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Abstract

We revisit and take a closer look at a (not so well known) result of
a 2017 paper, showing that the differential uniformity of any vectorial
function is bounded from below by an expression depending on the size
of its image set. We make explicit the resulting tight lower bound on the
image set size of differentially δ-uniform functions. We also significantly
improve an upper bound on the nonlinearity of vectorial functions ob-
tained in the same reference and involving their image set size. We study
when the resulting bound is sharper than the covering radius bound. We
obtain as a by-product a lower bound on the Hamming distance between
differentially δ-uniform functions and affine functions, which we improve
significantly with a second bound. This leads us to study what can be
the maximum Hamming distance between vectorial functions and affine
functions. We provide an upper bound which is slightly sharper than a
bound by Liu, Mesnager and Chen when m < n, and a second upper
bound, which is much stronger in the case (happening in practice) where
m is near n; we study the tightness of this latter bound; this leads to an
interesting question on APN functions, to which we answer. We finally
make more precise the bound on the differential uniformity which was the
starting point of the paper.

1 Introduction

Differentially uniform functions are those functions F : Fn2 7→ Fm2 (called (n,m)-
functions) such that the maximal size δF of the set {x ∈ Fn2 ;F (x)+F (x+a) = b}
when a ∈ Fn2 and b ∈ Fm2 , a being nonzero, is small. Their study is fundamen-
tal for the evaluation of the resistance of the block ciphers which use them as
substitution boxes, against the main attacks (like the differential attack and the
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linear attack). They have then been much studied since the 1990’s. In particu-
lar, the important papers of K. Nyberg, like [13, 14], have led to the main block
cipher used in civil applications, the AES [9]. But still not enough is known
on their properties in general, and since few are known, it is difficult to make
conjectures on them. What is known is characterizations by diverse means (see
a survey in [2]), but the properties of general differentially uniform functions are
essentially unknown (such as their maximum algebraic degree, their minimum
and maximum nonlinearities, their minimum and maximum Hamming distances
to affine functions, to permutations and to affine permutations, the structure of
their image sets, their maximum and minimum numbers of fixed points, etc.).
One of the rare papers giving properties of all differentially uniform functions
is [6]. It is not widely known in the community of vectorial functions for cryp-
tography, since this paper was devoted to side channel attacks, and the result
on the image set size of differentially uniform functions that it contains was not
made very explicit. Two preprints have recently presented bounds which are
more or less equivalent to this result when dealing with characteristic two (the
authors of these preprints were not aware that this bound was known):
- Ref. [8] deduces the bound for APN functions from the fact that the sets
{x1 + x2; x1, x2 ∈ F−1(y), x1 6= x2}; y ∈ Fn2 , are pairwise disjoint and have size(|F−1(y)|

2

)
; then it obtains that |Im(F )| ≥ 2n+1

3 if n is odd and |Im(F )| ≥ 2n+2
3

if n is even; we shall check in Section 3 that this is also what gives [6] in the
particular case of APN functions;
- Ref. [11], which deals with any characteristic and also includes other results,
first generalizes (more or less) to any characteristic the approach of [8], and uses
the Cauchy-Schwarz inequality (leading to a proof rather close to that of [6],
which generalizes, as is, easily to the odd characteristic as we shall observe in
Section 3).
In the present paper, we first briefly make clear what is proved in [6] on the
size of the image sets of differentially uniform functions, since the bound on
the image set size by means of the differential uniformity is in fact presented
in that paper as a bound on the differential uniformity by means of the image
set size. Then, after developing a little more this study, we devote the paper to
addressing the important questions of the nonlinearity of differentially uniform
functions and their Hamming distance to affine functions.
When δF = 2 (which is optimum), differentially δ-uniform (n, n)-functions are
called APN (almost perfect nonlinear). We shall of course be particularly inter-
ested in these functions, since they contribute in an optimal way to the resistance
against the differential attack.

The paper is organized as follows.
After preliminaries in Section 2, we revisit and study more in detail in Section
3 the result from [6] on the differential uniformity of vectorial functions, given
the size of their image sets. We study the equivalent lower bound on the image
set size of differentially δ-uniform functions and show it is tight. We apply
this lower bound to the sums of F and affine functions in Section 4 and pose
the natural question whether the resulting property of APN functions allows to
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characterize them; we answer negatively. We observe in Section 5 that an upper
bound given in [6] on the nonlinearity of (n,m)-functions by means of their
image set size is weak, and we derive a much better bound. We study when this
bound improves upon the covering radius bound. In Section 6, we also bound
from below the Hamming distance between differentially uniform functions and
affine functions, first as a consequence of the bound on the image set size and
then by an improved bound. This leads us in Section 7 to study the maximum
Hamming distance between vectorial functions and affine functions and to first
slightly improve upon the only known explicit upper bound on it and second
significantly improve upon it when m is near n. Showing that this bound is
not tight leads to an interesting question on APN functions that we solve. In
Section 8, we derive an upper bound on the nonlinearity of any (n,m)-function
F by an expression depending on the maximum Hamming distance between
vectorial functions and affine functions. In Section 9, we improve the bound on
the differential uniformity of F , by introducing another parameter of F .

2 Preliminaries

We shall denote by 0n (resp. 1n) the zero vector (resp. the all-1 vector) of
length n and by ei the i-th vector of the canonical basis of the vector space Fn2 .
We denote by wH(x) the Hamming weight of an element x of Fn2 , that is, the
size of its support supp(x) = {i ∈ {1, . . . , n}; xi = 1}. We call co-support of x
the complement of its support.

The vector space Fn2 is sometimes endowed with the structure of the field F2n

(with null element 0); indeed, this field being an n-dimensional vector space over
F2, each of its elements can be identified with the binary vector of length n of
its coordinates relative to a fixed basis.

Given an n-variable Boolean function f , that is, a function from Fn2 to F2,
the so-called Walsh transform of f is defined as Wf (u) =

∑
x∈Fn2

(−1)f(x)+u·x,

where “·” is some chosen inner product in Fn2 (such as u·x =
∑n
i=1 uixi, or, if Fn2

is endowed with the structure of F2n , u · x = trn(ux), where trn(x) =
∑n−1
i=0 x

2i

is the so-called absolute trace function). The Walsh transform satisfies the
so-called inverse Walsh transform relation:∑

u∈Fn2

Wf (u)(−1)u·v = 2n(−1)f(v),∀v ∈ Fn2 . (1)

For a given (n,m)-function F , that is, a function from Fn2 to Fm2 , the value
WF (u, v) of the Walsh transform of F at (u, v) ∈ Fn2 × Fm2 equals that of the
Walsh transform of the Boolean function v · F at u.
The nonlinearity of a Boolean function f equals its minimum Hamming distance
to affine Boolean functions u · x+ ε, ε ∈ F2. It equals then:

nl(f) = 2n−1 − 1

2
max
u∈Fn2

|Wf (u)|. (2)
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It is bounded above by 2n−1 − 2
n
2−1, according to the covering radius bound

(see e.g. [2]) and f is called bent if it achieves this value. The nonlinearity of an
(n,m)-function F equals the minimum nonlinearity of its component functions
v · F , v ∈ Fm2 \ {0m}. It equals then

nl(F ) = 2n−1 − 1

2
max
u∈Fn2

v∈Fm2 ,v 6=0m

|WF (u, v)|. (3)

It is bounded above by 2n−1−2
n
2−1 as well and F is called bent if it achieves this

value. Bent functions exist for m ≤ n
2 , n even, only [13]. For m = n, nl(F ) is

bounded above by 2n−1−2
n−1
2 , according to the Sidelnikov-Chabaud-Vaudenay

(SCV) bound (see e.g. [2]) and F is called almost bent (AB) if it achieves this
value (AB functions exist for every odd n, see e.g. [2]).

Any (n,m)-function can be uniquely represented by its algebraic normal
form (ANF):

F (x) =
∑

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
=

∑
I⊆{1,...,n}

aI x
I , (4)

where aI belongs to Fm2 . The global degree of the ANF is called the algebraic
degree of F . It equals the maximum algebraic degree of the component functions
of F . Affine functions are those functions of algebraic degree at most 1. If Fn2
is endowed with the structure of the field F2n , then every (n, n)-function (and
then, every (n,m)-functions where m divides n) can be uniquely represented by
its univariate representation:

F (x) =

2n−1∑
i=0

δix
i ∈ F2n [x]/(x2n + x). (5)

The functions whose univariate expression is a monomial are called power func-
tions.
We shall denote the image set {F (x);x ∈ Fn2} of F by Im(F ).

An (n,m)-function F is called differentially δ-uniform, for a given positive
integer δ, if for every a ∈ Fn2 \ {0n} and every b ∈ Fm2 , the equation F (x) +
F (x+a) = b has at most δ solutions. We denote the minimum of these integers
δ by δF and call it the differential uniformity of F . For every (n,m)-function
F , we have δF ≥ max(2, 2n−m). It is shown in [13] that equality can happen if
and only if n is even and m ≤ n

2 .
Note that we can have δF = 2 only when n ≥ m. An (n, n)-function F is

called almost perfect nonlinear (APN) if it is differentially 2-uniform, that is, if
for every a ∈ Fn2 \ {0n} and every b ∈ Fn2 , the equation F (x) + F (x + a) = b
has 0 or 2 solutions (i.e. the derivative DaF (x) = F (x) + F (x + a) is 2-to-
1). Equivalently, |{DaF (x), x ∈ Fn2}| = 2n−1. Still equivalently, for distinct
elements x, y, z, t of Fn2 , the equality x+ y + z + t = 0n implies F (x) + F (y) +
F (z) + F (t) 6= 0n, that is, the restriction of F to any 2-dimensional flat (i.e.
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affine plane) of Fn2 is non-affine, that is, for every linearly independent a, b ∈ Fn2 ,
the function DaDbF (x) does not vanish. There are several characterizations of
APN functions (see e.g. the survey [2]).

3 The lower bound on the size of the image sets
of differentially uniform functions

In [6, Subsection 4.2] is studied (for reasons related to side channel attacks that
we shall not develop here) the differential uniformity of those (n, n)-functions F
satisfying, for some d, that dH(x, F (x)) ≤ d for every x ∈ Fn2 . The differential
uniformity of such functions is shown to be bad if d is too small. The authors
observe that the condition being that all the images of the function F (x) + x
have Hamming weight at most d, the size of the image set of this latter function
(which has the same differential uniformity as F ) is then bounded above by

D =
∑d
i=0

(
n
i

)
. A lower bound is then proved on the differential uniformity of

a function by means of the size of its image set.
We now want to study more deeply this aspect of the size of the image

set of (n,m)-functions, since it is only approached as a tool in this paper,
whereas it deserves more attention because it corresponds to one of the rare
known properties of differentially uniform functions, which is moreover not
widely known. For our paper to be self-contained, we briefly recall what is
this lower bound and the method for proving it. Let F be any (n,m)-function.

We have
∑

a∈Fn2 ;a6=0n

|(DaF )−1(0m)| = |{(x, y) ∈ (Fn2 )2;F (x) = F (y)}| − 2n =

∑
b∈Im(F )

|F−1(b)|2 − 2n ≥

(∑
b∈Im(F ) |F−1(b)|

)2

|Im(F )|
− 2n =

22n

|Im(F )|
− 2n, where

the inequality is obtained by the Cauchy-Schwarz inequality. Since, in every nu-
merical sequence, there exists an element larger than or equal to the arithmetic
mean of the sequence, we deduce that there exists a ∈ Fn2 , nonzero, such that

|DaF
−1(0m)| ≥

22n

|Im(F )|−2n

2n−1 . We have then:

Proposition 1. [6] For every (n,m)-function, the differential uniformity of F
satisfies:

δF ≥


22n

|Im(F )| − 2n

2n − 1

 .
Equivalently, we have 22n

|Im(F )| ≤ (2n − 1) δF + 2n, that is:

|Im(F )| ≥
⌈

22n

(2n − 1) δF + 2n

⌉
≥
⌈

2n

δF + 1

⌉
. (6)
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For δF = 2, we have then that for every APN (n, n)-function:

|Im(F )| ≥
⌈

22n

3 · 2n − 2

⌉
. (7)

We observe that this latter bound is much stronger than the bound |Im(F )| ≥
1+
√

2n+2−7
2 obtained in [15]. Note also that it is tight. Indeed, we know that

APN power functions in even dimension n have for image set the set of cubes

in F2n (see e.g. [2]), whose number equals 1 + 2n−1
3 =

⌈
22n

3·2n−2

⌉
, which achieves

then the (tight) bound of (7) with equality. This is straightforward and it is also
natural, given the proof above of the bound, since, for every power APN func-
tion F , the size of F−1(b) is independent of b 6= 0n in Im(F ), and the sequence
|F−1(b)|, b ∈ Im(F ), is then constant except at 0n, and the Cauchy-Shwarz
inequality is close to an equality.

Note also that
⌈

22n

3·2n−2

⌉
equals 2n+1

3 when n is odd and 2n+2
3 when n is even;

it is good to have these exact values of the ceiling, which are directly given in [8].

Remark. This bound generalizes straightforwardly to any characteristic: let
p be a prime and let F be a δ-uniform function F : Fnp 7→ Fmp (which can be
viewed as F : Fpn 7→ Fpm). Denoting DaF (x) = F (x + a) − F (x), we have
by definition |(DaF )−1(b)| ≤ δ for every a 6= 0n in Fnp and every b in Fmp and

this implies
∑

a∈Fnp ;a6=0n

|(DaF )−1(0m)| = |{(x, y) ∈ (Fnp )2;F (x) = F (y)}| − pn =

∑
b∈Im(F )

|F−1(b)|2 − pn ≥

(∑
b∈Im(F ) |F−1(b)|

)2

|Im(F )|
− pn =

p2n

|Im(F )|
− pn, and

there exists a ∈ Fnp , nonzero, such that |DaF
−1(0m)| ≥

p2n

|Im(F )|−p
n

pn−1 . We have

then: δ ≥
⌈

p2n

|Im(F )|−p
n

pn−1

⌉
. This implies |Im(F )| ≥

⌈
p2n

(pn−1) δ+pn

⌉
≥
⌈
pn

δ+1

⌉
. �

4 On the sums of differentially uniform func-
tions and affine functions

The bound of Proposition 1 applies to F +A, where A is any affine function (or
equivalently, to F + L, where L is any linear function). The next corollary is
then straightforward but it gives an interesting property, which may for instance
eliminate a large number of potential APN candidates.

Corollary 1. Let F be any differentially δ-uniform (n,m)-function. Let A be
the set of affine (n,m)-functions1. Then, for every A ∈ A, we have:

|Im(F +A)| ≥
⌈

22n

(2n − 1)δ + 2n

⌉
.

1We use the same symbol as for affine Boolean functions since there is no ambiguity.
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In particular, an (n, n)-function can be APN only if, for every A ∈ A, we have:

|Im(F +A)| ≥
⌈

22n

3 · 2n − 2

⌉
. (8)

Hence, for each A, we can eliminate all the functions F such that |Im(F +

A)| <
⌈

22n

3·2n−2

⌉
as potential APN candidates.

Trying to build vectorial functions satisfying (8) for every affine function
A (that is, for every linear function) without using the notion of APN func-
tion and Corollary 1 seems hard. Even for the simplest examples that are the

Gold function x2k+1 over F2n for n co-prime with k, and the inverse function
x2n−2 for odd n, it seems difficult to prove directly that for every linear func-

tion L, the sizes of the sets {x2k+1 + L(x);x ∈ F2n} for n co-prime with k and

{x2n−2 + L(x);x ∈ F2n} for n odd are larger than or equal to 22n

3·2n−2 .

Remark. Let us try to see if we have the same with x2k+1 for n not co-prime
with k. Note that taking for L the zero function, the size of Im(F ) is equal to

1 + 2n−1
gcd(2n−1,2k+1)

= 1 + (2n−1) gcd(2n−1,2k−1)
gcd(2n−1,22k−1)

= 1 + (2n−1)(2gcd(n,k)−1)
(2gcd(n,2k)−1)

={
2n if val2(k) ≥ val2(n)

1 + 2n−1
2gcd(n,k)+1

if val2(k) < val2(n)
,

where val2(k) is the 2-valuation of k. Hence, if val2(k) < val2(n), we have

|Im(F )| < 22n

3·2n−2 , since 2gcd(n,k) + 1 ≥ 5 (because n is assumed not co-prime

with k) and 1+ 2n−1
5 = 2n+4

5 < 22n

3·2n−2 , for n ≥ 3. In the case val2(k) ≥ val2(n),
we would need to consider nonzero L and the case seems more complex.
Similarly, it seems difficult to say if we have the same with x2n−2 for n even. For
L = 0, the inequality is satisfied since the inverse function is a permutation and

for all the other affine functions L we already know that |Im(F )| ≥
⌈

22n

5·2n−4

⌉
,

since F + L is differentially 4-uniform, but it seems difficult to say more. For

L(x) = x2k , the equation x2n−2+L(x) = b for b 6= 0 is equivalent to x2k+1+bx =

1 and by the change of variable x → b2
−k
x, to x2k+1 + x = b−(1+2−k). This

equation can be handled as shown in [16, 10], but it is already complex, and ad-
dressing other linear functions L seems difficult. It is even difficult to know
what can be the largest possible value of

∑
a∈Fn2 ;a6=0 |(Da(F + L))−1(0)| =∑

a∈Fn2 ;a6=0 |(DaF )−1(L(a))| (which provides the lower bound on |Im(F + L)|).
We know that |(DaF )−1(b)| equals 4 if and only if ab = 1 and equals 2 if and
only if ab 6∈ F2 and trn

(
1
ab

)
= 0. It is difficult to say if there exist linear func-

tions such that |(DaF )−1(L(a))| ≥ 2 for every nonzero a, and how many times
|(DaF )−1(L(a))| can then reach 4.
In the case of the Gold function as well, it seems difficult to determine the largest

possible value of
∑
a∈Fn2 ;a6=0 |(DaF )−1(L(a))| =

∑
a∈Fn2 ;a6=0 |{x ∈ F2n ; ax2k +

a2kx = L(a) + a2k+1}| =
∑
a∈Fn2 ;a 6=0 |{x ∈ F2n ; x2k + x = L(a)

a2k+1
+ 1}|.
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It seems still more difficult than with Gold and inverse APN functions to prove
directly (without using Corollary 1) that, over F2n , Kasami functions x4i−2i+1,

gcd(i, n) = 1, Welch functions x2
n−1
2 +3, n odd, Niho functions x2(n−1)/2+2(n−1)/4−1

if n ≡ 1 (mod 4), and x2(n−1)/2+2(3n−1)/4−1 if n ≡ 3 (mod 4), and Dobbertin

functions x2
4n
5 +2

3n
5 +2

2n
5 +2

n
5 −1, 5|n, satisfy that, for every affine (n, n)-function

L, we have |Im(F + L)| ≥
⌈

22n

3·2n−2

⌉
. �

Corollary 1 leads to the natural question whether its converse is true: given
an (n, n)-function F , if for every affine (or every linear) (n, n)-function L, we

have |Im(F + L)| ≥
⌈

22n

3·2n−2

⌉
, then F is it necessarily APN?

The answer to this question is no: there are already counter-examples with func-
tions in dimension 4. For instance, the power function F (x) = x11 is not APN
over F24 while it satisfies the condition, that is, for every linearized polynomial
L(x) = ax+ bx2 + cx4 + dx8 over F16, the number of distinct images taken by
the function x11 + L(x) is larger than or equal to 6.

5 An upper bound on the nonlinearity by means
of the image set size

In [6] is also proved that the nonlinearity of any differentially δ-uniform (n,m)-

function F is bounded from above as follows: nl(F ) ≤ 2n−1−
2n+m−1

|Im(F )| −2n−1

2m−1 . This
bound is very weak, even if we take for |Im(F )| the value which is the smallest
and then the most in its favor, that is, according to Relation (6): |Im(F )| =⌈

22n

(2n−1) δF+2n

⌉
. Indeed, the bound says then that nl(F ) is bounded above by

approximately 2n−1− 2m−n−1(2n−1) δF+2m−1−2n−1

2m−1 ≈ 2n−1− 1+δF
2 + 2n−m−1 and

the bound is very far above the covering radius bound, for functions having
reasonable differential uniformity.

Let us show a much better bound with the same approach as for proving
Proposition 1. We have seen that, thanks to the Cauchy-Schwarz inequality, we

have |{(x, y) ∈ Fn2 ;F (x) = F (y)}| =
∑
b∈Im(F ) |F−1(b)|2 ≥ 22n

|Im(F )| . We deduce∑
v∈Fm2

W 2
F (0n, v) =

∑
v∈Fm2 ;x,y∈Fn2

(−1)v·(F (x)+F (y)) = 2m |{(x, y) ∈ Fn2 ;F (x) =

F (y)}| ≥ 22n+m

|Im(F )| . Hence, we have
∑
v∈Fm2 ,v 6=0m

W 2
F (0n, v) ≥ 22n+m

|Im(F )| − 22n and

maxu∈Fn2 ,v∈Fm2 ,v 6=0mW
2
F (u, v) ≥ maxv∈Fm2 ,v 6=0mW

2
F (0n, v) ≥

22n+m

|Im(F )|−22n

2m−1 . Ac-
cording to Relation (3), we deduce:

Proposition 2. For every positive integers n,m and every (n,m)-function, we
have:

nl(F ) ≤ 2n−1 −

√
22n+m−2

|Im(F )| − 22n−2

2m − 1
. (9)
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If we take again |Im(F )| =
⌈

22n

(2n−1) δF+2n

⌉
, then nl(F ) is bounded above by

approximately 2n−1−
√

2m−2((2n−1) δF+2n)−22n−2

2m−1 , that is, if m = n for instance,

by approximately 2n−1 −
√

2n−2 δF . This latter inequality is interesting when
δF > 2 since it improves then upon the SCV bound. Note that, still for m = n, if

δ = 2, then (9) writes nl(F ) ≤ 2n−1−

√
23n−2

|Im(F )|−22n−2

2n−1 and gives no information

since, according to Relation (7), it is weaker than the SCV bound, except if

|Im(F )| = 22n

3·2n−2 (in which case, the two bounds would coincide, but this
number is not an integer). Let us now compare (9) with the covering radius
bound. We know from [13] that this latter bound is not tight for n

2 < m. The
bound (9) of Proposition 2 is strictly sharper than the covering radius bound if

and only if we have
22n+m−2

|Im(F )| −22n−2

2m−1 > 2n−2. We have then:

Proposition 3. For every positive integers n,m and every (n,m)-function, the
bound (9) of Proposition 2 is sharper than the covering radius bound if and only

if |Im(F )| < 2n+m

2n+2m−1 .

Note that when m ranges between n
2 and n, this necessary and sufficient con-

dition ranges from |Im(F )| . 2m to |Im(F )| . 2m−1 and the bound (9) of
Proposition 2 improves upon the covering radius bound on a larger interval
when m is larger.

6 On the Hamming distance between differen-
tially uniform functions and affine vectorial
functions

Observing that, for every L, we have dH(F,L) = |{x ∈ Fn2 ;F (x) 6= L(x)}| ≥
|Im(F+L)|−1, since (F+L)(x) takes at least |Im(F+L)|−1 nonzero values, at
least once each, we have then that the Hamming distance from any differentially
δ-uniform (n, n)-function F to A satisfies:

dH(F,A) ≥
⌈

22n

(2n − 1)δ + 2n

⌉
− 1. (10)

In particular, any APN (n, n)-function lies at Hamming distance at least
⌈

22n

3·2n−2

⌉
−

1 from A.
This kind of bound is interesting because of its relation with the important
open problem (that we shall revisit in Section 9) of determining whether APN
functions have necessarily a good nonlinearity. The minimum Hamming dis-
tance dH(F,A) between a vectorial function F and affine vectorial functions,
contrary to the nonlinearity of F , is not directly linked to the linear attack,
but as the nonlinearity does, it quantifies to which extent F is different from
affine functions. This parameter has been studied in [4, 5, 12] where it was
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denoted in diverse ways (we shall keep here the notation dH(F,A)). If for some
b, v, x ∈ Fn2 and some linear function L, we have v ·F (x) 6= v · (L(x)+ b), that is,
denoting by L∗ the adjoint operator of L, if we have v · (F (x) + b) 6= L∗(v) · x,
then we have F (x) 6= L(x) + b. Since for v 6= 0n, L∗(v) ranges over Fn2 when
L ranges over the space L of linear (n, n)-functions and v · b ranges over F2,
this directly proves that dH(F,A) = minb∈Fn2 ,L∈L |{x ∈ Fn2 ;F (x) 6= L(x) +
b}| ≥ maxv∈Fn2 ,v 6=0 mina∈Fn2 ,ε∈F2 dH(v · F, a · x + ε) ≥ maxv∈Fn2 ,v 6=0 nl(v · F ) ≥
minv∈Fn2 ,v 6=0 nl(v · F ) = nl(F ). The inequality dH(F,A) ≥ nl(F ) was already
observed in [12] and lower and upper bounds were given in [5] when F is a bent
function. Such lower bound on dH(F,A) does not then imply a lower bound on
the nonlinearity of APN functions, but it gives some insight.
Let us show now that a much stronger bound than (10) is valid:

Proposition 4. Let F be any δ-uniform (n, n)-function, then we have:

dH(F,A) ≥ 2n −
√

2n + δ (2n − 1).

In particular, let F be any APN function, then we have:

dH(F,A) ≥ 2n −
√

3 · 2n − 2.

Proof. We have:

max
b∈Fn2

|F−1(b)| = max
b∈Fn2

√
|F−1(b)|2

≤
√∑
b∈Fn2

|F−1(b)|2

=
√
|{(x, y) ∈ (Fn2 )2;F (x) = F (y)}|

=

√∑
a∈Fn2

|(DaF )−1(0n)|

≤
√

2n + δ (2n − 1).

Applying this for b = 0n to F + L instead of F , we deduce:

dH(F,L) = |{x ∈ Fn2 ; (F + L)(x) 6= 0n}| ≥ 2n −
√

2n + δ (2n − 1).

�

7 On the maximum possible value of dH(F,A)
The number 2n −

√
3 · 2n − 2 is rather close to 2n (which is of course an upper

bound for dH(F,A)). This poses the question of determining what is the largest
possible value of dH(F,A) for all (n, n)-functions F and more generally for
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all (n,m)-functions F (that is, finding equivalents, for this other nonlinearity
parameter, of the covering radius bound for m < n and of the SCV bound
for m ≥ n, see e.g. [2]) and still more interestingly, what are the functions
which reach it (which would be the equivalent of bent functions and of almost
bent functions for this notion of nonlinearity). The following upper bound
was given in a paper in Chinese and reproduced in [12]: dH(F,A) < (1 −
2−m)(2n−1). The proof deals with character sums. Let us briefly present it (in
a slightly simpler and more complete way): for every linear function L, we have
|{x ∈ Fn2 ; F (x) + L(x) = F (0n)}| = 2−m

∑
x∈Fn2 ,v∈Fm2

(−1)v·(F (x)+L(x)+F (0n)).

Denoting by L the vector space of linear (n,m)-functions, we have that, if
v 6= 0m, then

∑
L∈L(−1)v·L(x) equals |L| if x = 0n and equals 0 otherwise. This

implies (distinguishing the cases v = 0m and v 6= 0m)
∑
L∈L |{x ∈ Fn2 ; F (x) +

L(x) = F (0n)}| = (2n−m + 2−m(2m − 1))|L| and therefore: maxL∈L |{x ∈
Fn2 ; F (x)+L(x) = F (0n)}| ≥ 2n−m+1−2−m and this gives indeed dH(F,A) ≤
2n − 2n−m − 1 + 2−m. Note that since dH(F,A) is an integer, this bound is
equivalent to dH(F,A) ≤ 2n − 2n−m − 1 for m ≤ n and to dH(F,A) ≤ 2n − 2
for m ≥ n.

In the next proposition, we obtain a bound that is slightly stronger when
m < n (and is identical when m = n).

Proposition 5. For every positive integers n,m and every (n,m)-function F ,
we have:

dH(F,A) ≤ 2n −
⌈
2
n
2−m
√

2n + 2m − 1
⌉
,

where A is the vector space of all affine functions over Fn2 and dH(F,A) is the
minimum Hamming distance between F and affine functions.

Proof. For every linear (n,m)-function L, we have:

max
b∈Fm2

|{x ∈ Fn2 ; F (x) + L(x) = b}|2 ≥
∑
b∈Fm2

|{x ∈ Fn2 ; F (x) + L(x) = b}|2

2m
=

2−m|{(x, y) ∈ (Fn2 )2; F (x) + L(x) = F (y) + L(y)}| =

2−2m
∑

x,y∈Fn2 ,v∈Fm2

(−1)v·(F (x)+F (y)+L(x+y)).

We have, for every x, y ∈ Fn2 and every nonzero v ∈ Fm2 that
∑
L∈L(−1)v·L(x+y)

equals |L| if x+ y = 0n and equals 0 otherwise. We deduce (distinguishing the
cases v = 0m and v 6= 0m):∑

L∈L
max
b∈Fm2

|{x ∈ Fn2 ; F (x) + L(x) = b}|2 ≥ (22n−2m + (2m − 1)2n−2m)|L|,

and therefore:

max
L∈L,b∈Fm2

|{x ∈ Fn2 ; F (x) + L(x) = b}|2 ≥ 22n−2m + 2n−m − 2n−2m

= 2n−2m(2n + 2m − 1).

11



We deduce

dH(F,A) = 2n − max
L∈L,b∈Fm2

|(F (x) + L(x) + b)−1(0m)|

≤ 2n − 2
n
2−m
√

2n + 2m − 1.

This completes the proof. �

For m < n, we get dH(F,A) ≤ 2n −
⌈
2n−m

√
1 + 2m−n − 2−n

⌉
, which is

sharper than the bound dH(F,A) ≤ 2n − 2n−m − 1 of [12].

For m = n, we get dH(F,A) ≤ 2n −
⌈√

2− 2−n
⌉

= 2n − 2, the same as in [12].

For m > n, we get dH(F,A) ≤ 2n −
⌈
2
n
2−

m
2

√
1 + 2n−m − 2−m

⌉
which may be

worse by one unit than dH(F,A) ≤ 2n − 2 proved in [12].

Remark. To avoid the loss of information due to the first inequality in the
proof above, a slightly different approach consists in fixing b (taking later the
best possible value), as done in [12], but keeping the square of |{x ∈ Fn2 ; F (x) +
L(x) = b}|. We have ∑

L∈L
|{x ∈ Fn2 ; F (x) + L(x) = b}|2 =

2−2m
∑
L∈L

∑
x,y∈Fn2 ,v,w∈Fm2

(−1)v·(F (x)+L(x)+b)+w·(F (y)+L(y)+b) =

2−2m
∑

x,y∈Fn2 ,v,w∈Fm2

(−1)v·(F (x)+b)+w·(F (y)+b)

(∑
L∈L

(−1)v·L(x)+w·L(y)

)
.

We have:

∑
L∈L

(−1)v·L(x)+w·L(y) =



|L| if x = y = 0n
|L| if x = y 6= 0n and v = w
0 if x = y 6= 0n and v 6= w
|L| if x 6= y and v = w = 0m
0 if x 6= y and v = w 6= 0m
0 if x 6= y and v 6= w.

This implies: ∑
L∈L
|{x ∈ Fn2 ; F (x) + L(x) = b}|2 =

2−2m
∑

v,w∈Fm2

(−1)v·(F (0n)+b)+w·(F (0n)+b)|L|+

2−2m|{(x, v) ∈ Fn2 × Fm2 , x 6= 0n}||L|+

2−2m|{(x, y) ∈ Fn2 × Fn2 , x 6= y}||L|.

12



Here again, the value is maximal when b = F (0n) and then we have∑
L∈L
|{x ∈ Fn2 ; F (x)+L(x) = F (0n)}|2 = |L|+2−m(2n−1)|L|+2−2m2n(2n−1)|L|.

and therefore:

max
L∈L
|{x ∈ Fn2 ; F (x) + L(x) = b}|2 ≥ 1 + 2−m(2n − 1) + 2−2m2n(2n − 1),

that is:

dH(F,A) ≤ 2n −
⌈√

22n−2m + 2n−m − 2n−2m + 1− 2−m
⌉
.

This bound is probably (since we are taking the ceiling) exactly the same as the
one in Proposition 5 (with maybe rare exceptions where it would be lower by 1).�

We can see with Proposition 5 and with the remark above that the bound
of [12] is not easy to significantly improve with an approach by character sums.
And for m = n, which is an important practical case, we have no improvement
at all with such method. We shall now obtain, by a completely different ap-
proach, another bound which is stronger than both bounds for m ≥ n (and
more generally for m ≥ n− lnn where ln is the natural logarithm).
Let us choose some a ∈ Fn2 and n linearly independent elements a1, . . . , an of
Fn2 ; there exists a unique affine (n,m)-function A such that A(a) = F (a) and
A(a+ ai) = F (a+ ai) for i = 1, . . . , n. Let us briefly recall how this well-known
fact can be shown: an (n,m)-function A is affine and such that A(a) = F (a)
if and only if the function L defined by A(x) = F (a) + L(a + x), that is,
L(x) = F (a) +A(a+x), is linear (since a function is affine and takes zero value
at 0n if and only if it is linear), and thanks to the fact that (a1, . . . , an) is a
basis of the vector space Fn2 , there exists a unique linear function L satisfying
L(ai) = F (a) + F (a+ ai) for i = 1, . . . , n.
Then we have dH(F,A) ≤ 2n − (n + 1) since A and F coincide at the n + 1
distinct points a, a+ a1, . . . , a+ an.
We have then:

Proposition 6. For every positive integer and every (n,m)-function F , we
have:

dH(F,A) ≤ 2n − n− 1.

If this bound is tight, then, for every a ∈ Fn2 and every linearly independent
elements a1, . . . , an of Fn2 , any (n,m)-function F achieving it with equality must
coincide with the affine function A defined above only at a, a + a1, . . . , a + an
(note that this condition is necessary but may not be sufficient). Hence, such
F must satisfy F (a) + F (a +

∑n
i=1 εiai) 6= L(

∑n
i=1 εiai) =

∑n
i=1 εiL(ai) =∑n

i=1 εi(F (a) +F (a+ ai)), for every a ∈ Fn2 , every basis (a1, . . . , an) of Fn2 , and
every ε ∈ Fn2 of Hamming weight at least 2. If we look a little more precisely
at the cases where wH(ε) is even, respectively odd, we see that the condition
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is equivalent to saying that, for every even number 2 ≤ r ≤ n of linearly
independent elements a1, . . . , ar, the function F (x) +

∑r
i=1 F (x + ai) + F (x +∑r

i=1 ai) never vanishes.
This is an interesting condition, which includes differential 2-uniformity (indeed,
for r = 2, it is equivalent to saying that F is differentially 2-uniform - we do not
write “APN”, since this term is traditionally used for (n, n)-functions only, and
here m may be different from n). For n ≥ 4, the condition seems much stronger
than differential 2-uniformity. If we fix for instance r = 4, the resulting condition
is equivalent to saying that Da1Da2F (x) + Da3Da4F (x) + Da1+a2Da3+a4F (x)
never vanishes; hence, not only each of these three second-order derivatives do
not vanish, their sum would not either. However:

Proposition 7. For every integer n ≥ 4 and every positive integer m, any dif-
ferentially 2-uniform (n,m)-function is such that, for every linearly independent

elements a1, . . . , a4 of Fn2 , the function F (x) +
∑4
i=1 F (x+ai) +F (x+

∑4
i=1 ai)

never vanishes if and only if:∑
u,v∈Fn2 ,v 6=0n

W 6
F (u, v) = −26n + 18 · 24n+m − 39 · 23n+m + 22 · 22n+m.

No such (n,m)-function F exists.

Proof. For obtaining such characterization, we shall need to address all cases
for a1, . . . , a4, even when they are linearly dependent. Let us then first study the
behavior of the function φa1,a2,a3,a4(x) := F (x)+

∑4
i=1 F (x+ai)+F (x+

∑4
i=1 ai)

when a1, . . . , a4 are linearly dependent.
If one element among a1, . . . , a4 is equal to zero (say a4 = 0n), then the func-

tion φa1,a2,a3,a4(x) equals F (x+a1)+F (x+a2)+F (x+a3)+F (x+a1+a2+a3) =
Da1+a2Da1+a3F (x+ a1) and since F is differentially 2-uniform:
- either a1 + a2 and a1 + a3 are linearly dependent (that is, a1 = a2 or a1 = a3

or a2 = a3) and φa1,a2,a3,0n(x) is the zero function,
- or they are linearly independent (that is, a1, a2, a3 are distinct) and φa1,a2,a3,0n(x)
does not vanish.

If no element is zero among a1, . . . , a4 and the sum of two elements is zero
(say a1 + a2 = 0n), then φa1,a2,a3,a4(x) equals Da3Da4F (x) and since F is
differentially 2-uniform:
- either a3 and a4 are linearly dependent (that is, a3 = a4) and φa1,a2,a3,a4(x)
is the zero function,
- or they are linearly independent (that is, distinct) and φa1,a2,a3,a4(x) does not
vanish.

If no sum of at least one and at most two elements among a1, . . . , a4 is zero
and the sum of three elements is zero (say a2 +a3 +a4 = 0n), then φa1,a2,a3,a4(x)
equals Da3Da4F (x) and we are back to the same situation, but then a3 and a4

cannot be linearly dependent since a3 = a4 would imply a2 = 0n and then
φa1,a2,a3,a4(x) does not vanish.

If no sum of at least one and at most three elements among a1, . . . , a4 is
zero and the sum of all four elements is zero, then φa1,a2,a3,a4(x) equals F (x+
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a1) +F (x+ a2) +F (x+ a3) +F (x+ a4) = Da1+a2Da1+a3F (x+ a1) and a1 + a2

and a1 + a3 cannot be linearly dependent since this would mean that a1 = a2

or a1 = a3 or a2 = a3, which is excluded; then φa1,a2,a3,a4(x) does not vanish
since F is differentially 2-uniform.

Summarizing, the condition in Proposition 7 is equivalent to: for every
a1, . . . , a4 such that:
- one element is zero and the others are not distinct, or two elements are equal
and the two others are equal too, then φa1,a2,a3,a4(x) is the zero function,
- in all the other cases, φa1,a2,a3,a4(x) does not vanish.
The number N of quadruples (a1, a2, a3, a4) such that one element is zero and
the others are not distinct, or two elements are equal and the two others are
equal too, can be evaluated as follows. Counting each case once and once only, by
considering successively the subcases where the number of zero elements equals
4, 3, 2, 1, 0, and in each such subcase, considering the two possibilities above
gives: N = 1+4(2n−1)+6(2n−1)+4(2n−1)(3 ·2n−5)+(2n−1)(6 ·2n−11) =
1 + (2n − 1)(18 · 2n − 21). Hence we have: N = 18 · 22n − 39 · 2n + 22.
Since, for every element b of Fm2 , the sum

∑
v∈Fm2

(−1)v·b equals 2m if b = 0m
and equals zero otherwise, the condition in Proposition 7 is equivalent to:∑

x,a1,...,a4∈Fn2
v∈Fm2

(−1)v·(F (x)+
∑4
i=1 F (x+ai)+F (x+

∑4
i=1 ai)) = 2n+mN.

Using the inverse Walsh transform relation, we have:∑
x,a1,...,a4∈Fn2

v∈Fm2

(−1)v·(F (x)+
∑4
i=1 F (x+ai)+F (x+

∑4
i=1 ai)) =

2−6n
∑

x,a1,...,a4,

u1,...,u6∈Fn2 ,v∈F
m
2

6∏
i=1

WF (ui, v)(−1)(u1+···+u6)·x+
∑4
i=1(ui+1+u6)·ai

= 2−n
∑

u,v∈Fn2

W 6
F (u, v).

Hence, the condition is equivalent to:∑
u,v∈Fn2

W 6
F (u, v) = 18 · 24n+m − 39 · 23n+m + 22 · 22n+m,

that is to:∑
u,v∈Fn2 ,v 6=0n

W 6
F (u, v) = −26n + 18 · 24n+m − 39 · 23n+m + 22 · 22n+m.

This is impossible for m = n ≥ 4 since the number on the right-hand side is then
negative, which is all the more true if n ≥ 4 and m ≤ n (the only possibility for
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F to be differentially 2-uniform). �

Hence, for every n ≥ 4 and every m, the inequality in Proposition 6 is in
fact strict.

Remark. Proposition 7 proves that, for every n ≥ 4 and every m, and for
every (n,m)-function F , there exist a basis (a1, . . . , an) of Fn2 and two vectors
x, ε in Fn2 , such that wH(ε) ≥ 2 and F (x) + F (x+

∑n
i=1 εiai) +

∑n
i=1 εi(F (x) +

F (x + ai)) = 0m. It would be interesting to determine whether, for every
function F and every basis (a1, . . . , an) of Fn2 , there exist two vectors x, ε in Fn2
having such property, but it seems difficult to do so. Denoting by (e1, . . . , en) the
canonical basis of Fn2 (of those Hamming weight 1 vectors), this is equivalent (by
composing F by the linear automorphism mapping (a1, . . . , an) to (e1, . . . , en)),
to saying that, for every (n,m)-function F , there exist two vectors x, ε in Fn2 such
that wH(ε) ≥ 2 and DεF (x)+

∑n
i=1 εiDeiF (x) = 0m. It seems difficult to check

if there can exist F such that, for every ε in Fn2 of Hamming weight at least 2 and
every x, this latter expression is nonzero. We recall that we have seen that the
case where wH(ε) is odd reduces itself to the case where wH(ε) is even, so we shall
assume that we are in this latter case. If we use the inverse Walsh transform
relation again, the number of x such that DεF (x) +

∑n
i=1 εiDeiF (x) = 0m

equals, denoting the support of ε by I (whose size is even) and writing the
elements of (Fn2 )I in the form U = (ui)i∈I :

2−m
∑

x∈Fn2 ,v∈Fm2

(−1)v·(F (x)+F (x+ε)+
∑
i∈I F (x+ei)) =

2−(|I|+2)n−m
∑

x,u∅,uε∈Fn2 ,U∈(Fn2 )I ,v∈Fm2

WF (u∅, v)WF (uε, v)
∏
i∈I

WF (ui, v)

·(−1)(u∅+uε+
∑
i∈I ui)·x+

∑
i∈I(uε+ui)·ei =

2−(|I|+1)n−m
∑

uε∈Fn2 ,U∈(Fn2 )I ,v∈Fm2

WF (uε +
∑
i∈I

ui, v)WF (uε, v)

·
∏
i∈I

WF (ui, v)(−1)
∑
i∈I(uε+ui)·ei .

It seems difficult to go further. �

Reference [12] conjectures that dH(F,A) ≤ (1− 2−m)(2n− 2
n
2 ). For n even,

since dH(F,A) is an integer, this gives dH(F,A) ≤ 2n − (2
n
2 + 1). We see that,

according to Proposition 4, APN functions are good candidates for approaching
this conjectured bound (if it is true) or for disproving it (if it is false).
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8 An upper bound on the nonlinearity by means
of the minimum distance to affine functions

We have seen in Section 6 that, for any (n,m)-function F , we have nl(F ) ≤
dH(F,A). Proposition 2 implies another upper bound on the nonlinearity by
an expression depending on dH(F,A). Indeed, let us apply this proposition to
F + A where A is the best affine approximation of F . Since F + A equals 0 at
2n − dH(F,A) points, we have |Im(F + A)| ≤ dH(F,A) + 1 = dH(F,A) + 1.
Hence:

Corollary 2. For every positive integers n,m and every (n,m)-function F , we
have:

nl(F ) ≤ 2n−1 −

√
22n+m−2

dH(F,A)+1 − 22n−2

2m − 1
.

This bound must be compared with the bound nl(F ) ≤ dH(F,A). It im-

proves upon it if and only if 2n−1 −

√
22n+m−2

dH (F,A)+1
−22n−2

2m−1 < dH(F,A), that is,

(2m−1)(dH(F,A))3 + (2m−1)(1−2n)(dH(F,A))2 + (22n−2 + (2m−1)(22n−2−
2n))dH(F,A) + 22n−2 + (2m − 1)22n−2 − 22n+m−2 < 0. This inequality has the
form A(dH(F,A))3 +B(dH(F,A))2 +CdH(F,A) +D < 0 with A = 2m−1 > 0,
B = (2m − 1)(1 − 2n) < 0, C = 22n−2 + (2m − 1)(22n−2 − 2n) = 22n+m−2 −
(2m − 1)2n > 0 and D = 22n−2 + (2m − 1)22n−2 − 22n+m−2 = 0. we have then

2n−1 −

√
22n+m−2

dH (F,A)+1
−22n−2

2m−1 < dH(F,A) when dH(F,A) is between the two zeros

(2m−1)(2n−1)±
√

(2m−1)2(2n−1)2−4(2m−1)(22n+m−2−(2m−1)2n)

2(2m−1) , that is, after simpli-

fication,
(2m−1)(2n−1)±

√
(2m−1)

√
2n+m+1+2m−22n−2n+1−1

2(2m−1) , which are located be-

tween 0 and 2n.

9 An improvement of the lower bound of Propo-
sition 1

Let us show that the bound of Proposition 1 can be made stronger for some
functions. Let us denote by ∆ the set {x+y; (x, y) ∈ (Fn2 )2, x 6= y, F (x) = F (y)}.
For every nonzero a 6∈ ∆, we have |(DaF )−1(0m)| = 0. Let us assume that F is
not injective. Then we have |∆| > 0. We can then refine the calculations that led

to Proposition 1 as follows:
∑
a∈∆

|(DaF )−1(0m)| =
∑
a∈Fn2

|(DaF )−1(0m)| − 2n ≥

22n

|Im(F )|
− 2n, and we deduce that there exists a ∈ Fn2 , nonzero, such that

|DaF
−1(0m)| ≥

22n

|Im(F )|−2n

|∆| . Hence:
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Proposition 8. For every non-injective (n,m)-function, the differential uni-
formity of F satisfies:

δF ≥


22n

|Im(F )| − 2n

|∆|

 , (11)

where ∆ = {x+ y; (x, y) ∈ (Fn2 )2, x 6= y, F (x) = F (y)}.

Relation (11) improves upon Proposition 1 when |∆| < 2n − 1.

Remark. We have:

|∆| ≤ 1

2
|{(x, y) ∈ (Fn2 )2;F (x) = F (y)}| − 2n−1

= 2−(m+1)
∑

x,y∈Fn2 ,v∈Fm2

(−1)v·(F (x)+F (y)) − 2n−1

= 2−(m+1)
∑
v∈Fm2

W 2
F (0n, v)− 2n−1,

and this bound is tight since it is achieved by those functions such that, in the
multiset ∗{x+ y; (x, y) ∈ (Fn2 )2, x 6= y, F (x) = F (y)}∗, each value is matched at
most twice. �

Conclusion
In this paper, we have revisited and clarified a result on the size of the image set
of any differentially uniform function, and in particular of any APN function,
and we have studied its consequences. We have also shown that differentially
uniform functions lie at large Hamming distance from affine functions and pre-
serve then the block ciphers in which they are used as substitution boxes from
attacks based on affine approximation, which completes the fact that they pre-
serve them from differential attacks. The fact that the image set size of the sum
of any differentially uniform function with any linear function is bounded from
below may provide a new theoretical and computational approach of differen-
tially uniform functions, and in particular of APN functions, which is worth
future studies, as well as the Hamming distance between vectorial (possibly
APN) functions and affine functions.
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