X we obtain m = H1(x) ∈ PNM

, for which
there is a corresponding degree-NM isogeny φm : E → Em;

– The key space is K = PNK
. For each k ∈ PNK

there is a corresponding
degree-NK isogeny φk : E → Ek;

– Let φ : E → Em,k be an isogeny with kernel ker(φm)× ker(φk).
Define F (k, x) = H2(x, j(Em,k)).

When H1 and H2 are modeled as random oracles, and assuming NK is sufficiently
large (i.e., superpolynomial in the security parameter), this function F is a secure
PRF.

To make this PRF into an oblivious PRF between a client and a server, it
is tempting to try the following blinding approach (also used in [SC18,SGP19]
in an attempt to construct a blinded version of an earlier undeniable-signature
scheme [JS14]):
– The client has x ∈ X . It computesm = H1(x) ∈ PNM

which defines the degree-
NM isogeny φm:E → Em above. The client chooses a random r ∈ PNR

, and
computes the corresponding degree-NR isogeny φr : E → Er. Next, the client
constructs an isogeny φr,m : E → Er,m whose kernel is ker(φr) × ker(φm).
It sends Er,m to the server, along with four additional points on Er,m, as
specified in Section 3. Two of these four points are computed as P ′K = φr,m(PK)
and Q′K = φr,m(QK), where PK, QK ∈ E are some fixed generators of E[NK].

– The server has the secret key k ∈ PNK
, and the corresponding isogeny

φk : E → Ek. It uses P ′K, Q′K to construct the curve Er,m,k, which is the target
of an isogeny acting on E and whose kernel is ker(φr)× ker(φm)× ker(φk).
It sends Er,m,k back to the client, along with two additional points in E[NR].

5

– The client uses its knowledge of φr to recover the required Em,k using an
appropriate dual isogeny φ̂′ : Er,m,k → Em,k. Once the client has Em,k, it
can obtain the required PRF value F (k, x) since F (k, x) = H2(x, j(Em,k)).
While this is a natural construction for an OPRF, it is unfortunately com-

pletely insecure. It is vulnerable to a clever active attack due to Galbraith et
al. [GPST16], which was originally used to attack SIDH key exchange where one
of the parties uses a static key. In our setting, the attack lets a malicious client
send carefully crafted points P ′K, Q

′
K ∈ Er,m that are not the images of the fixed

points PK, QK ∈ E under the isogeny φr,m:E → Er,m. The client can then learn
information about the PRF key k from the server’s response. With enough such
queries, the client can extract k from the server, thus fully breaking the OPRF.

In the SIDH key-exchange setting, there are several countermeasures against
this active attack. Kirkwood et al. [KLM+15] suggest an approach, based on
the Fujisaki-Okamoto [FO13] transformation, where the client sends encrypted
information to the server. The server decrypts and uses the information from
the client to validate the request. However, this approach cannot be used in an
OPRF protocol because the information sent from the client reveals m to the
server, which violates the OPRF privacy requirement.

Our solution is to have the client prove to the server that the points P ′K and
Q′K are generated correctly without leaking any information about m or r to
the server. To do so, we present in Section 5 a special-purpose zero-knowledge
protocol that allows the client to prove the correctness of the points it sends. Our
protocol develops an idea sketched by Galbraith [Gal18, Section 7.2], and builds
on the isogeny-based identification protocol of De Feo et al. [DJP14].

We obtain an OPRF that is secure against a malicious client. To further
secure the OPRF against a malicious server, the server needs to somehow prove
to the client that its response Er,m,k is consistent with its commitment Ek
to the secret key k ∈ PNK

. In other words, the server needs to prove that
(E,Er,m, Ek, Er,m,k) form an isogeny DDH tuple, where the server only knows φk :
E → Ek and φ′k : Er,m → Er,m,k. A similar protocol is needed in the constructions
of [JS14,SC18,SGP19] for the purpose of online signature confirmation. However,
we cannot use their protocol because they assume the server knows both φk
and φr,m : E → Er,m. For us, this would break the OPRF privacy requirement
because ker(φr,m) reveals information about m ∈ PNM

.
To address this, we develop in Section 6 a zero-knowledge proof of equality that

lets the server prove the consistency of its response to the client. A key challenge
is to ensure security of the OPRF, meaning that we must prevent the client from
abusing the consistency check for extracting information about the key k. The
result is a new private-coin protocol, that jointly meets the security requirements
of both parties, and is quite different from the [DJP14]-style public-coin protocol.

Our complete verifiable OPRF appears in Protocol 19.

Security assumptions. Our OPRF construction is based on the hardness of
isogeny problems on supersingular curves over a field Fp2 for a prime p of the
form p = f ·N1 · . . . ·Nn−1, for relatively prime Ni. Specifically, for our verifiable
OPRF, we use n = 5 prime powers.

6

The privacy of the client in our protocol relies on the hardness the Decisional
SIDH Isogeny Problem [DJP14,GV18] adjusted from the standard SIDH setting
of n = 2 prime powers to our setting of n = 5 (similarly to [JS14,SC18,DOPS18]).
The security of the server in our protocol relies on a one-more Diffie-Hellman-type
assumption in the SIDH setting. Recently, Merz, Minko, and Petit [MMP20]
presented a polynomial-time attack on certain “one-more” SIDH assumptions,
introduced in [JS14,SC18]. In Section 3, we present a new type of one-more SIDH
assumption and discuss why it is not susceptible to this attack. Finally, our zero-
knowledge proof, designed to prevent the active attack of [GPST16], relies on the
hardness of a variant of the Decisional Supersingular Product problem [DJP14].
We discuss the security assumptions in more detail in Sections 3 and 5.

1.3 Additional related work

OPRF from oblivious-transfer extension. An efficient oblivious PRF can
be constructed from oblivious-transfer extension [IKNP03]. The first works to do
so [PSZ14,KKRT16,PSZ18] constructed a one-time OPRF, namely one where
the client can only issue a single query to the server. Subsequent work [PRTY19]
constructs a many-time OPRF from oblivious-transfer extension, but the client
must choose all the query points before the OPRF key is generated. These non-
adaptive OPRF schemes are sufficient for protocols for private set intersection,
and can be post-quantum secure if the underlying 1-out-of-2 oblivious transfer is
post-quantum secure. The constructions in this paper give an OPRF which allows
the client to select the query points adaptively, at any time after the OPRF key
is generated, and supports an exponential size domain.

Blind signatures. Verifiable OPRFs share resemblance with blind signatures [Cha82].
Both primitives allow a server holding a secret key to provide the client with a
“certified" value on blinded input. However, unlike an OPRF, a blind signature
does not have to be deterministic, yet it has to be publicly verifiable. Indeed,
Jarecki and Liu [JL09] observed that earlier constructions [CNS07] of oblivious-
transfer protocols from unique blind signatures [Cha82, BNPS03, Bol03] and,
similarly, from blind IBE schemes [GH07], give rise to OPRFs. None of these
constructions are post-quantum secure. Recent works [SC18,SGP19] constructed
variants of blind signatures from supersingular isogenies. As discussed above, the
online verification protocols in these schemes require unblinding the message.

Adaptations of the Naor-Reingold PRF to isogenies. Two concurrent
and independent works [AFMP20,MOT20] also construct a Naor-Reingold style
PRF from commutative group actions. Alamati et al. [AFMP20] further explore
the landscape of cryptographic primitives that can be built from group actions.
Moriya et al. [MOT20] also implement and evaluate their construction. Our work
focuses on using this PRF construction towards constructing an OPRF.

7

2 Augmentable commitments

In this section we introduce a primitive, called augmentable commitments, that
makes it easier to describe the OPRF construction and prove its security. This
abstraction makes it possible to describe the scheme without cluttering the
description with many elliptic curve points.

An augmentable commitment is a commitment scheme where one can commit
to a value x1 ∈ X1 to obtain a commitment com. Later, someone else can append
x2 ∈ X2 to the commitment com to obtain a new commitment com′ to (x1, x2).
One can also obtain com′ by committing in the reverse order, by first committing
to x2 ∈ X2, and then appending x1 ∈ X1. We will refer to com′ as Jx1, x2K.
Regular values are append-only, in the sense that, given Jx1, x2K, it should be
computationally unfeasible to compute Jx2K or Jx′1, x2K. Looking ahead, this
“non-malleability” property will provide privacy for the server in our OPRF
protocol. It prevents the client from learning the value of the OPRF at one point
given its evaluation at another.

To hide the contents of the commitment, its creator may include in it a special
type of value r ∈ R, called a blind. Such a blinded commitment Jr, x1, x2K can
later be unblinded to obtain Jx1, x2K, which is a binding commitment to x1 and
x2, but may not be hiding. The blinding property will provide privacy for the
client in our OPRF protocol, as it will prevent the server from learning the point
where the OPRF is being evaluated.

We next define augmentable commitments more precisely and more generally.
In the next sections we show how to use augmentable commitments to construct
an OPRF scheme and how to construct them from supersingular isogenies.

Definition 1 (Augmentable Commitment Scheme). An augmentable com-
mitment scheme G with an input space X = X1 × · · · × Xn−1, a blinding space
R := Xn, a commitment space C, and a space of representatives J , consists of
five algorithms
– Setup(1λ)→ com0 ∈ C. The algorithm takes as input the security parameter

and outputs the “empty” commitment com0.
– Blind(com0 ∈ C, r ∈ R)→ com ∈ C. The algorithm takes as input the empty

commitment and a blind value r, and creates an initial blinded commitment.
– Append (com ∈ C, i ∈ [n− 1], x ∈ Xi) → com′ ∈ C. The algorithm takes as

input a commitment com, an index of an input space, and an input from
that space, and outputs a new commitment. The input commitment com can
be the empty commitment com0, a blinded commitment output by Blind, or
a commitment obtained from a previous call to Append.

– Unblind (com ∈ C, r ∈ R)→ com′ ∈ C. The algorithm takes as input a com-
mitment previously blinded with r together with the same blind value r used
for blinding, and outputs an unblinded commitment.

– Invariant (com ∈ C)→ j ∈ J returns the invariant of a commitment.
For simplicity, we avoid including explicit public parameters in the syntax of the
scheme. If the scheme requires the Setup algorithm to set some public parameters,

8

we assume without the loss of generality that they are included in the empty
commitment com0 and in all subsequent commitments.

Note that the Blind step is the only time when an element r ∈ R of the
blinding space may be committed to.

For brevity, we use the notation Jx1, . . . , xtK to refer to a commitment to
a sequence of elements x1 ∈ Xi1 , . . . , xt ∈ Xit . Specifically, if none of the
distinct indices i1, . . . , it ∈ [n − 1] is the blinding index, we define comj ←
Append(comj−1, ij , xj), and set Jx1, . . . , xtK := comt. Similarly, if i1 = n is the
index of the blinding space R = Xn, we define com1 ← Blind(com0, x1), and for
j ∈ [2, t] we define comj ← Append(comj−1, xj), and set Jx1, . . . , xtK := comt.

For two commitments c, c′ ∈ C, we write c ∼ c′ if and only if Invariant(c) =
Invariant(c′).

The commitment scheme must satisfy the following correctness property,
which states that (i) commitments to the same set of elements in a different order
are equivalent; and (ii) unblinding results in an a commitment to the remaining
elements.

Correctness. For every t ∈ [n−1], every set of distinct indices i1, . . . , it ∈ [n−1],
every set of values xj ∈ Xij , and every r ∈ R, we require the following.

1. Invariant(Jx1, . . . , xtK) is independent of the ordering of x1, . . . , xt. Similarly,
Invariant(Jr, x1, . . . , xtK) is independent of the ordering of x1, . . . , xt.

2. Unblind(Jr, x1, . . . , xtK, r) ∼ Jx1, . . . , xtK.

An augmentable commitment must satisfy the following three security re-
quirements: hiding, weak binding, and one-more unpredictability.

Hiding. The hiding property requires that a random committed element, be it
an input or a blind, computationally hides all other committed elements. More
specifically, an adversary should not be able to distinguish between a commitment
to a set of random values and a commitment to a set of values of his choice,
provided that the commitment includes at least one additional random element,
that the adversary does not know. This additional element can either be an input
element or a blind, i.e., the hiding property holds with respect to both inputs
and blinds, with the only difference being that blinds can also be unblinded.

More formally, for b = 0, 1, let Wb be the event that A outputs 1 in Experi-
ment b of the following game:

Game 2 (Hiding). Given an augmentable commitment scheme G, we define
two experiments, Experiment 0 and Experiment 1. For b = 0, 1, we define
Experiment b as follows:
– The challenger runs com0 ← Setup(1λ) and sends com0 to the adversary.
– The adversary submits to the challenger a list i1, . . . , it for t ∈ [n], together

with a set of t− 1 values x(0)1 , . . . , x
(0)
r−1, x

(0)
r+1, . . . , x

(0)
t where xj ∈ Xij .

– The challenger samples x(1)j ←
R Xij for j ∈ [t]\{ir} and x(b)r ←R Xir , computes

com← Jx(b)1 , . . . , x
(b)
t K and sends com to the adversary.

– The adversary outputs a bit b′ ∈ {0, 1}.

9

We define the advantage of adversaryA in the hiding game as HideAdv[A,G] :=
|Pr[W0]− Pr[W1]|. We say that a commitment scheme G is computationally hiding
if for every efficient adversary A, it holds that HideAdv[A,G] is negligible in the
security parameter λ.

Weak binding. The binding requirement asks that no efficient adversary can
produce a collision between two commitments. We actually only need a weak form
of binding, in the sense that the adversary needs to produce a pair of distinct
elements that create a collision with noticeable probability over a random choice
of a sequence of appended elements.

More formally, we say that an augmentable commitment scheme G is weakly
binding if the probability that any efficient adversary wins in the following game
is negligible.

Game 3 (Weak binding). Given an augmentable commitment scheme G, we
define the following experiment:
– The challenger runs com0 ← Setup(1λ) and sends com0 to the adversary.
– The adversary submits to the challenger a list of indices i1, . . . , it ∈ [n] for

some t ∈ [n], together with two elements y, y′ ∈ Xit such that y 6= y′.
– The challenger samples xj ←R Xij for j ∈ [t − 1] and computes com ←

Jx1, . . . , xt−1, yK and com← Jx1, . . . , xt−1, y′K.
– The adversary wins if com ∼ com′.

One-more unpredictability. In an augmentable commitment scheme, the re-
sult of augmenting a secret value to one randomly chosen value should not reveal
the result of augmenting that same secret value to other random values. Specifi-
cally, consider a game between a challenger and adversary. The challenger chooses
a secret input value k and gives the adversary t+ 1 challenges m1, . . . ,mt+1, each
of which is a random input value to the commitment. The solution to the ith
challenge is the Invariant(Jmi, kK) of a commitment to both the challenge value
and the challenger’s secret value. Finally, the adversary may issue queries to the
challenger. Each query consists of an input value m of the adversary’s choice, to
which the challenger responds with Invariant(Jm, kK), where k is the challenger’s
secret value. The one-more unpredictability property requires that after issuing
at most t queries the adversary should not be able to produce the solution to all
t+ 1 challenges.

More formally, we say that a commitment scheme G is one-more unpredictable
if the probability that any efficient adversary wins in the following game is
negligible.

Game 4 (One-more Unpredictability). Given an augmentable commitment
scheme G, we define the following experiment:
– The challenger runs com0 ← Setup(1λ) and sends com0 to the adversary.
– The adversary chooses and sends to the challenger a challenge indexM ∈ [n−1]

and a secret index K ∈ [n− 1]

– The challenger chooses k ←R XK.

10

– The adversary makes a sequence of queries to the challenger, each of which
can be one of the following three types:

• Challenge query : the challenger randomly chooses m←R XM and sends it
to the adversary.

• Solve query : the adversary submits a sequence x1 ∈ Xi1 , . . . , x` ∈ Xi` such
that i1 = M and all ij 6= K. The challenger computes the commitment
com← Jx1, . . . , x`, kK and sends com back to the adversary.

• Decision query : the adversary submits to the challenger a pair (i, j),
where i is a positive integer, bounded by the number of challenge queries
the adversary has made so far, and j ∈ J . The challenger respond true
if Invariant(Jm, kK) = j, where m ∈ XM is the ith challenge, and false
otherwise.

– The adversary outputs a list of distinct pairs, each of the form (i, j), where i is
a positive integer bounded by the number of challenge queries, and j ∈ J . We
call such a pair correct if Invariant(Jm, kK) = j, where m is the ith challenge.

We say that the adversary wins the game if the number of correct pairs output
by the adversary exceeds the number of solve queries.

Remark 5. de Saint Guilhem et al. [DOPS18] introduced an abstraction called
semi-commutative masking structure that captures both commutative group
actions and isogenies on supersingular elliptic curves. Our abstraction of aug-
mentable commitments draws inspiration from theirs and shares some technical
similarities with it. One difference is that our abstraction separates regular values,
that are append-only, from blinds, that can be removed.

3 Augmentable commitments from supersingular
isogenies

In this section we show how to construct an augmentable commitment scheme
from supersingular isogenies. We refer to this scheme as Gsi. We begin by defining
a parameterization algorithm, which we use throughout our construction and our
security assumptions.

Definition 6 (Parameterization p(λ, n)). We define the following determin-
istic algorithm. On input a security parameter λ ∈ N and an integer n ∈ N,
compute the first n primes `1, . . . , `n and choose e1, . . . , en to be positive integers
such that for all i ∈ [n], Ni := `eii ≈ 22λ. Choose f ∈ N to be a cofactor such
that p = f ·N1 · . . . ·Nn − 1 is a prime. Output p(λ, n) := p.

For λ ∈ N, and p(λ, n + 1) = f ·N1 · . . . ·Nn+1 − 1, the input space of the
commitment are the projective lines PNi for i ∈ [n− 1], and the blinding space
is the projective line PNn . For now, we do not explicitly use the Nn+1 torsion,
and in particular, PNn+1

is not part of the commitment input/blinding spaces.
In Section 5, we will use this extra torsion to construct zero knowledge proofs on
our commitment scheme.

11

Setup. The input to the setup routine is a security parameter λ ∈ N. It computes
p = p(λ, n+1) = f ·N1 ·. . . Nn+1−1, then chooses E0 to be a random supersingular
elliptic curve over Fp2 such that E0(Fp2) ∼= Z2

N1
× . . . × Z2

Nn+1
× Z2

f . Finally,
for i ∈ [n], the setup routine chooses P 0

i , Q
0
i generators of E0[Ni] ∼= Z2

Ni
and

outputs the empty commitment that consists of the curve E0 and the generators
(P 0
i , Q

0
i)i∈[n−1].

Our augmentable commitments take the form (E, (Pi, Qi)i∈I), where I ⊆ [n],
representing the curve E by its j-invariant j(E) ∈ Fp2 using 2 log p bits. (All loga-
rithms in this work have base two.) This defines the curve up to isomorphism, and
a canonical curve in that isomorphism class can be efficiently computed. There-
fore, before outputting a commitment, each of the algorithms in our construction
first computes an isomorphism from the curve it has computed to the canonical
curve of the same isomorphism class. It also computes the images of the points in
the commitment under this isomorphism [AJK+16,GPS20,DOPS18]. Thus, any
published points are always on the canonical curve. Similarly to SIDH public-key
compression [AJK+16,CJL+17, JAC+17], each basis can be represented using
3 logNi bits. The overall size of a commitment is at most 5 log p bits.

Blinding. The Blind algorithm blinds the empty commitment with a blind
r ∈ PNn

as follows. First, compute a degree Nn isogeny φr:E0 → Er where
Er = E0/〈r · (P 0

n , Q
0
n)〉 and P 0

n , Q
0
n is a canonical basis for E0[Nn]. Then compute

a canonical basis Pn, Qn for Er[Nn]. This basis, together with the knowledge of
the kernel of the dual isogeny φ̂r is what enables to later unblind the commitment.
Finally output the commitment

JrK :=
(
Er, (φr(P

0
j), φr(Q

0
j))j∈[n−1], Pn, Qn

)
.

Appending. To append a value xt ∈ PNj
to a commitment Jr, x1, . . . , xt−1K =

(E, (Pi, Qi)i∈I) for some j ∈ I ∩ [n − 1], the algorithm Append computes the
isogeny φ′:E → E′ with kernel 〈xt · (Pj , Qj)〉. The new commitment is then

Jr, x1, . . . , xtK =
(
E′, (φ′(Pi), φ

′(Qi))i∈I\{j}

)
.

As values are added to the commitment, the Append algorithm drops the bases of
the corresponding torsion groups from the commitment. However, the commitment
tracks the basis for the blinding space throughout, and the Unblind algorithm
uses them to remove the blind r.

Unblinding. Algorithm Unblind removes r ∈ PNn
from a blinded commitment

Jr, x1, . . . , xtK = (E′, (P ′i , Q
′
i)i∈I) by first computing the isogeny φr:E0 → Er for

Er = E0/〈r · (P 0
n , Q

0
n)〉 together with the canonical basis Pn, Qn ∈ Er[Nn] as

in the Blind algorithm above. It then computes a representative r̂ ∈ PNn
of the

kernel 〈r̂ · (Pn, Qn)〉 for the dual isogeny φ̂r:Er → E0. Finally, it computes the
unblinding isogeny φ:E′ → E where E = E′/〈r̂ · (P ′n, Q′n)〉, and outputs (E)—a
curve isomorphic to the curve of Jx1, . . . , xtK.

The Invariant of a commitment (E, (Pi, Qi)i∈I) is the j-invariant j(E) ∈ Fp2 .

12

Construction 7 (Superisingular-Isogeny Augmentable Commitment).
Let p = p(λ, n + 1) = f · N1 · . . . · Nn+1 − 1 be as in Definition 6. We define an
augmentable commitment scheme Gsi as follows. The input space is PN1×PN2× ...×
PNn−1 . (Here, PNi is the projective line over Z2

Ni
as defined above.) The blinding

space is PNn . A commitment com ∈ C is a tuple of the form (E, (Pi, Qi)i∈I),
where I ⊆ [n], E is a supersingular curve, and Pi, Qi are generators of E[Ni]. The
representative space is J := Fp2 .

Setup
(
1λ

)
→ com0

– Compute p = p(λ, n+ 1) = f ·N1 · . . . ·Nn+1 − 1.
– Choose E0 to be a random supersingular elliptic curve over Fp2 .
– For i ∈ [n], choose P 0

i , Q
0
i generators of E0[Ni] ∼= Z2

Ni
.

– Output com0 ←
(
E0, (P

0
i , Q

0
i)i∈[n]

)
.

Blind (com0, r ∈ R)→ com ∈ C
– Initialize

(
E0, (P

0
i , Q

0
i)i∈[n−1]

)
← com0.

– Compute the canonical basis (P̂ 0
n , Q̂

0
n) of E[Nn].

– Compute the isogeny φn:E0 → En = E/〈r · (P 0
n , Q

0
n)〉.

– Compute the canonical basis (P̂n, Q̂n) of En[Nn].
– Output the canonical form of (En, (φn(Pi), φn(Qi))i∈[n−1] ∪ {P̂n, Q̂n}).

Append
(
com ∈ C, j ∈ [n− 1], x ∈ PNj

)
→ com′

– Parse com as (E, (Pi, Qi)i∈I) where I ⊆ [n]. If j /∈ I, output ⊥.
– Check that all given points Pi and Qi have order Ni and are linearly indepen-

dent.
– Compute the isogeny φ:E → E′ = E/〈x · (Pj , Qj)〉.
– Output the canonical form of

(
E′, (φ(Pi), φ(Qi))i∈I\{j}

)
.

Unblind (com′ ∈ C, x ∈ PNn)→ com ∈ C
– Parse com as (E′, (P ′i , Q′i)i∈I). If n 6∈ I, output ⊥.
– Compute the canonical basis (P̂ 0

n , Q̂
0
n) of E0[Nn] (where E0 is the starting

curve output by Setup).
– Compute the isogeny φn:E0 → En = E0/〈x · (P 0

n , Q
0
n)〉.

– Compute the canonical basis (P̂n, Q̂n) of En[Nn].
– Compute the dual isogeny φ̂n:En → E0 and find u ∈ PNn such that 〈u ·

(P̂n, Q̂n)〉 is the kernel of φ̂n.
– Compute the isogeny φ̂′n:E′ → E = E′/〈u · (P ′n, Q′n)〉.
– Output the canonical form of E.

Invariant (com ∈ C)→ j ∈ J
– Parse com as (E, (Pi, Qi)i∈I) and output j(E).

A full specification of our augmentable-commitment scheme appears in Con-
struction 7. In Appendix A, we prove that Gsi meets the correctness requirement
of Definition 1. We now turn to discussing its security.

13

Hiding. The hiding property of our construction relies on the following variant
of the Decisional Supersingular Isogeny problem.

Problem 8 (Decisional SIDH Isogeny problem). Let p = p(λ, n) = f ·N1 ·
N2 · . . . ·Nn − 1 be as in Definition 6 and i ∈ [n]. The Decisional SIDH Isogeny
problem is to distinguish between the following two distributions:

1. (E,Eφ, P,Q, φ(P), φ(Q)) where E is a randomly chosen supersingular curve
over Fp2 , the points P,Q ∈ E[(p+1)/Ni] are a random basis for the (p+1)/Ni-
torsion of E(Fp2), φ is a random degree-Ni isogeny from E and Eφ is the
codomain of φ.

2. (E,E′, P,Q, P ′, Q′) where E, P , and Q are as above, E′ is another randomly
chosen supersingular curve over Fp2 , and the points P,Q ∈ E[(p+1)/Ni] are a
basis for the (p+ 1)/Ni-torsion of E(Fp2) chosen uniformly at random subject
to the constraint that e(P,Q)Ni = e(P ′, Q′), where e(·, ·) denotes the Weil
pairing.

The Decisional SIDH Isogeny assumption is that for every constant n and
every i ∈ [n], no efficient algorithm can distinguish between the above two distri-
butions with probability non-negligible in λ.

The DSSI problem was originally introduced by De Feo et al. [DJP14]. In
its original form, it is the problem of deciding whether two supersingular curves
over Fp2 , for p = `e11 · `

e2
2 · f ± 1 are `e11 -isogenous to one another. Galbraith

and Vercauteren [GV18, Definition 3] introduced the above variant, in which
the distinguisher is also given extra points on each curve. This problem is also
discussed in [UJ18, Problem 3.4] and [Vit19]. Our construction requires using
more than 2 large torsions, and in particular we assume the problem to be hard
for n = 5. A three-prime variant is considered in [JS14], a four-prime variant in
[SC18], and an n-prime variant appears in [DOPS18,FKT18,AJJS19].

Remark 9. Petit [Pet17] showed an attack on “unbalanced” SIDH variants that
reveal the action of a secret degree-A isogeny on the B-torsion of the base
curve for B � A. Petit’s attack, as well as its recent improvement by Kutas et
al. [KMP+20], further require that A · B > p. Even though our augmentable
commitment has a similar imbalance (with A = Ni and B = Πj 6=iNj), their
second condition A ·B > p does not hold in our case. Therefore, these attacks do
not currently apply to our construction.

Remark 10. The requirement that e(P,Q)Ni = e(P ′, Q′) is needed to prevent a
simple distinguishing attack based on the Weil pairing. Let em:E[m]×E[m]→ µm
be the Weil pairing on them-torsion. Then it holds that [Sil09, Proposition III.8.2]:
em(φ(P), φ(Q)) = em(P,Q)deg(φ), where the first pairing is computed over E′.
The requirement e(P,Q)Ni = e(P ′, Q′) prevents distinguishing via this relation,
by making sure it holds in both cases.

In Appendix A we prove the augmentable commitment scheme Gsi is hiding
under the Decisional SIDH Isogeny assumption.

14

Weak binding. The binding requirement builds on the conjectured difficulty of
efficiently finding a pair of distinct isogenies of the same prime-power degree with
the same target curve. The following problem underpins the security of Charles,
Lauter, and Goren [CLG09] hash function.

Problem 11 (Supersingular Isogeny Collision problem). Let p = p(λ, n)
be a prime as in Definition 6, and let ` be a different prime. Given a randomly
chosen supersingular elliptic curve E/Fp2 , find a positive integer k, a supersingular
curve E′/Fp2 , and two distinct isogenies of degree `k from E to E′.
The Supersingular Isogeny Collision assumption states that for every con-
stant n, no efficient adversary solves the above problem with probability non-
negligible in λ.

In Appendix A we prove the our protocol meets the weak-binding requirement
under the supersingular-isogeny collision assumption.

One-more unpredictability. Intuitively, we require that when a secret K ←R
E[NK] is chosen at random, then the value E/〈M1,K〉, for a given randomly cho-
sen M1 ←R E[NM], should not reveal the value E/〈M2,K〉, for another randomly
chosen M2 ←R E[NM].

This kind of assumption appears in the group setting. For example, consider
a cyclic group G of prime order q, and let α←R Zq be some secret. The One-More
Diffie-Hellman problem [BNPS03] requires an adversary to compute the value vα
for t+ 1 randomly chosen values v ←R G while allowing the adversary to make at
most t queries to a CDH oracle for α (i.e., an oracle that replies with uα on a
query u ∈ G). The One-More Diffie-Hellman assumption states that no adversary
can solve this problem for any polynomial t with non-negligible probability.

Our starting point is a candidate of the One-More Diffie-Hellman assumption
in the SIDH setting, introduced by Srinath and Chandrasekaran [SC18], called
the One-More SSCDH assumption. Their candidate assumption stated that given
t queries to a SIDH oracle (i.e., an oracle that responds to a query M ∈ E[NM]
with E′/〈M,K〉 for a secret K ∈ E[NK]), it is computationally infeasible to
produce t+ 1 pairs of curves (E/〈M〉, E/〈M, K〉) for t+ 1 distinct M ∈ E[NM].

However, this starting point is insecure. First, Merz, Minko, and Petit [MMP20],
recently showed a polynomial-time attacks on this assumption. Moreover, this as-
sumption is also vulnerable to the active key-recovery attack on SIDH with static
keys [GPST16]. Finally, our security proof requires giving the adversary access
to a decision oracle, which opens up the possibility of computation-to-decision
reductions for isogeny problems [Tho17,GV18,Gal18]. We now explain each of
these attacks and describe how our proposed one-more problem avoids them.

Recent attacks on one-more SIDH problems. The attack of Merz, Minko, and
Petit [MMP20] exploits a key difference between the One-More DH assumption
in the group setting and the OMSSCDH assumption [SC18]. In the group setting,
the adversary needs to produce valid DH tuples for random challenges. In contrast,
the assumption of Srinath and Chandrasekaran [SC18] relaxes this requirement

15

and allows the challenges to be adversarially chosen. In the group setting, relaxing
the random-challenges requirement breaks the one-more hardness: given a single
DH tuple (v, vα), it is easy to produce any number of random-looking DH tuples
simply by choosing β ←R Zq and computing the DH tuple (vβ , (vα)β).

Even though the simple rerandomization that works in the group setting
does not extend to the SIDH setting (due to the requirement that the challenges
are all of the form E/〈M〉 for M ∈ E[NM]), Merz et al. devise a polynomial-
time attack on the above OMSSCDH assumption by computing short isogenies
from a given SIDH tuple. They point out that their polynomial-time attack on
OMSSCDH does not translate to a polynomial-time attack on the signature
scheme of Srinath and Chandrasekaran [SC18] nor on the signature scheme of
Jao and Soukharev [JS14] because the challenges in these schemes are outputs of
a hash function, modeled as a random oracle. This is consistent with the group
setting, where the one-more assumption is only hard for random challenges.

Therefore, to avoid this attack, we provide the adversary in our one-more
problem with random challenges, rather than allowing it to choose the challenge
curves adversarially.

Active attacks. The aforementioned modification prevents the specialized attack
of [MMP20]. However, the resulting problem is still vulnerable to a general active
attack on SIDH with static keys due to Galbraith et al. [GPS20]. As discussed
in the introduction, by sending a sequence of queries, each of which consists
of a curve E′ together with a maliciously crafted basis PK, QK ∈ E′[NK], an
adversary can recover the secret key K. We therefore require the adversary to
submit kernels M as its solve queries, rather than arbitrary curves with (possibly
malicious) torsion points. This requirement is enforced in the actual protocol
using a zero-knowledge proof of knowledge, described in the Section 5.

Search-to-decision reductions. The security proof of our OPRF requires a stronger
variant of a one-more assumption, in which the adversary is given additional
access to a decision oracle that allows it to check the validity of solutions
throughout its execution. In the group setting, the Gap One-More Diffie-Hellman
assumption [JL10,JKK14] states that the one-more problem is hard even in the
presence of such a decision oracle.

The exact same type of assumption is unsound in the SIDH setting. The
issue, as shown by Galbraith and Vercauteren [GV18], and independently by
Thormarker [Tho17], is that the search variant of the isogeny problem can be
reduced to its decisional variant. Moreover, as pointed out by Galbraith [Gal18],
a similar search-to-decision reduction applies also for the SIDH problem. (We
describe this reduction for completeness in Appendix A.5.) The One-More SIDH
problem is thus easy if the adversary is given a full-fledged decision oracle for
the SIDH problem. Therefore, we need to formulate a weaker assumption, in
which the adversary is given oracle access to a more restrictive decision oracle.
Intuitively, we only allow the adversary to check SIDH solutions to the challenges
given to it (with respect to the secret key K), rather than make arbitrary SIDH
decision queries. This is a much weaker assumption, and in particular, unlike a

16

general SIDH decision oracle, the challenger answering this more restricted form
of queries can be efficiently implemented.

Attack Game 12 (Auxiliary One-More SIDH). Let p = p(λ, n) = f ·N1 ·
. . . ·Nn − 1 be as in Definition 6 and let M,K ∈ [n] be distinct indices. Consider
the following game, played between a challenger and an adversary:
– The challenger chooses a random supersingular curve E0/Fp2 and a random

basis P,Q of E0[(p+1)/(NM ·NK)]. It then chooses a random pointK ∈ E0(Fp2)
of order NK, computes the isogeny φ:E0 → E0/〈K〉, and sends E0, P,Q, and
E0/〈K〉 to the adversary.

– The adversary makes a sequence of queries to the challenger, each of which
can be one of the following two types:

• Challenge query: the challenger chooses M ←R E0[NM] and sends it to the
adversary.

• Solve query: the adversary submits V ∈ E0[(p+ 1)/NK] to the challenger,
who computes the isogeny φ:E0 → E′ with ker(φ) = 〈V,K〉, and sends
j(E′) ∈ Fp2 , together with φ(P), φ(Q) to the adversary.

• Decision query: the adversary submits a pair (i, j) to the challenger, where
i is a positive integer bounded by the number of challenge queries the
adversary has made so far, and j ∈ Fp2 . The challenger responds true
if j = j(E0/〈M,K〉), where M is the challenger’s response to the ith
challenge query, and false otherwise.

– At the end, the adversary outputs a list of distinct pairs, each of the form (i, j)
where i is a positive integer bounded by the number of challenge queries, and
j ∈ Fp2 .

We call an output-pair (i, j) correct if j is the j-invariant of the curve E′ =
E/〈M, K〉 where M is the challenger’s response to the ith challenge query. We
say that the adversary wins the game if the number of correct pairs exceeds the
number of Solve queries.

The Auxiliary One-More SIDH assumption states that for every constant n
and every distinct M,K ∈ [n], every efficient adversary wins the above game with
probability negligible in λ.

Remark 13. We allow the adversary to learn the action of the secret isogeny on
an auxiliary torsion group E0[(p+ 1)/(NM ·NK)]. (The construction of Srinath
and Chandrasekaran [SC18, Sec. 4.4] implicitly has this type of leakage, yet
their security proof seems to overlook this when reducing to their version of the
OMSSCDH assumption.)

It is important that the solve query provides the adversary with the action of
the secret isogeny only on this torsion. Disclosing the action of the secret isogeny
on E[NK] would leak the secret. Disclosing the action of the secret isogeny on
E[NM] would allow the adversary to break the one-more assumption, since the
adversary would eventually learn the action of φ on E[NM].

17

In Appendix A, we show that Gsi is one-more unpredictable under the Auxiliary
One-More SIDH assumption.

4 Oblivious PRF from augmentable commitments

We begin by giving an overview of our construction of an oblivious PRF from
augmentable commitments. We do not yet give a formal security definition, so for
now, we can think of an OPRF as a two party functionality (x, k) 7→ (F (k, x),⊥)
where F is a pseudorandom function. Intuitively, each execution should allow
the user to evaluate the PRF at a single point, while providing privacy for the
user’s input.

Our basic protocol consists of two-rounds and is somewhat reminiscent of the
DH-OPRF protocol in the group setting. Recall that in the group setting, the
user, given input x, sends to the server the group element com← H(x)r, which
we can view as a commitment to x. The server then computes com← comk and
sends it back to the user, who computes comout ← com1/r. Generalizing this
protocol to the language of augmentable commitments, we obtain the protocol in
Fig. 1.

Input: x ∈ X Input: key k ←R K

m← H1(x), r ←R R
com← Jm, rK

com

com← Append(com, k)

com

comout ← Unblind(com, r)

j ← Invariant(comout)

Output y ← H2(x, j)

Fig. 1: The basic OPRF protocol from augmentable commitments. Note that, as pre-
sented, this basic version is not secure against malicious parties.

Handling malicious clients. However, this basic construction has a critical
problem. Our augmentable commitment scheme provides a weaker form of “one-
more unpredictability”, as compared to the One-More Diffie-Hellman assumption
in the group setting. Specifically, the one-more-unpredictability adversary needs
to submit values, rather than commitments, as its solve queries. In contrast,
the group-based one-more DH assumption is stronger, in that it considers more
powerful adversaries that can query the one-more challenger on group elements
rather than on scalars. (The underlying reason for this security definition is to
prevent the active attacks on our isogeny-based instantiation of augmentable

18

commitments, as discussed in the introduction and in Section 3). Therefore, our
construction requires the user to attach, as part of its message, a zero-knowledge
proof of the committed values. We present this proof system in Section 5. This
protocol is specific for the isogeny-based construction.

Handling malicious servers. In this simple OPRF, the user cannot detect
malicious servers that use a different key on each response, or even send arbitrary
responses that do not correspond to a well-defined key.

A verifiable OPRF provides the user with the following guarantee. On each
evaluation of the OPRF, the user obtains, in addition to the output value
y = F (k, x), a function descriptor pk. If on two inputs x1 and x2 the user obtains
two outputs y1, pk and y2, pk with a matching function descriptor, there must
exist a key k such that y1 = F (k, x1) and y2 = F (k, x2). The function descriptor
therefore commits the server to a particular function for all inputs.

In our verifiable-OPRF construction, the function descriptor is the output yε
of the OPRF on some fixed point ε. (We think of ε as being outside the “official”
domain of the OPRF.) After obliviously evaluating the OPRF on a point x and
obtaining output yx, the user runs λ additional evaluations of the OPRF, each
time setting the input at random as either x or ε. At the end of the λ evaluations,
the user checks that the output of each of the λ evaluations matches either yε or
yx (consistently with its random choice for that evaluation). If all λ checks pass,
the user accepts the output yx with respect to descriptor yε.

An issue with the above protocol is that a malicious user may abuse the
λ evaluations to evaluate the OPRF on λ additional points, rather than for
verification. Learning the value of the OPRF on more than one point from a
single instance of the protocol would violate the server’s security requirement
of the OPRF. To prevent this, we add an additional phase to our protocol: the
server first commits to the outputs of the OPRF on the λ verification instances.
The user then proves to the server that each of the λ verification inputs is either
x or ε. (Doing this without revealing x to the server requires an extra layer of
blinding.) This provides the server with the assurance that the user would not
learn any “extra” values of the OPRF from the verification instances. The server
then opens the commitment to the verification outputs, which the client verifies
as above. We present this protocol in Section 6.

In Section 7 we give the full specification (Protocol 19) of our final construc-
tion.

5 Zero-knowledge proof for point verification

A critical part of the OPRF construction is a zero-knowledge proof of knowledge
(ZKPK) that lets the client prove to the server that its PRF query is well formed.
Using the abstraction of augmentable commitments, what is needed is a ZKPK
for the contents of an augmentable commitment, or more generally to the relation:

Rcom =

{
((com0, comt), (x1, . . . , xt)) :

com1 = Blind(com0, x1)
comi = Append(comi−1, xi) ∀i ∈ [2, t]

}
.

19

The ZKPK we construct is specific to the instantiation of augmentable com-
mitment from Section 3, and uses some of the algebraic properties of isogenies.
Specifically, we design a custom ZKPK for the following relation Riso. (In Ap-
pendix B.4, we show how the relation Riso enables expressing statements about
the language Rcom for the augmentable commitment scheme Gsi.)

Let p = p(λ, n+ 1) = f ·N1 · . . . ·Nn+1 − 1 be a prime as in Definition 6. For
clarity, we denote NS := Nn+1. Let E be a supersingular elliptic curve defined
over Fp2 . Define the relation:

Riso :=
{(
j(E), PK, QK, j(E

′), P ′K, Q
′
K, d

)
, V
}
, (1)

where the statement
(
j(E), PK, QK, j(E

′), P ′K, Q
′
K, d

)
contains:

– a j-invariant j(E) ∈ Fp2 of a supersingular elliptic curve E/Fp2 ,
– points PK, QK ∈ E[NK] for some NK relatively prime to NS,
– a j-invariant j(E′) ∈ Fp2 of a supersingular elliptic curve E′/Fp2 ,
– points P ′K, Q

′
K ∈ E′[NK], and

– a positive integer d relatively prime to NS and NK,
The witness V is a point of order d in E(Fp2) such that E′ = E/〈V 〉 and the
isogeny φ:E → E′ satisfies P ′K = φ(PK) and Q′K = φ(QK). Note that by definition,
NK, d, and NS all divide (p+ 1) and are relatively prime.

The protocol. We design a ZKPK for the relation Riso where the verifier (server)
has the statement

(
j(E), PK, QK, j(E

′), P ′K, Q
′
K, d

)
and the verifier (client)

proves knowledge of the witness V . We first describe a protocol that has perfect
completeness, constant soundness error, and honest-verifier computational zero
knowledge. Repeating the protocol in parallel λ times makes the soundness error
negligible. Indeed, the repetitions required in this protocol (as well as in the one
in the next section) are responsible for the bulk of the communication in our
OPRF construction.

The protocol is based on the idea sketched by Galbraith [Gal18, Sec 7.2],
which builds on the isogeny-based identification protocol of De Feo et al. [DJP14].

Remark 14. In the following, when we refer to the prover “committing” to one or
more elements, we refer to a standard commitment scheme (as opposed to our
augmentable commitment scheme) such as a standard hash-based commitment
in the random-oracle model.

First, the prover chooses a random point S of order NS. The prover then
computes an isogeny σ with domain E and kernel 〈S〉 and an isogeny σ′ with
domain E′ and kernel 〈φ(S)〉. Let Ẽ and Ẽ′ be the target curves of the isogenies
σ and σ′ respectively. For consistency of notation, we denote points on the curve
Ẽ as P̃ , Q̃ etc. Similarly, we denote points on the curve Ẽ′ as P̃ ′, Q̃′ etc. The
prover can also calculate the isogeny φ̃: Ẽ → Ẽ′ using the image of the generator
V of φ under σ.

20

The prover chooses a random basis P̃S, Q̃S of the NS-torsion subgroup of Ẽ.
The prover then computes the kernel of the dual isogeny σ̂ and expresses its
generator as s · (P̃S, ·Q̃S) for some s ∈ PNS

. (Note that the kernel of σ̂′ is then
generated by s · (φ̃(P̃S), φ̃(Q̃S)).)

The prover commits separately to (1) the curve Ẽ together with the points
P̃S, Q̃S, (2) the curve Ẽ′ together with the points P̃ ′S = φ̃(P̃S), Q̃′S = φ̃(Q̃S),
(3) the scalar s, (4) a random generator Ṽ of ker(φ̃), and (5–8) the images of
PK, QK under σ and of P ′K, Q

′
K under σ′. (Committing to all those elements makes

the protocol online-extractable without rewinding, which is necessary for UC
security.)

Each execution of the protocol will verify the validity of only one of the two
points P ′K and Q′K according to a random choice made by the verifier. Additionally,
according to another random three-way choice of the verifier, the prover will
reveal one of three isogenies (i.e., either σ, σ′, or φ̃) along with some points. The
following diagram illustrates the commitments opened in each of the three cases
where the verifier chooses to verify the validity of the point P ′K:

PK ∈ E P ′K ∈ E′

P̃K, P̃S, Q̃S, Ṽ ∈ Ẽ P̃ ′K, P̃
′
S, Q̃

′
S ∈ Ẽ′ s̃ ∈ PNS

φ

σ̂

φ̃

σ̂′

– In the red case, the prover reveals the curve Ẽ, the random generators P̃S,
Q̃S of Ẽ[NS], the element s̃ ∈ PNS

, and the point P̃K = σ(PK) ∈ Ẽ[NK].
The verifier computes the isogeny σ̂: Ẽ → Ẽ/〈s̃ · (P̃S, sqQ̃S)〉, and checks that
σ̂(P̃K) = [N2

S]PK, where [N2
S] is the multiplication by N2

S map.
– Similarly, in the green case, the prover reveals the curve Ẽ′, the random

generators P̃ ′S = φ̃(P̃S), Q̃′S = φ̃(Q̃S) of Ẽ′[NS], the element s̃ ∈ PNS
, and

the point P̃ ′K = σ′(P ′K). The verifier computes the isogeny σ̂′: Ẽ′ → Ẽ′/〈s̃ ·
(P̃ ′S, Q̃

′
S)〉, and checks that σ̂′(P̃ ′K) = [NS]P ′K, where [NS] is the multiplication

by NS map.
– Finally, in the blue case, the prover reveals the curves Ẽ and Ẽ′, a random

generator Ṽ of ker(φ̃), and the points P̃S, Q̃S ∈ Ẽ[NS], P̃K ∈ Ẽ[NK], P̃ ′K ∈
Ẽ′[NK], and P̃ ′S, Q̃

′
S ∈ Ẽ′[NS]. The verifier computes the isogeny φ̃: Ẽ →

Ẽ/〈Ṽ 〉 and checks that φ̃(P̃K) = P̃ ′K, φ̃(P̃S) = P̃ ′S and φ̃(Q̃S) = Q̃′S.

Remark 15. In our protocol, as well as in the security game for the underlying
assumption, we specifically choose to reveal the image of only a single generator
of the NK-torsion under the secret random isogeny σ. The reason for this choice
is to prevent a distinguishing attack using the Weil pairing. Had we revealed
both images P̃K = σ(PK), Q̃K = σ(QK), then the verifier would have obtained
the two relations e(P̃K, Ṽ) = e(PK, V)v·deg(σ) and e(Q̃K, Ṽ) = e(QK, V)v·deg(σ),

21

which would allow to verifier to distinguish V from random. By revealing only
one out of the two points P̃K, Q̃K, and by revealing a random generator v · σ(V)
instead of σ(V), the protocol prevents tis pairing attack.

The zero-knowledge property of our protocol is based on the hardness of a
variant of the Decisional Supersingular Product problem (DSSP), introduced
by De Feo et al. [DJP14]. As our protocol also needs to verify the action of the
secret isogeny on the NK-torsion, we need to slightly strengthen the assumption
by giving the adversary additional points. More specifically, we consider the
following:

Attack Game 16 (Auxiliary Decisional Supersingular Product). Let p =
p(λ, n + 1) = f ·N1 · . . . ·Nn+1 be as in Definition 6. Let E0 be a supersingular
elliptic curve over Fp2 as above. Consider the following game, played between a
challenger and an adversary:
– The adversary chooses and sends to the challenger V0 ∈ E(Fp2) of order exactly
d relatively prime to NS, and a point PK ∈ E(Fp2) of order relatively prime to
NS and d.

– The challenger executes the following steps:

• choose c←R {0, 1}, v ←R Z∗d, and a random point V1 ∈ E(Fp2) of order d
• compute a random degree-NS isogeny σ:E0 → E′

• send j(E′) ∈ Fp2 and the points v ·σ(Vc), σ(PK) ∈ E′(Fp2) to the adversary

– The adversary outputs a bit c′.
We say that the adversary wins if c′ = c.

The Auxiliary Decisional Supersingular Product assumption is that for
every constant n, the winning probability of every efficient adversary in the above
game is negligible.

In Appendix B, we formally define sigma protocols, give the full details of the
above protocol, and prove that it is special computational honest-verifier zero
knowledge, under the Auxiliary Decisional Supersingular Product assumption.
We also discuss how to transform this sigma protocol into a non-interactive
zero-knowledge proof of knowledge (NIZKPK) in the random-oracle model using
standard techniques.

Concrete efficiency. We estimate the size of the resulting NIZKPK. In a single
execution of the above protocol, the prover sends 8 hash-based commitments in
its first message. Of the three possible openings, the “blue” one, that consists of 2
j-invariants and 7 points, is the largest one. The opening also includes 5 random
nonces used for the hash-based commitments, each of which is λ-bits long. The
size of a j-invariant in Fp2 is 2 log p bits. A naive representation of each point
over Fp2 would have also been 2 log p bits (x-coordinate and a sign bit). However,
Azarderakhsh et al. [AJK+16] observed that a point in an Ni-torsion can be
represented using only 2 logNi bits. Since in our construction logNi ≤ log p/4,

22

the prover can send all 7 points in less than 4 log p bits, and together with the
j-invariant, the size of the prover’s last message is less than 6 log p bits. (In the
non-interactive proof, the verifier’s only message is a random challenge, which is
derived from a random oracle and thus does not increase the size of the proof.)
Since each execution of the protocol has soundness error 5/6, we must repeat the
protocol λ/log(6/5) = 3.8λ times. Overall, we estimate the size of the proof as
3.8λ · (13λ+ 6 log p).

6 Zero-knowledge proof of equality of appended values

Recall that to make our OPRF verifiable, the server must convince the verifier
that it has evaluated the OPRF consistently with its evaluation on some fixed
point. This boils down to proving the commitments satisfy the following relation

Req =

((com0, com1, com0, com1), k)

∣∣∣∣∣∣∣∣
com0, com1, com0, com1 ∈ C

k ∈ K
com0 = Append(com0, k)
com1 = Append(com1, k)


Moreover, the proof must be zero-knowledge, and in particular, the user

should not learn any additional information about the key beyond what it already
knows from com0 and com1.

The idea behind Protocol 17 below is as follows. The user (verifier) sends to
the server λ augmentable commitments, each of which is obtained by appending
a random value vi to either com1 or com2, chosen at random. The user saves the
values vi and the random choices bi ∈ {0, 1}.

Next, the server (prover) appends its secret value k to each of the λ commit-
ments, and sends to the user a hash-based commitment h = H(j1, . . . , jλ, sout)
to their invariants, where sout ←R {0, 1}λ.

The user then reveals to the server the random values v1, . . . , vλ, and the server
uses them to check that each of the λ commitments received in the first round
has indeed been obtained by appending vi to one of com1 or com2. This protects
the server against a malicious user that tries to learn additional information
about k by sending commitments that are not com1 or com2.

Once this check passes, the server sends to the user the opening sout to
the hash-based commitment. Finally, the user computes the expected values
of the invariants j′1, . . . , j′λ as j′i = Invariant(Append(combi , vi)) and checks that
h = H(j′1, . . . , j

′
λ, sout).

This protocol is generic for augmentable commitments, but we think that its
instantiation with the isogeny-based construction of augmentable commitments
may be of independent interest.

In Appendix C we prove the following lemma, which shows the soundness of
this protocol, and we prove the zero-knowledge property of this protocol as part
of security proof of the full protocol.

23

Protocol 17 (Equality of Appended Values). Let G be an augmentable
commitment scheme with input spaceM×K× V ×R, and commitment space C.
Let NIZKPK be a simulation-sound online-extractable proof for the relation Rcom.
Let H3: {0, 1}∗ → {0, 1}λ be a hash function, modeled as random oracle.

Inputs:
– The verifier’s inputs are: commitments com0, com1, com0, com1 ∈ C.
– The prover’s inputs are: commitments com0, com1, com0, com1 ∈ C; a value
k ∈ K such that Append(com0, k) = com0 and Append(com1, k) = com1.

Evaluation:
– The prover computes and sends to the verifier proofs π0, π1, such that for
b = 0, 1 it holds πb ← NIZKPK[(k):Append(comb, k) = comb].

– The verifier checks the proofs and aborts if either check fails. Else, for i =
1, . . . , λ, the verifier samples vi ←R V and bi ←R {0, 1}, computes com(i) ←
Append(combi , vi), and sends (com(1), . . . , com(λ)) to the prover.

– The prover uses k to compute, for i = 1, . . . , λ, the commitment com(i) ←
Append(com(i), k) and the invariant ji ← Invariant(com(i)). It then chooses
sout ←R {0, 1}λ, and sends h← H3(j1, . . . , jλ, sout) to the verifier.

– The verifier sends (b1, v1, . . . , bλ, vλ) to the prover.
– The prover, for i = 1, . . . , λ, checks that Invariant(Append(combi , vi)) =

Invariant(com(i)). If one of the checks fail, the server aborts. Otherwise, it
sends sout to the user.

– The verifier computes the invariants j′i = Invariant(Append(combi , vi)) and
accepts if h = H3(j

′
1, . . . , j

′
λ, sout).

Lemma 18. Suppose that G is a secure augmentable commitment scheme, and
let com0 = Jr0,m0K and com1 = Jr1,m1K be two commitments. Then for every
efficient prover P ∗, the probability that the honest verifier of Protocol 17 accepts
on input (com0, com1, com0, com1) /∈ Leq when interacting with prover P ∗ is
negligible. Here Leq is the corresponding language of Req.

Concrete efficiency.We estimate the communication complexity of the protocol.
The communication is dominated by the verifier having to send λ augmentable
commitments and λ values vi ∈ V. The size of each supersingular-isogeny-based
augmentable commitment is at most 5 log p bits. Moreover, a commitment that
includes vi ∈ V as one of its values does not include a basis for the NV-torsion,
which cancels out having to send the vi values in the next message. Therefore,
we can bound the overall communication complexity by 5λ log p plus the size of
the proofs of knowledge π0 and π1.

7 Putting it all together

We now combine the basic protocol from Section 4 with the two protocols from
Sections 5 and 6 to obtain a maliciously secure verifiable OPRF.

24

Protocol 19 implements the OPRF ideal functionality FVOPRF as defined
in Definition 1. (That definition is based on [JKK14] with some of the later
modifications from [JKKX17,JKX18].)

Protocol 19 (Augmentable-Commitment Verifiable OPRF). The proto-
col involves a user U and a server S. The protocol uses:
– An augmentable commitment scheme G with m = 3 values, n = 1 blinds, input

spaceM×K× V ×R, and commitment space C.
– A simulation-sound online-extractable NIZKPK for the relation Rcom.
– Hash functions, modeled as random oracles:

• H1: {0, 1}∗ ∪ {ε} →M (where ε is a special symbol), used to hash PRF
inputs to the input spaceM of the commitment scheme,

• H2: {0, 1}∗ → {0, 1}`, used to hash to the PRF output space,
• H3: {0, 1}∗ → {0, 1}λ, used in Protocol 17 for proving equality of appended

values.

Initialization On input Init from the environment, server S:
– chooses k ←R K and stores it,
– computes mε ← H1(ε), rε ←R R, and comε ← Jrε,mεK.
– computes comε ← Jrε,mε, kK and a proof of knowledge of a committed

value πk ← NIZKPK[(k) : Append(comε, k) = comε],
– stores pk = (rε, comε, πk) and outputs (Init, pk).

Evaluation
– On input (Eval, S, x), user U proceeds as follows:

• m← H1(x), rm ←R R, comm ← Jrm,mK
• compute proof πm ← NIZKPK[(m, rm): comm = Jrm,mK]
• send message (comm, πm) to the server
• store (comm, rm)

– On input ServerComplete from the environment and message
(comm, πm) from the user, server S verifies the proof πm, computes
comm ← Append(comm, k) and πm ← NIZKPK[(k) : Append(comm, k) =
comm], and sends the descriptor pk = (rε, comε, πk) and comm, πm to the
user.

– On message (pk = (rε, comε, πk), comm, πm) from the server, user U verifies
the proofs πk, πm.

– The user and server run Protocol 17, in which the sender proves to the user
that there exists a k such that Jrε,mε, kK = comε and Jrm,m, kK = comm.

– At the end of the equality protocol, the user, provided it accepts, com-
putes j ← Invariant(Unblind(comm, rm)) and y ← H2(x, pk, j) and outputs
(Eval, pk, y).

In Appendix D we prove the following theorem.

25

Theorem 20. Suppose that G is a secure augmentable commitment scheme.
Then Protocol 19 realizes ideal functionality FVOPRF in the random-oracle model.

The main ideas of the proof are as follows. The privacy of the user’s input easily
follows from the hiding property of the underlying augmentable commitment
scheme. The main challenge is to simulate the honest server. To this end, the
simulator in the ideal world chooses a random secret key for the honest server,
and uses it to simulate the interaction of the real-world adversary with that
server. Specifically, each time the environment activates the honest server, the
simulator responds to an adversary’s message by appending its secret key to the
commitment sent by the adversary.

The only way the environment can distinguish this from the real world is to
find an inconsistency between the value of the OPRF computed via an honest-user
honest-server interaction, and the value of the OPRF computed by the adversary
directly as H2(x, Invariant(Jm, kK)) for m = H1(x). To prevent this inconsistency,
whenever the adversary makes this type of query to the random oracle H2, the
simulator evaluates the ideal-world OPRF at point x and programs the random
oracle H2 to the output value of the PRF. However, the ticketing mechanism
of the OPRF ideal functionality limits the number of times the simulator can
evaluate the ideal-world OPRF by the number of activations of the honest
server. The simulation would therefore fail if the adversary correctly predicts the
value Invariant(Jm, kK) on a number of points greater than the number of server
activations. However, this would violate the one-more unpredictability property
of the underlying augmentable commitment scheme.

The full proof appears in Appendix D.

Concrete efficiency and parameter estimation

The communication complexity of the complete OPRF protocol is dominated by
the communication complexity of the zero-knowledge proofs. More specifically,
the protocol includes 3 NIZKPKs for the relation Rcom, the size of each of which
we have estimated in Section 5 to be 3.8λ · (13λ + 6 log p). In addition, the
complete protocol executes the proof-of-equality sub-protocol once. In Section 6
we estimated the communication complexity of that sub-protocol as 5λ log p.
Therefore, we can bound the communication complexity of the complete protocol
as 73λ log p+ 148λ2.

We set p(λ) based on the best known attacks on our assumptions. For standard
SIDH problems (including the Decisional SIDH problem and the Decisional
Supersingular Product problem), the best known attacks are meet-in-the-middle
attacks that run in time O(

√
Ni) [vOW99]. Although quantum collision-finding

algorithms [Tan09] have a better asymptotic running time of O(3
√
Ni), recent

work [ACC+18, JAC+17] suggests that the classical algorithm outperform the
quantum ones when attacking SIDH, due to the large memory requirement of
the quantum algorithms. One caveat is that our one-more assumption admits a
better attack than SIDH: Merz et al. [MMP20] showed an attack on the schemes
of [JS14, SC18] that runs in time N2/5

i . This exponential-time attack, unlike

26

the aforementioned polynomial-time attack from the same paper [MMP20], also
applies to our one-more assumption. We therefore set Ni ≈ 25λ/2 for λ-bit security.
(The torsion used for the zero-knowledge proof does not need to be increased as
it is used only within a non-interactive proof.) Overall, for n = 5 prime powers,
the prime p is 12λ-bits long.

Plugging in log p = 12λ into the expression for the communication complexity
we have calculated above, we obtain that the total communication complexity is
bounded by 1024λ2 bits. For λ = 128, the communication complexity is under
2MB.

8 Naor-Reingold OPRF from an abelian group action

We now turn to constructing an OPRF from an abelian group action, such as
the action obtained from isogenies of ordinary elliptic curves or from isogenies of
supersingular curves over Fp as in CSIDH [CLM+18].

First, we show that the Naor-Reingold PRF [NR97] can be adapted to work
with an abelian group action that satisfies a DDH-like assumption. Second, we
show that the technique used to build an OPRF from the Naor-Reingold PRF
carries over to the setting of an abelian group action.

A technical difficulty is that the proof of security of the Naor-Reingold PRF
in [NR97] makes use of the random self reduction of the DDH problem in a prime
order group. The DDH problem for an arbitrary abelian group action does not
have the required random self reduction. We therefore need to give a new security
proof for the Naor-Reingold PRF. We are able to prove security based on the
DDH assumption for a group action; however the security reduction is not as
efficient as the proof of Naor-Reingold in a prime order group.

We begin by recalling the definition of a group action.

Definition 21. G acts on a set S if there is a map φ : G× S → S such that for
all s ∈ S and g, h ∈ G, it holds φ(g, φ(h, s)) = φ(gh, s), and φ(1, s) = s, where 1
is the identity for G. We will denote φ(g, s) as g · s.
A group action φ is transitive if for all s, s′ ∈ S, there is an element g ∈ G such
that g · s = s′. A group action is faithful if g · s = s for all s ∈ S if and only if
g = 1.

Let G be an abelian finite group acting on S transitively and faithfully, and
let s0 ∈ S be some fixed element. We define the Naor-Reingold PRF, with key
space K = Gn+1 and input space X = {0, 1}n, as follows:

FNR

(
(k0, ..., kn), (x1, ..., xn)

)
= (k0k

x1
1 kx2

2 . . . kxn
n) · s0. (2)

The security of this PRF requires the following group-action variant of the
DDH assumption to hold in G:

Definition 22 (Group-Action DDH [Cou06,RS06]). Let G be an abelian
group acting on a set S transitively and faithfully, and let s ∈ S. We say that

27

the Group-Action DDH assumption holds in (G, s) if the two distributions

{(a · s, b · s, (ab) · s) : a, b←R G} and {(a · s, b · s, c · s) : a, b, c←R G}

are computationally indistinguishable.

Theorem 23. Suppose that the Group-Action DDH assumption holds in (G, s0).
Then the Naor-Reingold PRF FNR is a secure pseudorandom function.

Proof sketch. Boneh et al. [BMR10, Sec. 4.1] show that the Naor-Reingold PRF
is a special case of the augmented cascade. Therefore, to prove that (2) is a secure
PRF, it suffices to show that for every polynomially bounded Q, the function

P (g, s1, . . . , sQ) = (s1, g · s1, . . . , sQ, g · sQ)

is a secure pseudorandom generator (PRG), where g ∈ G and s1, . . . , sQ ∈ S.
This can be done by a simple sequence of (Q+ 1) hybrid distributions, where at
hybrid i, for i = 1, . . . , Q, the quantity g · si is replaced by random element ti in
S. A distinguisher for any pair of consecutive hybrid distributions gives an attack
on the Group-Action DDH assumption for (G, s0). Overall, the reduction incurs
a factor of Q loss between an attacker on the PRG and the derived attacker
on the Group-Action DDH assumption. The proof of the theorem now follows
by [BMR10, Thm. 3].

Next, we observe that because the group G is abelian, we can evaluate FNR

obliviously with the following protocol, first described in [FIPR05] in a group of
prime order.

Protocol 24. A client that holds input (x1, . . . , xn) ∈ {0, 1}n and a server that
holds input (k0, k1, . . . , kn) ∈ Gn+1 proceed as follows:

1. For each i = 1, . . . , n, the server chooses a random ri in G.
2. For each i = 1, . . . , n, the client and server engage in a 1-out-of-2 oblivious-

transfer protocol that gives to the client ri if xi = 0, and kiri if xi = 1. The
client stores the output as bi ∈ G.

3. The server sends s′ = (k0
∏n
i=1 r

−1
i) · s0 to the client.

4. The client evaluates (
∏n
i=1 bi) · s′ to obtain FNR evaluated at (x1, . . . , xn).

The same security argument from [FIPR05, Sec. 5] also applies to this OPRF.

Instantiation from isogenies. We can now instantiate the above construction
using isogenies. Couveignes [Cou06], Rostovtsev and Stolbunov [RS06] first
proposed using a group action on the set of ordinary elliptic curves. More
recently, Castryck et al. [CLM+18] proposed CSIDH, a construction that uses
the set of supersingular elliptic curves defined over a prime field Fp. Whereas
the full endomorphism ring of such curves is non-commutative (and therefore
does not give rise to a commutative group action), the subring of Fp-rational
endomorphisms is an order in an imaginary quadratic field, which gives rise to a
commutative group action as in the ordinary case. The main advantage of using

28

the CSIDH group action, over using the group action of ordinary curves, is that
it is much more efficient.

More specifically, let Ellp(O) be the set of supersingular elliptic curves over
Fp whose Fp-rational endomorphism ring O is an order in an imaginary quadratic
field. The class group Cl(O), which is an abelian group, acts transitively and
faithfully on Ellp(O). For [a0], . . . , [an] ∈ Cl(O) and E0 ∈ Ellp(O), let

FNR(([a0], [a1], . . . , [an], E0), (x1, . . . , xn)) = j([an]xn . . . [a1]x1 [a0] · E0) .

Assuming the hardness of Group-Action DDH problem in the class group, The-
orem 23 then implies that FNR is a PRF. Moreover, instantiating Protocol 24
with an isogeny-based oblivious-transfer protocol, secure against malicious adver-
saries [DOPS18,LGD20], gives an OPRF protocol from a commutative group
action on elliptic curves.

Remark 25. Recently, Castryck, Sotáková, and Vercauteren [CSV20] showed that
the DDH problem is easy in ideal-class-group actions when the class number
is even. Such groups are therefore unsuited for the above construction. As a
countermeasure to their attack, they suggest working with supersingular elliptic
curves over Fp for p ≡ 3 (mod 4), which is already the case for CSIDH [CLM+18].
In that setting, the Group-Action DDH problem is conjectured to be hard.

Remark 26. Our construction targets the case of commutative group actions.
We mention a recent work by Ji et al. [JQSY19], that studies the case of non-
commutative group actions. The above reduction does not seem to carry over to
the non-commutative case, which might explain why Ji et al. require a different
assumption.

Efficiency. To compute the communication complexity of this instantiation, first
assume without loss of generality that n = λ (since otherwise we can compose
the PRF with a λ-bit hash function). The protocol requires n = λ executions of
the OT protocol. Each execution of the [LGD20] protocol communicates 3 elliptic
curves over Fp, 4 encryptions of class-group elements, and an additional λ-bit
string. Overall, this adds up to λ · (3 log p+ 4 · log p/2 + λ) = 5λ log p+ λ2 bits.

Kuperberg’s algorithm [Kup05,Kup13] for solving the commutative-group-
action discrete-log problem, runs in time exp(

√
log(p)), which requires setting

p = Ω(λ2). As a result, the overall communication complexity of this protocol
is asymptotically Ω(λ3), compared to O(λ2) communication in the protocol
from the previous sections. While the initial CSIDH paper [CLM+18] suggested
that using a 512-bit prime might be sufficient, recent analysis [BS20, Pei20]
recommends using primes as large as 5280-bits long. This leads to Protocol 24
having communication complexity of 424KB.

9 Conclusions and open problems

We constructed two OPRFs from isogenies on elliptic curves. Our main construc-
tion of a verifiable OPRF from isogenies on supersingular elliptic curves is based

29

on a new one-more SIDH assumption. Our construction achieves malicious secu-
rity by virtue of two new zero-knowledge proofs, and introduces a new abstraction
called Augmentable Commitments, which may help simplify the exposition of
future SIDH-based constructions. We also presented a second construction from
commutative group actions.

Future work. It would be interesting to extend our OPRF to support thresh-
old PRF evaluation, where the PRF key is distributed across multiple servers.
Threshold OPRFs [JKKX17] have applications to management of passwords and
keys [HAP18,AMMM18,JKR19]. It would also be good to reduce the commu-
nication cost of our zero-knowledge proofs, as that would improve the overall
efficiency of the OPRF.

Acknowledgements. We would like to thank David Wu for helpful conversa-
tions. We thank Henry Corrigan-Gibbs, Michel Dellepere, and Steven Galbraith
for giving helpful suggestions that improved this article. Finally, we would like to
thank the anonymous Asiacrypt reviewers for their constructive comments. This
work was supported in part by DARPA, NSF, ONR, and the Simons Foundation.

References

ACC+18. G. Adj, D. Cervantes-Vázquez, J. Chi-Domínguez, A. Menezes, and
F. Rodríguez-Henríquez. On the cost of computing isogenies between
supersingular elliptic curves. SAC 2018.

ADDS19. M. R. Albrecht, A. Davidson, A. Deo, and N. P. Smart. Round-optimal
verifiable oblivious pseudorandom functions from ideal lattices. Cryptology
ePrint Archive, Report 2019/1271, 2019.

AFMP20. N. Alamati, L. D. Feo, H. Montgomery, and S. Patranabis. Cryptographic
group actions and applications. ASIACRYPT 2020.

AJJS19. R. Azarderakhsh, A. Jalali, D. Jao, and V. Soukharev. Practical super-
singular isogeny group key agreement. Cryptology ePrint Archive, Report
2019/330, 2019.

AJK+16. R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi. Key
compression for isogeny-based cryptosystems. AsiaPKC@AsiaCCS 2016.

AMMM18. S. Agrawal, P. Miao, P. Mohassel, and P. Mukherjee. PASTA: password-
based threshold authentication. CCS 2018.

BDF+11. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and
M. Zhandry. Random oracles in a quantum world. ASIACRYPT 2011.

BDK+20. N. Büscher, D. Demmler, N. P. Karvelas, S. Katzenbeisser, J. Krämer,
D. Rathee, T. Schneider, and P. Struck. Secure two-party computation in
a quantum world. ACNS 2020.

BMR10. D. Boneh, H. Montogomery, and A. Raghunathan. Algebraic pseudorandom
functions with improved efficiency from the augmented cascade. CCS 2010.

BNPS03. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-
more-RSA-inversion problems and the security of Chaum’s blind signature
scheme. J. Cryptology, 16(3):185–215, 2003.

BOB18. P. Barreto, G. Oliveira, and W. Benits. Supersingular isogeny oblivious
transfer. Cryptology ePrint Archive, Report 2018/459, 2018.

30

Bol03. A. Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. PKC 2003.

BS19. D. Boneh and V. Shoup. A Graduate Course in Applied Cryptography.
2019. https://cryptobook.us.

BS20. X. Bonnetain and A. Schrottenloher. Quantum security analysis of CSIDH.
EUROCRYPT 2020.

Can01. R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. FOCS 2001.

CDG+17. M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rech-
berger, D. Slamanig, and G. Zaverucha. Post-quantum zero-knowledge and
signatures from symmetric-key primitives. CCS 2017.

Cha82. D. Chaum. Blind signatures for untraceable payments. CRYPTO 1982.
CJL+17. C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik.

Efficient compression of SIDH public keys. EUROCRYPT 2017.
CLG09. D. X. Charles, K. E. Lauter, and E. Z. Goren. Cryptographic hash functions

from expander graphs. J. Cryptology, 22(1):93–113, 2009.
CLM+18. W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH:

an efficient post-quantum commutative group action. ASIACRYPT 2018.
CNS07. J. Camenisch, G. Neven, and A. Shelat. Simulatable adaptive oblivious

transfer. EUROCRYPT 2007.
Cou06. J. M. Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive,

Report 2006/291, 2006.
CSV20. W. Castryck, J. Sotáková, and F. Vercauteren. Breaking the decisional

diffie-hellman problem for class group actions using genus theory. CRYPTO
2020.

De 17. L. De Feo. Mathematics of isogeny based cryptography. CoRR,
abs/1711.04062, 2017.

DFMS19. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the Fiat-Shamir
transformation in the quantum random-oracle model. CRYPTO 2019.

DGS+18. A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda.
Privacy pass: Bypassing internet challenges anonymously. PoPETs,
2018(3):164–180, 2018.

DJP14. L. De Feo, D. Jao, and J. Plût. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. J. Mathematical Cryptology,
8(3):209–247, 2014.

DOPS18. C. Delpech de Saint Guilhem, E. Orsini, C. Petit, and N. P. Smart. Semi-
commutative masking: A framework for isogeny-based protocols, with an
application to fully secure two-round isogeny-based OT. Cryptology ePrint
Archive, Report 2018/648, 2018. To appear in CANS 2020.

DSW19. A. Davidson, N. Sullivan, and C. Wood. Oblivious pseudorandom functions
(OPRFs) using prime-order groups. Internet-Draft draft-irtf-cfrg-voprf01,
2019.

ECS+15. A. Everspaugh, R. Chatterjee, S. Scott, A. Juels, and T. Ristenpart. The
Pythia PRF service. USENIX Security 2015.

FIPR05. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search
and oblivious pseudorandom functions. TCC 2005.

Fis05. M. Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. CRYPTO 2005.

FKT18. S. Furukawa, N. Kunihiro, and K. Takashima. Multi-party key exchange
protocols from supersingular isogenies. ISITA 2018.

31

https://cryptobook.us

FO13. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. J. Cryptology, 26(1):80–101, 2013.

FS86. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. CRYPTO 1986.

Gal18. S. D. Galbraith. Authenticated key exchange for SIDH. Cryptology ePrint
Archive, Report 2018/266, 2018.

GGM86. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

GH07. M. Green and S. Hohenberger. Blind identity-based encryption and simu-
latable oblivious transfer. ASIACRYPT 2007.

GOS06. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge
for NP. EUROCRYPT 2006.

GPS20. S. D. Galbraith, C. Petit, and J. Silva. Identification protocols and signature
schemes based on supersingular isogeny problems. J. Cryptology, 33(1):130–
175, 2020. Earlier version in ASIACRYPT 2017.

GPST16. S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti. On the security of
supersingular isogeny cryptosystems. ASIACRYPT 2016.

Gro06. J. Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. ASIACRYPT 2006.

GV18. S. D. Galbraith and F. Vercauteren. Computational problems in supersin-
gular elliptic curve isogenies. Quantum Inf. Process., 17(10):265, 2018.

HAP18. Y. Harchol, I. Abraham, and B. Pinkas. Distributed SSH key management
with proactive RSA threshold signatures. ACNS 2018.

IKNP03. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. CRYPTO 2003.

JAC+17. D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess,
A. Jalili, B. Koziel, B. Lamacchia, P. Longa, et al. SIKE: supersingular
isogeny key encapsulation. 2017.

JKK14. S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected
secret sharing and T-PAKE in the password-only model. ASIACRYPT
2014.

JKKX16. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly-efficient and
composable password-protected secret sharing (or: How to protect your
bitcoin wallet online). EuroS&P 2016.

JKKX17. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: cost-minimal
password-protected secret sharing based on threshold OPRF. ACNS 2017.

JKR19. S. Jarecki, H. Krawczyk, and J. K. Resch. Updatable oblivious key man-
agement for storage systems. CCS 2019.

JKX18. S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: an asymmetric PAKE
protocol secure against pre-computation attacks. EUROCRYPT 2018.

JL09. S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with
applications to adaptive OT and secure computation of set intersection.
TCC 2009.

JL10. S. Jarecki and X. Liu. Fast secure computation of set intersection. SCN
2010.

JQSY19. Z. Ji, Y. Qiao, F. Song, and A. Yun. General linear group action on tensors:
A candidate for post-quantum cryptography. TCC 2019.

JS14. D. Jao and V. Soukharev. Isogeny-based quantum-resistant undeniable
signatures. PQCrypto 2014.

KBR13. S. Keelveedhi, M. Bellare, and T. Ristenpart. Dupless: Server-aided en-
cryption for deduplicated storage. USENIX Security 2013.

32

KKRT16. V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched
oblivious PRF with applications to private set intersection. CCS 2016.

KLM+15. D. Kirkwood, B. C. Lackey, J. McVey, M. Motley, J. A. Solinas, and
D. Tuller. Failure is not an option: standardization issues for post-quantum
key agreement. Workshop on Cybersecurity in a Post-Quantum World 2015.

KLS+17. Á. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas. Private set inter-
section for unequal set sizes with mobile applications. PoPETs, 2017(4):177–
197, 2017.

KMP+20. P. Kutas, C. Martindale, L. Panny, C. Petit, and K. E. Stange. Weak
instances of SIDH variants under improved torsion-point attacks. Cryptology
ePrint Archive, Report 2020/633, 2020.

Kup05. G. Kuperberg. A subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. SIAM J. Comput., 35(1):170–188, 2005.

Kup13. G. Kuperberg. Another subexponential-time quantum algorithm for the
dihedral hidden subgroup problem. TQC 2013.

LGD20. Y.-F. Lai, S. D. Galbraith, and C. Delpech de Saint Guilhem. Compact,
efficient and UC-secure isogeny-based oblivious transfer. Cryptology ePrint
Archive, Report 2020/1012, 2020.

LZ19. Q. Liu and M. Zhandry. Revisiting post-quantum Fiat-Shamir. CRYPTO
2019.

MMP20. S. Merz, R. Minko, and C. Petit. Another look at some isogeny hardness
assumptions. CT-RSA 2020.

MOT20. T. Moriya, H. Onuki, and T. Takagi. Sigamal: A supersingular isogeny-based
PKE and its application to a PRF. ASIACRYPT 2020.

NPR99. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions
and KDCs. EUROCRYPT 1999.

NR97. M. Naor and O. Reingold. Number-theoretic constructions of efficient
pseudo-random functions. FOCS 1997.

Pas03. R. Pass. On deniability in the common reference string and random oracle
model. CRYPTO 2003.

Pei20. C. Peikert. He gives c-sieves on the CSIDH. EUROCRYPT 2020.
Pet17. C. Petit. Faster algorithms for isogeny problems using torsion point images.

ASIACRYPT 2017.
PRTY19. B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. Spot-light: Lightweight

private set intersection from sparse OT extension. CRYPTO 2019.
PSZ14. B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection

based on OT extension. USENIX Security 2014.
PSZ18. B. Pinkas, T. Schneider, and M. Zohner. Scalable private set intersection

based on OT extension. ACM Trans. Priv. Secur., 21(2):7:1–7:35, 2018.
RS06. A. Rostovtsev and A. Stolbunov. Public-key cryptosystem based on isoge-

nies. Cryptology ePrint Archive, Report 2006/145, 2006.
SC18. M. S. Srinath and V. Chandrasekaran. Isogeny-based quantum-resistant

undeniable blind signature scheme. I. J. Network Security, 20(1):9–18,
2018.

SGP19. R. A. Sahu, A. Gini, and A. Pal. Supersingular isogeny-based designated
verifier blind signature. Cryptology ePrint Archive, Report 2019/1498, 2019.

Sil09. J. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in
Mathematics. Springer New York, 2009.

Tan09. S. Tani. Claw finding algorithms using quantum walk. Theor. Comput.
Sci., 410(50):5285–5297, 2009.

33

Tho17. E. Thormarker. Post-quantum cryptography: supersingular isogeny Diffie-
Hellman key exchange. Ph.D. thesis, Thesis, Stockholm University, 2017.

UJ18. D. Urbanik and D. Jao. Sok: The problem landscape of SIDH. Asi-
aPKC@AsiaCCS 2018.

Unr15. D. Unruh. Non-interactive zero-knowledge proofs in the quantum random
oracle model. EUROCRYPT 2015.

Vél71. J. Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci., Paris, Sér.
A, 273:238–241, 1971.

Vit19. V. Vitse. Simple oblivious transfer protocols compatible with supersingular
isogenies. AFRICACRYPT 2019.

vOW99. P. C. van Oorschot and M. J. Wiener. Parallel collision search with
cryptanalytic applications. J. Cryptology, 12(1):1–28, 1999.

34

A Additional material on augmentable commitments
from supersingular isogenies (Section 3)

A.1 Proof of correctness

Lemma 27. Let Gsi be as in Construction 7. Then for every t ∈ [n− 1], every
set of distinct indices i1, . . . , it ∈ [n− 1], every set of values xj ∈ Xij , and every
r ∈ R, it holds that:

1. Both Invariant(Jx1, . . . , xtK) and Invariant(Jr, x1, . . . , xtK) are independent of
the ordering of x1, . . . , xt.

2. Unblind(Jr, x1, . . . , xtK, r) ∼ Jx1, . . . , xtK.

Proof. Let Jx1, . . . , xtK = (E, (Pj , Qj)j∈I). For the first part, we show by induc-
tion on t that E is isomorphic to E0/G where

G = 〈x1 · (P 0
i1 , Q

0
i1), . . . , xt · (P 0

it , Q
0
it)〉 ,

and for every i ∈ I, it holds that Pi = φ(P 0
i) and Qi = φ(Q0

i), where ker(φ) = G.
The first part then follows since E0/G is independent (up to isomorphism) of
the order of the generators of G.

Suppose this holds for t. By construction of the Append algorithm, we have

Append(Jx1, . . . , xtK, xt+1) = (E/T, (φt+1(Pj), φt+1(Qj))j∈I\{it+1}) ,

where ker(φt+1) = T = 〈xt+1 · (Pt+1, Qt+1)〉. It then holds that

E/T ∼= E/〈xt+1 · (Pit+1
, Qit+1

)〉 ∼= (E0/G)/〈xt+1 · (φ(P 0
it+1

), φ(Q0
it+1

))〉
∼= E0/〈x1 · (P 0

i1 , Q
0
i1), . . . , xt+1 · (P 0

it+1
, Q0

it+1
)〉.

As for the points, we have I ′ = I \ {it+1}, and for j ∈ I ′, we have φt+1(Pj) =
φt+1 ◦ φ(P 0

j) = φ′(P 0
j) and φt+1(Qj) = φt+1 ◦ φ(Q0

j) = φ′(Q0
j), where ker(φ′) =

〈x1 · (P 0
i1
, Q0

i1
), . . . , xt+1 · (P 0

it+1
, Q0

it+1
)〉. As for blinded commitments, since, in

our construction, the blinding isogeny is alway applied first, the proof for the
case where the commitment contains a blind value is the same. This proves the
first part.

For part two, let φn:E0 → En be the isogeny with ker(φn) = 〈r · (P 0
n , Q

0
n)〉,

and let
H = 〈x1 · (P 0

i1 , Q
0
i1), . . . , xt · (P 0

it , Q
0
it)〉 .

By construction of the Blind algorithm, it holds that Jr, x1, . . . , xtK = (E, (Pj , Qj)j∈I))

where E = En/Ĥ where

Ĥ = φn(H) = 〈x1 · (φn(P 0
i1), φn(Q0

i1)), . . . , xt · (φn(P 0
it), φn(Q0

it))〉 .

35

Let ψ:En → E be the isogeny with kernel Ĥ, and let P̂n, Q̂n be the canonical
basis for En[Nn]. We have Pn = ψ(P̂n) and Qn = ψ(Q̂n). If the kernel of the
dual isogeny φ̂n:En → E is 〈u · (P̂n, Q̂n)〉, then we have

E/〈u · (Pn, Qn)〉 = (En/Ĥ)/〈u · (ψ(P̂n), ψ(Q̂n))〉
∼= (En/〈u · (P̂n, Q̂n)〉)/(φ̂n(Ĥ))

∼= E0/(φ̂n ◦ φn(H))
∼= E0/H .

A.2 Proof of the hiding property

Lemma 28. Suppose the Decisional SIDH Isogeny assumption holds. Then the
augmentable commitment scheme Gsi (Construction 7) is hiding.

Proof. Consider the augmentable commitment scheme Gsi on n inputs, and let A
be an adversary that plays the hiding Game 2 and achieves advantage ε. Then,
without a loss of generality we can assume that A achieves advantage ε/n with
respect to index r = 1 in the hiding game.

Consider the following three experiments:

Experiment 0. This is the hiding game with b = 0.

Experiment random. This is the hiding game, where we modify the challenger
as follows:
– The challenger first chooses two random curves E0/Fp2 and E/Fp2 and

two bases P 0, Q0 ∈ E0[(p + 1)/N1] and P,Q ∈ E[(p + 1)/N1] such that
e(P 0, Q0)N1 = e(P,Q). It then chooses random bases P 0

1 , Q
0
1 ∈ E0[N1], . . . ,

P 0
n , Q

0
n ∈ E0[Nn] and P2, Q2 ∈ E[N2], . . . , Pn, Qn ∈ E[Nn] such that for

i = 2, . . . , n, the representation of base P 0
i , Q

0
i with respect to P 0, Q0 ∈

E0[(p+ 1)/N1] is equal to the representation of base Pi, Qi with respect to
P,Q ∈ E[(p+1)/N1]. It sends E0, (P

0
i , Q

0
i)i∈[n] to the adversary as the public

parameters of Gsi.
– Upon receiving a set {(ij , xj)}j∈[m], for some 1 ≤ m < n from the adver-

sary. The challenger computes the subgroup G = 〈x1 · (Pi1 , Qi1), . . . , xt ·
(Pit , Qit)〉, the isogeny φ:E → E′ = E/G, and the points φ(Pi), φ(Qi) for i /∈
{1, i1, . . . , it}. The challenger then sends the (E′, (φ(Pi), φ(Qi))i/∈{1,i1,...,it})
back to the adversary as the hiding challenge.

Experiment 1. This is the hiding game with b = 1.

Without loss of generality, we can assume that adversary A has distinguishing
advantage ε/(2n) between experiments 0 and random.

Consider then the following algorithm B that breaks the Decisional SIDH
Isogeny assumption. Given curves E0 and E and points P,Q ∈ E[(p + 1)/N1]
as inputs, algorithm B plays the role of the hiding-game challenger. First it
chooses random bases P 0

1 , Q
0
1 ∈ E0[N1], . . . , P 0

n , Q
0
n ∈ E0[Nn] and P2, Q2 ∈

E[N2], . . . , Pn, Qn ∈ E[Nn] such that for i = 2, . . . , n, the representation of base

36

P 0
i , Q

0
i with respect to P 0, Q0 ∈ E0[(p + 1)/N1] is equal to the representation

of base Pi, Qi with respect to P,Q ∈ E[(p+ 1)/N1]. It sends E0, (P
0
i , Q

0
i)i∈[n] to

the adversary as the public parameters of Gsi.
When the adversary submits to the challenger a set {(ij , xj)}j∈[m], for some

1 ≤ m < n, algorithm B computes the group G = 〈x1 · (Pi1 , Qi1), . . . , xt ·
(Pit , Qit)〉. It uses G to compute the isogeny φ:E → E/G and the points
φ(Pi), φ(Qi) for i /∈ {1, i1, . . . , it}. The challenger then sends the commitment
(E/G, (φ(Pi), φ(Qi))i/∈{1,i1,...,it}) back to the adversary as the hiding challenge.

When the adversary outputs a bit, algorithm B outputs the same bit.
Observe that when E is N1-isogenous to E0, algorithm B executes algorithm

A on the same distribution as in Experiment 0. In contrast, when E is not N1-
isogenous to E0, algorithm B executes algorithm A on the same distribution as
in Experiment random. Therefore, algorithm B obtains distinguishing advantage
ε/(2n) on the Decisional SIDH Isogeny problem.

A.3 Proof of the binding property

Lemma 29. The augmentable commitment scheme Gsi (Construction 7) is weakly
binding under the supersingular-isogeny collision assumption.

Proof. Let p = p(λ, n) = f ·N1 · . . . ·Nn ± 1 be as in Definition 6. Let A be an
adversary that plays in Game 3 and wins with probability ε. Since n is a constant,
there exists a good set of indices i1, . . . , it ∈ [n] such that the adversary chooses
in Game 3 and wins the game with probability Ω(ε)

We use adversary A to construct an efficient algorithm B that solves Prob-
lem 11 with probability Ω(ε). Specifically, given a supersingular curve E, algo-
rithm B chooses a random degree-(Ni1 · . . . ·Nit−1

) isogeny φ:E → E0. Algorithm
B then computes the canonical bases (P 0

i , Q
0
i)
n
i=1 for {E0[Ni]}ni=1 and sends

com0 = (E0, (P
0
i , Q

0
i)
n
i=1) to adversary A.

Next, algorithm B obtains the response from adversary A, which consists
of a set of indices i1, . . . , it ∈ [n] and two elements y, y′ ∈ PNit

. If i1, . . . , it are
not the good indices above, algorithm B aborts. Otherwise it computes the dual
isogeny φ̂:E0 → E, and outputs the two isogenies ψ:E → E/〈y · (φ̂(P 0

it
), φ̂(Q0

it
))〉

and ψ:E → E/〈y′ · (φ̂(P 0
it

), φ̂(Q0
it

))〉.
Observe that the output of B is two degree-Nit isogenies. Moreover when

adversary A chooses the good set of indices and outputs y, y′ such that

Jx1, . . . , xt−1, yK ∼ Jx1, . . . , xt−1, y′K ,

we have that

j(E/〈y · (φ̂(P 0
it), φ̂(Q0

it))〉 = Invariant(Jx1, . . . , xt−1, yK)
= Invariant(Jx1, . . . , xt−1, y′K)

= j(E/〈y′ · (φ̂(P 0
it), φ̂(Q0

it))〉 ,

37

in which case algorithm B solves the supersingular-isogeny problem.
Recall that with probability Ω(ε), adversary A chooses the good set of indices

and wins the game for randomly chosen x1, . . . , xt−1. Since φ:E → E0 is a
random degree-(Ni1 · . . . · Nit−1) isogeny, then so is φ̂:E0 → E, and therefore
(E, (φ̂(P 0

i), φ̂(Q0
i))i∈[n]\{i1,...,it}) is distributed as Jx1, . . . , xt−1K with respect to

the public parameters (E0, (P
0
i , Q

0
i)
n
i=1).

Therefore, algorithm B runs adversary A on the same distribution as the
one in Game 3, and thus solves the supersingular-isogeny collision problem with
probability Ω(ε).

A.4 Proof of one-more unpredictability.

Lemma 30. Suppose the Auxiliary One-More SIDH assumption holds. Then the
augmentable commitment scheme Gsi (Construction 7) is one-more unpredictable.

Proof. The assumption matches the one-more unpredictability game (Game 4)
up to small changes.

Let A be an adversary that plays in Game 4 and wins with probability ε.
Since n is constant, there exists a pair of good indices M,K ∈ [n− 1] such that A
wins the game on those indices with probability Ω(ε).

We construct an adversary B for the Auxiliary One-More SIDH problem Attack
Game 12 that plays the role of the Game 4 challenger against adversary A as
follows:
– Upon receiving the curve E0 and points P,Q from the challenger,choose

random bases (P 0
i , Q

0
i)
n
i=1 for {E0[Ni]}ni=1, where the representation (2x2)

matrix Ci of bases i 6= M,K with respect to P,Q is known (say by choosing
random coefficients). Send to adversary A the empty commitment com0 ←
(E0, (P 0

i , Q
0
i)
n
i=1).

– Upon receiving the adversary’s chosen indices M,K ∈ [n− 1], if those are not
the good indices above, abort. Else continue.

– On each challenge query from A, make a challenger query to the challenger.
Upon receiving back a challenge M ∈ E0[NM], compute its representative
m ∈ PNM

with respect to P 0
M, Q

0
M, and send m back to adversary A.

– On each decision query (i, j) from A, where i is an index of a previous
challenge query and j ∈ J , forward the decision query to the challenger and
forward its response back to A.

– On each solve query x1 ∈ Pi1 , . . . , xt ∈ Pit , such that i1 = M, and all ij 6= K,
compute a generator V for the group 〈x1 · (P 0

i1
, Q0

i1
), . . . , xt · (P 0

it
, Q0

it
)〉, and

send V to the challenger. Upon receiving back E′ and basis P ′, Q′ ∈ E[(p+
1)/(NK ·NM)], for each i 6= M,K, compute the action (P ′i , Q

′
i) = Ci · (P ′, Q′)

of the secret isogeny on the ith basis and send back to adversary A the
commitment (E′, (P ′i , Q

′
i)i∈[n]\{i1,...,it,K}).

– When adversary A outputs a list of pairs {(i, j)}, output the same list.
By inspection, adversary B perfectly simulates the challenger in Attack Game 12,
and therefore the winning probability of B in the Auxiliary One-More SIDH

38

game is equal to Ω(ε), where ε is the winning probability of A in Attack Game 12.
(The loss coming from adversary B having to guess the pair of good indices.)

A.5 SIDH search-to-decision reduction

For completeness, we describe an attack on the One-More SIDH problem when
the adversary is given an SIDH decision oracle. Specifically, consider the following
game:
– The challenger chooses a random K ←R E[NK] and a random M ←R E[NM]. It

then sends to the adversary the curve E/〈K〉 and the challenge point M .
– The adversary makes a sequence of decision queries to the challenger, where

on each query, the adversary sends to the challenger a point M ′ ∈ E[NM]
and a curve E′. The challenger responds true if and only if E′ ∼= E/〈M ′,K〉.

– At the end of the game, the adversary outputs a curve E′.
We say that the adversary wins if E′ ∼= E/〈M,K〉, where M is the challenge
given to the adversary at the beginning of the game.

The adversary can wins in the above game using the following strategy, similar
to the search-to-decision reduction for the isogeny problem [GV18,Tho17].

The adversary can compute the value of E/〈M,K〉 as follows:
– Compute the decomposition of the isogeny φ:E → E/〈M〉 as a sequence
φ = φNM

◦ . . . ◦ φ1 of isogenies of degree `M each.
– Set E′0 = E/〈K〉.
– For i = 1, . . . , NM, let Mi be the kernel of the isogeny φi ◦ . . . ◦ φ1. We use

the decision oracle to compute the curve E/〈Mi,K〉. Specifically,
• For each of the `M + 1 isogenies of degree `M from E′i−1, let E′i be its

codomain. Call the SIDH decision oracle on the tuple (E, E/〈Mi〉, E/〈K〉, E′i).
If the answer is true, continue to the next i. If the answer is false, continue
to the next isogeny of degree `M until the right codomain E′i is found.

– For i = NM, we obtain the solution E/〈M,K〉 to the SIDH problem.

B Additional material on ZKPK (Section 5)

B.1 Sigma protocols

We briefly recall Sigma protocols, adopting the definitions of Boneh and Shoup [BS19].

Definition 31 (Sigma protocol). A sigma-protocol (P, V) for a relation R =
X × Y (implicitly parameterized by a security parameter λ) is a three round
interactive protocol such that:
– The prover P is a PPT algorithm that takes as input a statement y ∈ Y and

a witness x ∈ X such that (x, y) ∈ R.
– The verifier V is a PPT algorithm that takes as input a statement y ∈ Y

and, after interacting with the prover, outputs accept or reject.

39

– The protocol is structured such as the prover first sends a message t, called
a commitment; the verifier then sends a challenge c chosen uniformly at
random from some challenge space C; the prover then sends the final message
z. Upon receiving z, the verifier outputs accept or reject, such that its output
is computed deterministically from the statement y and the conversation
(t, c, z).

We require that when the prover P , given input (x, y) ∈ R, and the verifier V ,
given y, interact, the verifier outputs accept with probability 1.

Definition 32 (k-special soundness). Let (P, V) be a sigma protocol for
relation R = X × Y . We say that (P, V) is k-special sound if there exists a PPT
extractor algorithm Ext that given k accepting transcripts (t, c1, z1), . . . , (t, ck, zk)
with distinct challenges c1, . . . , ck for a statement x ∈ X , outputs a witness y ∈ Y
such that (x, y) ∈ R.

Definition 33 (Special computational honest-verifier zero knowledge).
Let (P, V) be a sigma protocol for relation R = X × Y. We say that (P, V)
provides special computational honest-verifier zero knowledge (SCHVZK) if there
exists a PPT simulator SIM that as input a statement y ∈ Y and a challenge
c ∈ C, and satisfies the following two properties

1. For every input (y, c) ∈ Y ×C, algorithm SIM outputs a pair (t, z) such that
(t, c, z) is an accepting conversation for statement y.

2. For every (x, y) ∈ R, the following two distributions are computationally
indistinguishable:{

(t, c, z) :
c←R C

(t, z)← SIM(y, c)

}
≈c {ViewV 〈P, V 〉(x, y)} ,

where ViewV 〈P, V 〉(x, y) is the view of the verifier V when, given input y,
interacting with prover P , given input (x, y).

B.2 Sigma protocol for point verification

We proceed to describe a sigma-protocol for the relation Riso, defined in Eq. (1)
the prover and verifier take in the statement (j(E), PK, QK, j(E), P ′K, Q

′
K, d). In

addition, the prover gets as input a witness V ∈ E[d].

Protocol 34 (Knowledge of Isogeny). The prover and verifier both get
as input a prime p, curves E(Fp2), E′(Fp2), and points PK, QK ∈ E[NK] and
P ′K, Q

′
K ∈ E′[NK]. The prover additionally gets V ∈ E[d].

1. The prover proceeds as follows:
– compute the isogeny φ:E → E′ = E/〈V 〉
– sample s←R PNS

and compute the point S ← s · (PS, QS) ∈ E[NS]

– compute the isogeny σ:E → Ẽ = E/〈S〉
– compute the isogeny φ̃: Ẽ → Ẽ′ = Ẽ/〈σ(V)〉

40

– compute the isogeny σ′:E′ → Ẽ′ = E′/〈φ(S)〉. (Note that E/〈S, V 〉 =
E/〈V, S〉 = Ẽ′.)

– compute a random basis P̃S, Q̃S of Ẽ[NS] and find s̃ such that ker(σ̂) =
〈s̃ · (P̃S, Q̃S)〉.

– compute P̃ ′S = φ̃(P̃S) and Q̃′S = φ̃(Q̃S).
– send to the verifier:

• a commitment to j(Ẽ) and commitments to the points σ(PK), σ(QK) ∈
Ẽ[NK],

• a commitment to j(Ẽ′) and commitments to the points σ′(P ′K), σ′(Q′K) ∈
Ẽ′[NK],

• commitments to P̃S, Q̃S, P̃
′
S, and Q̃

′
S.

• commitment to s̃
• commitment to a random generator Ṽ = v · σ(V) of ker(φ̃)

2. The verifier samples a random bit α←R {0, 1} and a random integer β ←R
{0, 1, 2} and sends them to the client.

3. The prover sends to the verifier the openings to the following commitments,
where we define X = P if α = 0 and X = Q if α = 1:
– If β = 0, open j(Ẽ), X̃K, s̃, P̃S, and Q̃S.
– If β = 1, open j(Ẽ), j(Ẽ′), X̃ ′K, s̃, P̃

′
S, and Q̃

′
S.

– If β = 2, open j(Ẽ′), X̃K, X̃ ′K, P̃S, Q̃S, P̃ ′S, Q̃
′
S, and Ṽ .

4. The verifier proceeds as follows.
– check the openings of all the given commitments
– check that all the opened points are on the correct curves and have the

expected order
– if β = 0:

• use s̃, P̃S, and Q̃S to compute σ̂: Ẽ → Ẽ/〈s̃ · (P̃S, Q̃S)〉, and check
that the target curve of the isogeny is E

• check that σ̂(X̃K) = [N2
S]XK.

– if β = 1:

• use s̃, P̃ ′S, and Q̃
′
S to compute σ̂′: Ẽ′ → Ẽ′/〈s̃ · (P̃ ′S, Q̃′S)〉, and check

that the target curve of the isogeny is E′

• check that σ̂′(X̃ ′K) = [NS]X ′K.

– if β = 2:

• use Ṽ to compute φ̃: Ẽ → Ẽ/〈Ṽ 〉, and check that Ẽ/〈V 〉 = Ẽ′

• check that φ̃(X̃K) = X̃ ′K
• check that P̃ ′S = φ̃(P̃S) and Q̃′S = φ̃(Q̃S).

Remark 35 (Comparison to [DJP14]). De Feo et al. [DJP14] constructed an
identification protocol based on proving knowledge of an isogeny φ:E → E′

between two given curves E and E′. In our protocol above, we need to prove
a slightly stronger property, namely the prover in our protocol needs to prove

41

not only that it knows an isogeny φ:E → E′ but also that φ(PK) = P ′K and
φ(QK) = Q′K for given points PK, QK ∈ E[NK] and P ′K, Q

′
K ∈ E[NK].

Another issues is that the proof sketch in the original [DJP14] paper (as well as
the more detailed proof in [Gal18]) establishes soundness of the protocol by giving
an extractor that first computes a degree-N2

S · d isogeny ψ = σ̂′ ◦ φ̃ ◦ σ:E → E′,
where d is the degree of the secret isogeny, knowledge of which the prover is trying
to prove. The extractor then extracts the kernel of φ by computing ker(ψ)∩E[d].
It seems that this intersection gives a kernel of an isogeny φ:E → E′ only when
ψ if of the form ψ = φ ◦ψ′, where ψ′ is an endomorphism of E. When the prover
is honest, it is indeed the case, since then ψ′ = σ ◦ σ̂ = [NS]. However, it is not
immediately clear that this must be the case when the prover is malicious. Note
that if ψ′ is not an endomorphism, the extractor only finds a degree-N2

S ·d isogeny
φ:E → E′. If the two isogenies are assumed to be d-isogenous and the goal is
only to prove knowledge (as is the case in the identification setting), then perhaps
one can claim that finding such a non-trivial endomorphism is computationally
difficult. Nevertheless, since we care about soundness, our protocol gives a new
way to prove a stronger guarantee: the extracted isogeny must be of degree d. Our
protocol achieves this by having the prover commit to a single element ŝ and bases
for Ẽ[NS] and Ẽ′[NS]. The protocol can then enforce that ker(σ′) = φ(ker(σ)).

B.3 Proof of SCHVZK

Lemma 36. Suppose that the Auxiliary Decisional Supersingular Product as-
sumption holds. Then Protocol 34 is a sigma protocol for the relation Riso with
6-special soundness and special computational honest-verifier zero knowledge.

We prove each of the require properties.

Completeness : When the prover is honest, the verifier accepts for β = 0, 1 since by
the definition of the dual isogeny, it holds σ̂◦σ = [N2

S], which is the multiplication
by N2

S map. For β = 2, the verifier accepts since for both X = P,Q, it holds that
φ̃ ◦ σ(XK) = σ′ ◦ φ(XK) = σ′(X ′K).

Special soundness: We construct an extractor Ext that takes as input one first
prover message, as well as six last messages, for all possible six challenges, such
that all six conversations are accepting. This corresponds to getting the following
commitment openings:
– j-invariants j(Ẽ) and j(Ẽ′),
– points P̃S, Q̃S ∈ Ẽ[NS], P̃K, Q̃K ∈ Ẽ[NK], and Ṽ ∈ Ẽ[d],
– points P̃ ′S, Q̃

′
S ∈ Ẽ′[NS], P̃ ′K, Q̃

′
K ∈ Ẽ′[NK]

– element s̃ ∈ PNS

The extractor proceeds as follows:

1. Check that all openings are consistent with the commitments in the prover’s
first message, and that the openings to the same commitments are consistent
between the different conversation (since some of the commitments are opened
for more than one challenge value). If any of those checks fail, output ⊥.

42

2. Check that all committed points are of the correct curves and have the
expected order.

3. Compute the isogeny σ̂ with kernel s̃ · (P̃S, Q̃S), the isogeny σ̂′ with kernel
s̃ · (P̃ ′S, Q̃′S), and φ̃ with kernel 〈Ṽ 〉. Check that the of σ̂ is the curve E, that
the target of σ̂′ is the curve E′, and that the targe of the curve φ̃ is Ê′.

4. Check that P̃ ′S = φ̃(P̃S), Q̃′S = φ̃(Q̃S).
5. Check that all of the following hold

σ̂(P̃K) = [NS]PK φ̃(P̃K) = P̃ ′K σ̂′(P̃ ′K) = [NS]P ′K
σ̂(Q̃K) = [NS]QK φ̃(Q̃K) = Q̃′K σ̂′(Q̃′K) = [NS]Q′K

where [NS] is the NS-multiplication map.
6. Compute the dual isogeny σ of σ̂.
7. Compute the composition σ̂′ ◦ φ̃ ◦ σ. By the previous checks the resulting

isogeny has the domain E, its target is the curve E′, and it has degree N2
S · d.

8. Compute the d-torsion component V ∈ E[d] of the subgroup ker(σ̂′ ◦ φ̃ ◦ σ).
9. Output V .

Claim 37. The above extractor outputs V ∈ E[d] such that(
V,
(
j(E), PK, QK, j(E

′), P ′K, Q
′
K, d)

))
∈ Riso

with all but negligible probability.

Proof. By the binding property of the commitment scheme, the probability that
check (1) above fails is negligible. By the definition of the verifier, and the
transcripts being accepting, the checks in steps (2)–(5) always succeed.

Next, by step (4) above, it holds that ker(σ̂′) = φ̃(ker(σ̂)), where σ̂, σ̂′ are
isogenies of degree NS, and φ̃ is an isogeny of degree d. Moreover, recall that
by the dual isogeny theorem, it holds that if σ is an isogeny of degree NS

then σ̂ ◦ σ = [NS], which is the NS-multiplication map. Therefore, we get that
σ̂′ ◦ φ̃ ◦ σ = [NS] ◦ φ for an isogeny φ:E → E′ of degree d. Therefore, in step (6),
the d-torsion component of ker(σ̂′ ◦ φ̃ ◦σ) is a kernel of a degree-d isogeny φ from
E to E′.

It remains to show that φ(PK) = P ′K and φ(QK) = Q′K as required. To see this,
observe that since σ̂(P̃K) = [NS]PK (by the check in step (5)), and σ ◦ σ̂ = [NS]P̃K

(by the properties of the dual isogeny), we have σ(PK) = P̃K, and similarly for
Q̃K. Therefore,

σ̂′ ◦ φ̃ ◦ σ(PK) = σ̂′ ◦ φ̃(P̃K) = σ̂′(P̃ ′K) = [NS]P ′K ,

where the last two equalities hold thanks to the checks in step (5). Therefore, for
the d-torsion part φ, we have φ(PK) = P ′sK as required, and similarly for QK.

Zero-Knowledge: We create a simulator SIM for the honest verifier V . The
simulator takes as input a statement

(
j(E), PK, QK, j(E

′), P ′K, Q
′
K, d)

)
and a

43

challenge (α, β) ∈ {0, 1} × {0, 1, 2}. We describe, without the loss of generality
the case of α = 0 (which corresponds to the case of verifying the point P ′K), and
the case of α = 1 is analogous.

The simulator first computes a random degree-NS isogeny from E, to some
target curve Ẽ. It then chooses a random basis P̃S, Q̃S ∈ Ẽ[NS], and computes
s̃ ∈ PS such that s̃ · (P̃S, Q̃S) generates the kernel of the dual isogeny σ̂: Ẽ → E.

If β = 0, it then outputs the commitments to j(Ẽ), σ(PK), σ(P̃S), σ(Q̃S),
s̃, and commitments to dummy values for the rest of the commitments. By
the hiding property of the commitment scheme, in this case, the output of the
simulator is computationally indistinguishable from a real conversation.

The case β = 1 is completely analogous.
In the remaining case β = 2, the simulator chooses V ′ ←R E[d] and computes

Ṽ ′ ← σ(V ′) ∈ Ẽ[d]. It then computes φ̃: Ẽ → Ẽ/〈Ṽ ′〉 and the points P̃ ′S = φ̃(P̃S),
Q̃′S = φ̃(Q̃S), and P̃ ′K = φ̃(P̃K). In this case the simulator sets Ẽ′ = Ẽ/〈Ṽ ′〉 and
outputs commitments to j(Ẽ), j(Ẽ′), P̃S, Q̃S, P̃ ′S, Q̃

′
S, P̃K, P̃ ′K, and Ṽ

′.
It remains to show that the output of the simulator is computationally

indistinguishable from a real conversation for the case β = 2. We show that if there
exists a distinguisher A and an instance

(
V,
(
j(E), PK, QK, j(E

′), P ′K, Q
′
K, d)

))
such that A distinguishes between a real conversation and the output of the
simulator on the challenge (α = 0, β = 2), we can construct an efficient algorithm
B that wins in Attack Game 16 with non-negligible probability. Specifically,
algorithm B plays sends m to the Attack Game 16 challenger. Then, upon
receiving j(Ẽ) and points Ṽ ∈ Ẽ[d] and P̃K ∈ Ẽ[NK] from the challenger,
algorithm B proceeds as follows:

– Compute φ̃: Ẽ → Ẽ/〈Ṽ 〉 and let Ẽ′ = Ẽ/〈Ṽ 〉.
– Choose a random basis P̃S, Q̃S for Ẽ[NS], and compute P̃ ′S = φ̃(P̃S) and
Q̃′S = φ̃(Q̃S).

– Construct a conversation that consists of:

• commitments to j(Ẽ), j(Ẽ′), P̃S, Q̃S, P̃ ′S, Q̃
′
S, Ṽ , P̃K in the prover’s first

message, and their openings in the prover’s response, and
• commitments to dummy values for the remaining commitments.

– Run the distinguisher A on the resulting conversation, and output its output
bit.

When the challenger in Attack Game 16 chooses c = 0, the given point Ṽ
is of the form v · σ(V) where V is the value sent by algorithm B. In this case,
algorithm B runs algorithm A on a conversation distributed as in an interaction
between the prover and the verifier.

In contrast, when the challenger in Attack Game 16 chooses c = 1, the given
point Ṽ is the image of a random point in E[d]. In this case, algorithm B runs
algorithm A on a conversation distributed as in the output of the simulator.

Therefore the advantage of B in Attack Game 16 is equal to the distinguishing
advantage of A. Thus, the hardness of Attack Game 4 implies the output of the

44

simulator is indistinguishable from a real conversation in the last remaining case
of β = 2.

B.4 Knowledge of contents of Gsi commitments

Note that the relation Riso allows expressing statements about committed values
in the augmentable-commitment scheme Gsi. Recall the relation

Rcom =

{
((com0, comt), x = (x1, . . . , xt)) :

com1 = Blind(com0, x1)
comi = Append(comi−1, xi) ∀i ∈ [2, t]

}
.

Here, the statement consists of two commitments com0 = (E0, (P
0
i , Q

0
i)i∈I0) and

comt = (E, (Pi, Qi)i∈I). The witness consists of the elements appended to to
com0 to obtain com.

Let NK = Πi∈I∩[n−1]Ni. Then ((com0, com),x) ∈ Rcom if and only if E is a
supersingular elliptic curve over Fp2 , for each i, the pairs P 0

i , Q
0
i and Pi, Qi form

a basis for E0[Ni] and E[Ni] respectively, and((
j(E0), P 0

K, Q
0
K, j(E), P ′K, Q

′
K, d

)
, V
)
∈ Riso ,

where
– P 0

K, Q
0
K and PK, QK are a bases of E0[NK] and E[NK] respectively, that have

the same representation with respect to the sets of bases (P 0
i , Q

0
i)i∈I∩[n−1]

and (Pi, Qi)i∈I∩[n−1] respectively.
– d = Πi∈ANi where A = {i1, . . . , it} contains all elements in I0 \ I and

additionally contains n if n ∈ I. The reason is that each time a value is
appended, the corresponding basis is removed from the commitment, yet to
allow unblinding, a blinded commitment includes the blinding base n.

– V is a generator of the group G = 〈x1 · (P 0
i1
, Q0

i1
), . . . , xt · (P 0

it
, Q0

it
)〉.

Remark 38. Note that the above reduction from Rcom to Riso does not verify the
correctness of the blinding torsion Nn. The reason for this is that the points
Pn, Qn ∈ E[Nn] are not the images of P 0

n , Q
0
n ∈ E0[Nn] under the committed

isogeny. Rather, they are the images of a new basis of the Nn-torsion chosen
after the initial blinding. Note that the choice of this basis is arbitrary, but in
Construction 7, we set it deterministically as the canonical basis of that torsion.
This gap can therefore be handled more rigorously by allowing a random choice
of this basis in the Blind procedure. We avoid doing this in our construction for
the sake of simplicity.

B.5 Non-interactive zero-knowledge proof of knowledge

We would now like to transform the above sigma protocol into a non-interactive
zero-knowledge proof of knowledge (NIZKPK) in the random-oracle model. More-
over, we would ideally want our NIZKPK to be secure in the UC framework, so

45

that we can then plug it into our OPRF construction, which we prove secure in
this strong sense.

To this end, we apply Unruh’s [Unr15] generic transformation to the sigma
protocol and obtain a NIZKPK for the relation Riso in the quantum random-oracle
model. Specifically, Unruh establishes the following:

Theorem 39 ([Unr15, Corollary 19]). If there is a sigma-protocol that is
complete and (computational) HVZK and has special soundness, then there
exists a non-interactive zero-knowledge proof system with simulation-sound online
extractability in the random oracle mode.

One subtlety is that the original work [Unr15] proves the theorem for the case
of 2-special soundness, whereas our sigma protocol is 6-special sound. However,
Galbraith et al. [GPS20] and Chase et al. [CDG+17] discuss how the theorem
also applies to protocols that provide k-special soundness for k > 2.

Finally, Groth [Gro06] and Groth, Ostrovsky, and Sahai [GOS06] observed
that simulation-sound online-extractable NIZKPK are universally composable.
Therefore from Lemma 36, [Unr15], and [GOS06], we obtain:

Corollary 40. Assuming the hardness of the Auxiliary Decisional Supersingular
Product assumption (Attack Game 16), applying the Unruh transform to Pro-
tocol 34 gives a UC NIZK for the relation Riso in the quantum random-oracle
model.

On using Fiat-Shamir. The standard approach to obtaining NIZKPKs in the
(classic) random-oracle model is the Fiat-Shamir transform [FS86]. Note that
classically, the standard Fiat-Shamir transform does not result in a universally
composable NIZKPK, since its proof of security crucially relies on rewinding, which
is not possible in the UC model [Pas03,Fis05]. Interestingly, the quantum random
oracle model also precludes using rewinding in the proof of security [BDF+11].
Recently, Don et al. [DFMS19] and Liu and Zhandry [LZ19] showed that the
Fiat-Shamir results in a secure NIZKPK in the quantum setting (under some mild
conditions). However, to the best of our knowledge, the question of whether the
resulting NIZKPK is universally composable has yet to be addressed. Moreover,
as our protocol already has a cut-and-choose structure, Unruh’s transform does
not incur a significant additional cost in this case, and we opt to use it.

C Additional material from Section 6

Note that we only need to prove soundness when com0 and com1 are of the
correct form. This is sufficient for our OPRF protocol, since there, it is the user
who generates these commitments.

Proof. Consider verifier input (com0, com1, com0, com1) /∈ Leq, and an efficient
(possibly malicious) prover P ∗. Consider the following sequence of experiments,
and for e = 0, . . . , 3, let We be the event that Experiment e outputs accept.

46

Experiment 0 Execute Protocol 17 between the verifier and the prover P ∗. The
output of the experiment is the output of the verifier (accept/reject).

Our goal is to show that Pr[W0] ≤ negl(λ).

Experiment 1

1. Run the prover P ∗, answering its random oracle queries while doing so,
to obtain two proofs of knowledge π0, π1. Use the NIZKPKextractor to ex-
tract witnesses k0, k1 ∈ K, such that for b = 0, 1, it holds that comb =
Append(comb, kb). If the extraction of either witness fails, output reject.

2. For i = 1, . . . , λ, sample bi ←R {0, 1} and vi ←R V, compute com(i) ←
Append(combi , vi), and send (com(1), . . . , com(λ)) to the prover.

3. Obtain from the prover a value h ∈ {0, 1}λ. Let (j1, . . . , jλ, sout) be the input
to the random oracle H3 corresponding to output h. If such an input does
not exist, output reject.

4. Output accept if and only if for every i = 1, . . . , λ, it holds that ji =
Invariant(Append(combi , vi)). Otherwise, output reject.

Experiment 2 This experiment is identical to the previous one, except we
modify the accepting condition at the last step: instead of checking ji =
Invariant(Append(combi , vi)), we check and output accept if and only if ji =
Invariant(Append(com(i), kbi)) for every i = 1, . . . , λ.

Experiment 3 We swap out the committed values from combi to com0. More
specifically, we modify the previous experiment as follows:
– In step 2, for i = 1 . . . , λ, choose m′i ←R M, r′i ←R R, and vi ←R V, and set

com(i) ← Jr′i,m′i, viK.
– Defer the sampling of bi until step 4, at which point sample bi ←R {0, 1} and

outputs accept if and only if ji = Invariant(Append(com(i), kbi)).

Claim 41. Pr[W0] ≤ Pr[W1] + negl(λ).

Proof. Observe that Experiment 1 differs from Experiment 0 in one of the
following bad events happen:

1. The verifier accepts the proofs π0, π1 in Experiment 0, but extraction of
witnesses k0, k1 fails in Experiment 1. By Lemma 36, this happens with
negligible probability.

2. In Experiment 0, the prover sends the value h to the verifier before querying
the random oracle on input (j1, . . . , jλ, sout), yet H3(j1, . . . , jλ, sout) = h. This
happens with probability at most 2−λ.

If none of the two bad events happen, the outputs of the two experiments are
identical.

Claim 42. Pr[W1] = Pr[W2].

47

Proof. In both experiments, the witnesses k0, k1 extract from the NIZKs satisfy
comb = Append(comb, kb). Moreover, com(i) are constructed such that com(i) =
Append(combi , vi). Therefore,

Append(combi , vi) = Append(combi , kbi , vi) ∼ Append(com(i), kbi) ,

and the two conditions checked at the end of the experiments are equivalent.

Claim 43. Pr[W2] ≤ Pr[W3] + negl(λ).

Proof. The claim follows from the hiding property of the augmentable commit-
ment scheme. More formally, consider the following sequence of hybrids where for
j = 0, . . . , λ, we construct the first j commitments as com(i) ← Jr′i,m′i, viK, for
randomly chosen m′i ←R M and v′i ←R R, and the remaining λ− j commitments as
com(i) ← Append(combi , vi). Note that hybrid j = 0 is identical to Experiment 2
and hybrid j = λ is identical to Experiment 3.

Let pj be the probability that hybrid j outputs accept. We construct an
adversary B that wins in Game 2 with probability no smaller than 1/2 + pj .

Specifically, algorithm B proceeds as follows:

1. Run the prover P ∗, answering its random oracle queries while doing so, to
obtain two proofs of knowledge π0, π1. Extract, from the NIZKPK, witnesses
k0, k1 ∈ K, such that for b = 0, 1, it holds that comb = Append(comb, kb). If
the extraction of either witness fails, output c = 0.

2. For i = 1 . . . , j − 1, choose m′i ←R M, r′i ←R R, and vi ←R V, and set
com(i) ← Jr′i,m′i, viK.

3. Choose bj ←R {0, 1}, submit to the hiding challenger the pair (rbj ,mbj), and
the index V. When the challenger responds with a commitment com, set
com(j) ← com.

4. For i = j + 1, . . . , λ, sample bi ←R {0, 1} and vi ←R V, and set com(i) ←
Append(combi , vi).

5. Send (com(1), . . . , com(λ)) to the prover.
6. Obtain from the prover a value h ∈ {0, 1}λ. Let (j1, . . . , jλ, sout) be the input

to the random oracle H3 corresponding to output h. If such an input does
not exist, output c = 0.

7. Output 1 if and only if ji = Invariant(Append(com(i), kbi)) for every i ∈ [λ].

Note that when the hiding challenger gives algorithm B the commitment
com = Jrbi ,mbi , vK for randomly chosen v, the set of commitments that algorithm
B sends to adversary P ∗ is as in hybrid j−1. On the other hand, when the hiding
challenger gives algorithm B the commitment com = Jr′,m′, vK for randomly
chosen m′, r′, and v, the set of commitments that algorithm B sends to adversary
P ∗ is as in hybrid j. Therefore, it holds that

HideAdv[B,G] = |pj − pj−1| .

The security of the augmentable commitment scheme G, it follows that this
difference is negligible.

48

Claim 44. Pr[W3] ≤ negl(λ).

Proof. When (com0, com1, com0, com1) /∈ Leq, it must be that the extracted
keys satisfy k0 6= k1. Then, by the weak-binding property of the commitment
scheme, for every i = 1, . . . , λ, it holds that Invariant(Append(com(i), k0)) 6=
Invariant(Append(com(i), k1)) for every i ∈ [λ]. Therefore, with probability at least
1/2 over the choice of bi, it holds that Append(com(i), kbi) 6= com(i). Therefore,
the probability that Experiment 3 outputs accept is, in this case, at most 2−λ.

Overall, we obtain that

Pr[W0] ≤ Pr[W3] + negl(λ) ≤ negl(λ) ,

which complete the proof of Lemma 18.

D Additional material from Section 7

D.1 Security definition

Definition 45 (Ideal functionality FVOPRF). The functionality is parameter-
ized by PRF output length `. For every π ∈ {0, 1}∗ and x ∈ {0, 1}∗, the value
F (π, x) is initially undefined, and if an undefined value F (π, x) is referenced, then
FVOPRF assigns F (π, x)←R {0, 1}`.

Initialization
– On message Init from party S, if this is the first Init message from S,

initialize tx[S] = 0, and forward (Init, S) to the adversary A.
– On message (Param, S, π) from adversary A, and if param[S] is undefined,

then set param[S] = π.
Evaluation

– On message (Eval, S, x) from P ∈ {U,A}, record 〈P, x〉 and send
(Eval, P, S) to A.

– On message ServerComplete from server S, send
(ServerComplete, S) to A and increment tx[S].

– On message (UserComplete, P, π) from A:
• Recover the record 〈P, x〉 and delete it from the list of kept records,

or abort if such a record does not exist.
• If there exists an honest server S such that param[S] = π, then: abort

if tx[S] = 0, and decrement tx[S] otherwise.
• Send (Eval, π, F (π, x)) to P .

The ideal functionality FOPRF maintains a random function F that maps
(key, input) pairs to (lazily sampled) random `-bit strings. The ideal functionality
exposes this random function to users and servers through a sequence of messages.

49

A server registers a unique function by sending an Init message to the ideal
functionality. This unique function is then identified by a string π. For simplicity,
we assume that each server registers a single function.

To request evaluation of the PRF at server S on input x, a user U sends the
message (Eval, S, x) to FOPRF. To evaluate the PRF at a single point, server S
sends the message ServerComplete to FOPRF. The ideal functionality delivers
the output to the user by means of a message (Eval, y). In a world without
any adversaries, the ideal functionality would simply lookup the identifier π of
the server’s function, and deliver output y ← F (π, x). However, the crux of the
definition is how to model adversaries that have full control over the network.

First, the adversary is notified by FOPRF of the messages sent by honest
parties. When a user U sends a message (Eval, S, x), the ideal functionality
sends the adversary the message (Eval, U, S). Notice that the input x is not
part of this message, which matches our intuition that the input remains hidden
from the adversary. When the server sends the message ServerComplete to
the ideal functionality, the ideal functionality notifies the adversary using the
message (ServerComplete, S).

Second, the output is delivered to the user only after the adversary triggers
the ideal functionality with the message (UserComplete, P, π), at which point
the ideal functionality delivers the message (Eval, y = F (π, x)) to party P .
Notice that the identifier π can be different from the true identifier of server S
whose PRF value the user has originally requested in its initial Eval message.
This captures our intuition of an active network adversary being able to do a
man-in-the-middle attack when the protocol runs over an insecure network. When
π is the identity of an honest server, we refer to it as an honest key, and otherwise
we refer to it as a corrupt key.

The last, and perhaps key idea of Jarecki et al. [JKK14,JKKX16,JKX18] is
the way they capture the requirement that a single interaction with the server
should only allow a malicious user to learn the value of the PRF at a single
point. The ideal functionality achieves this by keeping record of a set of counters
tx, indexed by the function identifiers. On every ServerComplete message
from server S, the ideal functionality increments the counter tx[S]. The ideal
functionality then only delivers the output (Eval, F (π, x)) to the user U , in
response to message (UserComplete, U, π) from the adversary, if the value
tx[S] is positive. Here S is the honest server corresponding to identifier π. In this
case the ideal functionality also decrements its value tx[S].

Some additional aspects of Definition 45 follow.
– We assume each server only holds a single key, which we identify with its

identity S. This can be further refined by considering servers with multiple
keys, indexed by some session id sid, as is done in OPAQUE [JKX18], yet
this refinement results only in syntactic changes, and we avoid it for the sake
of simplicity.

– Similarly, we do not consider concurrent evaluation by the same user. Con-
sidering multiple (concurrent) evaluations of the PRF is crucial to correctly
capture security, and we indeed do that, though by means of considering

50

multiple concurrent users, each of which performs a single evaluation. This
allows us to avoid using the extra layer of indirection of sub-session ids used
in previous papers.

– The ideal functionality does not keep track of counters tx for compromised
senders, and so when S′ is not a honest-server identity, delivering an output
F (S′, x) to the user does not require a positive balance in the counter tx[S′].

– The adversary can initiate an evaluation of a PRF independently of any user
activity by sending a message (Eval, x) on its own. Just as honest users do,
the adversary can then obtain the PRF value on either a corrupt key or an
honest key, provided that the tx counter for that honest key is positive.

On alternative definitions of security. Defining security for oblivious PRFs
is a notoriously subtle task. As discussed by Jarecki et al. [JKK14], the first option
that might come to mind is to ask for a protocol that securely computes the
two-party functionality (x, k) 7→ (F (k, x),⊥). The problem with this definition is
that it is both hard to satisfy efficiently, and, at the same time, it is not strong
enough for some applications [JKK14,JKX18]. The reason for the former is that
the security proof requires extracting the user’s input, which is difficult without
supplementing the construction with general zero knowledge, even in the group
setting. Moreover, a definition based on secure computation usually requires using
authenticated channels, which are not always available in the target applications.
On the other hand, definitions of this sort do not imply secure composability,
which is highly desired in the aforementioned applications.

A different approach, taken by Everspaugh et al. [ECS+15], is to opt for a
game-based definition of security. This approach offers the simplest definitions
and allows for highly-efficient implementations. The downside is that it does not
imply security in the concurrent setting with multiple users and servers, some of
which are corrupted by the adversary, who in addition controls the network.

D.2 Proof of Theorem 20

We show that for every efficient real-world adversary A, there exists an efficient
ideal world simulator SIM, such that the view of every efficient environment Z in
the real-world is computationally indistinguishable from its view in the simulated
world. We restrict our attention to the case of static corruptions. Throughout
the proof we make use of a simulator and online extractor for the (simulation-
sound online-extractable) NIZKPK for the relation Rcom for the augmentable
commitment scheme, such as the one available for the Gsi from Corollary 40 in
Section 5. We can therefore assume that simulated proofs are accepted with all
but negligible probability, and that if a proof generated by the adversary verifies,
then the online extractor extracts a witness with all but negligible probability.

The Simulator. Simulator SIM proceeds as follows:

1. On message (Init, S) from FVOPRF, choose rε ←R R, k ←R K, compute mε ←
H1(ε), comε ← Jrε,mε, kK, and use the NIZKPK simulator to generate a proof

51

πk ← NIZKPK[(k): Jrε,mε, kK = comε]. Return (Param, S, πk) to FVOPRF.
Store 〈k, rε,mε, comε, comε, πk〉 as the record of server S.

2. On query x to H, pick m←R M, set H1(x)← m, and record 〈H1, x,m〉.
3. On message (Eval, U, S) from FOPRF:

– m←R M, rm ←R R, and comm ← Jrm,mK.
– Use the NIZKPK simulator to generate πm ← NIZKPK[(m, rm): comm =

Jrm,mK].
– Store 〈U, S, (comm, rm)〉 as the record for user U .
– Send (comm, πm) to A as a message from user U intended for server S.

4. On message (ServerComplete, S) from FVOPRF and message (comm, πm)
from A, on behalf of some user U , and directed at honest server S:
– Verify the proof of knowledge πm for comm. If verification fails ignore

this message (comm, πm).
– Compute comm ← Append(comm, k) where k is the simulated key k of

server S.
– Use the NIZKPK simulator to generate πm ← NIZKPK[(k): Jr,m, kK =

comm].
– Send (pk = (rε, comε, πk), comm, πm) to the adversary, directed at user
U , on behalf of server S.

– Add 〈S,U, comm, comm, πm〉 to the list of recorded session entries in the
record for server S.

5. On message (pk′ = (rε, comε, π), comm, πm) from A, on behalf of some server
S, and directed at user U proceeds as follows. (In the following, note that
pk′ is not necessarily the function descriptor of the honest server.)
– Compute mε ← H1(ε) and comε ← Jrε,mεK.
– Verify the proofs of knowledge π and πm. Ignore the current message if

verification fails.
– Proceed to play the role of the verifier in Protocol 17 for comm, comm

and comε, comε exactly as prescribed: For i = 1, . . . , λ, choose vi ←R V
and bi ←R {0, 1}. If bi = 0, set com(i) ← Append(comε, vi). If bi = 1, set
com(i) ← Append(comm, vi).

– Add pk, comm, comε, b1, v1, . . . , bλ, vλ to the stored record for user U .
– Send (com(1), . . . , com(λ)) to A as a message from user U intended for

server S.
6. On message (com(1), . . . , com(λ)) from A, on behalf of some user U , and

directed at server S: add com(1), . . . , com(λ) to the stored session entry
〈S,U, comm, comm, πm〉 in the record for server S, and send h ←R {0, 1}λ
to A on behalf of S.

7. On message h from A to some user U on behalf of some server S:
– Recover b1, v1, . . . , bλ, vλ from the stored record for user U , and add h to

this stored record.
– Send (b1, v1, . . . , bλ, vλ) to A on behalf of user U , intended for server S.

52

8. On receiving (b1, v1, . . . , bλ, vλ) from A, sent on behalf of U , directed at S,
proceed as follows:
– Recover the session entry 〈S,U, comm, comm, πm, (com

(1), . . . , com(λ))〉
from the record of S.

– Compute comε ← Jrε,mεK.
– For i = 1, . . . , λ, check that com(i) = Append(comε, vi) if bi = 0 and

com(i) = Append(comm, vi) if bi = 1. Ignore the message if any of the
checks fail.

– For i = 1, . . . , λ, compute ji ← Invariant(Append(comε, vi)) if bi = 0, or
ji ← Invariant(Append(comm, vi)) if bi = 1.

– Choose sout ←R {0, 1}λ, send sout to the adversary, directed at user U , on
behalf of server S.

– Set H3(j1, . . . , jλ, sout) := h.
9. On message sout from the adversary on behalf of server S, directed at user
U , proceed as follows:
– Use bi, vi, comm, comε from the stored record for user U , to compute

for all i = 1, . . . , λ, j′i ← Invariant(Append(comε, vi)) if bi = 0, and
j′i ← Invariant(Append(comm, vi)) if bi = 1.

– Recover h from the stored record for U and check that h = H3(j′1, . . . , j
′
λ, sout).

Ignore the current message if the check fails.
– Recover rm, pk′ = (rε, comε, π) from the stored record for user U . If pk′ is

the honest server’s descriptor, let k′ be the honest server’s key. Otherwise,
extract the appended value k′ from the proof of knowledge π for comε.

– If Invariant(Unblind(comm, rm)) 6= Invariant(Jm, k′K), then output Fail.
– Send message (UserComplete, U, pk′) to FVOPRF.

10. On every fresh query H3(j1, . . . , jλ, sout), if H3 is not defined, set it to a fresh
random value.

11. On every fresh query H2(x, pk′, j):
– Parse pk′ as (rε, comε, π

′
k)

– If pk′ is the honest server’s descriptor, let k′ be the honest server’s
simulated key. Otherwise, extract the committed value (mε, rε, k

′) from
the proof of knowledge π′k for pk′.

– If there exists a stored triple 〈H1, x,m〉 such that j = Invariant(Jm, k′K),
where k′ is the extracted key, send (Eval,⊥, x) and (UserComplete, SIM, pk′)
to FOPRF. If FOPRF ignores the last message then output Fail and abort.
Else, on FOPRF’s response (Eval, pk′, y), set H2(x, pk′, j) := y.

– Otherwise, set H2(x, pk′, j) to a random string in {0, 1}`.

We now prove that for every efficient environment Z and adversary A,it holds
that REAL[Π,A,Z] ≈c IDEAL[FVOPRF,SIM,Z]. The proof proceeds via a hybrid
argument.

Let qOPRF be the number of OPRF evaluations activated by the environment,
and let qH1

be the number of H1-oracle queries made by the adversary. For

53

i ∈ [1, qH1
+ qOPRF], let xi be the input of the ith unique H1 query, made by

either the adversary or any of the honest users. Furthermore, for j ∈ [1, qOPRF],
let xij be the honest user’s input in the jth execution of the OPRF protocol.
(Note that xij is not necessarily equal to xj , the input to the jth oracle query
to H1, since the adversary may interleave additional queries to H1 between the
honest users’ queries to H1.)

Consider the following sequence of hybrid experiments:

Hyb0: This is the real-world execution of the protocol.

Hyb1: We make the following changes:
– We replace all NIZKPKs generated by honest parties with their simulated

counterparts (generated using the simulator for the NIZKPK).
– In the beginning of the experiment, we sample m1, . . . ,mqH1

+qOPRF
←R M. We

also lazily define an `-bit random function F (·, ·), and initialize a counter
I ← 0.

– On every fresh oracle query H1(x), set H1(x) := mI , record (I, x,mI), and
increment I.

– On every fresh oracle query H2(x, pk′, j), where the value x appears in a
previously recorded (I ′, x,m) for some value of I ′, parse pk′ as (rε, comε, π

′),
check the proof of knowledge π′ = NIZKPK[(k′): comε = Jrε,mε, k

′K], extract
k′ from the proof, and, if j = Invariant(Jm, k′K), set the output of H2 to
F (pk′, x).

– Whenever an honest user successfully completes the protocol on input x, and
outputs H2(x, pk′, j), parse pk′ as (rε, comε, π

′). If pk′ is the honest server’s
descriptor, let k′ be the honest server’s key. Otherwise, extract k′ from π′. If
j 6= Invariant(JmI , k

′K), where mI = H1(x), abort and output Fail.

Hybt for t ∈ [2, qOPRF + 1]: As in Hyb1, except that we modify the behavior of
the honest users in executions j ∈ [1, . . . , t− 1] of the OPRF protocol such that
when activated by the environment with input x, we use value mI instead of
H1(x), and increment I. Executions j ∈ [t, qOPRF] remain unchanged.

HybqOPRF+2: We defer the computation of the invariants ji ← Invariant(Append(com(i), k)).
Instead of computing it on receipt of message (com(1), . . . , com(λ)) from user U ,
we modify the server to send back a random value h ←R {0, 1}λ. Then, at the
point of opening the commitment for h, the server uses comm computed ear-
lier in the protocol, the value comε from its function descriptor, and the value
b1, v1, . . . , bλ, vλ sent by the user to compute ji as follows:
– Set ji ← Invariant(Append(comε, vi)) if bi = 0 and ji ← Invariant(Append(comm, vi))

if bi = 1.
– The server then choses sout ←R {0, 1}λ, and sets H3(j1, . . . , jλ, sout) := h. If

this value has been previously defined, abort and output Fail.

HybqOPRF+3: we maintain a counter tx as follows.

54

– On each OPRF honest-server evaluation activated by the environment (i.e., a
ServerComplete input given to the server), we increment the counter tx.

– Each time the adversary sends a message (pk, com, π) to an honest user, and
pk is the honest server’s function descriptor, proceed as follows

• Let comm be the honest user’s message previously sent to the server.
• If com = Append(comm, k) where is k is the honest server’s key then:

∗ If the counter value tx is negative, we abort and output Fail.
∗ Otherwise, we decrement the counter.

– Each time the adversary makes a query H2(x, pk, j) where pk is an honest
server’s function descriptor, proceed as follows

• Let m← H1(x).
• If j = Invariant(Jm, kK), where k is the honest server’s key:

∗ If the counter value tx is negative, we abort and output Fail.
∗ Otherwise, we decrement the counter.

Note that the output of the environment Z in Hyb1 is identical to its execution
with adversary A in the real world, and its output in HybqOPRF+3 corresponds to
the execution with simulator SIM in the ideal world.

Claim 46. Suppose that the underlying augmentable commitment scheme is
secure. Then, the outputs of Hyb0 and Hyb1 are computationally indistinguishable.

Proof. Since H1 and H2 are random oracles, fixing some of their outputs to
independently sampled uniformly random values does not change the distribution.
The only case where the two experiments are different is if Hyb1 aborts and
outputs Fail. This happens when the honest user successfully completes the
protocol with outputs pk′ = (Jrε,mε, k

′K, π′) and j, but j 6= Invariant(JmI , k
′K).

This corresponds to the case where the verifier in Protocol 17, for proving the
equality of appended values, accepts a false statement, which by Lemma 18
happens with negligible probability.

Claim 47. Suppose that the underlying augmentable commitment scheme is
secure. Then, for every t ∈ [1, qOPRF], the outputs of Hybt and Hybt+1 are com-
putationally indistinguishable.

Proof. Let Z and A be an environment and adversary, that distinguish Hybt
and Hybt+1. Without loss of generality, suppose that Z outputs a single bit.
We construct an adversary B for Game 2 that breaks the hiding property of G.
Adversary B samples m1, . . . ,mqH1

+qOPRF
at random and proceeds to run the first

t executions protocol as in Hybt. Then, it sends to the unpredictability challenger
the following two values:
– mI , where I is the value of the counter at the beginning of execution number
t+ 1, and

55

– mit ← H1(xit) where xit is the user’s input in the tth execution. Note that
H may yet to be defined at this point, in which case B samples a fresh value
mit and responds consistently on future queries to H on xit .

When the Game 2 challenger sends back a commitment Jr,mK, adversary B uses
it in the user’s tth messages to adversary A and FNIZKPK in the OPRF execution.
At the end of the execution, when the environment Z outputs a bit, adversary B
outputs it as its own output in Game 2.

The advantage of B is then equal to the distinguishing advantage of environ-
ment Z (with adversary A) between Hybt and Hybt+1.

Claim 48. HybqOPRF+1 and HybqOPRF+2 are computationally indistinguishable.

Proof. The first difference between the two hybrids is that we change the way
each ji is computed: instead of ji ← Invariant(Append(com(i), k)) in the one
hybrid, we have ji ← Invariant(Append(com(i), vi)) in the next hybrid. By the
first part of the correctness property of the augmentable commitment scheme 1,
these two are equal.

The second difference between the two hybrids is that latter can halt if value
H3(j1, . . . , jλ, sout) := h has already been defined at the time of opening of the
commitment. However, this can only occur if the adversary has previously queried
the H3 oracle on this point. This essentially requires that the adversary guesses
s, yet since s is chosen uniformly at random, this happens with probability at
most 2−λ.

Claim 49. Suppose that the underlying augmentable commitment scheme is
unpredictable. Then HybqOPRF+2 and HybqOPRF+3 are computationally indistinguish-
able.

Proof. Let Z be an efficient environment and A be an adversary. Let E be the
event that experiment HybqOPRF+3 outputs Fail when executed with Z and A.
As long as event E does not happen, HybqOPRF+3 is identical to HybqOPRF+2. It is
therefore sufficient to upper bound the probability of E.

We give an adversary B that plays in Game 4 and breaks the unpredictability
of the commitment scheme with Pr[E]. Adversary B runs the environment Z and
adversary A as in HybqOPRF+2, with the following changes:
– Keep track of the number of unpredictability challenges using a counter J ,

initialized to 0.
– On message (Init, S) from FVOPRF,

• Initialize the unpredictability game by sending to the challenger the
challenge index M and the secret index K.

• Send the first challenge query to the unpredictability challenger and get
back mε. Record 〈J, ε,mε〉.

• Fix H1(ε)← mε.
• Choose rε ←R K and send (mε, rε) as a solve query to the unpredictability
challenger. When the challenger responds with comε, store the commit-
ment comε.

56

• Compute j ← Invariant(Unblind(comε, rε)) and add (J, j) to the list of
outputs of B.

• Use the NIZKPK simulator to generate πk ← NIZKPK[(k): Jrε,mε, kK =
comε] and return (Param, S, pk = (rε, comε, πk) back to FVOPRF.

• Increment the challenge counter J .

– Every time adversary A queries the H1 oracle on an input x, send a challenge
query to the unpredictability challenger, get back a challenge mJ ∈M, set
H1(x)← mJ , record 〈J, x,mJ〉, and increment J .

– Every time the environment activates an honest user with a message (Eval, S, x):

• Send a challenge query to the unpredictability challenger, get back a
challenge mJ ∈M, record 〈J,⊥,mJ〉, and increment J .

• Choose r ←R R, compute comm ← Jr,mJK, and store 〈U, comm, r〉.
• Send to the adversary, on behalf of the honest user, a message (comm, πm)

directed at the server, where πm is a simulated NIZKPK.

– Every time the environment activates the server with a ServerComplete
message and the adversary sends a message (com, π) directed at the server:

• If there exists a record 〈U, com,m, r, π〉 recover (m, r) from the stored
record.

• Otherwise, extract (m, r) from π (ignoring the message if extraction fails).

Send (m, r) as a solve query to the unpredictability challenger. When the
challenger responds with com, send the server’s key pk, com, and a simulated
NIZKPK for com back to adversary A.

– Every time adversary A sends a message (pk, com, π) to the honest user,
where pk is the descriptor of the honest server:

• Recover the records 〈U, comm, rm〉 and 〈J,⊥,m〉.
• Compute j ← Invariant(Unblind(com, rm)).
• Send a decision query (J, j) to the unpredictability challenger. If the

reply is true, add (J, j) to the list of outputs of B.
– Every time adversary A makes a fresh query H2(x, pk, j) such that pk is

the honest server’s descriptor, and such that there exists a stored record
〈J, x,mJ〉, send a decision query (J, j) to the unpredictability challenger. If
the challenger responds true, add (J, j) to the list of outputs.

– At the end of the execution, output the list of outputs {(J, j)}.

Note that event E corresponds to the case where the combined number of:

– honest-user outputs with pk of the honest server and
– H2 queries of the form (x, pk, j), such that j = Invariant(JmJ , kK) for mJ =
H1(x),

exceeds the total number of honest-server activations. In each of the two cases
above, adversary B adds another entry (J, j) to its list of outputs, where j =
Invariant(JmJ , kK). In contrast, on each honest-server activation, adversary B

57

queries the solve oracle of the unpredictability game. Therefore, when event E
happens, the number of correct output items is greater than the number of solve
queries, and hence adversary B wins the unpredictability game.

58

	Oblivious Pseudorandom Functions from Isogenies
	1 Introduction
	1.1 Background and notation
	1.2 Overview of our techniques
	1.3 Additional related work

	2 Augmentable commitments
	3 Augmentable commitments from supersingular isogenies
	4 Oblivious PRF from augmentable commitments
	5 Zero-knowledge proof for point verification
	6 Zero-knowledge proof of equality of appended values
	7 Putting it all together
	8 Naor-Reingold OPRF from an abelian group action
	9 Conclusions and open problems
	Acknowledgements
	References
	A Additional material on augmentable commitments from supersingular isogenies (Section 3)
	A.1 Proof of correctness
	A.2 Proof of the hiding property
	A.3 Proof of the binding property
	A.4 Proof of one-more unpredictability.
	A.5 SIDH search-to-decision reduction

	B Additional material on ZKPK (Section 5)
	B.1 Sigma protocols
	B.2 Sigma protocol for point verification
	B.3 Proof of SCHVZK
	B.4 Knowledge of contents of Gsi commitments
	B.5 Non-interactive zero-knowledge proof of knowledge

	C Additional material from Section 6
	D Additional material from Section 7
	D.1 Security definition
	D.2 Proof of Theorem 20

