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ABSTRACT. This work is dedicated to APN and AB functions which are optimal against
differential and linear cryptanlysis when used as S-boxes in block ciphers. They also have
numerous applications in other branches of mathematics and information theory such as
coding theory, sequence design, combinatorics, algebra and projective geometry. In this
paper we give an overview of known constructions of APN and AB functions, in particular,
those leading to infinite classes of these functions. Among them, the bivariate construction
method, the idea first introduced in 2011 by the third author of the present paper, turned
out to be one of the most fruitful. It has been known since 2011 that one of the families
derived from the bivariate construction contains the infinite families derived by Dillon’s
hexanomial method. Whether the former family is larger than the ones it contains has
stayed an open problem which we solve in this paper. Further we consider the general
bivariate construction from 2013 by the third author and study its relation to the recently
found infinite families of bivariate APN functions.

1. INTRODUCTION

Vectorial Boolean functions are mappings between the vector spaces F5 and F5' for
some positive integers n and m, where [ is the finite field with two elements. We shall call
them (n,m)-functions when we will need to specify the numbers of input and output bits.
These functions play an important role in many different areas of mathematics, computer
science and engineering. In particular, (n,m)-functions are of critical importance in the
field of cryptography: virtually, all modern block ciphers incorporate one or several (n,m)-
functions (usually referred to as “substitution boxes” - in brief, “S-boxes” - in this context)
as their only nonlinear components, and as such, the security of the encryption directly
depends on the properties of the (n,m)-functions.

Various properties measuring the resistance of an (n,m)-function to different kinds of
cryptanalysis have been defined, including nonlinearity, differential uniformity, boomerang
uniformity, algebraic degree, and so forth. One of the most efficient attacks that can be
employed against block ciphers, the differential cryptanalysis [5], is based on the study of
how differences in an input can affect the resultant difference at the output. The resistance
to differential attacks for a function F from 7' to I}, used as an S-box in the cipher, is
high when the value

O = cF* . F F(x)=b
F mbg{;%#ol{x 7 1 F(x+a)+F(x) = b}|
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is small. When n = m, which is the main case of our interest, the differential uniformity
of any (n,n)-function is at least 2, and the (n,n)-functions meeting this bound are called
almost perfect nonlinear (APN). Another powerful attack on block ciphers is linear crypt-
analysis [48] which relies on the search for linear approximations to the action of the cipher.
The so-called almost bent (AB) functions are optimal against this attack [33]. Every AB
function is also APN, while the converse is not true in general.

Discovering new examples and constructions of APN and AB functions is thus a mat-
ter of significant practical importance since they enable the design of new block ciphers.
APN and AB functions are interesting from a theoretical point of view as well, as they cor-
respond to optimal objects within other areas of mathematics and computer science, e.g.
coding theory, combinatorics, and projective geometry.

The APNness and ABness of functions are preserved by some equivalence relations,
mainly the so-called CCZ- and EA-equivalences, and it is important when several functions
are considered, to determine whether they correspond to each others by such equivalences.
CCZ-equivalence is the most general known equivalence relation preserving APN and AB
properties while all other known equivalence relations for these functions are just particular
cases of CCZ-equivalence'. Classification of APN and AB functions, up to CCZ- and EA-
equivalences, is a hard open problem. Complete classification is known only for n <5, see
[9]. Finding new constructions of APN functions is difficult too. APN functions have been
known and studied since the early 90’s [49] but, to date, only six infinite families of APN
monomials (see the definition of this term in Section 2) and more or less 15 (depending
on how we count) infinite families of quadratic APN polynomials are known. Together,
these cover only a tiny fraction of all APN functions: for instance, more than 20 000 CCZ-
inequivalent APN functions have been determined over F% [3, 54], yet none of them has
been classified into general constructions yet. Finding new examples of infinite families
is an area of intense ongoing research. Tables 1 and 2 list all currently known infinite
families of APN functions. The first four cases in Table 1, and, for n odd, all cases in Table
2 are also AB. All families in Tables 1 and 2 are pairwise CCZ-inequivalent for general n
[16, 34, 41].

In this paper we recall known constructions of APN and AB functions, in particular,
those which have led to infinite classes. Then we consider the bivariate and Dillon’s hex-
anomial constructions and prove that families of APN functions derived by these methods
in [18, 29] coincide with each other. Further we study the relation between the general
bivariate construction of [30] with families F10 and F12. We show that, while containing
families F10 and F12, the construction given in [30] can lead (at least in small dimensions)
to APN functions that are not included in F10 and F12, nor in any other known APN fam-
ily. This shows that this general construction by the third author of the present paper may
potentially lead to further infinite families.

In the last part, we consider a new bivariate construction over [F,2» based on bivariate
projective polynomials, that is, polynomials of the type ax?t! + bx?y + cxy? +dyd*!
Fom[x,y], where g is a power of 2. Using, these polynomials Gologlu [41] and Kaleyski
and Li [43] were able to provide new families of APN functions F14, F15 and the one of
Theorem 7.3. We will discuss some equivalence properties of the APN functions coming
from this approach, and we will show that the family discovered by Kaleyski and Li is
included in F15.

lEA—equivalence needs however to be considered as well, because CCZ-equivalence is much more difficult
to verify and/or to enforce than EA-equivalence. The first step when checking if two functions are really different
is then to see whether they are EA-inequivalent.
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2. PRELIMINARIES

Let n be a positive integer. We denote by Fo» the finite field with 2" elements, and by
[F5. the set of its non-zero elements, i.e. its multiplicative group. For m | n, we denote by
Tr" : Fon — Fom the trace function Tr)(x) = ):Z 'g_l x*" from Fon into its subfield Fym
(simply denoted by 7r when m = 1).

It is convenient to identify the vector space I, with the finite field Fo» and to consider
an (n,n)-functions F as a mapping F : Fo» — Fpr. Any such function can be expressed as

a polynomial of the form
271
F(x)= Z ax',
i=0

for a; € Fy». This is the univariate representation of F, and it is unique. Function F is then
called a power function or a monomial function if its univariate representation consists in
one single monomial. The algebraic degree of F, denoted by deg(F), is the largest binary
weight of an exponent i with a; # 0 in the univariate representation, where the binary
weight of an integer is the number of ones in its binary notation, i.e. the minimum number
of distinct powers of two that sum up to it. Functions of algebraic degree 1, resp, 2, resp.
3 are called affine, resp. quadratic, resp. cubic. An affine function F satisfying F(0) =0
is called linear.

Given an (n,n)-function F, we denote by Ar(a,b) the number of solutions x to the
equation D,F (x) = b, where D,F (x) = F (x+a) + F (x) is the derivative of F in direction
a € Fyn. The largest value of Ag(a,b) among all a # 0 and all b is denoted by Ar and is
called the differential uniformity of F. If Ar =2, we say that F is almost perfect nonlinear
(APN).

The Walsh transform of F : Fon — o is the integer-valued function

WF(a,b): Z (_1)b-F(x)+a~x

x€lFon

for a,b € Fp», where the inner product “-” can be defined as a-b = Tr(ab) for a,b € Fy
without loss of generality. Function b- F for b # 0 is called a component function of F.
The values of Wr(a,b) for a,b € Fyn are the Walsh coefficients of F, and the multiset
Wr = {Wr(a,b) : a,b € Fon} is called the Walsh spectrum of F. The multiset {|Wg(a,b)| :
a,b € Fyn} of the absolute values of the Walsh transform is the extended Walsh spectrum.
If the Walsh spectrum of F consists of values 0, £2"5" then the function F is called AB.
Such AB functions exist for n odd only and contribute optimally to the resistance against
linear cryptanalysis when they are used as S-boxes. Besides, every AB function is APN
[33], and in the n odd case, any quadratic function is APN if and only if it is AB [32].
Comprehensive surveys on APN and AB functions can be found in [12, 31].

Since the number of distinct (n, n)-functions, viz. (2")%", grows rapidly with the dimen-
sion, (n,n)-functions are classified only up to a suitable equivalence relation which pre-
serves the properties being studied. The most general known equivalence relation which
preserves the differential uniformity and the extended Walsh spectrum (and, therefore,
the APN and AB properties) is the so-called Carlet-Charpin-Zinoviev equivalence (CCZ-
equivalence): we say that two (n,n)-functions F and G are CCZ-equivalent if there is an
affine permutation . of F3, which maps the graph ¥r = {(x,F(x)) : x € Fan} of F to the
graph ¥ of G. Deciding whether two given functions F and G are CCZ-equivalent is a
difficult problem in general, mathematically and computationally, and is typically resolved
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via code isomorphism. More precisely, a linear code 67 with the generating matrix

1 | R 1
Cr = 0 o (infl
F(0) F(a) ... F(a*1)

can be associated with any given (n,n)-function F, where o is a primitive element of Fyn.
Then F and G are CCZ-equivalent if and only if €7 and ¢ are isomorphic [10].

Various CCZ-invariants, i.e. properties or parameters that remain invariant under CCZ-
equivalence, can be used to show that a pair of (n,n)-functions is CCZ-inequivalent. These
include the differential uniformity and the extended Walsh spectrum.

A special cases of CCZ-equivalence is the so-called extended affine equivalence (EA-
equivalence). Two (n,n)-functions F and G are said to be EA-equivalent if G = A o
F oAy + A for affine Aj,Ay,A : Fon — Fon with A1, A, bijective. EA-equivalence is more
restrictive than CCZ-equivalence; for instance, every permutation is CCZ-equivalent to its
inverse and is in general not EA-equivalent to it. Also, the algebraic degree of a function
is preserved by EA-equivalence (when it is larger than 1) but not by CCZ-equivalence. If
we consider two power functions for their CCZ-equivalence then it is enough to restrict
to cyclotomic equivalence: two power functions F(x) = x4 and G(x) = x¢ over [, where
d,e,n are positive integers, are said to be cyclotomic equivalent if d = 2*e mod (2" — 1)
for some positive integer k, or if = = 2%e¢ mod (2" — 1) for some positive integer k in the
case that ged(d,2" — 1) = 1, with d~! being the multiplicative inverse of d modulo 2" — 1.
Cyclotomic equivalence has the advantage of being significantly simpler to test than both
EA- and CCZ-equivalences.

TABLE 1. Known APN power functions x¢ over Fyx

Functions Exponents d Conditions | Degree In
Gold 2041 ged(i,n)=1 2 [40, 49]
Kasami PR | gcd(i,n)=1 i+1 [42, 44]
Welch 2'+3 n=2+1 3 [35]
Niho 2422 —l,reven |n=2r+1] 32 [36]
2 4+2% —1,10dd t+1
Inverse PR n=2t+1| n—1 | [2,49]
Dobbertin | 24 +2% 42214 20 1 | n=5i i+3 [37]

3. OVERVIEW ON KNOWN CONSTRUCTIONS OF APN AND AB FUNCTIONS

There are several known constructions of APN and AB functions which have led to
infinite families of these functions. Power functions were the first to be considered, and
several infinite classes practically followed from coding theory and sequence design where
APN and AB functions define optimal codes and sequences well-studied there for several
decades before the notions of APN and AB functions were defined. These were Gold,
Kasami, Welch and Niho APN power functions which all have so called classical Walsh
spectrum, that is, they are AB when 7 is odd and for n even the Walsh coefficients take the
values in the set {0, +27, 2" }.

The inverse function is APN when 7 is odd and differentially 4-uniform when 7 is even.
The inverse APN function is not AB since it has the algebraic degree n — 1 while the
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TABLE 2. Known classes of quadratic APN polynomial over Fy» CCZ-
inequivalent to power functions

N° Functions Conditions In
n = pk, ged(k, p)= ged(s, ph)=1,
F1-F2 P I p€{3,4},i=skmod p,m=p—i, [21]

n > 12, u primitive in I3,

q=2",n="2m, gcd(i,m)=1,

F3 syt 24 a2 c€Fu, s €Fu\F,, [18]
+ex?atl 4 cax?ta X2 X 41X 41
has no solution x such that x4+! = 1
F4 B +a ' Tr(a®x%) a#0 [22]
F5 X +a ' Tr) (@®x® + a®x'8) 3ln,a#0 [23]
F6 4 a 177 (a0%'3 4 a'2x30) 3ln,a#0 [23]
n =3k, ged(k,3)= ged(s, 3k)=1,
F7-F9 w2 2 vw € By, vw # 1, 17, 81
2 2 2 3|(k+s) u primitive in F},
(x4 x2")¥ 14 n=2m,m>?2even,
F10 o (wx+ u?" 2" )@Y gcd(i,m) = 1 and j > 2 even [52]
u(x+x2") (ux + 2" ") u primitive in F3,, u’ € Fom not a cube
n=km,m> 1, ged(n,i) =1
F11 L(x)%x+L(x)x* L(x) = ):ﬁ;(lj ap®™ satisfies [13]
the conditions in Theorem 6.3 of [13]
u(ufx +x9u) (x4 +x) + (u%x +x7u)? 2T q=2",n=2m, ged(i,m)=1, u primitive in 4,
Fl12 ta(ulx+ x1u)? (x4 + x)% + b(x4 + x)? ! X2 aX +b [51]

has no solution over Fom
n=2m=10,(a,b,c) = (B,0,0),i =3,k =2,F; = (B)

F13 B a @) g 32 g 2 R n=2m,modd, 3 fm,(a,b,c) = (B,B2.1), [24]
Fy=(B),ic{m—2,m2m—1,(m—2)"" modn}
(x4 xu) >+ (x4 xu) (x9 4 )% 4 (3 +x)2 ] q=2",n=2m, gcd(3i,m)=1,
F14 | +(ufx+x4u)?+ 4 (ux + x4u)? (x4 4 x) + (x4 4 x) 2+ u primitive in I3, [41]
[ (ufx +x7u) 4 (x4 xu) (39 + %) + (69 + x)2 ] modd, g =2", n=2m, ged(3i,m)=1,
F15 + (x4 x10) 2 (x9 4 x) + (ux + x7u) (x4 + x)2" u primitive in Fj, [41]

algebraic degree of any AB function is not greater than (n+ 1)/2 (see [32]). The Walsh
spectrum of the inverse function was determined by Lachaud and Wolfmann in [47]. If
n is even then it consists of all integers s =0 mod 4 in the range —25+1  23+1 apd,
therefore, the inverse function has the best known nonlinearity for n even.

The last case of APN power functions was found in 1999 by Canteaut and Dobbertin,
and proven by Dobbertin in 2000. It is shown in [28] that this function is not AB, because
at least one of its Walsh transform values is not divisible by 2251 A conjecture has
been recently proposed in [20] on the set of those Walsh values of the Dobbertin function,
depending on the parity of n. It was conjectured by Dobbertin in 2000 that the lists of APN
and AB power functions were complete and this conjecture stays open up to now.

APN power functions are permutations for n odd and 3-to-1 for n even (as proved by
Dobbertin and reported in [31]). Power APN and AB functions are considered up to cyclo-
tomic equivalence since according to [34] two power functions are CCZ-equivalent if and
only if they are cyclotomic equivalent. It is easy to observe that cyclotomic equivalence
preserves the pair of algebraic degrees of the power function and its inverse (when it ex-
ists). Hence, the 6 known families of APN power functions are pairwise CCZ-inequivalent
since, in general, they (and their inverses when they exist) have different algebraic degrees.

One more reason why the first found APN functions were power functions is that check-
ing the APN and AB properties of power functions is easier than in the case of arbitrary
polynomials. If F is a power function, that is F(x) = x¢, then F is APN if and only if the
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derivative D} F is a two-to-one mapping. Indeed, since for any a # 0
D.F(x) = (x+a)? +x* = a’DF (x/a)

then D, F is a two-to-one mapping if and only if D F is two-to-one.
Besides, the function F(x) = x is AB if and only if Wr(a,b) € {0, j:2mTH} for a € Fy,
b € F5,, since Wr(a,b) = Wr(1,a9b) for a € F3,.

The first successful attempt to construct non-power APN functions was by enforcing
the CCZ-equivalence [19]. Before that work, APN and AB functions were considered up
to EA-equivalence and taking inverses for permutations. In [19] it was proven that CCZ-
equivalence is more general than the two aforementioned transformations when applied
to the Gold power APN functions. This led to the first classes of APN and AB func-
tions EA-inequivalent to power functions which was also the first evidence of existence
of such functions. In addition, it disproved a conjecture from [32] that all AB functions
are EA-equivalent to permutations [19] . Further it was also proven in [19] that the num-
ber of different (up to EA-equivalence) classes of AB functions is infinite. The recent
works [17, 22] show that CCZ-equivalence can be more general than EA-equivalence to-
gether with inverse transformation not only for Gold power functions but also for other
quadratic APN polynomials and for APN polynomials CCZ-inequivalent to both quadratic
and power functions. However, it is conjectured in [17] (based on computational data on
small dimensions) that for non-Gold power APN functions, CCZ-equivalence coincides
with EA-equivalence taken together with the inverse transformation. For the case of the
inverse function, such a conjecture has been recently confirmed in [46].

Using CCZ-equivalence for constructing APN functions turned out to be a very fruitful
idea: it did not only allow to increase the algebraic degree of APN functions but also to
construct APN permutations in even dimensions and by that to solve one of the main and
hardest problems related to APN functions. Indeed, in 2006, Dillon and his team applied
CCZ-equivalence to a quadratic APN mapping in dimension 6 and obtained the first and the
only currently known APN permutation in even dimension [11]. An interesting fact is that
quadratic APN functions, and more generally APN functions with quadratics components,
in even dimension are never permutations because they have (partially-)bent component
functions (see [26, 50]) but CCZ-equivalence allows to increase the algebraic degree and
can mix the Walsh spectrum such that none of the component functions of the resulted map
are (partially-)bent.

By construction, the APN and AB polynomials of [19] were CCZ-equivalent to power
functions. The first idea leading to APN functions CCZ-inequivalent to power functions,
introduced in [38], was to consider a sum of two power functions, and more exactly of
two Gold APN maps, which led to two sporadic examples in dimensions 10 and 12. This
idea was successfully implemented mathematically in [21] for constructing the first infinite
families of APN and AB functions: two families of APN binomials CCZ-inequivalent to
power functions for dimensions 7 divisible by 3 and 4. These classes of binomials proved
the existence of AB functions CCZ-inequivalent to power functions. Besides, they were the
first counterexamples for the conjecture of [32] on nonexistence of quadratic AB functions
inequivalent to the Gold maps [21].

Moreover, these families of binomials have also contributed to the study of so-called
crooked functions. An (n,n)-function F is called crooked if F(x) + F(y) + F(z) + F(x+
y+z) # 0 for any three distinct elements x,y,z, F(0) =0, and F(x) + F(y) + F(z) + F (x+
a)+F(y+a)+F(z+a) #0 for any a # 0 and x,y,z arbitrary [4]. Note, that crooked
mappings are permutations, since if F(x) = F(x + a) for some a # 0, then considering
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z=y=x, we would have F(x)+ F(y)+ F(z) + F(x+a)+ F(y+a)+ F(z+a) =0. On
one hand, every crooked function gives rise to a distance regular rectagraph of diameter 3,
and on the other hand every quadratic AB permutation is crooked [4]. The converse is not
known, that is, whether a crooked function is necessarily a quadratic AB permutation. A
rectagraph is a graph without triangles in which every pair of vertices at distance 2 lies in
a unique 4-cycle. There are not too many constructions of rectagraphs known, especially
rectagraphs of small diameter. Hence, the construction of such functions would provide
not only interesting building blocks for symmetric cryptosystems but would also provide
new distance regular rectagraphs. Nowadays only two families of crooked functions are
known: one is the family of Gold functions with n odd and the other one is the family of
APN binomials with n odd and divisible by 3 from [21].

The idea of adding new quadratic terms to a known APN function, to construct a new
one, was further applied in [7, 8, 24]. In the first two papers the authors generalize one of
the two families of APN binomials (for n divisible by 3) to trinomials and quadrinomials.
An infinite class of APN quadrinomials constructed in the third paper, covered the APN
binomial x° + ax>® over IF;O (where a has the order 3 or 93) of [38], which was an open
case for a generalization into a family since 2006.

In [22], a family of APN and AB functions 2+ Tr(xg) over 5 was constructed using
an observation that for any APN function F' and any Boolean function f the sum F + f
can have differential uniformity at most 4. The functions of this family served as the first
examples of APN and AB polynomials CCZ-inequivalent to power functions whose all
coefficients were in [F,. Moreover it is still the only family of APN and AB polynomials
CCZ-inequivalent to power functions which is defined for all n (recall that in case of power
APN and AB functions only the Gold function x> possesses this property). Although sim-
ple, the idea to consider the sum F + f have not yet provided any further infinite families of
APN functions. However, following the aforementioned work, functions of a more general
form

F(x) =L (%) + Ly (x")

where L and L, are linear functions from [F» to itself, were considered in [23]. In partic-
ular, it was proven there that, if n is even and the function L (x) 4+ Ly (x®) is a permutation
of Fyu, then F is APN. This approach gave two more infinite families of APN and AB
functions F5 and F6 in Table 2.

Note that if the output of F(x) = x* + Tr(x?) is decomposed over an Fp-basis of Fyn,
in which the (say) last element equals the unit 1 of Fy», function x4 Tr(xg), now valued
in IF3, differs from x> by only its last coordinate function. This led in [39] (on the basis
of an idea due to Dillon) to the so-called switching construction, in which a known APN
function F is changed into a function G by modifying one of its coordinate functions. If we
view the functions as valued in 22, we have the following equivalent definition: functions
F and G belong to the same switching class if there exist an element u € 5, and a Boolean
function f over Fa» such that G(x) = F(x) +uf(x). It is easily seen that if F is APN then
G has differential uniformity at most 4. In [39] an APN (6,6)-function CCZ inequivalent
to power functions and to quadratic functions was deduced by computer search. This is the
only known function with such properties, but note that this APN function had been in fact
previously found in [9] (the authors had however missed that it is inequivalent to quadratic
functions). It seems fair to call it the Brinkmann-Leander-Edel-Pott function. It equals,
given ¢ primitive:
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x3 + 0617()617 +x18 +x20 +x24> +tr2(x21) +tr3((x18x9)
+a'ttrs (077 + 0% + ax” + oM + ax ).
As shown in [10], one of the ways to construct APN polynomials is to consider quadratic
hexanomials of the type

(1) F(x) = x(Ax* 4+ Bx? + Cx*1) + x*(Dx% + Ex*%) + Gx™4

over [Fyon with g = 2™. These polynomials are good candidates for being differentially 4-
uniform, and potentially APN. This approach gave new examples of quadratic APN func-
tions over 56 and IF,s which are CCZ-inequivalent to power functions [10]. Later, several
generalizations of this method were proposed in [18], in particular, the following infinite
family, corresponding to F3, was deduced:

Theorem 3.1. Let n and i be any positive integers, n = 2m, gcd(i,m) = 1, and ¢,d € Fpn
be such that d ¢ Fom. Then, the hexanomial

H(X) — del'(ZlﬂJrl) _|_x(2m+1) + (x2i+1 +x2m(2i+1) n cx2m+i+1 —|—c2mx2i+2m)
is APN if and only if the equation

e+ x+1=0
has no solution x such that x*"+1 = 1.

While trying to find an equivalence notion that preserves the differential uniformity and
is more general than CCZ-equivalence, the authors of [13] obtained instead a new con-
struction method which they called isotopic shift and which led to the APN family F11.
They considered the so-called isotopic equivalence which is defined for quadratic planar
functions only, where a function F from [ to itself is planar if F(x+a) — F(x) is a per-
mutation for every non-zero a € IF » (p must be odd then). Isotopic equivalence is known to
be more general than CCZ-equivalence and, for planar functions, CCZ-equivalence coin-
cides with EA-equivalence [25]. Isotopic equivalence cannot be extended directly to APN
functions in fields of even characteristic but may be potentially used as an analogue with
some modifications or restrictions. As a result of this study the isotopic shift construction
is obtained: for a function F and a linear function L, the isotopic shift of F by L is the
map Fy(x) = F(x+ L(x)) — F(x) — F(L(x)). Whether it can lead to an equivalence rela-
tion, by finding more restrictions, is a matter of further investigations. However, it turned
out that this construction may be also used for construction of new (up to isotopic equiv-
alence) planar functions [15]. Some generalisations of the isotopic shift constructions are
proposed in [14]. In one of them an isotopic shift is applied to Gold-like functions which
gives Fy.(x) = x* L(x) +xL(x)? but two different linear maps L; and L, are used instead of
one L, that is, x* L (x) +xL,(x)? . For the second generalisation, functions Fy, with L not
necessarily linear are considered.

The so-called binomial construction of APN functions which led to several infinite fam-
ilies of APN functions ( F10, F12, F14 and F15) was first introduced in [29] and further
developed in [30, 41, 51, 52] . It is considered in details in the following sections.

Note that in addition to the APN families in Table 2, there have been several other
families of quadratic APN functions constructed. However, due to the work [17] they
were identified as equivalent to previously known ones. There have been also several other
interesting construction methods for APN functions but currently they are known to work
only in small dimensions [3, 53, 54].
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4. EQUIVALENCE BETWEEN THE APN HEXANOMIALS AND CARLET’S BIVARIATE
APN CONSTRUCTION

In [29], the third author of the present paper introduced a method for constructing APN
functions in bivariate form, that is, he considered functions F' defined over [Fy. given by
F(x,y) = (B(x,y),G(x,y)), where F,2n is decomposed as Fom x Fon. Since all the known
APN functions were in univariate form, the idea was that considering bivariate form could
provide new functions up to equivalence. A second ingredient was to take for B a bent
function from Fom x Fom to Fom (while G could be any function from Fom x Fom to Fom).
Indeed, such function F' is APN if and only if the system

B(x+a,y+b)+B(x,y) =c
G(x+a,y+b)+Glx,y)=d

has 2 or 0 solutions for any (a,b) # (0,0) and c,d € F», and taking B bent made that the
first equation in this system has the same number of solutions for every nonzero (a,b) and
every (c,d). Moreover, considering the simplest Maiorana-McFarland function B(x,y) =
xy, where the product is in the field [Fo», then from [29] we have the following conditions
for F to be APN:

o the function x — G(x,y) is APN for any fixed y;

e the function y — G(x,y) is APN for any fixed x;

e the function G(x,bx+ ¢) is APN for any b and c.

If G is also quadratic then we can assume ¢ = 0. From this, the following class of APN

functions was deduced in [29].

Theorem 4.1. Let n=2m; let i, j be such that gcd_(i - j,m)=1andlet s,t #0, u and v in
Fom. Set G(x,y) = sx® % +ux®y? + szjyz_l +_ty2'+2j._ Then F (x,y) = (xy,G(x,y)) is APN
if and only if the polynomial G(X,1) = sX**% +uX? +vX? +1 has no zero in Fan.

This construction can be simplified as shown by Taniguchi.

Proposition 4.2 ([S1]). Let n=2m. The function F(x,y) = (xy,G(x,y)) , with G(x,y) =
sty ox® Y2 1 1y? Y s equivalent to F' (x,y) = (xy,G'(x,y)) with G' (x,y) =
2 faxy® by withk=i—j,ac {0,1} and b in F%,,.

In [29], the third author of the present paper showed that the hexanomials introduced in
[18] can be seen as a case of the APN functions in Theorem 4.1. The same was proved for
trinomials introduced in the same paper [18] and for multinomials introduced in [7], but in
[16], it has been shown that these two classes are contained in the class of the hexanomials.
In fact, we will show in the following that the construction of Theorem 4.1 coincides with
the hexanomials’ class.

From the results in [16] we have that the family of APN hexanomial introduced in [18]
(see Theorem 3.1) can be represented as a pentanomial:

Theorem 4.3. Let n and i be any positive integers, n = 2m, ged(i,m) = 1, and ¢,d € Fpn
be such that d ¢ Fym. Then, the pentanomial

P(x) — dx2m+l +x2i+1 +x2m(2i+1) n cxzmHH +C2mx2i+2m7
is APN if and only if the equation

x2i+1 + szi + czmer 1=0
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has no solution x such that x*"+t' = 1. Moreover, the class of APN hexanomials of Theo-
rem 3.1 and the class of these APN pentanomials coincide.

Hence, when proving the equivalence between the APN functions as in Theorem 4.1 and
the functions in the class of APN hexanomials, we will rather consider the pentanomials
given in Theorem 4.3.

Theorem 4.4. Let n=2m. Let F(x,y) = (xy,G(x,y)) with G(x,y) = x* 1 + axy® + by*+!
with ged(i,m) =1, a € {0,1} and b in F%, be APN. Then F is EA-equivalent to an APN
function in the hexanomial class as in Theorem 3.1.

Proof. Let us consider first the case m odd. Since F' is APN, the polynomial X 2+ L aX +b
has no zero in Fo». In this case a = 1 otherwise we have no possible choice for b.
Fixing an element 8 ¢ Fym, any element of Fo» can be represented as z = x + 3y, where
oy BB Pl
X,y efzm, and then we can write xm— ﬁzmm+ 5 BT 7
z/(B*" +B) and we obtain x = 2" +7?"B and y = 7 +7". So, substituting x and y
(and abusing notation), the function F is EA-equivalent to the function in univariate form
F'(x) =B(B* x4+ x""B) (x+2") + (B x4+ 27" B)* '+
(B2771x+x2mﬁ)(x+x2m)2i + b(_x+x2m)2i+1_
Now, F’ is EA-equivalent to
F//(x) :(ﬁZ'"—H +[32)x2m+1 + (ﬁ2i+l +B +b)2’"x2i+l + (ﬁ2i+1 +B +b)x2’"(2i+l)_’_
(ﬁ2771+i+1 _’_ﬁ +b)x2m+2l + (ﬁ2m+1+1 _’_ﬁ +b)2mx2m+t+l‘
Now, if i is even then ged(i,n) = ged(2i,n) =2 and

) gcd(22i _ 172n _ 1) 2gcd(2i,n) —1
d2i+1,2"—1) = : = .
gc ( +1, ) ng(Z’ —1,2n— 1) 2ged(in) _ 1

We then substitute 7 =

andy =

=1,

thus x2+1 is a permutation over Fn, implying that there exists A € Fyn such that A2+ =
(B**! + B +b)*". Note that we can always choose f8 such that 2 +! + B +b # 0 and thus
A # 0 (see for instance [6]). So, evaluating F”(1/Ax) we obtain the function

~ m i (i m_y ~i m Am+i
F(x):dx2 2L 2T 22 2D 1

for some d and ¢ such that d ¢ Fm. Now, since the function F is APN, from Theorem 4.3,
we have that ) .
e+ x+1=0

has no solution x such that x*"*!
anomial as in Theorem 3.1.

Similarly, if i is odd we have that gcd(i +m,n) = gcd(2(i +m),n) = 2 and the mapping
x2""*+1 permutes Fy», implying that there exists A € Fn such that 12" 1 = (B2"""+1 4
B +5)2". As above, we can assume B2 4+ B +b £ 0. Evaluating F”(1/Ax) and letting
Jj = m+1i we would obtain the APN function

~ m J m(nj m J m AHm+j
F(x)zdxz 12T 2@ 2 | 22 +

and, as above, we conclude that this is EA-equivalent to an APN function in the hexanomial
class.

Now, consider the case m even. As before, we obtain the univariate polynomial equiva-
lent to F

= 1 and this function is EA-equivalent to an APN hex-
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F//(x) :(ﬁ2m+l +[32)x2m+1 + (ﬁ2i+1 +aB +b)2’7’x2i+1 + (ﬁ2i+1 +aﬁ +b)x2"’(2’.—&-1)+
(ﬁ2m+i+1 +aﬁ +b)x2’"+2i + (ﬁ2m+i+1 +aﬁ + b)Z”’x2m+i+1'
Since m is even we have that gcd(3,2™ + 1) = 1 and then we can divide the set 5, as
Fi = UUpUUp*U
with .
U:={**:xeF5}={:xeF5}.
and p= B2m+1 S ]Fzm. )
Now, as before we can assume 32! 4+ a8 +b # 0 and thus we can have three cases
o (B7* +aB+b)" €U,
o (B¥ 1 +aB+b)*" €pU,
o (B +aB+b)*" €p?U.

If we have the_ first case, the proof is completed. Indeed, there exists an element A such
that 22+ = (BZ*! 4-aB 4 b)?" and substituting x — A ~'x we will obtain a pentanomial
as in Theorem 4.3. ) )

Otherwise, suppose that (82! +apB +b)*" € pU (or (B**' +aB +b)*" € p?U) and
multiply F'(x) by p? € Fom (or multiply by p € Fon) obtaining

, , N .
F'(x) = d'x®" 1 fd @+ d?” 2D Ly 2L g 2l

with d’ ¢ Fom and @’ € U. Let us consider an element 4 such that lzi“ =d’, then substitut-
ing x — A ~'x we will obtain an APN pentanomial of Theorem 4.3 which is EA-equivalent
to a function in the hexanomial family. (]

Another interesting fact that can be proved for this construction is that when the coeffi-
cient a is zero (thus m is even), for a fixed i coprime with m, we have that for any possible
b we obtain the same function (up to equivalence). This has been also recently proved in
[45] for the more general case of the Zhou-Pott family which includes this special case.
Recall their result that any function F(x,y) = (xy,x* *! +by**1) is APN if and only if b
lies outside the set {xZ'H : x € F%,}, that is, is not a cube (see Theorem 5.1 in the next
section).

Proposition 4.5. Let n = 2m with m even, and i such that ged(i,m) = 1. Let b and b’ not
in the set U = {x2i+1 :x€F5 )} ={x : x€F5}. Then F(x,y) = (xy,x2iJrl eryzi“) and
F'(x,y) = (xp, a2 H1 4+ b'y2' 1) are EA-equivalent.
Proof. We can partition the non cubic elements of Fyn as bU U b2U. So first of all, note that
if we substitute y by uy for any u # 0, then F(x,y) is equivalent to the function F”(x,y) =
(xy, 22T b2 132 1) 5o if b € bU we have the equivalence.

Now, if we consider again F and we divide by b the part x2 ! + by +1, we obtain the

equivalent function F” (x,y) = (xy, %x?“ + yzi“). Now, we can apply the linear transfor-

mation L(x,y) = (by,x), so
F"(L(x,y)) = (bxy7x2f+1 +b2iy2i+1) ~EA (xy7x2"+1 +b2iy2i+1).

Since i is odd we have that b* € b?U. So, with similar argument as above if ' € b*U we
would obtain that F is EA-equivalent to F’. (]
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5. ON BIVARIATE CONSTRUCTIONS OF APN QUADRATIC FUNCTIONS

Following the construction of Theorem 4.1, other two families of functions have been
constructed by Zhou and Pott [52] and Taniguchi [51] and are presented here in Theo-
rems 5.1 and 5.3, respectively.

Theorem 5.1 ([52]). Let n=2m, m even, and let i be such that gcd(i,m) = 1. Set G(x y)
24y @D Then F(x,y) = (xy,G(x,y)) is APN if and only if o € {u®* ' (¢* +
0= -2/ u,t € Fom}. In particular if j is even, then F is APN if and only if o is not a cube.

Remark 5.2. If j is not even, then S = {u* 1 (t* +1)'=2 : u;t € Fyn} = Fon and the
family of Zhou-Pott is not defined then. Indeed, since m is even, we can partition F7,, as
U UdU UJd?U, where U is the set of all cubes (different from zero) and d ¢ U. Since 2 41
are the elements with null trace we have that 2 =1 for some 7, and thus U C §. We
need to show that there exist (1> +¢)!' "% € dU and (> +1')'=? € d*U for completing
the proof. . . .
Suppose that does not exist (1 +)! 72’ € dU, that implies also there does not exist (1" +
)= € dU. Indeed, if y € d*U then y* € dU and, supposing (r 2 1Y € d2U we
would have (f 2! +1)1-2 ¢ qU, and Tr(t 2! +t’2) Tr(t"? +1')=0.
Thus, if for any x of null trace we have that x'~ -2/ ¢ dU, then we obtain x'~ "€ U for all
x of null trace. Since j is odd we have 312/ — 1 and so x € U. This 1mphes that U U {0}
contains a vector space of dimension m — 1 which is not possible (|U| = (2" — 1) /3).
So, the family of Zhou-Pott can be defined only for j even (this was also noted in [1]).

The family introduced by Taniguchi in [51] is given by the following.

Theorem 5.3 ([51]). Let n=2m, and let i be such that ged(i,m) = 1. Set G(x,y) =
x22l+‘231 Jraxzbyzl +by?* ! with a € {0,1}. Then F(x,y) = (xy,G(x,y)) is APN if and only
if X¥*+! + aX + b has not zero in Fom.

Both Zhou-Pott and Taniguchi families are particular cases of a more general construc-
tion defined by the third author of the present paper in [30].

Theorem 5.4. Let n = 2m, and let i be such that ged(i,m) = 1. Set G(x,y) = P(x2 1) +
Q(xziy)—l-R(nyi) +S(y2 Y, with P,Q,R and S linear functions. Then, F(x y) = (xy,G(x,y))
is APN if and only if for all (c,d) # (0,0), To4(Y) = P(¢2 1Y) + Q(c* dY) + R(cd® Y) +
S(d? 1Y) satisfies:

o ifmis odd then T, 4 is bijective;

e ifmis even, then ker(T. 4) N {uzi“ (tzi +1) s u,t € Fon} = {0}.

Remark 5.5. The condition on the function 7, 4 is deduced from the fact that G(cex,dx+e)

equals T, 4 (le“) and from Lemma 4.1 in [30]. However, also for m even we need T; 4
to be a permutation. Indeed, for any F : F5 — 7 APN and L linear, Lo F is APN if and
only if L is a permutation. If L is not a permutation then without loss of generality L is
a linear functions from F — F%' with m < n. Thus, if G = LoF is APN then G'(x) =
(G(x),0,...,0) : F5 — I} is also APN. Now, G’ (x+a) + G’ (x) = (G(x+a)+ G(x),0,...,0)
and since G is APN then also G’ is APN. But this cannot be possible since an APN map
has nonlinearity always different from 0 (see [31]). A A

The same fact can be deduced by Remark 5.2 since we proved that {u* "1 (t* +1) : u,t €
]Fzm} = ]Fzm .
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We can observe immediately that P and S are permutations (case c¢ or d equal to 0).
Moreover, we can restrict the exponent i < m/2. Indeed, if i > m/2, then substituting

(x,y) — (xZWH, yszi) and composing with the linear function L(x,y) = (xzi, y), we will
obtain an equivalent function, that is

LoF(" ") = (o, P ) + 00 ) + R(:P'y) + 571,

where j =m—i<m/2.

In the following we will consider the particular case where P,Q,R and S are monomial
linear functions, i.e.

Glx,y) = a4y + el +d(P .

First of all note that we can suppose k = 0 since otherwise we can raise G to the power of
2=k Moreover a,d # 0 since we need P and S permutations. That is, we can consider the
function

Glxy) =2 al®y) + b+
We can also restrict a € {0,1} since we can apply the substitution y — (1/a)> "y. In the
case a = 0, we can restrict in the same way b € {0, 1}. Thus we have the following result.

Theorem 5.6. Let
i k i h i ; :
F(x,y) = (,al® ™2 +b(y)? + (™) +d(* )
be an APN function over Fyu. Then, F is EA-equivalent to one of the following functions
i i+h ~h k Aitk itr oy
Fi(x,y) = (o2 42270 40?2 4y ),
2i+1 +x2ky2i+k + c,y2i+r+2r),

2i+1 + C,y2i+r+2r)

FZ(xay) = (xyax

)

F3(xay) = (xyax
with ¢ # 0.
Corollary 5.7. The class of functions Fz in Theorem 5.6 is the Zhou-Pott class (and the

Taniguchi class for the case a = 0). The class of functions F, in Theorem 5.6 contains the
Taniguchi APN functions for the case a = 1.

Proof. From the result of Zhou and Pott it follows that F3(x,y) = (xy,x2 +1+¢/y* " +2) is
APN over [, if and only if m is even, ¢’ is not a cube and r is even. So, F; is exactly the
Zhou-Pott case, which contains the Taniguchi APN functions (i.e. F(x,y) = (xy, 2
ax221y21 +by2l+1)) fora=0. . 4 o v

Consider, now, the function F (x,y) = (xy,x> +2" 4 x2*y2 4+ by? 1), which is the Taniguchi
function with @ = 1. Let L(x,y) = (y,x). Then,

FoL(x,y) = (xp, b 2y 3242 oy (ay o T b7 a2y b7 yP 2,
Applying the substitution y — bzféiy, and then dividing the left part by b*>", the last func-
tion is equivalent to (xy,x>*! +x21y22' +b* y22'+23'), which is of type F. O
Proposition 5.8. Let n = 2m, and i be such that ged(i,m) = 1. If

Fi(x,y) = (xy, 2+ _|_x2i+hy2h + bxzky2i+k n cyzi +,+2r)

with b =0 and h =m—1i, r = m—2i is APN over Fon, then it is EA-equivalent to the
Taniguchi case.
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Proof. We have . . . . .
Fie,y) = (ona® ™ (0257 e,
Thus, using the linear permutations L; : (x,y) — (x> ,y* ') and Ly : (x,y) — (x2,y) we
obtain ‘ o ) ‘
LyoFioLi(x,y) = (xy,x> 4 (0 ) + c(y2ﬂ+1)2721).
As noted above this is a Taniguchi APN function. (]

6. OTHER INSTANCES OF APN FUNCTIONS FROM CARLET’S CONSTRUCTION
We give a necessary condition for a function F} with 2 =m/2, k,r = 0 to be APN.
Lemma 6.1. Let n = 2m with m > 2 even. Let i coprime with m. If
F(x,y)= (xy,xzi"H +x it 2m/ + bxy? +cy2 1
is APN, then cX*+' £ bX? + X" 1 has no zero in Fom.

oitm/2 2m/2

Proof. F(x,y) = (xy,G(x,y)) with G(x,y) = X2y
is APN we have that G satisfies the following conditions

+bxy? +cy?*L. Since Fy

o the function x — G(x,y) is APN for any fixed y;
e the function y — G(x,y) is APN for any fixed x;
e the function G(x,Bx+ ) is APN for any 3 and ¥.

From the third condition we have (we can consider ¥ = 0 since G is quadratic)
G(x,ﬁx) _ (Cﬁ2i+1 +b‘32i + 1)x2i+1 +‘32"’/2)62’"/2(2"+1).
If we consider x € F,,, we would obtain the function F’(x) = (cﬁzi+1 +bB% 41+

m/2 i . . . . . i
B? / )x**+1. From this we have immediately that if there exists B such that ¢f%*! +

bBZi +1+ ﬁzm/z =0 then for any a € F’gm/z and for any x € I,
F'(x)+F'(x+a)=0
which would imply that G(x, Bx) is not APN. O

The previous result can be used for filtering the search of the coefficients b and c.

For the new functions we have the following necessary and sufficient condition for the
APNness.
Theorem 6.2. Let n = 2m with m even, and let i < m/2 be such that ged(i,m) = 1. Then,

i i+m/2 AHm/2
Flx,y) = (o T 22 b o)
is APN if and only if(chi+1 +bx2 + l)zm/2+1 —|—X2m/ *1 has no zero in Fon.

Proof. As in the previous proof we have that F is APN if and only if the function G(x, Bx) =
(B> +bB% + 1)x2'+1ﬁzm/zxzm/z(zlfl) is APN for any f3.
We can note that G(x, Bx) = Lg (x> *!) where
i i m/2 Am/2

Lg(x) = (B> +bB% +1)x+p¥" K.
As noted in Remark 5.5, we have that Lg (xzi“) is APN if and only if Lg is a permutation
of Fon. Denoting by A = ¢+ +bB% + 1 and B = Bzm/z, this is equivalent to have
A Bzm/Z
B A2m/2
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with determinant different from 0. Thus, Lg is a bijection for any 3 if and only if (cX 241y
bX* + 1)2m/2+1 +X2"*+1 has no zero in Fyn. O

From the computational results we have that for n = 8 the functions as in Theorem 6.2
can produce a new APN function which is CCZ-inequivalent to the function given in the
tables in [54] and in [53], and in particular which is not included in any of the known
families.

Remark 6.3. It is easy to note that if we apply the linear transformation L(x,y) = (y,x) to
a function as in Theorem 6.2 we would obtain

om/2 pitm/2

2i+1+bx2iy+x y +y2i+1).

F(x,y) = (xy,cx
In the case b # 0, this is equivalent to a function of the first type

i i m/2  Hi+m/2 i
F]l(x,y) — (xy7x2 +1 +x2y+b/x2 y2 +Cly2 +1).

If b = 0 we have that F is equivalent to a function of type

om/2 oitm/2
y

F(x,y) = (xy,x® T +x +cy* .

6.1. Computational results. We checked the APN functions in small dimensions, ob-
tained from the cases given in Theorem 5.6, that is,

i i+h ~h k Hitk i+r_ or
Fi(xy) = (42T b T o),
2i+1 +x2ky2i+k + Cy2i+r+2r)

2i+r or
+ )

Fa(x,y) = (xy,x

Y

Fy(x,y) = (o, ey

In the computational results we do not consider the case of F3 which is represented only by
the Zhou-Pott family. As noted in the previous section we can consider i < m/2 coprime
with m. Moreover, when &, k, r = 0 then the APN function is equivalent to an APN function
of the hexanomial class.

6.1.1. n=2-4. For this dimension we can consider only i = 1.
CASE Fy:

b#0
-Forh=0,k=2,r=0and h =2,k = 0,r =0, we have that these two cases are
equivalent to each other (we can use the linear permutation (x,y) — (y,x)) and
the last case (h = 2,k = 0,r = 0) produces a new APN function of the form as in
Theorem 6.2.

- For h = 3,7 = 2 we have the Taniguchi APN functions (see Proposition 5.8).

CASE F;:

c#0
-When k = 1,r =2, we have the Taniguchi APN functions.
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6.1.2. n=2-5. For this dimension we can consider only i = 1,2.

CASE Fi:
b#0
- In this case we obtain only the hexanomial APN functions.
b=0
-Withi =1 and h = 4,r = 3, we have the Taniguchi APN functions
-With i =2 and & = 3,r = 1, we have the Taniguchi APNfunctions
CASE F;:
c#0

-With i =1 and k = 1,7 = 2 we have the Taniguchi APN functions.
-With i =2 and k = 2, = 4 we obtain the Taniguchi APN functions.

6.1.3. n=2-6. For this dimension we can consider only i = 1.

CASE Fi:
b#0
- In this case we obtain only the hexanomial APN functions.
b=0
- For h = 2,r =4 we have APN functions which could be inequivalent to the
known cases.
- For h = 3,r = 0 we obtain functions as in Theorem 6.2.
- For h =5,r = 4 we have Taniguchi APN functions.
CASE F;:
c#0

-k =1,r =2 Taniguchi
- k = 3,r = 0 this is equivalent to a function as in Theorem 6.2.- k = 4,r = 2, this
case is equivalent to the second case for b = 0.

6.1.4. n=2-8. For this dimension we can consider only i = 1,3.

CASE F] .
b#0
- In this case we obtain only the hexanomial APN functions.
b=0
-i=1: h="17,r = 6 we have Taniguchi APN functions.
CASE F;:
c#0

-i=1: k=1,r =2 we have Taniguchi APN functions.
-i=3: k=3,r = 6 we have Taniguchi APN functions.

7. ON THE BIVARIATE CONSTRUCTION USING PROJECTIVE POLYNOMIALS

In [29], the third author of the present paper investigates over [F,6 the bivariate construc-
tion considering bent functions of the form B(x,y) = sx +1y® + ux*y + vxy?. In particular,
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the APN function F(x) = (B(x,y),G(x,y)) was found (in collaboration Gregor Leander)
where

B(x,y) =x +y +x%y+ a’x)?,

G(x,y) = ™% + o¥ny* + a*ys,

where « is a primitive element of [F;.
Switching the function F' by the function
Fley) =00 + B30y 4+ a!8x8y2 + xSy + oyt

a18x5y2+(X27x5y—|—0654x4y6—|—0645x4y5—I—Oc27x4y3+

(X27x3y4+(x45x3y2+a45x3y—|—a27x2y6—|—a18x2y5+

x2y3 +0645)0)6+ 0636)6))5 +0618)0)3 +a27x6+a45x4y2+

54.4 9.2 4 54,6

o xy+x3—|—a x7y +0654xy+(x y +a36y3,

that is, considering F’(x,y) = (B(x,y),G(x,y) + f(x,y)), they obtained a non-quadratic
APN function, which is CCZ-equivalent to the function found by Edel and Pott [39]. Note
that f(x,y) = a’f'(x,y), with f’ a Boolean function.

A classification of the cubic APN functions in dimension 6 with respect to EA-equivalence
is given in [27]. In particular, for the case of the non-quadratic APN function its CCZ-
equivalence class can be divided into 25 EA-equivalence classes, 10 containing functions
of algebraic degree 3, and 15 containing functions of algebraic degree 4. Moreover, for this
function CCZ-equivalnece is more general than EA-equivalence together with the inverse
transformation [17].

We can note that the functions B and G are both of the form

g(x,y) = ax?™' + bx%y + exy? +dy?™,
with ¢ a power of 2. Polynomials of type X9*! +aX9 + bX + ¢ are called also projective
polynomials. We will call a polynomial of type ax4*! + bx9y + cxy? + dyi*! a bivariate
projective (or bi-projective) polynomial.
So, a possible construction for APN functions is given by using a bivariate construction
with two bi-projective polynomials, that is

F(x,y) = (szi'H —|—Bx2iy+ny2i —i—DyZi+1 ,axsz +bx2jy—|—cxy2j —|—dy2j+1).

Without loss of generality, we can suppose that A,a # 0. Indeed, we can always con-
sider a linear permutation L(x,y) = (ox + @2y, Bix + B2y), and so we will get that the
coefficients of x> ! and of x*’*! in F o L would be

Ac? T 4 Ba? B+ Cau Y +DBZT,  ao? bl By +cou B +dpF .

We can always choose ; and f; so that both the coefficients are not zero, otherwise we
would have that B(x,y) or G(x,y) are constantly equal to zero (this would implies that F' is
not APN). Then, we can always choose o, and 3, so that L is a permutation.

So we can restrict to

B(x,y) _ 2 +Ax2iy+Bxy2i JrCy2"+1
and . . . .
G(x,y) = P axy + bxy? + P
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Moreover, using similar steps as for the bivariate construction with B(x,y) = xy, con-
sidered in the previous section, we can obtain the following result.
Theorem 7.1. Let n = 2m and let
F(x,y) = (szi"H + Bx2iy + nyzi + Dy2i+1 , ax? 4 bxzjy + nyz-f + dysz)
be APN over Fon. Then F is EA-equivalent to one of the following functions
(2) Silx,y) = (xzi+l +x2iy —|—Axy2i + Byzi+1 ,xszrl + axzjy + bxyzj + cysz)

3) fley) = 4 + A7 2 Ly oo F o)
@) fxy) = (xzi+1 F ATy a4 by? )
) fry) = (2 AP 2 an? ppyP

where in (5) a =0, 1. Moreover, we can suppose i,j < m/2.

Recently, Gologlu considered the construction of APN functions using bi-projective
polynomials [41], obtaining the following families.

Theorem 7.2 ([41]). The following functions are APN on Fyn:
o [fgcd(3i,m) =1,
i i i 2i 2i 2i
yl (x,y) _ (xz +1 +xy2 _|_y2 +1’x2 +1 +x2 y_|_y2 +1);
o Ifgcd(3i,m) =1, m odd
Po(xy) = (@ 07 77y,
Remark 7.3. We can see that .# is of type (3), while .7, is EA-equivalent to a function as
in (2). Indeed, using the substitution L(x,y) = (otx,x+y) with & # 0, 1 such that o> *+! +
o + 1 # 0 we obtain
92 © L(xvy) =
((OcZiJrl +o+ 1)x21+1 —&—xziy + (o + l)xyzi +y2i+l , (ocz}i + Ot))czy+l + 0623ix23iy + chy23i).
Dividing the left term by &®+! 4+ + 1 and the right term by 2" + &, we obtain a function
as in (2).

Another function constructed using bi-projective polynomials has been constructed also
by Nikolay Kaleyski and Kangquan Li [43]. In particular, they obtained the following
result.

Theorem 7.4. Let (m,i) = (54 61,3 +41) or (74 61,5+ 41) with some integer | and
F(xy) = (@ 42y 4y 2y 4 0?).
Then F is an APN function over Fyon .

However, these functions are included in the construction %, of Géloglu as we prove
below.

Proposition 7.5. The function defined in Theorem 7.4 is equivalent to the function %, in
Theorem 7.2.
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Proof. We will show the case (m,i) = (54 61,3 +4l), the case (m,i) = (7+ 61,5+ 4l)
follows in a similar way.

First of all, note that m —i = 2+ 21. So, applying L(x,y) = (x
we obtain

2" y) to the function F,

i

LoF(x,y) = (" 40+ "+ 2y + 1)
Now, it is easy to note that
23(m—i) _ 9646l — o oo qom
Then,
LoF(x,y) = (22" 142" 42" ! K20 4 P )

and this last function is exactly the function .%; in Theorem 7.2. ]

)
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