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Abstract. In this paper, we present a detailed study of the cost of the
quantum key search attack using Grover. We consider the popular Feed-
back Shift Register (FSR) based ciphers Grain-128-AEAD, TinyJAMBU,
LIZARD, and Grain-v1 considering the NIST’s MAXDEPTH depth re-
striction. We design reversible quantum circuits for these ciphers and also
provide the QISKIT implementations for estimating gate counts. Our re-
sults show that cryptanalysis is possible with gates count less than 217°.
In this direction, we also study the scenario where initial keystreams may
be discarded before using it for encryption so that the Grovers attack on
key search becomes costly in terms of circuit repetition. Finally, we con-
nect Grover with BSW sampling for stream ciphers with low sampling
resistance. We implement this attack on LIZARD (secret key size of 120
bits, state 121 bits, and security equivalent to 80 bits) and successfully
recover the internal states with 24°-5 queries to the cryptographic oracle
and 2%° amount of data. Our results provide a clear view of the exact
status of quantum cryptanalysis against FSR based symmetric ciphers.

1 Introduction

In recent times there has been an extensive study on the impact of Grover’s
search algorithm [7] on block ciphers, especially on AES [5}/6,/13,[19]. Bern-
stein presented an attack on the McEliece system and showed that quantum
information-set-decoding attacks are asymptotically much faster than non-quantum
information-set-decoding attacks [2]. At the same time, there are many results
on symmetric ciphers in the quantum framework suggests that analyzing the ci-
phers using Grover for the post-quantum world is necessary. Some of the existing
works have shown that classically secure ciphers can be broken with quantum
algorithms [12}/14}/15//17,/18]. Some works also show that the quantum algorithm
can be used to speed up classical attacks [11,/16}26].

However, there has been no detailed previous study to evaluate the security
of stream ciphers in the quantum framework. Wu, in his thesis [29], commented



that: “The threat of Grover’s algorithm on stream ciphers can be simply elim-
inated by doubling the key size”. Though doubling the key length seems to
be a good solution, a more accurate analysis is called for. The structure of a
stream cipher is different from block ciphers and so requires a different anal-
ysis in the quantum framework. As a starting point in this work, we present
the application of Grover’s algorithm for key search on FSR, based ciphers.
The ciphers Grain-128-AEAD and TinyJAMBU are Round 2 candidates of
NISTs Lightweight Crypto Standardization [22]. We further show how BSW
sampling [3}/4] of keystream with Grover can be used to recover the state of
small state ciphers with time complexity far less than the exhaustive search. We
demonstrate this showing the state of LIZARD can be recovered in time less
than the application of Grover itself. So just doubling the key size, in this case,
might not be a suitable option when the state size is restricted. This attack will
be devastating for those ciphers which have small states size compared to the
key size and has low sampling resistance.

Since quantum computers are still in a primary stage, it is difficult to decide
the exact cost for each gate. Most of the previous works had focused on reducing
the number of T' gates and the number of qubits in their circuit construction.
This work is more inclined towards reducing the depth and the number of quan-
tum gates used in the circuit to study the security of a cipher under NIST's
MAXDEPTH constraint [23| Page 16-18] at the cost of a few qubits. All the
circuits described in this work were designed in QISKIT [24] and the cost esti-
mates were also done in the same tool. This allows us to obtain precise resource
estimates automatically from the circuit descriptions. The source code for all the
circuits described in this work will be released soon.

Although a quantum circuit with more than 32 qubits cannot be simulated
in QISKIT, we can in fact check the code correctness using classical program-
ming languages. The functionality of the circuits corresponding to the ciphers
are such that if the input to circuit is an element of computational basis string
(which is essentially a binary string) then the state of the qubits in the circuit
always remains in some computational basis state. That is, starting from a com-
putational basis state, the quantum circuit designed for these ciphers acts like a
classical circuit and this can be utilized to verify the correctness of the circuit.

Contribution and Organization We mainly focus on FSR based stream ciphers
but have included TinyJAMBU because its state gets updated by a non-linear
feedback shift register and so a similar technique could be used to construct its
circuit. The main contributions of this work are as follows.

- In Section [3| we have presented reversible quantum circuits for Grain-128-
AEAD, TinyJAMBU, LIZARD, and Grain-vl and applied Grover’s search
algorithm for key recovery on these ciphers. We estimate the cost of ap-
plying Grover for key recovery in and then estimate it under the
NISTs MAXDEPTH constraint in We find that the ciphers Grain-
128-AEAD and TinyJAMBU can be considered vulnerable with an attack
with gate count complexity 1.569 - 2'23 and 1.155 - 2'2% respectively, with



MAXDEPTH = 2% (see Subsection for definition of vulnerable). As an
immediate corollary of these results, we provide a bound on the keystream
bits that should be discarded before using them for encryption so that Grover
for key recovery might not be effective. For this, we make the following as-
sumptions: the cipher (FSR based stream cipher) is resistant to slide attack
(different key/IV pairs should not be easily found that generate shifted key-
stream) and the feedback/output functions cannot be changed.

- In Section [ we show that using proper sampling of the keystream and
Grover’s algorithm, states of LFSR, based stream ciphers can be recovered
in time less than Grover’s search complexity in the quantum paradigm. We
show significantly low complexity in attacking LIZARD and for the com-
parison, we also present the corresponding results against Grain-vl. The

complexities are presented in

2 Preliminaries

In this section, we describe about how to apply the Grover’s search algorithm
for key recovery on stream ciphers. We then give an overview of the circuit for
Grover’s oracle to be used for key search.

2.1 Stream cipher key recovery using Grover

Let for any key K = {0,1}* and IV IV = {0,1}", Sk.1v = ks, we denote the
keystream generated by the stream cipher as S. For a given keystream of length
p we can apply Grover’s search for key recovery as follows:

1. Construct a Boolean function f which takes K, IV as input and satisfies

1 if SKJV = ks
0 otherwise

-]

2. Initialize the system by making a superposition of all possible keys with same
amplitude

1 2K 1
) = 577 D 1K)
=0

(a) For any state |K;) in the superposition |K), rotate the phase by 7 radians
if f(K;) =1 and leave the system unaltered otherwise.
(b) Apply the diffusion operator.
3. Tterate 2(a), (b) for O(25/2) times.
4. Measure the system and observe the state K = K with probability atleast
(3), where Ky is the secret key.



In most cases it is considered that the IV is known to the adversary so the
first step can be modified so that the function f takes only K as input and
satisfies f(K) = 1, if Sk generates the given keystream ks.

Also, to apply Grover’s algorithm on TinyJAMBU (a block cipher) the first
step is modified so that for a given plaintext-ciphertext pair (M, C) encrypted
with key K, we construct f such that it satisfies f(K) =1if Sx(M) = C.

2.2 Uniqueness of the recovered key

It is possible that there exists other keys which generates the same keystream
(or in case of TinyJambu (block cipher) encrypt the known plaintexts to the
same ciphertexts). So, to increase the success probability of the attack we will
need extend the search to more keystream bits (plaintext-ciphertext pairs). In-
terestingly, the corresponding increase in the circuit size is different for block
Ciphers and stream ciphers.

Let us first discuss the scenario for a block cipher. We assume a block cipher
that has been initialized with a key K of size k and has a block size of k bits
to be a pseudo random permutation (PRP) Ck : {0,1}* — {0,1}* that takes a
message M of size k bit and outputs a cipher text of the same size. Then if we
generate t-blocks of cipher-text corresponding to a message, then we have the
following collision probability
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Even if we set t = 2 then we have a negligibly low probability of collision
@ (2"“). However, note that in this case we need to evaluate the cipher to
generate 2k bits of cipher text in each application of the Grover oracle which
adds to the circuit size.

In this regard, an adversary can get an advantage in terms of the circuit size
when applying Grover’s oracle for stream ciphers. Suppose a stream cipher has a
key of size k bits. Then we can design the following function C,,(K) : {0,1}* —
{0,1}* which takes in the key K and outputs p bits of keystream. Then we can
safely assume
2k —1
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Even if we set p = k + ¢ for some constant ¢, the collision probability is approxi-
mately O (27¢). Then even for ¢ = 10 we have a very low probability of collision
and thus less false positive. But in this case there is an advantage in terms of
the circuit size as we can design the Grover oracle to only generate k 4+ ¢ bits of
keystream each round.



2.3 Grover’s oracle

As explained above to implement the Grover’s search algorithm we need to design
an oracle that generates p-bit keystreams under the same key and then computes
a Boolean value which determines if the resulting keystream is equal to the given
available keystream. The target qubit will be flipped if the keystreams match.
This is called Grover’s oracle.

The construction of oralce for the stream ciphers and TinyJAMBU is slightly
different and we discuss these constructions in detail below.

Grover’s oracle for the stream ciphers To construct the oracle for the stream
ciphers we construct the circuit for the cipher which generates p = k + ¢ =
(k + 10)-bit long keystream and then this keystream is matched with the given
keystream. Denote this circuit as ENC. The target qubit will be flipped if the
keystreams match. The construction of such an oracle is given in Figure [I]

Fig. 1: Grover oracle for stream ciphers. The (=) operator compares the output
of the EN'C with the given keystreams and flips the target qubit if they are equal.

Grover’s oracle for TinyJAMBU Consider that we are given two plaintext-
ciphertext pairs (M, C1), (Mz,C2)). The oracle is then constructed so that the
given plaintexts are encrypted under the same key and then computes a Boolean
value which determines if all the resulting ciphertexts are equal to the given avail-
able ciphertexts. This can be done by running two encryption circuits in parallel
and then the resultant ciphertexts are compared with the given cipertexts. The
target qubit will be flipped if the ciphertexts match. In Figure [2| the construc-
tion of such an oracle is given for r = 2.
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Fig. 2: Grover oracle using two blocks. The (=) operator compares the output of
the ENC with the given ciphertexts and flips the target qubit if they are equal.



2.4 Circuit design and resource estimation

The circuits described in this work operates on qubits and are composed of
commonly used universal fault-tolerant gate set Clifford (NOT and CNOT) + T
gates. These gates allow us to fully simulate the circuits classically. In this work
the only source of T gates are the Toffoli gates used in the construction of the
circuits.

The NOT gate, also known as flip gate, maps |[0) — |1) or |1) — |0). The
CNOT (or controlled-X) gate can be described as the gate that maps |a,b) —
|a,a @ b). The Toffoli gate can be described as the gate which maps |a, b, ¢) —
|a, b, c @ ab).

Resource estimation We construct reversible circuits for implementation of all
the ciphers. We then provide the resource estimates for these construction in
terms of number of qubits, Toffoli gates, CNOT gates and NOT gates and the
depth of the circuit in Table

We have assumed full parallelism while constructing the circuits, i.e., any
number of gates can be applied in the circuit simultaneously if these gates act
on disjoint set of qubits. These circuits were implemented in QISKIT and this
compiler allows us to compute the depth of the circuit automatically. It has been
generally observed that the depth of two circuits applied in series is less than or
equal to the sum of the depth of the individual circuits.

It has generally been assumed that the logical T' gate is significantly more
expensive than Clifford group gates on the surface code and so while estimating
the resources we provide the costs for T' gates only as well as the cost of cir-
cuit considering all gates equally. While computing the T-depth of a circuit, we
assume that all gates have a depth of 0 except the T gate, which is assigned a
depth of 1 and for the full depth we assign a depth of 1 to all the gates.

We decompose the Toffoli gates into the set of Clifford+7" gates using the
decomposition provided by [1] that requires 7 T gates and 8 Clifford gates, a T
depth of 4 and total depth 8.

We estimate the cost of constructing the Grover’s oracle in terms of number
of Clifford and T gates, T depth and the full depth (D). The number of Clifford
gates required for the oracle of stream ciphers is the number of the Clifford
gates required for the cipher instances used in the oracle. In case of TinyJAMBU
the number of Clifford gates required for the oracle is the sum of the Clifford
gates required for the cipher instances used in the oracle and 2 - k CNOT gates
required to make the input key available to the cipher instances. Since ENCT, are
constructed by uncomputing ENC respectively, so the total number of Clifford
gates is computed as

1. for the stream ciphers
2 - # Clifford gates for {(ENC)} (1)
2. for TinyJAMBU
2-k+4- # Clifford gates for {(ENC)} (2)



Now in case of the stream ciphers, the grover oracle consists of comparing
p = k + ¢ bits of keystream, which can be done using (k + ¢)-controlled CNOT
gates.

For a block cipher, the grover oracle consists of comparing the k-bit outputs
of the r cipher instances with the given k-bit keystreams. This can be done using
(k-r)-controlled CNOT gates (we neglect some NOT gates which depend on the
given ciphertexts). Following [28], we estimate the number of T' gates required
to implement a t-fold controlled CNOT gates as (32 - ¢ — 84). Since we have
assumed r = 2 and ¢ = 10, where k is the keysize, so the total number of T' gates
is computed as

1. for the stream ciphers
(32- (k4 10) — 84) + 2 - # T gates for {(ENC)} (3)
2. for TinyJAMBU
(32-(k-2)—84) +4- # T gates for {(ENC)} (4)

To estimate the full depth and the T-depth we only consider the depths of
the cipher instances. Since we have assumed full parallelism, it can be seen in
Figure [2] that both cipher instances can be implemented simultaneously as they
use disjoint set of qubits, and so for both oracles we have

the depth of the oracle = 2 - (Depth of ENC) (5)

These estimates are presented in Table

The cost of running the complete Grover’s key search algorithm can be com-
puted by iterating the oracle L%Qk/ﬂ times, where k is the key size and is
presented in Table

2.5 Definition of VULNERABLE for some plausible value of
MAXDEPTH

In this work we assume that an adversary is bounded by a constraint on the
depth of the circuit that (s)he can use for Grover. NIST suggests a parameter
MAXDEPTH as such a bound and the plausible values range from 240 to 2.
We impose a bound of 2%° in this work.

The idea of proposing that a cipher, which can be attacked with a gate
count 2130 for MAXDEPTH=2%" is VULNERABLE, was influenced due to the
following observations:

From [23]

1. In, Page 16, it is stated: ”In particular, NIST will define a separate category
for each of the following security requirements (listed in order of increasing
strength): 1) Any attack that breaks the relevant security definition must
require computational resources comparable to or greater than those required
for key search on a block cipher with a 128-bit key (e.g. AES128).”



2. In Page 18, it is stated: "NIST provides the estimates for optimal key recov-
ery for AES128 as 2!/ MAXDEPTH. ”

So, for a MAXDEPTH of 2%, a cipher can be considered VULNERABLE if
there exists any attack with gate count < 2'3° for ciphers with key size 128.

3 Estimating Resources for applying Grover on
Grain-128-AEAD, TinyJAMBU, LIZARD, and
Grain-vl

In this section, we briefly describe the construction of ciphers Grain-128-AEAD,
TinyJAMBU, LIZARD, and Grain-v1. For detailed description the readers are
referred to [8-10,27]. Then we provide a detailed description of how to construct
a reversible quantum circuit for these ciphers.

Remark 1. Since the structure of Grain-128-AEAD and Grain-v1 are similar so
the circuit of Grain-v1 is described in Appendix [B]

Proposition 1 Consider a FSR of size n, denote its content as S = [0, 81, , Sn—1]
and let f; be the feedback value at i*" clocking. Then at the it" clocking the state
gets updated as:

for0<j<(n—2):s;=sj11
Spn—1 = fi
Then we can see that after n clockings we have sqg = fo,81 = f1,**Sn—1 = fn_1
The ciphers Grain-128-AEAD and TinyJAMBU use 128-bit FSRs and so we
can use Proposition [I] to construct compact circuits for these ciphers. Similarly
the circuit for Grain-vl and LIZARD can be constructed. These circuits then

reduce the numbers of qubits (width of the circuit) and gates used and in this
way reduce the depth of the circuit finally.

3.1 Brief Summary of Grain-128-AEAD

Grain-128-AEAD 9] is a lightweight stream cipher with state of size 256 bits,
supports a fixed-length nonce (IV) of size 96 bits and a fixed-length key of size
128 bits.The cipher is constructed using a 128-bit LFSR, a 128-bit NFSR and a
pre-output function. Let S; = [s§, s!,. .., sl,,;] denote the contents of the LFSR
and By = [bf, b}, ..., bly;] that of the NFSR.

The corresponding update function of the LFSR is given by

F(Si) = 87 = s+ 57+ s + 870 + s + 50
The corresponding update function of the NFSR is given by

g(By) = bi37 = s + bl + bhg + bk + by + bl + bsbg;



+ 011013 + 7big + borbig + bigbls
+ 1 b7 + bgsbsy + boobhybhs + brgbrshss
+ bggbyaby3bys
The pre-output function is given by
Y = blasg + 513550 + bys8ia + 860579 + D1aS95504 + 503
+ bh + b5 4 bhg + bls + by + bhg + by
Let the key bits be denoted as k;,0 < ¢ < 127 and the IV bits be denoted

as iv;,0 < 7 < 95. Then the internal state of the cipher is initialized by the
following steps:

1. The 128-bit NFSR is loaded with the key, b? =k;,0 <i < 127. The first 96
bits of the LFSR is loaded with the IV bits, 5? =14v;,0 < i < 95 and the last
32 bits are filled with 31 ones and one 0, s¥ = 1,96 < i < 126, 57,, = 0.

2. The cipher is clocked 256 times feeding back the pre-output function and
XORing it with the input to both the registers.,

si37 = f(Se) +ye, 0 < 255,
bt1§71 =g(B¢) +y:,0 <255

3. Then the key is simultaneously shifted into the LFSR, si§1 = f(S;) +
ki _o56, 256 < 383, and the NFSR is updated as bg% = g(By), 256 < 383.

After initialization the output of the pre-output function is used to generate the
keystream z;. The keystream is generated as z; = y3g442;-

3.2 Circuit for Grain-128-AEAD

In Grain-128-AEAD, the state is of size 256-bits and the length of key is 128, so
we require 256 qubits for the state and 128 qubits for the key. At any time ¢, the
update function of LFSR f(S;) can be implemented as described in Algorithm

Algorithm 1 Implementing f(.S;)

1: procedure f(S:)

2: for : = 7,38,70,81,96 do

3: CNOT (S(i4t)%1285 St%128) > %128 is due to Prop.
4: end for

5: end procedure

Proposition 2 The quantum circuit to implement f(St) once requires 5 CNOT
gates.



The circuit for constructing update function of the NFSR, g(B;) is described in
Algorithm 2]

Algorithm 2 Implementing g(B)

1: procedure g(Bi)

2: CNOT (S(t)%1287bt%128)

for i = 26,56,91,96 do
CNOT (bi+#)%128, beo128)

end for

1=13,11,17,27, 40,61, 68]

m = [67,13, 18, 59, 48, 65, 84]

for i < 0,6 do

Toffoli (b(l[i]+t)%1287 b(m[i]+t)%l28: bt%128)
end for

—_

[

toffoli3(b(2244)% 128, b(24++1)% 128, D(254+1)% 128,
ge0o, ge01, by 128)
t0Pf01i3(b(70+t)%128, b(78+t)%1287 b(82+t)%128»
gelo, geli, byyi2s)
13: tOHOli4(b(82+t)%128: b(92+t)%1287 b(93+t)%1287
b(os+1)%128, g€20, ge21, ge2z, by 12s)
14: end procedure

,_.
o

where ge0;, gel;, ge2; are ancillae

The functions toffoli3 and toffoli4 used above are compute-copy-uncompute method
for implementing Toffoli gates on 3 and 4 qubits respectively. These functions
are described in [Figure 3al and [Figure 3b| respectively.

Fig. 3: The circuit for (a) toffoli3. (b) toffoli4

Proposition 3 The quantum circuit to implement g(Bt) once requires requires
(64+2+1) =8 CNOT gates, (7T+ 24+ 6) =21 Toffoli gates and requires 7
ancillae.

The pre-output function y(¢) can be implemented as described in Algorithm



Algorithm 3 Implementing y/(t)

1: procedure y(t)
2: 1 =1[12,13,95,60], m = [8, 20,42, 79]
for i < 0,3 do

Toffoli (bq[ij+)%1285 S(m[i]+t)%128> Yt)
end for

tOHOli3(b(12+t)%1287 b(95+t)%1287 S5(94+1)%128)
yeo, ye1, yt)

T CNOT (5(93+t)%1287yt)

8: for ¢ = 2,15,36,45,64,73,89 do

9: CNOT (bgitt)%128, Yt)

10: end for

11: end procedure

where ye; are ancillae

Proposition 4 The quantum circuit to implement y(t) once requires requires
8 +1=9 CNOT gates and 4 + 4 = 8 Toffoli gates and requires 2 ancillae.

Now, using Algorithms [T} 2] and [3] we can construct the circuit for full Grain-
128-AEAD. The complete Grain-128-AEAD can be divided into two phases: the
initialization phase and the key generation phase. The circuit for initialization
phase is constructed as described in Algorithm

Proposition 5 The key-iv loading procedure requires 128 CNOT gates and a
mazimum of 96 + 31 = 127 NOT gates (the mazimum number of 1's IV can
have is 96). Mizing the state 256 times requires 2 % 128 * (5 + 8 + 9) = 5632
CNOT gates and 2x128 % (21 +8) = 7424 Toffoli gates and loading the key again
into the LFSR requires 128+ (8+1+5) = 1792 CNOT gates and 128+ (21) = 2688
Toffoli gates.

In the keystream generation phase we generate 128 keystream bits for which
we require to clock the cipher 256 times. The keystream is stored in the qubits
yt, (0 <t < 127). This phase can be implemented in Algorithm

Proposition 6 The keystream generation phase requires 2+ 128 % (5+8+9) =
5632 CNOT gates and 2 * 128 x (21 + 8) = 7424 Toffoli gates to generate 128
keystream bits.

So, the complete circuit for Grain-128-AEAD to be used in the Grover oracle
can be constructed by implementing Algorithms [] and [5] simultaneously.

3.3 Brief Summary of TinyJAMBU

TinyJAMBU [27] is a lightweight 128-bit keyed permutation, P, with no key
schedule. This keyed permutation supports three possible key sizes: 128-bits,
192-bits and 256-bits. The permutation P, consists of n rounds and in the **



Algorithm 4 Quantum circuit of initialization phase of Grain-128-AEAD

1: procedure KEY-IV LOADING
2 for i + 0,127 do
3 CNOT (ks, b;)
4 end for
5: for i < 0,95 do
6: if 7v; == 1 then
7
8

NOT (81)
: end if
9: end for
10: for i + 96,127 do
11: NOT (SZ)

12: end for

13: end procedure

14: procedure MIXING THE STATE
15: for j + 0,1 do

16: for i + 0,127 do

17: Implement y(¢) as in Algorithm [3| replacing
Yt by S(0+1)%128

18: Implement g(By) as in Algorithm

19: Implement f(St) as in Algorithm

20: end for

21: end for

22: end procedure

23: procedure KEY LOADING
24: for i < 0,127 do

25: Implement g(Bt) as in Algorithm
26: CNOT (k“ Si)

27: Implement f(S;) as in Algorithm
28: end for

29: end procedure

Algorithm 5 Quantum circuit of keystream generation phase of Grain-128-
AEAD

1: procedure KEY GENERATION

2 for j < 0,1 do

3 for i + 0,127 do

4: Implement y(¢) as in Algorithm
5: Implement g(B:) as in Algorithm
6 Implement f(S:) as in Algorithm
7 end for
8 end for
9: end procedure




round the state is updated using the following 128-bit nonlinear feedback shift
register:

StateUpdate(S, K, 1) :
feedback = sg ® s47 B (~ (570&385)) D 501 D ki mod &k
for j from 0 to 126: s; = sj41 (6)
s197 = feedback

end

where k = {128,192,256} is the key length.

The initialization phase has two steps: key setup and nonce setup. In key
setup phase the initial state (which is all zero state) is updated using the per-
mutation P,.1, where r1 = {1024, 1152,1280} for klen = {128,192,256} respec-
tively. The nonce step consists of three steps. In each step the Framebits = 1
are XORed with the state and then the state is updated using Psg4 and then
32-bits of the nonce is XORed with the state.

Next the associated data, ad, is processed. In each step Framebits = 3 are
XORed with the state and then the state is updated using P3g4 and then 32-bits
of the ad is XORed with the state.

In the encryption phase the plaintext m is encrypted. In each step Framebits =
5 are XORed with the state and then the state is updated using P,; and then
32-bits of the m is XORed with the state 32 bits the ciphertext is obtained by
XORing the plaintext with another part of the state.

3.4 Circuit for TinyJAMBU

In TinyJAMBU the state is updated using the permutation P, as described
in Eqn [6] This permutation P, can be implemented as a quantum circuit as
described in Algorithm [0}

Proposition 7 The quantum circuit for permutation P, of n rounds requires
(n/128) % 512 = 4n CNOT gates and (n/128) * 256 = 2n Toffoli gates.

Now we show the implementation of the three steps (for the cipher with key size
= 128, implementations for other key sizes is similar) in Algorithm [7} We need
128 qubits for the state all initialized to 0, 128 qubits for the keys and 1 ancilla
initialized to 1 required for the implementation of P,. For our work we assume
associated data of length 96-bits. There is no restriction, by the authors, on the
length of associated data to be used for the cipher, so we assume an associated
data of length equal to that of NONCE should be sufficient.

Proposition 8 The quantum circuit for key setup of TinyJAMBU requires
4 %1024 = 4096 CNOT gates and 2 * 1024 = 2048 Toffoli gates and the nonce
setup requires 3 x 4 x 384 = 4608 CNOT gates, 3 x 2 x 384 = 2304 Toffoli gates
and a mazimum of 3+ 96 = 99 NOT gates. The circuit to process the associated



Algorithm 6 Quantum circuit of permutation P,

1: procedure PERMUTATION P,
2: for j < 0, (155) do
for i + 0,127 do
CNOT (k((128+j+i)%kien) > S(0+i)%128) > %128 is due to Prop.
CNOT (5(47+i)%1287 3(0+i)%128)
Toffoli (3(70+i)%1287 S5(8541)%128> anco)
CNOT (anco, $(0+4)%128)
Toffoli (3(70+i)%128a 5(85+1)%128> CmCo)
9: CNOT (5(91+i)%12873(0+i)%128)
10: end for
11: end for
12: end procedure
where anco is the ancilla and its value is initialized to 1, anco = 1 and is returned to
its value 1 after each iteration so that it can be used in the next iteration.

data requires 3x 4% 384 = 4608 CNOT gates, 3% 2384 = 2304 Toffoli gates and
a mazimum of 6 + 96 = 102 NOT gates. The encryption of 128 bits of plaintext
requires 4 % 4 1024 + 4 % 32 + 4 % 32 = 16640 CNOT gates, 4 = 2 x 1024 = 8192
Toffoli gates and 4x2 =8 NOT gates.

3.5 Description of LIZARD

LIZARD has a 121-bit state and supports 120-bit key and 64-bit IV. The 121-bit
inner state of LIZARD is divided into two NFSRs namely NFSR1 and NFSR2.
At any time ¢, the first NFSR, NFSRI1 is denoted by (S(o1+),---,S(30+¢)) and
the second NFSR, NFSR2 by (B(o4+); - -, B(so+t))-

NFSR1 is of 31 bit size and the update function is defined as:

S146) = S04) D S2+41) D S541) D S(641) D S1544)
& Sur4e) D Sas+t) D S20+t) E S(2544)
@ S(gy)Ss+t) D Ssre)S20+t) D S1246)S21+1)
© S1at4)S19+0) B Sa744)S2144) B S(2044)S(2241)
® Syt Sa2+46)S@2+6) D Sat)S19+6)S(2241)
& Sr40)9204t)S21+1) D S(8+)S(18+4)S(2241)
@ S(s41)S20+1)S22+t) D S(1246)S19+)S(22+4)
@ S2044)S@140)522+41) D Sart)S7+4)S124¢)
S144) B Sat6)Sr+6)S9+6)S2144) D S(att)
Sa2+6)S@1+4)S@2+1) D Sat4)S19+)S21+41)
S@2+t) © S(r46)S8+4)S(18+0)S(214t) D S(741)
S+6)S20+0)S@141) © S(r40)S12+46)S19+4)
S@1+t) © Sg+t)S8+)S2144)S(22+¢) B S(8+1)
S0+t)S21+4)S(2241) D S1244)S(19+4)S(21+1)



Algorithm 7 Quantum circuit for complete TinyJAMBU

1: procedure KEY SETUP

2 Update the state using Pjo24
3: end procedure

4: procedure NONCE SETUP

5: for i < 0,2 do

6 NOT (s36)

7 Update the state using Psga
8 for j + 0,31 do

9: if nonce(sait;) == 1 then
10: NOT (5j+96)

11: end if

12: end for

13: end for

14: end procedure
15: procedure PROCESSING ASSOCIATED DATA
16: for i < 0,2 do

17: NOT (836), NOT (837)

18: Update the state using Psga
19: for j + 0,31 do

20: if ad(32i+]‘) == 1 then
21: NOT (SjJrge)

22: end if

23: end for

24: end for

25: end procedure
26: procedure ENCRYPTION
27: for j «+ 0,3 do

28: NOT (836), NOT (838)

29: Update the state using Pio24
30: for i + 0,31 do

31: CNOT (ptszs«j+i, S96+i)
32: end for

33: for i + 0,31 do

34: CNOT (564+i,pt32*j+1;)
35: end for

36: end for

37: end procedure




S2+1)

(7)

The second register NFSR2 is of 90 bit and the update function is defined as:

Bsot+t) = S(o+t) ® Boyt) © Baayt) D Bgrt) © Brote)
® B(gatt) © Bay)Bsort) D Bote) B+t
@ Bis+4)Bi6+t) ® Bas+1) B3t © B3s1t)
Ba241) ® B(s5+t)B(s8+t) D B6o+1) B(r4+¢)

@ B20+1)B22+t)B(23+t) © Bsa+t)B(es+t) Bra+t)

& Brr4)B(so+t) Bs1+t) B(ss+t)
The output bit z is a function from {0,1}°® to {0,1}. For round ¢,
4=LoQoToT,
where:

Li = B(rt) © Baisy) ® Bort) ® Baote) © Bas+e)
& B(s4+t) D B(ri41)

Qi = Byt Beitt) ® Bt B2ty © BasynBarin
® B(aatt) Broyt)

Tt = Bs1t) @ By Bi2vt) ® Baart)Ber+o)Brs+t)
@ Bayt)B(asyt)Bai 1) Bes+t)
® B13+t)B2o+t) B(so+t) Beart) B(rs+t) © Be+t)
Bayt)Be+t) B2+t Bar+) Be1+t) © Bate
Boyt)Berit)Bs+4) Bt Bee+t) B(rst)

Tt = S@s+t) D S+6)S16+t) D Sio41)S(134+1) Buas+t)
® S5 a+t) B3s1t)B63+t)

The state initialization process is divided into 4 phases.
Phase 1: Key and IV Loading;:

(10)

(11)

(13)

Let K = (Ko, ..., K119) be the 120-bit key and IV = (IVp, ..., IVg3) the 64-bit

public IV. The state is initialized as follows:

BY — K; ® 1V, for 0 <j <63
’ K; for 64 < j < 89

J

K(jy90y, for0<j <28
SO = K19 @1, for j =29
1 for j =30



Phase 2: Grain-like Mixing:

In this phase the output bit z; is fed back into both NFSRs for 0 < ¢ < 127.
This type of approach is used in Grain family.

Phase 3: Second Key Addition:

In this phase, the 120-bit key is XORed to both NFSRs as follows:

Bj* =B*® @ K;, for 0<j <89

8129 _ 5}28 ©® K(j+90)7 for 0 S] < 29
’ 1, for j = 30

Phase 4: Final Diffusion:

This phase is exactly similar to phase 2 except z; is not fed back into the NFSRs.
In this phase, one has to run both NFSRs 128 rounds. So after this phase, reg-
isters are (S3°7,...,S8%357) and (B3°7,..., B2"). Now Lizard is ready to produce
output key stream bits.

3.6 Quantum Circuit for LIZARD

The state size of LIZARD is 121, so we need 121 qubits for the state, 31 for
NFSR1 (denoted as n1) and 90 for NFSR2 (denoted as n2). The key size is 120
and the key is used twice in the state initialization phase so we need 120 qubits
for keys. For complete description of the cipher the readers are referred to |[10].
We first describe the implementation of the feedback functions of the two ciphers
and the output function in Algorithm 8] The gates toffoli3,toffoli4, toffoli5, toffoli6
and toffoli7 can be constructed following the circuits described in and
ancli],0 < ¢ <9 are ancillae.

Proposition 9 The circuit to implement the feedback function of NFSRI re-
quires 35 CNOT gates, 17 Toffoli gates and 4 NOT gates, that of NFSR2 requires
8 CNOT gates and 21 Toffoli gates and output function requires 16 CNOT gates
and 56 Toffoli gates.

Using the procedures defined in Algorithm [8| the circuit for full LIZARD can
be constructed as described below:

- Circuit for Phase 1: The state is initialized by the values of key and IV by
using CNOT gates to copy the values of key to the state and then adequate
number of NOT gates to initialize the state with IV bits. So in this step we
require 120 CNOT gates and a maximum of 66 NOT gates, considering that
IV is all 1’s.

- Circuit for Phase 2: This phase mixes the state in the same way as Grain
family of ciphers, so we can construct the circuit for this phase as described
for Grain-128-AEAD for 128 rounds. This phase requires 7808 CNOT gates,
12032 Toffoli gates and 512 NOT gates.



Algorithm 8 Quantum circuit for the update and output function of LIZARD

1: procedure UPDATE FUNCTION OF NFSR1 AT ANY TIME ¢
2: for i =2,5,6,15,17,18,20,25 do
CNOT (nl[(i 4+ t)%31],n1[(t)%31])
end for
Toffoli (n1[(14 + t)%31],n1[(19 + t)%31], anc|0])
Toffoli (n1[(17 + t)%31], n1[(21 + t)%31], anc|0])
[
)

CNOT (anc[()} n1[(0 +t)%31])

Toffoli (n1[(17 + t)%31], n1[(21 + t)%31], anc|0])
9: Toffoli (n1[(14 + t)%31], n1[(19 + t)%31], anc|0])
10: CNOT (nl[(21 + t)%31], anc([1])

11: NOT (anc[1])

12: Toffoli (n1[(20 + t)%31], n1[(22 + t)%31], anc[1])
13: CNOT (anc[1],n1[(0 + t)%31])

14: Toffoli (n1[(20 + t)%31],n1[(22 + t)%31], anc[1])
15: NOT (anc[1])

16: 1=[21,4,19], m = [1,3,3]

17: for i + 0,2 do

18: CNOT (nl[(1[z] + t)%31], anc[m[i]])

19: end for

20: CNOT (anc[3], anc[2])

21: Toffoli (n1[(12 + t)%31], n1[(22 + t)%31], anc|2])

- Circuit for Phase 3: In this phase the key is XORed into the state which can
be implemented using the CNOT gates. So, this step requires 120 CNOT
gates and 1 NOT gates

- Circuit for Phase 4: This final phase is similar to Phase 2 with the exception
that the feedback is discarded. This phase requires 7552 CNOT gates, 12032
Toffoli gates and 512 NOT gates.

- Circuit for key generation: This step is same as Phase 4, where the keystream
are stored instead of discarding it. This phase requires 7552 CNOT gates,
12032 Toffoli gates and 512 NOT gates.

3.7 Resource Estimation

Cost of implementing the ciphers We estimate the cost of the stream ciphers
when the cipher produces k+ c-bit keystream, where k is the key size and ¢ = 10,
and the cost of implementing TinyJAMBU when it encrypts 128 bits of plaintext
with 96 bits of nonce and associated data each. In our estimates we assume that
the nonce and the associated data is known. Table [1| gives the cost estimates of
implementing the ciphers.

Cost of Grover Oracle Using Eqn [1)2[3l4ll5| the cost estimates for all ciphers are
presented in Table



22: CNOT (anc[2],n1[(0 + t)%31])

23: Toffoli (n1[(12 + t)%31],n1[(22 + t)%31], anc|2])
24: CNOT (anc[3], anc[2])

25: CNOT (n1[(7 4 t)%31], anc[4])

26: CNOT (n1[(22 + t)%31], anc[4])

27: Toffoli (anc[3], anc[4], anc[5])

28: NOT (anc[5])

29: Toffoli (n1[(12 + t)%31],n1[(21 + t)%31], anc[5])
30: CNOT (anc|5],n1[(0 + t)%31])

31: Toffoli (n1[(12 + t)%31],n1[(21 + t)%31], anc[5])
32: NOT (anc[5])

33: Toffoli (anc[3], anc[4], anc[5])

34:  1=1[22,7,19,4,18,20], m = [4,4,3,3,6, 6]

35: for i < 0,5 do

36: CNOT (n1[(1] + t)%31], anc[m[i]])

37: end for

38: Toffoli (n1[(8 + t)%31], anc[6], anc|7])

39: CNOT (anc[7],n1[(0 + t)%31])

40: CNOT (n1[(7 4 t)%31], anc[8])

41: CNOT (n1[(22 + t)%31], anc[8])

42: Toffoli (n1[(21 + ¢)%31], anc[8], anc[9])

43: CNOT (n1[(22 + t)%31], anc[9])

44: Toffoli (anc[9], anc[7],n1[(0 + t)%31])

45: CNOT (n1[(22 + t)%31], anc|9])

46: Toffoli (n1[(21 + t)%31], anc[8], anc]9])

47: CNOT (n1[(22 + t)%31], anc[8])

48:  CONOT (nl[(7 + £)%31], anc]s))

49: Toffoli (n1[(8 + t)%31], anc|6], anc[7])

50: CNOT (n1[(20 + t)%31], anc|6])

51:  CNOT (nl[(18 + t)%31], ancl6])

52: end procedure

53: procedure UPDATE FUNCTION OF NFSR2 AT ANY TIME ¢
54:  for i = 24,49,79,84 do

55: CNOT ((n2[(¢ + t)%90], n2[(t) %90])

56: end for

57: 1 =13,10,15,25, 35,55, 60]

58: m = [59, 12,16, 53,42, 58, 74]

59: for i + 0,6 do

60: Toffoli ((n2[(1[¢] 4+ t)%90], n2[(m[i] + t)%90],
n2[(t)%90])
61: end for

62: toffoli3(n2[(20 + t)%90], n2[(22 + t) %90],
n2[(23 + t)%90], n2[(t)%90])




63:

64:

65:
66:
67:
68:
69:
70:
71:
72:

73:
74:

75:

76:

77:

78:

79:
80:
81:

82:

toffoli3(n2[(62 + t)%90], n2[(68 + t)%90],
n2[(78 + )%90], n2[(£)%90])
toffolid(n2[(77 + ¢)%90], n2[(80 + £)%90],
n2[(81 + £)%90], n2[(83 + ¢)%90],

n2[()%90])

end procedure
procedure OUTPUT FUNCTION AT ANY TIME t

for ¢ = 7,11, 30,40,45,54,71,5 do
CNOT ((n2[(i + t)%90], y[t])
end for
1=14,9,18,44,8], m = [21,52, 37,76, 82]
for i < 0,4 do
Toffoli (n2[(I[] + ¢)%90],
n2[(m[i] +t)7%90], y[t])
end for
toffoli3(n2((34 + £)%90], n2[(67 + £)%90],
n2[(73 + t)%90], y[t])
toffolid(n2[(2 + t)%90], n2[(28 + t)%90],
n2[(41 + t)%90], n2[(65 + t)%90], y[t])
toffolis (n2[(13 + £)%90], n2[(29 + £)%90],
n2[(50 + t)%90], n2[(64 + t)%90],
n2[(75 + 1)%90). y[t]
toffth(nQ[(G + t)%90], n2[(14 + t)%90],
n2[(26 + 1)%90], n2[(32 + 1)%90],
n2[(47 + 1)%90], n2[(61 + £)%90], y[t])
toffoli7(n2[(1 + t)%90], n2[(19 + t)%90],
n2[(27 + t)%90], n2[(43 + t)%90],
n2[(57 + 1)%90], n2[(66 + £)%90],
n2[(78 + t)%90], y[t])
CNOT ((nl[(23 + t)%31],y[t])
Toffoli (n1[(3 + t)%31],n1[(16 + t)%31], y[t])
toffoli3(n1[(9 + ¢)%31], n1[(13 + ¢)%31],
n1[(48 + t)%31], y[t])
toffolid(n1[(1 + ¢)%31], n1[(24 + £)%31],
n2[(38 + t)%90], n2[(63 + t)%90], y[t])

83: end procedure




Table 1: Cost of implementing the ciphers

ciphers # NOT|# CNOT|# Toffoli|depth|# qubits
Grain-128-AEAD(k = 128)| 127 13624 18116 |13068| 531
TinyJAMBU (k = 128) 209 29824 14848 |22274| 385
TinyJAMBU (k = 192) 209 32384 16128 |24194| 449
TinyJAMBU (k = 256) 209 34944 17408 26114 513
LIZARD (k = 120/80) 1611 23014 36284 |33354| 392
Grain-vl (k = 80) 580 10830 15500 [13031| 346

Table 2: Cost of Grover oracle

cipher # Clifford gates|# T gates|T-depth|full depth|# qubits
Grain-128-AEAD 317358 257956 | 144928 | 151902 532
TinyJAMBU (k = 128) 595524 423852 | 118784 | 252418 771
TinyJAMBU (k = 192) 646852 463788 | 129024 | 274178 899
TinyJAMBU (k = 256) 698180 503724 | 139264 | 295938 1027
LIZARD (k = 120/80) 629794 512052 | 290272 | 421986 393
Grain-vl (k = 80) 270820 219796 | 124000 | 149772 347

Cost of exhaustive key search Using the estimates in Table[2of the Grover oracle
for the various variants, we provide the cost estimates for the full exhaustive key
search |Table 3| We consider L%2k/ 2| iterations of the Grover oracle, where k is
the key size. The gate cost G is the sum of the Clifford gates and T gates.

Table 3: Cost estimates of Grover’s algorithm with | 22%/2] oracle iterations, i.e.,

multiplication of the values in Table |§| by |Z2+/2].
cipher # Clifford gates| # T gates |Gate Cost (G)| T-depth |Full depth (D)|# qubits
Grain-128-AEAD 1.902-2%0  [1.546- 25T 1.724-2% |1.737-2%0| 1.820-2% 523
TinyJAMBU (k= 128)| 1.784-2% [1.270-2%2| 1.527.2% [1.424.2%| 1.513.2% 771
TingyJAMBU ( k£ = 192)[ 1.938 -2 [1.390 - 2™7| 1.664 -2 [1.546-2™2| 1.643-2'"3 889
TinyJAMBU (k = 256) | 1.046 - 2™ [1.509 - 2% 1.800-2™" [1.669 - 2™ 1.774.2'% 1027
LIZARD (k = 120/80) 1.887 - 27 1.534-278 1.711-27 [1.739-277| 1.264-27 393
Grain-vl (k = 80) 1.623-2°7  [1.317-2°7| 1.470-2°® |1.486-2°°| 1.795.2% 347

3.8 Cost of Grover search under NISTs MAXDEPTH limit

NIST provides a table with gate cost estimates depending on the depth bound
MAXDEPTH. The security strength categories 1,3 and 5 are defined by the
resources needed for key search on AES-128,-192 and -256 respectively. These
estimates are deduced as follows:

Let the circuit for a non-parallel Grover search require a depth of D =
d- MAXDEPTH , for some d > 1 and have a total of G gates.



Then for a quantum attack to fit within the MAXDEPTH constraint while
attaining the same success probability, about d? machines are needed where each
machine run for a fraction 1/d of the time and uses almost G/d gates.

So, the total gate count for a parallelized Grover search is approximately (G/d) -
@ = GryxxbErTn-

The cost estimates provided by NIST is deduced from the results in [6]. In
we provide the gate counts for Grover search on both the ciphers under
the constraint of MAXDEPTH.

Table 4: Cost of Grover search on the ciphers under MAXDEPTH, the final col-
umn provides the product of the gate counts in each cell by MAXDEPTH. Note
that * denotes a special case as the attack doesnot require any parallelization
and the approximation underestimates the cost.

k MAXDEPTH= 2" [MAXDEPTH= 2" [MAXDEPTH= 2°°|] G D
NIST |23 2130 2106 274 2170
198 |Grain-128-AEAD 1.569 - 2123 1.569 - 299 1.724 - 282’: 1.569 - 2163
TinyJAMBU 1.155 - 21%° 1.155 - 2191 1.527 - 283 1.155 - 216°
AES [13] 1.07 - 217 1.07-2% 1.34 - 28% ~ 2157
NIST |23 2193 2109 2137 2255
192 | TinyJAMBU 1.367 - 2189 1.367 - 216° 1.367 - 2133 1.367 - 2220
AES |13] 1.09 - 2181 1.09 - 2157 1.09 - 2126 ~ 272
NIST [23] 9758 9231 5202 9298
256 TinyJAMBU 1.596 - 22°3 1.596 - 222° 1.596 - 2197 1.596 - 2293
AES [13] 1.39 - 2245 1.39 - 2221 1.39 - 2190 ~ 2%8%
120/80 LIZARD 1.081 - 2118 1.081 - 2% 1.711- 27" 1.081 - 2158
30 Grain-v1 1.319.27 1.470 - 255 1.470 - 2557 1.319 - 215

shows that the ciphers Grain-128-AEAD and TinyJAMBU can be
considered broken by an attack with gate count 1.569 - 223 and 1.155 - 2125,
respectively, in depth MAXDEPTH = 2%°. Also, LIZARD provides a better
security when compared to Grain-v1 in providing a 80-bit key security. However,
in Section [4} we will show how LIZARD can be cryptanalyzed with much less
complexity when we exploit the BSW sampling and Grover together.

3.9 Throwing away initial keystreams increases circuit complexity

Most stream ciphers generally have two phases: the state initialization phase and
the keystream generation phase. Consider that the circuit for a stream cipher is
constructed so that we can carry out the state initialization phase completely
and let it require Cj,; Clifford gates, Ty T-gates and Q;ni; qubits. Also, let
generation of one keystream bit require Cy,. Clifford gates, Ty, T-gates and
Qstr qubits, then generating p keystream bits will require p - Cy,- Clifford gates,
o+ T T-gates and p - Qg qubits.

Let us assume that the keystream available to us was generated after certain
rounds, say -y, of key generation phase. In this case the resources required would



be 2¢-2% - (Cinit + (7 + p) - Catrr) Clifford gates, 2¢- 25 - (Tini + (v + p) - Tser)
T-gates and Qini¢r + (v + p) - Qstr qubits, where ¢ = 7§, k is the key size and
un-computations add a factor of 2 in each Grover iteration.

Let us assume that a quantum attack on the cipher is said to be successful
if it requires C,; Clifford gates, T; T-gates and @), qubits, then we must have

@ (Cinit + (v +p) - Cstr) < Cy
@ (Tinit + (v +p) - Tser) < Ty
(Qinit + (v +p) - Qstr) < Qq
(Cy/a) = Cinit (Ty/a) = Tinit
CStT‘ ’ T‘?t?" ’
Qq — Qinit

T} - p} (14)

= v < {min{

for a fixed p, where o = 2¢ - 25 ..

Corollary 1. If we have a standard value for Cy, T, and @)y, then for a cipher
to be resistant to Grover search algorithm it must satisfy

(Cq/a) = Cinit (Ty/a) — Tinit Qq — Qinit
Cst’r ’ Tstr ’ Qstr
- p}

If we consider the bound of 2170 to be the standard parameter to measure the
security of a cipher in the post-quantum framework and make the following
assumptions: the cipher (FSR based stream cipher) is resistant to slide attack
(different key/iv pairs should not be easily found that generate shifted key-
stream) and the feedback/output functions cannot be changed, then we have
the following results:

v > {min{

}

1. Grain-128-AEAD will be secure form the Grover’s key search algorithm if
the first 227 keystreams are not used for encryption

2. For TinyJAMBU (with 128-bit key) to be secure, the keyed permutation
P1024 have to be replaced by P23040 and P384 by P8192 (thlS is one of the
minimum values which can be used to replace, for example Psg4 could be
replaced by a higher value and corresponding change made to Pjga4).

3. LIZARD cannot be secure as one key/IV pair can be used to produce only
2'8 bits of keystream and we will need to throw away atleast 2*° bits of
keystream

4. To make Grain-v1 secure we will need to run the key generation phase atleast
258 times before using the keystream for encryption.

4 Grover with BSW sampling for state recovery

In this section we implement Grover with BSW sampling of keystream to recover
the state of a cipher.



Consider a cipher with state size n, i.e., the total search space is N = 2™. We
then try to deduce some bits from the secret state by fixing certain key stream
bit pattern. So, fixing

- 7 bits of the state to a specific pattern
- assuming a specific pattern of 1 keystream bits, and
- assigning values to the rest of the n — 7 — 1) state bits

we try to deduce v bits of the state. The total search space now reduces to
N’ = 2"=7=%_ So, if Grover is applied on this reduced search space the time
complexity reduces. We implement this attack on LIZARD and Grain-v1.

The results of sampling presented in [21] is used for LIZARD and the results
in [25] is used for Grain-v1.

4.1 Implementation of the attack

For a quantum adversary we assume that he has a knowledge of 7 and v of the
cipher. Then he can apply Grover to recover the state as follows:

1. Take a quantum register containing n qubits. Initialize the 7 qubits to the
given specific pattern using adequate number of NOT gates (for example if
the pattern is 000 - - - 011 then we require two NOT gates).

2. Implement the circuit to obtain values of the ¥ qubits. Each of these 1 bits
are recovered using an equation which involves the fixed bits and few guessed
bits. These equations can be implemented as circuits and then integrated in
the complete circuit of the cipher to be used in Grover oracle.

3. Construct a Boolean function f which takes a quantum register .S of length
(n — 7 — ) as input and satisfies

£(S) = {1 if ksq = ks,

0 otherwise

where ks, is the output of the Grover oracle and ks, is the keystream avail-
able to us. The size of ksq(ks.) depends on the cipher as described in
We only run the Grover’s algorithm when a specific 1 bit pattern is found
in the key stream.

4. Initialize the system by making a superposition of all possible 2"~ "~ ¥states
with same amplitude

251

1
1S) = 557 2 193
=0

(a) For any state |.S;) in the superposition |S), rotate the phase by 7 radians
if f(S;) =1 and leave the system unaltered otherwise.
(b) Apply the diffusion operator.
Iterate 2(a), (b) for O(2("=7=%)/2) times.
6. Measure the system and observe the state S = Sy with probability atleast
(1), where S is the secret key.

o



4.2 Complexity Analysis

If we consider that querying the cryptographic oracle requires one unit of time,
then from Step 5, we see that the time complexity of this attack is T' = 9=
Under this assumption the complexity of applying this attack on LIZARD and
Grain-v1 is given in where T is the number of times the attack queries
the cryptographic oracle and D is the amount of data required for the attack to
be successful.

The probability of getting a 1-bit keystream is 2%, Also once we obtain a
n — 1 — 7 bit state we try to recover the complete n—bit state by computing
the remaining 7 state bits. Now, 7 bits of the actual state may not be of the
pattern as decided during the preparation of the equations. Thus, obtaining the
correct state has a probability of 2% Hence, to make the attack successful, the

data complexity will be D = 2¥+7.

Table 5: Grover with BSW sampling on LIZARD and Grain-v1 for state recovery
Ciphers |Key Size (k)|State Size (n)|¢ + 7|Time (T")|Data (D)
LIZARD 120 121 40 | 277 270
Grain-v1l 80 160 53 | 2°%° P

We can see in that this attack is more efficient on ciphers with small
state size compared to the key size. One solution to this might be increasing
1 + T, i.e. recovering more state bits by fixing more state bits will reduce the
time complexity of the attack, but while computing the complexity of an attack
we consider the maximum of time and data complexity. So the data should
bounded by time i.e., D < T, which gives (¢ +7) < "==%) — 3(4p417) < n,
where n is the state size. So, the parameters obtained in is the best
parameters for these ciphers.

LIZARD claims a 60-bit security on state recovery. A conditional TMDTO
on LIZARD by [21] recovers the state in online time 2°4, so the time complexity
obtained here is the least.

4.3 Estimating resources required for the attack

Here we estimates the resources required to implement the above described at-
tack on LIZARD and Grain-vl. The estimates are given in Table [6]

For this attack we modify the circuit of the cipher to only run the key gen-
eration phase. Let the cost of generating k bits of keystream required for the
attack be called keystream generation cost.

The oracle is constructed as described in with ENC representing a
cipher running only the keystream generation phase. The oracle cost estimates
the cost of constructing the Grover oracle for running two cipher instances.



The state recovery cost estimates the cost of iterating the Grover’s search
(n=7=9)
2 times.

algorithm on the above described oracle 2

Table 6: Cost of implementing the attack
Costs Cipher |# Clifford gates|# T gates| T-depth |full depth|# qubits
LIZARD| 1.492-2™  [1.205-2%%(1.377-215]1.978 - 21°[ 259
Grain-vl| 1.320-2'  [1.060-2'%|1.211 - 2'|1.468 - 2'*| 256
LIZARD| 1.499 - 2T 1.239 - 2™8[1.388 - 276[1.994 - 2T6] 519
Grain-vl| 1.331-2'7  [1.105-2'7|1.227 - 2'5(1.487 - 25| 513
LIZARD| 1.665-2° 1.376 - 2°%[1.542 - 2°6[1.107 - 2°7| 519
Grain-vl| 1.478.27° ]1.227-27°|1.362 - 2%%|1.651 - 28| 513

keystream generation cost

Oracle cost

State recovery cost

Cost of the attack under NISTs MAXDEPTH limit Using the results of Table[6]
we estimate the cost of state recovery under NISTs MAXDEPTH constraint in

The process to estimate this cost is described in

Table 7: Cost of Grover state recovery under MAXDEPTH limit, the final column
provides the product of the gate counts in each cell by MAXDEPTH.

k MAXDEPTH= 2®°[MAXDEPTH= 2%¥ [MAXDEPTH= 2%%] G x D
120|LIZARD 1.684 - 278 1.376 - 258 1.376 - 258 1.684 - 2116
128|Grain-v1 1.116 - 2100 1.116- 278 1.227.27 1.116 - 2™

Comparing the results in [Table 7] and [Table 4] we can see that LIZARD can
be attacked by Grover with BSW sampling for state recovery with a much lower
quantum gate cost as compared to exhaustive key search using Grover. However
for for Grain-v1 the Grover’s key search attack is more efficient.

5 Conclusion

In this work we study quantum cryptanalysis of FSR based symmetric ciphers,
along with the FSR based block cipher TinyJAMBU. We construct compact
reversible quantum circuits for popular Feedback Shift Register (FSR) based
ciphers such as Grain-128-AEAD, TinyJAMBU, LIZARD, and Grain-vl. We
study the cost of implementing Grover’s key search algorithm on these ciphers
under the NISTs MAXDEPTH constraint and find that all these ciphers fail to
satisfy the security constraints. We observe that the increase in circuit size to
reduce chances of getting a false positive is lesser for symmetric ciphers compared
to block ciphers, although the difference is that of a constant factor ~ 2. We
also implement Grover for state recovery in conjunction with BSW sampling and



find that LIZARD can be attacked with a much less gate cost as compared to
quantum key search using Grover. Our estimates are not tight as we have used
some assumptions and obtaining better gate counts for these circuits remains
an intriguing problem. We have tried to optimize the cipher as a whole which
ofcourse is not optimal. If each sub-operation is optimized individually then one
may achieve better results. Also the use of other decompositions of various gates
may result in a lower count of the gates or depth of the circuits. Also future
works on various quantum error correcting schemes may provide a significantly
optimized results in reality.
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A Circuits for Equation used for state bits recovery

A.1 For LIZARD

The equations used for recovery of state bits is given in (Table 4, Appendix, [21]).
We give here the circuit to recover n1[3] considering that the keystream pattern
fixed had the first bit as 0, i.e. zg = 0. Even if z5 = 1, it would not affect the
circuit immensely as only addition to the circuit would be NOT gate.

The equation to recover nl[3] is

nl[3] =zo ® n2[7] & n2[30] & n2[40] & n2[54] & n2[71]
® n2[44]n2[76] & n2[34]n2[67]n2[73]
@ n2[2]n2[28|n2[41]n2[65] & n1[1]n2[38]n2[63]
The circuit for this equation is constructed as described in Algorithm[J} A similar

approach can be followed to construct the circuit for other equations required
for state bits recovery.

Algorithm 9 Quantum circuit for recovery of state bit n1[3]

1: procedure RECOVERY OF STATE BIT nl[3]
2: for i = 7,30,40,54,71,5 do
CNOT (n2[i],n1[3])
end for
toffoli3(n2[34], n2[67], n2[73], n1[3])
toffoli4(n2[2], n2[28], n2[41], n2[65], n1[3])
toffoli3(n1[1], n2[38], n2[63], n1[3])
end procedure

A.2 For Grain-vl

The equations used for recovery of state bits is given in (Appendix [20}25]). We
give here the circuit to recover b[10] considering that the keystream pattern fixed
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had the first bit as 0, i.e. zg = 0. The equation to recover byg is given by
bio = b1 @ by @ bs P b31 B bas B bsg B h(ss, S25, S46, S64, be3)

The circuit for this equation is constructed as described in Algorithm The
other equations can be constructed similarly.

Algorithm 10 Quantum circuit for recovery of state bit b[10]

1: procedure RECOVERY OF STATE BIT b[10]
2: for i=1,2,4,31,43,56 do

3: Apply CNOT (b[i], b[10])

4: end for

5: Toffoli s[(46)%n], b[(63)%n], ye[0])
6: Toffoli s[(3)%n], s[(46)%n], ye[1])
T for i = 25,64 do

8: CNOT (s[i%n], ye[2])

9: end for

10: for ¢ = 3,46,64 do

11: CNOT (s[t%n], ye[3])

12: end for

13: Toffoli ye[2], ye[0], s[(0)%n])

14: Toffoli ye[2], ye[1], s[(0)%n])

15: Toffoli ye[3], s[(64)%n], s[(0)%n])
16: NOT (ye[1])

17. CNOT (yell], b[10])

18:  CNOT (b[(63)%n], b[10])

19: NOT (ye[1])

20: for i = 64,46,3 do

21: CNOT (s[t%n], ye[3])

22: end for

23: for i = 64,25 do

24: CNOT (s[t%n], ye[2])

25: end for

26: Toffoli s[(3)%n], s[(46)%n], ye[1])
27: Toffoli s[(46)%n], b[(63)%n], ye[0])
28: end procedure

B Brief summary of Grain-v1

Grain-v1 has a 160 bit state and supports 120-bit key and 64-bit IV. The 160
bit state is divided into one LFSR and one NFSR each of 80 bits each. At any
time ¢, let the contents of the LESR be denoted by (s¢, S14¢, - S79+¢) and the
contents of NFSR be denoted by bs, 144, - - - brg4t.



The update function of LFSR is defined as

F(St) = 51480 = St D St413 D Se123 D Sty38 B St451

@ St+62,

and the update function of the NFSR is defined as

9(Bt) = biygo = 8¢ D brye2 D bryeo © brysa © byyas © byyar
D br433 D byg2g @ bryor D byy1a D bigg @ by
® br163bt+60 D br43701133 D bry15bi+9
@ biy60bi 15208145 D by 33b 128br 121 D biyes
bi1 450t 128bs19 © bryeobit52bi13708 133 D byie3
bi160bi+21bi115 D bry63bi+60b1+5201+4501437
® by+33b12801 12101115140

@ byy52bt 4450143704330 12801121,

and the output function is defined as

2 = E et B h(St43, St+25, St446, St+64; bi163)
ke A

where A = {1,2,4,10,31,43,56} and h is defined as

h(z) = 21 ® T4 ® zox3 D Tox3 D T34 D ToT1T2 D ToT223

D rox2Ts B X1T224 P T2x3T4

where g, z1, T2, T3, T4 corresponds to S¢i3, St125, St446,
St+64, be+e3 respectively.

B.1 Circuit to implement Grain-vl

(15)

In Grain-v1, the state is of size 160-bits and the length of key is 80, so we require
160 qubits for the state and 80 qubits for the key. As a keystream of length 128
is sufficient to obtain a unique key, so we need 128 qubits for the keystream.

Using the Algorithm [I1] the complete circuit for Grain-vl can be constructed

following the process used while constructing Grain-128-AEAD.



Algorithm 11 Implementing update function of LFSR

1: procedure f(S;)(UPDATE FUNCTION OF LFSR AT ANY TIME ¢)
2:  for i=13,23,38,51,62 do

3: Apply CNOT (s(iy1)%128, St%128)

4: end for

5: end procedure

6: procedure ¢g(B:)(UPDATE FUNCTION OF NFSR AT ANY TIME ¢)
T Apply CNOT (S(t)%128» bt%128)

8: for ¢ = 9,14, 21,28, 33,37,45,52,60,63 do

9: CNOT (b(it+t)%128, bi%128)

10: end for

11: for i = 0,9, 14, 21, 28, 33, 37,45, 52, 60,62 do

12: CNOT (s[(¢ + t)%n], b[(t)%n])

13: end for

14: 1 =163,37,15], m = [60,33,9]

15: for i + 0,2 do

16: Toffoli b[(I[7] + t)%n], b[(m[i] + t)%n], b[(t)%n])
17: end for

18: toffoli3(b[(60 + t)%n], b[(52 + t)%n],

b[(45 + t)%n], ge0[0], geO[1],
bl(t)%nl)

19: toffoli3(b[(33 + t)%n], b[(28 + t)%n],
b[(21 + t)%n], gel|0], gel[1],
bl(t)%n])

20: toffolid(b[(63 + t)%n], b[(45 + t)%n],
b[(28 + t)%n], b[(9 + t)%n],
4e2[0], ge2[1], ge2[2], b{(1) %n)

21:  toffolid(b[(60 + £)%n], b[(52 + t)%n],
B[(37 + £)%n), b[(33 + £)%n],
4e2[0], ge2[1], ge2[2], b{(1) %om)

22: toffolid(b[(63 + t)%n], b[(60 + t)%n],
b[(21 + t)%n], b[(15 + t)%n],
9e2(0], ge2[1], ge2 (2], b{(1) %om)

23: toffoli5(b[(63 + t)%n], b[(60 + t)%n],
b[(52 4 t)%n], b[(45 + t)%n],

b[(37 + t)%mn], b[(t)%n])

24: toffoli5(b[(33 + t) %on], b[(28 + t)%n],
b[(21 + t)%n], b[(15 + t)%n],

b{(9 + 1) %n], bl(¢)%n])

25: toffoli6(b[(52 + t) %on], b[(45 + t)%n],
B[(37 + £)%n), [(33 + £)%n],

b[(28 + t)%n], b[(21 + t)%n], b[(t)%on])

26: end procedure

27: procedure z,(OUTPUT FUNCTION AT ANY TIME t)

28: Toffoli s[(46 + ¢)%n], b[(63 + t)%n], ye[0])

29: Toffoli s[(3 + t)%n)], s[(46 + t)%n], ye[1])

30: for i = 25,64 do

31: CNOT (s[i%n], ye[2])
32: end for

33:  fori=3,46,64 do

34: CNOT (s[i%n], ye[3])
35: end for

36: Toffoli ye[2], ye[0], s[(t)%n])

37 Toffoli ye([2], ye[1], s[(t)%n])

38: Toffoli ye[3], s[(64 + ¢)%n], s[(t)%n])
39: NOT (ye[1])

40: CNOT (ye[1], z[t])

41: CNOT (b[(63 4 t)%n], z[t])

42: NOT (ye[1])




43: for 1 = 64,46,3 do

44: CNOT (s[t%n], ye[3])
45: end for

46: for i = 64,25 do

47: CNOT (s[i%n], ye[2])
48: end for

49: Toffoli s[(3 + t)%n], s[(46 + t)%n], ye[1])
50: Toffoli s[(46 + t)%n], b[(63 + t)%n], ye[0])
51 for i=1,2,4,31,43,56 do

52: Apply CNOT (bi + t], z[t])

53: end for

54: end procedure
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