
Interactive Proofs for Quantum Black-Box Computations

Jiang Zhang∗ Yu Yu† Dengguo Feng‡ Shuqin Fan§ Zhenfeng Zhang¶

Kang Yang∥

Abstract

In this paper, we initiate the study of interactive proofs for the promise problem QBBC
(i.e., quantum black-box computations), which consists of a quantum device D(|x⟩ |y⟩) =
|x⟩Dx(|y⟩) acting on (n+m) qubits for some self-joint unitary Dx (i.e., Dx(Dx(|y⟩)) = |y⟩),
a classical device RF deciding the input-output relation of some unknown function F :
{0, 1}n → {0, 1}m, and reals 0 < b < a ≤ 1. Let p(D, x) = ∥ |x, F (x)⟩ ⟨x, F (x)| D(|x⟩ |0m⟩)∥2
be the probability of obtaining (x, F (x)) as a result of a standard measurement of the (n+m)-
qubit state returned by D on input |x⟩ |0m⟩. The task of the problem QBBC(D,RF , a, b) is
to distinguish between two cases for all x ∈ {0, 1}n:
• YES Instance: p(D, x) ≥ a;
• NO Instance: p(D, x) ≤ b.
First, we show that for any constant 15/16 < a ≤ 1, the problem QBBC(D,RF , a, b)

has an efficient two-round interactive proof (PD,VRF) which basically allows a verifier V,
given a classical black-box device RF , to efficiently verify if the prover P has a quantum
black-box device D (correctly) computing F . This proof system achieves completeness 1+a

2
and soundness error 31

32 +
ϵ
2 +negl(n) for any constant max(0, b− 15

16) < ϵ < a− 15
16 , given that

the verifier V has some (limited) quantum capabilities. In terms of query complexities, the
prover PD will make at most two quantum queries to D, while the verifier VRF only makes
a single classical query to RF . This result is based on an information versus disturbance
lemma, which may be of independent interest.

Second, under the learning with errors (LWE) assumption in (Regev 2005), we show that
the problem QBBC(D,RF , a, b) can even have an efficient interactive proof (PD,VRF) with
a fully classical verifier V that does not have any quantum capability. This proof system
achieves completeness 1+a

2 − negl(n) and soundness error 1+b
2 + negl(n), and thus applies

to any QBBC(D,RF , a, b) with constants 0 < b < a ≤ 1. Moreover, this proof system has
the same query complexities as above. This result is based on the techniques introduced in
(Brakerski et al. 2018) and (Mahadev 2018).

As an application, we show that the problem of distinguishing the random oracle model
(ROM) and the quantum random oracle model (QROM) in cryptography can be naturally
seen as a QBBC problem. By applying the above result, we immediately obtain a separation
between ROM and QROM under the standard LWE assumption.

1 Introduction

In the coming decades, the quantum technology advancement is promising to reshape the com-
puting landscape. Before the technology to build universal quantum computers becomes avail-
able, it is likely that some dedicated quantum devices (such as those being developed by Google,

∗State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China. Email:jiangzhang09@gmail.com.
†Shanghai Jiao Tong University, Shanghai 200240, China. Email: yuyuathk@gmail.com.
‡State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China. Email:feng@tca.iscas.ac.cn.
§State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China. Email:shuqinfan78@163.com.
¶Institute of Software, Chinese Academy of Sciences, China. Email:zfzhang@tca.iscas.ac.cn.
∥State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China. Email:yangk@sklc.org.

1

IBM, IonQ and Rigetti) will be available to users via cloud platforms. This raises a natural
question: whether it is possible to verify a quantum computation performed on an untrusted
server [AV13]. This question has become increasingly important and has already received sub-
stantial attention from the community [GKK19]. Although it remains open to find the ultimate
solution allowing a classical verifier to verify any BQP computation performed on a single un-
trusted server, plenty of works considering two weaker settings have appeared. The first setting
considers a limited quantum verifier interacting with a single quantum prover, where the verifier
can only perform limited quantum operations or store a few constant qubits. The verifier must
use those limited quantum capabilities (and a quantum communication channel) to delegate
computation to a quantum server, and to ensure that the server indeed performs the correct
quantum computation [ABOE10, HM15, MF16, ABOEM17, FK17, GWK17, HKSE17, MTH17,
Bro18, TM18, HT19, ZH19a, ZH19b, ZZ20]. The second setting considers a fully classical verifier
interacting with multiple non-communicating quantum servers, where the servers are allowed to
share many entangled states before the computation, but cannot communicate with each other
during the computation. The verifier typically plays some non-local games (e.g., the CHSH
game [CHSH69]) with the non-communicating servers to characterize the servers’ behaviors in
the computation [RUV13, GKW15, HPDF15, Ji16, McK16, NV16, FHM18, CGJV19, Gri19].

In a recent work, Mahadev [Mah18a] presented a protocol allowing a classical verifier to
delegate the standard and Hadamard measurements to an efficient quantum device in a verifiable
way, under the hardness of the learning with errors (LWE) problem [Reg05]. Specifically, as long
as there is no quantum polynomial time (QPT) algorithm solving the LWE problem (which is
a common belief in post-quantum cryptography), a classical verifier can always use Mahadev’s
protocol to force any efficient quantum server to behave as a trusted measurement device. By
combining the results from complexity theory [KKR06, BL08, MF16] that a classical verifier
armed with a trusted measurement device is able to verify any BQP computation, Mahadev’s
work opens the way to classically verify the computation performed by a single quantum server
under a mild cryptographic assumption [ACGH19, CCKW19, CCY20, GV19, MV20, Vid20].

All the above works implicitly use a fact that any BQP computation can be decomposed
into a set of universal quantum gates, or equivalently a sequence of basic unitary quantum
operations, which allows to reduce the verification of the whole computation to the verification
of some set of universal quantum gates or some basic unitary quantum operations. Furthermore,
the verification techniques used in existing solutions are usually specific to some particular way
of decomposing the computation, and cannot be trivially extended to other settings. Here
comes the question: Can we verify a quantum computation without knowing an efficient way to
decompose it (into a particular set of gates)? Consider, for example, a cloud provider who buys
a quantum device dedicated to a special task F from some hardware company, and wants to
convince cloud users that it indeed holds a quantum device correctly computing the task F . It is
likely that both the provider and the cloud users do not know an efficient way to decompose the
computations performed inside the black-box device (into a known set of quantum gates that
they can compute). This motivates us to study interactive proofs for the following problem.

Problem 1.1 The promise problem QBBC(D,RF , a, b) consists of a quantum device D(|x⟩ |y⟩) =
|x⟩Dx(|y⟩) acting on (n+m) qubits for some self-joint unitary Dx (i.e., Dx(Dx(|y⟩)) = |y⟩ for
all x ∈ {0, 1}n, y ∈ {0, 1}m and D keeps the the first n-qubit input unchanged), a classical device
RF deciding the input-output relation of some unknown function F : {0, 1}n → {0, 1}m, and
two reals 0 < b < a ≤ 1. Let p(D, x) = ∥ |x, F (x)⟩⟨x, F (x)| D(|x⟩ |0m⟩)∥2 be the probability of
obtaining (x, F (x)) as a result of a standard measurement of the (n +m)-qubit state returned
by D on input |x⟩ |0m⟩. The task is to distinguish between two cases for all x ∈ {0, 1}n:

• YES Instance: p(D, x) ≥ a;

• NO Instance: p(D, x) ≤ b.

2

For non-triviality, we assume that b is not smaller than the probability for any QPT al-
gorithm to correctly guess F (x) without knowing x ∈ {0, 1}n. Otherwise, there is a trivial
quantum device D′ implementing this guess algorithm, s.t., p(D′, x) > b for all x ∈ {0, 1}n.
Moreover, for any QPT algorithm outputting a state |ψ⟩ without knowing x ∈ {0, 1}n, we have
p(D, x) ≥ ∥ |x, F (x)⟩⟨x, F (x)| D(|x⟩ |ψ⟩)∥2. Otherwise, one can construct another device D′ from
D, s.t., p(D′, x) > b for all x ∈ {0, 1}n. Informally, the YES instance says that D computes F
with an error probability at most 1−a, while the NO instance says that D computes F with an
error probability at least 1−b. In the above definition, the classical device RF is used to capture
all the information known about the function F , which takes a pair (x, y) ∈ {0, 1}n×{0, 1}m as
input, outputs 1 if y = F (x) and 0 otherwise. The choice of RF is mainly based on the follow-
ing considerations: 1) it is impossible to verify a statement depending on F without knowing
any information about F ; 2) F may compute a task (e.g., integer factorizations) which has
no efficiently classical algorithm but can be easily verified [ABOEM17]; and 3) given a device
computing F , one can efficiently implement RF , but the reverse does not necessarily hold.

Our QBBC problem can be seen as a variant of the BQP-complete problem Q-CIRCUIT.
In [ABOE10, ABOEM17, Bro18], the Q-CIRCUIT problem was shown to have quantum prover
interactive proofs (QPIP), which allows a verifier with limited quantum capabilities to verify
any BQP computation performed by an untrusted server, assuming that the computation can
be represented by a quantum circuit U consisting of a known set of universal quantum gates
U = UT . . . U1 (see the discussions in Sec. 1.5). We wonder if it is possible for a user, given only
access to a classical black-box device RF , to verify whether an untrusted server has a quantum
black-box device D computing F . More specifically, for the promise problem QBBC(D,RF , a, b),
does there exist an interactive proof between two efficient oracle algorithms (PD,VRF) such that
for some c − s > poly(n), the verifier VRF accepts a YES instance with probability at least c
after interacting with an honest prover PD, and rejects a NO instance with probability at least
1 − s after interacting with any QPT malicious prover P̃D,OF , where OF is a classical oracle
computing F? Note that instead of providing RF to the malicious prover P̃, we directly allow P̃
to access OF . This will only increase the capability of the malicious prover P̃, and can capture
the potential case that P̃ may have a device which hardwires some correct pairs (x, F (x)).

1.1 Our Results

In this paper, we first show that for any constant 15/16 < a ≤ 1, the problem QBBC(D,RF , a, b)
has a two-round interactive proof (PD,VRF) where the prover P and the verifier V are efficient
oracle algorithms with some (limited) quantum capabilities: the prover P is essentially a trivial
algorithm which simply replays the quantum messages between the verifier V and the device D;
the verifier V needs to prepare and send at most two quantum messages, and make appropriate
measurements to the responses from the prover. For query complexities, PD makes at most
two quantum queries to D, and VRF only makes a single classical query to RF . Moreover, this
proof system achieves completeness 1+a

2 and soundness error at most 31
32 + ϵ

2 + negl(n) for any
constant max(0, b− 15

16) < ϵ < a− 15
16 . Our first result is summarized in Theorem 1.1.

Theorem 1.1 (Informal) For the promise problem QBBC(D,RF , a, b) with constant 15/16 <
a ≤ 1, there exists a two-round interactive proof (PD,VRF) such that

• PD is a QPT oracle algorithm, making at most two quantum queries to D;

• VRF is a QPT oracle algorithm, making a single classical query to RF ;

• Completeness: if (D,RF , a, b) is a YES instance, then the probability that VRF accepts
after interacting with an honest prover PD is at least 1+a

2 ;

3

• Soundness: if (D,RF , a, b) is a NO instance, then the probability that VRF accepts after
interacting with any QPT algorithm P̃D,OF is at most 31

32 + ϵ
2 + negl(n) for any constant

max(0, b− 15
16) < ϵ < a− 15

16 , where negl(n) denotes an unspecified negligible function in n.

Moreover, we show that the problem QBBC(D,RF , a, b) even has an efficient interactive
proof (PD,VRF) such that the verifier is a probabilistic polynomial time (PPT) algorithm and
does not have any quantum capability (i.e., V is a fully classical oracle algorithm), under the
computational assumption that no QPT algorithm can solve the LWE problem [Reg05]. This
proof system achieves the same query complexities as the one in Theorem 1.1. Furthermore,
it has completeness 1+a

2 − negl(n) and soundness error 1+b
2 + negl(n), and thus applies to any

QBBC(D,RF , a, b) with constants b < a. Our second result is summarized in Theorem 1.2.

Theorem 1.2 (Informal) If the LWE problem is hard for all QPT algorithms, then for the
promise problem QBBC(D,RF , a, b), there exists an interactive proof (PD,VRF) such that:

• PD is a QPT oracle algorithm, making at most two quantum queries to D;

• VRF is a PPT oracle algorithm, making a single classical query to RF ;

• Completeness: if (D,RF , a, b) is a YES instance, then the probability that VRF accepts
after interacting with an honest prover PD is at least 1+a

2 − negl(n);

• Soundness: if (D,RF , a, b) is a NO instance, then the probability that VRF accepts after
interacting with any QPT algorithm P̃D,OF is at most 1+b

2 + negl(n).

As the proof systems in Theorems 1.1 and 1.2 have almost constant completeness-soundness
gaps (i.e., ϵ′−negl(n) for some constant ϵ′ > 0), they can be sequentially repeated a polynomial
number of times to obtain almost perfect completeness and negligible soundness error.

1.2 Application: Separation between ROM and QROM

In the random oracle model (ROM), all parties, including the adversary, are given classically
access to a black-box random function (i.e., a random oracle, RO). Since its introduction [BR93],
the ROM has been successfully used to design and analyze many well-known cryptosystems such
as the OAEP encryption [BR95] and the FDH signature [BR96]. By observing that the ROM
may be problematic for quantum adversaries, the authors of [BDF+11] introduced the quantum
ROM (QROM) where honest parties (e.g., the cryptosystems) still access the RO in a classical
way, but the adversary is explicitly allowed to make quantum queries to the RO. The QROM has
also been widely used to analyze the security of many post-quantum cryptosystems, including
the ones submitted to NIST Post-Quantum Cryptography Standardization [NIS16].

Note that the only difference between ROM and QROM is that the adversary in the QROM
can make quantum queries to the RO while that in the ROM can only make classical queries.
This can be naturally seen as that the adversary in the QROM has a quantum device D correctly
computing an idealized random function O(·) : {0, 1}n → {0, 1}m, while that in the ROM only
has a trivial quantum device D simply guessing the output of O(·) at each point (with a correct
probability at most 1

2m). As the honest parties are given classically access to the RO O(·)
(and thus has a natural device RO deciding the input-output relation of O(·)), the problem of
distinguishing ROM and QROM is a natural promise problem QBBC(D,RO, 1, 1

2m).
By Theorem 1.2, we immediately have that there is an efficient classical distinguisher V ′

(obtained by repeatedly running the verifier V in Theorem 1.2 a polynomial number of times)
for ROM and QROM, such that it almost always outputs 1 after interacting with a QROM
adversary performing the strategy of an honest prover P, and 0 after interacting with any
adversary in the ROM. This distinguisher V ′ can be used as a building block to construct
cryptosystems that are secure in the ROM but insecure in the QROM, as it allows to embed

4

some malicious behaviors that can only be utilized by an adversary in the QROM: given a
secure cryptosystem C, one can construct another cryptosystem C′ which first internally runs
the distinguisher V ′ to detect if the adversary runs in the QROM, and then performs normally
as C does if V ′ outputs 0, otherwise behaves maliciously (e.g., directly outputting the secret key
to the adversary) if V ′ outputs 1 (see Sec. 5). A direct corollary of Theorem 1.2 is as follows.

Corollary 1.1 (Informal) There exist cryptosystems which are secure in the ROM but are
insecure in the QROM.

1.3 Overview of Interactive Proof with a (Limited) Quantum Verifier

In this overview, we consider a simplified case where a = 1 (i.e., for a YES instance, D always
correctly computes F), but the same idea can be easily extended to the case 15/16 < a ≤ 1. In
this case, if the verifier V is allowed to directly access the device D, then it can easily distinguish
whether the device D is a YES instance or a NO instance. Specifically, V can simply send an
arbitrary query to the device D, measure the obtained state from D and accept if the outcome is
a correct pair (x, F (x)) via a query to the device RF . Clearly, if D is a YES instance, then V will
always obtain a correct pair, otherwise it will obtain a correct pair with probability at most b.
The problem here is that V can only access the device D via the prover, and a malicious prover
P̃D,OF may cheat the verifier with the classical oracle OF (that always correctly computes F).

Our starting point is that V can encode exponentially many classical queries into a single
quantum state |ϕ⟩ =

∑
x∈{0,1}n |x⟩ in superposition, while an efficient malicious prover P̃D,OF

can only make a polynomial number of classical queries to OF (and thus can only obtain
a polynomial number of valid pairs (x, F (x)) with certainty). In particular, if V sends the
quantum challenge |ϕ⟩ to P̃, it is infeasible for an efficient P̃ to compute a correct response
|ψ⟩ =

∑
x∈{0,1}n |x, F (x)⟩ =

∑
x∈{0,1}n |x, F (x)⟩ (note that in our simplified case, an honest

prover PD with a YES instance D can always return a correct response). The main problem is
that VRF cannot check if a response from P̃D,OF is correct or not, as by the quantum uncertainty
principle it cannot extract all the classical pairs {(x, F (x))}x∈{0,1}n from the quantum state |ψ⟩.

To get around the above obstacle, we let V send a challenge state |ϕ⟩ =
∑

x∈X |x⟩ using
a random subset X ⊆ {0, 1}n, which ensures that a measurement on any correct response
|ψ⟩ =

∑
x∈X |x, F (x)⟩ =

∑
x∈X |x, F (x)⟩ always results in a pair (x ∈ X,F (x)). Clearly, if we

could show that P cannot obtain sufficient information of X from |ϕ⟩ =
∑

x∈X |x⟩ to make
a query x ∈ X to OF , then the proof is completed. However, this is not achievable as P
can easily obtain an element x ∈ X by simply measuring the challenge state |ϕ⟩ =

∑
x∈X |x⟩.

Fortunately, we can show that there is a way to choose X such that it is infeasible for P to
obtain sufficient information of X without significantly disturbing the state |ϕ⟩ =

∑
x∈X |x⟩.

Technically, we will establish an information versus disturbance lemma (see Lemma 3.1), which
gives a quantitative connection between the information that an algorithm obtains about X
from a state |ϕ⟩ =

∑
x∈X |x⟩ and the disturbance that it causes to the state |ϕ⟩. A main

corollary of this lemma we needed is stated as follows. Let H1 be the single-qubit Hadamard
operation H, and let H0 be the identity operation Id. For any s = s1 . . . sn ∈ {0, 1}n, define an

n-qubit quantum operation Hs def
= Hs1 ⊗Hs2 · · · ⊗Hsn .

Corollary 1.2 (Informal) Let x, s be two random variables uniformly distributed over {0, 1}n.
For any quantum algorithm (e, |ζ⟩)← P(Hs |x⟩), the mutual information I(x, e) between x and
e ∈ {0, 1}poly(n) is upper bounded by 2n

√
1− δ, where δ is the probability of obtaining x ∈ {0, 1}n

as a result of a standard measurement of the n-qubit state Hs |ζ⟩.

Let Xx,s ⊆ {0, 1}n be the set of x̃ ∈ {0, 1}n that agrees with x at the positions indexed by
zeros in s ∈ {0, 1}n. Then, we have Hs |x⟩ =

∑
x̃∈Xx,s

|x̃⟩. Informally, the above corollary says

that given the state |ϕ⟩ =
∑

x̃∈Xx,s
|x̃⟩, it is impossible for any quantum algorithm P to obtain

5

sufficient information of x while at the same time outputting a state to recover x in a particular
way. At a high level, the verifier V for Theorem 1.1 will prepare and send a quantum state Hs |x⟩
to the prover by randomly choosing two classical strings x, s ∈ {0, 1}n as in Corollary 1.2, and
accept a quantum state returned by the prover as a valid proof only if 1) a measurement on
the received state results in a pair (x̃ ∈ Xx,s, F (x̃)); and 2) one can always “uncompute” the
received state to obtain x (which needs to send the received quantum state back to the prover
to undo the computation) in a particular way. The proof system is briefly described as follows:

1. The verifier V randomly chooses x, s ∈ {0, 1}n, computes and sends |ϕ⟩ = Hs |x⟩ =∑
x̃∈Xx,s

|x̃⟩ to the prover;

2. The prover P sends a query |ϕ⟩ |0m⟩ to the device D, and returns the received (n+m)-qubit
state |ψ⟩ from D to the verifier;

3. V randomly chooses a bit δ ∈ {0, 1},

3.1 In case δ = 0, V checks if a measurement on |ψ⟩ results in a valid pair (x̃ ∈ Xx,s, F (x̃))
by using a query to RF . If yes, V accepts, otherwise rejects;

3.2 In case δ = 1, V sends back |ψ⟩ to the prover;

4. P sends a query |ψ⟩ to the device D, and returns a state |ϕ′⟩ (which is expected to be |ϕ⟩)
containing the first n qubits of the received state from D to the verifier;

5. V applies Hs on |ϕ′⟩, and checks if a measurement on the resulting state gives x ∈ {0, 1}n.
If yes, V accepts, otherwise rejects.

Clearly, for a YES instance D, an honest prover PD can always pass the two checks made
by the verifier V in step 3.1 and step 5. As δ is randomly chosen by V after receiving |ψ⟩, a
successfully malicious prover P̃D,OF must output a state |ψ⟩ simultaneously passing the two
checks. In particular, P̃D,OF has to obtain sufficient information about x to determine a correct
pair (x̃ ∈ Xx,s, F (x̃)) (via a query to OF) to pass the check in step 3.1 while at the same time
outputting a state |ϕ′⟩ to recover x in a particular way to pass the check in step 5 (note that
the strategy of V essentially requires that P̃ can directly output |ϕ′⟩), which is impossible by
Corollary 1.2. The analysis for 15/16 < a ≤ 1 is almost similar, please refer to Sec. 3 for details.

1.4 Overview of Interactive Proof with a Fully Classical Verifier

The idea is essentially the same as above: the verifier V prepares a quantum state, which
contains a verifiable hidden set X, as a challenge to the prover such that it is infeasible for an
efficiently malicious prover P̃D,OF to output a valid pair (x̃ ∈ X,F (x̃)) with probability more
than b. The problem is that the verifier now has no quantum capabilities, and cannot prepare
quantum states to P̃ or measure the quantum states returned by P̃ to perform any check.

Our starting point is to delegate “the computation of the quantum verifier V” to the prover.
At first glance, one might think it is trivial, because Mahadev [Mah18a] showed that classical
verification of any BQP computation can be achieved under the LWE assumption. However,
this intuition does not work because the result in [Mah18a] uses an assumption that the compu-
tation can be implemented by a quantum circuit consisting of a polynomial number of universal
quantum gates, while in our case 1) both the prover PD and the verifier VRF are oracle algo-
rithms, which cannot be represented by quantum circuits with simple universal quantum gates;
and 2) the verifier VRF needs to have some secret information (i.e., the hidden set X), which
cannot be encoded into a public quantum circuit given to the (malicious) prover.

Instead, we focus on the two main quantum capabilities (i.e., quantum states generation and
measurement) that we want the verifier to have, and directly present two protocols to do the
delegations. Both protocols are based on a primitive called extended noisy trapdoor claw-free

6

functions (eNTCF) in [BCM+18, Mah18a], which can be securely instantiated under the LWE
assumption. For simplicity, we use a perfect primitive, namely, extended trapdoor claw-free
functions (eTCF), to elaborate the high-level ideas without brothering about the noisy feature
of eNTCF, but only keep in mind that changing eTCF back to eNTCF will only introduce a
negligible part to both the correctness and the security of the resulting protocols.

We begin by briefly describing two families of functions F and G from some finite set X
to Y. In this overview, we assume X = {0, 1}w for convenience. Informally, we say that
F = {fk,b : {0, 1}w → Y}k∈KF ,b∈{0,1} is a trapdoor claw-free functions (TCF) family if

1. One can efficiently sample a key k ∈ KF and a trapdoor tk corresponding to a pair of
functions fk,0, fk,1 ∈ F ;

2. Both fk,0 and fk,1 are injective and have equal images (i.e., for any image y of fk,0 or fk,1,
there only exists a unique claw (x0, x1) ∈ {0, 1}w × {0, 1}w, s.t., y = fk,0(x0) = fk,1(x1));

3. Given only k ∈ KF , it is quantum computationally hard to find a claw (x0, x1) or a tuple
(xb, d, d · (x0 ⊕ x1)) for some d ⊆ {0, 1}n, s.t., fk,0(x0) = fk,1(x1);

4. Given the trapdoor tk, one can efficiently recover a claw (x0, x1) from any image y of fk,0
or fk,1, s.t., y = fk,0(x0) = fk,1(x1).

We say that G = {gk,b : {0, 1}w → Y}k∈KG ,b∈{0,1} is a trapdoor injective function family if

1. One can efficiently sample a key k ∈ KG and a trapdoor tk corresponding to a pair of
functions gk,0, gk,1 ∈ G;

2. Both gk,0 and gk,1 are injective and have disjoint images (i.e., for any image y of gk,0 or
gk,1, there only exists a unique pair (b, xb) ∈ {0, 1} × {0, 1}w, s.t., y = gk,b(xb));

3. Given the trapdoor tk, one can efficiently recover the unique pair (b, xb) from any image
y of gk,0 or gk,1, s.t., y = gk,b(xb).

We say that F is an extended TCF (eTCF) if there exists a trapdoor injective function
family G such that the keys of F and G are quantum computationally indistinguishable, and
both F and G have the same efficient evaluation algorithm.

Generation of Quantum State with Verifiable Hidden Set. Our first protocol allows
a classical verifier V and a quantum prover P to cooperatively generate an n-qubit state |ϕ⟩ =∑

x∈X |x⟩ with a verifiable hidden set X. The protocol has a generation phase and a verification
phase (see Sec. 4.1). At the end of the generation phase, the prover P holds a state |ϕ⟩, while
the verifier V obtains the set X and some trapdoor information td. In the verification phase, V
can use td to ensure that the prover indeed produces the state |ϕ⟩ =

∑
x∈X |x⟩ without knowing

X (in particular, the prover cannot output an element of X before the verification phase).
Technically, this protocol is built upon the protocol in [BCM+18], which allows a classical

verifier to delegate the generation of randomness to an untrusted quantum prover (that is
polynomial-time bounded). The high-level idea works as follows. The verifier first samples a key
k ∈ KF and a trapdoor tk corresponding to a pair of trapdoor claw-free functions fk,0, fk,1 ∈ F ,
and sends the key k to the prover. The prover is asked to first prepare a quantum state:

1√
2(w+1)

∑
b∈{0,1},x∈{0,1}w

|b, x⟩ |0⟩Y ,

Then, the prover evaluates the function fk,b on the state using k ∈ KF :

1√
2(w+1)

∑
b∈{0,1},x∈{0,1}w,y=fk,b(x)

|b, x⟩ |y⟩Y ,

7

measures the Y-register and sends the outcome ŷ to the verifier. After this, the prover will
obtain a state

1√
2

∑
b∈{0,1},xb,ŷ∈{0,1}w

|b, xb,ŷ⟩ |ŷ⟩Y ,

where (x0,ŷ, x1,ŷ) satisfies ŷ = fk,0(x0,ŷ) = fk,1(x1,ŷ) by the property of F . Clearly, if the prover
performs honestly, measuring the first qubit of the above state will give a random bit b ∈ {0, 1}.

In order to certify the behaviors of the prover, the verifier repeatedly executes the above
process a polynomial number n of times by using a fresh key ki at each time, and randomly
determine each repetition as a test one or a normal one with a certain probability [BCM+18].1

The two types of repetitions only differ after the verifier receives ŷ from the quantum prover.
Specifically, in a normal repetition, the prover is asked to measure the above state and return
the outcome (b, xb,ŷ) to the verifier as desired. While in a test one, the prover is asked to output
either (b, xb,ŷ) or (d, d · (x0,ŷ ⊕ x1,ŷ)) with equal probability, where the latter is computed by
first applying a Hadamard transform to the first w + 1 qubits of the above state to obtain

1√
2w+2

∑
b,u∈{0,1},d∈{0,1}w

(−1)d·xb,ŷ⊕ub |u, d⟩ |ŷ⟩Y =
1√
2w

∑
d∈{0,1}w

(−1)d·x0,ŷ |d · (x0,ŷ ⊕ x1,ŷ), d⟩ |ŷ⟩Y

and then measuring the resulting state. Let S ⊆ [n] = {1, . . . , n} specify the positions of the
normal repetitions (in the whole n repetitions). For each i ∈ S, let bi ∈ {0, 1} be the first
bit of “(b, xb,ŷ)” obtained in the normal repetition i. The authors of [BCM+18] showed that if
the prover correctly answers the questions in most test repetitions, then the bits {bi}i∈S have
sufficient entropy even conditioned on all other transcripts of the interactions.

We modify the above protocol by replacing (ki ∈ KF , tki) used in a normal repetition i ∈ S
with (k′i ∈ KG , tk′i) corresponding to a pair of trapdoor injective functions gk′i,0, gk′i,1 ∈ G. As
fki,b and gk′i,b have the same evaluation algorithm, the prover can compute a state:

1√
2(w+1)

∑
b∈{0,1},x∈{0,1}w,y=gk′

i
,b(x)

|b, x⟩ |y⟩Y .

The prover then measures the Y-register and sends the outcome ŷi to the verifier. By the
injective property of G, the state held by the prover will collapse to |bi, xbi,ŷi⟩ |ŷi⟩, where ŷi =
gk′i,bi(xbi,ŷi). Thus, given the trapdoor tk′i corresponding to k′i ∈ KG , the verifier can invert
bi ∈ {0, 1} from ŷi. For a test repetition i /∈ S, the verifier samples (ki ∈ KF , tki) normally
so that it can certify the behaviors of the prover the same way as that in [BCM+18]. By the
assumption that ki and k′i are quantum computationally indistinguishable, the prover cannot
distinguish this modified protocol from the original one, and thus it cannot determine bi ∈ {0, 1}
at the time of generating ŷi by the security of the original protocol. Because the prover does not
know the repetition type at the time of sending ŷi to the verifier (i.e., his behavior of producing
ŷi should be independent from the repetition type) and ki is freshly sampled for each repetition,
we can reorganize this modified protocol into a generation phase and a verification phase.

In the generation phase, the verifier first randomly chooses a set S ⊂ [n] by independently
picking each element i ∈ S with a certain probability. For each j ∈ [n], it samples a key kj ∈ KG
and a trapdoor tkj corresponding to a pair of trapdoor injective functions gkj ,0, gkj ,1 ∈ G if j ∈ S,
and samples a key kj ∈ KF and a trapdoor tkj corresponding to a pair of trapdoor claw-free

1Strictly speaking, the randomness expansion protocol [BCM+18] will reuse some key ki to save the number
of random bits consumed by the verifier, which requires the verifier to determine the type of each repetition in
a sequential way. We use a fresh key ki at each repetition because we do not have the concern of randomness
expansion (i.e., the length of the generated random bits should be longer than that of the input ones) and we
want to compute the n repetitions in a partially parallel manner as we will see later. Note that the security
analysis in [BCM+18] naturally extends to the case of using a fresh key ki at each repetition.

8

functions fkj ,0, fkj ,1 ∈ F otherwise. Then, it sends {kj}j∈[n] to the prover, and asks the prover
to return a set {ŷj}j∈[n] by computing each ŷj using kj as above. After this, the prover will
obtain an n-qubit (non-normalized) state |ϕ⟩ (consisting of the first qubit of the state obtained
after producing ŷj for all j ∈ [n]); the verifier can compute bj ∈ {0, 1} by using the trapdoor tkj
and ŷj for all j ∈ S. In the verification phase, for each j ∈ [n], the verifier performs the same
as the original protocol in [BCM+18] to certify the behaviors of the prover.

Let X ⊂ {0, 1}n be the set of bit strings x ∈ {0, 1}n whose j-th bit agrees with bj for all
j ∈ S. By using almost the same security analysis as that in [BCM+18] (as in the view of the
prover, our protocol is quantum computationally indistinguishable from a variant of [BCM+18]
using a fresh key kj at each repetition), the probability that the prover outputs x ∈ X before
the verification phase is negligible. In summary, we have the following theorem.

Theorem 1.3 (informal) Under the LWE assumption, there is a protocol ΠG consisting of a
generation phase and a verification phase between a classical verifier V and a quantum prover P.
After the generation phase, P will obtain an n-qubit state |ϕ⟩; V will obtain a set X and some
trapdoor information td. After the verification phase, V will output a bit indicating whether
accepts or rejects.

• Correctness: In an honest execution, the state |ϕ⟩ held by the prover is within negligible
trace distance from the state

∑
x∈X |x⟩, and the verifier will almost always accept.

• Security: Conditioned on the event that V accepts in the verification phase, the probability
that any QPT prover outputs an element x ∈ X before the verification phase is negligible.

Oblivious Measurement on Quantum State. Our second protocol allows a classical ver-
ifier V to obliviously measure a state |ψ⟩ held by the quantum prover P (see Sec. 4.2). At the
end of the protocol, P will obtain a state |ψ′⟩; depending on a choice bit δ ∈ {0, 1} the verifier
V will obtain either a measurement outcome of |ψ⟩ or some information aux ∈ {0, 1}∗ which
can be used to recover |ψ⟩ from |ψ′⟩. The term “oblivious” comes from the feature that the
prover does not know which case the verifier chooses (i.e., δ = 0 or δ = 1).

For simplicity, it suffices to describe the idea of obliviously measuring a single qubit. Assume
that the prover P holds a state |ψ⟩ =

∑
b∈{0,1} αb |b⟩, and the verifier V holds a bit δ ∈ {0, 1}.

In order to obliviously measure the state |ψ⟩, V first samples a key k ∈ KG and a trapdoor tk
corresponding to a pair of trapdoor injective functions gk,0, gk,1 ∈ G if δ = 0, and samples a key
k ∈ KF and a trapdoor tk corresponding to a pair of trapdoor claw-free functions fk,0, fk,1 ∈ F
otherwise. Then, it sends k to the prover P, and asks P to evaluate fk,b or gk,b (note that this
can be done without telling P which one to evaluate) with inputs the first two registers of the
following state

|ψ⟩ = 1√
2w

∑
b∈{0,1},x∈{0,1}w

αb |b⟩ |x⟩ |0⟩Y .

This will result in a state

1√
2w

∑
b∈{0,1},x∈{0,1}w,y=g̃k,b(x)

αb |b⟩ |x⟩ |y⟩Y ,

where g̃k,b = gk,b if δ = 0, otherwise g̃k,b = fk,b. Then, P measures the Y-register and sends
the outcome ŷ to the verifier. If δ = 0, by the injective property of G, this will result in a state∣∣∣b̂⟩ ∣∣∣xb̂,ŷ⟩ |ŷ⟩Y with probability (αb̂)

2 where ŷ = gk,b̂(xb̂,ŷ). Thus, the verifier can use tk to invert

ŷ to obtain b̂ ∈ {0, 1}, just as directly measuring the state |ϕ⟩ =
∑

b∈{0,1} αb |b⟩. Else if δ = 1,
by the property of F the prover will obtain a state∑

b∈{0,1},xb,ŷ∈{0,1}w
αb |b⟩ |xb,ŷ⟩ |ŷ⟩Y ,

9

where ŷ = fk,0(x0,ŷ) = fk,1(x1,ŷ). Clearly, if the verifier V gives the trapdoor tk to the prover P,
then P can uncompute the register containing xb,ŷ by recovering xb,ŷ using tk and the registers
containing b and ŷ as inputs. Thus, V holds the information aux = tk which can be used by P
to efficiently compute a state ∑

b∈{0,1}

αb |b⟩ |0⟩ |ŷ⟩Y .

Tracing out the last two registers, this yields the input state |ϕ⟩ =
∑

b∈{0,1} αb |b⟩. By the
assumption that the keys of F and G are quantum computationally indistinguishable, we have
no (malicious) prover can determine the value of δ with non-negligible advantage.

Theorem 1.4 (informal) Under the LWE assumption, there is a protocol ΠM between a clas-
sical verifier V with input a uniformly random bit δ ∈ {0, 1} and a quantum prover P with input
a quantum state |ψ⟩.

• Correctness: In an honest execution, the prover P will obtain a state |ψ′⟩; the verifier will
obtain either a measurement outcome on |ψ⟩ if δ = 0, or some information aux ∈ {0, 1}∗
which can be used by P to recover a state within negligible trace distance from |ψ⟩;

• Security: The probability that any QPT prover outputs δ ∈ {0, 1} is at most 1
2 + negl(n).

The Interactive Proof System. By gluing protocols ΠG and ΠM together, we obtain an
interactive proof with a classical verifier, which has the same structure as the quantum one:

1. The prover P and the verifier V execute the generation phase of ΠG. After this, P will
obtain an n-qubit state |ϕ⟩, and V will obtain classical information (X, td);

2. P sends a query |ϕ⟩ |0m⟩ to the device D, and obtain a (n+m)-qubit state |ψ⟩;

3. V randomly chooses a bit δ ∈ {0, 1}, and uses δ to execute the oblivious measurement
protocol ΠM with the prover P on input state |ψ⟩:

• In case δ = 0, the verifier V accepts if it obtains a valid pair (x̂ ∈ X,F (x̂)) at the
end of running ΠM , and rejects otherwise; (note that this requires a query to RF)

• In case δ = 1, at the end of running ΠM , the prover obtains a state |ψ′⟩; the verifier
V obtains some information aux ∈ {0, 1}∗. V sends aux to the prover;

4. P recovers a state |ψ′′⟩ from |ψ′⟩ and aux (using the algorithm in Theorem 1.4); sends a
query |ψ′′⟩ to D to obtain an (n+m)-qubit state |ϕ′⟩ (which is expected to be |ϕ⟩ |0m⟩);

5. P and V execute the verification phase of ΠG on input the first n qubits of |ϕ′⟩. V accepts
if and only if it accepts in the verification phase of ΠG.

The analysis for the simplified case a = 1 is the same as for the quantum one. Specifically,
by the correctness of the underlying protocols, an honest prover PD can almost always pass the
checks in step 3.1 and step 5. By the security of ΠM , δ is hidden from the prover during the
execution of ΠM , this means that a malicious prover P̃D,OF has to determine x̂ ∈ X to pass
the check in step 3.1 while at the same time convincing the verifier in step 5 that it cannot
output x̂ ∈ X before the verification phase of ΠG, which is infeasible by the security of ΠG.
This analysis can be easily extended to the general case a ≤ 1, please refer to Sec. 4 for details.

10

1.5 Related work and Discussions

The Q-CIRCUIT Problem. The promise problem Q-CIRCUIT consists of two reals a−b >
1/poly(n), and a quantum circuit made of a sequence of gates U = UT . . . U1, acting on n input
bits. The task is to distinguish between the two cases for all x ∈ {0, 1}n:

• YES Instance: ∥(|1⟩⟨1| ⊗ Idn−1)U(|x⟩)∥2 ≥ a;

• NO Instance: ∥(|1⟩⟨1| ⊗ Idn−1)U(|x⟩)∥2 ≤ b.

The Q-CIRCUIT problem is a BQP-complete problem, and has been used to prove that any
BQP computation has quantum prover interactive proofs (QPIP) [ABOE10, ABOEM17, Bro18],
where the verifier has limited quantum capabilities (and cannot evaluate the circuit U); the
prover has full quantum abilities and wants to convince the verifier that U is a YES instance.
One can think that our QBBC problem as a special case of the Q-CIRCUIT problem where
the quantum circuit U ′ consists of a (black-box) circuit D followed by a circuit URF

computing
RF . Since either the prover or the verifier in QPIP for the Q-CIRCUIT problem needs to know
how to decompose the quantum circuit U ′ into a set of universal gates {Ui}i=1,...,T , one cannot
adapt existing results for the Q-CIRCUIT problem to our QBBC problem where the prover is
given a quantum black-box device D and the verifier is given a classical black-box device RF .

Blind Quantum Computation. In blind quantum computation [BFK09, Chi05, GMMR13,
MPDF13, FK17, Fit17], a client can delegate any efficient quantum computation to quantum
servers while at the same time keeping the inputs and the details of the computation (e.g.,
the quantum circuits) hidden from the servers. Blind quantum computation plays an important
role in the development of verifiable quantum computation [GKK19], because it generally allows
the client to execute some test quantum computation at the server side to check if the servers
perform honestly (and the blind property ensures that the servers cannot distinguish whether a
computation is a real one or a test one). As our proof systems for the QBBC problem essentially
rely on the fact that the prover cannot obtain the information of a random set in a quantum
state, one might think if it is possible to extend existing results for blind quantum computation
to our case. Unfortunately, this does not work as all the existing works for blind quantum
computation, to the best of our knowledge, are based on the fact that the client can decompose
the computation into a set of universal gates or a sequence of simple unitary quantum operations.

Quantum Fully Homomorphic Encryption (FHE). Quantum FHE is an extension of
classical FHE [Gen09], which allows to apply arbitrary efficient quantum computation to (clas-
sical or quantum) encrypted data [BJ15, DSS16, Mah18b, Bra18], and can be used to delegate
the computation to untrusted servers while still keeping the data private. Due to the same
reason as above, the attempt to first encrypt a quantum query |x⟩ using QFHE, and then ask
the prover to homomorphically compute D(|x⟩ |0m⟩) does not work, as existing QFHEs can only
support quantum computation consisting of some known set of universal quantum gates.

Remote State Preparation. Several works [CCKW18, CCKW19, GV19] have shown how
to classically delegate the preparation of quantum states to a remote quantum server. Unlike
our protocol for generating quantum states with verifiable hidden sets (i.e., multiple-qubit states
with relatively low quality), these protocols focus on generating single-qubit states with high
quality, which are more complex than ours and cannot be directly used for our goal. However, all
the protocols share some similarities due to the use of same techniques in [BCM+18, Mah18a].

Separations between ROM and QROM. The first separation between ROM and QROM
was given in [BDF+11], which presented an identification protocol that is secure in the ROM
but is insecure in the QROM. The protocol is directly built upon the gap in finding a collision

11

of an m-bit output hash function between using the birthday attack with O(2m/2) classical
queries and using the Grover algorithm with O(2m/3) quantum queries [Gro96, BHT98]. Since
the query gap is polynomial (as 2m/2 can be naturally written as a polynomial of 2m/3), the
argument in [BDF+11] requires non-standard timing assumptions (e.g., “unit time” and “zero
time” assumptions) to ensure that the running time of the protocol is longer than O(2m/3) “unit
time” for a QROM adversary to run the Grover algorithm [Gro96], but is shorter than O(2m/2)
“unit time” for a ROM adversary to carry out the birthday attack. This leaves a nine-year open
question of finding a separation between ROM and QROM under standard assumptions.

In a concurrent work [YZ20b] (appearing after our initial result was posted online [ZYF+19]),
Yamakawa and Zhandry presented a separation between ROM and QROM (also see an up-
date [YZ20a]). Their result is also based on the LWE assumption, but the underlying techniques
are completely different from ours. In particular, their result seems to be restricted to the case
of RO and cannot be adapted to the general QBBC problem, because their analysis relies on
the fact that a security reduction can extract the RO queries of the adversary in the ROM.

Outline. In Section 2, we give some preliminaries, including the formal definitions of extended
noisy trapdoor claw-free functions. In Section 3, we first prove an information versus disturbance
lemma, which might be of independent of interest. Then, an interactive proof for the QBBC
problem, where the verifier is able to perform some quantum operations, is presented. In
Section 4, we first give concrete descriptions of the protocols for quantum states generation and
oblivious measurement, which are followed by an interactive proof for the QBBC problem with
a fully classical verifier. In Section 5, we show a concrete application of our result in separating
the random oracle model (ROM) from the quantum ROM (QROM).

Acknowledgments. We thank Thomas Vidick for his patient and helpful explanations on the
details of the protocol in [BCM+18], and Tomoyuki Morimae for helpful comments on precisely
formalizing the QBBC problem. Jiang Zhang and Kang Yang are supported by the National
Natural Science Foundation of China (Grant Nos. 62022018, 61932019), the National Key Re-
search and Development Program of China (Grant Nos. 2017YFB0802005, 2018YFB0804105).
Yu Yu is supported by the National Natural Science Foundation of China (Grant No. 61872236).
Shuqin Fan and Zhenfeng Zhang are supported by the National Key Research and Development
Program of China (Grant No. 2017YFB0802005).

2 Preliminaries

2.1 Notation

Let C be the set of complex numbers. Denote log as the logarithm with base 2. A function
f(n) is negligible in n if for every positive constant c, we have f(n) < n−c for sufficiently large
n. By negl(n) we denote an unspecified negligible function. Denote poly(n) as an unspecified

polynomial function in n. The notation
$← denotes randomly choosing elements from a distri-

bution (or the uniform distribution over a finite set). Denote ∅ as an empty set. For a finite
set X , let DX = {f : X → [0, 1]|

∑
x∈X f(x) = 1} be the set of all densities on X . For any

f ∈ DX , denote SUPP(f) as the support of f : SUPP(f) = {x ∈ X |f(x) > 0}. For two densities
f1, f2 ∈ DX , the Hellinger distance between f1 and f2 is

H2(f1, f2) = 1−
∑
x∈X

√
f1(x)f2(x).

Let CN be the complex vector space of N dimension, where N ≥ 1 is an integer. The bra-ket
notations of ⟨·| and |·⟩ are used to denote row and column vectors in CN , respectively. For any
vectors |w⟩ = (w0, . . . , wN−1)

T , |v⟩ = (v0, . . . , vN−1)
T ∈ CN , the inner product between |w⟩

12

and |v⟩ is defined as ⟨w|v⟩ =
∑N−1

i=0 w∗i vi ∈ C, where w∗i denotes the conjugate of wi. Denote
|v⟩⟨w| ∈ CN×N as the outer product of |v⟩ , |w⟩ ∈ CN . The trace of a square matrix ρ, denoted
tr(ρ), is defined to be the sum of elements on the main diagonal of ρ. The trace norm of a
matrix ρ, denoted ∥ρ∥tr = 1

2∥ρ∥1 =
1
2 tr(
√
ρρ∗), is the sum of the singular values of ρ.

A quantum system Q with N configurations {0, . . . , N − 1} is associated to the Hilbert
space HN = CN with the inner product ⟨w|v⟩ =

∑N−1
i=0 w∗i vi ∈ C. A pure state of Q is specified

by a vector |ϕ⟩ ∈ HN of norm 1 (i.e., ⟨ϕ|ϕ⟩ = 1), which assigns a (complex) weight to each
configuration in {0, . . . , N − 1}. The density matrix ρ of a pure state |ϕ⟩ is given by ρ = |ϕ⟩⟨ϕ|.
The trace distance between two density matrices ρ, σ is defined as ∥ρ−σ∥tr = 1

2 tr
(√

(ρ− σ)2
)
.

The following lemma relates the Hellinger distance and the trace distance.

Lemma 2.1 Let X be a finite set and f1, f2 ∈ DX . Let

|ψ1⟩ =
∑
x∈X

√
f1(x) |x⟩ and |ψ2⟩ =

∑
x∈X

√
f2(x) |x⟩ .

Then,
∥ |ψ1⟩⟨ψ1| − |ψ2⟩⟨ψ2| ∥tr =

√
1− (1−H2(f1, f2))2.

2.2 Information Theory

We recall some definitions related to the Shannon entropy of random variables. Formally, let
X,Y be two random variables with support X ,Y, respectively. The entropy of X is defined as

H(X) = −
∑
x∈X

Pr[X = x] log(Pr[X = x]).

The entropy of X conditioned on Y = y is defined as

H(X|y) = −
∑
x∈X

Pr[X = x|y] log(Pr[X = x|y]).

The entropy of X conditioned on random variable Y is defined as

H(X|Y) =
∑
y∈Y

Pr[Y = y]H(X|y).

The mutual information between X and Y is defined as

I(X,Y) = H(X)−H(X|Y).

Intuitively, the mutual information indicates the decrease in the entropy of X due to learning
of Y , which is symmetric to X and Y .

2.3 Interactive Proofs for the QBBC Problem

In this subsection, we first restate the promise problem related to quantum black-box compu-
tations (QBBC) in the following.

Problem 1.1 The promise problem QBBC(D,RF , a, b) consists of a quantum device D(|x⟩ |y⟩) =
|x⟩Dx(|y⟩) acting on (n+m) qubits for some self-joint unitary Dx (i.e., Dx(Dx(|y⟩)) = |y⟩ for
all x ∈ {0, 1}n, y ∈ {0, 1}m and D keeps the the first n-qubit input unchanged), a classical device
RF deciding the input-output relation of some unknown function F : {0, 1}n → {0, 1}m, and
two reals 0 < b < a ≤ 1. Let p(D, x) = ∥ |x, F (x)⟩⟨x, F (x)| D(|x⟩ |0m⟩)∥2 be the probability of
obtaining (x, F (x)) as a result of a standard measurement of the (n +m)-qubit state returned
by D on input |x⟩ |0m⟩. The task is to distinguish between two cases for all x ∈ {0, 1}n:

13

• YES Instance: p(D, x) ≥ a;

• NO Instance: p(D, x) ≤ b.

For non-triviality, b is assumed to be not smaller than the probability for any QPT algorithm
to correctly guess F (x) without knowing x ∈ {0, 1}n. Otherwise, there is a trivial quantum
device D′ implementing this guess algorithm, s.t., p(D′, x) > b for all x ∈ {0, 1}n. Informally, the
problem is to distinguish if D is a quantum device computing some F with an error probability
at most 1 − a or at least 1 − b for some known b < a. For our purpose, we want to have ab
interactive proof for the QBBC problem in the following sense.

Definition 2.1 (Interactive Proofs for the QBBC Problem) Let n be a parameter. The
problem QBBC(D,RF , a, b) is said to have an efficient interactive proof with completeness c and
soundness error s (where c−s > 1/poly(n)) if there exists a pair of oracle algorithms (PD,VRF)
with the following properties:

• The prover P makes at most a fixed polynomial number of quantum queries to the device
D; moreover, P can be efficiently implemented given an efficient device D;

• The verifier V makes at most a fixed polynomial number of classical queries to the device
RF ; moreover, V can be efficiently implemented given an efficient device RF ;

• P and V always terminate after interacting at most a fixed polynomial number of rounds;
moreover, they will transmit (quantum) messages with length bounded by a fixed polynomial
in n at each round;

• Completeness: if (D,RF , a, b) is a YES instance, then the probability that VRF accepts
after interacting with PD is at least c;

• Soundness: if (D,RF , a, b) is a NO instance, the probability that VRF accepts after
interacting with any QPT algorithm P̃D,OF is at most s, where OF is a classical oracle
computing F (i.e., given any x ∈ {0, 1}n as input, OF (x) always returns F (x) ∈ {0, 1}m).

Instead of providing the classical oracle RF to the malicious prover P̃, we allow P̃ to access
the more powerful classical oracle OF that directly computes F . This will only increase the
capability of the malicious prover P̃, and can capture the potential case that P̃ may have a
device which hardwires some correct pairs (x, F (x)).

2.4 Extended Noisy Trapdoor Claw-Free Functions

In this subsection, we recall formal definitions of (extended) noisy trapdoor claw-free functions
(NTCF) in [BCM+18, Mah18a]. Intuitively, an NTCF family mainly differs from the perfect
TCF family we mentioned in the overview in that 1) the range of the functions is not a set Y but
the set DY of probability densities over Y; and 2) the functions cannot be perfectly evaluated.

Definition 2.2 (NTCF Family) Let λ be a security parameter. Let X and Y be finite sets.
Let KF be a finite set of keys. A family of functions

F = {fk,b : X → DY}k∈KF ,b∈{0,1}

is called a noisy trapdoor claw-free (NTCF) family if the following conditions hold:

1. Efficient Function Generation. There exists an efficient probabilistic algorithm GENF
which generates a key k ∈ KF together with a trapdoor tk:

(k, tk)← GENF (1
λ).

14

2. Trapdoor Injective Pair. For all keys k ∈ KF the following conditions hold:

(a) Trapdoor: For all b ∈ {0, 1} and x ̸= x′ ∈ X , SUPP(fk,b(x)) ∩ SUPP(fk,b(x
′)) = ∅.

Moreover, there exists an efficient deterministic algorithm INVF such that for all
b ∈ {0, 1}, x ∈ X and y ∈ SUPP(fk,b(x)), INVF (tk, b, y) = x.

(b) Injective pair: There exists a perfect matching Rk ⊆ X × X such that fk,b(x0) =
fk,b(x1) if and only if (x0, x1) ∈ Rk.

3. Efficient Range Superposition. For all keys k ∈ KF and b ∈ {0, 1} there exists a
function f ′k,b : X → DY such that

(a) For all (x0, x1) ∈ Rk and y ∈ SUPP(f ′k,b(xb)), INVF (tk, b, y) = x and INVF (tk, b ⊕
1, y) = xb⊕1.

(b) There exists an efficient deterministic procedure CHKF that, on input k, b ∈ {0, 1}, x ∈
X and y ∈ Y, returns 1 if y ∈ SUPP(f ′k,b(x)) and 0 otherwise.

(c) For every k and b ∈ {0, 1},

Ex←X [H
2(fk,b(x), f

′
k,b(x))] ≤ µ(λ),

for some negligible function µ(·). Here H2 is the Hellinger distance. Moreover, there
exists an efficient procedure SAMPF that on input k and b ∈ {0, 1} prepares the state

1√
|X |

∑
x∈X ,y∈Y

√
(f ′k,b(x))(y) |x⟩ |y⟩ .

4. Adaptive Hardcore Bit. For all keys k ∈ KF the following conditions hold, for some
integer w that is a polynomially bounded function of λ.

(a) For all b ∈ {0, 1} and x ∈ X , there exists a set Gk,b,x ⊆ {0, 1}w such that Pr
d

$←{0,1}w
[d /∈

Gk,b,x] is negligible, and moreover there exists an efficient algorithm that checks for
membership in Gk,b,x given k, b, x and the trapdoor tk.

(b) There is an efficiently computable injection J : X → {0, 1}w, such that J can be
inverted efficiently on its range, and such that the following holds. If

Hk = {(b, xb, d, d · (J(x0)⊕ J(x1))) | b ∈ {0, 1}, (x0, x1) ∈ Rk, d ∈ Gk,0,x0 ∩Gk,1,x1},
H̄k = {(b, xb, d, c) | (b, x, d, c⊕ 1) ∈ Hk},

then for any QPT procedure A there exists a negligible function µ(·) such that∣∣∣∣ Pr
(k,tk)←GENF (1λ)

[A(k) ∈ Hk]− Pr
(k,tk)←GENF (1λ)

[A(k) ∈ H̄k]

∣∣∣∣ ≤ µ(λ).
In Definition 2.3 we give the definition of trapdoor injective function family.

Definition 2.3 (Trapdoor Injective Function Family) Let λ be a security parameter. Let
X and Y be finite sets. Let KG be a finite set of keys. A family of functions

G = {gk,b : X → DY}k∈KG ,b∈{0,1}

is called a trapdoor injective family if the following conditions hold:

1. Efficient Function Generation. There exists an efficient probabilistic algorithm GENG
which generates a key k ∈ KG together with a trapdoor tk:

(k, tk)← GENG(1
λ).

15

2. Disjoint Trapdoor Injective Pair. For all keys k ∈ KG, for all b, b′ ∈ {0, 1} and
x, x′ ∈ X , if (b, x) ̸= (b′, x′), SUPP(gk,b(x)) ∩ SUPP(gk,b′(x

′)) = ∅. Moreover, there
exists an efficient deterministic algorithm INVG such that for all b ∈ {0, 1}, x ∈ X and
y ∈ SUPP(gk,b(x)), INVG(tk, y) = (b, x).

3. Efficient Range Superposition. For all keys k ∈ KF and b ∈ {0, 1}

(a) There exists an efficient deterministic procedure CHKG that, on input k, b ∈ {0, 1}, x ∈
X and y ∈ Y, returns 1 if y ∈ SUPP(gk,b(x)) and 0 otherwise.

(b) There exists an efficient procedure SAMPG that on input k and b ∈ {0, 1} prepares
the state

1√
|X |

∑
x∈X ,y∈Y

√
(gk,b(x))(y) |x⟩ |y⟩ .

Definition 2.4 (Injective Invariance) A noisy trapdoor claw-free family F is injective in-
variant if there exists a trapdoor injective family G such that:

1. The algorithms CHKF and SAMPF are the same as the algorithms CHKG and SAMPG;

2. For all QPT procedures A, there exists a negligible function µ(·) such that∣∣∣∣ Pr
(k,tk)←GENF (1λ)

[A(k) = 0]− Pr
(k,tk)←GENG(1λ)

[A(k) = 0]

∣∣∣∣ ≤ µ(λ).
Now, we are ready to define extended NTCF family.

Definition 2.5 (Extended Noisy Trapdoor Claw-Free Family) A noisy trapdoor claw-
free family F is an extended noisy trapdoor claw-free family if:

1. It is injective invariant.

2. For all k ∈ KF and d ∈ {0, 1}w, let

H ′k,d = {d · (J(x0)⊕ J(x1)) | (x0, x1) ∈ Rk}.

For all QPT procedure A, there exists a negligible function µ(·) and a string d ∈ {0, 1}w
such that ∣∣∣∣ Pr

(k,tk)←GENF (1λ)
[A(k) ∈ H ′k,d]−

1

2

∣∣∣∣ ≤ µ(λ).
As shown in [BCM+18, Mah18a], one can construct extended NTCF family under the LWE

assumption. We refer the reader to [BCM+18, Mah18a] for the details.

3 Interactive Proof with a (Limited) Quantum Verifier

Before giving the proof system for the QBBC problem, we first present an information versus
disturbance lemma in Sec. 3.1, which may be of independent interest.

16

3.1 An Information versus Disturbance Lemma

Let H1 be the one-dimensional Hadamard transformation H (i.e., H |0⟩ = 1√
2
(|0⟩ + |1⟩) and

H |1⟩ = 1√
2
(|0⟩ − |1⟩)), and let H0 be the identity transformation Id (i.e., H0 |b⟩ = |b⟩ for

any b ∈ {0, 1}). Then, for any s = s1 . . . sn ∈ {0, 1}n, we can define a quantum operation

Hs def
= Hs1 ⊗ Hs2 · · · ⊗ Hsn on n qubits: for any bit string x = x1 . . . xn ∈ {0, 1}n and s =

s1 . . . sn ∈ {0, 1}n, denote |x⟩s
def
= Hs |x⟩ as the quantum encoding |x⟩s = |x1⟩s1 · · · |xn⟩sn of x,

where |xi⟩si
def
= |xi⟩ if si = 0, and |xi⟩si

def
= H |xi⟩ otherwise.

Informally, this lemma says that for randomly chosen x, s ∈ {0, 1}n, an algorithm given a
quantum state |x⟩s cannot obtain sufficient information of x without destroying the state |x⟩s.

Lemma 3.1 (Information versus Disturbance) Let x, s be two random variables uniformly
distributed over {0, 1}n. Let P be any (unbounded) quantum algorithm which takes |x⟩s as input,
outputs a bit string e ∈ {0, 1}poly(n) and an n-qubit quantum state |ζ⟩, i.e., (e, |ζ⟩) ← P(|x⟩s).
Let x′ ∈ {0, 1}n be a bit string obtained by first applying Hs on the state |ζ⟩, and then measuring
the state Hs |ζ⟩ in the computational basis. Let z = x ⊕ x′, and let I(x, e) be the mutual
information between x and e. Then, we have that

I(x, e) ≤ n(α+
1

α

∑
hw(z)≥1

Pr[z])

holds for any α > 0, where hw(z) denotes the hamming-weight of z ∈ {0, 1}n which captures the
difference between the two n-bit strings x, x′ ∈ {0, 1}n.

Note that if |ζ⟩ = |x⟩s, we always have z = 0n (i.e., hw(z) = 0). The above lemma is basically
a quantitative version of the claim that any attempt made by P to obtain useful information of
x from the state |x⟩s will necessarily disturb the state. The proof of Lemma 3.1 will use some
techniques introduced in the security proof [BBB+06] of the BB84 quantum key distribution.
Proof. Without loss of generality, we can assume that P works as follows: given an input state
|x⟩s in the input register, it first prepares an ancillary register A in a known state |0⟩A, and
performs a unitary transformation U on the state

|0⟩A |x⟩s .

The resulting state U |0⟩A |x⟩s can be expressed in a unique way as a sum

U |0⟩A |x⟩s =
∑
x̂

|Ux,x̂⟩s |x̂⟩s ,

where |Ux,x̂⟩s = s⟨x̂|U |0⟩A |x⟩s are non-normalized states of P’s register A. Then, it performs
some measurement M on the state in his ancillary register to obtain a classical information e
and a “disturbed” state |ζ⟩ in the input register. Finally, it outputs e and |ζ⟩.

Let x′ be the measurement outcome of Hs |ζ⟩. Let z = x⊕ x′. Then, we have

Pr[z] =
∑
x,s

Pr[x, s] Pr[z|x, s] = 1

22n

∑
x,s

⟨Ux,x⊕z|Ux,x⊕z⟩s . (1)

Note that P’s state in the ancillary register A after performing the unitary transformation U is
fully determined by tracing-out the subsystem |x̂⟩s from the state

∑
x̂ |Ux,x̂⟩s |x̂⟩s, and it is

ρxs =
∑
x̂

|Ux,x̂⟩s s⟨Ux,x̂|.

17

We can purify the above state while giving more information to P by assuming she keeps the
pure state

|ϕx⟩s =
∑
x̂

|Ux,x̂⟩s |x⊕ x̂⟩s .

We have that ρxs = |ϕx⟩s s⟨ϕx|.
As shown in [BBB+06], it is sufficient to consider the symmetric attack, which is irrele-

vant to and will not be affected by the choices of x ∈ {0, 1}n and s ∈ {0, 1}n. In fact, the
authors of [BBB+06] showed that for any attack {U,M}, one can define a symmetric attack
{U sym,M sym} which is at least as good (for P) as the original attack {U,M}. In particular,
compared to the original attack, the symmetric one does not decrease the information obtained
by P while keeping the same average error-rate caused by P. For symmetric attack {U,M}, we
have the following useful facts [BBB+06, Lemma 3.5]:

• ⟨Ux,x⊕z|Ux⊕t,x⊕z⊕t⟩s is independent of x;

•
∑

x̂ ⟨Ux,x̂|Ux⊕t,x̂⊕t⟩s is independent of x.

Define Φt,s
def
= ⟨ϕx|ϕx⊕t⟩s =

∑
x̂ ⟨Ux,x̂|Ux⊕t,x̂⊕t⟩s, which is independent of x. Define

|γx⟩s
def
=

1

2n

∑
t

(−1)x·t |ϕt⟩s , d2x,s
def
= ⟨γx|γx⟩s and γ̂x

def
= γx/dx,s,

where x ·t = (x1 ·t1)⊕· · ·⊕(xn ·tn) ∈ {0, 1} for any bit vector x = (x1, . . . , xn), t = (t1, . . . , tn) ∈
{0, 1}n and dx,s > 0. We now slightly deviate from the main proof by showing several useful
equations which will be used latter.

Firstly, by the fact that

1

2n

∑
t

(−1)(x⊕x̂)·t =
{

0, x ̸= x̂;
1, otherwise,

we can rewrite
|ϕt⟩s =

∑
x̂

(−1)x̂·t |γx̂⟩s =
∑
x̂

(−1)x̂·tdx̂,s |γ̂x̂⟩s (2)

Secondly, we can rewrite the equation ⟨γx|γx⟩s = 1
22n

∑
t,t̂(−1)x·(t⊕t̂) ⟨ϕt|ϕt̂⟩s as ⟨γx|γx⟩s =

1
22n

∑
t,t̂(−1)x·t̂

⟨
ϕt
∣∣ϕt⊕t̂⟩s by using variable substitution, which in turn implies that

d2x,s =
1

22n

∑
t,t̂

(−1)x·t̂
⟨
ϕt
∣∣ϕt⊕t̂⟩s = 1

22n

∑
t,t̂,x̂

(−1)x·t̂
⟨
Ut,x̂

∣∣∣Ut⊕t̂,x̂⊕t̂

⟩
s
. (3)

Thirdly, for any x ̸= x̂, we have

⟨γx|γx̂⟩s = 1
22n

∑
t,t̂(−1)x·t(−1)x̂·t̂ ⟨ϕt|ϕt̂⟩s

= 1
22n

∑
t,t̂(−1)(x⊕x̂)·t(−1)x̂·t̂

⟨
ϕt
∣∣ϕt⊕t̂⟩s

= 1
22n

∑
t,t̂(−1)(x⊕x̂)·t(−1)x̂·t̂Φt̂,s

= 1
22n

(∑
t(−1)(x⊕x̂)·t

)∑
t̂(−1)x̂·t̂Φt̂,s.

Since
∑

t(−1)(x⊕x̂)·t = 0, we have that

⟨γx|γx̂⟩s = 0 (4)

holds for any x ̸= x̂.

18

Fourthly, by the fact that
∑

x(−1)x·t̂ = 0 for any t̂ ̸= 0n, and that |ϕt⟩s is a pure state
(which implies ⟨ϕt|ϕt⟩s = 1 for any t ∈ {0, 1}n), we have that∑

x d
2
x,s =

∑
x

1
22n

∑
t,t̂(−1)x·t̂

⟨
ϕt
∣∣ϕt⊕t̂⟩s

= 1
22n

∑
t,t̂

(∑
x(−1)x·t̂

) ⟨
ϕt
∣∣ϕt⊕t̂⟩s

= 1
2n

∑
t ⟨ϕt|ϕt⟩s

= 1.

(5)

Now, we return back to the main proof. Let I(x, e) be the mutual information of x and e.
Let I(xi, e) be the mutual information between the i-th bit xi of x and e, where i ∈ {1, . . . , n}.
Since x is a random variable uniformly distributed over {0, 1}n, we have that

I(x, e) ≤
∑
i

I(xi, e). (6)

Let vi ∈ {0, 1}n be the bit string whose j-th bit is nonzero if and only if j = i, we have
xi = vi · x ∈ {0, 1}. For any bit a ∈ {0, 1}, define

ρa(vi) = 1
22n−1

∑
s

∑
vi·x=a ρ

x
s

= 1
22n−1

∑
s

∑
vi·x=a |ϕx⟩s s⟨ϕx|

= 1
22n−1

∑
s,t,t̂

∑
vi·x=a(−1)(t⊕t̂)·xdt,sdt̂,s |γ̂t⟩s s⟨γ̂t̂|,

where the last equation is due to Equation (2). Note that in order to distinguish the i-th
bit xi of x, P has to distinguish the two states ρ0(vi) and ρ1(vi). A good measure for the
distinguishability of ρ0(vi) and ρ1(vi) is the optimal mutual information that one could get if
one needs to guess the bit a by performing an optimal measurement to distinguish between the
two density matrices, when the two are given with equal probability of half. This information
is called the Shannon Distinguishability [Fv99], denoted as SD(ρ0(vi), ρ1(vi)). Due to the
optimality of SD, we get

I(xi, e) ≤ SD(ρ0(vi), ρ1(vi)),

which is then bounded by the trace norm of ρ0(vi)− ρ1(vi) [Fv99]. Since

ρ0(vi)− ρ1(vi) = (−1)0ρ0(vi) + (−1)1ρ1(vi)

= 1
22n−1

∑
s,x,t,t̂(−1)(t⊕t̂⊕vi)·xdt,sdt̂,s |γ̂t⟩s s⟨γ̂t̂|

= 1
22n−1

∑
s,t,t̂

(∑
x(−1)(t⊕t̂⊕vi)·x

)
dt,sdt̂,s |γ̂t⟩s s⟨γ̂t̂|

= 1
2n−1

∑
s,t dt,sdt⊕vi,s |γ̂t⟩s s⟨γ̂t⊕vi |,

we have

SD(ρ0(vi), ρ1(vi)) ≤ 1
2∥ρ0(vi)− ρ1(vi)∥1

≤ 1
2n

∥∥∥∑s,t dt,sdt⊕vi,s |γ̂t⟩s s⟨γ̂t⊕vi |
∥∥∥
1

= 1
2n+1

∥∥∥∑s,t dt,sdt⊕vi,s(|γ̂t⟩s s⟨γ̂t⊕vi |+ |γ̂t⊕vi⟩s ⟨γ̂t|s)
∥∥∥
1

≤ 1
2n

∑
s,t dt,sdt⊕vi,s(

1
2∥ |γ̂t⟩s ⟨γ̂t⊕vi |s + |γ̂t⊕vi⟩s s⟨γ̂t|∥1)

= 1
2n

∑
s,t dt,sdt⊕vi,s

√
1− (Im(⟨γ̂t|γ̂t⊕vi⟩s))2

= 1
2n

∑
s,t dt,sdt⊕vi,s

= 1
2n

∑
s

(∑
hw(t)≥1 dt,sdt⊕vi,s +

∑
hw(t)=0 dt,sdt⊕vi,s

)
≤ 1

2n
∑

s

(∑
hw(t)≥1 dt,sdt⊕vi,s +

∑
hw(t⊕vi)≥1 dt,sdt⊕vi,s

)
,

19

where Im is the imaginary part, and the last third equality holds due to the fact that ⟨γ̂t|γ̂t⊕vi⟩s =
0 by Equation (4). For any positive α > 0, we have

SD(ρ0(vi), ρ1(vi)) ≤ 1
2n

∑
s

(
2
∑

hw(t)≥1 dt,sdt⊕vi,s

)
= 1

2n
∑

s

(
1
α

∑
hw(t)≥1 2αdt,sdt⊕vi,s

)
≤ 1

2n
∑

s

(
1
α

∑
hw(t)≥1(d

2
t,s + α2d2t⊕vi,s)

)
= 1

2n
∑

s

(
1
α

∑
hw(t)≥1 d

2
t,s + α

∑
hw(t)≥1 d

2
t⊕vi,s

)
≤ 1

2n
∑

s

(
1
α

∑
hw(t)≥1 d

2
t,s + α

)
The third inequality follows from the Cauchy-Schwarz inequality, and the last one holds because∑

hw(t)≥1 d
2
t⊕vi,s ≤

∑
t d

2
t,s = 1 by Equation (5). This means that

I(xi, e) ≤ SD(ρ0(vi), ρ1(vi)) ≤ α+
1

α2n

∑
s

∑
hw(t)≥1

d2t,s

holds for any α > 0.
By Equation (6), we have

I(x, e) ≤
∑
i

I(xi, e) ≤ n

α+
1

α2n

∑
s

∑
hw(t)≥1

d2t,s

 (7)

We finish the proof by bounding I(x, e) using Pr[z]. By Equation (1), we have

Pr[z] =
∑
x,s

Pr[x, s] Pr[z|x, s] = 1

22n

∑
x,s

⟨Ux,x⊕z|Ux,x⊕z⟩s .

For any s ∈ {0, 1}n, let s̄ = s⊕1n ∈ {0, 1}n be the bit string obtained by flipping each bit of s ∈
{0, 1}n. Since the change of basis between s and s̄ is expressed by |x′⟩s̄ =

∑
x 2
−n/2(−1)x′·x |x⟩s

and |x⟩s =
∑

x′ 2−n/2(−1)x·x
′ |x′⟩s̄, we have that∣∣Ux′,x̂′

⟩
s̄
=

1

2n

∑
x,x̂

(−1)x′·x(−1)x̂′·x̂ |Ux,x̂⟩s .

This implies that

Pr[z] = 1
22n

∑
t,s̄ ⟨Ut,t⊕z|Ut,t⊕z⟩s̄

= 1
24n

∑
t,s̄

∑
x,x̂

∑
x′,x̂′(−1)t·x(−1)(t⊕z)·x̂(−1)t·x

′
(−1)(t⊕z)·x̂′ ⟨

Ux,x̂

∣∣Ux′,x̂′
⟩
s

= 1
24n

∑
s̄,x,x̂,x′,x̂′

(∑
t(−1)t·(x⊕x

′⊕x̂⊕x̂′)
)
(−1)z·(x̂⊕x̂′)

⟨
Ux,x̂

∣∣Ux′,x̂′
⟩
s
.

Since
∑

t(−1)t·(x⊕x
′⊕x̂⊕x̂′) ̸= 0 if and only if x⊕ x′ ⊕ x̂⊕ x̂′ = 0, by setting t̂ = x⊕ x′ = x̂⊕ x̂′

and using Equation (3), we have that

Pr[z] =
1

23n

∑
s̄,x,x̂,t̂

(−1)z·t̂
⟨
Ux,x̂

∣∣∣Ux⊕t̂,x̂⊕t̂

⟩
s
=

1

2n

∑
s̄

d2z,s =
1

2n

∑
s

d2z,s. (8)

Combining Equations (7) and (8), we obtain

I(x, e) ≤ n

α+
1

α

∑
hw(z)≥1

Pr[z]

 .

This completes the proof. □

20

3.2 The Interactive Proof System with a (Limited) Quantum Verifier

For any bit string s = s1 . . . sn ∈ {0, 1}n, define an associated set S = {i1, . . . , ihw(s)} such
that ij ∈ S if and only if the ij-th bit sij of s is 1, where hw(s) is the Hamming weight of s
and i1 < · · · < ihw(s). Let s̄ ∈ {0, 1}n be the bit string obtained by flipping each bit of s, i.e.,

s̄ = s ⊕ 1n. Denote xs = xi1 . . . xihw(s) ∈ {0, 1}hw(s) as the hw(s)-bit substring of x ∈ {0, 1}n

indexed by S. Correspondingly, denote xs̄ ∈ {0, 1}hw(s̄) = {0, 1}n−hw(s) as the substring of
x ∈ {0, 1}n by deleting the bits indexed by S.

Now, we are ready to present our first interactive proof for the QBBC problem. The full
description of the proof system is given in Protocol 1.

Protocol 1: Interactive Proof with a (Limited) Quantum Verifier

Inputs: The quantum algorithm V has classical access to RF . The quantum algorithm P has
quantum access to D.
Description:

1. The verifier V uniformly chooses bit-strings x, s
$← {0, 1}n at random, and prepares a quantum

state |x⟩ of n qubits. Then, apply Hs on the state |x⟩ to obtain |x⟩s = Hs |x⟩. Let X ⊆ {0, 1}n
be the set X = {x̃ ∈ {0, 1}n : x̃s̄ = xs̄} determined by x, s ∈ {0, 1}n, we can rewrite

|x⟩s = Hs |x⟩ = 1√
2hw(s)

∑
x̃∈X

(−1)x
s·x̃s

|x̃⟩ .

Send a quantum challenge message |ϕ⟩ = |x⟩s to the prover;

2. The prover P sends |ϕ⟩ |0m⟩ to the device D, and returns the n+m qubits |ψ⟩ received from
D to the verifier;

3. The verifier V first picks a bit δ
$← {0, 1} at random, and sends back |ψ⟩ to the prover if

δ = 1. Otherwise, make a standard measurement on |ψ⟩ to obtain a pair of x̃ ∈ {0, 1}n and
ỹ ∈ {0, 1}m, and send a classical query (x̃, ỹ) to the device RF . If x̃s̄ ̸= xs̄ (i.e., x̃s̄ /∈ X) or
RF (x̃, ỹ) = 0, set accept = 0 and abort, else set accept = 1 and abort.

4. The prover P sends a quantum query with state |ψ⟩ to the device D, and returns a state |ζ⟩
containing the first n qubits of the state received from D to the verifier;

5. The verifier V applies Hs to the state |ζ⟩, and obtain a state |ζ ′⟩. Measure the state |ζ ′⟩ to
obtain x̂ ∈ {0, 1}n. If x̂ ̸= x, set accept = 0, else set accept = 1.

Output: V outputs accept.

For our purpose, it suffices to prove the following two theorems.

Theorem 3.1 (Completeness) For the promise problem QBBC(D,RF , a, b), in an honest ex-
ecution of Protocol 1 between a classical verifier VRF and a quantum prover PD, the verifier
VRF will accept a YES instance with probability at least 1+a

2 .

Proof of Theorem 3.1. After receiving |ϕ⟩ = |x⟩s from the verifier, the prover P will send a
quantum query with state |ϕ⟩ |0m⟩ to D, and obtain a state |ψ⟩ from D, where

|ψ⟩ = 1√
2hw(s)

∑
x̃∈X

(−1)xs·x̃sD(|x̃, 0m⟩).

After receiving |ψ⟩ from the prover, the verifier V first picks a random bit δ
$← {0, 1}. If δ = 0,

measuring the state |ψ⟩ will obtain a pair of x̃ ∈ {0, 1}n and ỹ ∈ {0, 1}m such that x̃ ∈ X (i.e.,
x̃s̄ = xs̄) and ỹ = F (x̃) with probability at least a, which means that V will set accept = 1 with

21

probability at least a when δ = 0. If δ = 1, V will first send back |ψ⟩ to the prover. The prover
P will send a quantum query with state |ψ⟩ to D (to uncompute the first application of D),
and obtain a state from D:

1√
2hw(s)

∑
x̃∈X

(−1)xs·x̃s |x̃⟩ |0m⟩ = |x⟩s |0
m⟩ .

After receiving the state |ζ⟩ = |x⟩s containing the first n qubits of the above state from P, the
verifier V will apply Hs on the state |ζ⟩, and obtain a state |ζ ′⟩ = |x⟩. Thus, measuring the
state |ζ ′⟩ will result in x̂ = x, which means that V will always set accept = 1 when δ = 1.

Since δ is uniformly chosen from {0, 1}, we have that VRF will output accept = 1 with
probability at least 1+a

2 . □

Theorem 3.2 (Soundness) For the promise problem QBBC(D,RF , a, b) with constant 15
16 <

a ≤ 1, any classical device OF computing F , and any QPT algorithm P̃D,OF , the probability
that VRF accepts a NO instance is at most 31

32 +
ϵ1
2 + negl(n) for any constant max(0, b− 15

16) <
ϵ1 < a− 15

16 .

Proof of Theorem 3.2. Note that after obtaining the first response |ψ⟩ from P̃D,OF to the

challenge message |ϕ⟩ = |x⟩s, the verifier V will first uniformly pick a bit δ
$← {0, 1} at random,

and then perform different checks depending on the value of δ. Let ϑ0 and ϑ1 be the probabilities
that |ψ⟩ passes the checks for δ = 0 and δ = 1, respectively. Then, the probability that V will
output accept = 1 is (ϑ0 + ϑ1)/2.

Let z = x̂ ⊕ x be the difference between the random string x ∈ {0, 1}n chosen in step 1
and the bit string x̂ ∈ {0, 1}n obtained by the verifier V in step 5. By definition, we have that
ϑ1 ≤ Pr[z = 0n]. We now give a bound on ϑ0. Let E be the event that P̃D,OF makes a classical
query x̃ ∈ {0, 1}n to the device OF such that x̃s̄ = xs̄ (note that for any x̃ known for P̃, making
a query x̃ to OF is the best strategy to obtain a correct F (x̃)).

Note that if E does not happen, the probability that V sets accept = 1 in step 3 is at most
b by the assumption. Thus, we have ϑ0 ≤ b + Pr[E]. Moreover, let µ = 1/2 − ν for some
0 < ν < 1/2, by the law of total probability we have that

Pr[E] = Pr[E |hw(s̄) ≤ µn] · Pr[hw(s̄) ≤ µn] + Pr[E |hw(s̄) > µn] · Pr[hw(s̄) > µn]

≤ Pr[hw(s̄) ≤ µn] + Pr[E|hw(s̄) > µn].
(9)

Since s is uniformly chosen from {0, 1}n, we have that Pr[hw(s̄) ≤ µn] ≤ e−nν
2
by the Cher-

noff bound. Furthermore, let e be the classical information that P̃ obtains about x from the
interactions, and let I(x, e) be the mutual information between x and e. Then, we have that
I(xs̄, e) ≤ I(x, e), and

Pr[E |hw(s̄) > µn] ≤ ℓ

2hw(s̄)−I(xs̄,e)
≤ ℓ

2µn−I(x,e)
, (10)

where ℓ = poly(n) is the number of classical OF queries made by P̃D,OF (since I(x, e) bounds
the information that P̃D,OF obtains about x from above). Thus, we have that

ϑ0 ≤ b+ e−nν
2
+

ℓ

2µn−I(x,e)
. (11)

Since the choice of δ is random and independent from x and s, the algorithm P̃ cannot obtain
more information about (x, s) when δ = 0. We can use Lemma 3.1 to establish a connection

22

between I(x, e) and ϑ1 (because for δ = 1, the verifier will send back the state |ψ⟩ to the prover,
one can think that P̃ directly outputs |ζ⟩ after receiving the query |ϕ⟩ from the verifier):

I(x, e) ≤ n(α+
1

α

∑
hw(z)≥1

Pr[z]) = n(α+
1

α
(1− Pr[z = 0n])) ≤ n(α+

1

α
(1− ϑ1)), (12)

where α > 0 is an arbitrary real. Let 0 < ϵ1 < 1/16 be an arbitrary constant. We now proceed
the proof by discussing the value of ϑ1.

If ϑ1 < 15/16 + ϵ1, we immediately have

ϑ0 + ϑ1
2

<
31

32
+
ϵ1
2
. (13)

If 15/16 + ϵ1 ≤ ϑ1 ≤ 1, we claim that there exists a constant ϵ2 > 0, s.t., I(x, e) ≤
(1/2 − ϵ2)n. If ϑ1 = 1, this obviously holds as α > 0 can be an arbitrary constant in Eq (12).
If 15/16 + ϵ1 < ϑ1 < 1, we have I(x, e) ≤ 2n

√
1− ϑ1 by setting α =

√
1− ϑ1 in Eq (12). Using

the fact that
√
1− ϑ1 ≤

√
1/16− ϵ1, we have that claim that there exists a constant ϵ2 > 0,

s.t., I(x, e) ≤ (1/2 − ϵ2)n. By appropriately choosing a constant 0 < ν < ϵ2, we can have
µn − I(x, e) = ϵ3n for some constant ϵ3 > 0, which means that ϑ0 ≤ b + negl(n) by Eq (11).
Thus, we have

ϑ0 + ϑ1
2

≤ 1 + b

2
+ negl(n). (14)

By choosing constant ϵ1, s.t., max(0, b − 15
16) < ϵ1 < a − 15

16 , we can always have that
ϑ0+ϑ1

2 < 31
32 + ϵ1

2 + negl(n) holds. This completes the proof. □

4 Interactive Proof with a Fully Classical Verifier

At a high level, the verifier V in Section 3 needs quantum capabilities for two main goals: 1)
generating a quantum state with a verifiable hidden set X; and 2) measuring the quantum state
from the prover to obtain a correct pair (x, F (x)) for x ∈ X. In this section, we show that under
the LWE assumption, a classical verifier can achieve the same goals by delegating the quantum
computations to the prover. For this, we will first present a protocol for generating a quantum
state with a verifiable hidden set in Section 4.1 by modifying the randomness expansion protocol
in [BCM+18], and an oblivious measurement protocol in Sec. 4.2 by tailoring the protocol
in [Mah18a].

4.1 Generation of Quantum State with Verifiable Hidden Set

Let λ be a security parameter. Let n = poly(λ), and let γ, q > 0 be functions of λ and n. Let F
be an extended NTCF family, and G be its corresponding trapdoor injective family. Now, we
will give a protocol which allows a classical verifier V and a quantum prover P to cooperatively
generate a state with a verifiable hidden set such that the prover holds the state without knowing
the corresponding hidden set held by the verifier. For our purpose, we describe the protocol in
two phases: the generation phase and the verification phase as depicted in Protocol 2.

We have the following two theorems for Protocol 2.

Theorem 4.1 If F is an extended NTCF family, and G is the corresponding trapdoor injective
family. Let s = s1 . . . sn ∈ {0, 1}n be the secret bit string chosen by V, and let Ŷ = (ŷ1, . . . , ŷn) ∈
Yn be the set output by P in the generation phase. Moreover, let x̂ri,ŷi = INVF (ti, ri, ŷi) for
any ri ∈ {0, 1} if si = 1, and (r̂i, x̂r̂i,ŷi) = INVG(ti, ŷi) otherwise. Then, in an honest execution

23

Protocol 2: Generation of Quantum State with Verifiable Hidden Set

Inputs: The classical algorithm V inputs an integer n and a real q ∈ (0, 1). The quantum algorithm
P inputs an integer n.

Generation: This is to generate a quantum state held by P.
1. For i = 1, . . . , n, V selects si ∈ {0, 1} such that Pr[si = 1] = q. Then, it generates (ki, ti) ←

GENF (1
λ) if si = 1, otherwise (ki, ti)← GENG(1

λ). Send the keys K = (k1, . . . , kn) to P.

2. P first applies the Hadamard operation to n qubits containing 0 to obtain a state

1

2n/2

∑
r=r1...rn∈{0,1}n

|r⟩ = 1

2n/2

∑
r=r1...rn∈{0,1}n

|r1⟩ . . . |rn⟩ .

Then, for i = 1, . . . , n, it applies the SAMPF = SAMPG procedure in superposition with ki
and the i-th qubit containing ri as input. Let g

′
ki,b

= f ′ki,b
if si = 1, and g′ki,b

= gki,b otherwise.
P will obtain a state

|ϕ0⟩ =
1

2n/2|X |n/2
∑

r = r1 . . . rn ∈ {0, 1}n,
X = x1 . . . xn ∈ Xn,
Y = y1 . . . yn ∈ Yn

αX,Y |r⟩ |X⟩ |Y ⟩ ,

where αX,Y =
∏

i

√
g′ki,ri

(xi)(yi). Finally, P measures the registers containing Y to obtain a

set Ŷ = (ŷ1, . . . , ŷn) ∈ Yn and a state |ϕ⟩. Send Ŷ to V.
Verification: This is to verify the quantum state |ϕ⟩ holding by P.

3. Let cst = 1 be a consistence flag held by the verifier. For i = 1, . . . , n, P and V works as
follows:

3.1 V randomly chooses ci
$← {0, 1} if si = 1, otherwise set ci = 1. Then, it sends ci to P.

3.2 P performs the following computation depending on the value of ci:

(a) In case ci = 0, evaluate the function J on the qubits containing xi, and then apply
a Hadamard transform to the w+1 qubits containing ri and xi. Measure the w+1
registers to obtain a pair (ûi, d̂i) ∈ {0, 1} × {0, 1}w. Send (ûi, d̂i) to V;

(b) In case ci = 1, measure the w+1 qubits containing (ri, xi) to obtain a pair (r̂i, x̂i) ∈
{0, 1} × X . Send (r̂i, x̂i) to V.

3.3 V performs the following computation depending on the value of ci:

(a) In case ci = 0, randomly choose Wi
$← {0, 1} if d̂i /∈ Ĝyi

= Gki,0,x̂0,ŷi
∩ Gki,1,x̂1,ŷi

.

Otherwise, set Wi = 1 if d̂i · (J(x̂0,ŷi) ⊕ J(x̂1,ŷi)) = ûi, and Wi = 0 if not, where
x̂b,ŷi = INVF (ti, b, ŷi) for b ∈ {0, 1}.

(b) In case ci = 1, setWi as the value returned by CHKF (ki, r̂i, x̂i, ŷi) if si = 1, otherwise
set cst = 0 if CHKG(ki, r̂i, x̂i, ŷi) = 0.

Outputs: V outputs 0 if
∑

i:si=1Wi < (1− γ)qn or cst = 0, and 1 otherwise.

of Protocol 2 between a classical verifier V and a quantum algorithm P, the quantum state |ϕ⟩
obtained by P in the generation phase is within negligible trace distance from the following state:

1√
2hw(s)

∑
r = r1 . . . rn ∈ Rs,Ŷ ,

X̂r,Ŷ = x̂r1,ŷ1 . . . x̂rn,ŷn ∈ Xn

|r⟩
∣∣∣X̂r,Ŷ

⟩
,

where Rs,Ŷ = {r = r1 . . . rn ∈ {0, 1}n : si = 0 ∧ ri = r̂i}. Moreover, the probability that V
outputs 1 is negligibly close to 1.

24

Proof. By definition, the quantum state |ϕ⟩ is obtained by directly measuring the register
containing Y of the state |ϕ0⟩. We first show that |ϕ0⟩ is within negligible trace distance from
the following state:∣∣∣ϕ(n)0

⟩
=

1

2n/2|X |n/2
∑

r = r1 . . . rn ∈ {0, 1}n,
X = x1 . . . xn ∈ Xn,
Y = y1 . . . yn ∈ Yn

α′X,Y |r⟩ |X⟩ |Y ⟩ ,

where α′X,Y =
∏

i

√
ĝki,ri(xi)(yi), ĝki,b = fki,b if si = 1, otherwise ĝki,b = gki,b. Clearly, α′X,Y

only differs from αX,Y at position si = 1. Now, we define a set of states
∣∣∣ϕ(1)0

⟩
, . . . ,

∣∣∣ϕ(n)0

⟩
such

that
∣∣∣ϕ(1)0

⟩
= |ϕ0⟩, and for i = 1, . . . , n the state

∣∣∣ϕ(i)0

⟩
is obtained from

∣∣∣ϕ(i−1)0

⟩
by replacing

g′ki,b with ĝki,b. As n is a polynomial in λ, in order to show that the trace distance between |ϕ0⟩
and

∣∣∣ϕ(n)0

⟩
is negligible, it suffices to show that for any i > 1, the trace distance between

∣∣∣ϕ(i)0

⟩
and

∣∣∣ϕ(i−1)0

⟩
is negligible in λ, namely,∥∥∥∣∣∣ϕ(i)0

⟩
−

∣∣∣ϕ(i−1)0

⟩∥∥∥
tr
≤ negl(λ).

This obviously holds for si = 0, because in this case g′ki,b = ĝki,b and
∣∣∣ϕ(i)0

⟩
=

∣∣∣ϕ(i−1)0

⟩
. Thus,

we only have to consider the case si = 1, where g′ki,b = f ′ki,b and ĝki,b = fki,b. As for every

k and b ∈ {0, 1}, E
x

$←X
[H2(fk,b(x), f

′
k,b(x))] ≤ µ(λ) for some negligible function µ(·) by the

assumption, we have that ∥∥∥∣∣∣ϕ(i)0

⟩
−

∣∣∣ϕ(i−1)0

⟩∥∥∥
tr
≤ negl(λ).

By the property of trace distance, we have that |ϕ⟩ is within negligible trace distance from
the state obtained by measuring the state

|ψ⟩ = 1

2n/2|X |n/2
∑

r = r1 . . . rn ∈ {0, 1}n,
X = x1 . . . xn ∈ Xn,
Y = y1 . . . yn ∈ Yn

α′X,Y |r⟩ |X⟩ |Y ⟩ .

to obtain Ŷ = {ŷ1, . . . , ŷn}. By the injective pair property of F and the disjoint trapdoor
injective pair property of G, we have that |ϕ⟩ is within negligible trace distance from the state

1√
2hw(s)

∑
r = r1 . . . rn ∈ Rs,Ŷ ,

X̂r,Ŷ = x̂r1,ŷ1 . . . x̂rn,ŷn ∈ Xn

|r⟩
∣∣∣X̂r,Ŷ

⟩
.

This completes the proof of the first claim.
As for the second claim, by the Chernoff bound it suffices to show thatWi = 1 almost always

holds for si = 1. By the definition of an extended NTCF, D will set Wi = 0 for an honest P
only if P outputs a d̂i /∈ Ĝŷi , which by item 4(a) in Definition 2.2 happens with negligible
probability. This completes the proof. □

Theorem 4.2 If F is an extended NTCF family, and G is the corresponding trapdoor injective
family. Let s = s1 . . . sn ∈ {0, 1}n be the secret bit string chosen by V, and let Ŷ = (ŷ1, . . . , ŷn) ∈
Yn be the set output by P in the generation phase. Let r̂ ∈ {0, 1}hw(s̄) be the string obtained by
concatenating each bit r̂i ∈ {0, 1} output by P satisfying si = 0 in the verification phase, and let
Rs,Ŷ = {r = r1 . . . rn ∈ {0, 1}n : rs̄ = r̂}. Let E be the event that P outputs a r ∈ Rs,Ŷ before
the verification phase. Let A be the event that V outputs 1 in the verification phase. Then, for
any QPT algorithm P, we have that Pr[E|A] ≤ negl(λ).

25

Proof. We first consider a modification of Protocol 2 where V also generates the keys by
running (ki, ti) = GENF (1

λ) for all si = 0. Then, we can similarly define events E′ and A′ the
same as E and A for the modified protocol. By the assumption that no QPT algorithm can
distinguish the keys generated by GENF (1

λ) from that generated by GENG(1
λ). We have the

|Pr[E′|A′]−Pr[E|A]| ≤ negl(λ) for any QPT algorithm P (note that the verifier V will not use
ti for si = 0 during the whole interactions).

Thus, it suffices to show that Pr[E′|A′] ≤ negl(λ). We note that the above modified protocol
is essentially identical to the randomness expansion protocol in [BCM+18] except the following
two differences:

1. The verifier in the randomness expansion protocol [BCM+18] will only generate a fresh
ki if i = 1 or si−1 = 1, and will reuse the same key ki = ki+1 = · · · = kj for any i < j
satisfying si = · · · = sj−1 = 0 and sj = 1. This is necessary for saving the random
bits to generate the keys, because the length of the output random bits of a meaningful
randomness expansion protocol must be longer than that of the input ones (which is not
required in our protocol);

2. At the end of the randomness expansion protocol [BCM+18], the verifier will either reject
and abort if

∑
i:si=1Wi < (1 − γ)qn, or output a string r̂ ∈ {0, 1}hw(s̄) obtained by con-

catenating r̂i ∈ {0, 1} for all si = 0. Besides, a consistence flag cst is added in Protocol 2
to ensure that the bit r̂i ∈ {0, 1} returned by the prover for some si = 0 in the verification
phase is always equal to the one computed by the verifier using (r̂i, x̂r̂i,ŷi) = INVG(ti, ŷi)
from ŷi (we note that this is achieved by simply checking if CHKG(ki, r̂i, x̂i, ŷi) = 0 without
using the trapdoor ti, that similar checks are implicitly done in [BCM+18]).

Clearly, the way of using a fresh ki for all i ∈ {1, . . . , n} will not give more advantage to P,
and the output of V will not affect the view of P. In fact, by almost the same proof as that
for [BCM+18, Proposition 8.9], we can show that for any QPT algorithm P, there is a negligible
function ϵ(λ) such that if V outputs 1, then the ϵ-smooth min-entropy of r̂ conditioned on all
the information obtained by P before the verification phase is at least O(n) under appropriate
choices of parameters. We refer the reader to [BCM+18] for the details. Thus, for the modified
protocol, the probability that P outputs a string r ∈ Rs,Ŷ = {r = r1 . . . rn ∈ {0, 1}n : rs̄ = r̂}
before the verification phase, conditioned on the event that V outputs 1, is negligible under
appropriate choices of parameters, namely, Pr[E′|A′] ≤ negl(λ). This completes the proof. □

4.2 Oblivious Measurement on Quantum State

Let λ be the security parameter. Let F be an extended NTCF family associated with a cor-
responding trapdoor injective family G. Suppose that there is a classical verifier V holding a
secret bit δ ∈ {0, 1} and a quantum prover P holding an arbitrary state |ψ⟩ (which does not
necessarily generated by P). We now give a protocol between V and P such that depending
on the value of δ, V either obtains the measurement outcome of |ψ⟩ or holds some information
that can help P to compute a state with trace distance negligibly close to the input state |ψ⟩,
without leaking the information of δ to P (i.e., P does not know which case it is for V). The full
description of the protocol is given in Protocol 3, which is based on the protocol in [Mah18a].

We have the following two theorems for Protocol 3.

Theorem 4.3 In an honest execution of Protocol 3 between a classical verifier V with input δ
and a quantum algorithm P with input a state |ψ⟩ =

∑
r=r1...rn∈{0,1}n βr |r1, . . . , rn⟩, we have

• In case δ = 0, V obtains r̂ ∈ {0, 1}n as a result of a standard measurement of |ψ⟩;

• In case δ = 1, there is an efficient quantum algorithm Rec which takes KT = {(ki, ti)}
and |ψ′⟩ as inputs, outputs a state |ψ′′⟩ within negligible trace distance from |ψ⟩.

26

Protocol 3: Oblivious Measurement on Quantum State

Inputs: The classical algorithm V inputs an integer n and a bit δ ∈ {0, 1}. The quantum algorithm
P inputs a quantum state |ψ⟩ =

∑
r=r1...rn∈{0,1}n βr |r1, . . . , rn⟩.

Description: This is the description of the oblivious measurement protocol.
1. For i = 1, . . . , n, V generates (ki, ti) ← GENG(1

λ) if δ = 0, otherwise (ki, ti) ← GENF (1
λ).

Then, send K = {ki}i∈{1,...,n} to P.

2. For i = 1, . . . , n, P first applies the SAMPF = SAMPG procedure in superposition with ki and
the i-th qubit containing ri of |ψ⟩ as input. Let g′ki,b

= gki,b if δ = 0, otherwise g′ki,b
= f ′ki,b

.
This will lead to the following state

1

|X |n/2
∑

r = r1 . . . rn ∈ {0, 1}n,
X = x1 . . . xn ∈ Xn,
Y = y1 . . . yn ∈ Yn

αX,Y |r⟩ |X⟩ |Y ⟩ ,

where αX,Y = βr
∏

i

√
g′ki,ri

(xi)(yi). Then, P measures the Y registers to obtain a set Ŷ =

(ŷ1, . . . , ŷn) ∈ Yn and a state |ψ′⟩. Send Ŷ to V.

3. V computes (r̂i, x̂r̂i,ŷi) = INVG(ti, ŷi) for each ŷi ∈ Y if δ = 0.

Outputs: V outputs r̂ = r̂1 . . . r̂n if δ = 0, and KT = {(ki, ti)} otherwise; P outputs a state |ψ′⟩.

Proof. As the protocol basically applies the same operations to each qubit of |ψ⟩ independently.
It suffices to consider the first qubit of |ψ⟩. Without loss of generality, we can rewrite |ψ⟩ =∑

r1∈{0,1} β̂r1 |r1⟩ |ψr1⟩. Applying the SAMPF = SAMPG procedure in superposition with k1
and the first qubit containing r1 as input will lead to a state either

1√
|X |

∑
r1 ∈ {0, 1},
x ∈ X , y ∈ Y

β̂r1

√
gk1,r1(x1)(y1) |r1⟩ |ψr1⟩ |x1⟩ |y1⟩

for δ = 0, or
1√
|X |

∑
r1 ∈ {0, 1},
x ∈ X , y ∈ Y

β̂r1

√
f ′k1,r1(x1)(y1) |r1⟩ |ψr1⟩ |x1⟩ |y1⟩ ,

which then is within negligible trace distance of the following state:

1√
|X |

∑
r1 ∈ {0, 1},
x ∈ X , y ∈ Y

β̂r1

√
fk1,r1(x1)(y1) |r1⟩ |ψr1⟩ |x1⟩ |y1⟩ ,

because E
x

$←X
[H2(fk,b(x), f

′
k,b(x))] ≤ µ(λ) for some negligible function µ(·) by the assumption.

Measuring the register containing y1 will obtain ŷ1 ∈ Y. Let (r̂1, xr̂1,ŷ1) = INVG(t1, ŷ1) if δ = 0,

otherwise x̂r1,ŷ1 = INVF (t1, r1, ŷ1) for r1 ∈ {0, 1}. If δ = 0, with probability (β̂r̂1)
2 the remaining

state |ψ′⟩ held by P is
|r̂1⟩ |ϕr̂1⟩ |xr̂1,ŷ1⟩ |ŷ1⟩

by the disjoint trapdoor injective pair property of G. Otherwise, the remaining state |ψ′⟩ is
within negligible trace distance of the following state:∑

r1∈{0,1}

β̂r1 |r1⟩ |ϕr1⟩ |x̂r1,ŷ1⟩ |ŷ1⟩

27

by the trapdoor and injective pair property of F . Clearly, if δ = 0, V will obtain r̂1 with probabil-
ity (β̂r̂1)

2, which is the same as directly measuring the first qubit of |ψ⟩ =
∑

r1∈{0,1} β̂r1 |r1⟩ |ψr1⟩.
Otherwise, let Rec be the quantum algorithm which computes the inverting algorithm x̂r1,ŷ1 =
INVF (t1, r1, ŷ1). Clearly, given t1 and |ψ′⟩ as inputs, Rec can be used to uncompute the register
containing x̂r1,ŷ1 of the above state, and obtain a state within negligible trace distance from the
input state |ψ⟩. This completes the proof. □

Theorem 4.4 If F is an extended NTCF family, and G is the corresponding trapdoor injective
family G, then for a uniformly random δ ∈ {0, 1} held by V and any QPT algorithm P, the
probability that P outputs δ′ = δ is negligibly close to 1/2 after interacting with V.

Proof. Consider a modification of Protocol 3 where V also generates the keys by running
(ki, ti) = GENF (1

λ) for δ = 0. Then, P cannot obtain any information of δ by interacting with
V in the modified protocol. Thus, the probability that P output δ′ = δ is exactly 1/2. By the
fact that SAMPF = SAMPG , and that no QPT algorithm P can distinguish the keys generated
by GENF (1

λ) from that generated by GENG(1
λ), we have the view of P in the modified protocol

and that in Protocol 3 are computationally indistinguishable. This means that the probability
that P outputs δ′ = δ is negligibly close to 1/2, which completes the proof. □

4.3 The Interactive Proof System with a Fully Classical Verifier

Let λ be the security parameter. Let n = poly(λ). Let F be an extended NTCF family
associated with a corresponding trapdoor injective family G. Now, we are ready to present
the proof system with a classical verifier VRF and a quantum prover PD such that for a YES
instance, the probability that VRF outputs 1, after interacting with an honest prover PD, is
at least 1+a

2 − negl(n), while for a NO instance, the probability that VRF outputs 1, after

interacting with any QPT algorithm P̃D,OF , is at most 1+b
2 + negl(n). The full description of

the proof system is given in Protocol 4. We have the following theorems for Protocol 4.

Theorem 4.5 If F is an extended NTCF family, and G is the corresponding trapdoor injective
family. Then, for the promise problem QBBC(D,RF , a, b), in an honest execution of Protocol 4
between a classical verifier VRF and a quantum prover PD, the probability that VRF accepts a
YES instance is at least 1+a

2 − negl(n).

Proof. Note that before executing Protocol 3, P will obtain a state |ϕ⟩ within negligible trace
distance from the following state

1√
2hw(s)

∑
r = r1 . . . rn ∈ Rs,Ŷ ,

X̂r,Ŷ = x̂r1,ŷ1 . . . x̂rn,ŷn ∈ Xn

D(|r⟩ |0m⟩)
∣∣∣X̂r,Ŷ

⟩
.

If δ = 0, by Theorem 4.3 measuring the above state will obtain a pair (r̂, F (r̂)) satisfying
r̂ ∈ Rs,Ŷ with probability at least a, which means that V will set accept = 1 with probability

at least a− negl(n). If δ = 1, by Theorem 4.3 we have that P can compute a state |ϕ′⟩ within
negligible trace distance from the following state

1√
2hw(s)

∑
r = r1 . . . rn ∈ Rs,Ŷ ,

X̂r,Ŷ = x̂r1,ŷ1 . . . x̂rn,ŷn ∈ Xn

|r⟩
∣∣∣X̂r,Ŷ

⟩
,

which is within negligible trace distance from the state |ϕ⟩ obtained by P after executing the
generation phase of Protocol 2. As V and P will execute the verification phase of Protocol 2 with
|ϕ′⟩ as input, the probability that accept = 1 in step 5 is negligibly close to 1 by Theorem 4.1.

Since δ ∈ {0, 1} is uniformly chosen at random, the probability that VRF accepts a YES
instance is at least 1+a

2 − negl(n). This completes the proof. □

28

Protocol 4: Interactive Proof with a Fully Classical Verifier

Inputs: The classical verifier V has classical access to RF . The quantum prover P has quantum
access to D.
Description: This is the full description of protocol.

1. V executes the generation phase of Protocol 2 with P. After this, V will hold a string s ∈
{0, 1}n, a set KT = {(k1, ti)} of keys and trapdoors, and a set Ŷ = {ŷ1, . . . , ŷn}. Let
x̂ri,ŷi = INVF (ti, ri, ŷi) for any ri ∈ {0, 1} if si = 1, otherwise (r̂i, x̂r̂i,ŷi) = INVG(ti, ŷi). Then,
P will hold a state |ϕ⟩ within negligible trace distance from the following state:

1√
2hw(s)

∑
r = r1 . . . rn ∈ Rs,Ŷ ,

X̂r,Ŷ = x̂r1,ŷ1 . . . x̂rn,ŷn ∈ Xn

|r⟩
∣∣∣X̂r,Ŷ

⟩
.

where Rs,Ŷ = {r = r1 . . . rn ∈ {0, 1}n : si = 0 ∧ ri = r̂i}.

2. By inserting a register containing |0m⟩ after the register containing r, P makes a quantum
query with the register containing the first n+m qubits to the device D, which will return a
state |ψ⟩ within negligible trace distance from the following state:

1√
2hw(s)

∑
r = r1 . . . rn ∈ Rs,Ŷ ,

X̂r,Ŷ = x̂r1,ŷ1 . . . x̂rn,ŷn ∈ Xn

D(|r⟩ |0m⟩)
∣∣∣X̂r,Ŷ

⟩
.

3. V randomly chooses a bit δ ∈ {0, 1}, and executes Protocol 3 with P to measure the register

containing the first (n + m) qubits of |ψ⟩. In the case δ = 0, V will obtain a pair (r̂, ĥ) ∈
{0, 1}n × {0, 1}m. It sets accept = 0 and aborts if r̂ /∈ Rs,Ŷ or RF (r̂, ĥ) = 0. Otherwise, it

sets accept = 1 and aborts. In the case δ = 1, V will obtain a set KT ′ = {(k′i, t′i)}i∈{1,...,n+m}
of keys and trapdoors; P will obtain a state |ψ′⟩. V sends KT ′ = {(k′i, t′i)}i∈{1,...,n+m} to P.

4. P computes a state |ψ′′⟩ within negligible trace distance from the following state

1√
2hw(s)

∑
r = r1 . . . rn ∈ Rs,Ŷ ,

X̂r,Ŷ = x̂r1,ŷ1 . . . x̂rn,ŷn ∈ Xn

D(|r⟩ |0m⟩)
∣∣∣X̂r,Ŷ

⟩
,

by using the algorithm Rec in Theorem 4.3 with KT ′ and |ψ′⟩ as inputs. Then, it makes a
quantum query with the register containing the first (n +m) qubits to D. By omitting the
middle m qubits after the register containing r, this will lead to a state |ϕ′⟩ within negligible
trace distance from the following state

1√
2hw(s)

∑
r = r1 . . . rn ∈ Rs,Ŷ ,

X̂r,Ŷ = x̂r1,ŷ1 . . . x̂rn,ŷn ∈ Xn

|r⟩
∣∣∣X̂r,Ŷ

⟩
.

5. V executes the verification phase of Protocol 2 with P using the state |ϕ′⟩ as input. Set
accept = 1 if V output 1 in this execution.

Output: V outputs accept.

Theorem 4.6 If F is an extended NTCF family, and G is the corresponding trapdoor injective
family. Then, for the promise problem QBBC(D,RF , a, b), any classical device OF computing
F , and any QPT algorithm P̃D,OF , the probability that VRF accepts a NO instance is at most
1+b
2 + negl(n).

29

Proof. Let E be the event that P̃ makes a classical query with some r̂ ∈ Rs,Ŷ to OF at the end
of executing Protocol 4 in step 3. By Theorem 4.4, we have that |Pr[E|δ = 0]−Pr[E|δ = 1]| ≤
negl(n) because P cannot obtain any useful information about δ held by V.

Let accδ be the event that V outputs 1 for a fixed δ ∈ {0, 1}. As δ is uniformly chosen

by V, the probability that V outputs 1 is equal to Pr[acc0]+Pr[acc1]
2 . By the assumption that

b is not smaller than the probability for any QPT algorithm to correctly guess F (x) without
knowing x, we have that Pr[acc0] ≤ Pr[E|δ = 0] + b. Moreover, by Theorem 4.2 we have that
Pr[E|δ = 1, acc1] = negl(n), as otherwise there is a QPT algorithm which breaks the security of
Protocol 2 by internally running Protocol 3 before the verification phase of Protocol 2. By the
law of total probability, we have that

Pr[E|δ = 1] = Pr[E|δ = 1, acc1] Pr[acc1] + Pr[E|δ = 1,¬ acc1] Pr[¬ acc1].

As Pr[acc1] ≤ 1, we have that Pr[E|δ = 1] = Pr[E|δ = 1,¬ acc1] Pr[¬ acc1] + negl(n). This
means that Pr[E|δ = 0] = Pr[E|δ = 1,¬ acc1] Pr[¬ acc1] + negl(n). By the following inequality,

Pr[acc0] + Pr[acc1] ≤ b+ Pr[E|δ = 1,¬ acc1] Pr[¬ acc1] + Pr[acc1] + negl(n) ≤ 1 + b+ negl(n),

the probability that V accepts a NO instance is at most Pr[acc0]+Pr[acc1]
2 ≤ 1+b

2 + negl(n). This
completes the proof. □

5 Application: Separation between ROM and QROM

In this section, we show that the problem of distinguishing the random oracle model (ROM)
and the quantum ROM (QROM) is a natural QBBC problem.

In the ROM, all parties, including the adversary, are given access to an “idealized” random
function (i.e., a random oracle, RO). Since its introduction [BR93], the ROM has been widely
used to design and analyze many well-known schemes such as the OAEP encryption [BR95]
and the full-domain hash (FDH) signature [BR96]. Although most “honestly-designed” ROM
schemes seem to keep the security in practice, the soundness of ROM has been questioned by the
literatures [CGH04, Nie02, MRH04]. The first separation between the ROM and the standard
model was given by Canetti, Goldreich and Halevi [CGH04], who showed that there exist
signature and encryption schemes that are secure in the ROM, but for which any implementation
of the RO results in insecure schemes.

In 2011, the authors of [BDF+11] found that the classical ROM may even be problematic for
quantum adversaries, and introduced the quantum ROM (QROM) where honest parties (e.g.,
the cryptosystems) still access the RO in a classical way, but the adversary is explicitly allowed
to make quantum queries to the RO. They justified the necessity of QROM by presenting an
artificial identification protocol which is secure in the ROM but is insecure in the QROM.
However, the separation in [BDF+11] heavily relies on a set of “timing assumptions”. This is
because their artificial identification protocol basically uses a (somewhat) trivial distinguisher
between ROM and QROM. Specifically, the distinguisher is built upon the gap in finding a
collision of an m-bit output hash function between using the birthday attack with O(2m/2)
classical queries and using the Grover algorithm with O(2m/3) quantum queries [Gro96, BHT98].
Since the query gap is only polynomial (as 2m/2 can be naturally written as a polynomial
of 2m/3), their argument requires extra “timing assumptions” (e.g., “unit time” and “zero
time” assumptions) to ensure that the running time of the identification protocol is longer than
O(2m/3) “unit time” for a QROM adversary to run the Grover algorithm [Gro96], but is shorter
than O(2m/2) “unit time” for a ROM adversary to carry out the birthday attack. This leaves
a nine-year open question of finding a standard separation between ROM and QROM.

Note that the only difference between ROM and QROM is that the adversary in the QROM
can make quantum queries to the RO while that in the ROM can only make classical queries.

30

This can be naturally seen as that the adversary in the QROM has a quantum device D correctly
computing an idealized random function O : {0, 1}n → {0, 1}m, while that in the ROM only
has a trivial quantum device D simply guessing the output of O(·) at each point. As the honest
parties are given classically access to the RO O(·) (and thus has a natural device RO deciding
the input-output relation of O(·)), the problem of distinguishing ROM and QROM is a natural
promise problem QBBC(D,RO, 1, 1

2m).
By Theorems 4.5 and 4.6, we immediately have that there is an efficient classical distinguisher

V ′ (obtained by repeatedly running the verifier V in Protocol 4 a polynomial number of times)
for ROM and QROM, such that it almost always outputs 1 after interacting with a QROM
adversary performing the strategy of an honest prover P, and 0 after interacting with any
adversary in the ROM. This distinguisher V ′ can be used as a building block to construct
cryptosystems that are secure in the ROM but insecure in the QROM, as it allows to embed
some malicious behaviors that can only be utilized by an adversary in the QROM: given a
secure cryptosystem C, one can construct another cryptosystem C′ which first internally runs
the distinguisher V ′ to detect if the adversary runs in the QROM, and then performs normally
as C does if V ′ outputs 0, otherwise behaves maliciously (e.g., directly outputting the secret key
to the adversary) if V ′ outputs 1.

In the following, we give a concrete counter-example using identification schemes.

Definition 5.1 (Identification Scheme) An identification scheme ΠID consists of three PPT
algorithms (KeyGen,Prove,Verify) such that:

• given a security parameter λ as input, the key generation algorithm KeyGen outputs a
public key pk and a secret key sk, namely, (pk, sk)← KeyGen(1λ);

• Prove and Verify are interactive algorithms. After interacting with the prover algorithm
Prove(sk) with input a secret key sk, the verification algorithm Verify(pk) which takes a
public key pk as input will output a bit b = 1/0 indicating whether “accept” or “reject”.

Denote by ⟨Prove(sk),Verify(pk)⟩ the output of Verify(pk). For correctness, we require that
for all λ, and all (pk, sk) ← KeyGen(1λ), the algorithm Verify(pk) will always output 1 (i.e.,
“accept”) after interacting with Prove(sk), namely,

Pr
[
⟨Prove(sk),Verify(pk)⟩ = 1 : (pk, sk)← KeyGen(1λ)

]
= 1,

where the probability is taken over all randomness used by algorithms KeyGen,Prove,Verify.
An active adversary A = (A1,A2) against identification schemes consists of a pair of inter-

active algorithms, which works in two stages. In the first stage, the adversary runs algorithm
A1(pk) to interact with an honest prover Prove(sk) by acting as a verifier, and outputs some
“secret” information τ learned from the interactions. In the second stage, the adversary runs
algorithm A2(τ) to interact with an honest verifier Verify(pk) by acting as a prover, and tries
to impersonate Prove(sk) to a verifier. The security of identification schemes requires that for
any efficient algorithm A, it is unable to falsely impersonate Prove(sk) to a verifier. For our
purpose, we focus on post-quantum identification schemes, where the adversary A can be any
QPT algorithm, but is only allowed to classically interact with the schemes (i.e., the interfaces
of the schemes are still classical).

Definition 5.2 (Active Security) An identification scheme ΠID = (KeyGen,Prove,Verify) is
actively secure, if the following is negligible for all QPT adversaries A = (A1,A2):

Pr
[
⟨A2(τ),Verify(pk)⟩ = 1 : (pk, sk)← KeyGen(1λ), τ ← A⟨Prove(sk),·⟩1 (pk)

]
,

where the oracle ⟨Prove(sk), ·⟩ allows A1 to interact with an honest prover Prove(sk) by acting
as a verifier.

31

Let O : {0, 1}n → {0, 1}m be any RO. Let RO be a device deciding the input-output relation
of O(·), which can be implemented by using a single classical query to O(·) for each input. In
particular, given an input pair (x, y) ∈ {0, 1}n × {0, 1}m, the device RO first sends a query x
to the RO O(·), which will return ŷ = O(x). If y = ŷ, RO(x, y) returns 1, and 0 otherwise.
Let VRO be the verifier with a device RO in Protocol 4. Let P̃ be a dummy prover for VRO

which always returns 0ℓ if VRO is expected to receive a bit string of length ℓ. Let ṼRO be the
algorithm obtained by repeatedly running VRO for N = poly(n) times, and outputting 1 if in
more than 7N

8 of the repetitions VRO outputs 1. Let P̃ ′ be the corresponding dummy algorithm

for Ṽ, obtained by repeatedly running P̃ for N = poly(n) times.
We now construct an identification scheme Π′ID = (KeyGen′,Prove′,Verify′) from any actively

secure ΠID = (KeyGen,Prove,Verify) and algorithms ṼRO and P̃ ′.

• The key generation algorithm KeyGen′ works the same as KeyGen, namely, it simply runs
(pk, sk)← KeyGen(λ), and outputs (pk, sk);

• The algorithm Prove′(sk) first internally executes ṼRO . If ṼRO outputs 1, it sends sk to
the verifier and aborts, otherwise it runs Prove(sk) normally.

• The algorithm Verify′(pk) first internally executes P̃ ′. It outputs 1 if it receives a secret
key sk corresponding to pk after this execution. Otherwise, it runs Verify(pk) normally,
and outputs 1 if and only if Verify(pk) accepts.

Clearly, the identification scheme Π′ID = (KeyGen′,Prove′,Verify′) is correct by the correct-
ness of ΠID = (KeyGen,Prove,Verify), because for any honest prover Prove′(sk), the algorithm
Verify′(pk) will always output 1 no matter if the internal subroutine ṼRO of Prove′(sk) outputs
1 or not. We now prove that Π′ID = (KeyGen′,Prove′,Verify′) is secure in the ROM.

Theorem 5.1 Let O : {0, 1}n → {0, 1}m be any RO for sufficiently large n. If ΠID =
(KeyGen,Prove,Verify) is actively secure, then the modified scheme Π′ID = (KeyGen′,Prove′,Verify′)
is actively secure in the ROM. In particular, if there exists an efficient adversary A′ = (A′1,A′2)
breaking the security of Π′ID with probability δ, then there exists another efficient adversary of
A = (A1,A2) breaking the security of ΠID with probability at least δ − negl(n).

Proof.
We now construct A = (A1,A2) from A′ = (A′1,A′2) as follows. Given a public key pk

as input, algorithm A⟨Prove(sk),·⟩1 (pk) internally runs ṼRO and A′1(pk), and simulates a prover
Prove′(sk) for A′1(pk) as follows:

• If A′1(pk) sends a message intended for the subroutine ṼRO , it sends the message to its

simulated ṼRO . If ṼRO outputs 1, A1 directly aborts. Otherwise, it continues as an
honest prover by using ṼRO .

• If A′1(pk) sends a message intended for the subroutine Prove(sk), it sends the message to
its own oracle ⟨Prove(sk), ·⟩, and returns whatever it obtains from the oracle to A′1(pk).

• If A′1(pk) produces an output τ and aborts, A1 returns τ as its own output and aborts.

Given τ as input, algorithm A2(τ) internally runs P̃ ′ and A′2(τ) to interact with an honest
verifier Verify(pk) by simulating as a verifier Verify′(pk) for A′2(τ) as follows:

• If A′2 sends a message intended for the subroutine P̃ ′, A2 sends the message to the simu-

lated P̃ ′, and returns whatever it obtains from P̃ ′ to A′2.

• If A′2 sends a secret key sk corresponding to pk and aborts, A2 directly runs Prove(sk) to
interact with Verify(pk);

32

• If A′2 sends a message intended for the subroutine Verify(pk), A2 sends the message to
Verify(pk) and returns whatever it obtains from Verify(pk) to A′2.

Let E be the event that ṼRO outputs 1. Clearly, if E does not happen, A = (A1,A2) simulates
a perfect environment for A′ = (A′1,A′2). In this case, the probability that A = (A1,A2) breaks
the security of ΠID is the same as that A′ = (A′1,A′2) breaks the security of Π′ID. Thus, it
suffices to show that Pr[E] = negl(n).

Note that the adversary A′ = (A′1,A′2) can only classically access the RO O(·), and that ṼRO

is obtained by repeatedly running VRO for N = poly(n) times. By Theorem 4.6, the probability
that VRO outputs 1 after interacting with any adversary A′1 given only classical access to O(·)
is at most 1+1/2m

2 + negl(n) ≤ 3
4 + negl(n). As ṼRO will only output 1 if in more than 7N

8 of the

repetitions VRO outputs 1, we have that Pr[E] ≤ e−N/150 = negl(n) for sufficiently large n and
N by the Chernoff bound. This completes the proof. □

Theorem 5.2 Let O : {0, 1}n → {0, 1}m be any RO for any integers n and m. The modified
scheme Π′ID = (KeyGen′,Prove′,Verify′) is insecure in the QROM.

Proof. Let D be a quantum device computing O, i.e., D : |x⟩ |0m⟩ → |x⟩ |O(x)⟩. Let P̃D is
obtained by repeatedly running the prover algorithm PD in Protocol 4 for N = poly(n) times.
By Theorem 4.5, the probability that VRO outputs 1 after interacting with PD is at least
1 − negl(n). Thus, the probability that ṼRO outputs 1 after interacting with P̃D is at least
1− e−N/150 = 1− negl(n) for sufficiently large n and N by the Chernoff bound.

We now construct an adversary A = (A1,A2) breaking the active security of Π′ID in the
QROM. Note that A = (A1,A2) is given quantum access to O(·). This means that A1 can
internally runs P̃D by answering each query to D using a quantum query to O(·). A1 works as
follows to obtain a secret key sk from Prove′(sk):

• If Prove′(sk) sends a message intended for the subroutine P̃ ′, A1 sends the message to P̃D,
and returns whatever it obtains from P̃D to Prove′(sk);

• If Prove′(sk) sends a secret key sk corresponding to pk and aborts, A1 directly outputs
τ = sk and aborts;

• If Prove′(sk) sends a message intended for the subroutine Verify(pk), A1 outputs τ = ⊥
and aborts.

Given τ = sk as input, algorithm A2(τ) performs the same as Prove′(sk) to interact with
Verify(pk). Otherwise, A2(τ) directly aborts.

It suffices to show that

Pr
[
⟨A2(τ),Verify

′(pk)⟩ = 1 : (pk, sk)← KeyGen′(1λ), τ ← A⟨Prove
′(sk),·⟩

1 (pk)
]
≥ 1− negl(n),

which in turn can be proved by showing that A1 will output τ = sk with probability at least
1−negl(n). As Prove′(sk) will output sk if ṼRO outputs 1 and A1 essentially runs P̃D to interact
with ṼRO , the probability that Prove′(sk) sends a secret key sk to A1 is at least 1− negl(n) for
sufficiently large n and N . This means that A1 will output τ = sk with probability at least
1− negl(n). By the correctness of Π′ID, we complete the proof. □

References

[ABOE10] Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive proofs for quantum
computations. In Innovations in Comuter Science - ICS 2010, Tsinghua Univer-
sity , Beijing, China, January 5-7, 2010. Proceedings, pages 453–469, 2010.

33

[ABOEM17] Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive
proofs for quantum computations. arXiv preprint arXiv:1704.04487, 2017.

[ACGH19] Gorjan Alagic, Andrew M Childs, Alex B Grilo, and Shih-Han Hung. Non-
interactive classical verification of quantum computation. arXiv, pages arXiv–
1911, 2019.

[AV13] Dorit Aharonov and Umesh Vazirani. Is quantum mechanics falsifiable? A com-
putational perspective on the foundations of quantum mechanics. Computability:
Turing, Gödel, Church, and Beyond. MIT Press, 2013.

[BBB+06] Eli Biham, Michel Boyer, P. Oscar Boykin, Tal Mor, and Vwani Roychowdhury.
A proof of the security of quantum key distribution. Journal of Cryptology,
19(4):381–439, Oct 2006.

[BCM+18] Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T. Vidick. A crypto-
graphic test of quantumness and certifiable randomness from a single quantum
device. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 320–331, 2018.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,
and Mark Zhandry. Random oracles in a quantum world. In DongHoon Lee and
Xiaoyun Wang, editors, ASIACRYPT 2011, pages 41–69. Springer, Heidelberg,
2011.

[BFK09] A. Broadbent, J. Fitzsimons, and E. Kashefi. Universal blind quantum computa-
tion. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science,
pages 517–526, 2009.

[BHT98] Gilles Brassard, Peter HØyer, and Alain Tapp. Quantum cryptanalysis of hash
and claw-free functions. In Cláudio L. Lucchesi and Arnaldo V. Moura, editors,
LATIN’98: Theoretical Informatics, pages 163–169. Springer, Heidelberg, 1998.

[BJ15] Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryption for cir-
cuits of low t-gate complexity. In Annual Cryptology Conference, pages 609–629.
Springer, 2015.

[BL08] Jacob D. Biamonte and Peter J. Love. Realizable hamiltonians for universal adi-
abatic quantum computers. Phys. Rev. A, 78:012352, Jul 2008.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In CCS 1993, pages 62–73. ACM, 1993.

[BR95] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo
De Santis, editor, EUROCRYPT’94, pages 92–111. Springer, Heidelberg, 1995.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures-how
to sign with RSA and Rabin. In Ueli Maurer, editor, Advances in Cryptology —
EUROCRYPT ’96, pages 399–416. Springer, Heidelberg, 1996.

[Bra18] Zvika Brakerski. Quantum fhe (almost) as secure as classical. In Annual Interna-
tional Cryptology Conference, pages 67–95. Springer, 2018.

[Bro18] Anne Broadbent. How to verify a quantum computation. Theory of Computing,
14(11):1–37, 2018.

34

[CCKW18] Alexandru Cojocaru, Léo Colisson, Elham Kashefi, and Petros Wallden. On
the possibility of classical client blind quantum computing. arXiv preprint
arXiv:1802.08759, 2018.

[CCKW19] Alexandru Cojocaru, Léo Colisson, Elham Kashefi, and Petros Wallden. Qfactory:
classically-instructed remote secret qubits preparation. In International Confer-
ence on the Theory and Application of Cryptology and Information Security, pages
615–645. Springer, 2019.

[CCY20] Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. Classical verification of
quantum computations with efficient verifier. In Theory of Cryptography, 2020.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, July 2004.

[CGJV19] Andrea Coladangelo, Alex B. Grilo, Stacey Jeffery, and Thomas Vidick. Verifier-
on-a-leash: New schemes for verifiable delegated quantum computation, with
quasilinear resources. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2019, pages 247–277, Cham, 2019. Springer Interna-
tional Publishing.

[Chi05] Andrew M. Childs. Secure assisted quantum computation. Quantum Info. Com-
put., 5(6):456466, September 2005.

[CHSH69] John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt. Pro-
posed experiment to test local hidden-variable theories. Physical review letters,
23(15):880, 1969.

[DSS16] Yfke Dulek, Christian Schaffner, and Florian Speelman. Quantum homomorphic
encryption for polynomial-sized circuits. In Annual International Cryptology Con-
ference, pages 3–32. Springer, 2016.

[FHM18] Joseph F. Fitzsimons, Michal Hajdušek, and Tomoyuki Morimae. Post hoc veri-
fication of quantum computation. Phys. Rev. Lett., 120:040501, Jan 2018.

[Fit17] Joseph F Fitzsimons. Private quantum computation: an introduction to blind
quantum computing and related protocols. npj Quantum Information, 3(1):1–11,
2017.

[FK17] Joseph F. Fitzsimons and Elham Kashefi. Unconditionally verifiable blind quan-
tum computation. Phys. Rev. A, 96:012303, Jul 2017.

[Fv99] C. A. Fuchs and J. van de Graaf. Cryptographic distinguishability measures
for quantum-mechanical states. IEEE Transactions on Information Theory,
45(4):1216–1227, May 1999.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the forty-first annual ACM symposium on Theory of computing, pages 169–178,
2009.

[GKK19] Alexandru Gheorghiu, Theodoros Kapourniotis, and Elham Kashefi. Verification
of quantum computation: An overview of existing approaches. Theory of comput-
ing systems, 63(4):715–808, 2019.

[GKW15] Alexandru Gheorghiu, Elham Kashefi, and Petros Wallden. Robustness and device
independence of verifiable blind quantum computing. New Journal of Physics,
17(8):083040, 2015.

35

[GMMR13] Vittorio Giovannetti, Lorenzo Maccone, Tomoyuki Morimae, and Terry G
Rudolph. Efficient universal blind quantum computation. Physical review let-
ters, 111(23):230501, 2013.

[Gri19] Alex B Grilo. A simple protocol for verifiable delegation of quantum computation
in one round. In 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
STOC 1996, pages 212–219. ACM, 1996.

[GV19] Alexandru Gheorghiu and Thomas Vidick. Computationally-secure and compos-
able remote state preparation. In 2019 IEEE 60th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 1024–1033. IEEE, 2019.

[GWK17] Alexandru Gheorghiu, Petros Wallden, and Elham Kashefi. Rigidity of quantum
steering and one-sided device-independent verifiable quantum computation. New
Journal of Physics, 19(2):023043, feb 2017.

[HKSE17] D Hangleiter, M Kliesch, M Schwarz, and J Eisert. Direct certification of a class
of quantum simulations. Quantum Science and Technology, 2(1):015004, feb 2017.

[HM15] Masahito Hayashi and Tomoyuki Morimae. Verifiable measurement-only blind
quantum computing with stabilizer testing. Phys. Rev. Lett., 115:220502, Nov
2015.

[HPDF15] Michal Hajdušek, Carlos A Pérez-Delgado, and Joseph F Fitzsimons.
Device-independent verifiable blind quantum computation. arXiv preprint
arXiv:1502.02563, 2015.

[HT19] Masahito Hayashi and Yuki Takeuchi. Verifying commuting quantum computa-
tions via fidelity estimation of weighted graph states. New Journal of Physics,
21(9):093060, 2019.

[Ji16] Zhengfeng Ji. Classical verification of quantum proofs. In Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing, pages 885–898, 2016.

[KKR06] Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local hamil-
tonian problem. SIAM Journal on Computing, 35(5):1070–1097, 2006.

[Mah18a] U. Mahadev. Classical verification of quantum computations. In 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pages 259–267,
2018.

[Mah18b] Urmila Mahadev. Classical homomorphic encryption for quantum circuits. In
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 332–338. IEEE, 2018.

[McK16] Matthew McKague. Interactive proofs for BQP via self-tested graph states. Theory
of Computing, 12(3):1–42, 2016.

[MF16] Tomoyuki Morimae and Joseph F Fitzsimons. Post hoc verification with a single
prover. arXiv preprint arXiv:1603.06046, 2016.

[MPDF13] Atul Mantri, Carlos A Pérez-Delgado, and Joseph F Fitzsimons. Optimal blind
quantum computation. Physical review letters, 111(23):230502, 2013.

36

[MRH04] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impos-
sibility results on reductions, and applications to the random oracle methodology.
In Moni Naor, editor, Theory of Cryptography, pages 21–39. Springer, Heidelberg,
2004.

[MTH17] Tomoyuki Morimae, Yuki Takeuchi, and Masahito Hayashi. Verification of hyper-
graph states. Physical Review A, 96(6):062321, 2017.

[MV20] Tony Metger and Thomas Vidick. Self-testing of a single quantum device under
computational assumptions. arXiv preprint arXiv:2001.09161, 2020.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In Moti Yung, editor, Advances in
Cryptology – CRYPTO 2002, pages 111–126. Springer, Heidelberg, 2002.

[NIS16] NIST. Post-quantum cryptography standardization, 2016. http://csrc.nist.

gov/groups/ST/post-quantum-crypto/submission-requirements/index.

html.

[NV16] Anand Natarajan and Thomas Vidick. Robust self-testing of many-qubit states.
arXiv preprint arXiv:1610.03574, 2016.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In STOC 2005, pages 84–93. ACM, 2005.

[RUV13] Ben W Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quan-
tum systems. Nature, 496(7446):456–460, 2013.

[TM18] Yuki Takeuchi and Tomoyuki Morimae. Verification of many-qubit states. Physical
Review X, 8(2):021060, 2018.

[Vid20] Thomas Vidick. Verifying quantum computations at scale: A cryptographic leash
on quantum devices. Bulletin of the American Mathematical Society, 57(1):39–76,
2020.

[YZ20a] Takashi Yamakawa and Mark Zhandry. Classical vs quantum random oracles.
Cryptology ePrint Archive, Report 2020/1270, 2020. https://eprint.iacr.org/
2020/1270.

[YZ20b] Takashi Yamakawa and Mark Zhandry. A note on separating classical and
quantum random oracles. Cryptology ePrint Archive, Report 2020/787, 2020.
https://eprint.iacr.org/2020/787.

[ZH19a] Huangjun Zhu and Masahito Hayashi. Efficient verification of hypergraph states.
Phys. Rev. Applied, 12:054047, Nov 2019.

[ZH19b] Huangjun Zhu and Masahito Hayashi. Efficient verification of pure quantum states
in the adversarial scenario. Physical Review Letters, 123(26):260504, 2019.

[ZYF+19] Jiang Zhang, Yu Yu, Dengguo Feng, Shuqin Fan, and Zhenfeng Zhang. On the
(quantum) random oracle methodology: New separations and more. Cryptology
ePrint Archive, Report 2019/1101, 2019. https://eprint.iacr.org/2019/1101.

[ZZ20] Huangjun Zhu and Haoyu Zhang. Efficient verification of quantum gates with
local operations. Physical Review A, 101(4):042316, 2020.

37

http://csrc.nist.gov/groups/ST/post-quantum-crypto/submission-requirements/index.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/submission-requirements/index.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/submission-requirements/index.html
https://eprint.iacr.org/2020/1270
https://eprint.iacr.org/2020/1270
https://eprint.iacr.org/2020/787
https://eprint.iacr.org/2019/1101

	Introduction
	Our Results
	Application: Separation between ROM and QROM
	Overview of Interactive Proof with a (Limited) Quantum Verifier
	Overview of Interactive Proof with a Fully Classical Verifier
	Related work and Discussions

	Preliminaries
	Notation
	Information Theory
	Interactive Proofs for the QBBC Problem
	Extended Noisy Trapdoor Claw-Free Functions

	Interactive Proof with a (Limited) Quantum Verifier
	An Information versus Disturbance Lemma
	The Interactive Proof System with a (Limited) Quantum Verifier

	Interactive Proof with a Fully Classical Verifier
	Generation of Quantum State with Verifiable Hidden Set
	Oblivious Measurement on Quantum State
	The Interactive Proof System with a Fully Classical Verifier

	Application: Separation between ROM and QROM

