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Abstract. One of the NIST Post-Quantum Cryptography Standardiza-
tion Process Round 2 candidates is the NewHope cryptosystem, which
is a suite of two RLWE based key encapsulation mechanisms. Recently,
four key reuse attacks were proposed against NewHope by Bauer et al.,
Qin et al., Bhasin et al. and Okada et al. In these attacks, the adver-
sary has access to the key mismatch oracle which tells her if a given
ciphertext decrypts to a given message under the targeted secret key.
Previous attacks either require more than 26 000 queries to the oracle
or they never recover the whole secret key. In this paper, we present
a new attack against the NewHope cryptosystem in these key reuse sit-
uations. Our attack recovers the whole secret key with the probability
of 100% and requires less than 3 200 queries on average. Our work im-
proves state-of-the-art results for NewHope and makes the comparison
with other candidates more relevant.

Keywords: NewHope · Key mismatch attack · Post quantum cryptog-
raphy · Cryptanalysis · Oracle · Attack

1 Introduction

Over the last few years there has been an increasing interest in constructing
quantum computers [4, 7, 8]. The threat of large-scale quantum computers in
combination with the known quantum algorithms against currently deployed
public-key schemes [15] motivates the community to base cryptosystems on prob-
lems believed to be resistant even against quantum computers. In 2016, NIST
initiated the Post-Quantum Cryptography Standardization Process to evaluate
and standardize one or more quantum-resistant public-key cryptographic algo-
rithms. Many of the proposed schemes belong to the lattice based algorithms
whose security is based on conjectured hard problems on point lattices in Rn [12].

One of the second-round candidates of the NIST Standardization Process is
NewHope [1] which is a suite of two key encapsulation mechanisms (KEM) based
on the Ring Learning With Errors (RLWE) problem [10]. The original NewHope
was developed before the NIST Standardization Process and it was tested in
Google Chrome browser [3]. Later, a simplified variant called NewHope-Simple
was published by Alkim et al. [2] and the submitted version is based on that.

In 2019, Bauer et al. [6] proposed a key mismatch attack against NewHope.
In this attack model, the adversary has access to the key mismatch oracle which



tells her if a given ciphertext decrypts to a given message under the targeted
secret key. Such an attack model was originally proposed in [5] and is relevant in
scenarios when the same secret key is reused for several key exchanges because it
is then possible to access the key mismatch oracle. Later in 2019, Qin et al. [13]
improved the attack from [6] and Bhasin et al. [14] came up with another attack
against NewHope, which is the current state-of-the-art. In 2020, Okada et al. [11]
further improved the attack from [13].

The attack by Bhasin et al. works in two stages. First, it queries the key
mismatch oracle with a given sequence of ciphertexts, leading to a smaller set of
candidates for the key. Then, in the second stage, it recovers the key from the
smaller set of candidates in a knock-out tournament fashion.

The other above mentioned attacks use so called favorable cases. In principle,
they use sequences of 8 queries to the key mismatch oracle and look for a specific
pattern of outputs, which is called a favorable case. These specific patterns help
them to recover the secret key.

Key mismatch attacks against other second round NIST candidates were
published. For example, in [14] Bhasin et al. target except NewHope also LAC,
Kyber, SABER, Frodo and Round5; in [9], the authors target LAC, Kyber,
SABER, RQC and HQC.

1.1 Our Contribution

In this paper, we focus on key mismatch attacks against NewHope. First, we
recall the four previous attacks, namely the original one done by Bauer et al. [6],
its improvements by Qin et al. [13] and Okada et al. [11] and the attack by
Bhasin et al. [14]. After that, we show that the technique using favorable cases
could be improved and how we can use the information provided by the key
mismatch oracle more efficiently. Our method uses a gradual reduction of the
possibilities for the targeted key. We mention that the attack of Bhasin et al.
also reduces possibilities for the targeted secret key but in a different manner.

Based on these observations, we improve the attack in terms of number of
queries to the key mismatch oracle. We reduce the number of queries to the
oracle significantly. The average number of queries to the oracle in [14] is more
than 26 000 while we need only less than 3 200 queries on average in order to
recover the whole secret key.

First, we introduce a way how we can achieve the success probability of 100%
with a very low number of queries. After that, we refine the attack so that the
number of queries is even smaller. We implemented the attack in order to verify
its functionality and the experiments confirmed results described in our paper.
The implementation can be found on github1.

Despite the fact that a key reuse is considered as a misuse by the specification
of NewHope, we think that the condition of the attack is still relevant since
being considered as a misuse does not prevent it from happening. We suppose
that it can still easily happen either as a result of misinterpreting the NewHope

1 https://github.com/KeyMismatchAttackOnNewHopeRevisitedCode/Attack
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specification or by deliberately reusing the secret key for efficiency reasons due
to the lack of understanding of possible attacks and their complexities in this
case.

1.2 Outline of the Paper

In Section 2, we introduce the notation and describe the NewHope cryptosystem.
In Section 3, we introduce the key mismatch oracle and recall previous attacks
against NewHope. In Section 4, we describe our new method. In Section 5, we
compare our new method with previous attacks. In Section 6, we sum up our
results and mention possible future research.

2 Preliminaries

In this section, we first introduce the notation used in this paper and then we
briefly describe the NewHope cryptosystem.

2.1 Notation

For a positive integer q, we denote by Zq the quotient ring Z/qZ, where we take
the elements of Zq to be the canonical representatives, i.e. integers between 0 and
q− 1. For an integer x and a positive integer q, we define the x mod q operation
in a standard way to always produce an integer between 0 and q−1. For positive
integers q,N , we denote by Rq the quotient ring Zq[x]/(xN +1), where we again
take elements ofRq to be the canonical representatives, i.e. polynomials of degree
at most N−1 with all coefficients between 0 and q−1. We can think of an element
r ∈ Rq as a vector of N elements, where by r[i] we refer to the corresponding
coefficient before xi in r. By ψ8, we denote the centered binomial distribution
of parameter 8. One may sample from ψ8 by computing

∑8
i=1 bi − b′i, where bi,

b′i ∈ {0, 1} are independent uniformly random bits. It means that elements from
the distribution ψ8 are between −8 and 8. If a random variable X follows the
distribution ψ8, we can compute the corresponding probabilities as follows: For
i ∈ [−8, 8], it holds that

Pr[X = i] =

(
16
8+i

)
48

. (1)

For a set A, we denote by
$←− A sampling an element uniformly random from

the set A. Similarly, we denote by
$←− ψ8 picking an element in Rq having all

coefficients sampled independently following the centered binomial distribution
ψ8. For x ∈ R , we define bxc to be the greatest integer less than or equal to x.
For x ∈ R, we define bxe = bx+ 1

2c ∈ Z.
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2.2 NewHope

In this subsection, we briefly describe NewHope KEM. For more details, we refer
the reader to the specification [1] of NewHope. We mention that NewHope pro-
posed to the NIST Standardization Process uses the encryption based approach.
We focus only on the passively secure CPA-1024 variant which is relevant for our
paper. For this version, it is possible to get access to the key mismatch oracle
straightforwardly when the secret key is reused. For the CCA-1024 variant, key
mismatch oracle can be accessed using side-channels, see [14]. The reason for
1024 variant is to be consistent with the previous attacks [6], [13] and [11] and
so to be able to compare our results with theirs. Moreover, the attack against
the 512 variant would be precisely the same. According to the specification of
NewHope, we set the parameters for Rq as N = 1024 and q = 12289. Through-
out the rest of the paper, these values are fixed. Nevertheless, we will for example
write Rq instead of R12289 and Zq instead of Z12289 for a better readability. On
the other hand, we write some expressions already enumerated, e.g. 6144 instead
of b q2c. The used hash function is SHAKE256. First, we describe four functions
used in NewHope which are also important for the key mismatch attack:

Encode function (Algorithm 1) is used to transform a 256-bit message into
an element of Rq in a way that one message bit corresponds to 4 coefficients
of a polynomial from Rq.

Decode function (Algorithm 2) maps a polynomial from Rq back to 256 bits.
Compress function (Algorithm 3) is used to perform a coefficient-wise mod-

ulus switching from Zq to Z8 on polynomials. In words, the idea is to evenly
compress Zq into Z8.

Decompress function (Algorithm 4) is used to perform a coefficient-wise mod-
ulus switching from Z8 to Zq on polynomials. In words, the idea is to evenly
stretch Z8 into Zq.

Algorithm 1 Message encoding

function Encode(ν ∈ {0, 1}256)
v← 0
for i from 0 to 255 do

v[i] = ν[i] · 6144
v[i+ 256] = ν[i] · 6144
v[i+ 512] = ν[i] · 6144
v[i+ 768] = ν[i] · 6144

end for
return v ∈ Rq

end function

Now we describe key generation, encapsulation and decapsulation of NewHope
KEM. We simplify the description and omit some parts from the specification of
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Algorithm 2 Message decoding

function Decode(v ∈ Rq)
ν ← 0
for i from 0 to 255 do

t← |v[i]− 6144 |
t← t+ |v[i+ 256]− 6144 |
t← t+ |v[i+ 512]− 6144 |
t← t+ |v[i+ 768]− 6144 |
if t < 12289 then

ν[i] = 1
else

ν[i] = 0
end if

end for
return ν ∈ {0, 1}256

end function

Algorithm 3 Ciphertext compression

function Compress(v ∈ Rq)
h← 0
for i from 0 to 1023 do

h[i] = b 8·v[i]
12289

e mod 8
end for
return h ∈ Rq with coefficients between 0 and 7

end function

Algorithm 4 Ciphertext decompression

function Decompress(h ∈ Rq with coefficients between 0 and 7)
v← 0
for i from 0 to 1023 do

v[i] = b 12289·h[i]
8

e
end for
return v ∈ Rq

end function
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Alice Bob

Key generation:

A
$←− Rq

S,E
$←− ψ8

B← AS + E

mA = (A,B)

Encapsulation:

νB
$←− {0, 1}256

S′,E′,E′′
$←− ψ8

U = AS′ + E′

K = Encode(νB)

C = BS′ + E′′ + K

c = Compress(C)

µB = SHAKE256(νB)

mB = (c,U)

Decapsulation:

C′ ← Decompress(c)

K′ ← C′ −US

νA ← Decode(K′)

µA ← SHAKE256(νA)

Fig. 1. Simplified version of NewHope CPA

NewHope (such as NTT multiplication, using seeds etc.) which are not relevant
for the attacks. The key exchange is illustrated in Figure 1.

Key generation: First, Alice generates the public key A which is a uniformly
random polynomial from Rq. Then she generates 2 polynomials S,E ∈ Rq

whose coefficients are distributed independently following the centered bino-
mial distribution ψ8. Finally, she computes B = AS + E and sends the pair
(A,B) = mA to Bob.

Encapsulation: First, Bob generates a random element νB from {0, 1}256 and 3
polynomials S′,E′,E′′ ∈ Rq whose coefficients are distributed independently
following the centered binomial distribution ψ8. Then he computes U =
AS′+E′ and K = Encode(νB). After that, he computes C = BS′+E′′+K
and c = Compress(C). Finally, he sends the pair (c,U) = mB back to Alice
and derives the final shared key as µB = SHAKE256(νB).
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Decapsulation: First, Alice decompresses c as C′ = Decompress(c). Then
she computes K′ = C′ − US and decodes this K′ as νA = Decode(K′).
Finally, she derives the final shared key as µA = SHAKE256(νA).

Due to small coefficients of polynomials following the centered binomial dis-
tribution ψ8, νA and νB are equal with very high probability. Therefore, µA and
µB are equal with very high probability as well.

3 Key Mismatch Attacks Revisited

In this section, we first describe the original key mismatch attack of Bauer et al.
against NewHope [6]. Then we describe the improved attacks of Qin et al. [13]
and of Okada et al. [11], which are both based on the attack of Bauer et al.
Finally, we describe the attack of Bhasin et al. [14]. In all four attacks, the
adversary has access to the key mismatch oracle. The adversary, Eve, is acting
as Bob and her goal is to recover Alice’s secret key S.

3.1 Key Mismatch Oracle

In this subsection, we recall the notion of the key mismatch oracle from Bauer
et al. [6]. To follow their notation, we use the subscript E to denote the elements
associated with the adversary, e.g. mE . The idea is that the adversary, who is
acting as Bob, does not follow the protocol honestly. She generates an arbitrary
key µE together with an arbitrary ciphertext mE = (c,U), which she sends back
to Alice. The key mismatch oracle tells her if the Alice’s shared key µA computed
from her secret key and this dishonest ciphertext mE equals adversary’s guessed
key µE .

We define the key mismatch oracle formally in the next definition.2

Definition 1 (Key mismatch oracle). Let S be the secret key of Alice. On
the input of mE and µE, the output of the key mismatch oracle O is defined as
follows:

O(mE , µE) =

{
− if Decapsulation(mE ,S) = µE

+ otherwise.
(2)

For more details about the key mismatch oracle and ways how to access it,
we refer the reader to [6] and [14].

2 It may seem strange that a mismatch is defined by + and an agreement by −, but
it is a purpose. The output of the oracle in our attack depends on the sign of some
expression, and a mismatch corresponds to the situation when this expression is
positive, hence denoted by +.

7



3.2 Assumptions

In the attack, the adversary successively targets quadruplets S[0+k], S[256+k],
S[512 + k], S[768 + k] of secret coefficients, because one bit of the message
is derived from these 4 coefficients of the secret key (See Decode function
described in Algorithm 2). We call this k as the index of the quadruplet.

In previous attacks, the adversary uses µE = SHAKE256(νE) for all queries
to the oracle O, where νE = (1, 0, . . . , 0). The goal is to choose queries mE =
(c,U) such that

νA = Decode (Decompress(c)−US) = (b, 0, . . . , 0). (3)

If this happens, which is called Hypothesis 1 in the paper of Bauer et al.,
then the output of the oracle O indicates whether b = 1 or not, because the first
index is the only place where νE and νA could differ. Because S is used within
the computation of νA, the output from the oracle could leak useful information
about the secret key S.

If Hypothesis 1 is not satisfied, then for some i ∈ {1, . . . , 255}, νA[i] = 1,
and the output from the oracle will be + for all queries. The problem is that the
attacker does not know this i and the attacks [6] and [13] do not work in this
case.

3.3 Method of Bauer et al.

In Bauer et al. [6], the adversary chooses mE = (c,U) such that

U = 768x−k and c =

3∑
j=0

((lj + 4) mod 8) · x256j , (4)

where k ∈ {0, . . . , 255} is the index of the targeted quadruplet and lj ∈ [−4, 3].
The adversary fixes l1, l2 and l3 to random values from [−4, 3] and makes

8 queries to the oracle O for l0 ranging from −4 to 3. The goal is to choose
parameters l1, l2 and l3 such that outputs from these 8 queries are of the form

++︸︷︷︸
l≥1

. . . −−︸︷︷︸
m≥1

. . . ++︸︷︷︸
n≥1

, (5)

where l+m+ n = 8. Bauer et al. call this a favorable case. If this happens, the
adversary determines the index, where + changes to −, which is denoted as τ1,
and the index, where − changes to +, which is denoted as τ2. She recovers S[k]
as τ1 + τ2. If these 8 outputs from the oracle do not form a favorable case (as
described in Equation (5)), the adversary randomly changes values of l1, l2 and
l3 and tries again. If she does not obtain a favorable case after a certain amount
of attempts, she skips the recovery of this coefficient and recovers it at the end
of the attack by a bruteforce. The other three coefficients in the quadruplet are
recovered similarly by changing the role of l0 and the corresponding lj .
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Using this method, it is only possible to recover coefficients S[k] ∈ [−6, 4].
Remaining coefficients must be recovered by a bruteforce. Moreover, as pointed
out by Qin et al. in [13], even coefficients from [−6, 4] are quite often recovered
incorrectly.

3.4 Method of Qin et al.

Qin et al. noticed that the attack described in [6] does not work as intended. It
was mainly caused by a mistake in the Decompress function. They corrected
the error and added few improvements to the original method. The main idea of
the attack remained unchanged, the queries mE = (c,U) are generated in the
same way as before, see Equation (4).

Qin et al. noticed that in [6], two different values of secret coefficient are
possible for each value of τ (ref. to Table 3 in [13]). Therefore, a lot of secret
coefficients were recovered incorrectly. Using experiments, Qin et al. observed
that one of these two values (possible for particular τ) is more probable than the
other one. They addressed this problem of ambiguity by searching 50 favorable
cases and choosing the more probable result. This way, the probability of a wrong
choice was lowered.

As a second improvement, they also identified another favorable case. Gener-
ation of patterns did not change. They are still created by 8 consecutive queries
to the oracle O with randomly chosen and fixed values of lj ; j ∈ {1, 2, 3} and
with varying l0 ∈ [−4, 3]. Previously, favorable cases were only outputs of the
form

++︸︷︷︸
l≥1

. . . −−︸︷︷︸
m≥1

. . . ++︸︷︷︸
n≥1

, (6)

l + m + n = 8. In [13], they defined a second favorable case, which are outputs
of the form

−−︸︷︷︸
l≥1

. . . ++︸︷︷︸
m≥1

. . . −−︸︷︷︸
n≥1

, (7)

l +m+ n = 8.
Final improvement of Qin et al. is the computation of the last coefficient

in the quadruplet. Both in [6] and [13], they assume that secret coefficients
S[k+256j] are from the restricted interval [−6, 4]. However, in [13], they created
a new technique for the case when three secret coefficients are from [−6, 4] and
exactly one coefficient is from {−8,−7, 5, 6, 7, 8}. First, they recover these three
coefficients from [−6, 4]. After that, they recover the sum of absolute values of the
four coefficients in the quadruplet, which allows them to compute the remaining
unknown coefficient in the quadruplet.

Similar to [6], Qin et al. are able to recover coefficients from [−6, 4]. Moreover,
they are able to recover a coefficient from {−8,−7, 5, 6, 7, 8} if the three remain-
ing coefficients from the quadruplet lie in [−6, 4]. The whole attack implicitly
assumes that Hypothesis 1 holds. They claim that they would need approxi-
mately 880 000 queries to recover the whole secret key S.
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3.5 Method of Okada et al.

At the time of writing this paper, Okada et al. [11] further improved the attack
of Qin et al. Their attack almost reaches the success probability of 100% by
finding the index i which causes that Hypothesis 1 does not hold.

They also extended the range of targeted secret coefficients from [−6, 4] to
[−6, 7] without any additional queries. Moreover, they observed that it is some-
times possible to recover a secret coefficient using less than 50 favorable cases.
They call this last improvement as an Early Abort Technique in their paper.
They decreased the number of queries from about 880 000 to approximately
327 000.

3.6 Method of Bhasin et al.

The attack of Bhasin et al. [14] differs from the other three attacks since it does
not use favorable cases. They adopt a two stage approach. In the first stage,
the attacker queries the key mismatch oracle with a precomputed sequence of
queries. The output sequence uniquely determines a cluster Ki the targeted
quadruplet lies in. The clusters can have different sizes and the size of a cluster
Kj is denoted by nj .

For each cluster Kj , they precomputed
(
nj

2

)
ciphertexts to be able to distin-

guish each pair within the cluster. This yields
∑L−1

i=0

(
ni

2

)
precomputed queries

for the second stage.
In the second stage, they know from the first stage in which cluster Ki the

targeted quadruplet lies. They recover this targeted quadruplet in a knock-out
tournament fashion using (ni−1) queries: They divide all candidates within the
cluster into pairs, use precomputed queries to distinguish each of these pairs,
yielding a smaller set of dni/2e candidates. They repeat this process dlog2(n0)e
times until there is only one candidate left, which is the targeted quadruplet.

They succeed with the probability of 100% and need about 26 600 queries to
the key mismatch oracle to recover the whole secret key.

4 Our Improved Method

In this section, we describe our improved method. We target quadruplets of
secret coefficients at once as in the attack of Bhasin et al. and not one by one
as in the other three attacks.

We start by presenting disadvantages of favorable cases to motivate our ap-
proach.

4.1 Drawbacks of Favorable Cases

First, there is no favorable case (even when considering the second favorable
case added in [13]) for some secret coefficients. This means that during targeting
some secret coefficient, when the adversary does not get any favorable case after
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certain amount of queries to the key mismatch oracle, she skips its recovery for
now and recovers it at the end of the attack. This means that a lot of queries
are used for one secret coefficient and yet, the coefficient is not recovered exactly
using only these queries.

Second, even if a favorable case is found and a secret coefficient is recovered
correctly, not all useful information gained from the queries to the key mismatch
oracle is used. The output of the key mismatch oracle gives us useful information
about all four secret coefficients in the targeted quadruplet. Using favorable
cases, only information about the one targeted secret coefficient is used in this
particular iteration of the attack. It means that during targeting the next secret
coefficients in the quadruplet, some queries to the oracle can be redundant,
because useful information could have been already obtained in the previous
queries.

Third, finding a favorable case is not sufficient. After finding a favorable case,
there are sometimes still two possible values for the targeted secret coefficient.
Typically, one value is more probable than the other one. In [13], Qin et al.
decided to find 50 favorable cases for one secret coefficient in order to be more
sure what the secret coefficient is. This means that they increased the probability
that the coefficient is recovered correctly, but the probability is still less than 1,
so it still could happen that the coefficient is recovered incorrectly.

Finally, the described method is not very efficient. For one favorable case,
8 queries to the oracle are needed. For example, this means 400 queries to the
oracle for one secret coefficient in the case of [13] since they need 50 favorable
cases. Moreover, not every choice of lj ; j ∈ {1, 2, 3} leads to a favorable case, so
the total number of queries for one secret coefficient is even bigger. That is the
reason why in Qin et al. [13] and in Okada et al. [11], they needed more than
880 000 and 327 000 queries to the key mismatch oracle in order to recover the
whole secret key.

4.2 Concrete Example

We show a part of the previous attack of Qin et al. [13] on the concrete example
and we try to demonstrate above mentioned disadvantages of favorable cases.
Simultaneously, for each step in the attack of Qin et al., we propose our ideas and
we describe how it could be changed. We believe that it could help to understand
the motivation for our new method and show how the efficiency of the previous
attack could be improved.

Assume that the adversary targets the secret coefficient S[0] in the quadruplet
S[0],S[256],S[512],S[768]. Let for example be

S[0] = 0,

S[256] = 2,

S[512] = 1,

S[768] = −5.

(8)
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1. Qin et al.: Adversary chooses lj ; j ∈ {1, 2, 3} randomly from the interval
[−4, 3]. Assume that she chose l1 = 3, l2 = −4, l3 = −4. Now she makes
8 queries to the oracle with l0 = −4,−3, . . . , 2, 3 and she gets the pattern
+ + + +−+ ++. She is lucky, this is a favorable case and she computes
τ = 0, which means that S[0] is either 0 or 1 (ref. to Table 3 in [13]). She
continues finding remaining 49 favorable cases to be more sure which
value it is.

Our ideas: At the beginning, there are 174 = 83 521 possibilities for the
targeted quadruplet S[0],S[256],S[512],S[768], because each secret coef-
ficient is in the interval [−8, 8]. After observing outputs of these 8 queries
to the oracle giving the pattern + + + +−+ ++, we can eliminate a lot
of them. For this choice of l1, l2 and l3, only for 826 possibilities, out of
83 521, the outputs from the oracle could be of the form ++++−+++.
It gives us useful information about all four secret coefficients.

2. Qin et al.: Next, the adversary randomly changes values of l1, l2 and l3.
For example, assume that she chose l1 = −3, l2 = −1, l3 = 0. Again,
she makes 8 queries to the oracle with l0 = −4,−3, . . . , 2, 3 and now she
gets the pattern + + + + + + ++. Unfortunately for her, this is not
a favorable case and she repeats the process with different values of l′is.
She still needs to find 49 favorable cases.

Our ideas: As we have seen, in the previous attack, these 8 queries to the
oracle did not help to recover secret coefficients at all. On the other hand,
for us, such eight outputs from the oracle of the form + + + + + + ++
give us useful information about all four targeted secret coefficients. In
the previous step, we already reduced the number of possibilities for
these four secret coefficients to 826. Now, for this choice of l1, l2 and l3,
only 32 possible quadruplets, out of these 826, would give only pluses
from the oracle. Again, it gives us really useful information about secret
coefficients, since we already reduced the number of possibilities for these
four secret coefficients from 83 521 to 32.

3. Qin et al.: Next, the adversary again randomly changes values of l1, l2 and
l3. For example, assume that she chose l1 = 0, l2 = 3, l3 = 1 this time.
Again, she makes 8 queries to the oracle with l0 = −4,−3, . . . , 2, 3 and
she gets the pattern ++++−+++. This is a favorable case, and again
τ = 0. The adversary continues the process, she still needs to find 48
favorable cases to decide whether the value of S[0] is 0 or 1.

Our ideas: We use the same approach as in our previous two steps. We
already reduced the number of possibilities for the quadruplet of secret
coefficients from 83 526 to 32. Now again, we can check what the oracle
outputs should be for these 32 remaining possible quadruplets. It holds
that there is only one possible secret quadruplet for which the oracle
returns + + + + − + ++ for this choice of l′js. This is true for the
quadruplet [0, 2, 1,−5], which corresponds precisely to secret coefficients.
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We recovered S[0] which was targeted by Qin et al. in this example. On top
of that, we also recovered the other three coefficients S[256],S[512] and S[768],
which they wanted to recover after S[0] with a similar process.

Moreover, after Step 3, Qin et al. still need to find 48 favorable cases to
determine the value of S[0] and they are still not 100% sure that they recovered
it correctly.

We believe that already this concrete example illustrated weak points of
favorable cases and motivation for our work. While Qin et al. found only 2 out
of 50 favorable cases to recover S[0], we were able to recover all four secret
coefficients by using this different method trying to eliminate the possibilities
for the targeted quadruplet. Moreover, using this method, we can be sure that
we recovered the quadruplet correctly.

4.3 High-Level Description of Our Method

As illustrated in the previous subsection, the main idea in our method is to
reduce the number of possibilities for the targeted quadruplet by each query to
the oracle. After some number of queries, if there is only one possibility left,
then, obviously, that must be the targeted quadruplet. We show that we can
recover each possible quadruplet using this method.

We use a very similar pair (µE ,mE = (c,U)) as the input to the key mis-
match oracle as in the attack of Bauer et al.

We use the same polynomial c, namely

c =

3∑
j=0

((lj + 4) mod 8) · x256j . (9)

The difference is how we choose values l0, l1, l2 and l3 in c before querying the
oracle. In the attack of Bauer et al., three of these were fixed and the remaining lj
varied between −4 and 3, resulting in 8 queries to the oracle. But each individual
query to the oracle can already eliminate some possibilities for the targeted
quadruplet. So, in our method, three of lj values won’t be necessarily fixed for
8 successive queries to the oracle as before, but we choose fresh values for each
particular query to the oracle in order to be more flexible.

Also, we use very similar polynomial U as in previous attacks. In our attack,
this polynomial is set to

U = ax−k, (10)

where k is the index of the targeted quadruplet and the coefficient a can differ
for different queries. In the attack of Bauer et al., a = 768 was used for all
queries. The reason for the value 768 was because they were using favorable
cases and the value 768 was the most suitable choice for it. Because we do not
use favorable cases, we can use different values than 768 to be even more flexible.
The only constraint on this value is to keep the probability of Hypothesis 1 high.
We comment on Hypothesis 1 in the next subsection.
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Also, we use the same value for µE as before. We put µE = SHAKE256(νE)
for all queries to the oracle O, where νE = (1, 0, . . . , 0). For a fixed k, we spec-
ify the query to the oracle by values of (l0, l1, l2, l3, a), because they uniquely
determine the pair (µE ,mE = (c,U)).

Now, we can describe how our attack works. We successively recover quadru-
plets S[0 + k],S[256 + k],S[512 + k],S[768 + k] as k ranges from 0 to 255. We
call recovering one quadruplet of secret coefficients as a one step of the at-
tack. At the beginning of each step, there are 174 = 83 521 possibilities for the
targeted quadruplet. We denote by Q1 the set of all these possibilities. Fixing
some concrete values of (l0, l1, l2, l3, a) = p1, we can compute for each potential
quadruplet from Q1 what the output from the oracle would be for this choice
of p1. It means that we can naturally divide potential quadruplets from Q1 into
two disjoint subsets Q2, Q3 based on what the output from the oracle would be.
Then, during the attack, we would know whether the targeted quadruplet lies
in Q2 or in Q3 based on the output from the oracle for this choice of p1 as the
first query.

Q1, p1

Q2, p2

Q4, p4

. . . . . .

Q5, p5

. . . . . .

Q3, p3

Q6, p6

. . . . . .

Q7, p7

. . . . . .

+

+ −

−

+ −

Fig. 2. Tree structure.

We can recursively repeat same process. It means that fixing some concrete
values of (l0, l1, l2, l3, a) = pi for Qi, we can divide Qi into two disjoint subsets
Q2i, Q2i+1 based on what the output from the oracle would be for this choice of
pi. The subset Q2i corresponds to the output + and Q2i+1 corresponds to the
output −. If |Qi| = 1, then we do not divide this Qi anymore. During the attack,
if we know that the targeted quadruplet lies in Qi with |Qi| = 1, we know what
the targeted quadruplet is, meaning that the quadruplet is successfully recovered.

This successive dividing of possibilities for the targeted quadruplet of secret
coefficients into two smaller subsets naturally corresponds to a binary tree. Each
non-leaf node corresponds to some subset of potential quadruplets Q′is

3 and to
the query defined by pi = (l0, l1, l2, l3, a). This concrete query is made when we
know that the targeted quadruplet lies in this Qi. Leaves correspond only to

3 But we do not store these Q′is in the tree except for leaves.
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some subsets Qi, there is no pi because there is no further dividing in the leaves.
Part of the tree is illustrated in figure 2.

Before the actual attack, the binary tree is constructed by defining the par-
ticular queries to the oracle. These queries defined by pi completely describe
the whole attack in a deterministic way. During the attack, the quadruplets
are recovered by making the corresponding queries based on the position in the
tree. We emphasize that the tree contains only queries pi and quadruplets in the
leaves. It does not contain sets Qi for non-leaves.

In this paper, we propose a suitable choice of these queries. We keep two
objectives in mind:

1. For leaves, it should hold that |Qi| = 1.

2. We try to minimize the expected number of queries to the oracle needed to
recover the whole quadruplet of secret coefficients.

The first condition ensures that we are able to recover any potential quadru-
plet of secret coefficients. During the attack, we are following a path from the
root to some leaf in the binary tree according to the outputs from the oracle (see
Figure 3). Because there is only one potential quadruplet for this leaf, it must
be the targeted quadruplet.4

For the second objective, we assume that all possible quadruplets are indexed
by 1, ..., 83 521. We denote by Pi the probability of the quadruplet with an index
i. We can compute these probabilities using the Formula (1) and the fact that
coefficients are sampled independently. We denote by hi the number of queries
needed to recover the quadruplet with an index i. Using our method, hi is pre-
cisely the depth of the leaf corresponding to this quadruplet i in our binary tree.
The expected number of queries is then computed as

E(#queries for 1 quadruplet) =

83 521∑
i=1

Pi · hi. (11)

We tried to meet the first condition and concurrently minimize this value.
We used a recursive search to find a suitable choice of queries. We used the
following heuristics. We were trying to choose values pi such that two subsets of
quadruplets corresponding to children, Q2i and Q2i+1, have similar probabilities.
More formally, we were focusing on values of pi for which∑

j∈{1,...,83 521},
qudrupletj∈Q2i

Pj −
∑

j∈{1,...,83 521},
qudrupletj∈Q2i+1

Pj (12)

is small.

4 Under this condition, leaves are in bijection with the 174 = 83 521 possible quadru-
plets.
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Q1, p1

. . . Q3, p3

. . . . . .

Qi, pi

Q2i, p2i . . .

−

−

−

+

Fig. 3. Path in the tree.

4.4 Coping with Hypothesis 1

The probability of Hypothesis 1 depends on secret coefficients and the value of a
in U. For a = 768, i.e. in [6] and in [13], the probability of Hypothesis 1 is about
94.56%. In our work, we computed the probability of Hypothesis 1 for different
values of a. The important result is that for

a ∈ H = {0, . . . , 383} ∪ {11906, . . . , 12288}, (13)

the probability of Hypothesis 1 is 100%. Moreover, if Hypothesis 1 holds for
a = 768, then it holds for all smaller values, i.e. for a ∈ {0, . . . , 767}.

One possibility to handle the issue with Hypothesis 1 is to use a ∈ H for all
queries to the oracle. We were able to choose queries pi = (l0, l1, l2, l3, a) with
a ∈ H such that |Qi| = 1 for the leaves, i.e. meeting the objective 1. We call the
resulting tree as T1. Because a ∈ H for all the queries to the oracle and because
the objective 1 is met, the attack using the tree T1 can recover each quadruplet of
secret coefficients with the probability of 100%. The expected number of queries
to recover one quadruplet of secret coefficients using this tree T1 is about 13.95,
leading to

256 · 13.95 ≈ 3 571 (14)

queries required to recover the whole secret key. This is already an improvement
by a wide margin, when we consider that the best previous attack of Bhasin et
al. requires more than 26 000 queries on average.

4.5 Combining Two Binary Trees

The expected number of queries can be further reduced by using a more sophisti-
cated method. The idea is that we combine the tree T1 with another tree, where
we use also a /∈ H. The problem is now with Hypothesis 1, which does not hold
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with the probability of 100% for a /∈ H. Fortunately, we can handle this issue
by another advantage of our method.

This advantage is that we are able to detect if Hypothesis 1 does not hold.
For a while, assume that the same value of a is used for the whole tree. If
Hypothesis 1 does not hold (this could happen only for a /∈ H), then all the
outputs from the oracle will be +, no matter what the inputs are. It means
that during one step of the attack, we will end up in the leftmost leaf, which
corresponds to some quadruplet. Now, we will make one extra query to the oracle
such that the output for this quadruplet should be − if Hypothesis 1 held. If
the output is really −, we know that Hypothesis 1 holds and we recovered this
quadruplet. Otherwise, if the output is +, we detected that Hypothesis 1 does
not hold. On the other hand, if we do not end up in the leftmost leaf, it means
that at least one output of the oracle was −, meaning that Hypothesis 1 is true.

We use the described detection to handle the issue with Hypothesis 1 in a
different way. Instead of using a ∈ H for all queries, we use a different approach
in order to reduce the total number of expected queries to the oracle.

First, we chose the queries pi even with a /∈ H, meeting the objective 1 and
minimizing the expected number of queries. We call the resulting tree as T2. We
used two values for a in the tree T2, namely 768 and 599. Because only the value
768 was used on the path leading to the leftmost leaf and because Hypothesis 1
holds for a = 599 whenever it holds for a = 768, we can still detect if Hypothesis
1 does not hold using the method described in the previous paragraph.

During the attack, the queries are first made according to the tree T2. If
we do not end up in the leftmost leaf during our search, Hypothesis 1 is true
automatically and the quadruplet is recovered and we proceed to recover the
next quadruplet, still using the tree T2. But if we end up in the leftmost leaf, we
have to check if the Hypothesis 1 holds.

If Hypothesis 1 holds, the quadruplet is recovered and we proceed to recover
the next quadruplet, again using the tree T2. If Hypothesis 1 does not hold, we
have to recover this quadruplet using the tree T1 and we will use the tree T1 for
all the remaining steps. We use the tree T1 for all the remaining steps because
we can assume that Hypothesis 1 does not hold and the tree T2 is useless in that
case.

Because the probability of Hypothesis 1 is still large for the tree T2 (94.56%),
the extra overhead required to detect that Hypothesis 1 does not hold is small.
It means that this approach is more efficient than using T1 (i.e. a ∈ H) for
all queries. The success probability is still 100%. Pseudocode of the attack is
provided in Algorithms 5, 6 and 7.

To compute the number of queries of our method combining trees T1 and
T2, we denote by E(T1) the expected number of queries needed to recover one
quadruplet of secret coefficients using the tree T1, similarly by E(T2) for the tree
T2. We denote by Pr[H] the probability of Hypothesis 1 and by θ the depth of
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Algorithm 5 Key Recovery

function Recover
S← 0
Hypothesis1← True
for k from 0 to 255 do

if Hypothesis1 = True then
s0, s1, s2, s3, leftmost← T2(k)
if leftmost = True then

s0, s1, s2, s3 ← T1(k)
Hypothesis1 = False

end if
else

s0, s1, s2, s3 ← T1(k)
end if
for j from 0 to 3 do

S[k + 256j]← sj
end for

end for
return S ∈ Rq

end function

Algorithm 6 Quadruplet recovery using T1
function T1(index k of targeted quadruplet)

νE ← (1, 0, . . . , 0) ∈ {0, 1}256
µE ← SHAKE256(νE)
s0, s1, s2, s3 ← 0
Node← T1.root
while Node 6= leaf do

a, l0, l1, l2, l3 ← Node.data
U← ax−k

c←
∑3

j=0(lj + 4)x256j

mE = (c,U)
b← O(mE , µE)
if b = ’+’ then

Node← Node.left
else

Node← Node.right
end if

end while
s0, s1, s2, s3 ← Node.quadruplet
return s0, s1, s2, s3

end function
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Algorithm 7 Quadruplet recovery using T2
function T2(index k of targeted quadruplet)

νE ← (1, 0, . . . , 0) ∈ {0, 1}256
µE ← SHAKE256(νE)
s0, s1, s2, s3 ← 0
Node← T2.root
leftmost← True
while Node 6= leaf do

a, l0, l1, l2, l3 ← Node.data
U← ax−k

c←
∑3

j=0(lj + 4)x256j

mE = (c,U)
b← O(mE , µE)
if b = ’+’ then

Node← Node.left
else

Node← Node.right
lefmost← False

end if
end while
if leftmost = True then

a, l0, l1, l2, l3 ← extra
U← ax−k

c←
∑3

j=0(lj + 4)x256j

mE = (c,U)
b← O(mE , µE)
if b = ′−′ then

leftmost← False
end if

end if
s0, s1, s2, s3 ← Node.quadruplet
return s0, s1, s2, s3, leftmost

end function
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the leftmost leaf in the tree T2. The approximate5 expected number of queries
needed to recover the whole secret key is then computed as

E(total #queries) = Pr[H] · (256 · E(T2)) + (1−Pr[H]) · (θ+ 256 · E(T1)). (15)

For our trees it holds that

E(T1) = 13.95 (16)

and
E(T2) = 12.40. (17)

Moreover, Pr[H] = 0.9456 as already mentioned and for our tree T2 it holds
that θ = 21. This means that the expected number of queries to the oracle for
our attack is approximately

E(total #queries) = 0.9456·(256·12.40)+0.0544·(21+256·13.95) ≈ 3 197. (18)

We can see that it is more efficient than using only the tree T1, which would
lead to 256 · 13.95 = 3 571 queries.

5 Comparison

In this section, we compare our method with previous attacks. We mainly focus
on the comparison with the attack of Bhasin et al. [14] since it requires the lowest
number of queries from the four previous attacks.

In the attack of Qin et al. [13], more than 880 000 queries are needed on
average to recover the whole secret key and the success probability is around
91.61%. In the improved attack of Okada et al. [11], more than 327 000 queries are
required on average to recover the whole secret key and the success probability
is 99.997%.

In the attack of Bhasin et al. [14], they use similar approach to ours since
they reduce the possibilities for the targeted quadruplet until there is only one
possibility left. The difference between our method and their attack is threefold.

First, we do not use a two stage approach. We start directly using the binary
tree, which is more flexible than the first stage in the attack of Bhasin et al.
and which hence reduces the number of required queries to the oracle to recover
a quadruplet of secret coefficients.

Second, in the second stage of the attack of Bhasin et al., a quadruplet lying
in a cluster Kj of size nj is recovered using about nj − 1 queries (knock-out
tournament). On the other hand, our method of using binary tree and starting
in the root requires about log2 nj queries to recover such a quadruplet.

Third, we derived a precise formula (see equation 11) for the expected num-
ber of queries to recover one quadruplet of secret coefficients using our method.

5 We do not involve the extra query needed to check if Hypothesis 1 does not hold if
we end up in the leftmost leaf. The reason is that it has a negligible impact on the
result and the final formula would be too complicated.
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Therefore, during the precomputation of queries (which define the binary tree),
we were minimizing the quantity from the formula 11, which then leads to a
smaller number of queries compared to choosing the queries completely at ran-
dom.

The attack of Bhasin et al. works with the probability of 100% and requires
about 26 624 queries to recover the whole secret key. Our method also works
with the probability of 100%, but requires only about 3 197 queries on average.

We implemented the attack and tried to recover 1 000 000 keys. Our im-
plementation successfully recovered all keys and the average number of queries
confirmed our computed figures. The implementation can be found on github6.

In [13] they also provide the timing of the attack for comparison. We believe
that this type of comparison is not very fair since it depends on a performance
of the Alice side, network latency and other factors which could not be easily
controlled by the attacker. Instead, we believe that efficiency can be compared
by number of queries, which was mentioned above.

We summarize the comparison in Table 1.

Table 1. Comparison of the attack by Qin et al., by Okada et al., Bhasin et al. and
our attack.

Expected number of queries Success probability

Qin et al. attack [13] more than 880 000 91.61%

Okada et al. attack [11] more than 327 000 99.997%

Bhasin et al. attack [14] 26 624 100%

Our attack using only T1 3 571 100%

Our final attack 3 197 100%

6 Conclusion

In this work, we introduced a new type of a key mismatch attack against
NewHope. Using our method, we reduced the average number of queries to the
oracle significantly. We believe that these improved results can provide more rele-
vant comparison with other NIST Round 2 candidates and better understanding
of the security of NewHope in general, even though a key reuse is considered as
a misuse of the scheme by the authors.

Our method could be further improved by optimizing the binary trees T1 and
T2 by a full search, but we believe that the number of queries to the oracle will
not decrease significantly. Besides that, it could be possible to use a more general
approach and do not target each quadruplet separately. At the same time, we

6 https://github.com/KeyMismatchAttackOnNewHopeRevisitedCode/Attack
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think that this approach is quite difficult to do as there are a lot of possibilities
and as it is even more difficult to handle Hypothesis 1.
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