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Abstract

We construct the first decentralized multi-authority attribute-based encryption (𝖬𝖠-𝖠𝖡𝖤) scheme
for a non-trivial class of access policies whose security is based (in the random oracle model) solely on
the Learning With Errors (LWE) assumption. The supported access policies are ones described by 𝖣𝖭𝖥
formulas. All previous constructions of 𝖬𝖠-𝖠𝖡𝖤 schemes supporting any non-trivial class of access policies
were proven secure (in the random oracle model) assuming various assumptions on bilinear maps.

In our system, any party can become an authority and there is no requirement for any global coor-
dination other than the creation of an initial set of common reference parameters. A party can simply
act as a standard ABE authority by creating a public key and issuing private keys to different users that
reflect their attributes. A user can encrypt data in terms of any 𝖣𝖭𝖥 formulas over attributes issued
from any chosen set of authorities. Finally, our system does not require any central authority. In terms
of efficiency, when instantiating the scheme with a global bound 𝑠 on the size of access policies, the sizes
of public keys, secret keys, and ciphertexts, all grow with 𝑠.

Technically, we develop new tools for building ciphertext-policy ABE (𝖢𝖯-𝖠𝖡𝖤) schemes using LWE.
Along the way, we construct the first provably secure 𝖢𝖯-𝖠𝖡𝖤 scheme supporting access policies in
𝖭𝖢1 that avoids the generic universal-circuit-based key-policy to ciphertext-policy transformation. In
particular, our construction relies on linear secret sharing schemes with new properties and in some sense
is more similar to 𝖢𝖯-𝖠𝖡𝖤 schemes that rely on bilinear maps. While our 𝖢𝖯-𝖠𝖡𝖤 construction is not
more efficient than existing ones, it is conceptually intriguing and further we show how to extend it to
get the 𝖬𝖠-𝖠𝖡𝖤 scheme described above.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 The New Linear Secret Sharing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The CP-ABE Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The MA-ABE Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Lattice and LWE Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Lattice Trapdoors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Learning With Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 The Notion of CP-ABE for Linear Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . . . 19
3.4 The Notion of MA-ABE for Linear Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . . 20

4 Linear Secret Sharing Schemes with Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Background on Linear Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Our Non-Monotone Linear Secret Sharing Scheme for NC1 . . . . . . . . . . . . . . . . . . . . 23
4.3 A “Zero-Out” Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Our Ciphertext-Policy ABE Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Our Multi-Authority ABE Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



Decentralized Multi-Authority ABE for DNFs from LWE 1

1 Introduction

Attribute-based encryption (ABE) is a generalization of traditional public-key encryption [DH76,
RSA78,Gam85,Reg05] that offers fine-grained access control over encrypted data based on the
credentials (or attributes) of the recipients. ABE comes in two avatars: ciphertext-policy and key-
policy. In a ciphertext-policy ABE (CP-ABE), as the name suggests, ciphertexts are associated
with access policies and keys are associated with attributes. In a key-policy ABE (KP-ABE), the
roles of the attribute sets and the access policies are swapped, i.e., ciphertexts are associated
with attributes and keys are associated with access policies. In both cases, decryption is possible
only when the attributes satisfy the access policy.

Since its inception by Sahai and Waters and Goyal et al. [SW05,GPSW06], ABE has become
a fundamental cryptographic primitive with a long list of potential applications. Therefore, natu-
rally designing ABE schemes has received tremendous attention by the cryptographic community
resulting in a long sequence of works achieving various trade-offs between expressiveness, effi-
ciency, security, and underlying assumptions [GPSW06,BSW07,OSW07,Wat09,LOS+10,LW10,
OT10, AFV11, LW11b, Wat11, LW12, OT12, Wat12, Boy13, GGH+13, GVW13, Att14, BGG+14,
Wee14,CGW15,Att16,BV16,ABGW17,GKW17,CGKW18,Att19,AMY19,GWW19,KW19,Tsa19,
AY20b,BV20,GW20,LL20].

Most of the aforementioned works base their security on cryptographic assumptions related to
bilinear maps. It is very natural to seek for constructions based on other assumptions. First, this is
important from a conceptual perspective as not only more constructions increase our confidence
in the existence of a scheme, but constructions using different assumptions often require new
techniques which in turn improves our understanding of the primitive. Second, this is important
in light of the known attacks on group-based constructions by quantum computers [Sho94].
Within this general goal, we currently have a handful of ABE schemes (that go beyond Identity-
Based Encryption) [AFV11,Boy13,GVW13,BGG+14,GV15,BV16,AMY19,Tsa19,BV20] which
avoid bilinear maps as their underlying building blocks.

All of these works derive their security from the hardness of the learning with errors (LWE)
problem, which is currently also believed to be hard against quantum computers [MR04,Reg05,
GPV08, Pei09, MP13]. However, one striking fact is that all existing LWE-based ABE schemes
(mentioned above) are designed in the key-policy setting. To date, the natural dual problem of
constructing CP-ABE schemes based on the LWE assumption is essentially completely open.

The only known way to realize an LWE based CP-ABE scheme is to convert either of the
circuit-based KP-ABE schemes of [GVW13,BGG+14,BV16] into a CP-ABE scheme by using a
universal circuit to represent an access policy as an attribute and an attribute set as a circuit.
However, this transformation will inherently result with a CP-ABE for a restricted class of access
policies and with parameters that are far from ideal. Concretely, for any polynomials 𝑠, 𝑑 in the
security parameter, it allows to construct a CP-ABE for access policies with circuits of size 𝑠
and depth 𝑑. Moreover, the size of a ciphertext generated with respect to some access policy
𝑓 will be |𝑓 | · poly(𝜆, 𝑠, 𝑑) (no matter what KP-ABE we start off with). That is, even if an 𝑓
being encrypted has a very small circuit, the CP-ABE ciphertext would scale with the worst-case
bounds 𝑠, 𝑑.

Open Problem 1: Improve (even modestly) upon the universal-circuit based CP-ABE construc-
tion described above while assuming only LWE.

There have been few recent exciting attempts towards this problem [AY20b,BV20,AWY20].
In fact, the attempts go all the way and construct a succinct CP-ABE, where there is no global
size bound 𝑠 and ciphertexts are of size independent of 𝑠. Agrawal and Yamada [AY20b] designed
a succinct CP-ABE scheme for all NC1 circuits. However, the security of their scheme relies not
only on the LWE assumption, but also on generic bilinear groups. Very recently, Agrawal, Wichs,
and Yamada [AWY20], presented a related construction together with a proof of security in
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the standard model, relying on LWE and a particular knowledge assumptions on bilinear groups.
Brakerski and Vaikuntanathan [BV20] employ techniques inspired by lattice-based cryptographic
constructions to get a construction for all polynomial-time computable functions, but unfortu-
nately their scheme lacks a security proof. Most recently, [AY20a] constructed a CP-ABE scheme
based on LWE that still requires a universal circuit size bound but the sizes of ciphertexts and
keys are independent of it.

Multi-Authority Attribute-Based Encryption: Recall that in a standard ABE scheme,
keys can only be generated and issued by a central authority. A natural extension of this notion,
introduced by Chase [Cha07] and termed multi-authority ABE (MA-ABE), allows multiple parties
to play the role of an authority. In an MA-ABE, there are multiple authorities which control
different attributes and each of them can issue secret keys to users possessing attributes under
their control without any interaction with the other authorities in the system. Specifically, given
a ciphertext generated with respect to some access policy, a user possessing a set of attributes
satisfying the access policy can decrypt the ciphertext by pulling the individual secret keys it
obtained from the various authorities controlling those attributes. The security requires the usual
collusion resistance against unauthorized users with the important difference that now some of
the attribute authorities may be corrupted and therefore may collude with the adversarial users.

To date, there are only a few works which have dealt with the problem of constructing
MA-ABE schemes. After few initial attempts [Cha07,LCLS08,MKE08,CC09,MKE09] that had
various limitations, Lewko and Waters [LW11a] were able to design the first truly decentralized
MA-ABE scheme in which any party can become an authority and there is no requirement for
any global coordination other than the creation of an initial trusted setup. In their scheme, a
party can simply act as an authority by publishing a public key of its own and issuing private
keys to different users that reflect their attributes. Different authorities need not even be aware
of each other and they can join the system at any point of time. There is also no bound on the
number of attribute authorities that can ever come into play during the lifetime of the system.
Their scheme supports all access policies computable by NC1 circuits and their security is proven
in the random oracle model and further relies on assumptions on bilinear groups (similarly to
all previous MA-ABE constructions). Later, Rouselakis and Waters [RW15] provided further
efficiency improvements over [LW11a], albeit they rely, in addition to a random oracle, on a
non-standard 𝑞-type assumption.

Open Problem 2: Is there a truly decentralized MA-ABE for some non-trivial class of access
policies assuming hardness of LWE (and in the random oracle model)?

There has been few recent attempts at this problem, as well [WFL19,Kim19]. Both construc-
tions [Kim19,WFL19] assume a central authority which generates the public and secret keys for
all the attribute authorities in the system. Thus all authorities that will ever exist in the sys-
tem are forever fixed once setup is complete which runs counter to the truly decentralized spirit
of [LW11a]. Additionally, both schemes guarantee security only against a bounded collusion of
parties. In fact, the scheme of Kim [Kim19] is built in a new model, called the “OT model”, which
is incapable of handling even bounded collusion.4 In this sense, both constructions suffer from
4 All previous multi-authority ABE schemes were designed in the so called global identifier (𝖦𝖨𝖣) model where

each user in the system is identified by a unique global identity string 𝖦𝖨𝖣 ∈ {0, 1}*. The global identity of
a user remains fixed for the entire lifetime of the system and users have no freedom to choose their global
identities. Kim [Kim19] introduced a drastically relaxed model, the so called “OT model”, where each user can
self-generate some key-request string and produce it to the attribute authorities while requesting secret keys.
To briefly see why this model fails to guarantee collusion resistance, imagine that there are two users 𝐴 who
has attribute 𝑢 and 𝐵 who has attribute 𝑣. Suppose there is a ciphertext encrypting to the policy “𝑢 𝖠𝖭𝖣 𝑣”.
User 𝐴 and 𝐵 can collude to decrypt it. Morally, the issue is that user 𝐴 can go with the authority for attribute
𝑢 and produce a key with identity George. User 𝐵 can then present the same identity to the authority for
attribute 𝑣. Then they can combine their keys.
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related limitations to the early MA-ABE constructions [Cha07,LCLS08,MKE08,CC09,MKE09]
describe above. The differences between the two constructions are that the scheme of Wang et
al. [WFL19] supports NC1 access policies, while the scheme due to Kim [Kim19] support arbitrary
bounded depth circuits.

1.1 Our Contributions

In this paper, we make progress with respect to Open Problem 2, stated above. We construct
a new MA-ABE scheme supporting an unbounded number of attribute authorities for access
policies captured by DNF formulas. Our scheme is proven secure in the random oracle model and
relies on the hardness of the LWE problem.

Theorem 1.1 (Informal): There exist a decentralized MA-ABE scheme for access policies cap-
tured by DNF formulas under the LWE assumption. Our scheme is (statically) secure against an
arbitrary collusion of parties in the random oracle model and assuming the LWE assumption with
subexponential modulus-to-noise ratio.

Similarly to [LW11a,RW15], in our MA-ABE scheme any party can become an authority at
any point of time and there is no bound on the number of attribute authorities that can join the
system or need for any global coordination other than the creation of an initial set of common
reference parameters created during a trusted setup. We prove the security of our MA-ABE
scheme in the static security model introduced by Rouselakis and Waters [RW15] where all of
the ciphertexts, secret keys, and corruption queries must be issued by the adversary before the
public key of any attribute authority is published.

Towards obtaining Theorem 1.1, we make conceptual contribution towards Open Prob-
lem 1. We present the first provably secure direct CP-ABE construction which avoids the generic
universal-circuit-based key-policy to ciphertext-policy transformation. In particular, our ap-
proach deviates from all previous LWE-based expressive ABE constructions [GVW13,BGG+14,
GV15,BV16,AMY19,Tsa19,BV20] that are in turn based on techniques inspired by fully homo-
morphic encryption [GSW13,GGH15]. In contrast, our CP-ABE is based on useful properties of
linear secret sharing schemes and can be viewed as the LWE analog of the CP-ABE scheme of
Waters [Wat11] which relies on the decisional bilinear Diffie-Hellman assumption.

Theorem 1.2 (Informal): There exist a CP-ABE scheme supporting all access policies in NC1.
The scheme is selectively secure assuming the LWE assumption with subexponential modulus-to-
noise ratio.

Our CP-ABE scheme achieves the standard selective security where the adversary must dis-
close its ciphertext query before the master public key is published but is allowed to make secret
key queries adaptively throughout the security experiment. Again, Theorem 1.2 does not improve
upon previously known constructions in any parameter. It is in fact worse in several senses: it
only supports NC1 access policies and it requires the LWE assumption to hold with subexpo-
nential modulus-to-noise ratio. However, the new construction is interesting not only because
we show how to generalize it to get the new MA-ABE scheme from Theorem 1.1, but also be-
cause we introduce a conceptually new approach and develop several interesting tools and proof
techniques.

One highlight is that we distill a set of properties of linear secret sharing schemes (LSSS)
which makes them compatible with LWE-based constructions. Specifically, we instantiate both
of our CP-ABE and MA-ABE schemes with such LSSS schemes. In the security model of CP-ABE
we are able to construct such a compatible LSSS for all NC1 while in the (much harder) security
model of MA-ABE we are only able to get such a scheme for DNFs. The properties that we need
are:



4 Pratish Datta, Ilan Komargodski, and Brent Waters

– Small reconstruction coefficients: The reconstruction coefficients of the LSSS must be
small, say {0, 1}. This property of LSSS secret sharing schemes was recently formally defined
by [BGG+18]. They observed that a well-known construction by Lewko and Waters [LW11a]
actually results with an LSSS with this property for all access structures in NC1.

– Linear independence for unauthorized rows: This property says that rows of the share
generating matrix that correspond to an unauthorized set of parties are linearly independent.
Agrawal et al. [ABN+21] recently observed that the aforementioned construction by Lewko
and Waters [LW11a], when applied on DNF access structures, results with a share generating
matrix that has this property as well (see also Section 1.2).

Both of our constructions, the CP-ABE as well as the MA-ABE, are actually designed to work
with any access structure that has an LSSS with the above two properties.

Theorem 1.3 (Informal): Consider a class of access policies ℙ that has an associated LSSS
with the above two properties. Then, there exists a CP-ABE and an MA-ABE supporting access
policies from the class ℙ. Both schemes are secure assuming the LWE assumption with subexpo-
nential modulus-to-noise ratio and the MA-ABE scheme also requires a random oracle.

To obtain Theorem 1.2 we design a new (non-monotone) LSSS for all NC1 that has the above
two properties. This is summarized in the following theorem.

Theorem 1.4 (Informal): There exists a non-monotone LSSS scheme for all NC1 circuits sat-
isfying the small reconstruction coefficients and linear independence for unauthorized rows prop-
erties.

By non-monotone, we mean that an attribute and its negation are treated separately (both
having corresponding shares) and it is implicitly assumed that the attacker will never see shares
corresponding to both the positive and the negative instances of the same attribute. This can
be enforced in case of CP-ABE due to its centralized nature and this when combined with The-
orem 1.3 implies Theorem 1.2. However, in MA-ABE attackers can get hold of the master secret
key of any attribute authority and generate secret keys corresponding to both the attribute un-
der control and its negation, and so non-monotone LSSS does not seem to suffice. We therefore
settle for the (monotone) LSSS scheme for DNFs to obtain Theorem 1.1 (see further discussion
in Section 2.3 and Remark 6.1).

1.2 Related Work

Secret sharing schemes with the above two properties were used before, although somewhat im-
plicitly. Boyen [Boy13] suggested a lattice-based KP-ABE scheme for NC1. Soon after the publica-
tion of his work, a flaw was found and a recent work of Agrawal et al. [ABN+21] shows an attack
which is based on identifying a subset of attributes which correspond to rows of the policy ma-
trix that non-trivially span the 0 vector (i.e., linearly dependent rows). Concurrently to Boyen’s
work, Gorbunov, Vaikuntanathan, and Wee [GVW13] had a different approach which (provably)
gives a lattice-based KP-ABE scheme for circuits of any arbitrary polynomial size. In one of their
variants (which relies on quasi-polynomial hardness of LWE; see Section 7 in [GVW13]), they
obtain a scheme which supports all LOGSPACE computation (which contains NC1). Implicitly,
their construction relies on a (non-monotone) secret sharing scheme for LOGSPACE with the
above two properties (i.e., linear independence of unauthorized shares and small reconstruction
coefficients).5 Using this secret sharing scheme, our CP-ABE from Theorem 1.2 could be made
to support LOGSPACE.

5 We thank Vinod Vaikuntanathan and Hoeteck Wee for pointing this out after the first publication of this work.
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2 Technical Overview

In this section we provide a high level overview of our main ideas and techniques. In a very high
level, our CP-ABE construction is composed of two main conceptual ideas:

1. A linear non-monotone secret sharing scheme with small reconstruction coefficients and a
linear independence guarantee: We design a new linear non-monotone secret sharing scheme
for all access structures that can be described by a Boolean formula, namely NC1 access
structures. The new secret sharing scheme possesses two properties which turns out to be
key for our correctness and security proof. The first property states that it is possible to
reconstruct a shared secret using only coefficients that come from {0, 1}. An LSSS with this
property is called {0, 1}-LSSS [BGG+18]. The second property, called the linear independence
property, says that the shares held by any unauthorized set, not only are independent of the
secret, but are also linearly independent among each other. We give an overview of the new
construction in Section 2.1

2. An LWE-based direct construction of CP-ABE: We show how to leverage any {0, 1}-LSSS
with the above extra property to get a CP-ABE scheme. Conceptually, to some extent the
construction can be viewed as a “translation” of Waters’ [Wat11, Section 6] construction of
a CP-ABE scheme under the Decisional Bilinear Diffie-Hellman (DBDH) Assumption into
the LWE regime. However, since we are basing the construction of the LWE assumption, the
details and implementation are completely different and much more involved. We will give an
overview of this part in Section 2.2.

Combining the two parts, we obtain a CP-ABE scheme for all NC1 assuming the LWE assump-
tion. The CP-ABE scheme we design is already amenable for extension to the multi-authority
setting. We briefly discuss the main idea in the extension to MA-ABE in Section 2.3.

2.1 The New Linear Secret Sharing Scheme

Our goal is to construct a linear secret sharing scheme with {0, 1} reconstruction coefficients
where the shares of unauthorized parties are linearly independent. Recall first that an access
structure 𝑓 is a partition of the universe of possible subsets of 𝑛 parties into two sets, one is
called authorized and its complement is called unauthorized. The partition is monotone in the
sense that if some subset of parties is unauthorized, one can make it authorized only by adding
more parties to it. A secret sharing scheme is a method by which it is possible to “split” a given
secret into “shares” and distributes them among parties so that authorized subsets would be able
to jointly recover the secret while others would not. Linear secret sharing schemes (LSSS) [KW93]
are a subset of all possible schemes where there is an additional structural guarantee about the
reconstruction procedure: For an authorized subset of parties to reconstruct the secret, all is
needed is to compute a linear function over its shares.

Every linear secret sharing scheme can be described by a share generating matrix. This is
a matrix 𝑴 ∈ ℤℓ×𝑑

𝑞 where each row is associated to some party. A set of parties is qualified
if and only if when we restrict 𝑴 to rows of this set, we get a subspace that spans the vector
(1, 0, . . . , 0). For a secret 𝑧 ∈ ℤ𝑞, computing 𝑴 · 𝒗⊤, where 𝒗 ∈ ℤ𝑑

𝑞 is a vector whose first entry
is 𝑧 and the rest are uniformly random, gives a vector of ℓ shares of the secret 𝑧. Here, we need a
more specialized share generating matrix with an additional property. Specifically, we need that
for any unauthorized set of parties, restricting 𝑴 to those rows, results with a set of linearly
independent vectors. We construct such a share generating matrix for access structure given as
a Boolean formula.

To see the challenge, it is useful to recall the standard construction of a share generating
matrix for Boolean formulas, as adapted from the secret sharing scheme of [BL88] by Lewko
and Waters [LW11a, Appendix G]. Given a Boolean formula, the share generating matrix is
constructed by labeling the wires of the formula from the root to the leaves. The labels of the
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leaves will form the rows of the share generating matrix. We first label the root node of the
tree with the vector (1) (a vector of length 1). Then, we go down the levels of the tree one
by one, labeling each node with a vector determined by the vector assigned to its parent node.
Throughout the process, we maintain a global counter variable 𝑐 which is initialized to 1. Consider
a gate 𝑔 with output wire 𝑤 whose label is 𝒘 and two input wires 𝑢, 𝑣 . If 𝑔 is an OR gate, we
associate with 𝑢 the label 𝒖 = 𝒘 and with 𝑣 the label 𝒗 = 𝒘 (and do not change 𝑐). If 𝑔 is an
AND gate, we associate with 𝑢 the label 𝒖 = 𝒘‖1 and associate with 𝑣 the label 𝒗 = 0‖ − 1,
where 0 denoted a length 𝑐 vector of 0s. We now increment the value of 𝑐 by 1. Eventually all
vectors are padded with 0s in the end to the length of the longest one.

Let us mention that this scheme already has several appealing properties. First, the entries
of the share generating matrix are from {−1, 0, 1}. Moreover, it is already a {0, 1}-LSSS, namely,
when reconstructing a secret using the shares corresponding to an authorized set, the coefficients
used are only from {0, 1}. Nevertheless, a property that we need yet the above construction does
not satisfy is linear independence. Consider, for instance, the formula (𝐴 ∨ 𝐵) ∧ 𝐶. Here, an
adversary controlling 𝐴 and 𝐵 cannot recover the secret, yet the rows corresponding to 𝐴 and 𝐵
in the share generating matrix are identical and thereby linearly dependent. The more intuitive
way to see the problem is that during the reconstruction process, since we are dealing with an
OR gate, we can choose to continue “either from the left or from the right” and in both cases we
will see the same computation. Nevertheless, it is not hard to verify that when considering only
DNF formulas, this construction already results with linearly independent rows for unqualified
sets.

We next describe our new secret sharing scheme and argue that the rows corresponding to
any unauthorized set are linearly independent. We make our task a little bit easier by allowing
every wire in the formula have two associated labels. (This is why our scheme is a non-monotone
LSSS.) The first is for “satisfying” the wire, i.e., the 1-label, and the other is for not satisfying
it, i.e., the 0-label. (Whereas above we only had a label for satisfying the wire and hence it is a
monotone LSSS.) Our procedure is similar to the one above in the sense that it also labels wires
from the root to the leaves and the leaf’ labels form the rows of the share generating matrix.
Since we have two labels per wire, we first label the root node of the tree with the vector (1,0)
and (0,1). Our global counter 𝑐 is initialized to 2.

Consider a gate 𝑔 with output wire 𝑤 whose labels are 𝒘1,𝒘0, and two input wires 𝑢, 𝑣 . We
associate with 𝑢 the labels 𝒖1,𝒖0 and with 𝑣 the label 𝒗1,𝒗0. If 𝑔 is an AND gate, we set

𝒖1 = 0‖1, 𝒖0 = 𝒘0, 𝒗1 = 𝒘1‖ − 1, 𝒗0 = 𝒘0‖ − 1

If 𝑔 is an OR gate, we set

𝒖1 = 𝒘1, 𝒖0 = 0‖1, 𝒗1 = 𝒘1‖ − 1, 𝒗0 = 𝒘0‖ − 1

We increment the value of 𝑐 by 1 and pad all vectors with 0s in the end to be of size 𝑐.
Correctness and security of the construction (which can be proven by induction) say that for

every wire in the formula, if it can be successfully satisfied, then there is a linear combination to
recover the 1-label of that wire but not the 0-label. Analogously, if it cannot be satisfied, then
there is also a linear combination to recover the 0-label of that wire but not the 1-label. Also,
it is not hard to verify that, as with the previous construction, the matrix contains only values
from {−1, 0, 1} and the reconstruction coefficients needed to recover the secret for an authorized
set are from {0, 1}.

For the new linear independent property, let us focus for now on a single gate 𝑔 and assume
that it is an OR gate. Observe that 𝒘1 can only be reconstructed using either 𝒖1 or using
𝒖0+𝒗1. As opposed to the “attack” we suggested before, now to continue the computation in the
reconstruction phase, there is only one valid way, depending on the available shares. To see this
more precisely, one needs to consider the 4 possible cases: (1) 𝑢, 𝑣 are satisfied, (2) 𝑢 is satisfied
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but 𝑣 is not, (3) 𝑢 is not satisfied but 𝑣 is, and (4) both 𝑢, 𝑣 are unsatisfied. Checking each case
separately one can get convinced that there is exactly one way to compute the corresponding
label of the output wire. An analogous case analysis can be done also for the case where 𝑔 is
an AND gate. This idea can be generalized and formalized to show that the vectors held by an
attacker who controls an unauthorized must be linearly independent.

2.2 The 𝗖𝗣-𝗔𝗕𝗘 Scheme

Here we describe our CP-ABE scheme. This serves as a warm up for our full MA-ABE scheme and
includes most of the technical ideas. We discuss briefly the additional technicalities that arise in
the multi-authority setting towards the end of the section. Note that the problem of constructing
CP-ABE schemes directly has traditionally been much more challenging compared to its KP-ABE
counterpart. Let us highlight two challenges:

– The first challenge is of course to prevent collusion attacks by users, that is, to somehow “bind”
the key components of a particular user corresponding to the various attributes it possesses
so that those key components cannot be combined with the key components possessed by
other users.

– The second and more serious challenge is (in the selective model) how to embed a complex
access policy in a short number of parameters.

In order to prove selective security, the standard strategy is to follow a “partitioning” technique
where the reduction algorithm sets up the master public key such that it knows all the secret
keys that it needs to give out, yet it cannot give out secret keys that can trivially decrypt
the challenge ciphertext. In the context of KP-ABE, the challenge ciphertext is associated with
an attribute set and therefore the public parameters for each attribute can be simply treated
differently depending whether it is in the challenge attribute set or not. In CP-ABE, the situation
is much more complicated as ciphertexts are associated with access policies which essentially
encode a huge (maybe exponential size) set of authorized subsets of attributes. Consequently,
there is no simple “on or off” method of programming this information into the master public key.
While techniques have eventually been developed to overcome this challenge in the bilinear map
world, devising the LWE analogs has remained elusive. One of the main technical contributions
of our paper is a method for directly embedding an LSSS access policy into the master public
key within the LWE-based framework in our reduction.

For concreteness, in what follows we assume that the LSSS access policy used in our CP-ABE
scheme was generated using our transformation described above. Moreover, we assume that there
is a public bound 𝑠max on the number of columns in the matrix (which translates to a bound on
the size of the Boolean formula while using our Boolean formula LSSS transformations above).
We further assume that the row labeling function is injective, i.e., each attribute corresponds to
exactly one row. In the precise description of the scheme we use several different noise distribu-
tions with varying parameters. Some of them are used to realize the standard noise smudging
technique at various steps of the security proof. In order to keep the exposition simple, we will
ignore such noise smudging and just use a single noise distribution, denoted noise. By default,
vectors are thought of as row vectors.

Setup: For each attribute 𝑢 in the system, sample 𝑨𝑢 ∈ ℤ𝑛×𝑚
𝑞 together a trapdoor 𝑻𝑨𝑢 , and

another uniformly random matrix 𝑯𝑢 ← ℤ𝑛×𝑚
𝑞 . Additionally sample 𝒚 ← ℤ𝑛

𝑞 . Output

PK = (𝒚,{𝑨𝑢} ,{𝑯𝑢}), SK = {𝑻𝑨𝑢 }

Key Generation for attribute set 𝑼 : Let 𝒕 ← noise𝑚−1 and 𝒕 = (1, 𝒕) ∈ ℤ𝑚. This vector
𝒕 will intuitively serve as the linchpin that will tie together all the secret key components of a
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specific user. For each attribute 𝑢 ∈ 𝑈 , using 𝑻𝑨𝑢 , sample a short vector 𝒌̃𝑢 such that 𝑨𝑢𝒌̃
⊤
𝑢 =

𝑯𝑢𝒕
⊤ and output

SK = ({𝒌̃𝑢}, 𝒕)

Encryption of 𝗺𝘀𝗴 ∈ {0, 1} given matrix 𝑴 : Assume that 𝜌 is a function that maps
between row indices of 𝑴 and attributes, that is, 𝜌(𝑖) is the attribute associated with the 𝑖th
row in 𝑴 . The procedure samples 𝒔← ℤ𝑛

𝑞 and 𝒗2, . . . ,𝒗𝑠max ← ℤ𝑚
𝑞 and computes

𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + noise

𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +

⎡⎣ ∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + noise

and outputs the ciphertext

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] , 𝐶 = MSB(𝒔𝒚⊤)⊕msg

)︁
.

Decryption: Assume that the available attributes are qualified to decrypt. Let 𝐼 be the set
of row indices corresponding to the available attributes and let {𝑤𝑖}𝑖∈𝐼 ∈ {0, 1} ⊂ ℤ𝑞 be the
reconstruction coefficients. For each 𝑖 ∈ 𝐼, let 𝜌(𝑖) be the attribute associated with the 𝑖th row.
The procedure computes

𝐾 ′ =
∑︁
𝑖∈𝐼

𝑤𝑖

(︁
𝒄𝑖𝒌̃
⊤
𝜌(𝑖) + 𝒄𝑖𝒕

⊤
)︁

and outputs

msg′ = 𝐶 ⊕MSB(𝐾 ′).

Correctness

Consider a ciphertext CT w.r.t some matrix 𝑴 and a key for a set of attributes 𝑈 that satisfies
𝑴 . By construction it is enough to show that MSB(𝐾 ′) = MSB(𝒔𝒚⊤) with all but negligible
probability. Here, for simplicity, we shall ignore small noise-like terms. Expanding {𝒄𝑖}𝑖∈𝐼 and
{𝒄𝑖}𝑖∈𝐼 , we get

𝐾 ′ ≈
∑︁
𝑖∈𝐼

𝑤𝑖𝒔𝑨𝜌(𝑖)𝒌̃
⊤
𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,1(𝒔𝒚
⊤, 0, . . . , 0)𝒕⊤ +

∑︁
𝑖∈𝐼,𝑗∈{2,...,𝑠max}

𝑤𝑖𝑀𝑖,𝑗𝒗𝑗𝒕
⊤

−
∑︁
𝑖∈𝐼

𝑤𝑖𝒔𝑯𝜌(𝑖)𝒕
⊤

First, observe that each 𝑤𝑖 ∈ {0, 1} since the reconstruction coefficients in our secret sharing
scheme are guaranteed to be Boolean.

Now, recall that for each 𝑢 ∈ 𝑈 , we have 𝑨𝑢𝒌̃
⊤
𝑢 = 𝑯𝑢𝒕

⊤. Therefore, for each 𝑖 ∈ 𝐼, it holds
that

𝑨𝜌(𝑖)𝒌̃
⊤
𝜌(𝑖) = 𝑯𝜌(𝑖)𝒕

⊤.
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Hence,

𝐾 ′ ≈
��������
∑︁
𝑖∈𝐼

𝑤𝑖𝒔𝑯𝜌(𝑖)𝒕
⊤ +

∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,1(𝒔𝒚
⊤, 0, . . . , 0)𝒕⊤ +

∑︁
𝑖∈𝐼,𝑗∈{2,...,𝑠max}

𝑤𝑖𝑀𝑖,𝑗𝒗𝑗𝒕
⊤

−
��������
∑︁
𝑖∈𝐼

𝑤𝑖𝒔𝑯𝜌(𝑖)𝒕
⊤

=
∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,1(𝒔𝒚
⊤, 0, . . . , 0)𝒕⊤ +

∑︁
𝑖∈𝐼,𝑗∈{2,...,𝑠max}

𝑤𝑖𝑀𝑖,𝑗𝒗𝑗𝒕
⊤

=

(︃∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,1

)︃
(𝒔𝒚⊤, 0, . . . , 0)𝒕⊤ +

∑︁
𝑗∈{2,...,𝑠max}

(︃∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,𝑗

)︃
𝒗𝑗𝒕
⊤.

Recall that we have
∑︀

𝑖∈𝐼 𝑤𝑖𝑀𝑖,1 = 1 while for 1 < 𝑗 ≤ 𝑠max, it holds that
∑︀

𝑖∈𝐼 𝑤𝑖𝑀𝑖,𝑗 = 0.
Also, recall that 𝒕 = (1, 𝒕), and hence, (𝒔𝒚⊤, 0, . . . , 0)𝒕⊤ = 𝒔𝒚⊤. Thus,

𝐾 ′ ≈ 𝒔𝒚⊤.

By choosing the noise magnitude carefully, we can make sure that MSB(𝐾 ′) = MSB(𝒔𝒚⊤), except
with negligible probability.

Security

As mentioned, we prove that our scheme is selectively secure, namely, we require the challenge
LSSS policy (𝑴 , 𝜌) to be submitted by the adversary ahead of time before seeing the public
parameters. The proof is obtained by a hybrid argument where we start off with the security
game played with the real scheme as the first hybrid and end up with a hybrid where the game is
played with a scheme where the challenge ciphertext is independent of the underlying message.

In more detail, in the last hybrid we want to get rid of the secret 𝒔. Recall that 𝒔 appears in
two places: (1) 𝒄𝑖 and (2) 𝒄𝑖. Intuitively, the term 𝒄𝑖 looks like an LWE sample and indeed our
goal is to use LWE to argue that 𝒔 is hidden there. The challenge is that to use LWE we need
to get rid of the trapdoor 𝑻𝑨𝑢 of 𝑨𝑢 which is used in the key generation procedure to sample
𝒌̃𝑢. For 𝒄𝑖, our high level approach is to program 𝑯𝑢 in such a way that it will cancel the terms
that depend on 𝒔 in 𝒄𝑖. However, at the same time 𝑯𝑢 is used in the sampling procedure of 𝒌̃𝑢,
as well, and so (1) and (2) are actually related and need to be handled together.

We program 𝑯𝑢 as follows

𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+

∑︁
𝑗∈{2,...,𝑠max}

𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑨𝑢𝑹𝑢,

where 𝑹𝑢,𝑩2, . . . ,𝑩𝑠max are matrices of the appropriate sizes and sampled from some distribu-
tions which we shall skip for now. Here we crucially use the fact that the row labeling function
𝜌 is injective to ensure that the above definition of 𝑯𝑢 is unambiguous. One of the purposes of
the 𝑹𝑢 matrices is to make sure that the programmed 𝑯𝑢 is indistinguishable from the original
𝑯𝑢. We make use of an extended version of the leftover hash lemma, we call the “leftover hash
lemma with trapdoors” (see Lemma 3.4), to guarantee this indistinguishability. This program-
ming allows us to embed the challenge access policy into the master public key. Also notice that
indeed the first term of 𝑯𝑢 cancels out the dependence on 𝒔 in 𝒄𝑖.

Let us go back to how the keys look like with this 𝑯𝑢. Recall that we chose 𝒌̃𝑢 such that
𝑨𝑢𝒌̃

⊤
𝑢 = 𝑯𝑢𝒕

⊤. Our goal is to sample 𝒌̃𝑢 directly and not through the trapdoor 𝑻𝑨𝑢 of 𝑨𝑢 so
that we can eventually do away with 𝑻𝑨𝑢 . To this end, we program 𝒕 so that 𝑯𝑢𝒕

⊤ is completely
random. Note that once 𝑯𝑢𝒕

⊤ becomes random, we would be able to directly sample 𝒌̃𝑢 via the
properties of lattice trapdoors. At a high level for this purpose, we use the 𝑩𝑗 matrices, which we
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actually generate along with trapdoors. Observe that with our programming of the 𝑯𝑢 matrices
above, we have

𝑯𝑢𝒕
⊤ = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
𝒕⊤ +

∑︁
𝑗∈{2,...,𝑠max}

𝑀𝜌−1(𝑢),𝑗𝑩𝑗𝒕
⊤ +𝑨𝑢𝑹𝑢𝒕

⊤.

Roughly, 𝑯𝑢𝒕
⊤ would become uniformly random if we can make the boxed part above uniformly

random. We plan to do this by first sampling some uniformly random vector 𝒛𝑢 and then solving
for
{︀
𝑩𝑗𝒕

⊤}︀
𝑗∈{2,...,𝑠max} such that

∑︀
𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗

(︀
𝑩𝑗𝒕

⊤)︀ = 𝒛𝑢. Note that once we have a
solution for the above system of equations, we can use the trapdoor of the 𝑩𝑗 matrices to sample
an appropriate 𝒕 and our goal will be accomplished. It is for solving the above system of linear
equations that we use the fact that the corresponding rows of 𝑴 are linearly independent and
so the above system of linear equations is solvable.

2.3 The 𝗠𝗔-𝗔𝗕𝗘 Scheme

The MA-ABE scheme is a generalization of the above scheme and we avoid repeating the scheme
here. Instead, let us go over our main ideas to overcome the technical challenges that prevented
getting a collusion resistant decentralized MA-ABE scheme from LWE before this work. First, it is
important to understand that a main challenge in CP-ABE constructions is collusion resistance.
The standard technique to achieve collusion resistance in the literature is to tie together the
different key components representing the different attributes of a user with the help of fresh
randomness specific to that user. Such randomization would make the different key components
of a user compatible with each other, but not with the parts of a key issued to another user.
This is relatively easy to implement in the single-authority setting since there is only one central
authority who is responsible to generate secret keys for users.

In a multi-authority, we want to satisfy the simultaneous goals of autonomous key generation
and collusion resistance. The requirement of autonomous key generation means that established
techniques for key randomization cannot be applied since there is no one party to compile all the
pieces together. Furthermore, in a decentralized MA-ABE system each component may come from
a different authority, where such authorities have no coordination and are possibly not even aware
of each other. In order to overcome the above challenge, we aim to adapt the high level design
rationally of the previous bilinear-map-based decentralized MA-ABE schemes [RW15,LW11a] to
not rely on one key generation call to tie all key components together and instead use the output of
a public hash function applied on the user’s global identity, GID, as the randomness tying together
multiple key components issued by different authorities. However, this means that the randomness
responsible for tying together the different key components must be publicly computable, that
is, even known to the attacker. Unfortunately, all the CP-ABE schemes realizable under LWE so
far fail to satisfy this property.

Importantly, and deviating from previous approaches, we design our CP-ABE scheme carefully
so as to have this property. Observe that in our CP-ABE scheme above, the vector 𝒕 is the one
that is used to bind together different key components. A main feature of our CP-ABE scheme
is that this vector 𝒕 is actually part of the output of the key generation procedure. In particular,
as we show, the system remains secure even when 𝒕 is public and known to the attacker.

The second challenge in making a CP-ABE scheme compatible for extension to the decentral-
ized multi-authority setting is modularity. Very roughly speaking, the setup and key generation
procedures should have the structure such that it should be possible to view their operations as
well as their outputs, that is, the master public/secret key and the secret keys of the users as
aggregates of individual modules each of which relates to exactly one of the attributes involved.
This is important since in a decentralized MA-ABE system, authorities/attributes should be able
to join the system at any point of time without requiring any prior coordination with a central
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authority or a system reset and there is no bound on the number of authorities/attributes that
can ever come into existence. Any CP-ABE scheme obtained from an underlying KP-ABE scheme
via the universal-circuit-based transformation inherently fails to achieve the above modularity
property roughly because in such a system, the master key and the user keys all become associ-
ated with the descriptions of circuits rather than the attributes directly. Hence it is not surprising
that no prior CP-ABE scheme realizable under LWE achieves the above modularity feature. In
contrast, we design our CP-ABE scheme above in such a way that everything is modular and fits
into the decentralized multi-authority setting.

As is the design, the proof strategy for our MA-ABE scheme is also somewhat similar to the
proof of the CP-ABE scheme. Although, since we are in the multi-authority setting, notation
and various technical details become much more involved. For instance, the application of the
linear independence property becomes much more delicate. Ignoring notational differences, one
additional step we need to make for our proof to go through, is to somehow make the ciphertext
components corresponding to corrupted authorities independent of the secret. This is because in
our security model, we allow the adversary to generate the master keys for the corrupted author-
ities. Hence the simulator cannot hope to program any of the 𝑯𝑢 matrices corresponding to the
corrupted authorities and thereby cancel the secret present inside those ciphertext components
as was possible in the single-authority scheme above.

To solve this, we are inspired by a previous technique of Rouselakis and Waters [RW15] in
the bilinear map world for handling the same problem and we adapt it for our setting. After
applying the idea under their transformation we reach a hybrid world which is more similar to
the CP-ABE one where we only need to deal with the ciphertext components corresponding to
uncorrupted authorities. As an additional contribution, en route to adapting their lemma to our
setting, we observe a non-trivial gap in their proof which we resolve (see Section 4.3 for more
details).

Lastly, let us explain why the new secret sharing scheme from Section 2.1 (see also The-
orem 1.4) does not apply here. Since our LSSS from Section 2.1 is non-monotone, the share
generating matrix has rows for both the positive and negative instances of an attribute. Now, in
case of an MA-ABE for non-monotone LSSS, an attacker which corrupts an authority can gener-
ate keys for both the positive and negative instances of the attribute controlled by the authority
and thus can get hold of both the rows of the LSSS matrix associated with both instances of
that attribute. Unfortunately, in our LSSS, the linear independence property only holds when
the set of unauthorized rows of an LSSS matrix does not include both the positive and nega-
tive instances of a particular attribute simultaneously. (Note that this is not an issue for our
CP-ABE scheme since there is only one central authority which remains uncorrupted throughout
the system.) We currently do not know of any non-monotone LSSS which achieves the linear
independence property even when a set of unauthorized rows include both instances of the same
attribute. We therefore settle for an LSSS which only considers attributes in their positive form,
that is, monotone LSSS, and still satisfies the linear independence property for unauthorized
rows. We use the direct construction of Lewko and Waters [LW11a] which was recently observed
by Agrawal et al. [ABN+21] to satisfy the linear independence property for unauthorized rows
when implemented for the class of DNF formulas.

3 Preliminaries

3.1 Notations

Throughout this paper we will denote the underlying security parameter by 𝜆. A function
negl : ℕ → ℝ is negligible if it is asymptotically smaller than any inverse-polynomial function,
namely, for every constant 𝑐 > 0 there exists an integer 𝑁𝑐 such that negl(𝜆) ≤ 𝜆−𝑐 for all
𝜆 > 𝑁𝑐. We let [𝑛] = {1, . . . , 𝑛}.
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Let PPT stand for probabilistic polynomial-time. For a distribution 𝒳 , we write 𝑥 ← 𝒳 to
denote that 𝑥 is sampled at random according to distribution 𝒳 . For a set 𝑋, we write 𝑥 ← 𝑋
to denote that 𝑥 is sampled according to the uniform distribution over the elements of 𝑋. We
use bold lower case letters, such as 𝒗, to denote vectors and upper-case, such as 𝑴 , for matrices.
We assume all vectors, by default, are row vectors. The 𝑗th row of a matrix is denoted 𝑴𝑗 and
analogously for a set of row indices 𝐽 , we denote 𝑴𝐽 for the submatrix of 𝑴 that consists of
the rows 𝑴𝑗 for all 𝑗 ∈ 𝐽 . For a vector 𝒗, we let ‖𝒗‖ denote its ℓ2 norm and ‖𝒗‖∞ denote its
ℓ∞ norm.

For an integer 𝑞 ≥ 2, we let ℤ𝑞 denote the ring of integers modulo 𝑞. We represent ℤ𝑞 as
integers in the range (−𝑞/2, 𝑞/2].

Indistinguishability: Two sequences of random variables 𝒳 = {𝒳𝜆}𝜆∈ℕ and 𝒴 = {𝒴𝜆}𝜆∈ℕ
are computationally indistinguishable if for any non-uniform PPT algorithm 𝒜 there exists a
negligible function negl(·) such that |Pr[𝒜(1𝜆,𝒳𝜆) = 1] − Pr[𝒜(1𝜆,𝒴𝜆) = 1]| ≤ negl(𝜆) for
all 𝜆 ∈ ℕ.

For two distributions 𝒟 and 𝒟′ over a discrete domain 𝛺, the statistical distance between 𝒟
and 𝒟′ is defined as SD(𝒟,𝒟′) = (1/2) ·

∑︀
𝜔∈𝛺 |𝒟(𝜔) − 𝒟′(𝜔)|. A family of distributions 𝒟 =

{𝒟𝜆}𝜆∈ℕ and 𝒟′ = {𝒟′𝜆}𝜆∈ℕ, parameterized by security parameter 𝜆, are said to be statistically
indistinguishable if there is a negligible function negl(·) such that SD(𝒟𝜆,𝒟′𝜆) ≤ negl(𝜆) for
all 𝜆 ∈ ℕ.

Smudging: The following lemma says that adding large noise “smudges out” any small values.
This lemma was originally proven in [AJW11, Lemma 2.1] and we use a paraphrased version
from [GKW18, Lemma 2.1]. Let us first define the notion of a 𝐵-bounded distribution.

Definition 3.1 (𝑩-Bounded): For a family of distributions 𝒟 = {𝒟𝜆}𝜆∈ℕ over the integers
and a bound 𝐵 = 𝐵(𝜆) > 0, we say that 𝒟 is 𝐵-bounded if for every 𝜆 ∈ ℕ it holds that
Pr𝑥←𝒟𝜆

[|𝑥| ≤ 𝐵(𝜆)] = 1.

Lemma 3.1 (Smudging Lemma): Let 𝐵1 = 𝐵1(𝜆) and 𝐵2 = 𝐵2(𝜆) be positive and let 𝒟 =
{𝒟𝜆}𝜆 be a 𝐵1-bounded distribution family. Let 𝒰 = {𝒰𝜆}𝜆 be the uniform distribution over
[−𝐵2(𝜆), 𝐵2(𝜆)]. The family of distributions 𝒟+𝒰 and 𝒰 are statistically indistinguishable if there
exists a negligible function negl(·) such that for all 𝜆 ∈ ℕ it holds that 𝐵1(𝜆)/𝐵2(𝜆) ≤ negl(𝜆).

Leftover hash lemma: We recall the well known leftover hash lemma, stated in a convenient
form for our needs (e.g., [Reg05,ABB10a]).

Lemma 3.2 (Leftover Hash Lemma): Let 𝑛 : ℕ→ ℕ, 𝑞 : ℕ→ ℕ, 𝑚 > (𝑛+1) log 𝑞+𝜔(log 𝑛),
and 𝑘 = 𝑘(𝑛) be some polynomial. Then, the following two distributions are statistically indis-
tinguishable:

𝒟1 ≡
{︁
(𝑨,𝑨𝑹) | 𝑨← ℤ𝑛×𝑚

𝑞 ,𝑹←{−1, 1}𝑚×𝑘
}︁
,

𝒟2 ≡
{︁
(𝑨,𝑺) | 𝑨← ℤ𝑛×𝑚

𝑞 ,𝑺 ← ℤ𝑛×𝑘
𝑞

}︁
.

3.2 Lattice and LWE Preliminaries

Here, we provide necessary background on lattices, the LWE assumption, and various useful tools
that we use.

Lattices: An 𝑚-dimensional lattice ℒ is a discrete additive subgroup of ℝ𝑚. Given positive
integers 𝑛,𝑚, 𝑞 and a matrix 𝑨 ∈ ℤ𝑛×𝑚

𝑞 , we let 𝜆⊥𝑞 (𝑨) denote the lattice {𝒙 ∈ ℤ𝑚 | 𝑨𝒙⊤ =

0⊤ mod 𝑞}. For 𝒖 ∈ ℤ𝑛
𝑞 , we let 𝜆𝒖

𝑞 (𝑨) denote the coset {𝒙 ∈ ℤ𝑚 | 𝑨𝒙⊤ = 𝒖⊤ mod 𝑞}.
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Discrete Gaussians: Let 𝜎 be any positive real number. The Gaussian distribution 𝒟𝜎 with
parameter 𝜎 is defined by the probability distribution function 𝜌𝜎(𝒙) = exp(−𝜋‖𝑥‖2/𝜎2). For any
discrete set ℒ ⊆ ℝ𝑚, define 𝜌𝜎(ℒ) =

∑︀
𝒙∈ℒ 𝜌𝜎(𝒙). The discrete Gaussian distribution 𝒟ℒ,𝜎 over

ℒ with parameter 𝜎 is defined by the probability distribution function 𝜌ℒ,𝜎(𝒙) = 𝜌𝜎(𝒙)/𝜌𝜎(ℒ).
The following lemma (e.g., [MR07, Lemma 4.4]) shows that if the parameter 𝜎 of a discrete

Gaussian distribution is small, then any vector drawn from this distribution will be short (with
high probability).

Lemma 3.3: Let 𝑚,𝑛, 𝑞 be positive integers with 𝑚 > 𝑛, 𝑞 > 2. Let 𝑨 ∈ ℤ𝑛×𝑚
𝑞 be a matrix of

dimensions 𝑛×𝑚, 𝜎 = 𝛺̃(𝑛), and ℒ = 𝜆⊥𝑞 (𝑨). Then, there is a negligible function negl(·) such
that

Pr
𝒙←𝒟ℒ,𝜎

[︀
‖𝒙‖ >

√
𝑚𝜎
]︀
≤ negl(𝑛),

where ‖𝒙‖ denotes the ℓ2 norm of 𝒙.

Truncated Discrete Gaussians: The truncated discrete Gaussian distribution over ℤ𝑚 with
parameter 𝜎, denoted by ̃︀𝒟ℤ𝑚,𝜎, is the same as the discrete Gaussian distribution 𝒟ℤ𝑚,𝜎 except
that it outputs 0 whenever the ℓ∞ norm exceeds

√
𝑚𝜎. Note that, by definition, ̃︀𝒟ℤ𝑚,𝜎 is

√
𝑚𝜎-

bounded. Also, by Lemma 3.3 we get that ̃︀𝒟ℤ𝑚,𝜎 and 𝒟ℤ𝑚,𝜎 are statistically indistinguishable.

3.2.1 Lattice Trapdoors

Lattices with trapdoors are lattices that are indistinguishable from randomly chosen lattices, but
have certain “trapdoors” that allow efficient solutions to hard lattice problems. A trapdoor lattice
sampler [Ajt99,GPV08,MP12], denoted LT = (TrapGen, SamplePre), consists of two algorithms
with the following syntax and properties:

– TrapGen(1𝑛, 1𝑚, 𝑞) ↦→ (𝑨, 𝑇𝑨): The lattice generation algorithm is a randomized algorithm
that takes as input the matrix dimensions 𝑛, 𝑚, modulus 𝑞, and outputs a matrix 𝑨 ∈ ℤ𝑛×𝑚

𝑞

together with a trapdoor 𝑇𝑨.

– SamplePre(𝑨, 𝑇𝑨, 𝜎,𝒖) ↦→ 𝒔: The presampling algorithm takes as input a matrix 𝑨, trapdoor
𝑇𝑨, a vector 𝒖 ∈ ℤ𝑛

𝑞 , and a parameter 𝜎 ∈ ℝ (which determines the length of the output
vectors). It outputs a vector 𝒔 ∈ ℤ𝑚

𝑞 such that 𝑨 · 𝒔⊤ = 𝒖⊤ and ‖𝒔‖ ≤
√
𝑚 · 𝜎.

Well-sampledness: Following Goyal et al. [GKW18], we further require that the aforemen-
tioned sampling procedures output well-sampled elements. That is, the matrix outputted by
TrapGen looks like a uniformly random matrix, and the preimage outputted by SamplePre with
a uniformly random vector/matrix is indistinguishable from a vector/matrix with entries drawn
from an appropriate Gaussian distribution. These two properties are summarized next.

Definition 3.2 (Well-Sampledness of Matrix): Fix any function 𝑞 : ℕ→ ℕ. The procedure
TrapGen is said to satisfy the 𝑞-well-sampledness of matrix property if for any PPT adversary 𝒜,
there exists a negligible function negl(·) such that for all 𝜆 ∈ ℕ,

Advmatrix,𝑞
LT,𝒜 (𝜆) ≜

⃒⃒⃒
Pr
[︁
Expmatrix,𝑞

LT,𝒜 (𝜆) = 1
]︁
− 1/2

⃒⃒⃒
≤ negl(𝜆),

where Expmatrix,𝑞
LT,𝒜 (𝜆) is defined in Fig. 3.1.
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1. The adversary 𝒜 receives input 1𝜆 and sends
1𝑛, 1𝑚, 1𝑧 such that 𝑚 > 𝑛 log 𝑞(𝜆) + 𝜆 to the chal-
lenger.

2. Upon receipt, the challenger first selects a
random bit 𝑏 ← {0, 1}. Next, it samples

{︀
(𝑨𝑖,0, 𝑇𝑨𝑖,0)

}︀
𝑖∈[𝑧]

← 𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞) and
{𝑨𝑖,1}𝑖∈[𝑧] ← ℤ𝑛×𝑚

𝑞 . It sends {𝑨𝑖,𝑏}𝑖∈[𝑧] to 𝒜.

3. Finally, 𝒜 outputs its guess 𝑏′ ∈ {0, 1}. The experi-
ment outputs 1 if and only if 𝑏 = 𝑏′.

Fig. 3.1. Expmatrix,𝑞
LT,𝒜

Definition 3.3 (Well-Sampledness of Preimage): Fix any function 𝑞 : ℕ→ ℕ and 𝜎 : ℕ→
ℕ. The procedure SamplePre is said to satisfy the (𝑞, 𝜎)-well-sampledness property if for any
stateful PPT adversary 𝒜, there exists a negligible function negl(·) such that for all 𝜆 ∈ ℕ,

Advpreimage,𝑞,𝜎
LT,𝒜 (𝜆) ≜

⃒⃒⃒
Pr
[︁
Exppreimage,𝑞,𝜎

LT,𝒜 (𝜆) = 1
]︁
− 1/2

⃒⃒⃒
≤ negl(𝜆),

where Exppreimage,𝑞,𝜎
LT,𝒜 is defined in Fig. 3.2.

1. The adversary 𝒜 receives input 1𝜆 and sends
1𝑛, 1𝑚, 1𝑧 such that 𝜎(𝜆) >

√︀
𝑛 · log 𝑞(𝜆) · log𝑚+𝜆

and 𝑚 > 𝑛 · log 𝑞(𝜆) + 𝜆 to the challenger.

2. Upon receipt, the challenger first selects a random
bit 𝑏 ← {0, 1}. Next, it samples {(𝑨𝑖, 𝑇𝑨𝑖)}𝑖∈[𝑧] ←
𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞) and sends {𝑨𝑖}𝑖∈[𝑧] to 𝒜.

3. Then, 𝒜 makes a 𝗉𝗈𝗅𝗒 (𝜆) number of pre-image
queries of the form 𝑖 ∈ [𝑧] to the challenger and
the challenger responds as follows:

(a) It samples 𝒘 ← ℤ𝑛
𝑞 , 𝒖0 ← 𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑖, 𝑇𝑨𝑖 , 𝜎,

𝒘), and 𝒖1 ← 𝒟𝑚
ℤ,𝜎. It sends 𝒖𝑏 to 𝒜.

4. Finally, 𝒜 outputs its guess 𝑏′ ∈ {0, 1}. The experi-
ment outputs 1 if and only if 𝑏 = 𝑏′.

Fig. 3.2. Exppreimage,𝑞,𝜎
LT,𝒜

Both the above properties are satisfied by the gadget-based trapdoor lattice sampler presented
in [MP12].

Enhanced trapdoor sampling: Let 𝑞 : ℕ→ ℕ, 𝜎 : ℕ→ ℝ+ be functions and LT = (TrapGen,
SamplePre) be a trapdoor lattice sampler satisfying the 𝑞-well-sampledness of matrix and (𝑞, 𝜎)-
well-sampledness of preimage properties. We describe enhanced trapdoor lattice sampling algo-
rithms EnLT = (EnTrapGen,EnSamplePre) due to Goyal et al. [GKW18] (which are, in turn,
reminiscent of the trapdoor extension algorithms of [CHKP10,ABB10b]).

– EnTrapGen(1𝑛, 1𝑚, 𝑞) ↦→ (𝑨, 𝑇𝑨) : The trapdoor generation algorithm generates two matrices
𝑨1 ∈ ℤ𝑛×⌈𝑚/2⌉

𝑞 and 𝑨2 ∈ ℤ𝑛×⌊𝑚/2⌋
𝑞 as (𝑨1, 𝑇𝑨1) ← TrapGen(1𝑛, 1⌈𝑚/2⌉, 𝑞), (𝑨2, 𝑇𝑨2) ←

TrapGen(1𝑛, 1⌊𝑚/2⌋, 𝑞). It appends both matrices column-wise to obtain a larger matrix 𝑨 as
𝑨 =

(︀
𝑨1|𝑨2

)︀
and sets the associated trapdoor 𝑇𝑨 to be the combined trapdoor information

𝑇𝑨 = (𝑇𝑨1 , 𝑇𝑨2).

– EnSamplePre(𝑨, 𝑇𝑨, 𝜎,𝒁) ↦→ 𝑺: The pre-image sampling algorithm takes as input a ma-
trix 𝑨 =

(︀
𝑨1|𝑨2

)︀
with trapdoor 𝑇𝑨 = (𝑇𝑨1 , 𝑇𝑨2), a parameter 𝜎 = 𝜎(𝜆), and a matrix

𝒁 ∈ ℤ𝑛×𝑘
𝑞 . It chooses a uniformly random matrix 𝑾 ← ℤ𝑛×𝑘

𝑞 and sets 𝒀 = 𝒁 − 𝑾 .
Next, it computes matrices 𝑺1,𝑺2 ∈ ℤ⌈𝑚/2⌉×𝑘 as 𝑺1 ← SamplePre(𝑨1, 𝑇𝑨1 , 𝜎,𝑾 ) and
𝑺2 ← SamplePre(𝑨2, 𝑇𝑨2 , 𝜎,𝒀 ). It computes the final output matrix 𝑺 ∈ ℤ𝑚×𝑘 by column-
wise appending matrices 𝑺1 and 𝑺2 as 𝑺 =

(︀
𝑺1|𝑺2

)︀
.

As shown by [GKW18, Section 7.3], the well-sampledness properties (Definition 3.2 and
Definition 3.3) of EnLT are inherited from the same properties of the underlying LT.
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We show that the enhanced trapdoor sampling procedures EnLT satisfy another property
(which as far as we know has not been used or formalized before). We refer this property as
“leftover hash lemma with trapdoors”. Recall that in the original leftover hash lemma (Lemma 3.2
above) the matrix 𝑨 ∈ ℤ𝑛×𝑚

𝑞 appearing in the two indistinguishable distributions 𝒟1 and 𝒟2

is sampled uniformly at random. The “leftover hash lemma with trapdoors” property of EnLT
basically states that the leftover hash lemma holds even when the matrix 𝑨 ∈ ℤ𝑛×𝑚

𝑞 is generated
by the EnTrapGen algorithm and is not unifoormly random.

Lemma 3.4 (Leftover Hash Lemma with Trapdoors): Let 𝑛 : ℕ → ℕ, 𝑞 : ℕ → ℕ, and
𝑚 > 2(𝑛 + 1) log 𝑞 + 𝜔(log 𝑛). Then, for any adversary 𝒜, there exists a negligible function
negl(·) such that for all 𝜆 ∈ ℕ,

AdvLHL-Trap,𝑞,𝜎EnLT,𝒜 (𝜆) ≜
⃒⃒⃒
Pr
[︁
ExpLHL-Trap,𝑞,𝜎EnLT,𝒜 (𝜆) = 1

]︁
− 1/2

⃒⃒⃒
≤ negl(𝜆),

where ExpLHL-Trap,𝑞,𝜎
EnLT,𝒜 (𝜆) is defined in Fig. 3.3.

1. Setup Phase: The adversary 𝒜 receives input
1𝜆 and sends 1𝑛, 1𝑚, 1𝑧 such that 𝑚 > 2(𝑛 +
1) log 𝑞(𝜆) + 𝜆, 𝜎 >

√︀
(𝑛+ 1) log 𝑞 log𝑚 + 𝜆, and

𝑧 = 𝑧(𝜆) to the challenger. The challenger selects a
random bit 𝑏← {0, 1}, and proceeds as follows:

(a) For 𝑖 ∈ [𝑧], it samples (𝑨𝑖, 𝑇𝑨𝑖) ←
𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞), 𝑹𝑖 ← {−1, 1}𝑚×𝑚, and
sets 𝑺𝑖,0 = 𝑨𝑖𝑹𝑖. It also samples 𝑺𝑖,1 ← ℤ𝑛×𝑚

𝑞 .

(b) It sends (𝑨𝑖,𝑺𝑖,𝑏)𝑖∈[𝑧] to 𝒜.

2. Query Phase: The adversary 𝒜 makes 𝗉𝗈𝗅𝗒 (𝜆)
many pre-image queries of the form (𝑖,𝒛) ∈ [𝑧]×ℤ𝑛

𝑞 .
The challenger responds to each query by sampling
𝒔← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑖, 𝑇𝑨𝑖 , 𝜎,𝒛) and sending 𝒔 to 𝒜.

3. 𝒜 outputs its guess 𝑏′ ∈ {0, 1}. The experiment out-
puts 1 if and only if 𝑏 = 𝑏′.

Fig. 3.3. ExpLHL-Trap,𝑞,𝜎
EnLT,𝒜

Proof: Our proof follows from a sequence of hybrid experiments. We start by defining a sequence
of hybrid experiments such that the first and last experiments correspond to the original “leftover
hash lemma with trapdoors” security game when the challenger chooses its challenge bit 𝑏 to be 0
and 1, respectively. Finally, we show that the adversary’s advantage must be negligible between
any two consecutive hybrids.

For simplicity of notation, we shall prove the theorem assuming that 𝑧 = 1. The proof
naturally generalizes to any other 𝑧 ∈ poly(𝜆).

Hybrid 𝑯0: This corresponds to the original game with 𝑏 = 0.

1. Setup phase: The adversary 𝒜 sends 1𝑛 and 1𝑚. The challenger selects a random bit 𝑏 ←
{0, 1}, and proceeds as follows:

(a) It samples (𝑨1, 𝑇𝑨1), (𝑨2, 𝑇𝑨2)← TrapGen(1𝑛, 1𝑚/2, 𝑞) and sets 𝑨 =
(︀
𝑨1|𝑨2

)︀
.

(b) It samples 𝑹1,𝑹2 ←{−1, 1}𝑚/2×𝑚, sets 𝑹 =

(︂
𝑹1

𝑹2

)︂
and 𝑺 = 𝑨𝑹 = 𝑨1𝑹1 +𝑨2𝑹2.

(c) It sends (𝑨,𝑺) to 𝒜.
2. Query phase: The adversary 𝒜 makes poly(𝜆) many pre-image queries 𝒛 ∈ ℤ𝑛

𝑞 . The chal-
lenger responds to each query as follows:

(a) It samples 𝒘 ← ℤ𝑚
𝑞 and computes 𝒔1 ← SamplePre(𝑨1, 𝑇𝑨1 , 𝜎,𝒘).

(b) It sets 𝒚⊤ = 𝒛⊤ −𝑨1𝒔
⊤
1 (which is equal to 𝒛⊤ −𝒘⊤) and computes 𝒔2 ← SamplePre(𝑨2,

𝑇𝑨2 , 𝜎,𝒚).
(c) It sends 𝒔 =

(︀
𝒔1|𝒔2

)︀
to 𝒜.

3. The adversary outputs a bit 𝑏′.
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Hybrid 𝑯1: This hybrid is identical to Hybrid 𝐻0 except that 𝒔1 is sampled to be a random
Gaussian vector with parameter 𝜎 for each query.

2. Query phase: The adversary 𝒜 makes poly(𝜆) many pre-image queries 𝒛 ∈ ℤ𝑛
𝑞 . The chal-

lenger responds to each query as follows:

(a) It samples 𝒔1 ← 𝒟1×𝑚/2
ℤ,𝜎 .

This hybrid is statistically close to Hybrid 𝐻0 due to the well-sampledness of preimage prop-
erty (Definition 3.3); see Claim 3.1.

Hybrid 𝑯2: This hybrid is identical to Hybrid 𝐻1 except that the challenger chooses 𝑨1

uniformly at random, instead of choosing it using TrapGen.

1. Setup phase: The adversary 𝒜 sends 1𝑛 and 1𝑚. The challenger selects a random bit 𝑏 ←
{0, 1}, and proceeds as follows:

(a) It samples 𝑨1 ← ℤ𝑛×𝑚/2
𝑞 , (𝑨2, 𝑇𝑨2)← TrapGen(1𝑛, 1𝑚/2, 𝑞) and sets 𝑨 =

(︀
𝑨1|𝑨2

)︀
.

This hybrid is statistically close to Hybrid 𝐻1 due to the well-sampledness of matrix property
(Definition 3.2); see Claim 3.2.

Hybrid 𝑯3: This hybrid is identical to Hybrid 𝐻2 except that the challenger chooses 𝑺 by
adding a uniformly random matrix 𝑺′ to 𝑨2𝑹2 (instead of 𝑨1𝑹1).

1. Setup phase: The adversary 𝒜 sends 1𝑛 and 1𝑚. The challenger selects a random bit 𝑏 ←
{0, 1}, and proceeds as follows:

(b) It samples 𝑹1,𝑹2 ← {−1, 1}𝑚/2×𝑚, sets 𝑹 =

(︂
𝑹1

𝑹2

)︂
, samples 𝑺1 ← ℤ𝑛×𝑚

𝑞 , and sets

𝑺 = 𝑺1 +𝑨2𝑹2 .

This hybrid is statistically close to Hybrid 𝐻2 due to the leftover-hash lemma (Lemma 3.2);
see Claim 3.3.

Hybrid 𝑯4: This hybrid is identical to Hybrid 𝐻3 except that the challenger samples 𝑺
uniformly random instead of adding 𝑨2𝑹2 to a uniformly random matrix (this is the same exact
distribution for 𝑺).

1. Setup phase: The adversary 𝒜 sends 1𝑛 and 1𝑚. The challenger selects a random bit 𝑏 ←
{0, 1}, and proceeds as follows:

(b) It samples 𝑹1,𝑹2 ←{−1, 1}𝑚/2×𝑚, sets 𝑹 =

(︂
𝑹1

𝑹2

)︂
, and samples 𝑺 ← ℤ𝑛×𝑚

𝑞 .

This hybrid is identically to Hybrid 𝐻3 since the difference is only syntactical; see Claim 3.4.

Hybrid 𝑯5: This hybrid is identical to Hybrid 𝐻4 except that the challenger chooses 𝑨1 using
TrapGen instead of choosing it uniformly at random.

1. Setup phase: The adversary 𝒜 sends 1𝑛 and 1𝑚. The challenger selects a random bit 𝑏 ←
{0, 1}, and proceeds as follows:

(a) It samples (𝑨1, 𝑇𝑨1) , (𝑨2, 𝑇𝑨2)← TrapGen(1𝑛, 1𝑚/2, 𝑞) and sets 𝑨 =
(︀
𝑨1|𝑨2

)︀
.

This hybrid is statistically close to Hybrid 𝐻4 due to the well-sampledness of matrix property
(Definition 3.2); see Claim 3.5.
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Hybrid 𝑯6: This hybrid is identical to Hybrid 𝐻5 except that 𝒔1 is sampled using EnSamplePre
for each query instead of a random Gaussian vector.

2. Query phase: The adversary 𝒜 makes poly(𝜆) many pre-image queries 𝒛 ∈ ℤ𝑛
𝑞 . The chal-

lenger responds to each query as follows:
(a) It samples 𝒘 ← ℤ𝑚

𝑞 and computes 𝒔1 ← SamplePre(𝑨1, 𝑇𝑨1 , 𝜎,𝒘) .

This hybrid is statistically close to Hybrid 𝐻5 due to the well-sampledness of preimage prop-
erty (Definition 3.3); see Claim 3.6.

Analysis

For any adversary 𝒜 and 𝑥 ∈ {0, . . . , 6}, let 𝑝𝒜,𝑥 : ℕ → [0, 1] denote the function such that for
all 𝜆 ∈ ℕ, 𝑝𝒜,𝑥(𝜆) is the probability that 𝒜 on input 1𝜆 guesses the challenge bit correctly in
the hybrid game Hybrid 𝑥. By definition of the security game and the hybrids, |𝑝𝒜,0 − 𝑝𝒜,6| =
AdvLHL-Trap,𝑞

LT,𝒜 (𝜆). Therefore, to bound AdvLHL-Trap,𝑞
LT,𝒜 (𝜆), it is sufficient to bound the difference

between any two of the above consecutive hybrids. This is done in Claims 3.1–3.6 below. ⊓⊔

Claim 3.1: For any adversary 𝒜, there exists a negligible function negl(·) such that for all 𝜆 ∈ ℕ,
|𝑝𝒜,0(𝜆)− 𝑝𝒜,1(𝜆)| ≤ negl(𝜆).

Proof: Consider (for contradiction) an adversary 𝒜 that distinguishes between Hybrid 0 and
Hybrid 1 with probability 1/𝑝(𝜆) for some polynomial 𝑝(·). We use this adversary to design
another one ℬ that “breaks” the well-sampledness of preimage property (Definition 3.3). ℬ first
executes 𝒜 that outputs 1𝑛 and 1𝑚 and ℬ submits the parameters 1𝑛 and 1𝑚/2 as input to
its challenger. Then, ℬ gets from its challenger a matrix 𝑨1 ∈ ℤ𝑛×𝑚/2

𝑞 . ℬ additionally samples
𝑨2 ← TrapGen(1𝑛, 1𝑚/2, 𝑞) and 𝑹 ← {−1, 1}𝑚×𝑚, and sets 𝑺 = 𝑨𝑹, where 𝑨 =

(︀
𝑨1|𝑨2

)︀
.

The pair (𝑨,𝑺) is sent to 𝒜. 𝒜 now performs poly(𝜆) many queries of the form 𝒛 ∈ ℤ𝑛
𝑞 . For

each such query 𝒛, ℬ does the following. It first performs a pre-image query to get 𝒔1 from the
challenger (which is either sampled using SamplePre or randomly from the appropriate Gaussian
distribution). ℬ then samples 𝒔2 ← SamplePre(𝑨2, 𝑇𝑨2 , 𝜎,𝒚) for 𝒚⊤ = 𝒛⊤−𝑨1𝒔

⊤
1 . ℬ then sends

𝒔 =
(︀
𝒔1|𝒔2

)︀
to 𝒜. Eventually, 𝒜 outputs a bit 𝑏′ and this is the output of ℬ. From the description

of ℬ, it is evident that when 𝒔1 is chosen from SamplePre then the view of 𝒜 is identical to Hybrid
0 and when 𝒔1 is chosen from the appropriate Gaussian distribution then the view of𝒜 is identical
to Hybrid 1. Therefore, the advantage of ℬ is the same as that of 𝒜. ⊓⊔

Claim 3.2: For any adversary 𝒜, there exists a negligible function negl(·) such that for all 𝜆 ∈ ℕ,
|𝑝𝒜,1(𝜆)− 𝑝𝒜,2(𝜆)| ≤ negl(𝜆).

Proof: Consider (for contradiction) an adversary 𝒜 that distinguishes between Hybrid 1 and
Hybrid 2 with probability 1/𝑝(𝜆) for some polynomial 𝑝(·). We use this adversary to design
another one ℬ that “breaks” the well-sampledness of matrix property (Definition 3.2). ℬ first
executes 𝒜 that outputs 1𝑛 and 1𝑚 and ℬ submits the parameters 1𝑛 and 1𝑚/2 as input to
its challenger. Then, ℬ gets from its challenger a matrix 𝑨1 ∈ ℤ𝑛×𝑚/2

𝑞 (that is sampled either
using TrapGen or uniformly at random). ℬ additionally samples 𝑨2 ← TrapGen(1𝑛, 1𝑚/2, 𝑞) and
𝑹 ← {−1, 1}𝑚×𝑚, and sets 𝑺 = 𝑨𝑹, where 𝑨 =

(︀
𝑨1|𝑨2

)︀
. The pair (𝑨,𝑺) is sent to 𝒜. 𝒜

now performs poly(𝜆) many queries of the form 𝒛 ∈ ℤ𝑛
𝑞 . For each such query 𝒛, ℬ does the

following. It first samples 𝒔1 ← 𝒟1×𝑚/2
ℤ,𝜎 and then samples 𝒔2 ← SamplePre(𝑨2, 𝑇𝑨2 , 𝜎,𝒚) for

𝒚⊤ = 𝒛⊤ − 𝑨1𝒔
⊤
1 . ℬ then sends 𝒔 =

(︀
𝒔1|𝒔2

)︀
to 𝒜. Eventually, 𝒜 outputs a bit 𝑏′ and this is

the output of ℬ. From the description of ℬ, it is evident that when 𝑨1 is chosen from TrapGen
then the view of 𝒜 is identical to Hybrid 1 and when 𝑨1 is chosen from the uniform distribution
then the view of 𝒜 is identical to Hybrid 2. Therefore, the advantage of ℬ is the same as that of
𝒜. ⊓⊔
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Claim 3.3: For any adversary 𝒜, there exists a negligible function negl(·) such that for all 𝜆 ∈ ℕ,
|𝑝𝒜,2 − 𝑝𝒜,3| ≤ negl(𝜆).

Proof: Consider (for contradiction) an adversary 𝒜 that distinguishes between Hybrid 2 and
Hybrid 3 with probability 1/𝑝(𝜆) for some polynomial 𝑝(·). We use this adversary to design
another one ℬ that “breaks” the leftover hash lemma (Lemma 3.2). ℬ first executes𝒜 that outputs
1𝑛 and 1𝑚 and so ℬ will break the leftover hash lemma with parameters as in Lemma 3.2. Then, ℬ
gets from its challenger a pair of matrices (𝑨1,𝑺1), where 𝑨1 ← ℤ𝑛×𝑚/2

𝑞 and 𝑺1 ∈ ℤ𝑛×𝑚
𝑞 is either

𝑺1 = 𝑨1𝑹1 for 𝑹1 ← {−1, 1}𝑚/2×𝑚 or 𝑺1 ← ℤ𝑛×𝑚
𝑞 . ℬ then samples 𝑨2 ← TrapGen(1𝑛, 1𝑚/2, 𝑞)

and 𝑹2 ←{−1, 1}𝑚/2×𝑚, and sets 𝑺 = 𝑺1+𝑨2𝑹2. The pair (𝑨,𝑺) is sent to 𝒜. 𝒜 now performs
poly(𝜆) many queries of the form 𝒛 ∈ ℤ𝑛

𝑞 . For each such query 𝒛, ℬ does the following. It first
samples 𝒔1 ← 𝒟1×𝑚/2

ℤ,𝜎 and then samples 𝒔2 ← SamplePre(𝑨2, 𝑇𝑨2 , 𝜎,𝒚) for 𝒚⊤ = 𝒛⊤ −𝑨1𝒔
⊤
1 . ℬ

then sends 𝒔 =
(︀
𝒔1|𝒔2

)︀
to 𝒜. Eventually, 𝒜 outputs a bit 𝑏′ and this is the output of ℬ. From the

description of ℬ, it is evident that when 𝑺1 = 𝑨1𝑹1 then the view of 𝒜 is identical to Hybrid 2
and when 𝑺1 is chosen from the uniform distribution then the view of 𝒜 is identical to Hybrid
3. Therefore, the advantage of ℬ is the same as that of 𝒜. ⊓⊔

Claim 3.4: For any adversary 𝒜 and any 𝜆 ∈ ℕ, 𝑝𝒜,3(𝜆) = 𝑝𝒜,4(𝜆).

Proof: The difference between the two hybrids is merely syntactical. Whether we sample 𝑺
uniformly at random from ℤ𝑛×𝑚

𝑞 or by adding a uniformly random matrix from ℤ𝑛×𝑚
𝑞 to 𝑨2𝑹2

results with an independent uniformly random matrix. ⊓⊔

Claim 3.5: For any adversary 𝒜, there exists a negligible function negl(·) such that for all 𝜆 ∈ ℕ,
|𝑝𝒜,4(𝜆)− 𝑝𝒜,5(𝜆)| ≤ negl(𝜆).

Proof: The proof of this claim is similar to the proof of Claim 3.2. ⊓⊔

Claim 3.6: For any adversary 𝒜, there exists a negligible function negl(·) such that for all 𝜆 ∈ ℕ,
|𝑝𝒜,5(𝜆)− 𝑝𝒜,6(𝜆)| ≤ negl(𝜆).

Proof: The proof of this claim is similar to the proof of Claim 3.1. ⊓⊔

3.2.2 Learning With Errors

Assumption 1 (Learning With Errors (LWE) [Reg05]): For a security parameter 𝜆 ∈ ℕ,
let 𝑛 : ℕ → ℕ, 𝑞 : ℕ → ℕ, and 𝜎 : ℕ → ℝ+ be functions of 𝜆. The Learning with Errors (LWE)
assumption LWE𝑛,𝑞,𝜎, parametrized by 𝑛 = 𝑛(𝜆), 𝑞 = 𝑞(𝜆), 𝜎 = 𝜎(𝜆), states that for any PPT
adversary 𝒜, there exists a negligible function negl(·) such that for any 𝜆 ∈ ℕ,

Adv
LWE𝑛,𝑞,𝜎

𝒜 (𝜆) ≜
⃒⃒⃒
Pr
[︁
1← 𝒜𝒪𝒔

1(·)(1𝜆) | 𝒔← ℤ𝑛
𝑞

]︁
− Pr

[︁
1← 𝒜𝒪2(·)(1𝜆)

]︁⃒⃒⃒
≤ negl(𝜆),

where the oracles 𝒪𝒔
1(·) and 𝒪2(·) are defined as follows: 𝒪𝒔

1(·) has 𝒔 ∈ ℤ𝑛
𝑞 hardwired, and on

each query it chooses 𝒂 ← ℤ𝑛
𝑞 , 𝑒 ← 𝒟ℤ,𝜎 and outputs (𝒂, 𝒔𝒂⊤ + 𝑒 mod 𝑞), and 𝒪2(·) on each

query chooses 𝒂← ℤ𝑛
𝑞 , 𝑢← ℤ𝑞 and outputs (𝒂, 𝑢).

Regev [Reg05] showed that if there exists a PPT adversary that can break the LWE assump-
tion, then there exists a PPT quantum algorithm that can solve some hard lattice problems in
the worst case. Given the current state of the art of lattice problems [MR04, Reg05, GPV08,
Pei09,BLP+13,MP13], the LWE assumption is believed to be true for any polynomial 𝑛(·) and
any functions 𝑞(·), 𝜎(·) such that for all 𝜆 ∈ ℕ, 𝑛 = 𝑛(𝜆), 𝑞 = 𝑞(𝜆), 𝜎 = 𝜎(𝜆) satisfy the following
constraints:

2
√
𝑛 < 𝜎 < 𝑞 < 2𝑛, 𝑛 · 𝑞/𝜎 < 2𝑛

𝜖
, and 0 < 𝜖 < 1/2
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3.3 The Notion of 𝗖𝗣-𝗔𝗕𝗘 for Linear Secret Sharing Schemes

A ciphertext-policy attribute-based encryption (CP-ABE) scheme CP-ABE = (Setup,KeyGen,
Enc,Dec) for access structures captured by linear secret sharing schemes (LSSS) over some finite
field ℤ𝑞 with 𝑞 = 𝑞(𝜆) consists of four procedures with the following syntax.

– Setup(1𝜆,𝕌) ↦→ (PK,MSK) : The setup algorithm takes in the security parameter 𝜆 in unary
and attribute universe description 𝕌, and outputs public parameters PK and a master secret
key MSK. We assume that PK includes the description of the attribute universe 𝕌.

– KeyGen(MSK, 𝑈) ↦→ SK : The key generation algorithm takes as input the master secret key
MSK and a set of attributes 𝑈 ⊆ 𝕌, and outputs a private key SK. We assume that the secret
key implicity contains the attribute set 𝑈 .

– Enc(PK,msg, (𝑴 , 𝜌)) ↦→ CT : The encryption algorithm takes in the public parameters PK,
a message msg, and an LSSS access policy (𝑴 , 𝜌) such that 𝑴 is a matrix over ℤ𝑞 and 𝜌
is a row-labeling function that assigns to each row of 𝑴 an attribute in 𝕌. The algorithm
outputs a ciphertext CT. We assume that the ciphertext implicitly contains (𝑴 , 𝜌).

– Dec(PK,CT, SK) ↦→ msg′ : The decryption algorithm takes in the public parameters PK, a
ciphertext CT generated with respect to some LSSS access policy (𝑴 , 𝜌), and a secret key
SK for some set of attributes 𝑈 ⊂ 𝕌. It outputs a message msg′ when the attributes in 𝑈
satisfies the LSSS access policy (𝑴 , 𝜌), i.e., when the vector (1, 0, . . . , 0) lies in the linear
span of those rows of the access matrix 𝑴 which are mapped by 𝜌 to some attribute in 𝑈 .
Otherwise, decryption fails.

Correctness: A CP-ABE scheme for LSSS-realizable access structures is said to be correct if
for every 𝜆 ∈ ℕ, every attribute universe 𝕌, every message msg, every LSSS access policy (𝑴 , 𝜌),
and every subset of attributes 𝑈 ⊆ 𝕌 which satisfy the access policy, it holds that

Pr

⎡⎢⎣msg′ = msg |
(PK,MSK)← Setup(1𝜆,𝕌)
SK← KeyGen(MSK, 𝑈)

CT← Enc(PK,msg, (𝑴 , 𝜌))
msg′ = Dec(PK,CT,SK)

⎤⎥⎦ = 1.

Security: We start by defining the selective notion of security for CP-ABE for LSSS-realizable
access structures by the following game between a challenger and an attacker.

Setup Phase: The adversary receives the security parameter 1𝜆 and commits on an LSSS
access policy (𝑴 , 𝜌). The challenger runs the Setup algorithm and gives the public parameters,
PK, to the adversary.
Key Query Phase 1: The adversary makes a polynomial number of secret key queries to
the challlenger. For each secrey key query the adversary sends some set of attributes 𝑈 ⊆ 𝕌
with the restriction that 𝑈 does not satisfy the policy (𝑴 , 𝜌). The challenger replies with the
corresponding secret key SK← KeyGen(MSK, 𝑈).
Challenge Phase: The challenger chooses a random bit 𝑏 ← {0, 1} and encrypts 𝑏 w.r.t.
the committed policy (𝑴 , 𝜌) as CT← Enc(PK, 𝑏, (𝑴 , 𝜌)). The ciphertext CT is given to the
adversary.
Key Query Phase 2: This phase proceeds in the same way as phase 1.
Guess: The adversary eventually outputs a guess 𝑏′ of 𝑏.

The advantage of an adversary 𝒜 in this game is defined as:

AdvCP-ABE,SEL−CPA
𝒜 (𝜆) ≜

⃒⃒
Pr[𝑏 = 𝑏′]− 1/2

⃒⃒
.
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Definition 3.4 (Selective security for CP-ABE for LSSS): A CP-ABE scheme for LSSS-
realizable access structures is selectively secure if for any PPT adversary𝒜 there exists a negligible
function negl(·) such that for all 𝜆 ∈ ℕ, we have AdvCP-ABE,SEL−CPA

𝒜 (𝜆) ≤ negl(𝜆).

We also define a relaxed notion of selective security for CPABE schemes for LSSS-realizable ac-
cess structures. We call this new notion “selective security under linear independence restriction”.
In this notion, we modify the Key Query Phases in the above game as follows:

Relaxed Key Query Phases: The adversary makes a polynomial number of secret key
queries to the challenger. For each secret key query the adversary sends some set of attributes
𝑈 ⊆ 𝕌 with the restriction that 𝑈 does not satisfy the policy (𝑴 , 𝜌) and moreover, the
rows of the access matrix 𝑴 labeled by attributes in 𝑈 , i.e. the rows of 𝑴 having indices
in 𝜌−1(𝑈) must be linearly independent. The challenger replies with the corresponding secret
key SK← KeyGen(MSK, 𝑈).

We define the advantage of an adversary 𝒜 in this game as:

AdvCP-ABE,SEL−LI−CPA
𝒜 (𝜆) ≜

⃒⃒
Pr[𝑏 = 𝑏′]− 1/2

⃒⃒
.

Definition 3.5 (Selective security under linear independence restriction for CP-ABE
for LSSS): A CP-ABE scheme for LSSS-realizable access structures is selectively secure under
linear independence restriction if the advantage AdvCP-ABE,SEL−LI−CPA

𝒜 (𝜆) of any PPT adversaries
𝒜 in the above modified game is at most negligible.

3.4 The Notion of 𝗠𝗔-𝗔𝗕𝗘 for Linear Secret Sharing Schemes

A multi-authority attribute-based encryption (MA-ABE) system MA-ABE = (GlobalSetup,
AuthSetup,KeyGen,Enc,Dec) for access structures captured by linear secret sharing schemes LSSS
over some finite field ℤ𝑞 with 𝑞 = 𝑞(𝜆) consists of five procedures with the following syntax. We
denote by 𝒜𝒰 the authority universe and by 𝒢ℐ𝒟 the universe of global identifiers of the users.
Additionally, we assume that each authority controls just one attribute, and hence we would use
the words ‘authority" and ‘attribute" interchangeably. This definition naturally generalizes to
the situation in which each authority can potentially control an arbitrary number of attributes
(see [RW15]).

– GlobalSetup(1𝜆) ↦→ GP : The global setup algorithm takes in the security parameter 𝜆 in unary
and outputs the global public parameters GP for the system. We assume that GP includes the
descriptions of the universe of attribute authorities 𝒜𝒰 and universe of the global identifiers
of the users 𝒢ℐ𝒟.

– AuthSetup(GP, 𝑢) ↦→ (PK𝑢,SK𝑢) : The authority 𝑢 ∈ 𝒜𝒰 calls the authority setup algorithm
during its initialization with the global parameters GP as input and receives back its public
and secret key pair PK𝑢,SK𝑢.

– KeyGen(GP,GID,SK𝑢) ↦→ SKGID,𝑢 : The key generation algorithm takes as input the global
parameters GP, a user’s global identifier GID ∈ 𝒢ℐ𝒟, and a secret key SK𝑢 of an authority
𝑢 ∈ 𝒜𝒰 . It outputs a secret key SKGID,𝑢 for the user.

– Enc(GP,msg, (𝑴 , 𝜌),{PK𝑢}) ↦→ CT : The encryption algorithm takes in the global parame-
ters GP, a message msg, an LSSS access policy (𝑴 , 𝜌) such that 𝑴 is a matrix over ℤ𝑞 and
𝜌 is a row-labeling function that assigns to each row of 𝑴 an attribute/authority in 𝒜𝒰 , and
the set {PK𝑢} of public keys for all the authorities in the range of 𝜌. It outputs a ciphertext
CT. We assume that the ciphertext implicitly contains (𝑴 , 𝜌).
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– Dec(GP,CT,{SKGID,𝑢}) ↦→ msg′ : The decryption algorithm takes in the global parameters GP,
a ciphertext CT generated with respect to some LSSS access policy (𝑴 , 𝜌), and a collection
of keys {SKGID,𝑢} corresponding to user ID-attribute pairs (GID, 𝑈) possessed by a user with
global identifier GID. It outputs a message msg′ when the collection of attributes associated
with the secret keys {SKGID,𝑢} satisfies the LSSS access policy (𝑴 , 𝜌), i.e., when the vector
(1, 0, . . . , 0) is contained in the linear span of those rows of 𝑴 which are mapped by 𝜌 to
some attribute/authority 𝑢 ∈ 𝒜𝒰 such that the secret key SKGID,𝑢 is possessed by the user
with global identifier GID. Otherwise, decryption fails.

Correctness: An MA-ABE scheme for LSSS-realizable access structures is said to be correct
if for every 𝜆 ∈ ℕ, every message msg, and GID ∈ 𝒢ℐ𝒟, every LSSS access policy (𝑴 , 𝜌), and
every subset of authorities 𝑈 ⊆ 𝒜𝒰 controlling attributes which satisfy the access structure it
holds that

Pr

⎡⎢⎢⎢⎣msg′ = msg |

GP← GlobalSetup(1𝜆)
∀𝑢 ∈ 𝑈 : PK𝑢, SK𝑢 ← AuthSetup(GP, 𝑢)
∀𝑢 ∈ 𝑈 : SKGID,𝑢 ← KeyGen(GP,GID, SK𝑢)

CT← Enc(GP,msg, (𝑴 , 𝜌),{PK𝑢})
msg′ = Dec(GP,CT,{SKGID,𝑢}𝑢∈𝑈 )

⎤⎥⎥⎥⎦ = 1.

Security: We follow Rouselakis and Waters [RW15] and define static security for multi-
authority CP-ABE systems for LSSS-realizable access structures by the following game between
a challenger and an attacker. Here, all queries done by the attacker are sent to the challenger im-
mediately after seeing the global public parameters. We also allow the adversary to corrupt (and
thus fully control) a certain set of authorities chosen after seeing the global public parameters
and that set of corrupted authorities remains the same until the end of the game.

The game consists of the following phases:

Global setup: The challenger calls GlobalSetup(1𝜆) to get and send the global public param-
eters GP to the attacker.
Adversary’s queries: The adversary responds with:
(a) A set 𝒞 ⊂ 𝒜𝒰 of corrupt authorities and their respective public keys {PK𝑢}𝑢∈𝒞 , which

it might have created in a malicious way.
(b) A set 𝒩 ⊂ 𝒜𝒰 of non-corrupt authorities, i.e., 𝒞 ∩ 𝒩 = ∅, for which it requests the

public keys.
(c) A set 𝒬 = {(GID, 𝑈)} of secret key queries, where each GID ∈ 𝒢ℐ𝒟 is distinct and each

𝑈 ⊂ 𝒩 .
(d) A challenge LSSS access policy (𝑴 , 𝜌) with 𝜌 labeling each row of 𝑴 with authori-

ties/attributes in (𝒞 ∪𝒩 ) subject to the restriction that for each pair (GID, 𝑈) ∈ 𝒬, the
rows of 𝑴 labeled by authorities/attributes in (𝒞 ∪ 𝑈) are unauthorized with respect
to (𝑴 , 𝜌).

Challenger’s replies: The challenger flips a random coin 𝑏 ← {0, 1} and replies with the
following:
(a) The public keys PK𝑢 ← AuthSetup(GP, 𝑢) for all 𝑢 ∈ 𝒩 .
(b) The secret keys SKGID,𝑢 ← KeyGen(GP,GID, SK𝑢) for all (GID, 𝑈) ∈ 𝒬, 𝑢 ∈ 𝑈 .
(c) The challenge ciphertext CT← Enc(GP, 𝑏, (𝑴 , 𝜌),{PK𝑢}𝑢∈𝒞∪𝒩 ).

Guess: The adversary outputs a guess 𝑏′ for 𝑏.

The advantage of an adversary 𝒜 in this game is defined as:

AdvMA-ABE,ST−CPA
𝒜 (𝜆) ≜

⃒⃒
Pr[𝑏 = 𝑏′]− 1/2

⃒⃒
.
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Definition 3.6 (Static security for MA-ABE for LSSS): A MA-ABE scheme for LSSS-
realizable access structures is statically secure if for any PPT adversary 𝒜 there exists a negligible
function negl(·) such that for all 𝜆 ∈ ℕ, we have AdvMA-ABE,ST−CPA

𝒜 (𝜆) ≤ negl(𝜆).

Analogously to our CP-ABE definition, we also define a relaxed notion of static security, which
we call the “static security under linear independence restriction”. In this notion, we modify the
Item (d) in the above game as follows:

Relaxed Item (d): A challenge LSSS access policy (𝑴 , 𝜌) with 𝜌 labeling the rows of 𝑴
with authorities/attributes in (𝒞∪𝒩 ) subject to the restriction that for all pairs (GID, 𝑈) ∈ 𝒬,
the rows of 𝑴 labeled by authorities/attributes in (𝒞 ∪ 𝑈) are unauthorized with respect to
(𝑴 , 𝜌), and moreover, the rows of 𝑴 labeled by the authorities/attributes in (𝒞 ∪𝑈), i.e., the
rows of 𝑴 having indices in 𝜌−1(𝒞 ∪ 𝑈) are linearly independent.

We define the advantage of an adversary 𝒜 in this game as:

AdvMA-ABE,ST−LI−CPA
𝒜 (𝜆) ≜

⃒⃒
Pr[𝑏 = 𝑏′]− 1/2

⃒⃒
.

Definition 3.7 (Static security under linear independence restriction for MA-ABE for
LSSS): An MA-ABE scheme for LSSS-realizable access structures is statically secure under linear
independence restriction if the advantage AdvMA-ABE,ST−LI−CPA

𝒜 (𝜆) of any PPT adversaries 𝒜 in
the above modified game is at most negligible.

Remark 3.1 (Static security (under linear independence restriction) of MA-ABE for
LSSS in the Random Oracle Model): We additionally consider the aforementioned notions
of security in the random oracle model. In this context, we assume a global hash function H
published as part of the global public parameters and accessible by all the parties in the system.
In the security proof, we will model H as a random oracle programmed by the challenger. In the
security game, therefore, we let the adversary 𝒜 submit a collection of H-oracle queries to the
challenger immediately after seeing the global public parameters, along with all the other queries
it makes in the static security (under linear independence restriction) game as described above.

4 Linear Secret Sharing Schemes with Linear Independence

In this section, we first provide the necessary definitions and properties of linear secret sharing
schemes. Then, we present a new linear secret sharing scheme for all non-monotone access struc-
tures realizable by NC1 circuits. This new secret sharing scheme has some interesting properties
which we crucially utilize while designing our CP-ABE scheme for all NC1 circuits under the LWE
assumption. Finally, we state and prove an extension of the zero-out lemma [RW15, Lemma 1].
The role of this lemma in the security proof of our MA-ABE scheme is analogous to [RW15, Lemma
1] in the security proof of their proposed MA-ABE construction. Along the way, we also identify
an important gap in the proof of [RW15, Lemma 1] and provide a fix.

4.1 Background on Linear Secret Sharing Schemes

A secret sharing scheme consists of a dealer who holds a secret and a set of 𝑛 parties. Informally,
the dealer “splits” the secret into “shares” and distributes them among the parties. Subsets of
parties which are “authorized” should be able to jointly recover the secret while others should
not. The description of the set of authorized sets is called the access structure.

Definition 4.1 (Access Structures): An access structure on 𝑛 parties associated with num-
bers in [𝑛] is a set 𝔸 ⊆ 2[𝑛] ∖ ∅ of non-empty subsets of parties. The sets in 𝔸 are called the
authorized sets and the sets not in 𝔸 are called the unauthorized sets. An access structure is
called monotone if ∀𝐵,𝐶 ∈ 2[𝑛] if 𝐵 ∈ 𝔸 and 𝐵 ⊆ 𝐶, then 𝐶 ∈ 𝔸.
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A secret sharing scheme for a monotone access structure 𝔸 is a randomized algorithm that
on input a secret 𝑧 outputs 𝑛 shares sh1, . . . , sh𝑛 such that for any 𝐴 ∈ 𝔸 the shares {sh𝑖}𝑖∈𝐴
determine 𝑧 and other sets are independent of 𝑧 (as random variables).

Non-monotone secret sharing: A natural generalization of the above notion that captures
all access structures (rather than only monotone ones) is called non-monotone secret sharing.
Concretely, a non-monotone secret sharing scheme for an access structure 𝔸 is a randomized algo-
rithm that on input a secret 𝑧 outputs 2𝑛 shares viewed as 𝑛 pairs (sh1,0, sh1,1), . . . , (sh𝑛,0, sh𝑛,1)
such that for any 𝐴 ∈ 𝔸 the shares {sh𝑖,1}𝑖∈𝐴 ∪{sh𝑖,0}𝑖/∈𝐴 determine 𝑧 and other sets are inde-
pendent of 𝑧.

We will be interested in a subset of all (non-monotone) secret sharing schemes where the
reconstruction procedure is a linear function of the shares [KW93]. These are known as linear
(non-monotone) secret sharing schemes.

Definition 4.2 (Linear (non-monotone) secret sharing schemes): Let 𝑞 ∈ ℕ be a prime
power and [𝑛] be a set of parties. A non-monotone secret-sharing scheme 𝛱 with domain of
secrets ℤ𝑞 realizing access structure 𝔸 on parties [𝑛] is linear over ℤ𝑞 if

1. Each share sh𝑖,𝑏 for 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1} of a secret 𝑧 ∈ ℤ𝑞 forms a vector with entries in ℤ𝑞.
2. There exists a matrix 𝑴 ∈ ℤℓ×𝑑

𝑞 , called the share-generating matrix, and a function 𝜌 : [ℓ]→
[2𝑛], that labels the rows of 𝑴 with a party index from [𝑛] or its corresponding negation,
represented as another party index from {𝑛+ 1, . . . , 2𝑛}, which satisfy the following: During
the generation of the shares, we consider the vector 𝒗 = (𝑧, 𝑟2, ..., 𝑟𝑑) ∈ ℤ𝑑

𝑞 . Then the vector
of ℓ shares of the secret 𝑧 according to 𝛱 is equal to 𝘀𝗵 = 𝑴 · 𝒗⊤ ∈ ℤℓ×1

𝑞 . For 𝑖 ∈ [𝑛] and
𝑏 ∈ {0, 1}, the share 𝘀𝗵𝑖,𝑏 consists of all 𝘀𝗵𝑗 values for which 𝜌(𝑗) = 𝑛 · (1 − 𝑏) + 𝑖 (so the
first 𝑛 shares correspond to the “1 shares” and the last 𝑛 shares correspond to the “0 shares”).
We will be referring to the pair (𝑴 , 𝜌) as the LSSS policy of the access structure 𝔸.

It is well known that the above method of sharing a secret satisfies the desired correctness
and security of a non-monotone secret sharing scheme as defined above (e.g., [KW93]). For an
LSSS policy (𝑴 , 𝜌), where 𝑴 ∈ ℤℓ×𝑑

𝑞 and 𝜌 : [ℓ] → [2𝑛], and a set of parties 𝑆 ⊆ [𝑛], let̂︀𝑆 = 𝑆 ∪ {𝑖 ∈ {𝑛+ 1, . . . , 2𝑛} | 𝑖− 𝑛 /∈ 𝑆} ⊂ [2𝑛]. We denote 𝑴̂︀𝑆 the submatrix of 𝑴 that
consists of all the rows of 𝑴 that “belong” to ̂︀𝑆 according to 𝜌 (i.e., rows 𝑗 for which 𝜌(𝑗) ∈ ̂︀𝑆).

Correctness means that if 𝑆 ⊆ [𝑛] is authorized, the vector (1,

𝑑−1⏞  ⏟  
0, . . . , 0) ∈ ℤ𝑑

𝑞 is in the span of
the rows of 𝑴̂︀𝑆 . Security means that if 𝑆 ⊆ [𝑛] is unauthorized, the vector (1, 0, . . . , 0) is not in
the span of the rows of 𝑴̂︀𝑆 . Also, in the unauthorized case, there exists a vector 𝒅 ∈ ℤ𝑑

𝑞 , such
that its first component 𝒅1 = 1 and 𝑴̂︀𝑆𝒅⊤ = 0, where 0 is the all 0 vector.

{0, 1}-LSSS: A special subset of all linear secret sharing schemes are ones where the reconstruc-
tion coefficients are always binary [BGG+18, Definition 4.13]. We call such LSSS a {0, 1}-LSSS.
This property of LSSS secret sharing schemes was recently formally defined by [BGG+18]. They
observed that a well-known construction by Lewko and Waters [LW11a] actually results with an
LSSS with this property for all access structures in NC1.

On sharing vectors: The above sharing and reconstruction methods directly extend to sharing
a vector 𝒛 ∈ ℤ𝑚

𝑞 of dimension 𝑚 ∈ ℕ rather than just scalars.

4.2 Our Non-Monotone Linear Secret Sharing Scheme for 𝐍𝐂1

We introduce a new non-monotone linear secret sharing scheme for all access structures that
can be described by NC1 circuits. The new scheme has some useful properties for us which we
summarize next:
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– The entries in the corresponding policy matrix are small, i.e., coming from {−1, 0, 1}.
– Reconstruction of the secret can be done by small coefficients, i.e., coming from {0, 1}.
– The rows of the corresponding policy matrix that correspond to an unauthorized set are

linearly independent.

Remark 4.1: Let us mention that the well-known construction of Lewko and Waters [LW11a]
actually results with an LSSS with these properties for all access structures described by DNF
formulas. This was recently observed by [ABN+21]. As opposed to our construction, this con-
struction is a monotone LSSS, not a non-monotone one.

The construction: We are given an access structure 𝔸 described by an NC1 circuit. This
circuit can be described by a Boolean formula of logarithmic depth that consists of (fan-in 2)
AND, OR, and (fan-in 1) NOT gates. We further push the NOT gates to the leaves using De
Morgan laws, and from now on we assume that internal nodes only constitute of OR and AND
gates and leaves are labeled either by variables or their negations. In other words, we assume
that we are given a monotone Boolean formula consisting only of AND and OR gates. We would
like to highlight that even if we are starting off with a monotone Boolean formula, the LSSS
secret sharing scheme we are going to construct would be a non-monotone one. More precisely,
the algorithm associates with each input variable 𝑥𝑖 of the monotone Boolean formula two vector
shares 𝘀𝗵𝑖,0 and 𝘀𝗵𝑖,1. This is done in a recursive fashion starting from the root by associating
with each internal wire 𝑤 two labels 𝒘1 and 𝒘0 (and the labels of the leaves correspond to the
shares). The labels of the root 𝑤 are 𝒘1 = (1, 0, . . . , 0) and 𝒘0 = (0, 1, 0, . . . , 0), both of which
are of dimension 𝑘 ≜ 𝑘+2, where 𝑘 is the number of gates in the formula. We maintain a global
counter variable 𝑐 which is initialized to 2 and is increased by one after labeling each gate. We
shall traverse the tree from top (root) to bottom (leaves) and within a layer from left to right.
Consider a gate whose output wire 𝑤 labels are 𝒘1,𝒘0 and denote its children wires, 𝑢 and 𝑣,
with corresponding labels (to be assigned) 𝒖1,𝒖0 and 𝒗1,𝒗0, respectively. The assignment is done
as follows, depending on the type of the gate connecting 𝑢 and 𝑣 to 𝑤:

AND gate: 𝒖1 = 0𝑐‖1‖0𝑘−𝑐−1, 𝒖0 = 𝒘0, 𝒗1 = 𝒘1 − 𝒖1, 𝒗0 = 𝒘0 − 𝒖1.

OR gate: 𝒖1 = 𝒘1, 𝒖0 = 0𝑐‖1‖0𝑘−𝑐−1, 𝒗1 = 𝒘1 − 𝒖0, 𝒗0 = 𝒘0 − 𝒖0.

An example: Consider the monotone Boolean formula (𝐴 ∧𝐵) ∨ (𝐶 ∧𝐷). The 1-label of the
root is (1, 0, 0, 0, 0) and the 0-label is (0, 1, 0, 0, 0). The 1-label of the left child of the OR gate
is (1, 0, 0, 0, 0) and the 0-label is (0, 0, 1, 0, 0). The 1-label of the right child of the OR gate is
(1, 0,−1, 0, 0) and the 0-label is (0, 1,−1, 0, 0). Therefore, the resulting policy is

𝑴 =

𝐴1

𝐴0

𝐵1

𝐵0

𝐶1

𝐶0

𝐷1

𝐷0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 1 0 0
1 0 0 −1 0
0 0 1 −1 0
0 0 0 0 1
0 1 −1 0 0
1 0 −1 0 −1
0 1 −1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The following lemma follows by induction on the number of gates in the formula. Recall that

for 𝑆 ⊆ [𝑛], we let ̂︀𝑆 = 𝑆∪{𝑖 ∈ {𝑛+ 1, . . . , 2𝑛} | 𝑖− 𝑛 /∈ 𝑆} ⊂ [2𝑛] and let 𝑴̂︀𝑆 be the submatrix
that consists of all the rows of 𝑴 that “belong” to ̂︀𝑆 according to 𝜌.

Lemma 4.1: For any access structure 𝔸 which is described by a Boolean formula, the above
process for generating the matrix 𝑴 results with
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1. A non-monotone {0, 1}-LSSS for 𝔸, namely
(a) For any authorized set of parties 𝑆 ⊆ [𝑛], there is a linear combination of the rows of 𝑴̂︀𝑆

that results with (1, 0, . . . , 0) ∈ ℤ𝑑
𝑞 . Moreover, the coefficients in this linear combination are

from {0, 1}.
(b) For any unauthorized set of parties 𝑆 ⊆ [𝑛], no linear combination of the rows of 𝑴̂︀𝑆

results in (1, 0, . . . , 0) ∈ ℤ𝑑
𝑞 . Also, there exists a vector 𝒅 ∈ ℤ𝑑

𝑞 , such that its first component
𝒅1 = 1 and 𝑴̂︀𝑆𝒅⊤ = 0, where 0 is the all 0 vector.

2. For any unauthorized set of parties 𝑆 ⊆ [𝑛], all of the rows of 𝑴̂︀𝑆 are linearly independent.

Proof: We first prove Item 1 of the lemma, namely that the resulting scheme is a {0, 1}-LSSS.
To this end, we prove a more general claim, essentially generalizing the first item of the lemma
for all wires in the formula. In our generalization, given a Boolean formula with 𝑘 gates, the
labels of the output wire, denoted 𝒘1,𝒘0 are fixed to be arbitrary linearly independent vectors
in that they have at least 𝑘 0s in their suffix. (In comparison, in our scheme above, we set 𝒘1,𝒘0

to be the vectors (1, 0), (0, 1) followed by exactly 𝑘 0s.) Denote the dimension of 𝒘1,𝒘0 by 𝑑,
where 𝑑 > 𝑘 + 1. The rest of the details of the scheme remain the same—namely, upon every
new gate we use an “unused dimension” out of the last 𝑘 and use the above rules to compute the
new associated labels. We claim that with this new scheme, we have that for any set 𝑆 ⊆ [𝑛]:

1. if 𝑆 satisfies 𝑤, then
(a) 𝒘1 is in the span of the rows of 𝑴̂︀𝑆 and the linear combination has {0, 1} coefficients
(b) 𝒘0 is not in the span of the rows of 𝑴̂︀𝑆

2. if 𝑆 does not satisfy 𝑤, then
(a) 𝒘0 is in the span of the rows of 𝑴̂︀𝑆 and the linear combination has {0, 1} coefficients
(b) 𝒘1 is not in the span of the rows of 𝑴̂︀𝑆

Clearly, if we prove the above for the more general scheme, it immediately implies Item 1 of
the lemma. We prove these properties of the more general scheme by induction on the number
of gates in the formula. For a formula with one gate these properties follow directly from our
construction. We therefore assume that they hold for all formulas with at most 𝑘 gates and prove
it for a formula with 𝑘 + 1 gates.

Assume that the labels of the output wire are 𝒘1,𝒘0, both of dimension 𝑑. If the root gate
is an AND gate, then the labels of the left and right input wires are

𝒖1 = 0𝑑−(𝑘+1)‖1‖0𝑘, 𝒖0 = 𝒘0, 𝒗1 = 𝒘1 − 𝒖1, 𝒗0 = 𝒘0 − 𝒖1.

If 𝑆 ⊆ [𝑛] satisfies 𝑤, then 𝑆 also satisfies the wires 𝑢 and 𝑣 and therefore by the induction
hypothesis we can recover 𝒖1 and 𝒗1. So, we can compute 𝒖1 + 𝒗1 = 𝒘1. Moreover, since the
coefficients used to recover 𝒖1 and 𝒗1 are all from {0, 1}, the same is true for 𝒘1. Also, it is
immediate that 𝒘0 is not in the span of the rows of 𝑴̂︀𝑆 since otherwise we could have obtained
both 𝒖0 (= 𝒘0) and 𝒖1 although it is impossible by the induction hypothesis.

If 𝑆 ⊆ [𝑛] does not satisfy 𝑤, then either it satisfies 𝑢 but not 𝑣, or 𝑣 but not 𝑢, or neither
of them. We analyze each case separately:

– 𝑢 is satisfied but 𝑣 is not: The available vectors span 𝒖1,𝒗0 with small coefficients but not
𝒖0,𝒗1. Using 𝒖1 and 𝒗0 one can recover 𝒖1 + 𝒗0 = 𝒘0, as needed. Additionally, since 𝒗1 is
not in the span of the rows of 𝑴̂︀𝑆 but 𝒖1 is, it is directly implied that 𝒖1 + 𝒗1 = 𝒘1 is not
in the span of the rows of 𝑴̂︀𝑆 , as needed.

– 𝑢 is not satisfied but 𝑣 is: The available vectors span 𝒖0,𝒗1 with smll coefficients but not
𝒖1,𝒗0. Using 𝒖0 one can directly recover 𝒖0 = 𝒘0. Additionally, since 𝒖1 is not in the span
of the rows of 𝑴̂︀𝑆 but 𝒗1 is, it is directly implied that 𝒖1 + 𝒗1 = 𝒘1 is not in the span of the
rows of 𝑴̂︀𝑆 , as needed.
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– neither 𝑢 nor 𝑣 are satisfied: The available vectors span 𝒖0,𝒗0 with small coefficients but not
𝒖1,𝒗1. Using 𝒖0 one can directly recover 𝒖0 = 𝒘0. Additionally, since 𝒗1 is not in the span
of the rows of 𝑴̂︀𝑆 but 𝒖0 − 𝒗0 = 𝒖1 is, it is directly implied that 𝒖1 + 𝒗1 = 𝒘1 is not in the
span of the rows of 𝑴̂︀𝑆 , as needed.

We proceed with the proof in case the root gate is an OR gate. The proof is analogous and
we give it for completeness. If the root gate is an OR gate, then the labels of the left and right
input wires are

𝒖1 = 𝒘1, 𝒖0 = 0𝑑−(𝑘+1)‖1‖0𝑘, 𝒗1 = 𝒘1 − 𝒖0, 𝒗0 = 𝒘0 − 𝒖0.

If 𝑆 ⊆ [𝑛] satisfies 𝑤, then either it satisfies 𝑢 but not 𝑣, or 𝑣 but not 𝑢, or both of them. We
analyze each case separately:

– 𝑢 is satisfied but 𝑣 is not: The available vectors span 𝒖1,𝒗0 with small coefficients but not
𝒖0,𝒗1. Using 𝒖1 directly one can recover 𝒖1 = 𝒘1. Additionally, since 𝒖0 is not in the span
of the rows of 𝑴̂︀𝑆 but 𝒗0 is, it is directly implied that 𝒖0 + 𝒗0 = 𝒘0 is not in the span of the
rows of 𝑴̂︀𝑆 , as needed.

– 𝑢 is not satisfied but 𝑣 is: The available vectors span 𝒖0,𝒗1 with small coefficients but not
𝒖1,𝒗0. Using 𝒖0,𝒗1 one can recover 𝒖0 + 𝒗1 = 𝒘1 with small coefficients, as needed. Addi-
tionally, since 𝒗0 is not in the span of the rows of 𝑴̂︀𝑆 but 𝒖0 is, it is directly implied that
𝒖0 + 𝒗0 = 𝒘0 is not in the span of the rows of 𝑴̂︀𝑆 , as needed.

– both 𝑢 and 𝑣 are satisfied: The available vectors span 𝒖1,𝒗1 with small coefficients but not
𝒖0,𝒗0. Using 𝒖1 directly one can recover 𝒖1 = 𝒘1. Additionally, since 𝒗0 is not in the span
of the rows of 𝑴̂︀𝑆 but 𝒖1 − 𝒗1 = 𝒖0 is, it is directly implied that 𝒖0 + 𝒗0 = 𝒘0 is not in the
span of the rows of 𝑴̂︀𝑆 , as needed.

If 𝑆 ⊆ [𝑛] does not satisfy 𝑤, then 𝑆 does not satisfy the wires 𝑢, 𝑣 and therefore by the
induction hypothesis we can recover 𝒖0,𝒗0. So, we can compute 𝒖0 + 𝒗0 = 𝒘0. Moreover, since
the coefficients used to recover 𝒖0 and 𝒗0 are all from {0, 1} by the induction hypothesis, the
same is true for 𝒘0. Also, it is immediate that 𝒘1 is not in the span of the rows of 𝑴̂︀𝑆 since
otherwise we could have obtained at least one of 𝒖1 and 𝒗1 although it is impossible by the
induction hypothesis.

Item 2. We now proceed with the proof of Item 2 in the lemma. Here, we will use induction
again but this time “in reverse”. Number the gates from 1 to 𝑘 + 1 as follows: the root gate
is numbered 1 and then we number in increasing order level-by-level and within each level we
number from left to right. Denote by 𝑔 the (𝑘 + 1)th gate, i.e., the rightmost gate at the layer
immediately above the input layer of the formula, and let 𝑤𝑔 be its output wire and let 𝑢𝑔, 𝑣𝑔
be its left and right input wires, respectively. Denote 𝐹 ′ the formula without the gate 𝑔 where
𝑤 becomes an input wire.

First, consider sharing a secret (using our scheme) according to 𝐹 and then sharing the same
secret according to 𝐹 ′. By description, the resulting associated vectors of each wire, when we
share via 𝐹 are of dimension 𝑘+ 3, while when we share via 𝐹 ′ are 𝑘+ 2. Nevertheless, one can
think of the latter vectors as of dimension 𝑘 + 3 by just adding a 0 at the end. Now, by our
construction, the associated labels of each wire which appear in both 𝐹 and 𝐹 ′ (including 𝑤𝑔)
are identical. The only difference is therefore in the additional labels associated with the wires 𝑢𝑔
and 𝑣𝑔. Let the associated labels of 𝑤𝑔 be 𝒘𝒈1,𝒘𝒈0, and of 𝑢𝑔 and 𝑣𝑔 be 𝒖𝒈1,𝒖𝒈0, and 𝒗𝒈1,𝒗𝒈0,
respectively.

Let 𝑆 ⊆ [𝑛] be an unauthorized set for 𝐹 . Assume first that 𝑔 is an AND gate:

1. If 𝑆 satisfies 𝑔, then the available vectors include 𝒖𝒈1,𝒗𝒈1. Let 𝑆′ correspond to the input to
the formula 𝐹 ′ using the set 𝑆 with 𝒘𝒈1 = 𝒖𝒈1+𝒗𝒈1 instead of 𝒖𝒈1,𝒗𝒈1 separately. Consider
any linear combination of the associated vectors of 𝑆 and let 𝛼, 𝛽 be the scalars multiplying
𝒖𝒈1,𝒗𝒈1, respectively, in that linear combination. To get 0 (the all 0 vector), it must hold
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that 𝛼 = −𝛽 as 𝒖𝒈1,𝒗𝒈1 are the only two vectors with non-zero values in the last dimension.
Now, using the fact that 𝒘𝒈1 = 𝒖𝒈1 + 𝒗𝒈1 together with the fact that 0 is not in the span of
the associated vectors of 𝑆′ (by the induction hypothesis), the claim holds.

2. If 𝑆 does not satisfy 𝑔, then the available vectors include either of the following:
(a) 𝒖𝒈1,𝒗𝒈0: Let 𝑆′ correspond to the input to the formula 𝐹 ′ using the set 𝑆 with 𝒘𝒈0 =

𝒖𝒈1+𝒗𝒈0 instead of 𝒖𝒈1,𝒗𝒈0 separately. Consider any linear combination of the associated
vectors of 𝑆 and let 𝛼, 𝛽 be the scalars multiplying 𝒖𝒈1,𝒗𝒈0, respectively, in that linear
combination. To get 0 (the all 0 vector), it must hold that 𝛼 = −𝛽 as 𝒖𝒈1,𝒗𝒈0 are the
only two vectors with non-zero values in the last dimension. Now, using the fact that
𝒘𝒈0 = 𝒖𝒈1 + 𝒗𝒈0 together with the fact that 0 is not in the span of the associated vectors
of 𝑆′ (by the induction hypothesis), the claim holds.

(b) 𝒖𝒈0,𝒗𝒈1: Let 𝑆′ correspond to the input to the formula 𝐹 ′ using the set 𝑆 with 𝒘𝒈0 = 𝒖𝒈0
instead of 𝒖𝒈0,𝒗𝒈1 separately. Consider any linear combination of the associated vectors of
𝑆 and let 𝛼, 𝛽 be the scalars multiplying 𝒖𝒈0,𝒗𝒈1, respectively, in that linear combination.
To get 0 (the all 0 vector), it must hold that 𝛽 = 0 as 𝒗𝒈1 is the only vector with a non-zero
value in the last dimension. Now, using the fact that 𝒘𝒈0 = 𝒖𝒈0 together with the fact
that 0 is not in the span of the associated vectors of 𝑆′ (by the induction hypothesis), the
claim holds.

(c) 𝒖𝒈0,𝒗𝒈0: Let 𝑆′ correspond to the input to the formula 𝐹 ′ using the set 𝑆 with 𝒘𝒈0 = 𝒖𝒈0
instead of 𝒖𝒈0,𝒗𝒈0 separately. Consider any linear combination of the associated vectors of
𝑆 and let 𝛼, 𝛽 be the scalars multiplying 𝒖𝒈0,𝒗𝒈0, respectively, in that linear combination.
To get 0 (the all 0 vector), it must hold that 𝛽 = 0 as 𝒗𝒈0 is the only vector with a non-zero
value in the last dimension. Now, using the fact that 𝒘𝒈0 = 𝒖𝒈0 together with the fact
that 0 is not in the span of the associated vectors of 𝑆′ (by the induction hypothesis), the
claim holds.

Assume now that 𝑔 is an OR gate:

1. If 𝑆 satisfies 𝑔, then the available vectors include either of the following:
(a) 𝒖𝒈1,𝒗𝒈0: Let 𝑆′ correspond to the input to the formula 𝐹 ′ using the set 𝑆 with 𝒘𝒈1 = 𝒖𝒈1

instead of 𝒖𝒈1,𝒗𝒈0 separately. Consider any linear combination of the associated vectors of
𝑆 and let 𝛼, 𝛽 be the scalars multiplying 𝒖𝒈1,𝒗𝒈0, respectively, in that linear combination.
To get 0 (the all 0 vector), it must hold that 𝛽 = 0 as 𝒗𝒈0 is the only vector with a non-zero
value in the last dimension. Now, using the fact that 𝒘𝒈1 = 𝒖𝒈1 together with the fact
that 0 is not in the span of the associated vectors of 𝑆′ (by the induction hypothesis), the
claim holds.

(b) 𝒖𝒈0,𝒗𝒈1: Let 𝑆′ correspond to the input to the formula 𝐹 ′ using the set 𝑆 with 𝒘𝒈1 =
𝒖𝒈0+𝒗𝒈1 instead of 𝒖𝒈0,𝒗𝒈1 separately. Consider any linear combination of the associated
vectors of 𝑆 and let 𝛼, 𝛽 be the scalars multiplying 𝒖𝒈0,𝒗𝒈1, respectively, in that linear
combination. To get 0 (the all 0 vector), it must hold that 𝛼 = −𝛽 as 𝒖𝒈0,𝒗𝒈1 are the
only vectors with a non-zero value in the last dimension. Now, using the fact that 𝒘𝒈1 =
𝒖𝒈0 + 𝒗𝒈1 together with the fact that 0 is not in the span of the associated vectors of 𝑆′

(by the induction hypothesis), the claim holds.
(c) 𝒖𝒈1,𝒗𝒈1: Let 𝑆′ correspond to the input to the formula 𝐹 ′ using the set 𝑆 with 𝒘𝒈1 = 𝒖𝒈1

instead of 𝒖𝒈1,𝒗𝒈1 separately. Consider any linear combination of the associated vectors of
𝑆 and let 𝛼, 𝛽 be the scalars multiplying 𝒖𝒈1,𝒗𝒈1, respectively, in that linear combination.
To get 0 (the all 0 vector), it must hold that 𝛽 = 0 as 𝒗𝒈1 is the only vector with a non-zero
value in the last dimension. Now, using the fact that 𝒘𝒈1 = 𝒖𝒈1 together with the fact
that 0 is not in the span of the associated vectors of 𝑆′ (by the induction hypothesis), the
claim holds.

2. If 𝑆 does not satisfy 𝑔, then the available vectors include 𝒖𝒈0,𝒗𝒈0. Consider any linear com-
bination of the associated vectors of 𝑆 and let 𝛼, 𝛽 be the scalars multiplying 𝒖𝒈0,𝒗𝒈0, re-
spectively, in that linear combination. To get 0 (the all 0 vector), it must hold that 𝛼 = −𝛽
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as 𝒖𝒈0,𝒗𝒈0 are the only vectors with a non-zero value in the last dimension. Now, using the
fact that 𝒘𝒈0 = 𝒖𝒈0 + 𝒗𝒈0 together with the fact that 0 is not in the span of the associated
vectors of 𝑆′ (by the induction hypothesis), the claim holds.

⊓⊔

4.3 A “Zero-Out” Lemma

We prove a lemma which states that any access policy (𝑴 , 𝜌) and any subset of rows in 𝑴 which
correspond to an unauthorized set, can be translated into another access policy (𝑴 ′, 𝜌) where
some of the columns of the unauthorized set are zeroed-out. Such a lemma previously appeared
in [RW15, Lemma 1] but we observe a non-trivial gap in their proof; see details in Remark 4.2
below. Our proof solved this gap. Additionally, for convenience, we state the lemma in a slightly
more general form than [RW15] by handling secrets which are vectors (while in [RW15] the secret
was a scalar).

Lemma 4.2: Let (𝑴 , 𝜌) be an access policy, where 𝑴 ∈ ℤℓ×𝑑
𝑞 . Let 𝒞 ⊂ [ℓ] be a non-authorized

subset of row indices of 𝑴 . Let 𝑐 ∈ ℕ be the dimension of the subspace spanned by the rows of 𝑴
corresponding to indices in 𝒞. Then, there exists an access policy (𝑴 ′, 𝜌) such that the following
holds:

– The matrix 𝑴 ′ = (𝑀 ′𝑖,𝑗)ℓ×𝑑 ∈ ℤℓ×𝑑
𝑞 satisfies 𝑀 ′𝑖,𝑗 = 0 for all (𝑖, 𝑗) ∈ 𝒞 × [𝑑− 𝑐].

– For any subset 𝒮 ⊂ [ℓ], if the rows of 𝑴 having indices in 𝒮 are linearly independent, then
so are the rows of 𝑴 ′ with indices in 𝒮.

– For any 𝑚 ∈ ℕ, the distribution of the shares {𝘀𝗵𝑥}𝑥∈[ℓ] sharing a secret 𝒛 ∈ ℤ𝑚
𝑞 generated

with the matrix 𝑴 is the same as the distribution of the shares
{︀
𝘀𝗵′𝑥
}︀
𝑥∈[ℓ] sharing the same

secret 𝒛 generated with the matrix 𝑴 ′.

In the proof of Lemma 4.2 we use the following claim.

Claim 4.1: Let 𝑻 ∈ ℤ𝑑×𝑑
𝑞 be a matrix such that:

– The first row of 𝑻 is (1, 0, . . . , 0) ∈ ℤ𝑑
𝑞 .

– The lower right sub-matrix 𝑻 ′ ∈ ℤ(𝑑−1)×(𝑑−1)
𝑞 of 𝑻 is of full rank (i.e., has rank 𝑑− 1).

Then, for any access policy (𝑴 , 𝜌), the access policy (𝑴 ′, 𝜌), where 𝑴 ′ = 𝑴𝑻 ∈ ℤℓ×𝑑
𝑞 , satisfies:

– For any subset 𝒮 ⊂ [ℓ], if the rows of 𝑴 having indices in 𝒮 are linearly independent, then
so are the rows of 𝑴 ′ with indices in 𝒮.

– For any 𝑚 ∈ ℕ, the distribution of the shares {𝘀𝗵𝑥}𝑥∈[ℓ] sharing a secret 𝒛 ∈ ℤ𝑚
𝑞 generated

with the matrix 𝑴 is the same as the distribution of the shares
{︀
𝘀𝗵′𝑥
}︀
𝑥∈[ℓ] sharing the same

secret 𝒛 generated with the matrix 𝑴 ′.

Proof: We start by proving the second item of the claim. The proof is very similar to the proof
of [RW15, Theorem 2]. We give it here for completeness. Consider the distribution of shares{︀
𝘀𝗵′𝑥
}︀
𝑥∈[ℓ]. By definition of LSSS, it is true that (𝘀𝗵′𝑥)

⊤ = (𝑴𝑻𝑖)𝒗
⊤, where 𝑴𝑻𝑥 is the 𝑥th

row of 𝑴𝑻 and 𝒗 ∈ (ℤ𝑚
𝑞 )𝑑 is a uniformly random vector conditioned on its first entry being 𝒛.

(Note that we slightly abuse notation here and view 𝒗 as a vector with 𝑑 entries, each of which
is by itself a vector with 𝑚 entries from ℤ𝑞. Also, when we write 𝒗⊤ here, we mean a vector
formed by stacking the 𝑑 vector entries of 𝒗 one on the other without transposing the entries
themselves.) This implies that (𝘀𝗵′𝑥)

⊤ = 𝑴𝑥(𝑻𝒗⊤), where 𝑴𝑥 is the 𝑥th row of 𝑴 . Since 𝑻 ’s
first row is (1, 0, . . . , 0), it holds that the first coordinate of 𝑻𝒗⊤ is 𝒛. Next we argue that the
remaining coordinates of 𝑻𝒗⊤ are uniformly random vectors from ℤ𝑚

𝑞 . Indeed, consider the 𝑥th

coordinate for 𝑥 ∈ {2, . . . , 𝑑}. It is equal to 𝑇𝑥,1𝒛 + 𝑻 ′𝑥𝒗
′⊤, where 𝑻 ′𝑥 ∈ ℤ𝑑−1

𝑞 is the 𝑥th row of 𝑻 ′

and 𝒗′ ∈ (ℤ𝑚
𝑞 )𝑑−1 is the vector 𝒗 without the first coordinate. Since 𝒗′ is uniformly random and
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𝑻 ′ is full rank, we get that 𝑻 ′𝑥𝒗
′⊤ is uniformly random. Thus, 𝑻𝒗⊤ is distributed exactly as 𝒗⊤

and so the shares {𝘀𝗵𝑥}𝑥∈[ℓ] and
{︀
𝘀𝗵′𝑥
}︀
𝑥∈[ℓ] have the same distribution.

We proceed with the proof of the first item. We prove the contrapositive: if a subset of rows
of 𝑴 ′ comprises of linearly dependent vectors, then the same row indices in 𝑴 are also linearly
dependent. Consider such a set 𝒮 ⊂ [ℓ] in 𝑴 ′ for which there are scalars {𝑤𝑥}𝑥∈𝒮 not all of
which are zeroes such that

∑︀
𝑥∈𝒮 𝑤𝑥𝑴

′
𝑥 = 0. Therefore,

∑︀
𝑥∈𝒮 𝑤𝑥𝑴𝑥𝑻 = 0 and since 𝑻 is full

rank thanks to the fact that 𝑻 ′ is so and the first row of 𝑻 is (1, 0, . . . , 0) ∈ ℤ𝑑
𝑞 , we can multiply

both sides by 𝑻−1 and get that
∑︀

𝑥∈𝒮 𝑤𝑥𝑴𝑥 = 0. This completes the proof of Claim 4.1. ⊓⊔

Proof (of Lemma 4.2): To convert the matrix 𝑴 to the target matrix 𝑴 ′, we proceed in
two steps, where in each step we apply Claim 4.1 (so that items 2 and 3 in the lemma follow
directly and we will only need to argue that item 1 holds). Concretely, we first construct a matrix
𝑻 ∈ ℤ𝑑×𝑑

𝑞 with the first row of 𝑻 being (1, 0, . . . , 0) ∈ ℤ𝑑
𝑞 and the lower right (𝑑 − 1) × (𝑑 − 1)

sub-matrix of 𝑻 having full rank 𝑑 − 1, such that 𝑴̂ = (𝑀̂𝑖,𝑗)ℓ×𝑑 = 𝑴𝑻 satisfies 𝑀̂𝑖,1 = 0 for
all 𝑖 ∈ 𝒞. Next, we will construct another matrix 𝑻 ∈ ℤ𝑑×𝑑

𝑞 with the same properties as 𝑻 such
that 𝑴 ′ = 𝑴̂𝑻 satisfies 𝑀 ′𝑖,𝑗 = 0 for all (𝑖, 𝑗) ∈ 𝒞 × [𝑑− 𝑐].

Step (I) Constructing 𝑻 :: Since the rows {𝑴𝑖}𝑖∈𝒞 of the matrix 𝑴 are unauthorized
with respect to the access policy (𝑴 , 𝜌), there must exist some vector 𝒅 ∈ ℤ𝑑

𝑞 such that 𝑑1 = 1

and 𝑴𝑖 ·𝒅 = 0 for all 𝑖 ∈ 𝒞. Such a vector 𝒅 ∈ ℤ𝑑
𝑞 can be determined in polynomial time through

linear algebra operations. Construct the matrix 𝑻 ∈ ℤ𝑑×𝑑
𝑞 by setting 𝒅⊤ as its first column 𝑻⊤1 ,

the remaining 𝑑 − 1 entries of its first row as 0, and any full rank matrix 𝑻 ′ ∈ ℤ(𝑑−1)×(𝑑−1)
𝑞 as

its lower right sub-matrix. Clearly, 𝑻 satisfies all the properties stipulated in Claim 4.1. It holds
that the matrix 𝑴̂ = 𝑴𝑻 satisfies that for all 𝑖 ∈ 𝒞, 𝑀̂𝑖,1 = 𝑴𝑖𝑻

⊤
1 = 𝑴𝑖𝒅

⊤ = 0.

Step (II) Constructing 𝑻 :: Let 𝑴̂𝑖1 , . . . ,𝑴̂𝑖𝑐 be the first 𝑐 linearly independent rows 𝑴
in 𝒞. These rows form a basis of size 𝑐 of the relevent subspace and they can be computed from
the rows having indices in 𝒞 in polynomial time through linear algebra operations. We extend
this basis to one of size 𝑑 spanning the whole space ℤ𝑑

𝑞 as follows. First we add the vector 𝒖 =

(1, 0, . . . , 0) ∈ ℤ𝑑
𝑞 to the set (since the rows of 𝑴̂ having indices in 𝒞 are unauthorized, 𝒖 is not in

the subspace spanned by these rows and hence this is a valid choice). We then continue by picking
𝑑− 𝑐− 1 vectors 𝒘1, . . . ,𝒘𝑑−𝑐−1 ∈ ℤ𝑑

𝑞 such that the set
{︁
𝒖,𝒘1, . . . ,𝒘𝑑−𝑐−1,𝑴̂𝑖1 , . . . ,𝑴̂𝑖𝑐

}︁
is a

basis of ℤ𝑑
𝑞 . Using linear algebra operations this can be done in polynomial time as well. Finally,

we construct the matrix 𝑻 as

𝑻 = 𝑻 ′−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝒖
𝒘1 − 𝑤1,1𝒖

...
𝒘𝑑−𝑐−1 − 𝑤𝑑−𝑐−1,1𝒖

𝑴̂𝑖1
...

𝑴̂𝑖𝑐

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

∈ ℤ𝑑×𝑑
𝑞 ,

where for all 𝑖 ∈ [𝑑 − 𝑐 − 1], 𝑤𝑖,1 denotes the first entry of the vector 𝒘𝑖. The matrix 𝑻 ′ is
invertible since

{︁
𝒖,𝒘1, . . . ,𝒘𝑑−𝑐−1,𝑴̂𝑖1 , . . . ,𝑴̂𝑖𝑐

}︁
forms a basis of ℤ𝑑

𝑞 and so does the set of

vectors
{︁
𝒖,𝒘1 − 𝑤1,1𝒖, . . . ,𝒘𝑑−𝑐−1 − 𝑤𝑑−𝑐−1,1𝒖,𝑴̂𝑖1 , . . . ,𝑴̂𝑖𝑐

}︁
.

We now argue that the matrix 𝑻 constructed above satisfies all the requirements stipulated
in Claim 4.1. This can be done by computing the inverse of the matrix 𝑻 ′ which we do using the
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following blockwise inversion formula:(︂
𝑨 𝑩
𝑪 𝑫

)︂−1
=

(︂
𝑨−1 +𝑨−1𝑩(𝑫 −𝑪𝑨−1𝑩)−1𝑪𝑨−1 −𝑨−1𝑩(𝑫 −𝑪𝑨−1𝑩)−1

−(𝑫 −𝑪𝑨−1𝑩)−1𝑪𝑨−1 (𝑫 −𝑪𝑨−1𝑩)−1

)︂
. (4.1)

Now, if we parse 𝑻 ′ =

(︂
𝑨 𝑩
𝑪 𝑫

)︂
, where 𝑨 ∈ ℤ1×1

𝑞 , 𝑩 ∈ ℤ1×(𝑑−1)
𝑞 , 𝑪 ∈ ℤ(𝑑−1)×1

𝑞 , and 𝑫 ∈

ℤ(𝑑−1)×(𝑑−1)
𝑞 , we have 𝑨 = [1], 𝑩 = (0, . . . , 0) ∈ ℤ1×(𝑑−1)

𝑞 , 𝑪 = (0, . . . , 0)⊤ ∈ ℤ(𝑑−1)×1
𝑞 , and 𝑫

the lower right sub-matrix of 𝑻 ′ belonging to ℤ(𝑑−1)×(𝑑−1)
𝑞 . Then, by Eq. (4.1), we get

𝑻 = 𝑻 ′−1 =

⎛⎜⎜⎜⎝
1 0 . . . 0
0
...
0

𝑫−1

⎞⎟⎟⎟⎠ .

As 𝑫−1 is of full rank thanks to the fact that 𝑫 consisting of the vectors {𝒘1 −
𝑤1,1𝒖, . . . ,𝒘𝑑−𝑐−1 − 𝑤𝑑−𝑐−1,1𝒖,𝑴̂𝑖1 , . . . ,𝑴̂𝑖𝑐} without their first entries is of full rank (since
the vectors {𝒘1 − 𝑤1,1𝒖, . . . ,𝒘𝑑−𝑐−1 − 𝑤𝑑−𝑐−1,1𝒖,𝑴̂𝑖1 , . . . ,𝑴̂𝑖𝑐} are linearly independent and
their first entries are all zeroes), 𝑻 satisfies all the requirements of Claim 4.1.

Now, consider the matrix 𝑴 ′ = (𝑀 ′𝑖,𝑗)ℓ×𝑑 = 𝑴̂𝑻 . We will show that 𝑀 ′𝑖,𝑗 = 0 for all
(𝑖, 𝑗) ∈ 𝒞× [𝑑− 𝑐]. We know that for any fixed 𝑖 ∈ 𝒞, the 𝑖th row, 𝑴̂𝑖, of the matrix 𝑴̂ is a linear
combination of the row vectors

{︁
𝑴̂𝑖1 , . . . ,𝑴̂𝑖𝑐

}︁
, i.e., 𝑴̂𝑖 =

∑︀
𝑡∈[𝑐] 𝛾𝑡𝑴̂𝑖𝑡 , where {𝛾𝑡}𝑡∈[𝑐] ⊂ ℤ𝑞.

Also, notice that for all 𝑡 ∈ [𝑐], we have

(

𝑑−𝑐⏞  ⏟  
0, . . . , 0,

𝑡−1⏞  ⏟  
0, . . . , 0, 1,

𝑐−𝑡⏞  ⏟  
0, . . . , 0)𝑻 ′ = 𝑴̂𝑖𝑡

=⇒ 𝑴̂𝑖𝑡𝑻
′−1 = (

𝑑−𝑐⏞  ⏟  
0, . . . , 0,

𝑡−1⏞  ⏟  
0, . . . , 0, 1,

𝑐−𝑡⏞  ⏟  
0, . . . , 0)

=⇒ 𝑴̂𝑖𝑡𝑻 = (

𝑑−𝑐⏞  ⏟  
0, . . . , 0,

𝑡−1⏞  ⏟  
0, . . . , 0, 1,

𝑐−𝑡⏞  ⏟  
0, . . . , 0).

Therefore, for all 𝑖 ∈ 𝒞,

𝑴 ′
𝑖 = 𝑴̂𝑖𝑻 =

∑︁
𝑡∈[𝑐]

𝛾𝑡𝑴̂𝑖𝑡𝑻 =
∑︁
𝑡∈[𝑐]

𝛾𝑡(

𝑑−𝑐⏞  ⏟  
0, . . . , 0,

𝑡−1⏞  ⏟  
0, . . . , 0, 1,

𝑐−𝑡⏞  ⏟  
0, . . . , 0).

Hence, it follows that for all (𝑖, 𝑗) ∈ 𝒞× [𝑑−𝑐], 𝑀 ′𝑖,𝑗 = 0. This completes the proof of Lemma 4.2.
⊓⊔

Remark 4.2 (Gap in [RW15]): In [RW15, Proof of Lemma 1, Appendix A], the analog of our
matrix 𝑻 is defined as the inverse of a matrix 𝑻 ′ that has 𝑛 stacked vectors. To compute their 𝑻
they use the block-wise inversion formula (Eq. (4.1)) and assume that the 𝑪 block (lower left) is
all 0s which could be (and actually is) false in their case. We overcome this gap by performing
an additional transformation, namely, “Step (I) Constructing 𝑻 ”, and by defining our 𝑻 ′ (and
thereby 𝑻 ) in Step (II) slightly differently than that in [RW15]. These two steps indeed make
sure that the 𝑪 block is all 0s.

5 Our Ciphertext-Policy ABE Scheme

In this section, we present our ciphertext-policy ABE (CP-ABE) scheme supporting access struc-
tures represented by NC1 circuits. The scheme is associated with a fixed attribute universe 𝕌
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and we will use the transformation described in Section 4.2 to represent the access structures as
non-monotone LSSS. More precisely, we only design a CP-ABE scheme for LSSS access policies
(𝑴 , 𝜌) with properties stipulated in Lemma 4.1, that is, we construct a CP-ABE scheme forLSSS
access policies (𝑴 , 𝜌) such that the entries of 𝑴 come from {−1, 0, 1} as well as reconstruction
only involves coefficients coming from {0, 1}, and prove the scheme to be selectively secure under
linear independence restriction as per Definition 3.5. It then follows directly from Lemma 4.1,
that our CP-ABE scheme actually achieves the standard notion of selective security as per Def-
inition 3.4 when implemented for the class of all access structures represented by NC1 circuits.
Further, we will assume that all LSSS access policies (𝑴 , 𝜌) used in our scheme correspond to
matrices 𝑴 with at most 𝑠max columns and an injective row-labeling function 𝜌, i.e., an attribute
is associated with at most one row of 𝑴 .6 Since our Boolean formula to LSSS transformation
from Section 4.2 generates a new column in the resulting LSSS matrix for each gate in the
underlying Boolean formula, the bound 𝑠max on the number of columns in our CP-ABE con-
struction naturally translates to a bound on the circuit size of the supported NC1 access policies
at implementation. Also, in our scheme description below, we assume for simplicity of presen-
tation that both the encryption and the decryption algorithms receive an access policy directly
in its LSSS representation. However, we note that in the actual implementation, the encryption
and decryption algorithms should instead take in the circuit representation of the access policy
and deterministically compute its LSSS representation using our transformation algorithm from
Section 4.2. This is because, without the circuit description of an access policy, the decryption
algorithm may not be able to efficiently determine the {0, 1} reconstruction coefficients needed
for a successful decryption.

First, we provide the parameter constraints required by our correctness and security proof.
Fix any 0 < 𝜖 < 1/2. For any 𝐵 ∈ ℕ, let 𝒰𝐵 denote the uniform distribution on ℤ∩ [−𝐵,𝐵], i.e.,
integers between ±𝐵. The Setup algorithm chooses parameters 𝑛,𝑚, 𝜎, 𝑞 and noise distributions
𝜒lwe, 𝜒1, 𝜒2, 𝜒big, satisfying the following constraints:

– 𝑛 = poly(𝜆), 𝜎 < 𝑞, 𝑛 · 𝑞/𝜎 < 2𝑛
𝜖 , 𝜒lwe = ̃︀𝒟ℤ,𝜎 (for LWE security)

– 𝑚 > 2𝑠max𝑛 log 𝑞 + 𝜔 log 𝑛+ 2𝜆 (for enhanced trapdoor sampling and LHL)
– 𝜎 >

√
𝑠max𝑛 log 𝑞 log𝑚+ 𝜆 (for enhanced trapdoor sampling)

– 𝜒1 = ̃︀𝒟ℤ𝑚−1,𝜎, 𝜒2 = ̃︀𝒟ℤ𝑚,𝜎 (for enhanced trapdoor sampling)
– 𝜒big = 𝒰𝐵̂, where 𝐵̂ > (𝑚3/2𝜎 + 1)2𝜆 (for smudging/security)
– |𝕌| · 3𝑚3/2𝜎𝐵̂ < 𝑞/4 (for correctness)

Now, we describe our CP-ABE construction.

𝗦𝗲𝘁𝘂𝗽(1𝝀, 𝒔max,𝕌): The setup algorithm takes in the security parameter 𝜆 encoded in unary,
the maximum width 𝑠max = 𝑠max(𝜆) of an LSSS matrix supported by the scheme, and the
attribute universe 𝕌 associated with the system. It first chooses an LWE modulus 𝑞, dimensions
𝑛,𝑚, and also distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described above. Next, it chooses a vector 𝒚 ← ℤ𝑛

𝑞

and a sequence of matrices {𝑯𝑢}𝑢∈𝕌 ← ℤ𝑛×𝑚
𝑞 . Then, it samples pairs of matrices with trapdoors

{(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌 ← EnTrapGen(1𝑛, 1𝑚, 𝑞). Finally, it outputs

PK =
(︀
𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚,{𝑨𝑢}𝑢∈𝕌 ,{𝑯𝑢}𝑢∈𝕌

)︀
, MSK = {𝑇𝑨𝑢 }𝑢∈𝕌 .

𝗞𝗲𝘆𝗚𝗲𝗻(𝗠𝗦𝗞, 𝑼): The key generation algorithm takes as input the master secret key MSK,
and a set of attributes 𝑈 ⊆ 𝕌. It samples a vector 𝒕 ← 𝜒1 and sets the vector 𝒕 = (1, 𝒕) ∈ ℤ𝑚.

6 Note that following the simple encoding technique devised in [Wat11, LW11a], we can alleviate the injective
restriction on the row labeling functions to allow an attribute to appear an a priori bounded number of times
within the LSSS access policies.
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For each 𝑢 ∈ 𝑈 , it samples vectors 𝒌̂𝑢 ← 𝜒𝑚
big and 𝒌̃𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯

⊤
𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 ),

and sets 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢. Finally, it outputs

SK =
(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

𝗘𝗻𝗰(𝗣𝗞,𝗺𝘀𝗴, (𝑴,𝝆)): The encryption algorithm takes as input the public parameters PK, a
message msg ∈ {0, 1} to encrypt, and an LSSS access policy (𝑴 , 𝜌) generated by the transfor-
mation from Section 4.2, where 𝑴 = (𝑀𝑖,𝑗)ℓ×𝑠max ∈ {−1, 0, 1}

ℓ×𝑠max ⊂ ℤℓ×𝑠max
𝑞 (Lemma 4.1)

and 𝜌 : [ℓ] → 𝕌. The function 𝜌 associates rows of 𝑴 to attributes in 𝕌. We assume that 𝜌 is
an injective function. The procedure samples vectors 𝒔 ← ℤ𝑛

𝑞 and {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑚
𝑞 . It

additionally samples vectors {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe and {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚

big. For each 𝑖 ∈ [ℓ], it computes
vectors 𝒄𝑖, 𝒄𝑖 ∈ ℤ𝑚

𝑞 as follows:

𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖

𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +

⎡⎣ ∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + 𝒆𝑖

and outputs

CT =
(︁
(𝑴 , 𝜌),{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] , 𝐶 = MSB(𝒔𝒚⊤)⊕msg

)︁
.

𝗗𝗲𝗰(𝗣𝗞,𝗖𝗧,𝗠𝗦𝗞): Decryption takes as input the public parameters PK, a ciphertext CT
encrypting some message under some LSSS access policy (𝑴 , 𝜌) with the properties stipulated
in Lemma 4.1, and the secret key SK corresponding to some subset of attributes 𝑈 ⊆ 𝕌. If
(1, 0, . . . , 0) is not in the span of the rows of 𝑴 associated with 𝑈 , then decryption fails. Oth-
erwise, let 𝐼 be a set of row indices of the matrix 𝑴 such that ∀𝑖 ∈ 𝐼 : 𝜌(𝑖) ∈ 𝑈 and let
{𝑤𝑖}𝑖∈𝐼 ∈ {0, 1} ⊂ ℤ𝑞 be scalars such that

∑︀
𝑖∈𝐼 𝑤𝑖𝑴𝑖 = (1, 0, . . . , 0), where 𝑴𝑖 is the 𝑖th row

of 𝑴 . Note that the existence of such scalars {𝑤𝑖}𝑖∈𝐼 and their efficient determination for the
LSSS generated by the algorithm from Section 4.2 are guaranteed by Lemma 4.1. The procedure
computes

𝐾 ′ =
∑︁
𝑖∈𝐼

𝑤𝑖

(︁
𝒄𝑖𝒌
⊤
𝜌(𝑖) + 𝒄𝑖𝒕

⊤
)︁

and outputs

msg′ = 𝐶 ⊕MSB(𝐾 ′).

5.1 Correctness

We show that the scheme is correct. Consider a set of attributes 𝑈 ⊆ 𝕌 and any LSSS access
policy (𝑴 , 𝜌) for which 𝑈 constitute an authorized set. By construction,

𝐾 ′ =
∑︁
𝑖∈𝐼

𝑤𝑖

(︁
𝒄𝑖𝒌
⊤
𝜌(𝑖) + 𝒄𝑖𝒕

⊤
)︁
.

Expanding {𝒄𝑖}𝑖∈𝐼 and {𝒄𝑖}𝑖∈𝐼 , we get

𝐾 ′ =
∑︁
𝑖∈𝐼

𝑤𝑖𝒔𝑨𝜌(𝑖)𝒌
⊤
𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,1(𝒔𝒚
⊤, 0, . . . , 0)𝒕⊤ +

∑︁
𝑖∈𝐼,𝑗∈{2,...,𝑠max}

𝑤𝑖𝑀𝑖,𝑗𝒗𝑗𝒕
⊤

−
∑︁
𝑖∈𝐼

𝑤𝑖𝒔𝑯𝜌(𝑖)𝒕
⊤ +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒌
⊤
𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒕
⊤.



Decentralized Multi-Authority ABE for DNFs from LWE 33

Recall that for each 𝑢 ∈ 𝑈 , we have 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢 and 𝑨𝑢𝒌̃
⊤
𝑢 = 𝑯𝑢𝒕

⊤ −𝑨𝑢𝒌̂
⊤
𝑢 . Therefore, for

each 𝑖 ∈ 𝐼, it holds that

𝑨𝜌(𝑖)𝒌
⊤
𝜌(𝑖) = 𝑨𝜌(𝑖)𝒌̂

⊤
𝜌(𝑖) +𝑨𝜌(𝑖)𝒌̃

⊤
𝜌(𝑖) = 𝑯𝜌(𝑖)𝒕

⊤.

Hence,

𝐾 ′ =
��������
∑︁
𝑖∈𝐼

𝑤𝑖𝒔𝑯𝜌(𝑖)𝒕
⊤ +

∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,1(𝒔𝒚
⊤, 0, . . . , 0)𝒕⊤ +

∑︁
𝑖∈𝐼,𝑗∈{2,...,𝑠max}

𝑤𝑖𝑀𝑖,𝑗𝒗𝑗𝒕
⊤

−
��������
∑︁
𝑖∈𝐼

𝑤𝑖𝒔𝑯𝜌(𝑖)𝒕
⊤ +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒌
⊤
𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒕
⊤

=
∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,1(𝒔𝒚
⊤, 0, . . . , 0)𝒕⊤ +

∑︁
𝑖∈𝐼,𝑗∈{2,...,𝑠max}

𝑤𝑖𝑀𝑖,𝑗𝒗𝑗𝒕
⊤ +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒌
⊤
𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒕
⊤

=

(︃∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,1

)︃
(𝒔𝒚⊤, 0, . . . , 0)𝒕⊤ +

∑︁
𝑗∈{2,...,𝑠max}

(︃∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,𝑗

)︃
𝒗𝑗𝒕
⊤

+
∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒌
⊤
𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒕
⊤.

Recall that we have
∑︀

𝑖∈𝐼 𝑤𝑖𝑀𝑖,1 = 1 while for 1 < 𝑗 ≤ 𝑠max, it holds that
∑︀

𝑖∈𝐼 𝑤𝑖𝑀𝑖,𝑗 = 0.
Also, recall that 𝒕 = (1, 𝒕), and hence, (𝒔𝒚⊤, 0, . . . , 0)𝒕⊤ = 𝒔𝒚⊤. Thus,

𝐾 ′ = 𝒔𝒚⊤ +
∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒌
⊤
𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒕
⊤.

Correctness now follows since the last two terms are small and should not affect the MSB of 𝒔𝒚⊤.
To see this, we observe that the following inequalities hold except with negligible probability:

– ‖𝒆𝑖‖ ≤
√
𝑚𝜎: This follows directly from Lemma 3.3 since each of the 𝑚 coordinates of 𝒆𝑖

comes from the truncated discrete Gaussian distribution ̃︀𝒟ℤ,𝜎.
– ‖𝒆𝑖‖ ≤

√
𝑚𝐵̂: This holds since each of the 𝑚 coordinates of 𝒆𝑖 comes from the uniform

distribution over ℤ ∩ [−𝐵̂, 𝐵̂].
– ‖𝒌𝜌(𝑖)‖ ≤ 𝑚𝜎 +

√
𝑚𝐵̂: This holds since 𝒌𝜌(𝑖) = 𝒌̂𝜌(𝑖) + 𝒌̃𝜌(𝑖), where (1) ‖𝒌̂𝜌(𝑖)‖ ≤

√
𝑚𝐵̂

since each of its 𝑚 coordinates comes from the uniform distribution over ℤ∩ [−𝐵̂, 𝐵̂] and (2)
‖𝒌̃𝜌(𝑖)‖ ≤ 𝑚𝜎 since it comes from a distribution that is statistically close to the truncated
discrete Gaussian distribution ̃︀𝒟ℤ𝑚,𝜎.

– ‖𝒕‖ < 𝑚𝜎: This holds since 𝒕 = (1, 𝒕), where 𝒕 comes from a truncated discrete Gaussian
distribution ̃︀𝒟ℤ𝑚−1,𝜎.

Given the above and using the fact that the 𝑤𝑖’s are in {0, 1} (Lemma 4.1), we have that

‖
∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒌
⊤
𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒕
⊤‖ < |𝕌| (𝑚3/2𝜎2 +𝑚𝜎𝐵̂ +𝑚3/2𝜎𝐵̂)

< |𝕌| · 3𝑚3/2𝜎𝐵̂

< 𝑞/4,

where the last inequality is by the parameter setting as shown above. Thus, with all but negligible
probability in 𝜆, the MSB of 𝒔𝒚⊤ is not affected by the above noise which is bounded by 𝑞/4
and therefore does not affect the most significant bit. Namely, MSB(𝐾 ′) = MSB(𝒔𝒚⊤). This
completes the proof of correctness.
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5.2 Security Analysis

Theorem 5.1: If the LWE assumption holds, then the proposed CP-ABE scheme for all access
structures represented by NC1 circuits is selectively secure (as per Definition 3.4).

To prove this theorem we actually prove a slightly easier statement, namely, that our CP-ABE
scheme is selectively secure under linear independence restriction and show that this actually
suffices.

Theorem 5.2: If the LWE assumption holds, then the proposed CP-ABE scheme is selectively
secure under linear independence restriction (as per Definition 3.5).

Proof (that Theorem 5.2 ⇒ Theorem 5.1): Observe that the only difference between the
selective security under linear independence restriction and the usual selective security games for
CP-ABE is that in the former game, we have the additional restriction that for each of the secret
keys queried by the adversary 𝒜 for some attribute set 𝑈 ⊂ 𝕌, all the rows of the challenge access
matrix 𝑴 which correspond to the attributes in 𝑈 must be linearly independent. However, note
that by the restriction of the selective security game, an attribute set 𝑈 ⊂ 𝕌 for which 𝒜 queries
a secret key must be unauthorized with respect to the challenge access policy (𝑴 , 𝜌). To enforce
that rows corresponding to unauthorized sets are linearly independent, we use the transformation
described in Section 4.2 for deriving the non-monotone LSSS representations of access policies
captured by NC1 circuits. Indeed, Lemma 4.1 guarantees that the unauthorized rows of any LSSS
matrix used must be linearly independent when our scheme is implemented for the class of all
NC1 policies. Hence, the restriction of the selective security game directly implies that for each of
the secret key queries of 𝒜 for some attribute set 𝑈 ⊂ 𝕌, the rows of the challenge access matrix
𝑴 corresponding to 𝑈 must be linearly independent in case of our CP-ABE scheme realized for
NC1 access policies. Consequently, the selective security under linear independence restriction
and the standard selective security games are actually equivalent in the context of the proposed
CP-ABE scheme realized for NC1 access policies. ⊓⊔

Proof (of Theorem 5.2): In order to prove Theorem 5.2, we consider a sequence of hybrid
games which differ from one another in the formation of the public parameters, the challenge
ciphertext, or the secret keys queried by the adversary 𝒜. The first hybrid in the sequence
corresponds to the real selective security under linear independence restriction game for the
proposed CP-ABE scheme, while the final hybrid is one where the advantage of 𝒜 is zero. We
argue that 𝒜’s advantage changes only by a negligible amount between each successive hybrid
games, thereby establishing Theorem 5.2.

The Hybrids

In all hybrids, the game starts with the adversary 𝒜 sending an access policy (𝑴 , 𝜌) to the
challenger, where 𝑴 = (𝑀𝑖,𝑗)ℓ×𝑠max ∈ {−1, 0, 1}

ℓ×𝑠max ⊂ ℤℓ×𝑠max
𝑞 and 𝜌 : [ℓ]→ 𝕌 is an injective

row-labeling function, and the challenger sending back the public parameters to 𝒜. Then, 𝒜
adaptively requests to the challenger a polynomial number of secret keys corresponding to various
attribute sets 𝑈 ⊂ 𝕌 of its choice subject to the restrictions that for each of such query it should
hold that the rows of the access matrix 𝑴 having indices in 𝜌−1(𝑈) are linearly independent and
are unauthorized with respect to the access policy (𝑴 , 𝜌). The challenger keeps on providing
the requested secret keys to 𝒜. At some point, 𝒜 requests the challenge ciphertext encrypting
a random bit 𝑏 ← {0, 1} selected by the challenger under the access policy (𝑴 , 𝜌), and the
challenger provides that to 𝒜. The game terminates with 𝒜 outputting its guess for the bit 𝑏
encrypted within the challenge ciphertext. We describe how the challenger generates the public
parameters, secret keys, and challenge ciphertext in each of the hybrid games below.
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𝗛𝘆𝗯0: This hybrid corresponds to the real selective weak security game for the proposed ABE
scheme.

Setup phase:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

3. {𝑯𝑢}𝑢∈𝕌 ← ℤ𝑛×𝑚
𝑞 .

4. 𝑃𝐾 = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚, {𝑨𝑢}𝑢∈𝕌 ,
{𝑯𝑢}𝑢∈𝕌).

Key query phases (𝑈):

1.
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕← 𝜒1.

3. 𝒕 = (1, 𝒕).

4. ∀𝑢 ∈ 𝑈 : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯
⊤
𝑢 −

𝒌̂𝑢𝑨
⊤
𝑢 ).

5. ∀𝑢 ∈ 𝑈 : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
6. 𝖲𝖪 =

(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge phase:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑚
𝑞 .

3. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

5. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +⎡⎣ ∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

7. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 5.1. Hyb0.

𝗛𝘆𝗯1: This hybrid is analogous to Hyb0 except the generation of additional matrices
{𝑩𝑗 }𝑗∈{2,...,𝑠max} during the setup phase and the way the vectors {𝒄𝑖}𝑖∈[ℓ] are generated us-
ing those matrices while preparing the challenge ciphertext. Observe that the changes between
Hyb0 and Hyb1 are merely syntactic, and hence, the two hybrids are indistinguishable.

Setup phase:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

3. {𝑩𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛×𝑚
𝑞 .

4. {𝑯𝑢}𝑢∈𝕌 ← ℤ𝑛×𝑚
𝑞 .

5. 𝑃𝐾 = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚, {𝑨𝑢}𝑢∈𝕌 ,
{𝑯𝑢}𝑢∈𝕌).

Key query phases (𝑈):

1.
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕← 𝜒1.
3. 𝒕 = (1, 𝒕).
4. ∀𝑢 ∈ 𝑈 : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯

⊤
𝑢 −

𝒌̂𝑢𝑨
⊤
𝑢 ).

5. ∀𝑢 ∈ 𝑈 : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
6. 𝖲𝖪 =

(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge phase:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

5. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖.

6. ∀𝑖 ∈ [ℓ] :
𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚

⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +⎡⎣ ∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

7. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 5.2. Hyb1.
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𝗛𝘆𝗯2: This hybrid is the same as Hyb1 except the way the matrices {𝑯𝑢}𝑢∈𝜌([ℓ]) are gener-
ated during the setup phase. Observe that the changes between Hyb1 and Hyb2 are also merely
syntactic, and hence, the two hybrids are indistinguishable.

Setup phase:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).
3. {𝑩𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛×𝑚

𝑞 .

4.
{︀
𝑯 ′

𝑢

}︀
𝑢∈𝜌([ℓ])

← ℤ𝑛×𝑚
𝑞 .

5. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑯 ′
𝑢 .

6. {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

7. 𝑃𝐾 = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚, {𝑨𝑢}𝑢∈𝕌 ,
{𝑯𝑢}𝑢∈𝕌).

Key query phases (𝑈):

1.
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕← 𝜒1.

3. 𝒕 = (1, 𝒕).

4. ∀𝑢 ∈ 𝑈 : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯
⊤
𝑢 −

𝒌̂𝑢𝑨
⊤
𝑢 ).

5. ∀𝑢 ∈ 𝑈 : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
6. 𝖲𝖪 =

(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge phase:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

5. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +⎡⎣ ∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

7. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 5.3. Hyb2.

𝗛𝘆𝗯3: This hybrid is identical to Hyb2 except the generation of the matrices {𝑯 ′𝑢}𝑢∈𝜌([ℓ]) during
the setup phase. The indistinguishability between Hyb2 and Hyb3 follows from the leftover hash
lemma with trapdoors (Lemma 3.4).

Setup phase:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).
3. {𝑩𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛×𝑚

𝑞 .

4. {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 .

5. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

6. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑯 ′
𝑢.

7. {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

8. 𝑃𝐾 = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚, {𝑨𝑢}𝑢∈𝕌 ,
{𝑯𝑢}𝑢∈𝕌).

Key query phases (𝑈):

1.
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕← 𝜒1.

3. 𝒕 = (1, 𝒕).

4. ∀𝑢 ∈ 𝑈 : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯
⊤
𝑢 −

𝒌̂𝑢𝑨
⊤
𝑢 ).

5. ∀𝑢 ∈ 𝑈 : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
6. 𝖲𝖪 =

(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge phase:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

5. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +⎡⎣ ∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

7. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 5.4. Hyb3.
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𝗛𝘆𝗯4: This hybrid is the same as Hyb3 except the way the matrices {𝑩𝑗 }𝑗∈{2,...,𝑠max} are gen-
erated during the setup phase. The indistinguishably between Hyb3 and Hyb4 follows from
the well-sampledness of matrix property of the enhanced trapdoor lattice sampler EnLT =
(EnTrapGen,EnSamplePre).

Setup phase:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

3.
(𝑩′ =

[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚.

7. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

8. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑯 ′
𝑢.

9. {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

10. 𝑃𝐾 = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚, {𝑨𝑢}𝑢∈𝕌 ,
{𝑯𝑢}𝑢∈𝕌).

Key query phases (𝑈):

1.
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕← 𝜒1.

3. 𝒕 = (1, 𝒕).

4. ∀𝑢 ∈ 𝑈 : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯
⊤
𝑢 −

𝒌̂𝑢𝑨
⊤
𝑢 ).

5. ∀𝑢 ∈ 𝑈 : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
6. 𝖲𝖪 =

(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge phase:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

5. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +⎡⎣ ∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

7. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 5.5. Hyb4.
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𝗛𝘆𝗯5: This hybrid is analogous to Hyb4 except the generation of the vectors {𝒌𝑢}𝑢∈𝑈∩𝜌([ℓ]) while
answering the secret key queries of 𝒜. The indistinguishably between Hyb4 and Hyb5 follows from
the smudging lemma (Lemma 3.1).

Setup phase:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

3. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚.

7. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

8. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑯 ′
𝑢.

9. {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

10. 𝑃𝐾 = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚, {𝑨𝑢}𝑢∈𝕌 ,
{𝑯𝑢}𝑢∈𝕌).

Key query phases (𝑈):

1.
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕← 𝜒1.

3. 𝒕 = (1, 𝒕).

4. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) :

𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾

(︃
𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,

𝒕

(︃
𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃)︃⊤

+

∑︀
𝑗∈{2,...,𝑠max} 𝒕(𝑀𝜌−1(𝑢),𝑗𝑩𝑗)

⊤ − 𝒌̂𝑢𝑨
⊤
𝑢

)︃
.

5. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢 + 𝒕𝑹⊤
𝑢 .

6. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 ,
𝜎, 𝒕𝑯⊤

𝑢 − 𝒌̂𝑢𝑨
⊤
𝑢 ).

7. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
8. 𝖲𝖪 =

(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge phase:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

5. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +⎡⎣ ∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

7. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 5.6. Hyb5.
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𝗛𝘆𝗯6: This hybrid is the same as Hyb5 except the generation of the vectors 𝒕 while answering
the secret key queries of 𝒜. In the figure, let 𝒅 = (𝑑1, . . . , 𝑑𝑠max) ∈ ℤ𝑠max

𝑞 be a vector such that
𝑑1 = 1 and

∑︀
𝑗∈[𝑠max]

𝑀𝜌−1(𝑢),𝑗𝑑𝑗 = 0 for all 𝑢 ∈ 𝑈 . Note that by the game restriction, the set
of rows of 𝑴 with indices in 𝜌−1(𝑈) must be unauthorized with respect to the access policy
(𝑴 , 𝜌), and hence the existence of such a vector 𝒅 is guaranteed. The indistinguishably between
Hyb5 and Hyb6 follows from the well-sampledness of preimage property of the enhanced trapdoor
lattice sampler EnLT = (EnTrapGen,EnSamplePre).

Setup phase:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

3. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚.

7. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

8. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑯 ′
𝑢.

9. {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

10. 𝑃𝐾 = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚, {𝑨𝑢}𝑢∈𝕌 ,
{𝑯𝑢}𝑢∈𝕌).

Key query phases (𝑈):

1.
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. 𝒕 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 + 𝒇2 −
𝒃′2, . . . , 𝑑𝑠max𝒚 + 𝒇𝑠max − 𝒃′𝑠max

)).

4. 𝒕 = (1, 𝒕).

5. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾

(︃
𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,

𝒕

(︃
𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃)︃⊤

+

∑︀
𝑗∈{2,...,𝑠max} 𝒕(𝑀𝜌−1(𝑢),𝑗𝑩𝑗)

⊤ − 𝒌̂𝑢𝑨
⊤
𝑢

)︃
.

6. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢 + 𝒕𝑹⊤
𝑢 .

7. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 ,
𝜎, 𝒕𝑯⊤

𝑢 − 𝒌̂𝑢𝑨
⊤
𝑢 ).

8. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
9. 𝖲𝖪 =

(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge phase:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

5. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +⎡⎣ ∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

7. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 5.7. Hyb6.
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𝗛𝘆𝗯7: This hybrid is the same as Hyb6 except the generation of the components of the secret
keys queried by𝒜. Note that by the game restriction, for each secret key query of𝒜 corresponding
to some attribute set 𝑈 ⊂ 𝕌, the rows of 𝑴 having indices in 𝜌−1(𝑈) are linearly independent.
This constraint is exploited by the challenger while sampling the vectors {𝒇𝑗 }𝑗∈{2,...,𝑠max} in the
key query phases starting with this hybrid as can be seen in the figures below. The changes
between Hyb6 and Hyb7 are merely syntactic, and hence, they are indistinguishable.

Setup phase:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

3. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚.

7. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

8. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑯 ′
𝑢.

9. {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

10. 𝑃𝐾 = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚, {𝑨𝑢}𝑢∈𝕌 ,
{𝑯𝑢}𝑢∈𝕌).

Key query phases (𝑈):

1.
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. {𝒛𝑢}𝑢∈𝑈∩𝜌([ℓ]) ← ℤ𝑛
𝑞 .

3. {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 s.t.

∀𝑢 ∈ 𝑈∩𝜌([ℓ]) :
∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝒇𝑗 =

𝒛𝑢 + 𝒌̂𝑢𝑨
⊤
𝑢 .

4. 𝒕 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 + 𝒇2 −
𝒃′2, . . . , 𝑑𝑠max𝒚 + 𝒇𝑠max − 𝒃′𝑠max

)).

5. 𝒕 = (1, 𝒕).

6. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) :

𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,𝒛𝑢).

7. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢 + 𝒕𝑹⊤
𝑢 .

8. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,
𝒕𝑯⊤

𝑢 − 𝒌̂𝑢𝑨
⊤
𝑢 ).

9. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.

10. 𝖲𝖪 =
(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge phase:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

5. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +⎡⎣ ∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

7. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 5.8. Hyb7.
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𝗛𝘆𝗯8: This hybrid is analogous to Hyb7 except the generation of the vectors {𝒌𝑢}𝑢∈𝑈∩𝜌([ℓ])
while answering the secret key queries made by 𝒜. The indistinguishably between Hyb7 and
Hyb8 follows from the well-sampledness of preimage property of the enhanced trapdoor lattice
sampler EnLT = (EnTrapGen,EnSamplePre).

Setup phase:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

3. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚.

7. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

8. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑯 ′
𝑢.

9. {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

10. 𝑃𝐾 = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚, {𝑨𝑢}𝑢∈𝕌 ,
{𝑯𝑢}𝑢∈𝕌).

Key query phases (𝑈):

1.
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2.
{︁
𝒌̃𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒2.

3. {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 s.t.

∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) :
∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝒇𝑗 =

𝒌̃𝑢𝑨
⊤
𝑢 + 𝑘𝑢𝑨

⊤
𝑢 .

4. 𝒕 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 + 𝒇2 −
𝒃′2, . . . , 𝑑𝑠max𝒚 + 𝒇𝑠max − 𝒃′𝑠max

)).
5. 𝒕 = (1, 𝒕).
6. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢 + 𝒕𝑹⊤

𝑢 .
7. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,

𝒕𝑯⊤
𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 ).

8. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
9. 𝖲𝖪 =

(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge phase:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

5. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +⎡⎣ ∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

7. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 5.9. Hyb8.
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𝗛𝘆𝗯9: This hybrid is identical to Hyb8 except the generation of the matrices {𝑨𝑢}𝑢∈𝜌([ℓ]) during
the setup phase. The indistinguishably between Hyb8 and Hyb9 follows from the well-sampledness
of matrix property of the enhanced trapdoor lattice sampler EnLT = (EnTrapGen,EnSamplePre).

Setup phase:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. {𝑨𝑢}𝑢∈𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

3. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌∖𝜌([ℓ]) ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

4. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

5.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

6. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

7. {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚.

8. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

9. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑯 ′
𝑢.

10. {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

11. 𝑃𝐾 = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚, {𝑨𝑢}𝑢∈𝕌 ,
{𝑯𝑢}𝑢∈𝕌).

Key query phases (𝑈):

1.
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2.
{︁
𝒌̃𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒2.

3. {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 s.t. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) :∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝒇𝑗 = 𝒌̃𝑢𝑨
⊤
𝑢 + 𝑘𝑢𝑨

⊤
𝑢 .

4. 𝒕 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 + 𝒇2 −
𝒃′2, . . . , 𝑑𝑠max𝒚 + 𝒇𝑠max − 𝒃′𝑠max

)).

5. 𝒕 = (1, 𝒕).

6. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢 + 𝒕𝑹⊤
𝑢 .

7. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,
𝒕𝑯⊤

𝑢 − 𝒌̂𝑢𝑨
⊤
𝑢 ).

8. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.

9. 𝖲𝖪 =
(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge phase:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

5. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +⎡⎣ ∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

7. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 5.10. Hyb9.
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𝗛𝘆𝗯10: This hybrid is the same as Hyb9 except the generation of the vectors {𝒄𝑖}𝑖∈[ℓ] while
preparing the challenge ciphertext. The indistinguishably between Hyb9 and Hyb10 follows from
the smudging lemma (Lemma 3.1).

Setup phase:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. {𝑨𝑢}𝑢∈𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

3. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌∖𝜌([ℓ]) ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

4. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

5.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

6. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

7. {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚.

8. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

9. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑯 ′
𝑢.

10. {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

11. 𝑃𝐾 = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚, {𝑨𝑢}𝑢∈𝕌 ,
{𝑯𝑢}𝑢∈𝕌).

Key query phases (𝑈):

1.
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2.
{︁
𝒌̃𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒2.

3. {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 s.t. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) :∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝒇𝑗 = 𝒌̃𝑢𝑨
⊤
𝑢 + 𝑘𝑢𝑨

⊤
𝑢 .

4. 𝒕 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 + 𝒇2 −
𝒃′2, . . . , 𝑑𝑠max𝒚 + 𝒇𝑠max − 𝒃′𝑠max

)).
5. 𝒕 = (1, 𝒕).
6. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢 + 𝒕𝑹⊤

𝑢 .
7. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,

𝒕𝑯⊤
𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 ).

8. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
9. 𝖲𝖪 =

(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge phase:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

4.
{︀
𝒆′
𝑖

}︀
𝑖∈[ℓ]
← 𝜒𝑚

big.

5. ∀𝑖 ∈ [ℓ] : 𝒆𝑖 = −𝒆𝑖𝑹𝜌(𝑖) + 𝒆′
𝑖.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖.

7. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +⎡⎣ ∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗

⎤⎦− 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

8. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 5.11. Hyb10.
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𝗛𝘆𝗯11: This hybrid is the same as Hyb10 except the generation of the components of the
challenge ciphertext. The indistinguishably between Hyb10 and Hyb11 follows from the LWE
assumption.

Setup phase:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. {𝑨𝑢}𝑢∈𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

3. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌∖𝜌([ℓ]) ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

4. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

5.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

6. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

7. {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚.

8. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

9. ∀𝑢 ∈ 𝜌([ℓ]) : 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑯 ′
𝑢.

10. {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

11. 𝑃𝐾 = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚, {𝑨𝑢}𝑢∈𝕌 ,
{𝑯𝑢}𝑢∈𝕌).

Key query phases (𝑈):

1.
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2.
{︁
𝒌̃𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒2.

3. {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 s.t. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) :∑︀

𝑗∈{2,...,𝑠max} 𝑀𝜌−1(𝑢),𝑗𝒇𝑗 = 𝒌̃𝑢𝑨
⊤
𝑢 + 𝑘𝑢𝑨

⊤
𝑢 .

4. 𝒕 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 + 𝒇2 −
𝒃′2, . . . , 𝑑𝑠max𝒚 + 𝒇𝑠max − 𝒃′𝑠max

)).

5. 𝒕 = (1, 𝒕).

6. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢 + 𝒕𝑹⊤
𝑢 .

7. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,
𝒕𝑯⊤

𝑢 − 𝒌̂𝑢𝑨
⊤
𝑢 ).

8. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.

9. 𝖲𝖪 =
(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge phase:

1. 𝜏 ← ℤ𝑞 .

2.
{︀
𝒗′
𝑗

}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

3. {𝒆′
𝑖}𝑖∈[ℓ] ← 𝜒𝑚

big.

4. {𝒄𝑖}𝑖∈[ℓ] ← ℤ𝑚
𝑞 .

5. ∀𝑖 ∈ [ℓ] :

𝒄𝑖 =

⎡⎣ ∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗
′
𝑗𝑩𝑗

⎤⎦− 𝒄𝑖𝑹𝜌(𝑖) + 𝒆′
𝑖.

6. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] , 𝖬𝖲𝖡(𝜏)

)︁
.

Fig. 5.12. Hyb11.

Analysis

For any adversary 𝒜 and any 𝑥 ∈ {0, . . . , 11}, let 𝑝𝒜,𝑥 : ℕ → [0, 1] denote the function such
that for all 𝜆 ∈ ℕ, 𝑝𝒜,𝑥(𝜆) is the probability that 𝒜, on input 1𝜆, guesses the challenge bit
correctly in the hybrid game Hyb𝑥. From the definition of Hyb0, it follows that for all 𝜆 ∈ ℕ,
|𝑝𝒜,0(𝜆)− 1/2| = AdvCP-ABE,SEL−LI−CPA

𝒜 (𝜆). Also, for all 𝜆 ∈ ℕ, 𝑝𝒜,11 = 1/2 since there is no
information of the challenge bit 𝑏 ← {0, 1} selected by the challenger within the challenge
ciphertext in Hyb11. Hence, for all 𝜆 ∈ ℕ, we clearly have

AdvCP-ABE,SEL−LI−CPA
𝒜 (𝜆) ≤

∑︁
𝑥∈[11]

|𝑝𝒜,𝑥−1(𝜆)− 𝑝𝒜,𝑥(𝜆)| (5.1)

Lemmas 5.1–5.11 will show that each term on the RHS of Eq. (5.1) is nothing but negligible.
Hence, Theorem 5.2 follows. ⊓⊔

Lemma 5.1: For any adversary 𝒜, 𝑝𝒜,0(𝜆) = 𝑝𝒜,1(𝜆).

Proof: Observe that the only difference between Hyb0 and Hyb1 is with respect to the generation
of the challenge ciphertext. More precisely, in the former hybrid the challenger generates the

vectors {𝒄𝑖}𝑖∈[ℓ] as 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +

∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗 − 𝒔𝑯𝜌(𝑖) + 𝒆𝑖 for all 𝑖 ∈ [ℓ],



Decentralized Multi-Authority ABE for DNFs from LWE 45

where {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑚
𝑞 . In contrast, in the latter hybrid the challenger generates those

vectors as 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +

∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒔𝑯𝜌(𝑖) + 𝒆𝑖 for all 𝑖 ∈ [ℓ], where

{𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 and {𝑩𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛×𝑚

𝑞 .
However, since the vectors {𝒗𝑗 }𝑗∈{2,...,𝑠max} are uniformly and independently distributed over

ℤ𝑛
𝑞 and the matrices {𝑩𝑗 }𝑗∈{2,...,𝑠max} are uniformly and independently distributed over ℤ𝑛×𝑚

𝑞 ,
it follows that the vectors {𝒗𝑗𝑩𝑗 }𝑗∈{2,...,𝑠max} are uniformly and independently distributed over
ℤ𝑚
𝑞 . Hence, the views of the adversary 𝒜 in the two hybrids are identical. This completes the

proof of Lemma 5.1. ⊓⊔

Lemma 5.2: For any adversary 𝒜, 𝑝𝒜,1(𝜆) = 𝑝𝒜,2(𝜆).

Proof: Let us consider the difference between Hyb1 and Hyb2. The challenge and key query
phases are identical in both hybrids. The only difference is with respect to the generation of
the public parameters in the setup phase. More precisely, the only difference between Hyb1
and Hyb2 is that while generating the public parameters, the challenger samples the matrices
{𝑯𝑢}𝑢∈𝜌([ℓ]) ← ℤ𝑛×𝑚

𝑞 in the former, while in the latter hybrid, the challenger sets the matrices

{𝑯𝑢}𝑢∈𝜌([ℓ]) as 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+
∑︀

𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑯 ′𝑢 for all 𝑢 ∈

𝜌([ℓ]), where {𝑯 ′𝑢}𝑢∈𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

However, as the matrices
{︀
𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+
∑︀

𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +

𝑯 ′𝑢
}︀
𝑢∈𝜌([ℓ]) with {𝑯 ′𝑢}𝑢∈𝜌([ℓ]) ← ℤ𝑛×𝑚

𝑞 are clearly uniformly distributed over ℤ𝑛×𝑚
𝑞 , it follows

that the views of the adversary 𝒜 in the two hybrids are identical. Hence, Lemma 5.2 follows. ⊓⊔

Lemma 5.3: Assuming EnLT = (TrapGen,EnSamplePre) satisfies the leftover hash lemma with
trapdoor (Lemma 3.4), for any adversary 𝒜, there exists a negligible function negl3(·) such that
for all 𝜆 ∈ ℕ, |𝑝𝒜,2(𝜆)− 𝑝𝒜,3(𝜆)| ≤ negl3(𝜆).

Proof: Suppose on the contrary, there exists an adversary 𝒜 and a non-negligible function 𝜂(·)
such that |𝑝𝒜,2(𝜆)− 𝑝𝒜,3(𝜆)| ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ. Using 𝒜 as a sub-routine, we will construct a
reduction algorithm ℬ below such that Adv

EnLTLHL−Trap,𝑞,𝜎

ℬ (𝜆) ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ.

Setup Phase: The reduction algorithm ℬ receives 1𝜆, 𝑞, 𝜎 from its EnLTLHL−Trap,𝑞,𝜎 challenger.
ℬ then invokes 𝒜 and receives a selective access policy (𝑴 , 𝜌), where 𝑴 ∈ {−1, 0, 1}ℓ×𝑠max ⊂
ℤℓ×𝑠max
𝑞 and 𝜌 : [ℓ] → 𝕌 is the injective row-labeling function. Upon receipt it proceeds as

follows:

1. It chooses dimensions 𝑛,𝑚, and distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described in Section 5.
2. Next, it samples 𝒚 ← ℤ𝑛

𝑞 .
3. Then, it sends 1𝑛, 1𝑚, 1|𝜌([ℓ])| to its EnLTLHL−Trap,𝑞,𝜎 challenger and receives back matrices
{(𝑨𝑢,𝑺𝑢)}𝑢∈𝜌([ℓ]) ⊂ (ℤ𝑛×𝑚

𝑞 )2.
4. It also generates {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌∖𝜌([ℓ]) ← TrapGen(1𝑛, 1𝑚, 𝑞) such that {𝑨𝑢}𝑢∈𝕌∖𝜌([ℓ]) ∈

ℤ𝑛×𝑚
𝑞 .

5. Then, it samples {𝑩𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛×𝑚
𝑞 .

6. Subsequently, it sets 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+
∑︀

𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝑩𝑗 + 𝑺𝑢

for all 𝑢 ∈ 𝜌([ℓ]).
7. It also samples {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚

𝑞 .
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8. It provides 𝒜 with the public parameters

PK = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚,{𝑨𝑢}𝑢∈𝕌 ,{𝑯𝑢}𝑢∈𝕌).

Key Query Phases: In both the pre-ciphertext and post-ciphertext key query phases, to
answer a secret key query of 𝒜 corresponding to some attribute set 𝑈 ⊂ 𝕌, ℬ runs the
following steps:
1. It first samples

{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. It also samples 𝒕← 𝜒1 and sets 𝒕 = (1, 𝒕).
3. Subsequently, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), it sends 𝑢 and the vector 𝒘𝑢 = 𝒕𝑯⊤𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 to its

EnLTLHL−Trap,𝑞,𝜎 challenger, receives back 𝒓𝑢 ∈ ℤ𝑚, and sets 𝒌̃𝑢 = 𝒓𝑢.
4. Also, for all 𝑢 ∈ 𝑈 ∖𝜌([ℓ]), it generates 𝒌̃𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯

⊤
𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 ) itself.

5. Next, for all 𝑢 ∈ 𝑈 , it sets 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
6. It provides 𝒜 the secret key

SK =
(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge Phase: This phase is executed in an identical manner to that in Hyb2 (or in Hyb3).
More precisely, in this phase ℬ selects a random bit 𝑏← {0, 1} and proceeds as follows:
1. It first samples 𝒔← ℤ𝑛

𝑞 and {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

2. It also samples {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe and {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚

big.
3. Next, for all 𝑖 ∈ [ℓ], it sets

𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖,

𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +

∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

4. It gives 𝒜 the challenge ciphertext

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,MSB(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Guess: 𝒜 eventually outputs a guess 𝑏′ ∈ {0, 1}. If 𝑏′ = 𝑏, ℬ outputs 1. Otherwise, ℬ outputs
0.

Note that the game simulated by the reduction algorithm ℬ coincides with Hyb2 (Fig. 5.3)
or Hyb3 (Fig. 5.4) according as the matrices {𝑺𝑢}𝑢∈𝜌([ℓ]) it receives from its EnLTLHL−Trap,𝑞,𝜎
challenger during the Setup Phase are generated as {𝑺𝑢}𝑢∈𝜌([ℓ]) ← ℤ𝑛×𝑚

𝑞 or 𝑺𝑢 = 𝑨𝑢𝑹𝑢 for
all 𝑢 ∈ 𝜌([ℓ]) with {𝑹𝑢}𝑢∈𝜌([ℓ]) ← {−1, 1}

𝑚×𝑚. Hence, it follows that the advantage of ℬ in
the EnLTLHL−Trap,𝑞,𝜎 game is at least |𝑝𝒜,2(𝜆)− 𝑝𝒜,3(𝜆)| ≥ 𝜂(𝜆). This completes the proof of
Lemma 5.3. ⊓⊔

Lemma 5.4: Assuming EnLT = (TrapGen,EnSamplePre) satisfies the 𝑞-well sampledness of ma-
trix property, for any adversary 𝒜, there exists a negligible function negl4(·) such that for all
𝜆 ∈ ℕ, |𝑝𝒜,3(𝜆)− 𝑝𝒜,4(𝜆)| ≤ negl4(𝜆).

Proof: Suppose on the contrary, there exists an adversary 𝒜 and a non-negligible function 𝜂(·)
such that |𝑝𝒜,3(𝜆)− 𝑝𝒜,4(𝜆)| ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ. Using 𝒜 as a sub-routine, we will construct a
reduction algorithm ℬ below such that Adv

EnLTmatrix,𝑞,𝜎

ℬ (𝜆) ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ.

Setup Phase: The reduction algorithm ℬ receives 1𝜆, 𝑞, 𝜎 from its EnLTmatrix,𝑞,𝜎 challenger. ℬ
invokes𝒜 and receives a selective access policy (𝑴 , 𝜌), where 𝑴 ∈ {−1, 0, 1}ℓ×𝑠max ⊂ ℤℓ×𝑠max

𝑞

and 𝜌 : [ℓ]→ 𝕌 is the injective row-labeling function. Upon receipt it proceeds as follows:
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1. It chooses dimensions 𝑛,𝑚, and distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described in Section 5.
2. Next, it samples 𝒚 ← ℤ𝑛

𝑞 .
3. Then, it generates {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌 ← TrapGen(1𝑛, 1𝑚, 𝑞) such that {𝑨𝑢}𝑢∈𝕌 ∈ ℤ𝑛×𝑚

𝑞 .
4. Subsequently, it sends 1𝑛(𝑠max−1), 1𝑚−1, 1 to its EnLTmatrix,𝑞,𝜎 challenger and receives back

a matrix 𝑩′ =
[︀
𝑩′⊤2 | · · · |𝑩′⊤𝑠max

]︀⊤ ∈ ℤ𝑛(𝑠max−1)×(𝑚−1)
𝑞 .

5. It additionally samples
{︁
𝒃′𝑗

}︁
𝑗∈{2,...,𝑠max}

← ℤ𝑛
𝑞 . And sets 𝑩𝑗 =

[︀
𝒃′⊤𝑗 |𝑩′𝑗

]︀
for all ∀𝑗 ∈

{2, . . . , 𝑠max}.

6. Next, it samples {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 and sets 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑨𝑢𝑹𝑢 for all 𝑢 ∈ 𝜌([ℓ]).
7. It also samples {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚

𝑞 .
8. It provides 𝒜 with the public parameters

PK = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚,{𝑨𝑢}𝑢∈𝕌 ,{𝑯𝑢}𝑢∈𝕌).

Key Query Phases: In both the pre-ciphertext and post-ciphertext key query phases, to
answer a secret key query of 𝒜 corresponding to some attribute set 𝑈 ⊂ 𝕌, ℬ runs the
following steps:
1. It first samples

{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. It also samples 𝒕← 𝜒1 and sets 𝒕 = (1, 𝒕).
3. Next, it generates 𝒌̃𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯

⊤
𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 ) for all 𝑢 ∈ 𝑈 .

4. Then, it sets 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢 for all 𝑢 ∈ 𝑈 .
5. It provides 𝒜 the secret key

SK =
(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge Phase: This phase is executed in an identical manner to that in Hyb3 (or in Hyb4).
More precisely, in this phase ℬ selects a random bit 𝑏← {0, 1} and proceeds as follows:
1. It first samples 𝒔← ℤ𝑛

𝑞 and {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

2. It also samples {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe and {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚

big.
3. Next, for all 𝑖 ∈ [ℓ], it sets

𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖,

𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +

∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

4. It gives 𝒜 the challenge ciphertext

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,MSB(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Guess: 𝒜 eventually outputs a guess 𝑏′ ∈ {0, 1}. If 𝑏′ = 𝑏, ℬ outputs 1. Otherwise, ℬ outputs
0.

Note that the game simulated by the reduction algorithm ℬ coincides with Hyb3
(Fig. 5.4) or Hyb4 (Fig. 5.5) according as the matrix 𝑩′ ∈ ℤ𝑛(𝑠max−1)×(𝑚−1)

𝑞 it obtained
from its EnLTmatrix,𝑞,𝜎 challenger is generated as 𝑩′ ← ℤ𝑛(𝑠max−1)×(𝑚−1)

𝑞 or (𝑩′, 𝑇𝑩′) ←
TrapGen(1𝑛(𝑠max−1), 1𝑚−1, 𝑞). Hence, it follows that the advantage of ℬ in the EnLTmatrix,𝑞,𝜎 game
is at least |𝑝𝒜,3(𝜆)− 𝑝𝒜,4(𝜆)| ≥ 𝜂(𝜆). This completes the proof of Lemma 5.4. ⊓⊔

Lemma 5.5: For any adversary 𝒜, there exists a negligible function negl5(·) such that for all
𝜆 ∈ ℕ, |𝑝𝒜,4(𝜆)− 𝑝𝒜,5(𝜆)| ≤ negl5(𝜆).



48 Pratish Datta, Ilan Komargodski, and Brent Waters

Proof: Let us consider the difference between Hyb4 and Hyb5. The setup and challenge
phases are identical in both games. The only difference in the two games is with respect to
the secret key queries. In particular, for each secret key query of the adversary correspond-
ing to some attribute set 𝑈 ⊂ 𝕌, the key components {𝒌𝑢}𝑢∈𝑈∩𝜌([ℓ]) are computed differ-
ently in the two games. In Hyb4, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), the challenger sets 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢,
where 𝒌̂𝑢 ← 𝜒𝑚

big and 𝒌̃𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯
⊤
𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 ) with 𝒕 = (1, 𝒕) such

that 𝒕 ← 𝜒1. In contrast, in Hyb5, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), the challenger sets 𝒌𝑢 = 𝒌̂𝑢 +

𝒌̃𝑢 + 𝒕𝑹⊤𝑢 where 𝒌̂𝑢 ← 𝜒𝑚
big, 𝒌̃𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕(𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
)⊤ +∑︀

𝑗∈{2,...,𝑠max} 𝒕(𝑀𝜌−1(𝑢),𝑗𝑩𝑗)
⊤ − 𝒌̂𝑢𝑨

⊤
𝑢 ), 𝒕 = (1, 𝒕) with 𝒕← 𝜒1, and 𝑹𝑢 ←{−1, 1}𝑚×𝑚.

First, note that in both the hybrid games, for each of the secret key queries of the adversary
corresponding to some attribute set 𝑈 , we have 𝑨𝑢𝒌

⊤
𝑢 = 𝑯𝑢𝒕

⊤ for all 𝑢 ∈ 𝑈 ∩𝜌([ℓ]). This follows

from the fact that 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+
∑︀

𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑨𝑢𝑹𝑢 for all

𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) and the setting of the vectors {𝒌𝑢}𝑢∈𝑈∩𝜌([ℓ]) in the two hybrids. Next, using the
triangle inequality for statistical distance and the smudging lemma, since 𝐵̂ > (𝑚3/2𝜎 + 1)2𝜆

holds, we can argue that there exists a negligible function neglsmudge(·) such that for all 𝜆 ∈ ℕ,
𝑚 ∈ ℕ, SD(𝒟1,𝒟3) ≤ SD(𝒟1,𝒟2) + SD(𝒟2,𝒟3) ≤ 𝑚 · neglsmudge(𝜆) + 𝑚 · neglsmudge(𝜆) =
2𝑚 · neglsmudge(𝜆), where

𝒟1 ≡
{︁
𝒌̂𝑢 + 𝒌̃𝑢 | 𝒌̂𝑢 ← 𝜒𝑚

big, 𝒌̃𝑢 ∈ (ℤ ∩ [−
√
𝑚𝜎,
√
𝑚𝜎])𝑚

}︁
,

𝒟2 ≡
{︁
𝒌̂𝑢 | 𝒌̂𝑢 ← 𝜒𝑚

big

}︁
,

𝒟3 ≡
{︁
𝒌̂𝑢 + 𝒌̃𝑢 + (1, 𝒕)𝑹⊤𝑢 | 𝒌̂𝑢 ← 𝜒𝑚

big, 𝒌̃𝑢 ∈ (ℤ ∩ [−
√
𝑚𝜎,
√
𝑚𝜎])𝑚, 𝒕← 𝜒1,𝑹𝑢 ∈ {−1, 1}𝑚×𝑚

}︁
.

As a result, if the total number of secret key queries made by the adversary be 𝑞key = 𝑞key(𝜆),
then for any 𝜆 ∈ ℕ,

|𝑝𝒜,4(𝜆)− 𝑝𝒜,5(𝜆)| ≤ 𝑞key(𝜆) · |𝑈 ∩ 𝜌([ℓ])| · 2𝑚 · neglsmudge(𝜆).

⊓⊔

Lemma 5.6: Assuming EnLT = (TrapGen,EnSamplePre) satisfies (𝑞, 𝜎)-well sampledness of
preimage, for any adversary 𝒜, there exists a negligible function negl6(·) such that for all 𝜆 ∈ ℕ,
|𝑝𝒜,5(𝜆)− 𝑝𝒜,6(𝜆)| ≤ negl6(𝜆).

Proof: Suppose on the contrary, there exists an adversary 𝒜 and a non-negligible function 𝜂(·)
such that |𝑝𝒜,5(𝜆)− 𝑝𝒜,6(𝜆)| ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ. Using 𝒜 as a sub-routine, we will construct a
reduction algorithm ℬ below such that Adv

EnLTpreimage,𝑞,𝜎

ℬ (𝜆) ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ.

Setup Phase: The reduction algorithm ℬ receives 1𝜆, 𝑞, 𝜎 from its EnLTpreimage,𝑞,𝜎 challenger.
ℬ then invokes 𝒜 and receives a selective access policy (𝑴 , 𝜌), where 𝑴 ∈ {−1, 0, 1}ℓ×𝑠max ⊂
ℤℓ×𝑠max
𝑞 and 𝜌 : [ℓ] → 𝕌 is the injective row-labeling function. Upon receipt it proceeds as

follows:

1. It chooses dimensions 𝑛,𝑚, and distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described in Section 5.
2. Next, it samples 𝒚 ← ℤ𝑛

𝑞 .
3. Then, it generates {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌 ← TrapGen(1𝑛, 1𝑚, 𝑞) such that {𝑨𝑢}𝑢∈𝕌 ∈ ℤ𝑛×𝑚

𝑞 .
4. Subsequently, it sends 1𝑛(𝑠max−1), 1𝑚−1, 11 to its EnLTpreimage,𝑞,𝜎 challenger and receives

back a matrix 𝑩′ =
[︀
𝑩′⊤2 | · · · |𝑩′⊤𝑠max

]︀⊤ ∈ ℤ𝑛(𝑠max−1)×(𝑚−1)
𝑞 .
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5. It additionally samples
{︁
𝒃′𝑗

}︁
𝑗∈{2,...,𝑠max}

← ℤ𝑛
𝑞 . And sets 𝑩𝑗 =

[︀
𝒃′⊤𝑗 |𝑩′𝑗

]︀
for all ∀𝑗 ∈

{2, . . . , 𝑠max}.

6. Next, it samples {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 and sets 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑨𝑢𝑹𝑢 for all 𝑢 ∈ 𝜌([ℓ]).
7. It also samples {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚

𝑞 .
8. It provides 𝒜 with the public parameters

PK = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚,{𝑨𝑢}𝑢∈𝕌 ,{𝑯𝑢}𝑢∈𝕌).

Key Query Phases: In both the pre-ciphertext and post-ciphertext key query phases, to
answer a secret key query of 𝒜 corresponding to some attribute set 𝑈 ⊂ 𝕌, ℬ runs the
following steps:
1. It first samples

{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.
2. Then, it makes a preimage query to its EnLTpreimage,𝑞,𝜎 challenger by sending the index 1,

receives back a vector 𝒓 ∈ ℤ𝑚−1, and sets 𝒕 = 𝒓 and 𝒕 = (1, 𝒕).
3. Subsequently, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), it generates the vector 𝒌̃𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,

𝒕(𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
)⊤ +

∑︀
𝑗∈{2,...,𝑠max} 𝒕(𝑀𝜌−1(𝑢),𝑗𝑩𝑗)

⊤ − 𝒌̂𝑢𝑨
⊤
𝑢 ) and sets 𝒌𝑢 =

𝒌̂𝑢 + 𝒌̃𝑢 + 𝒕𝑹⊤𝑢 .
4. Also, for all 𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]), it generates 𝒌̃𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯

⊤
𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 ) and

sets 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
5. It hands 𝒜 the secret key

SK =
(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge Phase: This phase is executed in an identical manner to that in Hyb5 (or in Hyb6).
More precisely, in this phase ℬ selects a random bit 𝑏← {0, 1} and proceeds as follows:
1. It first samples 𝒔← ℤ𝑛

𝑞 and {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

2. It also samples {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe and {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚

big.
3. Next, for all 𝑖 ∈ [ℓ], it sets

𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖,

𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +

∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

4. It gives 𝒜 the challenge ciphertext

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,MSB(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Guess: 𝒜 eventually outputs a guess 𝑏′ ∈ {0, 1}. If 𝑏′ = 𝑏, ℬ outputs 1. Otherwise, ℬ outputs
0.

Note that the game simulated by the reduction algorithm ℬ coincides with Hyb5 (Fig. 5.6)
if for each of the secret key queries of 𝒜 corresponding to some attribute set 𝑈 ⊂ 𝕌, the vector
𝒓 that ℬ receives from its EnLTpreimage,𝑞,𝜎 challenger is generated as 𝒓 ← 𝜒𝑚−1

1 . On the other
hand, the game simulated by the reduction algorithm ℬ coincides with Hyb6 (Fig. 5.7) if for each
of the secret key queries of 𝒜 corresponding to some attribute set 𝑈 ⊂ 𝕌, the vector 𝒓 that
ℬ receives from its EnLTpreimage,𝑞,𝜎 challenger is generated as 𝒓 ← EnSamplePre(𝑩′, 𝑇𝑩′ , 𝜎,𝒘)

with some fresh 𝒘 ← ℤ𝑛(𝑠max−1)
𝑞 . This is because the vector (𝑑2𝒚 + 𝒇2, . . . , 𝑑𝑠max𝒚 + 𝒇𝑠max) with
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{𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 , as originally used while answering each secret key query of 𝒜 in Hyb6

(Fig. 5.7), is uniformly and independently distributed over ℤ𝑛(𝑠max−1)
𝑞 . Hence, it follows that the

advantage of ℬ in the EnLTpreimage,𝑞,𝜎 game is at least |𝑝𝒜,5(𝜆)− 𝑝𝒜,6(𝜆)| ≥ 𝜂(𝜆). This completes
the proof of Lemma 5.6. ⊓⊔

Lemma 5.7: For any adversary 𝒜, there exists a negligible function negl7(·) such that for all
𝜆 ∈ ℕ, |𝑝𝒜,6(𝜆)− 𝑝𝒜,7(𝜆)| ≤ negl7(𝜆).

Proof: Let us consider the difference between Hyb6 and Hyb7. The setup and challenge
phases are identical in the two hybrids. The only difference is with respect to the genera-
tion of the secret keys queried by the adversary 𝒜 in the two hybrids. More precisely, in
Hyb6, while generating a secret key queried by the adversary 𝒜 corresponding to some at-
tribute set 𝑈 ⊂ 𝕌, the challenger samples the vectors {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 and generates

the vectors
{︁
𝒌̃𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

as 𝒌̃𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕(𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
)⊤ +∑︀

𝑗∈{2,...,𝑠max} 𝒕(𝑀𝜌−1(𝑢),𝑗𝑩𝑗)
⊤− 𝒌̂𝑢𝑨

⊤
𝑢 ). In contrast, in Hyb7, the challenger samples the vectors

{𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 with the restriction that

∑︀
𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝒇𝑗 = 𝒛𝑢 + 𝒌̂𝑢𝑨

⊤
𝑢 holds

for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) and generates the vectors
{︁
𝒌̃𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

as 𝒌̃𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,

𝒛𝑢) for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), where {𝒛𝑢}𝑢∈𝑈∩𝜌([ℓ]) ← ℤ𝑛
𝑞 .

First, note that by the restrictions of the weak selective security game, we have (a) the rows
of the access matrix 𝑴 having indices in 𝜌−1(𝑈) are linearly independent, i.e., no non-zero
linear combination of those rows over ℤ𝑞 can span the vector 0 ∈ ℤ𝑠max

𝑞 and (b) those rows are
unauthorized with respect to the access policy (𝑴 , 𝜌), i.e., no linear combination of those rows
over ℤ𝑞 can span the vector (1, 0, . . . , 0) ∈ ℤ𝑠max

𝑞 . Combining facts (a) and (b), it readily follows
that no non-zero linear combination over ℤ𝑞 of the vectors obtained by removing the first entries
of the rows of 𝑴 having indices in 𝜌−1(𝑈) can span 0 ∈ ℤ𝑠max−1

𝑞 , or in other words, those vectors
are linearly independent. Hence, the sampling of the vectors {𝒇𝑗 }𝑗∈{2,...,𝑠max} ⊂ ℤ𝑛

𝑞 in Hyb7 is
well-defined. Moreover, due to the fact that the vectors {𝒛𝑢}𝑢∈𝑈∩𝜌([ℓ]) are sampled uniformly
from ℤ𝑛

𝑞 , it follows that the vectors {𝒇𝑗 }𝑗∈{2,...,𝑠max} ⊂ ℤ𝑛
𝑞 sampled in Hyb7 are also uniformly

and independently distributed over ℤ𝑛
𝑞 . Hence, it follows that the distributions of the vectors

{𝒇𝑗 }𝑗∈{2,...,𝑠max} ⊂ ℤ𝑛
𝑞 are in fact identical in the two hybrids.

Now, we claim that the distributions of the vectors
{︁
𝒌̃𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

in the two hybrids are also

identical. From the definitions of the vectors
{︁
𝒌̃𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

in the two hybrids, it follows that

to prove the above claim it would be sufficient to show that 𝒕(𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
)⊤ +∑︀

𝑗∈{2,...,𝑠max} 𝒕(𝑀𝜌−1(𝑢),𝑗𝑩𝑗)
⊤− 𝒌̂𝑢𝑨

⊤
𝑢 = 𝒛𝑢 for all 𝑢 ∈ 𝑈 ∩𝜌([ℓ]) in Hyb7. Observe that in Hyb7,

𝒕𝑩⊤𝑗 = 𝑑𝑗𝒚 + 𝒇𝑗 for all 𝑗 ∈ {2, . . . , 𝑠max} and 𝒕

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃⊤
= 𝒚 since 𝒕 is of the form
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𝒕 = (1, 𝒕). Hence, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), we have

𝒕(𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
)⊤ +

∑︁
𝑗∈{2,...,𝑠max}

𝒕(𝑀𝜌−1(𝑢),𝑗𝑩𝑗)
⊤ − 𝒌̂𝑢𝑨

⊤
𝑢

= 𝑀𝜌−1(𝑢),1𝒚 +
∑︁

𝑗∈{2,...,𝑠max}

𝑀𝜌−1(𝑢),𝑗(𝑑𝑗𝒚 + 𝒇𝑗)− 𝒌̂𝑢𝑨
⊤
𝑢

= (
∑︁

𝑗∈[𝑠max]

𝑀𝜌−1(𝑢),𝑗𝑑𝑗)𝒚 +
∑︁

𝑗∈{2,...,𝑠max}

𝑀𝜌−1(𝑢),𝑗𝒇𝑗 − 𝒌̂𝑢𝑨
⊤
𝑢

=
∑︁

𝑗∈{2,...,𝑠max}

𝑀𝜌−1(𝑢),𝑗𝒇𝑗 − 𝒌̂𝑢𝑨
⊤
𝑢 , since 𝑑1 = 1,

∑︁
𝑗∈[𝑠max]

𝑀𝜌−1(𝑢),𝑗𝑑𝑗 = 0 by the choice of the 𝒅

= (𝒛𝑢 + 𝒌̂𝑢𝑨
⊤
𝑢 )− 𝒌̂𝑢𝑨

⊤
𝑢 = 𝒛𝑢.

In view of the above, it follows that the views of the adversary 𝒜 in the two hybrids are
identical. Hence, Lemma 5.7 follows. ⊓⊔

Lemma 5.8: Assuming EnLT = (TrapGen,EnSamplePre) satisfies (𝑞, 𝜎)-well sampledness of
preimage, for any adversary 𝒜, there exists a negligible function negl8(·) such that for all 𝜆 ∈ ℕ,
|𝑝𝒜,7(𝜆)− 𝑝𝒜,8(𝜆)| ≤ negl8(𝜆).

Proof: Suppose on the contrary, there exists an adversary 𝒜 and a non-negligible function 𝜂(·)
such that |𝑝𝒜,7(𝜆)− 𝑝𝒜,8(𝜆)| ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ. Using 𝒜 as a sub-routine, we will construct a
reduction algorithm ℬ below such that Adv

EnLTpreimage,𝑞,𝜎

ℬ (𝜆) ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ.

Setup Phase: The reduction algorithm ℬ receives 1𝜆, 𝑞, 𝜎 from its EnLTpreimage,𝑞,𝜎 challenger.
ℬ then invokes 𝒜 and receives a selective access policy (𝑴 , 𝜌), where 𝑴 ∈ {−1, 0, 1}ℓ×𝑠max ⊂
ℤℓ×𝑠max
𝑞 and 𝜌 : [ℓ] → 𝕌 is the injective row-labeling function. Upon receipt it proceeds as

follows:
1. It chooses dimensions 𝑛,𝑚, and distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described in Section 5.
2. Next, it samples 𝒚 ← ℤ𝑛

𝑞 .
3. Then, it sends 1𝑛, 1𝑚, 1|𝜌([ℓ])| to its EnLTpreimage,𝑞,𝜎 challenger and receives back matrices
{𝑨𝑢}𝑢∈𝜌([ℓ]) ∈ ℤ𝑛×𝑚

𝑞 .
4. It also generates {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌∖𝜌([ℓ]) ← TrapGen(1𝑛, 1𝑚, 𝑞) such that {𝑨𝑢}𝑢∈𝕌∖𝜌([ℓ]) ∈

ℤ𝑛×𝑚
𝑞 .

5. Then, it generates (𝑩′ =
[︀
𝑩′⊤2 | · · · |𝑩′⊤𝑠max

]︀⊤
, 𝑇𝑩′) ← TrapGen(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) such

that
{︁
𝑩′𝑗

}︁
𝑗∈{2,...,𝑠max}

∈ ℤ𝑛×(𝑚−1)
𝑞 .

6. It additionally samples
{︁
𝒃′𝑗

}︁
𝑗∈{2,...,𝑠max}

← ℤ𝑛
𝑞 . And sets 𝑩𝑗 =

[︀
𝒃′⊤𝑗 |𝑩′𝑗

]︀
for all ∀𝑗 ∈

{2, . . . , 𝑠max}.

7. Next, it samples {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 and sets 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑨𝑢𝑹𝑢 for all 𝑢 ∈ 𝜌([ℓ]).
8. It also samples {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚

𝑞 .
9. It provides 𝒜 with the public parameters

PK = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚,{𝑨𝑢}𝑢∈𝕌 ,{𝑯𝑢}𝑢∈𝕌).

Key Query Phases: In both the pre-ciphertext and post-ciphertext key query phases, to
answer a secret key query of 𝒜 corresponding to some attribute set 𝑈 ⊂ 𝕌, ℬ runs the
following steps:
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1. It first samples
{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.
2. Then, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), it sends a preimage query to its EnLTpreimage,𝑞,𝜎 challenger by

sending the index 𝑢, receives back a vector 𝒓𝑢 from the challenger, and sets 𝒌̃𝑢 = 𝒓𝑢.
3. After that, it determines a vector 𝒅 ∈ ℤ𝑠max

𝑞 such that 𝑑1 = 1 and
∑︀

𝑗∈[𝑠max]
𝑀𝜌−1(𝑢),𝑗𝑑𝑗 = 0

for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]).
4. Next, it samples {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 such that the equation
−
∑︀

𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝒇𝑗 = 𝒌̃𝑢𝑨
⊤
𝑢 + 𝒌̂𝑢𝑨

⊤
𝑢 holds for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]). If more

than one solution exists for the above system of equations, the challenger picks the vectors
𝒇2, . . . ,𝒇𝑠max by sampling uniformly over the set of solutions.

5. Then, it generates 𝒕← EnSamplePre(𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚+𝒇2−𝒃′2, . . . , 𝑑𝑠max𝒚+𝒇𝑠max−𝒃′𝑠max
))

and sets 𝒕 = (1, 𝒕)..
6. Next, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), it sets 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢 + 𝒕𝑹⊤𝑢 .
7. Additionally, for all 𝑢 ∈ 𝑈∖𝜌([ℓ]), it generates 𝒌̃𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯

⊤
𝑢 −𝒌̂𝑢𝑨

⊤
𝑢 )

and sets 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
8. It hands 𝒜 the secret key

SK =
(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge Phase: This phase is executed in an identical manner to that in Hyb7 (or in Hyb8).
More precisely, in this phase ℬ selects a random bit 𝑏← {0, 1} and proceeds as follows:
1. It first samples 𝒔← ℤ𝑛

𝑞 and {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

2. It also samples {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe and {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚

big.
3. Next, for all 𝑖 ∈ [ℓ], it sets

𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖,

𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +

∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒔𝑯𝜌(𝑖) + 𝒆𝑖.

4. It gives 𝒜 the challenge ciphertext

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,MSB(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Guess: 𝒜 eventually outputs a guess 𝑏′ ∈ {0, 1}. If 𝑏′ = 𝑏, ℬ outputs 1. Otherwise, ℬ outputs
0.

Note that the game simulated by the reduction algorithm ℬ coincides with Hyb7 (Fig. 5.8) or
Hyb8 (Fig. 5.9) according as for each of the secret key queries of𝒜 corresponding to some attribute
set 𝑈 ⊂ 𝕌, each of the vectors {𝒓𝑢}𝑢∈𝑈∩𝜌([ℓ]) that ℬ receives from its EnLTpreimage,𝑞,𝜎 challenger is
generated as 𝒓𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒛𝑢) with some fresh 𝒛𝑢 ← ℤ𝑛

𝑞 or 𝒓𝑢 ← 𝜒2. Hence, it
follows that the advantage of ℬ in the EnLTpreimage,𝑞,𝜎 game is at least |𝑝𝒜,7(𝜆)− 𝑝𝒜,8(𝜆)| ≥ 𝜂(𝜆).
This completes the proof of Lemma 5.8. ⊓⊔

Lemma 5.9: Assuming EnLT = (TrapGen,EnSamplePre) satisfies the 𝑞-well sampledness of ma-
trix property, for any adversary 𝒜, there exists a negligible function negl9(·) such that for all
𝜆 ∈ ℕ, |𝑝𝒜,8(𝜆)− 𝑝𝒜,9(𝜆)| ≤ negl9(𝜆).

Proof: Suppose on the contrary, there exists an adversary 𝒜 and a non-negligible function 𝜂(·)
such that |𝑝𝒜,8(𝜆)− 𝑝𝒜,9(𝜆)| ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ. Using 𝒜 as a sub-routine, we will construct a
reduction algorithm ℬ below such that Adv

EnLTmatrix,𝑞,𝜎

ℬ (𝜆) ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ.

Setup Phase: The reduction algorithm ℬ receives 1𝜆, 𝑞, 𝜎 from its EnLTmatrix,𝑞,𝜎 challenger. ℬ
then invokes 𝒜 and receives a selective access policy (𝑴 , 𝜌), where 𝑴 ∈ {−1, 0, 1}ℓ×𝑠max ⊂
ℤℓ×𝑠max
𝑞 and 𝜌 : [ℓ] → 𝕌 is the injective row-labeling function. Upon receipt it proceeds as

follows:
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1. It chooses dimensions 𝑛,𝑚, and distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described in Section 5.
2. Next, it samples 𝒚 ← ℤ𝑛

𝑞 .
3. Then, it sends 1𝑛, 1𝑚, 1|𝜌([ℓ])| to its EnLTpreimage,𝑞,𝜎 challenger and receives back matrices
{𝑨𝑢}𝑢∈𝜌([ℓ]) ∈ ℤ𝑛×𝑚

𝑞 .
4. It also generates {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌∖𝜌([ℓ]) ← TrapGen(1𝑛, 1𝑚, 𝑞) such that {𝑨𝑢}𝑢∈𝕌∖𝜌([ℓ]) ∈

ℤ𝑛×𝑚
𝑞 .

5. Then, it generates (𝑩′ =
[︀
𝑩′⊤2 | · · · |𝑩′⊤𝑠max

]︀⊤
, 𝑇𝑩′) ← TrapGen(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) such

that
{︁
𝑩′𝑗

}︁
𝑗∈{2,...,𝑠max}

∈ ℤ𝑛×(𝑚−1)
𝑞 .

6. It additionally samples
{︁
𝒃′𝑗

}︁
𝑗∈{2,...,𝑠max}

← ℤ𝑛
𝑞 . And sets 𝑩𝑗 =

[︀
𝒃′⊤𝑗 |𝑩′𝑗

]︀
for all ∀𝑗 ∈

{2, . . . , 𝑠max}.

7. Next, it samples {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 and sets 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑨𝑢𝑹𝑢 for all 𝑢 ∈ 𝜌([ℓ]).
8. It also samples {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚

𝑞 .
9. It provides 𝒜 with the public parameters

PK = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚,{𝑨𝑢}𝑢∈𝕌 ,{𝑯𝑢}𝑢∈𝕌).

Key Query Phases: In both the pre-ciphertext and post-ciphertext key query phases, to
answer a secret key query of 𝒜 corresponding to some attribute set 𝑈 ⊂ 𝕌, ℬ runs the
following steps:
1. It first samples

{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. It also samples
{︁
𝒌̃𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒2.

3. After that, it determines a vector 𝒅 ∈ ℤ𝑠max
𝑞 such that 𝑑1 = 1 and

∑︀
𝑗∈[𝑠max]

𝑀𝜌−1(𝑢),𝑗𝑑𝑗 = 0
for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]).

4. Next, it samples {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 such that the equation

−
∑︀

𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝒇𝑗 = 𝒌̃𝑢𝑨
⊤
𝑢 + 𝒌̂𝑢𝑨

⊤
𝑢 holds for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]).

5. Then, it generates 𝒕← EnSamplePre(𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚+𝒇2−𝒃′2, . . . , 𝑑𝑠max𝒚+𝒇𝑠max−𝒃′𝑠max
))

and sets 𝒕 = (1, 𝒕)..
6. Next, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), it sets 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢 + 𝒕𝑹⊤𝑢 .
7. Additionally, for all 𝑢 ∈ 𝑈∖𝜌([ℓ]), it generates 𝒌̃𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯

⊤
𝑢 −𝒌̂𝑢𝑨

⊤
𝑢 )

and sets 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
8. It hands 𝒜 the secret key

SK =
(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge Phase: This phase is executed in an identical manner to that in Hyb8 (or in Hyb9).
More precisely, in this phase ℬ selects a random bit 𝑏← {0, 1} and proceeds as follows:
1. It first samples 𝒔← ℤ𝑛

𝑞 and {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

2. It also samples {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe and {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚

big.
3. Next, for all 𝑖 ∈ [ℓ], it sets

𝒄𝑖 = 𝒔𝑨𝜌(𝑖) + 𝒆𝑖

𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +

∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒔𝑯𝜌(𝑖) + 𝒆𝑖

4. It gives 𝒜 the challenge ciphertext

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,MSB(𝒔𝒚⊤)⊕ 𝑏

)︁
.
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Guess: 𝒜 eventually outputs a guess 𝑏′ ∈ {0, 1}. If 𝑏′ = 𝑏, ℬ outputs 1. Otherwise, ℬ outputs
0.

Note that the game simulated by the reduction algorithm ℬ coincides with Hyb8 (Fig. 5.9) or
Hyb9 (Fig. 5.10) according as the matrices {𝑨𝑢}𝑢∈𝜌([ℓ]) ∈ ℤ𝑛×𝑚

𝑞 it obtained from its EnLTmatrix,𝑞,𝜎

challenger are generated as (𝑨𝑢, 𝑡𝑨𝑢) ← TrapGen(1𝑛, 1𝑚, 𝑞) for all 𝑢 ∈ 𝜌([ℓ]) or {𝑨𝑢}𝑢∈𝜌([ℓ]) ←
ℤ𝑛×𝑚
𝑞 . Thus, the advantage of ℬ in the EnLTmatrix,𝑞,𝜎 game is at least |𝑝𝒜,8(𝜆)− 𝑝𝒜,9(𝜆)| ≥ 𝜂(𝜆).

This completes the proof of Lemma 5.9. ⊓⊔

Lemma 5.10: For any adversary 𝒜, there exists a negligible function negl10(·) such that for all
𝜆 ∈ ℕ, |𝑝𝒜,9(𝜆)− 𝑝𝒜,10(𝜆)| ≤ negl10(𝜆).

Proof: Let us consider the difference between Hyb9 and Hyb10. The setup and key query phases
are identical in both hybrids. The only difference between the two games is with respect to the
challenge ciphertext. In particular, while preparing the challenge ciphertext, the components
{𝒄𝑖}𝑖∈[ℓ] are generated differently in the two games. In Hyb9, for all 𝑖 ∈ [ℓ], the challenger sets

𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0) +

∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒔𝑯𝜌(𝑖) + 𝒆𝑖, where 𝒆𝑖 ← 𝜒𝑚
big. In contrast, in

Hyb10, for all 𝑖 ∈ [ℓ], it sets 𝒄𝑖 = 𝑀𝑖,1(𝒔𝒚
⊤,

𝑚−1⏞  ⏟  
0, . . . , 0)+

∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗𝑩𝑗−𝒔𝑯𝜌(𝑖)−𝒆𝑖𝑹𝜌(𝑖)+𝒆′𝑖,

where 𝒆𝑖 ← 𝜒𝑚
lwe, 𝑹𝜌(𝑖) ←{−1, 1}𝑚×𝑚, and 𝒆′𝑖 ← 𝜒𝑚

big.
Using the smudging lemma, since 𝐵̂ > (𝑚3/2𝜎+1)2𝜆 holds, we can argue that there exists a

negligible function neglsmudge(·) such that for all 𝜆 ∈ ℕ, 𝑚 ∈ ℕ, SD(𝒟1,𝒟2) ≤ 𝑚 · neglsmudge(𝜆),
where

𝒟1 ≡
{︀
𝒆𝑖 | 𝒆𝑖 ← 𝜒𝑚

big

}︀
,

𝒟2 ≡
{︀
−𝒆𝑖𝑹𝜌(𝑖) + 𝒆′𝑖 | 𝒆𝑖 ← 𝜒𝑚

lwe,𝑹𝜌(𝑖) ←{−1, 1}𝑚×𝑚 , 𝒆′𝑖 ← 𝜒𝑚
big

}︀
.

As a result, since the total number of 𝒄𝑖 components included in the challenge ciphertext is
ℓ, it follows that for any 𝜆 ∈ ℕ,

|𝑝𝒜,9(𝜆)− 𝑝𝒜,10(𝜆)| ≤ ℓ ·𝑚 · neglsmudge(𝜆).

This completes the proof of Lemma 5.10. ⊓⊔

Lemma 5.11: If the LWE𝑛,𝑞,𝜎 assumption holds, then for all PPT adversary 𝒜, there exists a
negligible function negl11(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,10(𝜆)− 𝑝𝒜,11(𝜆)| ≤ negl11(𝜆).

Proof: Suppose on the contrary, there exists an adversary 𝒜 and a non-negligible function 𝜂(·)
such that |𝑝𝒜,10(𝜆)− 𝑝𝒜,11(𝜆)| ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ. Using 𝒜 as a sub-routine, we will construct
a reduction algorithm ℬ below such that Adv

LWE𝑛,𝑞,𝜎

ℬ (𝜆) ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ.

Setup Phase: The reduction algorithm ℬ receives 1𝜆, 𝑛, 𝑞, 𝜎 from its LWE𝑛,𝑞,𝜎 challenger. ℬ
then invokes 𝒜 on input 1𝜆 and receives back an LSSS access policy (𝑴 , 𝜌), where 𝑴 ∈
{−1, 0, 1}ℓ×𝑠max ⊂ ℤℓ×𝑠max

𝑞 and 𝜌 : [ℓ]→ 𝕌 is an injective row-labeling function. Upon receipt
it proceeds as follows:
1. It chooses dimension 𝑚 and distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described in Section 5.
2. Then, it uses its LWE𝑛,𝑞,𝜎 challenger to define matrices {𝑨𝑢}𝑢∈𝜌([ℓ]) ⊂ ℤ𝑛×𝑚

𝑞 and vector
𝒚 ∈ ℤ𝑛

𝑞 . Suppose 𝜌([ℓ]) = {𝑢𝑧 }𝑧∈[ℓ] ⊂ 𝕌. ℬ makes 𝑚ℓ+1 queries to its LWE𝑛,𝑞,𝜎 challenger,
and receives back {(𝒂𝜄, 𝑟𝜄)}𝜄∈[𝑚ℓ+1] ⊂ ℤ𝑛

𝑞 × ℤ𝑞, where for all 𝜄 ∈ [𝑚ℓ + 1], 𝑎𝜄 ← ℤ𝑛
𝑞 and

either 𝑟𝜄 = 𝒔𝒂⊤𝜄 + 𝑒𝜄 mod 𝑞 for some 𝒔← ℤ𝑛
𝑞 and 𝑒𝜄 ← 𝒟ℤ,𝜎 or 𝑟𝜄 ← ℤ𝑞. ℬ sets the matrix

𝑨𝑢𝑧 =
(︁
𝒂⊤𝑚(𝑧−1)+1| · · · |𝒂

⊤
𝑚𝑧

)︁
∈ ℤ𝑛×𝑚

𝑞 for all 𝑧 ∈ [ℓ] and the vector 𝒚 = 𝒂𝑚ℓ+1 ∈ ℤ𝑛
𝑞 .
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3. It also generates {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝕌∖𝜌([ℓ]) ← EnTrapGen(1𝑛, 1𝑚, 𝑞) such that {𝑨𝑢}𝑢∈𝕌∖𝜌([ℓ]) ∈
ℤ𝑛×𝑚
𝑞 .

4. Then, it generates (𝑩′ =
[︀
𝑩′⊤2 | · · · |𝑩′⊤𝑠max

]︀⊤
, 𝑇𝑩′) ← EnTrapGen(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) such

that
{︁
𝑩′𝑗

}︁
𝑗∈{2,...,𝑠max}

∈ ℤ𝑛×(𝑚−1)
𝑞 .

5. It additionally samples
{︁
𝒃′𝑗

}︁
𝑗∈{2,...,𝑠max}

← ℤ𝑛
𝑞 . And sets 𝑩𝑗 =

[︀
𝒃′⊤𝑗 |𝑩′𝑗

]︀
for all ∀𝑗 ∈

{2, . . . , 𝑠max}.

6. Next, it samples {𝑹𝑢}𝑢∈𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 and sets 𝑯𝑢 = 𝑀𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+∑︀

𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝑩𝑗 +𝑨𝑢𝑹𝑢 for all 𝑢 ∈ 𝜌([ℓ]).
7. It also samples {𝑯𝑢}𝑢∈𝕌∖𝜌([ℓ]) ← ℤ𝑛×𝑚

𝑞 .
8. It provides 𝒜 with the public parameters

PK = (𝑛,𝑚, 𝑞, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝒚,{𝑨𝑢}𝑢∈𝕌 ,{𝑯𝑢}𝑢∈𝕌).

Key Query Phases: In both the pre-ciphertext and post-ciphertext key query phases, to
answer a secret key query of 𝒜 corresponding to some attribute set 𝑈 ⊂ 𝕌, ℬ runs the
following steps:
1. It first samples

{︁
𝒌̂𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. It also samples
{︁
𝒌̃𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒2.

3. Next, it determines a vector 𝒅 ∈ ℤ𝑠max
𝑞 such that 𝑑1 = 1 and

∑︀
𝑗∈[𝑠max]

𝑀𝜌−1(𝑢),𝑗𝑑𝑗 = 0 for
all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]).

4. Subsequently, it samples {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 satisfying

∑︀
𝑗∈{2,...,𝑠max}𝑀𝜌−1(𝑢),𝑗𝒇𝑗 =

𝒌̃𝑢𝑨
⊤
𝑢 + 𝒌̂𝑢𝑨

⊤
𝑢 holds for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]).

5. Then, it generates 𝒕← EnSamplePre(𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚+𝒇2−𝒃′2, . . . , 𝑑𝑠max𝒚+𝒇𝑠max−𝒃′𝑠max
))

and sets 𝒕 = (1, 𝒕)..
6. Next, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), it sets 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢 + 𝒕𝑹⊤𝑢 .
7. Additionally, for all 𝑢 ∈ 𝑈∖𝜌([ℓ]), it generates 𝒌̃𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕𝑯

⊤
𝑢 −𝒌̂𝑢𝑨

⊤
𝑢 )

and sets 𝒌𝑢 = 𝒌̂𝑢 + 𝒌̃𝑢.
8. It hands 𝒜 the secret key

SK =
(︀
{𝒌𝑢}𝑢∈𝑈 , 𝒕

)︀
.

Challenge Phase: Upon receiving the challenge query from 𝒜, ℬ selects a random bit 𝑏 ←
{0, 1} and proceeds as follows:
1. It first samples

{︁
𝒗′𝑗

}︁
𝑗∈{2,...,𝑠max}

← ℤ𝑛
𝑞 .

2. It additionally samples {𝒆′𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

3. Then, for all 𝑖 ∈ [ℓ], it defines the vector 𝒓𝑖 as 𝒓𝑖 = (𝑟𝑚(𝑧−1)+1, . . . , 𝑟𝑚𝑧) ∈ ℤ𝑚
𝑞 if 𝜌(𝑖) =

𝑢𝑧 ∈ 𝕌, where it obtained {𝑟𝜄}𝜄∈[𝑚ℓ] from its LWE𝑛,𝑞,𝜎 challenger during the setup phase
above, and sets the following:

𝒄𝑖 = 𝒓𝑖,

𝒄𝑖 =
∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗
′
𝑗𝑩𝑗 − 𝒄𝑖𝑹𝜌(𝑖) + 𝒆′𝑖.

4. Finally, it outputs the challenge ciphertext as

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,MSB(𝑟𝑚ℓ+1)⊕ 𝑏

)︁
,

where it obtained 𝑟𝑚𝜌([ℓ])+1 ∈ ℤ𝑞 from its LWE𝑛,𝑞,𝜎 challenger during the setup phase above.
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Guess: 𝒜 eventually outputs a guess 𝑏′ ∈ {0, 1}. If 𝑏′ = 𝑏, ℬ outputs 1. Otherwise, ℬ outputs
0.

Note that the game simulated by the reduction algorithm ℬ coincides with Hyb10 (Fig. 5.11)
if the responses {(𝒂𝜄, 𝑟𝜄)}𝜄∈[𝑚ℓ+1] ∈ (ℤ𝑛

𝑞 × ℤ𝑞)
𝑚ℓ+1 it receives from its LWE𝑛,𝑞,𝜎 challenger are

a collection of perfectly distributed LWE samples, i.e. if for all 𝜄 ∈ [𝑚ℓ + 1], 𝒂𝜄 ← ℤ𝑛
𝑞 and

𝑟𝜄 = 𝒔𝒂⊤𝜄 + 𝑒𝜄 mod 𝑞 for some 𝒔 ← ℤ𝑛
𝑞 and 𝑒𝜄 ← 𝒟ℤ,𝜎 (which is statistically close to ̃︀𝐷ℤ,𝜎).

This is accomplished by ℬ by implicitly setting {𝒗𝑗 }𝑗∈{2,...,𝑠max} used to generate the ciphertext
components {𝒄𝑖}𝑖∈[ℓ] used in Hyb10 as 𝒗𝑗 = 𝒔+𝒗′𝑗 for all 𝑗 ∈ {2, . . . , 𝑠max} during the simulation.
On the other hand, the game simulated by ℬ above coincides with Hyb11 (Fig. 5.12) if the
responses {(𝒂𝜄, 𝑟𝜄)}𝜄∈[𝑚ℓ+1] ∈ (ℤ𝑛

𝑞 × ℤ𝑞)
𝑚ℓ+1 of its LWE𝑛,𝑞,𝜎 challenger are uniformly random.

Specifically, note that the ciphertext components {𝒄𝑖}𝑖∈[ℓ] are perfectly simulated as those in
Hyb11 by ℬ in this case since 𝜌 is injective and the vectors {𝒓𝑖}𝑖∈[ℓ] ∈ ℤ𝑚

𝑞 defined by ℬ in the
simulation above are uniformly and independently distributed over ℤ𝑚

𝑞 in this case. Moreover,
the ciphertext components {𝒄𝑖}𝑖∈[ℓ] are generated by ℬ in an exactly identical fashion to that
in Hyb11 in this case. Finally, observe that since 𝑟𝑚ℓ+1 ← ℤ𝑞 in this case, MSB(𝑟𝑚ℓ+1) ⊕ 𝑏 is
distributed identically to MSB(𝜏) with 𝜏 ← ℤ𝑞. Hence, it follows that the advantage of ℬ in
solving the LWE𝑛,𝑞,𝜎 problem is at least |𝑝𝒜,10(𝜆)− 𝑝𝒜,11(𝜆)| ≥ 𝜂(𝜆). This completes the proof
of Lemma 5.11. ⊓⊔

6 Our Multi-Authority ABE Scheme

In this section, we present our MA-ABE scheme for access structures represented by DNF formu-
las. The scheme is associated with a universe of global identifiers 𝒢ℐ𝒟 ⊂ {0, 1}*, a universe of
authority identifiers 𝒜𝒰 , and we will use the Lewko-Waters [LW11a] transformation to represent
the DNF access policies as monotone LSSS. More precisely, we only design an MA-ABE scheme
for LSSS access policies (𝑴 , 𝜌) with properties stipulated in Lemma 4.1, that is, we construct an
MA-ABE scheme for LSSS access policies (𝑴 , 𝜌) such that the entries of 𝑴 come from {−1, 0, 1}
as well as reconstruction only involves coefficients coming from {0, 1}, and prove the scheme to
be statically secure under linear independence restriction as per Definition 3.7. Thanks to the ob-
servation made by [ABN+21] as mentioned in Remark 4.1, our MA-ABE scheme actually achieves
the standard notion of static security as per Definition 3.7 when implemented for the class of all
access structures represented by DNF formulas. We will assume each authority controls only one
attribute in our scheme. However, it can be readily generalized to a scheme where each authority
controls an a priori bounded number of attributes using standard techniques [LW11a]. Further,
we will assume that all access policies (𝑴 , 𝜌) used in our scheme correspond to a matrix 𝑴 with
at most 𝑠max columns and an injective row-labeling function 𝜌, i.e., an authority/attribute is as-
sociated with at most one row of 𝑴 . Since the Lewko-Waters transformation [LW11a] introduces
a new column for the resulting LSSS matrix for each AND gate in the underlying formula, the
bound in the number of columns of the LSSS matrices naturally translates to the number of AND
gates of the supported DNF formulas at implementation. Similar to our CP-ABE scheme, in our
scheme description below, we assume for simplicity of presentation that both the encryption and
the decryption algorithms receive an access policy directly in its LSSS representation. However,
we note that in the actual implementation, the encryption and decryption algorithms should
instead take in the DNF representation of the access policy and deterministically compute its
LSSS representation using the Lewko-Waters transformation algorithm [LW11a].

First, we provide the parameter constraints required by our correctness and security proof.
Fix any 0 < 𝜖 < 1/2. For any 𝐵 ∈ ℕ, let 𝒰𝐵 denote the uniform distribution on ℤ∩ [−𝐵,𝐵], i.e.,
integers between ±𝐵. The Setup algorithm chooses parameters 𝑛,𝑚, 𝜎, 𝑞 and noise distributions
𝜒lwe, 𝜒1, 𝜒2, 𝜒big, satisfying the following constraints:

– 𝑛 = poly(𝜆), 𝜎 < 𝑞, 𝑛 · 𝑞/𝜎 < 2𝑛
𝜖 , 𝜒lwe = ̃︀𝒟ℤ,𝜎 (for LWE security)
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– 𝑚 > 2𝑠max𝑛 log 𝑞 + 𝜔 log 𝑛+ 2𝜆 (for enhanced trapdoor sampling and LHL)
– 𝜎 >

√
𝑠max𝑛 log 𝑞 log𝑚+ 𝜆 (for enhanced trapdoor sampling)

– 𝜒1 = ̃︀𝒟ℤ𝑚−1,𝜎, 𝜒2 = ̃︀𝒟ℤ𝑚,𝜎 (for enhanced trapdoor sampling)
– 𝜒big = 𝒰𝐵̂, where 𝐵̂ > 𝑚3/2𝜎2𝜆 (for smudging/security)
– |𝒜𝒰| (𝑚3/2𝜎2 + 2𝑚𝐵̂2) < 𝑞/4 (for correctness)

We will now describe our MA-ABE construction.

𝗚𝗹𝗼𝗯𝗮𝗹𝗦𝗲𝘁𝘂𝗽(1𝝀, 𝒔max): The global setup algorithm takes in the security parameter 𝜆 encoded
in unary and the maximum width 𝑠max = 𝑠max(𝜆) of an LSSS matrix supported by the scheme.
It first chooses an LWE modulus 𝑞, dimensions 𝑛,𝑚, and also distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as
described above. Next, it samples a vector 𝒚 ← ℤ𝑛

𝑞 and sets the matrix 𝑩1 ∈ ℤ𝑛×𝑚
𝑞 as 𝑩1 =[︃

𝒚⊤‖

𝑚−1⏞  ⏟  
0⊤‖ · · · ‖0⊤

]︃
, where each 0 ∈ ℤ𝑛

𝑞 . Furthermore, we assume a hash function H : 𝒢ℐ𝒟 →

(ℤ ∩ [−𝐵̂, 𝐵̂])
𝑚−1

mapping strings GID ∈ 𝒢ℐ𝒟 to random (𝑚−1)-dimensional vectors of integers
in the interval [−𝐵̂, 𝐵̂]. H will be modeled as a random oracle in the security proof. Finally, it
outputs the hash function H and the global parameters

GP = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1) .

𝗔𝘂𝘁𝗵𝗦𝗲𝘁𝘂𝗽(𝗚𝗣,𝗛, 𝒖): Given the global parameters GP, the hash function H, and an au-
thority identifier 𝑢 ∈ 𝒜𝒰 , the algorithm generates a matrix-trapdoor pair (𝑨𝑢, 𝑇𝑨𝑢) ←
EnTrapGen(1𝑛, 1𝑚, 𝑞) such that 𝑨𝑢 ∈ ℤ𝑛×𝑚

𝑞 , samples another matrix 𝑯𝑢 ← ℤ𝑛×𝑚
𝑞 , and out-

puts the pair of public key and secret key for the authority 𝑢

PK𝑢 = (𝑨𝑢,𝑯𝑢) , MSK𝑢 = 𝑇𝑨𝑢 .

𝗞𝗲𝘆𝗚𝗲𝗻(𝗚𝗣,𝗛,𝗚𝗜𝗗,𝗠𝗦𝗞𝒖): The key generation algorithm takes as input the global parame-
ters GP, the hash function H, the user’s global identifier GID, and the authority’s secret key MSK𝑢.
It first computes the vector 𝒕GID = (1,H(GID)) ∈ ℤ𝑚. Next, it chooses a vector 𝒌̂GID,𝑢 ← 𝜒𝑚

big,
samples a vector 𝒌̃GID,𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕GID𝑯

⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ), and outputs the secret

key for the user GID as
SKGID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

𝗘𝗻𝗰(𝗚𝗣,𝗛,𝗺𝘀𝗴, (𝑴,𝝆),{𝗣𝗞𝒖}): The encryption algorithm takes as input the global pa-
rameters GP, the hash function H, a message bit msg ∈ {0, 1} to encrypt, an LSSS access policy
(𝑴 , 𝜌) generated by the Lewko-Waters transformation [LW11a], where 𝑴 = (𝑀𝑖,𝑗)ℓ×𝑠max ∈
{−1, 0, 1}ℓ×𝑠max ⊂ ℤℓ×𝑠max

𝑞 (Lemma 4.1) and 𝜌 : [ℓ] → 𝒜𝒰 , and public keys of the relevant au-
thorities {PK𝑢}. The function 𝜌 associates rows of 𝑴 to authorities (recall that we assume
that each authority controls a single attribute). We assume that 𝜌 is an injective function. The
procedure samples vectors 𝒔 ← ℤ𝑛

𝑞 , {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑚
𝑞 , and {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛

𝑞 . It additionally
samples vectors {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚

lwe and {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big. For each 𝑖 ∈ [ℓ], it computes vectors

𝒄𝑖, 𝒄𝑖 ∈ ℤ𝑚
𝑞 as follows:

𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖

𝒄𝑖 = 𝑀𝑖,1𝒔𝑩1 +

⎡⎣ ∑︁
𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗

⎤⎦− 𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖

and outputs

CT =
(︁
(𝑴 , 𝜌),{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] , 𝐶 = MSB(𝒔𝒚⊤)⊕msg

)︁
.
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𝗗𝗲𝗰(𝗚𝗣,𝗛,𝗖𝗧,𝗚𝗜𝗗,{𝗦𝗞𝗚𝗜𝗗,𝒖}): Decryption takes as input the global parameters GP, the
hash function H, a ciphertext CT generated with respect to an LSSS access policy (𝑴 , 𝜌)
generated by the Lewko-Waters transformation [LW11a], a user identity GID, and the secret
keys

{︀
SKGID,𝜌(𝑖)

}︀
𝑖∈𝐼 corresponding to a subset 𝐼 of row indices of the access matrix 𝑴 pos-

sessed by that user. If (1, 0, . . . , 0) is not in the span of the rows of 𝑴 having indices in
the set 𝐼, then decryption fails. Otherwise, let {𝑤𝑖}𝑖∈𝐼 ∈ {0, 1} ⊂ ℤ𝑞 be scalars such that∑︀

𝑖∈𝐼 𝑤𝑖𝑴𝑖 = (1, 0, . . . , 0), where 𝑴𝑖 is the 𝑖th row of 𝑴 . The existence of such scalars {𝑤𝑖}𝑖∈𝐼
and their efficient determination are guaranteed by [LW11a,BGG+18,ABN+21]. The algorithm
computes the vector 𝒕GID = (1,H(GID)) ∈ ℤ𝑚 followed by

𝐾 ′ =
∑︁
𝑖∈𝐼

𝑤𝑖 ·
(︁
𝒄𝑖SK

⊤
GID,𝜌(𝑖) + 𝒄𝑖𝒕

⊤
GID

)︁
,

and outputs

msg′ = 𝐶 ⊕MSB(𝐾 ′).

6.1 Correctness

We show that the scheme is correct. Assume that the authorities in {SKGID,𝑢} correspond to a
qualified set according to the LSSS access policy (𝑴 , 𝜌) associated with CT, i.e., the correspond-
ing subset of row indices 𝐼 corresponds to rows in 𝑴 that have (1, 0, . . . , 0) in their linear span
with coefficients {𝑤𝑖}𝑖∈𝐼 ∈ {0, 1} ⊂ ℤ𝑞. By construction,

𝐾 ′ =
∑︁
𝑖∈𝐼

𝑤𝑖 ·
(︁
𝒄𝑖SK

⊤
GID,𝜌(𝑖) + 𝒄𝑖𝒕

⊤
GID

)︁

Expanding {𝒄𝑖}𝑖∈𝐼 and {𝒄𝑖}𝑖∈𝐼 , we get

𝐾 ′ =
∑︁
𝑖∈𝐼

𝑤𝑖 ·

⎛⎝(︀𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖
)︀
· SK⊤GID,𝜌(𝑖) +

⎛⎝𝑀𝑖,1𝒔𝑩1 +
∑︁

𝑗∈{2,...,𝑠max}

𝑀𝑖,𝑗𝒗𝑗 − 𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖

⎞⎠ 𝒕⊤GID

⎞⎠
=
∑︁
𝑖∈𝐼

𝑤𝑖𝒙𝑖𝑨𝜌(𝑖)SK
⊤
GID,𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,1𝒔𝑩1𝒕
⊤
GID +

∑︁
𝑖∈𝐼,𝑗∈{2,...,𝑠max}

𝑤𝑖𝑀𝑖,𝑗𝒗𝑗𝒕
⊤
GID

−
∑︁
𝑖∈𝐼

𝑤𝑖𝒙𝑖𝑯𝜌(𝑖)𝒕
⊤
GID +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖SK
⊤
GID,𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒕
⊤
GID.

Recall that for each 𝑢 ∈ 𝜌(𝐼), we have 𝑨𝑢𝒌̃
⊤
GID,𝑢 = 𝑯𝑢𝒕

⊤
GID − 𝑨𝑢𝒌̂

⊤
GID,𝑢 and also SKGID,𝑢 =

𝒌̂GID,𝑢 + 𝒌̃GID,𝑢. Therefore, for each 𝑖 ∈ 𝐼, we have

𝑨𝜌(𝑖)SK
⊤
GID,𝜌(𝑖) = 𝑨𝜌(𝑖)𝒌̂

⊤
GID,𝜌(𝑖) +𝑨𝜌(𝑖)𝒌̃

⊤
GID,𝜌(𝑖)

= 𝑯𝜌(𝑖)𝒕
⊤
GID.
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Plugging this in, the first and fourth terms cancel and we are left with

𝐾 ′ =
∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,1𝒔𝑩1𝒕
⊤
GID +

∑︁
𝑖∈𝐼,𝑗∈{2,...,𝑠max}

𝑤𝑖𝑀𝑖,𝑗𝒗𝑗𝒕
⊤
GID

+
∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖SK
⊤
GID,𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒕
⊤
GID

=

(︃∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,1

)︃
𝒔𝑩1𝒕

⊤
GID +

∑︁
𝑗∈{2,...,𝑠max}

(︃∑︁
𝑖∈𝐼

𝑤𝑖𝑀𝑖,𝑗

)︃
𝒗𝑗𝒕
⊤
GID

+
∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖SK
⊤
GID,𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒕
⊤
GID

=𝒔𝑩1𝒕
⊤
GID +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖SK
⊤
GID,𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒕
⊤
GID,

where the last equality holds since for 𝑗 = 1 we have that
∑︀

𝑖∈𝐼 𝑤𝑖𝑀𝑖,𝑗 = 1 while for 𝑗 ∈
{2, . . . , 𝑠max} we have that

∑︀
𝑖∈𝐼 𝑤𝑖𝑀𝑖,𝑗 = 0. Now, recall that 𝑩1 =

[︀
𝒚⊤‖0⊤‖ · · · ‖0⊤

]︀
and

𝒕GID = (1,H(GID)), so that 𝑩1𝒕
⊤
GID = 𝒚⊤. Hence,

𝐾 ′ = 𝒔𝒚⊤ +
∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖SK
⊤
GID,𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒕
⊤
GID.

Correctness now follows since the last two terms are small and should not affect the MSB
of 𝒔𝒚⊤. To see this, we observe that the following bounds hold with all but negligible probability:

– ‖𝒆𝑖‖ ≤
√
𝑚𝜎: This follows directly from Lemma 3.3 since each of the 𝑚 coordinates of 𝒆𝑖

comes from the truncated discrete Gaussian distribution ̃︀𝒟ℤ,𝜎.
– ‖𝒆𝑖‖ ≤

√
𝑚𝐵̂: This holds since each of the 𝑚 coordinates of 𝒆𝑖 comes from the uniform

distribution over ℤ ∩ [−𝐵̂, 𝐵̂].
– ‖SKGID,𝜌(𝑖)‖ ≤ 𝑚𝜎 +

√
𝑚𝐵̂: This holds since SKGID,𝜌(𝑖) = 𝒌̂GID,𝜌(𝑖) + 𝒌̃GID,𝜌(𝑖), where (1)

‖𝒌̂𝜌(𝑖)‖ ≤
√
𝑚𝐵̂ since each of its 𝑚 coordinates comes from the uniform distribution over

ℤ∩ [−𝐵̂, 𝐵̂] and (2) ‖𝒌̃𝜌(𝑖)‖ ≤ 𝑚𝜎 since it comes from a distribution that is statistically close
to the truncated discrete Gaussian distribution ̃︀𝒟ℤ𝑚,𝜎.

– ‖𝒕GID‖ <
√
𝑚𝐵̂: This holds since 𝒕GID = (1,H(GID)), where H(GID) is a member of (ℤ ∩

[−𝐵̂, 𝐵̂])𝑚.

Given the above and using the fact that the 𝑤𝑖’s are in {0, 1} [LW11a,BGG+18,ABN+21],
we have that

‖
∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖SK
⊤
GID,𝜌(𝑖) +

∑︁
𝑖∈𝐼

𝑤𝑖𝒆𝑖𝒕
⊤
GID‖ < |𝒜𝒰| (𝑚3/2𝜎2 +𝑚𝜎𝐵̂ +𝑚𝐵̂2)

< |𝒜𝒰| (𝑚3/2𝜎2 + 2𝑚𝐵̂2)

< 𝑞/4,

where the last inequality is by the parameter setting as shown above. Thus, with all but negligible
probability in 𝜆, the MSB of 𝒔𝒚⊤ is not affected by the above noise which is bounded by 𝑞/4
and therefore does not affect the most significant bit. Namely, MSB(𝐾 ′) = MSB(𝒔𝒚⊤). This
completes the proof of correctness.

6.2 Security Analysis

Theorem 6.1: If the LWE assumption holds, then the proposed MA-ABE scheme for DNF for-
mulas is statically secure in the random oracle model (as per Definition 3.6).
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To prove this theorem we prove a slightly easier statement, namely, that our MA-ABE scheme
is statically secure under linear independence restriction and show that it actually suffices.

Theorem 6.2: If the LWE assumption holds, then the proposed MA-ABE scheme is statically
secure under lineaer independence restriction in the random oracle model (as per Definition 3.7).

Proof (that Theorem 6.2 ⇒ Theorem 6.1): Observe that the only difference between the
static security under linear independence restriction and the static security games for MA-ABE
is that in the former game, we have the additional restriction that for each of the secret keys
queried by the adversary 𝒜 for some user ID-attribute set pair (GID, 𝑈), all the rows of the
challenge LSSS matrix 𝑴 which correspond to the attributes in 𝑈 combined with all the rows
which correspond to the authorities corrupted by 𝒜 must be linearly independent. However,
note that by the restriction of the static security game, for each of the secret keys queried by the
adversary𝒜 for some user ID-attribute set pair (GID, 𝑈), all the rows of the challenge LSSS matrix
𝑴 which correspond to the attributes in 𝑈 combined with all the rows which correspond to the
authorities corrupted by 𝒜must be unauthorized. Thanks to the observations made by [ABN+21]
as mentioned in Remark 4.1, the property that rows corresponding to unauthorized sets are
linearly independent can be ensured by applying the Lewko-Waters transformation [LW11a] for
deriving the monotone LSSS representations of access policies captured by DNF formulas. Hence,
the restriction of the static security game directly implies that for each of the secret keys queried
by the adversary 𝒜 for some user ID-attribute set pair (GID, 𝑈), all the rows of the challenge LSSS
matrix 𝑴 which correspond to the attributes in 𝑈 combined with all the rows which correspond
to the authorities corrupted by 𝒜 must be linearly independent in case of our MA-ABE scheme
realized for DNF access policies via the Lewko-Waters transformation [LW11a]. Consequently,
the static security under linear independence restriction and the standard static security games
are actually equivalent in the context of the proposed MA-ABE scheme realized for DNF access
policies.

⊓⊔

Remark 6.1 (Incompatibility of the transformation from Section 4.2 with our
𝗠𝗔-𝗔𝗕𝗘): Both our CP-ABE and MA-ABE constructions are built for {0, 1}-LSSS access poli-
cies with security under the restriction that the sets of unauthorized rows of the challenge LSSS
access policy the adversary gets hold of in the security experiment are linearly independent. We
designed in Section 4.2, a transformation that given any NC1 access policy converts it into a non-
monotone {0, 1}-LSSS with the property that the unauthorized rows of the resulting LSSS that
do not include both the positive and negative instances of a particular attribute simultaneously
are linearly independent. While this is not an issue for CP-ABE, this becomes problematic for
MA-ABE.

In the CP-ABE scheme, any unauthorized set of rows of the challenge LSSS policy an adversary
can get hold of during the security experiment never includes both the positive and negative
instance of a particular attribute and hence our transformation from Section 4.2 can guarantee
that the unauthorized rows of the challenge LSSS matrix the adversary gets hold of are linearly
independent. This holds because there is a single authority that distributes secret keys to users
and the authority is trusted. That is, the user gets a key component for an attribute if the
authority deems that the user really possesses that attribute and gets a key for the negated
attribute otherwise.

In an MA-ABE scheme, however, there are multiple authorities responsible for controlling
different attributes and some of those authorities can potentially be corrupted by the adversary
during the security experiment. Such a corruption naturally allows the adversary to get both a key
for an attribute controlled by that corrupt authority and a key for its negation. Consequently, it
is possible for an adversary to get hold of sets of unauthorized rows which correspond to both the
positive and negative instances of some attributes. Therefore, we cannot use our non-monotone



Decentralized Multi-Authority ABE for DNFs from LWE 61

LSSS scheme from Section 4.2. On the other hand, we can use the construction of Lewko and
Waters [LW11a] applied only on DNF formulas, which as we mentioned in Remark 4.1, results
with a monotone LSSS with the required linear independence property.

Proof (of Theorem 6.2): In order to prove Theorem 6.2, we consider a sequence of hybrid
games which differ from one another in the formation of the global public parameters, the public
keys for non-corrupt authorities, the challenge ciphertext, the output of the random oracle H,
or the secret keys queried by the adversary 𝒜. The first hybrid in the sequence corresponds to
the real static security under linear independence restriction game for the proposed MA-ABE
scheme, while the final hybrid is one where the advantage of 𝒜 is zero. We argue that 𝒜’s
advantage changes only by a negligible amount between each successive hybrid game, thereby
establishing Theorem 6.2. In this proof, we will model H as a random oracle programmed by the
challenger.

The Hybrids

In all hybrids, the game starts with the challenger providing the global public parameters to the
adversary 𝒜, followed by 𝒜 sending the following items to the challenger.

(a) A set 𝒞 ⊂ 𝒜𝒰 of corrupt authorities and their respective public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒞 ,

where 𝑨𝑢,𝑯𝑢 ∈ ℤ𝑛×𝑚
𝑞 for all 𝑢 ∈ 𝒞.

(b) A set 𝒩 ⊂ 𝒜𝒰 of non-corrupt authorities, i.e., 𝒞 ∩ 𝒩 = ∅, for which 𝒜 requests the public
keys.

(c) A set ℋ = {GID} of H oracle queries, where each GID ∈ 𝒢ℐ𝒟 is distinct.
(d) A set 𝒬 = {(GID, 𝑈)} of secret key queries, where each GID ∈ 𝒢ℐ𝒟 is distinct and each

𝑈 ⊂ 𝒩 .
(e) A challenge LSSS access policy (𝑴 , 𝜌) with 𝜌 labeling the rows of 𝑴 with authori-

ties/attributes in (𝒞 ∪ 𝒩 ) subject to the restriction that for all pairs (GID, 𝑈) ∈ 𝒬, the
rows of 𝑴 labeled by authorities/attributes in (𝒞 ∪ 𝑈) are unauthorized with respect to
(𝑴 , 𝜌), and moreover, the rows of 𝑴 labeled by the authorities/attributes in (𝒞 ∪ 𝑈), i.e.,
the rows of 𝑴 having indices in 𝜌−1(𝒞 ∪ 𝑈) are linearly independent.

The challenger then provides the requested authority public keys, H oracle outputs, and secret
keys to 𝒜. The challenger additionally sends to 𝒜 a challenge ciphertext encrypting a random bit
𝑏 ← {0, 1} of the challenger’s choice under the challenge access policy (𝑴 , 𝜌) committed to by
𝒜. The game terminates with 𝒜 outputting its guess for the bit 𝑏 encrypted within the challenge
ciphertext. We describe how the challenger generates the global public parameters GP, authority
public keys {PK𝑢}𝑢∈𝒩 , H oracle output H(GID) for each GID ∈ ℋ, secret keys {SKGID,𝑢}𝑢∈𝑈 for
each (GID, 𝑈) ∈ 𝒬, and the challenge ciphertext CT in each of the hybrid games below.

𝗛𝘆𝗯0: This hybrid corresponds to the real static security game for the proposed MA-ABE
scheme.
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Generating 𝖦𝖯:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3.
𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑎𝑟𝑎𝑚𝑠 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

2. {𝑯𝑢}𝑢∈𝒩 ← ℤ𝑛×𝑚
𝑞 .

3. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1. 𝒕GID ← 𝜒𝑚−1
big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).
3. ∀𝑢 ∈ 𝑈 : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,

𝒕GID𝑯
⊤
𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 ).

4. ∀𝑢 ∈ 𝑈 : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑚
𝑞 .

3. {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛
𝑞 .

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

5. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.

7. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀𝑖,1𝒔𝑩1 +
[︁∑︀

𝑗∈{2,...,𝑠max} 𝑀𝑖,𝑗𝒗𝑗

]︁
−

𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖.

8. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 6.1. Hyb0.

𝗛𝘆𝗯1: This hybrid is analogous to Hyb0 except the generation of the additional matrices
{𝑩𝑗 }𝑗∈{2,...,𝑠max} during the global setup phase and the way the vectors {𝒄𝑖}𝑖∈[ℓ] are generated
using those matrices while preparing the challenge ciphertext. In the following (𝑴 ′, 𝜌) is the
LSSS access policy obtained by applying Lemma 4.2 on (𝑴 , 𝜌). The indistinguishably between
Hyb0 and Hyb1 follows from the zero-out lemma (Lemma 4.2).

Generating 𝖦𝖯:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3. {𝑩𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛×𝑚
𝑞 .

4. 𝖦𝖯 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

2. {𝑯𝑢}𝑢∈𝒩 ← ℤ𝑛×𝑚
𝑞 .

3. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1. 𝒕GID ← 𝜒𝑚−1
big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).
3. ∀𝑢 ∈ 𝑈 : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,

𝒕GID𝑯
⊤
𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 ).

4. ∀𝑢 ∈ 𝑈 : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛
𝑞 .

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

5. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.
7. ∀𝑖 ∈ [ℓ] :

𝒄𝑖 = 𝑀 ′
𝑖,1𝒔𝑩1 +

[︁∑︀
𝑗∈{2,...,𝑠max} 𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
−

𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖.

8. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 6.2. Hyb1.
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𝗛𝘆𝗯2: This hybrid is the same as Hyb1 except the way the matrices {𝑯𝑢}𝑢∈𝒩∩𝜌([ℓ]) are
generated while generating the public keys for non-corrupt authorities. In the following, let
𝑠max = 𝑠max − 𝑐, where 𝑐 =

⃒⃒
𝜌−1(𝒞)

⃒⃒
. Observe that the changes between Hyb1 and Hyb2 are also

merely syntactic, and hence, the two hybrids are indistinguishable.

Generating 𝖦𝖯:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3. {𝑩𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛×𝑚
𝑞 .

4. 𝖦𝖯 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

2.
{︀
𝑯 ′

𝑢

}︀
𝑢∈𝒩∩𝜌([ℓ])

← ℤ𝑛×𝑚
𝑞 .

3. ∀𝑢 ∈ 𝒩∩𝜌([ℓ]) : 𝑯𝑢 =
∑︁

𝑗∈[𝑠max]

𝑀 ′
𝜌−1(𝑢),𝑗𝑩𝑗 +𝑯 ′

𝑢.

4. {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

5. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1. 𝒕GID ← 𝜒𝑚−1
big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).
3. ∀𝑢 ∈ 𝑈 : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,

𝒕GID𝑯
⊤
𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 ).

4. ∀𝑢 ∈ 𝑈 : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛
𝑞 .

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

5. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.

7. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀 ′
𝑖,1𝒔𝑩1+

[︁∑︀
𝑗∈{2,...,𝑠max} 𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
−

𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖.

8. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 6.3. Hyb2.
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𝗛𝘆𝗯3: This hybrid is identical to Hyb2 except the generation of the matrices {𝑯 ′𝑢}𝑢∈𝒩∩𝜌([ℓ])
while generating the public keys for non-corrupt authorities.The indistinguishability between
Hyb2 and Hyb3 follows from the leftover hash lemma with trapdoors (Lemma 3.4).

Generating 𝖦𝖯:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3. {𝑩𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛×𝑚
𝑞 .

4. 𝖦𝖯 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

2. {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 .

3. ∀𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

4. ∀𝑢 ∈ 𝒩∩𝜌([ℓ]) : 𝑯𝑢 =
∑︀

𝑗∈[𝑠max]
𝑀 ′

𝜌−1(𝑢),𝑗𝑩𝑗+𝑯 ′
𝑢.

5. {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

6. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1. 𝒕GID ← 𝜒𝑚−1
big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).
3. ∀𝑢 ∈ 𝑈 : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,

𝒕GID𝑯
⊤
𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 ).

4. ∀𝑢 ∈ 𝑈 : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛
𝑞 .

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

5. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.

7. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀 ′
𝑖,1𝒔𝑩1+

[︁∑︀
𝑗∈{2,...,𝑠max} 𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
−

𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖.

8. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 6.4. Hyb3.
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𝗛𝘆𝗯4: This hybrid is the same as Hyb3 except the way the matrices {𝑩𝑗 }𝑗∈{2,...,𝑠max} are
generated during the global setup phase. The indistinguishably between Hyb3 and Hyb4 fol-
lows from the well-sampledness of matrix property of the enhanced trapdoor lattice sampler
EnLT = (EnTrapGen,EnSamplePre).

Generating 𝖦𝖯:
1. 𝒚 ← ℤ𝑛

𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3.
(𝑩′ =

[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈ ℤ𝑛×(𝑚−1)

𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. 𝖦𝖯 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

2. {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 .

3. ∀𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

4. ∀𝑢 ∈ 𝒩∩𝜌([ℓ]) : 𝑯𝑢 =
∑︀

𝑗∈[𝑠max]
𝑀 ′

𝜌−1(𝑢),𝑗𝑩𝑗+𝑯 ′
𝑢.

5. {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

6. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1. 𝒕GID ← 𝜒𝑚−1
big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).

3. ∀𝑢 ∈ 𝑈 : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,
𝒕GID𝑯

⊤
𝑢 − 𝒌̂𝑢𝑨

⊤
𝑢 ).

4. ∀𝑢 ∈ 𝑈 : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛
𝑞 .

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

5. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.

7. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀 ′
𝑖,1𝒔𝑩1+

[︁∑︀
𝑗∈{2,...,𝑠max} 𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
−

𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖.

8. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 6.5. Hyb4.



66 Pratish Datta, Ilan Komargodski, and Brent Waters

𝗛𝘆𝗯5: This hybrid is identical to Hyb4 except the way the outputs of the oracle H are generated.
The indistinguishably between Hyb4 and Hyb5 follows from the smudging lemma (Lemma 3.1).

Generating 𝖦𝖯:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑐𝑜𝑙𝑠} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. 𝖦𝖯 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

2. {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 .

3. ∀𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

4. ∀𝑢 ∈ 𝒩∩𝜌([ℓ]) : 𝑯𝑢 =
∑︀

𝑗∈[𝑠max]
𝑀 ′

𝜌−1(𝑢),𝑗𝑩𝑗+𝑯 ′
𝑢.

5. {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

6. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

– If (𝖦𝖨𝖣, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅ then:
1. 𝒕GID ← 𝜒𝑚−1

big .

2. 𝒕GID ← 𝜒1.

3. 𝖧(𝖦𝖨𝖣) = 𝒕GID + 𝒕GID.

– else:
1. 𝒕GID ← 𝜒𝑚−1

big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).
3. ∀𝑢 ∈ 𝑈 : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,

𝒕GID𝑯
⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ).

4. ∀𝑢 ∈ 𝑈 : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛
𝑞 .

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

5. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.

7. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀 ′
𝑖,1𝒔𝑩1+

[︁∑︀
𝑗∈{2,...,𝑠max} 𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
−

𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖.

8. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 6.6. Hyb5.
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𝗛𝘆𝗯6: This hybrid is analogous to Hyb5 except the generation of {SKGID,𝑢}𝑢∈𝑈∩𝜌([ℓ]) while
answering the secret key queries of 𝒜. The indistinguishably between Hyb5 and Hyb6 follows
from the smudging lemma (Lemma 3.1).

Generating 𝖦𝖯:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. 𝖦𝖯 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

2. {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 .

3. ∀𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

4. ∀𝑢 ∈ 𝒩∩𝜌([ℓ]) : 𝑯𝑢 =
∑︀

𝑗∈[𝑠max]
𝑀 ′

𝜌−1(𝑢),𝑗𝑩𝑗+𝑯 ′
𝑢.

5. {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

6. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

– If (𝖦𝖨𝖣, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅:
1. 𝒕GID ← 𝜒𝑚−1

big .

2. 𝒕GID ← 𝜒1.

3. 𝖧(𝖦𝖨𝖣) = 𝒕GID + 𝒕GID.
– else:

1. 𝒕GID ← 𝜒𝑚−1
big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).
3. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) :

𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,∑︀
𝑗∈[𝑠max]

𝒕GID(𝑀
′
𝜌−1(𝑢),𝑗𝑩𝑗)

⊤ + (1, 𝒕GID)𝑹
⊤
𝑢 𝑨

⊤
𝑢 −

𝒌̂GID,𝑢𝑨
⊤
𝑢 ).

4. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) :

𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 + (0, 𝒕GID)𝑹
⊤
𝑢 .

5. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,
𝒕GID𝑯

⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ).

6. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛
𝑞 .

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

5. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.

7. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀 ′
𝑖,1𝒔𝑩1+

[︁∑︀
𝑗∈{2,...,𝑠max} 𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
−

𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖.

8. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 6.7. Hyb6.
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𝗛𝘆𝗯7: This hybrid is the same as Hyb6 except the way the vectors 𝒕 are generated while prepar-
ing the outputs of the oracle H. In the figure, let 𝒅 = (𝑑1, . . . , 𝑑𝑠max , 𝑑𝑠max+1, . . . , 𝑑𝑠max) ∈ ℤ𝑠max

𝑞

be a vector such that 𝑑1 = 1 and
∑︀

𝑗∈[𝑠max]
𝑀 ′𝜌−1(𝑢),𝑗𝑑𝑗 = 0 for all 𝑢 ∈ (𝒞 ∪ 𝑈) ∩ 𝜌([ℓ]), where

(GID, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅. Note that by the game restriction, the set of rows of 𝑴 with
indices in 𝜌−1(𝒞 ∪𝑈), where (GID, 𝑈) ∈ 𝒬 and 𝑈 ∩𝜌([ℓ]) ̸= ∅, must be unauthorized with respect
to the access policy (𝑴 , 𝜌), and hence those rows of the matrix 𝑴 ′ must be unauthorized with
respect to the access policy (𝑴 ′, 𝜌). Therefore, the existence of such a vector 𝒅 is guaranteed.
The indistinguishability between Hyb6 and Hyb7 follows from the well-sampledness of preimage
property of the enhanced trapdoor lattice sampler EnLT = (EnTrapGen,EnSamplePre).

Generating 𝖦𝖯:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑡𝑐𝑜𝑙𝑠} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. 𝖦𝖯 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

2. {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 .

3. ∀𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

4. ∀𝑢 ∈ 𝒩∩𝜌([ℓ]) : 𝑯𝑢 =
∑︀

𝑗∈[𝑠max]
𝑀 ′

𝜌−1(𝑢),𝑗𝑩𝑗+𝑯 ′
𝑢.

5. {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

6. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

– If (𝖦𝖨𝖣, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅:
1. 𝒕GID ← 𝜒𝑚−1

big .

2. {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒚𝑗 }𝑗∈{𝑠max+1,...,𝑠max} ← ℤ𝑛
𝑞 .

4.
𝒕GID ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾

(︁
𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 +

𝒇2, . . . , 𝑑𝑠max𝒚+ 𝒇𝑠max ,𝒚𝑠max+1, . . . ,𝒚𝑠max)−
(1, 𝒕GID)

[︀
𝑩⊤

2 | · · · |𝑩⊤
𝑠max

]︀ )︁
.

5. 𝖧(𝖦𝖨𝖣) = 𝒕GID + 𝒕GID.

– else:
1. 𝒕GID ← 𝜒𝑚−1

big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).
3. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,∑︀

𝑗∈[𝑠max]
𝒕GID(𝑀

′
𝜌−1(𝑢),𝑗𝑩𝑗)

⊤ + (1, 𝒕GID)𝑹
⊤
𝑢 𝑨

⊤
𝑢 −

𝒌̂GID,𝑢𝑨
⊤
𝑢 ).

4. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 +
(0, 𝒕GID)𝑹

⊤
𝑢 .

5. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,
𝒕GID𝑯

⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ).

6. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛
𝑞 .

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

5. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.

7. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀 ′
𝑖,1𝒔𝑩1+

[︁∑︀
𝑗∈{2,...,𝑠max} 𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
−

𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖.

8. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 6.8. Hyb7.
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𝗛𝘆𝗯8: This hybrid is the same as Hyb7 except the generation of the vectors 𝒕 while generating
the output of the oracle H and the vectors

{︁
𝒌̃GID,𝑢

}︁
𝑢∈𝑈

while generating the secret keys queried
by𝒜. Note that by the game restriction, for each secret key query of𝒜 corresponding to some pair
of user ID and attribute set (GID, 𝑈), the rows of 𝑴 having indices in 𝜌−1(𝒞 ∪ 𝑈) are linearly
independent and unauthorized with respect to (𝑴 , 𝜌), and hence by Lemma 4.2, the rows of
𝑴 ′ having indices in 𝜌−1(𝒞 ∪𝑈) are also linearly independent and unauthorized with respect to
(𝑴 ′, 𝜌). This constraint is exploited by the challenger while sampling the vectors {𝒇𝑗 }𝑗∈{2,...,𝑠max}
in the key query phases starting with this hybrid as can be seen in the figures below. The changes
between Hyb7 and Hyb8 are merely syntactic, and hence, they are indistinguishable.

Generating 𝖦𝖯:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. 𝖦𝖯 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

2. {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 .

3. ∀𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

4. ∀𝑢 ∈ 𝒩∩𝜌([ℓ]) : 𝑯𝑢 =
∑︀

𝑗∈[𝑠max]
𝑀 ′

𝜌−1(𝑢),𝑗𝑩𝑗+𝑯 ′
𝑢.

5. {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

6. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

– If (𝖦𝖨𝖣, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅:
1. 𝒕GID ← 𝜒𝑚−1

big .

2.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒𝑚
big.

3. {𝒛GID,𝑢}𝑢∈𝑈∩𝜌([ℓ]) ← ℤ𝑛
𝑞 .

4. {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 s.t.

∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) :∑︀
𝑗∈{2,...,𝑠max} 𝑀

′
𝜌−1(𝑢),𝑗𝒇𝑗 =

𝒛GID,𝑢 − (1, 𝒕GID)𝑹
⊤
𝑢 𝑨

⊤
𝑢 + 𝒌̂GID,𝑢𝑨

⊤
𝑢 .

5. {𝒚𝑗 }𝑗∈{𝑠max+1,...,𝑠max} ← ℤ𝑛
𝑞 .

6. 𝒕GID ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾
(︁
𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 +

𝒇2, . . . , 𝑑𝑠max𝒚 + 𝒇𝑠max ,𝒚𝑠max+1, . . . ,𝒚𝑠max) −
(1, 𝒕GID)

[︀
𝑩⊤

2 | · · · |𝑩⊤
𝑠max

]︀ )︁
.

7. 𝖧(𝖦𝖨𝖣) = 𝒕GID + 𝒕GID.
– else:

1. 𝒕GID ← 𝜒𝑚−1
big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∖𝜌([ℓ])

← 𝜒𝑚
big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).
3. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) :

𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,𝒛GID,𝑢).

4. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 +
(0, 𝒕GID)𝑹

⊤
𝑢 .

5. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,
𝒕GID𝑯

⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ).

6. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛
𝑞 .

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

5. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.

7. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀 ′
𝑖,1𝒔𝑩1+

[︁∑︀
𝑗∈{2,...,𝑠max} 𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
−

𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖.

8. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 6.9. Hyb8.
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𝗛𝘆𝗯9: This hybrid is analogous to Hyb8 except the generation of the vectors
{︁
𝒌̃𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

while answering the secret key queries made by 𝒜. The indistinguishably between Hyb8 and
Hyb9 follows from the well-sampledness of preimage property of the enhanced trapdoor lattice
sampler EnLT = (EnTrapGen,EnSamplePre).

Generating 𝖦𝖯:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. 𝖦𝖯 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩 ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

2. {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 .

3. ∀𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

4. ∀𝑢 ∈ 𝒩∩𝜌([ℓ]) : 𝑯𝑢 =
∑︀

𝑗∈[𝑠max]
𝑀 ′

𝜌−1(𝑢),𝑗𝑩𝑗+𝑯 ′
𝑢.

5. {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

6. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

– If (𝖦𝖨𝖣, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅:
1. 𝒕GID ← 𝜒𝑚−1

big .

2.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒𝑚
big.

3.
{︁
𝒌̃GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒2.

4. {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 s.t.

∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) :
∑︀

𝑗∈{2,...,𝑠max} 𝑀
′
𝜌−1(𝑢),𝑗𝒇𝑗 =

𝒌̃GID,𝑢𝑨
⊤
𝑢 − (1, 𝒕GID)𝑹

⊤
𝑢 𝑨

⊤
𝑢 + 𝒌̂GID,𝑢𝑨

⊤
𝑢 .

5. {𝒚𝑗 }𝑗∈{𝑠max+1,...,𝑠max} ← ℤ𝑛
𝑞 .

6. 𝒕GID ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾
(︁
𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 +

𝒇2, . . . , 𝑑𝑠max𝒚 + 𝒇𝑠max ,𝒚𝑠max+1, . . . ,𝒚𝑠max) −
(1, 𝒕GID)

[︀
𝑩⊤

2 | · · · |𝑩⊤
𝑠max

]︀ )︁
.

7. 𝖧(𝖦𝖨𝖣) = 𝒕GID + 𝒕GID.

– else:
1. 𝒕GID ← 𝜒𝑚−1

big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∖𝜌([ℓ])

← 𝜒𝑚
big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).
3. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 +

(0, 𝒕GID)𝑹
⊤
𝑢 .

4. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,
𝒕GID𝑯

⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ).

5. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛
𝑞 .

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

5. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.

7. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀 ′
𝑖,1𝒔𝑩1+

[︁∑︀
𝑗∈{2,...,𝑠max} 𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
−

𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖.

8. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 6.10. Hyb9.
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𝗛𝘆𝗯10: This hybrid is identical to Hyb9 except the generation of the matrices {𝑨𝑢}𝑢∈𝒩∩𝜌([ℓ])
while generating the public keys for non-corrupt authorities. The indistinguishably between Hyb9
and Hyb10 follows from the well-sampledness of matrix property of the enhanced trapdoor lattice
sampler EnLT = (EnTrapGen,EnSamplePre).

Generating 𝖦𝖯:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. 𝖦𝖯 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {𝑨𝑢}𝑢∈𝒩∩𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

2. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩∖𝜌([ℓ]) ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

3. {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 .

4. ∀𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

5. ∀𝑢 ∈ 𝒩∩𝜌([ℓ]) : 𝑯𝑢 =
∑︀

𝑗∈[𝑠max]
𝑀 ′

𝜌−1(𝑢),𝑗𝑩𝑗+𝑯 ′
𝑢.

6. {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

7. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

– If (𝖦𝖨𝖣, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅:
1. 𝒕GID ← 𝜒𝑚−1

big .

2.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒𝑚
big.

3.
{︁
𝒌̃GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒2.

4. {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 s.t. ∀𝑢 ∈ 𝑈 ∩

𝜌([ℓ]) :
∑︀

𝑗∈{2,...,𝑠max} 𝑀
′
𝜌−1(𝑢),𝑗𝒇𝑗 = 𝒌̃GID,𝑢𝑨

⊤
𝑢 −

(1, 𝒕GID)𝑹
⊤
𝑢 𝑨

⊤
𝑢 + 𝒌̂GID,𝑢𝑨

⊤
𝑢 .

5. {𝒚𝑗 }𝑗∈{𝑠max+1,...,𝑠max} ← ℤ𝑛
𝑞 .

6. 𝒕GID ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾
(︁
𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 +

𝒇2, . . . , 𝑑𝑠max𝒚 + 𝒇𝑠max ,𝒚𝑠max+1, . . . ,𝒚𝑠max) −
(1, 𝒕GID)

[︀
𝑩⊤

2 | · · · |𝑩⊤
𝑠max

]︀ )︁
.

7. 𝖧(𝖦𝖨𝖣) = 𝒕GID + 𝒕GID.

– else:
1. 𝒕GID ← 𝜒𝑚−1

big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∖𝜌([ℓ])

← 𝜒𝑚
big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).
3. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 +

(0, 𝒕GID)𝑹
⊤
𝑢 .

4. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,
𝒕GID𝑯

⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ).

5. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛
𝑞 .

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

5. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

6. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.

7. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀 ′
𝑖,1𝒔𝑩1+

[︁∑︀
𝑗∈{2,...,𝑠max} 𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
−

𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖.

8. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 6.11. Hyb10.
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𝗛𝘆𝗯11: This hybrid is the same as Hyb10 except the generation of the vectors {𝒄𝑖}𝑖∈[ℓ] while
preparing the challenge ciphertext. The indistinguishably between Hyb10 and Hyb11 follows from
the smudging lemma (Lemma 3.1).

Generating 𝖦𝖯:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :
{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈

ℤ𝑛×(𝑚−1)
𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. 𝖦𝖯 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {𝑨𝑢}𝑢∈𝒩∩𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

2. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩∖𝜌([ℓ]) ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

3. {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 .

4. ∀𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

5. ∀𝑢 ∈ 𝒩∩𝜌([ℓ]) : 𝑯𝑢 =
∑︀

𝑗∈[𝑠max]
𝑀 ′

𝜌−1(𝑢),𝑗𝑩𝑗+𝑯 ′
𝑢.

6. {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

7. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

– If (𝖦𝖨𝖣, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅:
1. 𝒕GID ← 𝜒𝑚−1

big .

2.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒𝑚
big.

3.
{︁
𝒌̃GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒2.

4. {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 s.t. ∀𝑢 ∈ 𝑈 ∩

𝜌([ℓ]) :
∑︀

𝑗∈{2,...,𝑠max} 𝑀
′
𝜌−1(𝑢),𝑗𝒇𝑗 = 𝒌̃GID,𝑢𝑨

⊤
𝑢 −

(1, 𝒕)GID𝑹
⊤
𝑢 𝑨

⊤
𝑢 + 𝒌̂GID,𝑢𝑨

⊤
𝑢 .

5. {𝒚𝑗 }𝑗∈{𝑠max+1,...,𝑠max} ← ℤ𝑛
𝑞 .

6. 𝒕GID ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾
(︁
𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 +

𝒇2, . . . , 𝑑𝑠max𝒚 + 𝒇𝑠max ,𝒚𝑠max+1, . . . ,𝒚𝑠max) −
(1, 𝒕GID)

[︀
𝑩⊤

2 | · · · |𝑩⊤
𝑠max

]︀ )︁
.

7. 𝖧(𝖦𝖨𝖣) = 𝒕GID + 𝒕GID.

– else:
1. 𝒕GID ← 𝜒𝑚−1

big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∖𝜌([ℓ])

← 𝜒𝑚
big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).

3. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 +
(0, 𝒕GID)𝑹

⊤
𝑢 .

4. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,
𝒕GID𝑯

⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ).

5. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝒔← ℤ𝑛
𝑞 .

2. {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 .

3. {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛
𝑞 .

4. {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
lwe.

5.
{︀
𝒆′
𝑖

}︀
𝑖∈𝜌−1(𝒩 )

← 𝜒𝑚
big.

6. ∀𝑖 ∈ 𝜌−1(𝒩 ) : 𝒆𝑖 = −𝒆𝑖𝑹𝜌(𝑖) + 𝒆′
𝑖.

7. {𝒆𝑖}𝑖∈𝜌−1(𝒞) ← 𝜒𝑚
2 .

8. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.

9. ∀𝑖 ∈ [ℓ] : 𝒄𝑖 = 𝑀 ′
𝑖,1𝒔𝑩1+

[︁∑︀
𝑗∈{2,...,𝑠max} 𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
−

𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖.

10. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,𝖬𝖲𝖡(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Fig. 6.12. Hyb11.
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𝗛𝘆𝗯12: This hybrid is the same as Hyb11 except the generation of the components of the
challenge ciphertext. In the figure, let 𝑐 be the dimension of the subspace spanned by the rows of
𝑴 (and hence the rows of the 𝑴 ′ by Lemma 4.2) having indices in 𝜌−1(𝒞). The indistinguishably
between Hyb11 and Hyb12 follows from the LWE assumption.

Generating 𝖦𝖯:

1. 𝒚 ← ℤ𝑛
𝑞 .

2. 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
𝟎⊤| · · · |𝟎⊤

]︃
.

3. (𝑩′ =
[︀
𝑩′⊤

2 | · · · |𝑩′⊤
𝑠max

]︀⊤
, 𝑇𝑩′) ←

𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛(𝑠max−1), 1𝑚−1, 𝑞) :{︀
𝑩′

𝑗

}︀
𝑗∈{2,...,𝑠max} ∈ ℤ𝑛×(𝑚−1)

𝑞 .

4.
{︀
𝒃′𝑗
}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

5. ∀𝑗 ∈ {2, . . . , 𝑠max} : 𝑩𝑗 =
[︀
𝒃′⊤𝑗 |𝑩′

𝑗

]︀
.

6. 𝖦𝖯 = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1).

Generating {𝖯𝖪𝑢}𝑢∈𝒩 :

1. {𝑨𝑢}𝑢∈𝒩∩𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

2. {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩∖𝜌([ℓ]) ← 𝖤𝗇𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝑛, 1𝑚, 𝑞).

3. {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←{−1, 1}
𝑚×𝑚 .

4. ∀𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]) : 𝑯 ′
𝑢 = 𝑨𝑢𝑹𝑢.

5. ∀𝑢 ∈ 𝒩∩𝜌([ℓ]) : 𝑯𝑢 =
∑︀

𝑗∈[𝑠max]
𝑀 ′

𝜌−1(𝑢),𝑗𝑩𝑗+𝑯 ′
𝑢.

6. {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

7. {𝖯𝖪𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating 𝖧(𝖦𝖨𝖣) for 𝖦𝖨𝖣 ∈ ℋ, (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

– If (𝖦𝖨𝖣, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅:
1. 𝒕GID ← 𝜒𝑚−1

big .

2.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒𝑚
big.

3.
{︁
𝒌̃GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒2.

4. {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 s.t. ∀𝑢 ∈ 𝑈 ∩

𝜌([ℓ]) :
∑︀

𝑗∈{2,...,𝑠max} 𝑀
′
𝜌−1(𝑢),𝑗𝒇𝑗 = 𝒌̃GID,𝑢𝑨

⊤
𝑢 −

(1, 𝒕GID)𝑹
⊤
𝑢 𝑨

⊤
𝑢 + 𝒌̂GID,𝑢𝑨

⊤
𝑢 .

5. {𝒚𝑗 }𝑗∈{𝑠max+1,...,𝑠max} ← ℤ𝑛
𝑞 .

6. 𝒕GID ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾
(︁
𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 +

𝒇2, . . . , 𝑑𝑠max𝒚 + 𝒇𝑠max ,𝒚𝑠max+1, . . . ,𝒚𝑠max) −
(1, 𝒕GID)

[︀
𝑩⊤

2 | · · · |𝑩⊤
𝑠max

]︀ )︁
.

7. 𝖧(𝖦𝖨𝖣) = 𝒕GID + 𝒕GID.

– else:
1. 𝒕GID ← 𝜒𝑚−1

big .

2. 𝖧(𝖦𝖨𝖣) = 𝒕GID.

Generating {𝖲𝖪GID,𝑢}𝑢∈𝑈 for (𝖦𝖨𝖣, 𝑈) ∈ 𝒬:

1.
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∖𝜌([ℓ])

← 𝜒𝑚
big.

2. 𝒕GID = (1,𝖧(𝖦𝖨𝖣)).
3. ∀𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 +

(0, 𝒕GID)𝑹
⊤
𝑢 .

4. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝒌̃GID,𝑢 ← 𝖤𝗇𝖲𝖺𝗆𝗉𝗅𝖾𝖯𝗋𝖾(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,
𝒕GID𝑯

⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ).

5. ∀𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]) : 𝖲𝖪GID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.

Generating 𝖢𝖳:

1. 𝜏 ← ℤ𝑞 .

2.
{︀
𝒗′
𝑗

}︀
𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 .

3. {𝒗𝑗 }𝑗∈{𝑠max+1,...,𝑠max} ← ℤ𝑛
𝑞 .

4.
{︀
𝒙′

𝑖

}︀
𝑖∈𝜌−1(𝒩 )

← ℤ𝑛
𝑞 .

5. {𝒙𝑖}𝑖∈𝜌−1(𝒞) ← ℤ𝑛
𝑞 .

6. {𝒆𝑖}𝑖∈𝜌−1(𝒞) ← 𝜒𝑚
lwe.

7. {𝒆′
𝑖}𝑖∈𝜌−1(𝒩 ) ← 𝜒𝑚

big.

8. {𝒆𝑖}𝑖∈𝜌−1(𝒞) ← 𝜒𝑚
big.

9. {𝒄𝑖}𝑖∈𝜌−1(𝒩 ) ← ℤ𝑚
𝑞 .

10. ∀𝑖 ∈ 𝜌−1(𝒞) : 𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖.
11. ∀𝑖 ∈ 𝜌−1(𝒩 ) :

𝒄𝑖 =
[︁∑︀

𝑗∈{2,...,𝑠max} 𝑀
′
𝑖,𝑗(𝒗

′
𝑗 − 𝒙′

𝑖)𝑩𝑗

]︁
+[︁∑︀

𝑗∈{𝑠max+1,...,𝑠max} 𝑀
′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
− 𝒄𝑖𝑹𝜌(𝑖) + 𝒆′

𝑖.

12. ∀𝑖 ∈ 𝜌−1(𝒞) :

𝒄𝑖 =
[︁∑︀

𝑗∈{𝑠max+1,...,𝑠max} 𝑀
′
𝑖,𝑗𝒗𝑗𝑩𝑗

]︁
− 𝒙𝑖𝑯𝜌(𝑖) +

𝒆𝑖.

13. 𝖢𝖳 =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] , 𝖬𝖲𝖡(𝜏)

)︁
.

Fig. 6.13. Hyb12.

Analysis

For any adversary 𝒜 and any 𝑥 ∈ {0, . . . , 12}, let 𝑝𝒜,𝑥 : ℕ → [0, 1] denote the function such
that for all 𝜆 ∈ ℕ, 𝑝𝒜,𝑥(𝜆) is the probability that 𝒜, on input 1𝜆, guesses the challenge bit
correctly in the hybrid game Hyb𝑥. From the definition of Hyb0, it follows that for all 𝜆 ∈ ℕ,
|𝑝𝒜,0(𝜆)− 1/2| = AdvMA-ABE,ST−LI−CPA

𝒜 (𝜆). Also, for all 𝜆 ∈ ℕ, 𝑝𝒜,12 = 1/2 since there is no
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information of the challenge bit 𝑏 ← {0, 1} selected by the challenger within the challenge
ciphertext in Hyb12. Hence, for all 𝜆 ∈ ℕ, we clearly have

AdvMA-ABE,ST−LI−CPA
𝒜 (𝜆) ≤

∑︁
𝑥∈[12]

|𝑝𝒜,𝑥−1(𝜆)− 𝑝𝒜,𝑥(𝜆)| (6.1)

Lemmas 6.1–6.12 will show that each term on the RHS of Eq. (6.1) is nothing but negligible.
Hence, Theorem 6.2 follows. ⊓⊔

Lemma 6.1: For any adversary 𝒜, 𝑝𝒜,0(𝜆) = 𝑝𝒜,1(𝜆).

Proof: Observe that the only difference between Hyb0 and Hyb1 is with respect to the generation
of the challenge ciphertext. More precisely, in the former hybrid the challenger generates the

vectors {𝒄𝑖}𝑖∈[ℓ] as 𝒄𝑖 = 𝑀𝑖,1𝒔

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+
∑︀

𝑗∈{2,...,𝑠max}𝑀𝑖,𝑗𝒗𝑗−𝒙𝑖𝑯𝜌(𝑖)+𝒆𝑖 for all 𝑖 ∈ [ℓ],

where 𝑴 = (𝑀𝑖,𝑗)ℓ×𝑠max ∈ {−1, 0, 1}
ℓ×𝑠max ⊂ ℤℓ×𝑠max

𝑞 is the challenge access matrix committed
to by the adversary 𝒜 and {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑚

𝑞 . In contrast, in the latter hybrid the challenger

generates those vectors as 𝒄𝑖 = 𝑀 ′𝑖,1𝒔

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+
∑︀

𝑗∈{2,...,𝑠max}𝑀
′
𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖

for all 𝑖 ∈ [ℓ], where 𝑴 ′ = (𝑀 ′𝑖,𝑗)ℓ×𝑠max ∈ ℤℓ×𝑠max
𝑞 is the access matrix obtained by applying

Lemma 4.2 on the challenge access matrix 𝑴 committed to by 𝒜, {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 , and

{𝑩𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛×𝑚
𝑞 .

However, observe that since {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 and {𝑩𝑗 }𝑗∈{2,...,𝑠max} ←

ℤ𝑛×𝑚
𝑞 , the vectors {𝒗𝑗𝑩𝑗 }𝑗∈{2,...,𝑠max} are distributed uniformly and in-

dependently over ℤ𝑚
𝑞 . Therefore, by Lemma 4.2, we can conclude that

the distributions

{︃
𝑀𝑖,1𝒔

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+
∑︀

𝑗∈{2,...,𝑠max}𝑀𝑖,𝑗𝒗𝑗

}︃
𝑖∈[ℓ]

and{︃
𝑀 ′𝑖,1𝒔

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+
∑︀

𝑗∈{2,...,𝑠max}𝑀
′
𝑖,𝑗𝒗𝑗𝑩𝑗

}︃
𝑖∈[ℓ]

of LSSS shares of the vector

𝒔

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
∈ ℤ𝑚

𝑞 in Hyb0 and Hyb1 respectively are identical. This in turn im-

plies that the distribution of {𝒄𝑖}𝑖∈[ℓ] in the two hybrids are identical. Hence, it follows that
the views of the adversary 𝒜 in the two hybrids are identical. This completes the proof of
Lemma 6.1. ⊓⊔

Lemma 6.2: For any adversary 𝒜, 𝑝𝒜,1(𝜆) = 𝑝𝒜,2(𝜆).

Proof: Observe that the only difference between Hyb1 and Hyb2 is with respect to the generation
of the public keys for non-corrupt authorities. More precisely, the only difference between Hyb1
and Hyb2 is that while generating the public keys for the non-corrupt authorities the challenger
samples the matrices {𝑯𝑢}𝑢∈𝒩∩𝜌([ℓ]) ← ℤ𝑛×𝑚

𝑞 in the former, while in the latter hybrid, the
challenger sets the matrices {𝑯𝑢}𝑢∈𝒩∩𝜌([ℓ]) as 𝑯𝑢 =

∑︀
𝑗∈[𝑠max]

𝑀 ′𝜌−1(𝑢),𝑗𝑩𝑗 + 𝑯 ′𝑢 for all 𝑢 ∈
𝒩 ∩ 𝜌([ℓ]), where {𝑯 ′𝑢}𝑢∈𝒩∩𝜌([ℓ]) ← ℤ𝑛×𝑚

𝑞 .
However, as the matrices

{︀∑︀
𝑗∈[𝑠max]

𝑀 ′𝜌−1(𝑢),𝑗𝑩𝑗 + 𝑯 ′𝑢
}︀
𝑢∈𝒩∩𝜌([ℓ]) with {𝑯 ′𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←

ℤ𝑛×𝑚
𝑞 are clearly uniformly distributed over ℤ𝑛×𝑚

𝑞 , it follows that the views of the adversary 𝒜
in the two hybrids are identical. Hence, Lemma 6.2 follows. ⊓⊔

Lemma 6.3: Assuming EnLT = (EnTrapGen,EnSamplePre) satisfies the leftover hash lemma
with trapdoor (Lemma 3.4), for any adversary 𝒜, there exists a negligible function negl3(·) such
that for all 𝜆 ∈ ℕ, |𝑝𝒜,2(𝜆)− 𝑝𝒜,3(𝜆)| ≤ negl3(𝜆).
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Proof: Suppose on the contrary, there exists an adversary 𝒜 and a non-negligible function 𝜂(·)
such that |𝑝𝒜,2(𝜆)− 𝑝𝒜,3(𝜆)| ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ. Using 𝒜 as a sub-routine, we will construct a
reduction algorithm ℬ below such that Adv

EnLTLHL−Trap,𝑞,𝜎

ℬ (𝜆) ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ.

Generating the Global Public Parameters: The reduction algorithm ℬ receives 1𝜆, 𝑞, 𝜎
from its EnLTLHL−Trap,𝑞,𝜎 challenger and proceeds as follows:
1. It chooses dimensions 𝑛,𝑚, and distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described in Section 6.

2. Next, it samples 𝒚 ← ℤ𝑛
𝑞 and sets 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
.

3. It also samples {𝑩𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛×𝑚
𝑞 .

4. It invokes 𝒜 on input 1𝜆 and the global public parameters

GP = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1) .

Attacker’s Commitments and Queries: Upon receiving GP, 𝒜 sends the following to ℬ:
(a) A set 𝒞 ⊂ 𝒜𝒰 of corrupt authorities and their respective public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒞 ,

where 𝑨𝑢,𝑯𝑢 ∈ ℤ𝑛×𝑚
𝑞 for all 𝑢 ∈ 𝒞.

(b) A set 𝒩 ⊂ 𝒜𝒰 of non-corrupt authorities, i.e., 𝒞 ∩𝒩 = ∅, for which 𝒜 requests the public
keys.

(c) A set ℋ = {GID} of H oracle queries, where each GID ∈ 𝒢ℐ𝒟 is distinct.
(d) A set 𝒬 = {(GID, 𝑈)} of secret key queries, where each GID ∈ 𝒢ℐ𝒟 is distinct and each

𝑈 ⊂ 𝒩 .
(e) A challenge LSSS access policy (𝑴 , 𝜌) with 𝑴 = (𝑀𝑖,𝑗)ℓ×𝑠max =

[︀
𝑴⊤

1 | · · · |𝑴⊤
ℓ

]︀⊤ ∈
{−1, 0, 1}ℓ×𝑠max ⊂ ℤℓ×𝑠max

𝑞 and 𝜌 : [ℓ]→ 𝒞 ∪𝒩 subject to the restriction that for each pair
(GID, 𝑈) ∈ 𝒬, the rows of 𝑴 having indices in 𝜌−1(𝒞 ∪ 𝑈) must be linearly independent
and unauthorized with respect to (𝑴 , 𝜌).

Generating Public Keys for Non-corrupt Authorities: In order to generate the public
keys for the authorities 𝑢 ∈ 𝒩 , ℬ proceeds as follows:
1. It applies Lemma 4.2 on the matrix 𝑴 to determine the matrix 𝑴 ′ = (𝑀 ′𝑖,𝑗)ℓ×𝑠max ∈

ℤℓ×𝑠max
𝑞 with the properties guaranteed by the lemma.

2. Next, it sends 1𝑛, 1𝑚, 1|𝒩∩𝜌([ℓ])| to its EnLTLHL−Trap,𝑞,𝜎 challenger and receives back matrices
{(𝑨𝑢,𝑺𝑢)}𝑢∈𝒩∩𝜌([ℓ]) ⊂ (ℤ𝑛×𝑚

𝑞 )2.
3. It also generates {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩∖𝜌([ℓ]) ← EnTrapGen(1𝑛, 1𝑚, 𝑞) such that {𝑨𝑢}𝑢∈𝒩∖𝜌([ℓ]) ∈

ℤ𝑛×𝑚
𝑞 .

4. Subsequently, it sets 𝑯𝑢 = 𝑀 ′𝜌−1(𝑢),1

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
+
∑︀

𝑗∈{2,...,𝑠max}𝑀
′
𝜌−1(𝑢),𝑗𝑩𝑗 + 𝑺𝑢

for all 𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]), where 𝑠max = 𝑠max −
⃒⃒
𝜌−1(𝒞)

⃒⃒
.

5. It also samples {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

6. It provides 𝒜 with the authority public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating the Outputs of the Oracle 𝗛: For each GID ∈ ℋ and each (GID, 𝑈) ∈ 𝒬, ℬ
generates H(GID) the same way as in Hyb2 (or Hyb3). More precisely, ℬ generates H(GID) as
follows:
1. It samples 𝒕GID ← 𝜒𝑚−1

big .
2. It sets H(GID) = 𝒕GID.

Generating Secret Keys: To answer a secret key query of 𝒜 corresponding to a pair
(GID, 𝑈) ∈ 𝒬, ℬ runs the following steps:
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1. It first samples
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.
2. Next, it sets 𝒕GID = (1,H(GID)).
3. Subsequently, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), it sends 𝑢 and the vector 𝒘𝑢 = 𝒕GID𝑯

⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 to

its EnLTLHL−Trap,𝑞,𝜎 challenger, receives back 𝒓𝑢 ∈ ℤ𝑚, and sets 𝒌̃GID,𝑢 = 𝒓𝑢.
4. Also, for all 𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]), it generates 𝒌̃GID,𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕GID𝑯

⊤
𝑢 −

𝒌̂GID,𝑢𝑨
⊤
𝑢 ) itself.

5. Next, for all 𝑢 ∈ 𝑈 , it sets SKGID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.
6. It provides {SKGID,𝑢}𝑢∈𝑈 to 𝒜.

Generating the Challenge Ciphertext: This challenge ciphertext is generated in an identical
manner to that in Hyb2 (or in Hyb3). More precisely, in order to generate the challenge
ciphertext, ℬ selects a random bit 𝑏← {0, 1} and proceeds as follows:
1. It first samples 𝒔← ℤ𝑛

𝑞 , {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 , and {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛

𝑞 .
2. It also samples {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚

lwe and {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

3. Next, for all 𝑖 ∈ [ℓ], it sets

𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖

𝒄𝑖 = 𝑀 ′𝑖,1𝒔𝑩1 +
∑︁

𝑗∈{2,...,𝑠max}

𝑀 ′𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖

4. It gives 𝒜 the challenge ciphertext

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,MSB(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Guess: 𝒜 finally outputs a guess 𝑏′ ∈ {0, 1}. If 𝑏′ = 𝑏, ℬ outputs 1. Otherwise, ℬ outputs 0.

Note that the game simulated by the reduction algorithm ℬ coincides with Hyb2 (Fig. 6.3) or
Hyb3 (Fig. 6.4) according as the matrices {𝑺𝑢}𝑢∈𝒩∩𝜌([ℓ]) it receives from its EnLTLHL−Trap,𝑞,𝜎
challenger while generating the public keys for non-corrupt authorities queried by 𝒜 are gener-
ated as {𝑺𝑢}𝑢∈𝒩∩𝜌([ℓ]) ← ℤ𝑛×𝑚

𝑞 or 𝑺𝑢 = 𝑨𝑢𝑹𝑢 for all 𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]) with {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←
{−1, 1}𝑚×𝑚. Hence, it follows that the advantage of ℬ in the EnLTLHL−Trap,𝑞,𝜎 game is at least
|𝑝𝒜,2(𝜆)− 𝑝𝒜,3(𝜆)| ≥ 𝜂(𝜆). This completes the proof of Lemma 6.3. ⊓⊔

Lemma 6.4: Assuming EnLT = (EnTrapGen,EnSamplePre) satisfies the 𝑞-well sampledness of
matrix property, for any adversary 𝒜, there exists a negligible function negl4(·) such that for all
𝜆 ∈ ℕ, |𝑝𝒜,3(𝜆)− 𝑝𝒜,4(𝜆)| ≤ negl4(𝜆).

Proof: Suppose on the contrary, there exists an adversary 𝒜 and a non-negligible function 𝜂(·)
such that |𝑝𝒜,3(𝜆)− 𝑝𝒜,4(𝜆)| ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ. Using 𝒜 as a sub-routine, we will construct a
reduction algorithm ℬ below such that Adv

EnLTmatrix,𝑞,𝜎

ℬ (𝜆) ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ.

Generating the Global Public Parameters: The reduction algorithm ℬ receives 1𝜆, 𝑞, 𝜎
from its EnLTmatrix,𝑞,𝜎 challenger and proceeds as follows:
1. It chooses dimensions 𝑛,𝑚, and distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described in Section 6.

2. Next, it samples 𝒚 ← ℤ𝑛
𝑞 and sets 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
.

3. Subsequently, it sends 1𝑛(𝑠max−1), 1𝑚−1, 11 to its EnLTmatrix,𝑞,𝜎 challenger and receives back
a matrix 𝑩′ =

[︀
𝑩′⊤2 | · · · |𝑩′⊤𝑠max

]︀⊤ ∈ ℤ𝑛(𝑠max−1)×(𝑚−1)
𝑞 .

4. It additionally samples
{︁
𝒃′𝑗

}︁
𝑗∈{2,...,𝑠max}

← ℤ𝑛
𝑞 and sets 𝑩𝑗 =

[︀
𝒃′⊤𝑗 |𝑩′𝑗

]︀
for all ∀𝑗 ∈

{2, . . . , 𝑠max}.
5. It invokes 𝒜 on input 1𝜆 and the global public parameters

GP = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1) .
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Attacker’s Commitments and Queries: Upon receiving GP, 𝒜 sends the following to ℬ:
(a) A set 𝒞 ⊂ 𝒜𝒰 of corrupt authorities and their respective public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒞 ,

where 𝑨𝑢,𝑯𝑢 ∈ ℤ𝑛×𝑚
𝑞 for all 𝑢 ∈ 𝒞.

(b) A set 𝒩 ⊂ 𝒜𝒰 of non-corrupt authorities, i.e., 𝒞 ∩𝒩 = ∅, for which 𝒜 requests the public
keys.

(c) A set ℋ = {GID} of H oracle queries, where each GID ∈ 𝒢ℐ𝒟 is distinct.
(d) A set 𝒬 = {(GID, 𝑈)} of secret key queries, where each GID ∈ 𝒢ℐ𝒟 is distinct and each

𝑈 ⊂ 𝒩 .
(e) A challenge LSSS access policy (𝑴 , 𝜌) with 𝑴 = (𝑀𝑖,𝑗)ℓ×𝑠max =

[︀
𝑴⊤

1 | · · · |𝑴⊤
ℓ

]︀⊤ ∈
{−1, 0, 1}ℓ×𝑠max ⊂ ℤℓ×𝑠max

𝑞 and 𝜌 : [ℓ]→ 𝒞 ∪𝒩 subject to the restriction that for each pair
(GID, 𝑈) ∈ 𝒬, the rows of 𝑴 having indices in 𝜌−1(𝒞 ∪ 𝑈) must be linearly independent
and unauthorized with respect to (𝑴 , 𝜌).

Generating Public Keys for Non-corrupt Authorities: In order to generate the public
keys for the authorities 𝑢 ∈ 𝒩 , ℬ proceeds as follows:
1. It applies Lemma 4.2 on the matrix 𝑴 to determine the matrix 𝑴 ′ = (𝑀 ′𝑖,𝑗)ℓ×𝑠max ∈

ℤℓ×𝑠max
𝑞 with the properties guaranteed by the lemma.

2. Then, it generates {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩 ← EnTrapGen(1𝑛, 1𝑚, 𝑞) such that {𝑨𝑢}𝑢∈𝒩 ∈ ℤ𝑛×𝑚
𝑞 .

3. Subsequently, it samples {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ← {−1, 1}
𝑚×𝑚 and sets 𝑯𝑢 = 𝑀 ′𝜌−1(𝑢),1𝑩1 +∑︀

𝑗∈{2,...,𝑠max}𝑀
′
𝜌−1(𝑢),𝑗𝑩𝑗 +𝑨𝑢𝑹𝑢 for all 𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]), where 𝑠max = 𝑠max −

⃒⃒
𝜌−1(𝒞)

⃒⃒
.

4. It also samples {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

5. It provides 𝒜 with the authority public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating the Outputs of the Oracle 𝗛: For each GID ∈ ℋ and each (GID, 𝑈) ∈ 𝒬, ℬ
generates H(GID) the same way as in Hyb2 (or Hyb3). More precisely, ℬ generates H(GID) as
follows:
1. It samples 𝒕GID ← 𝜒𝑚−1

big .
2. It sets H(GID) = 𝒕GID.

Generating Secret Keys: To answer a secret key query of 𝒜 corresponding to a pair
(GID, 𝑈) ∈ 𝒬, ℬ runs the following steps:

1. It first samples
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.

2. Next, it sets 𝒕GID = (1,H(GID)).
3. Then, for all 𝑢 ∈ 𝑈 , it generates 𝒌̃GID,𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕GID𝑯

⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ).

4. Next, for all 𝑢 ∈ 𝑈 , it sets SKGID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢.
5. It provides {SKGID,𝑢}𝑢∈𝑈 to 𝒜.

Generating the Challenge Ciphertext: This challenge ciphertext is generated in an identical
manner to that in Hyb2 (or in Hyb3). More precisely, in order to generate the challenge
ciphertext, ℬ selects a random bit 𝑏← {0, 1} and proceeds as follows:
1. It first samples 𝒔← ℤ𝑛

𝑞 , {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 , and {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛

𝑞 .
2. It also samples {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚

lwe and {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

3. Next, for all 𝑖 ∈ [ℓ], it sets

𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖

𝒄𝑖 = 𝑀 ′𝑖,1𝒔𝑩1 +
∑︁

𝑗∈{2,...,𝑠max}

𝑀 ′𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖
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4. It gives 𝒜 the challenge ciphertext

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,MSB(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Guess: 𝒜 finally outputs a guess 𝑏′ ∈ {0, 1}. If 𝑏′ = 𝑏, ℬ outputs 1. Otherwise, ℬ outputs 0.

Note that the game simulated by the reduction algorithm ℬ coincides with Hyb3 (Fig. 6.4) or
Hyb4 (Fig. 6.5) according as the matrix 𝑩′ ∈ ℤ𝑛(𝑠max−1)×(𝑚−1)

𝑞 it obtained from its EnLTmatrix,𝑞,𝜎

challenger while setting up the global public parameters is generated as 𝑩′ ← ℤ𝑛(𝑠max−1)×(𝑚−1)
𝑞

or (𝑩′, 𝑇𝑩′)← EnTrapGen(1𝑛(𝑠max−1), 1𝑚−1, 𝑞). Hence, it follows that the advantage of ℬ in the
EnLTmatrix,𝑞,𝜎 game is at least |𝑝𝒜,3(𝜆)− 𝑝𝒜,4(𝜆)| ≥ 𝜂(𝜆). This completes the proof of Lemma 6.4.

⊓⊔

Lemma 6.5: For any adversary 𝒜, there exists a negligible function negl5(·) such that for all
𝜆 ∈ ℕ, |𝑝𝒜,4(𝜆)− 𝑝𝒜,5(𝜆)| ≤ negl5(𝜆).

Proof: Let us consider the difference between Hyb4 and Hyb5. The only difference between the
two games is with respect to the outputs of the oracle H. In particular, in Hyb4, if (GID, 𝑈) ∈ 𝒬
and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅, then the challenger sets H(GID) = 𝒕GID, where 𝒕GID ← 𝜒𝑚−1

big . In contrast, in
Hyb5, if (GID, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅, then the challenger sets H(GID) = 𝒕GID + 𝒕GID, where
𝒕GID ← 𝜒𝑚−1

big and 𝒕GID ← 𝜒1.
Using the smudging lemma, since 𝐵̂ > 𝑚3/2𝜎2𝜆 holds, we can argue that there exists a negli-

gible function neglsmudge(·) such that for all 𝜆 ∈ ℕ, 𝑚 ∈ ℕ, SD(𝒟1,𝒟2) ≤ (𝑚− 1) · neglsmudge(𝜆),
where

𝒟1 ≡
{︁
𝒕GID | 𝒕GID ← 𝜒𝑚−1

big

}︁
,

𝒟2 ≡
{︁
𝒕GID + 𝒕GID | 𝒕GID ← 𝜒𝑚−1

big , 𝒕GID ← 𝜒1

}︁
.

As a result, if the total number of user IDs GID such that (GID, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅
be 𝑞key, then it follows that for any 𝜆 ∈ ℕ,

|𝑝𝒜,4(𝜆)− 𝑝𝒜,5(𝜆)| ≤ 𝑞key · (𝑚− 1) · neglsmudge(𝜆).

This completes the proof of Lemma 6.5. ⊓⊔

Lemma 6.6: For any adversary 𝒜, there exists a negligible function negl5(·) such that for all
𝜆 ∈ ℕ, |𝑝𝒜,5(𝜆)− 𝑝𝒜,6(𝜆)| ≤ negl6(𝜆).

Proof: Let us consider the difference between Hyb5 and Hyb6. The only difference in
the two games is with respect to the secret key queries. In particular, for each secret
key query of the adversary corresponding to some user ID-attribute set pair (GID, 𝑈), the
key components {SKGID,𝑢}𝑢∈𝑈∩𝜌([ℓ]) are computed differently in the two games. In Hyb5,

for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), the challenger sets SKGID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢, where 𝒌̂GID,𝑢 ←
𝜒𝑚
big and 𝒌̃GID,𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕GID𝑯

⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ) with 𝒕GID = (1, 𝒕GID +

𝒕GID) such that 𝒕GID ← 𝜒𝑚−1
big and 𝒕GID ← 𝜒1. In contrast, in Hyb6, for all 𝑢 ∈ 𝑈 ∩

𝜌([ℓ]), the challenger sets SKGID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 + (0, 𝒕GID)𝑹
⊤
𝑢 where 𝒌̂GID,𝑢 ← 𝜒𝑚

big,
𝒌̃GID,𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,

∑︀
𝑗∈[𝑠max]

𝒕GID(𝑀
′
𝜌−1(𝑢),𝑗𝑩𝑗)

⊤ + (1, 𝒕GID)𝑹
⊤
𝑢𝑨
⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ),

with 𝒕GID = (1, 𝒕GID + 𝒕GID) such that 𝒕GID ← 𝜒𝑚−1
big , 𝒕GID ← 𝜒1, and 𝑹𝑢 ←{−1, 1}𝑚×𝑚.

First, note that in both the hybrid games, for each of the secret key queries of the adversary
corresponding to some user ID-attribute set pair (GID, 𝑈) such that 𝑈 ∩ 𝜌([ℓ]) ̸= ∅, we have
𝑨𝑢SK

⊤
GID,𝑢 = 𝑯𝑢𝒕

⊤
GID for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]).
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This follows from the fact that 𝑯𝑢 =
∑︀

𝑗∈[𝑠max]
𝑀 ′𝜌−1(𝑢),𝑗𝑩𝑗 + 𝑨𝑢𝑹𝑢 for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ])

and the setting of {SKGID,𝑢}𝑢∈𝑈∩𝜌([ℓ]) in the two hybrids. Next, using the triangle inequality
for statistical distance and the smudging lemma, since 𝐵̂ > 𝑚3/2𝜎2𝜆 holds, we can argue that
there exists a negligible function neglsmudge(·) such that for all 𝜆 ∈ ℕ, 𝑚 ∈ ℕ, SD(𝒟1,𝒟3) ≤
SD(𝒟1,𝒟2) + SD(𝒟2,𝒟3) ≤ 𝑚 · neglsmudge(𝜆) +𝑚 · neglsmudge(𝜆) = 2𝑚 · neglsmudge(𝜆), where

𝒟1 ≡
{︁
𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 | 𝒌̂GID,𝑢 ← 𝜒𝑚

big, 𝒌̃GID,𝑢 ∈ (ℤ ∩ [−
√
𝑚𝜎,
√
𝑚𝜎])𝑚

}︁
,

𝒟2 ≡
{︁
𝒌̂GID,𝑢 | 𝒌̂GID,𝑢 ← 𝜒𝑚

big

}︁
,

𝒟3 ≡

{︃
𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 + (0, 𝒕GID)𝑹

⊤
𝑢 |

𝒌̂GID,𝑢 ← 𝜒𝑚
big, 𝒌̃GID,𝑢 ∈ (ℤ ∩ [−

√
𝑚𝜎,
√
𝑚𝜎])𝑚,

𝒕GID ← 𝜒1,𝑹𝑢 ∈ {−1, 1}𝑚×𝑚

}︃
.

As a result, if the total number of secret key queries made by the adversary for user ID-attribute
set pairs (GID, 𝑈) such that 𝑈 ∩ 𝜌([ℓ]) ̸= ∅ be 𝑞key = 𝑞key(𝜆), then for any 𝜆 ∈ ℕ,

|𝑝𝒜,5(𝜆)− 𝑝𝒜,6(𝜆)| ≤ 𝑞key(𝜆) · |𝑈 ∩ 𝜌([ℓ])| · 2𝑚 · neglsmudge(𝜆).

⊓⊔

Lemma 6.7: Assuming EnLT = (EnTrapGen,EnSamplePre) satisfies (𝑞, 𝜎)-well sampledness of
preimage, for any adversary 𝒜, there exists a negligible function negl7(·) such that for all 𝜆 ∈ ℕ,
|𝑝𝒜,6(𝜆)− 𝑝𝒜,7(𝜆)| ≤ negl7(𝜆).

Proof: Suppose on the contrary, there exists an adversary 𝒜 and a non-negligible function 𝜂(·)
such that |𝑝𝒜,6(𝜆)− 𝑝𝒜,7(𝜆)| ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ. Using 𝒜 as a sub-routine, we will construct a
reduction algorithm ℬ below such that Adv

EnLTpreimage,𝑞,𝜎

ℬ (𝜆) ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ.

Generating the Global Public Parameters: The reduction algorithm ℬ receives 1𝜆, 𝑞, 𝜎
from its EnLTpreimage,𝑞,𝜎 challenger and proceeds as follows:
1. It chooses dimensions 𝑛,𝑚, and distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described in Section 6.

2. Next, it samples 𝒚 ← ℤ𝑛
𝑞 and sets 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
.

3. Subsequently, it sends 1𝑛(𝑠max−1), 1𝑚−1, 11 to its EnLTpreimage,𝑞,𝜎 challenger and receives
back a matrix 𝑩′ =

[︀
𝑩′⊤2 | · · · |𝑩′⊤𝑠max

]︀⊤ ∈ ℤ𝑛(𝑠max−1)×(𝑚−1)
𝑞 .

4. It additionally samples
{︁
𝒃′𝑗

}︁
𝑗∈{2,...,𝑠max}

← ℤ𝑛
𝑞 . And sets 𝑩𝑗 =

[︀
𝒃′⊤𝑗 |𝑩′𝑗

]︀
for all ∀𝑗 ∈

{2, . . . , 𝑠max}.
5. It invokes 𝒜 on input 1𝜆 and the global public parameters

GP = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1) .

Attacker’s Commitments and Queries: Upon receiving GP, 𝒜 sends the following to ℬ:
(a) A set 𝒞 ⊂ 𝒜𝒰 of corrupt authorities and their respective public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒞 ,

where 𝑨𝑢,𝑯𝑢 ∈ ℤ𝑛×𝑚
𝑞 for all 𝑢 ∈ 𝒞.

(b) A set 𝒩 ⊂ 𝒜𝒰 of non-corrupt authorities, i.e., 𝒞 ∩𝒩 = ∅, for which 𝒜 requests the public
keys.

(c) A set ℋ = {GID} of H oracle queries, where each GID ∈ 𝒢ℐ𝒟 is distinct.
(d) A set 𝒬 = {(GID, 𝑈)} of secret key queries, where each GID ∈ 𝒢ℐ𝒟 is distinct and each

𝑈 ⊂ 𝒩 .
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(e) A challenge LSSS access policy (𝑴 , 𝜌) with 𝑴 = (𝑀𝑖,𝑗)ℓ×𝑠max =
[︀
𝑴⊤

1 | · · · |𝑴⊤
ℓ

]︀⊤ ∈
{−1, 0, 1}ℓ×𝑠max ⊂ ℤℓ×𝑠max

𝑞 and 𝜌 : [ℓ]→ 𝒞 ∪𝒩 subject to the restriction that for each pair
(GID, 𝑈) ∈ 𝒬, the rows of 𝑴 having indices in 𝜌−1(𝒞 ∪ 𝑈) must be linearly independent
and unauthorized with respect to (𝑴 , 𝜌).

Generating Public Keys for Non-corrupt Authorities: In order to generate the public
keys for the authorities 𝑢 ∈ 𝒩 , ℬ proceeds as follows:
1. It applies Lemma 4.2 on the matrix 𝑴 to determine the matrix 𝑴 ′ = (𝑀 ′𝑖,𝑗)ℓ×𝑠max ∈

ℤℓ×𝑠max
𝑞 with the properties guaranteed by the lemma.

2. Then, it generates {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩 ← EnTrapGen(1𝑛, 1𝑚, 𝑞) such that {𝑨𝑢}𝑢∈𝒩 ∈ ℤ𝑛×𝑚
𝑞 .

3. Subsequently, it samples {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ← {−1, 1}
𝑚×𝑚 and sets 𝑯𝑢 = 𝑀 ′𝜌−1(𝑢),1𝑩1 +∑︀

𝑗∈{2,...,𝑠max}𝑀
′
𝜌−1(𝑢),𝑗𝑩𝑗 +𝑨𝑢𝑹𝑢 for all 𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]), where 𝑠max = 𝑠max −

⃒⃒
𝜌−1(𝒞)

⃒⃒
.

4. It also samples {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

5. It provides 𝒜 with the authority public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating the Outputs of the Oracle 𝗛: For each GID ∈ ℋ and each (GID, 𝑈) ∈ 𝒬, ℬ
generates H(GID) as follows:
– Case (I) (GID, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅:

1. It first samples 𝒕GID ← 𝜒𝑚−1
big .

2. Next, it sends a preimage query to is EnLTpreimage,𝑞,𝜎 challenger by sending the index
1, receives back a vector 𝒓 ∈ ℤ𝑚−1, and sets 𝒕GID = 𝒓.

3. It provides H(GID) = 𝒕GID + 𝒕GID to 𝒜.
– Case (II) Otherwise:

1. It samples 𝒕GID ← 𝜒𝑚−1
big .

2. It provides H(GID) = 𝒕GID to 𝒜.
Generating Secret Keys: The secret keys are generated in the same manner as in Hyb6 (or in
Hyb7). More precisely, to answer a secret key query of 𝒜 corresponding to a pair (GID, 𝑈) ∈ 𝒬,
ℬ runs the following steps:
1. It first samples

{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈
← 𝜒𝑚

big.
2. Next, it sets 𝒕GID = (1,H(GID)).
3. Subsequently, for all 𝑢 ∈ 𝑈∩𝜌([ℓ]), it samples the vector 𝒌̃GID,𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,∑︀

𝑗∈[𝑠max]
𝒕GID(𝑀

′
𝜌−1(𝑢),𝑗𝑩𝑗)

⊤ + (1, 𝒕GID)𝑹
⊤
𝑢𝑨
⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ) and sets SKGID,𝑢 = 𝒌̂GID,𝑢 +

𝒌̃GID,𝑢+(0, 𝒕GID)𝑹
⊤
𝑢 . Note that we have H(GID) = 𝒕GID+𝒕GID in this case by the generation

strategy for H(GID) described above.
4. Also, for all 𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]), it samples 𝒌̃GID,𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕GID𝑯

⊤
𝑢 −

𝒌̂GID,𝑢𝑨
⊤
𝑢 ) and sets SKGID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢

5. It provides {SKGID,𝑢}𝑢∈𝑈 to 𝒜.
Generating the Challenge Ciphertext: This challenge ciphertext is generated in an identical

manner to that in Hyb6 (or in Hyb7). More precisely, in order to generate the challenge
ciphertext, ℬ selects a random bit 𝑏← {0, 1} and proceeds as follows:
1. It first samples 𝒔← ℤ𝑛

𝑞 , {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 , and {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛

𝑞 .
2. It also samples {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚

lwe and {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

3. Next, for all 𝑖 ∈ [ℓ], it sets

𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖

𝒄𝑖 = 𝑀 ′𝑖,1𝒔𝑩1 +
∑︁

𝑗∈{2,...,𝑠max}

𝑀 ′𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖

4. It gives 𝒜 the challenge ciphertext

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,MSB(𝒔𝒚⊤)⊕ 𝑏

)︁
.
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Guess: 𝒜 finally outputs a guess 𝑏′ ∈ {0, 1}. If 𝑏′ = 𝑏, ℬ outputs 1. Otherwise, ℬ outputs 0.

Note that the game simulated by the reduction algorithm ℬ coincides with Hyb6 (Fig. 6.7) if
while answering the H oracle queries of 𝒜 corresponding to the user IDs GID ∈ 𝒢ℐ𝒟, the vectors
𝒓 it receives from its EnLTpreimage,𝑞,𝜎 challenger are generated as 𝒓 ← 𝜒1. On the other hand, the
game simulated by the reduction algorithm ℬ coincides with Hyb7 (Fig. 6.8) if while answering
the H oracle queries of 𝒜 corresponding to the user IDs GID ∈ 𝒢ℐ𝒟, the vectors 𝒓 it receives from
its EnLTpreimage,𝑞,𝜎 challenger are generated as 𝒓 ← EnSamplePre(𝑩′, 𝑇𝑩′ , 𝜎,𝒘) with some fresh
𝒘 ← ℤ𝑛(𝑠max−1)

𝑞 . This is because the vectors (𝑑2𝒚+ 𝒇2, . . . , 𝑑𝑠max𝒚+ 𝒇𝑠max ,𝒚𝑠max+1, . . . ,𝒚𝑠max)−
(1, 𝒕GID)

[︀
𝑩⊤2 | · · · |𝑩⊤𝑠max

]︀
with {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 and {𝒚𝑗 }𝑗∈{𝑠max+1,...,𝑠max} ← ℤ𝑛
𝑞 , as origi-

nally used while answering the H oracle queries of 𝒜 corresponding to the user IDs GID ∈ 𝒢ℐ𝒟
in Hyb7 (Fig. 6.8), are uniformly and independently distributed over ℤ𝑛(𝑠max−1)

𝑞 . Hence, it follows
that the advantage of ℬ in the EnLTpreimage,𝑞,𝜎 game is at least |𝑝𝒜,6(𝜆)− 𝑝𝒜,7(𝜆)| ≥ 𝜂(𝜆). This
completes the proof of Lemma 6.7. ⊓⊔

Lemma 6.8: For any adversary 𝒜, there exists a negligible function negl8(·) such that for all
𝜆 ∈ ℕ, |𝑝𝒜,7(𝜆)− 𝑝𝒜,8(𝜆)| ≤ negl8(𝜆).

Proof: Let us consider the difference between Hyb7 and Hyb8. The only difference is with respect
to the outputs of the oracle H and the secret keys queried by the adversary 𝒜 in the two hybrids.
More precisely, in Hyb7, while generating H(GID) corresponding to some user ID-attribute set
(GID, 𝑈) with 𝑈 ∩ 𝜌([ℓ]) ̸= ∅ submitted by 𝒜 requesting a secret key, the challenger samples
the vectors {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 and while preparing the requested secret keys, {SKGID,𝑢}𝑢∈𝑈
generates the vectors

{︁
𝒌̃GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

as 𝒌̃GID,𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎,∑︀
𝑗∈[𝑠max]

𝒕GID(𝑀
′
𝜌−1(𝑢),𝑗𝑩𝑗)

⊤ + (1, 𝒕GID)𝑹
⊤
𝑢𝑨
⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 ) for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]). In

contrast, in Hyb8, the challenger samples the vectors {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 satisfying∑︀

𝑗∈{2,...,𝑠max}𝑀
′
𝜌−1(𝑢),𝑗𝒇𝑗 = 𝒛GID,𝑢 − (1, 𝒕GID)𝑹

⊤
𝑢𝑨
⊤
𝑢 + 𝒌̂GID,𝑢𝑨

⊤
𝑢 holds for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ])

and forms the vectors
{︁
𝒌̃GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

as 𝒌̃GID,𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒛GID,𝑢) for all

𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), where {𝒛GID,𝑢}𝑢∈𝑈∩𝜌([ℓ]) ← ℤ𝑛
𝑞 .

First, note that by the restrictions of the static security under linear independence restriction
game, we have (a) the rows of the access matrix 𝑴 , and hence those of the access matrix 𝑴 ′

(by Lemma 4.2), having indices in 𝜌−1(𝒞 ∪ 𝑈) are linearly independent, i.e., no non-zero linear
combination of those rows over ℤ𝑞 can span the vector 0 ∈ ℤ𝑠max

𝑞 and (b) those rows are unautho-
rized with respect to the access policy (𝑴 , 𝜌), and hence (𝑴 ′, 𝜌) (by Lemma 4.2), i.e., no linear
combination of those rows over ℤ𝑞 can span the vector (1, 0, . . . , 0) ∈ ℤ𝑠max

𝑞 . Combining facts (a)
and (b), we can readily conclude that (c) no non-zero linear combination over ℤ𝑞 of the vectors
obtained by removing the first entry of the rows of 𝑴 ′ having indices in 𝜌−1(𝒞 ∪ 𝑈) can span
0 ∈ ℤ𝑠max−1

𝑞 , or in other words, those vectors are linearly independent. Moreover, since the rows of
𝑴 ′ having indices in 𝜌−1(𝒞) are linearly independent (follows from fact (a)) and has zeros in the
first 𝑠max = 𝑠max− 𝑐 positions (follows from Lemma 4.2), it follows that (d) the rows of 𝑴 ′ hav-

ing indices in 𝜌−1(𝒞) can span all the vectors

⎧⎨⎩(

𝑠max⏞  ⏟  
0, . . . , 0,

𝑗−1⏞  ⏟  
0, . . . , 0, 1,

𝑠max−𝑗⏞  ⏟  
0, . . . , 0)

⎫⎬⎭
𝑗∈{𝑠max+1,...,𝑠max}

.

Facts (c) and (d) together imply that the set of vectors
{︁
(𝑀 ′𝜌−1(𝑢),2, . . . ,𝑀

′
𝜌−1(𝑢),𝑠max

)
}︁
𝑢∈𝑈∩𝜌([ℓ])

obtained by removing the first entry and the last 𝑐 entries of the rows of 𝑴 ′ having indices in
𝜌−1(𝑈) are linearly independent.

Hence, the sampling of the vectors {𝒇𝑗 }𝑗∈{2,...,𝑠max} ⊂ ℤ𝑛
𝑞 in Hyb8 is well-defined. Moreover,

due to the fact that the vectors {𝒛GID,𝑢}𝑢∈𝑈∩𝜌([ℓ]) are sampled uniformly from ℤ𝑛
𝑞 , it follows

that the vectors {𝒇𝑗 }𝑗∈{2,...,𝑠max} ⊂ ℤ𝑛
𝑞 sampled in Hyb8 are also uniformly and independently
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distributed over ℤ𝑛
𝑞 . Hence, it follows that the distributions of the vectors {𝒇𝑗 }𝑗∈{2,...,𝑠max} ⊂ ℤ𝑛

𝑞

are in fact identical in the two hybrids.
Now, we claim that the distributions of the vectors

{︁
𝒌̃GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

in the two hybrids are

also identical. From the definitions of the vectors
{︁
𝒌̃GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

in the two hybrids, it follows

that to prove the above claim it would be sufficient to show that
∑︀

𝑗∈[𝑠max]
𝒕GID(𝑀

′
𝜌−1(𝑢),𝑗𝑩𝑗)

⊤+

(1, 𝒕GID)𝑹
⊤
𝑢𝑨
⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 = 𝒛GID,𝑢 for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]) in Hyb8. Observe that in Hyb8, for all

user ID-attribute set pairs (GID, 𝑈) with 𝑈 ∩ 𝜌([ℓ]) ̸= ∅ submitted by 𝒜 requesting a secret key,
we have:

𝒕GID𝑩
⊤
𝑗 = (1, 𝒕GID + 𝒕GID)𝑩

⊤
𝑗 = (1, 𝒕GID)𝑩

⊤
𝑗 + 𝒕GID𝑩

′⊤
𝑗

= ������
(1, 𝒕GID)𝑩

⊤
𝑗 + (𝑑𝑗𝒚 + 𝒇𝑗)−������

(1, 𝒕GID)𝑩
⊤
𝑗

= 𝑑𝑗𝒚 + 𝒇𝑗 ∀𝑗 ∈ {2, . . . , 𝑠max}

and 𝒕GID𝑩
⊤
1 = (1, 𝒕GID + 𝒕GID)

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃⊤
= 𝒚.

Also, by the choice of the vector 𝒅 ∈ ℤ𝑠max
𝑞 , we have (e) 𝑑1 = 1, and (f) the vec-

tor 𝒅 is orthogonal to the rows of the matrix 𝑴 ′ having indices in 𝜌−1(𝒞 ∪ 𝑈). Com-
bining fact (d) with (f), it follows that the vector 𝒅 is orthogonal to all the vectors⎧⎨⎩(

𝑠max⏞  ⏟  
0, . . . , 0,

𝑗−1⏞  ⏟  
0, . . . , 0, 1,

𝑠max−𝑗⏞  ⏟  
0, . . . , 0)

⎫⎬⎭
𝑗∈{𝑠max+1,...,𝑠max}

. This in turn implies that (g) 𝑑𝑗 = 0 for all

𝑗 ∈ {𝑠max + 1, . . . , 𝑠max}. Now, facts (f) and (g) together imply that
∑︀

𝑗∈[𝑠max]
𝑀 ′𝜌−1(𝑢),𝑗𝑑𝑗 =∑︀

𝑗∈[𝑠max]
𝑀 ′𝜌−1(𝑢),𝑗𝑑𝑗 = 0 for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]). Hence, for all (GID, 𝑈) with 𝑈 ∩ 𝜌([ℓ]) ̸= ∅

submitted by 𝒜 requesting a secret key, we have for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]),∑︁
𝑗∈[𝑠max]

𝒕GID(𝑀
′
𝜌−1(𝑢),𝑗𝑩𝑗)

⊤ + (1, 𝒕GID)𝑹
⊤
𝑢𝑨
⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢

= (
∑︁

𝑗∈[𝑠max]

𝑀 ′𝜌−1(𝑢),𝑗𝑑𝑗)𝒚 +
∑︁

𝑗∈{2,...,𝑠max}

𝑀 ′𝜌−1(𝑢),𝑗𝒇𝑗 + (1, 𝒕GID)𝑹
⊤
𝑢𝑨
⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢 (using (e))

=
∑︁

𝑗∈{2,...,𝑠max}

𝑀 ′𝜌−1(𝑢),𝑗𝒇𝑗 + (1, 𝒕GID)𝑹
⊤
𝑢𝑨
⊤
𝑢 − 𝒌̂GID,𝑢𝑨

⊤
𝑢

= (𝒛GID,𝑢 −((((((((
(1, 𝒕GID)𝑹

⊤
𝑢𝑨
⊤
𝑢 +�����𝒌̂GID,𝑢𝑨

⊤
𝑢 ) +((((((((

(1, 𝒕GID)𝑹
⊤
𝑢𝑨
⊤
𝑢 −�����𝒌̂GID,𝑢𝑨

⊤
𝑢 = 𝒛GID,𝑢.

In view of the above, it follows that the views of the adversary 𝒜 in the two hybrids are
identical. Hence, Lemma 6.8 follows. ⊓⊔

Lemma 6.9: Assuming EnLT = (EnTrapGen,EnSamplePre) satisfies (𝑞, 𝜎)-well sampledness of
preimage, for any adversary 𝒜, there exists a negligible function negl9(·) such that for all 𝜆 ∈ ℕ,
|𝑝𝒜,8(𝜆)− 𝑝𝒜,9(𝜆)| ≤ negl9(𝜆).

Proof: Suppose on the contrary, there exists an adversary 𝒜 and a non-negligible function 𝜂(·)
such that |𝑝𝒜,8(𝜆)− 𝑝𝒜,9(𝜆)| ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ. Using 𝒜 as a sub-routine, we will construct a
reduction algorithm ℬ below such that Adv

EnLTpreimage,𝑞,𝜎

ℬ (𝜆) ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ.

Generating the Global Public Parameters: The reduction algorithm ℬ receives 1𝜆, 𝑞, 𝜎
from its EnLTpreimage,𝑞,𝜎 challenger and proceeds as follows:
1. It chooses dimensions 𝑛,𝑚, and distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described in Section 6.

2. Next, it samples 𝒚 ← ℤ𝑛
𝑞 and sets 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
.
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3. Subsequently, it samples (𝑩′ =
[︀
𝑩′⊤2 | · · · |𝑩′⊤𝑠max

]︀⊤
, 𝑇𝑩′)← EnTrapGen(1𝑛(𝑠max−1), 1𝑚−1, 𝑞)

such that
{︁
𝑩′𝑗

}︁
𝑗∈{2,...,𝑠max}

∈ ℤ𝑛×(𝑚−1)
𝑞 .

4. It additionally samples
{︁
𝒃′𝑗

}︁
𝑗∈{2,...,𝑠max}

← ℤ𝑛
𝑞 and sets 𝑩𝑗 =

[︀
𝒃′⊤𝑗 |𝑩′𝑗

]︀
for all ∀𝑗 ∈

{2, . . . , 𝑠max}.
5. It invokes 𝒜 on input 1𝜆 and the global public parameters

GP = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1) .

Attacker’s Commitments and Queries: Upon receiving GP, 𝒜 sends the following to ℬ:
(a) A set 𝒞 ⊂ 𝒜𝒰 of corrupt authorities and their respective public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒞 ,

where 𝑨𝑢,𝑯𝑢 ∈ ℤ𝑛×𝑚
𝑞 for all 𝑢 ∈ 𝒞.

(b) A set 𝒩 ⊂ 𝒜𝒰 of non-corrupt authorities, i.e., 𝒞 ∩𝒩 = ∅, for which 𝒜 requests the public
keys.

(c) A set ℋ = {GID} of H oracle queries, where each GID ∈ 𝒢ℐ𝒟 is distinct.
(d) A set 𝒬 = {(GID, 𝑈)} of secret key queries, where each GID ∈ 𝒢ℐ𝒟 is distinct and each

𝑈 ⊂ 𝒩 .
(e) A challenge LSSS access policy (𝑴 , 𝜌) with 𝑴 = (𝑀𝑖,𝑗)ℓ×𝑠max =

[︀
𝑴⊤

1 | · · · |𝑴⊤
ℓ

]︀⊤ ∈
{−1, 0, 1}ℓ×𝑠max ⊂ ℤℓ×𝑠max

𝑞 and 𝜌 : [ℓ]→ 𝒞 ∪𝒩 subject to the restriction that for each pair
(GID, 𝑈) ∈ 𝒬, the rows of 𝑴 having indices in 𝜌−1(𝒞 ∪ 𝑈) must be linearly independent
and unauthorized with respect to (𝑴 , 𝜌).

Generating Public Keys for Non-corrupt Authorities: In order to generate the public
keys for the authorities 𝑢 ∈ 𝒩 , ℬ proceeds as follows:
1. It applies Lemma 4.2 on the matrix 𝑴 to determine the matrix 𝑴 ′ = (𝑀 ′𝑖,𝑗)ℓ×𝑠max ∈

ℤℓ×𝑠max
𝑞 with the properties guaranteed by the lemma.

2. Subsequently, it sends 1𝑛, 1𝑚, 1|𝒩∩𝜌([ℓ])| to its EnLTpreimage,𝑞,𝜎 challenger and receives back
{𝑨𝑢}𝑢∈𝒩∩𝜌([ℓ]) ⊂ ℤ𝑛×𝑚

𝑞 .
3. It also generates {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩∖𝜌([ℓ]) ← EnTrapGen(1𝑛, 1𝑚, 𝑞) such that {𝑨𝑢}𝑢∈𝒩∖𝜌([ℓ]) ∈

ℤ𝑛×𝑚
𝑞 .

4. After that, it samples {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ← {−1, 1}𝑚×𝑚 and sets 𝑯𝑢 = 𝑀 ′𝜌−1(𝑢),1𝑩1 +∑︀
𝑗∈{2,...,𝑠max}𝑀

′
𝜌−1(𝑢),𝑗𝑩𝑗 +𝑨𝑢𝑹𝑢 for all 𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]), where 𝑠max = 𝑠max −

⃒⃒
𝜌−1(𝒞)

⃒⃒
.

5. It also samples {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

6. It provides 𝒜 with the authority public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating the Outputs of the Oracle 𝗛: For each GID ∈ ℋ and each (GID, 𝑈) ∈ 𝒬, ℬ
generates H(GID) as follows:
– Case (I) (GID, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅:

1. It first samples 𝒕GID ← 𝜒𝑚−1
big and sets

{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒𝑚
big.

2. Subsequently, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), it makes a preimage query to its EnLTpreimage,𝑞,𝜎

challenger by sending the index 𝑢, receives back a vector 𝒓𝑢 ∈ ℤ𝑚, and sets 𝒌̃GID,𝑢 = 𝒓𝑢.
3. Next, it determines a vector 𝒅 ∈ ℤ𝑠max

𝑞 such that 𝑑1 = 1 and
∑︀

𝑗∈[𝑠max]
𝑀 ′𝑖,𝑗𝑑𝑗 = 0 for

all 𝑖 ∈ 𝜌−1(𝒞 ∪ 𝑈).
4. It additionally samples {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛

𝑞 satisfying
∑︀

𝑗∈{2,...,𝑠max}𝑀
′
𝜌−1(𝑢),𝑗𝒇𝑗 =

𝒌̃GID,𝑢𝑨
⊤
𝑢 − (1, 𝒕GID)𝑹

⊤
𝑢𝑨
⊤
𝑢 + 𝒌̂GID,𝑢𝑨

⊤
𝑢 for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]). The well-definedness of

this sampling procedure is justified in Lemma 6.8.
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5. It further samples {𝒚𝑗 }𝑗∈{𝑠max+1,...,𝑠max} ← ℤ𝑛
𝑞 .

6. After that, it generates 𝒕GID ← EnSamplePre
(︁
𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 + 𝒇2, . . . , 𝑑𝑠max𝒚 +

𝒇𝑠max ,𝒚𝑠max+1, . . . ,𝒚𝑠max)− (1, 𝒕GID)
[︀
𝑩⊤2 | · · · |𝑩⊤𝑠max

]︀ )︁
.

7. It provides H(GID) = 𝒕GID + 𝒕GID to 𝒜.
– Case (II) Otherwise:

1. It samples 𝒕GID ← 𝜒𝑚−1
big .

2. It provides H(GID) = 𝒕GID to 𝒜.
Generating Secret Keys: To answer a secret key query of 𝒜 corresponding to a pair
(GID, 𝑈) ∈ 𝒬, ℬ runs the following steps:
1. It first samples

{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∖𝜌([ℓ])

← 𝜒𝑚
big.

2. Next, it sets 𝒕GID = (1,H(GID)).
3. Then, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), it sets SKGID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 + (0, 𝒕GID)𝑹

⊤
𝑢 . Note that by

the generation strategy for H(GID) described above, we have H(GID) = 𝒕GID + 𝒕GID in this
case.

4. Also, for all 𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]), it samples 𝒌̃GID,𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕GID𝑯
⊤
𝑢 −

𝒌̂GID,𝑢𝑨
⊤
𝑢 ) and sets SKGID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢

5. It provides {SKGID,𝑢}𝑢∈𝑈 to 𝒜.
Generating the Challenge Ciphertext: This challenge ciphertext is generated in an identical

manner to that in Hyb8 (or in Hyb9). More precisely, in order to generate the challenge
ciphertext, ℬ selects a random bit 𝑏← {0, 1} and proceeds as follows:
1. It first samples 𝒔← ℤ𝑛

𝑞 , {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 , and {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛

𝑞 .
2. It also samples {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚

lwe and {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

3. Next, for all 𝑖 ∈ [ℓ], it sets

𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖

𝒄𝑖 = 𝑀 ′𝑖,1𝒔𝑩1 +
∑︁

𝑗∈{2,...,𝑠max}

𝑀 ′𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖

4. It gives 𝒜 the challenge ciphertext

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,MSB(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Guess: 𝒜 finally outputs a guess 𝑏′ ∈ {0, 1}. If 𝑏′ = 𝑏, ℬ outputs 1. Otherwise, ℬ outputs 0.

Note that the game simulated by the reduction algorithm ℬ coincides with Hyb8 (Fig. 6.9)
or Hyb9 (Fig. 6.10) according as for each of the secret key queries of 𝒜 corresponding to some
user ID-attribute set pair (GID, 𝑈) such that 𝑈 ∩ 𝜌([ℓ]) ̸= ∅, each of the vectors {𝒓𝑢}𝑢∈𝑈∩𝜌([ℓ])
that ℬ receives from its EnLTpreimage,𝑞,𝜎 challenger while preparing H(GID) is generated as 𝒓𝑢 ←
EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒛GID,𝑢) with some fresh 𝒛GID,𝑢 ← ℤ𝑛

𝑞 or 𝒓𝑢 ← 𝜒2. Hence, it follows
that the advantage of ℬ in the EnLTpreimage,𝑞,𝜎 game is at least |𝑝𝒜,8(𝜆)− 𝑝𝒜,9(𝜆)| ≥ 𝜂(𝜆). This
completes the proof of Lemma 6.9. ⊓⊔

Lemma 6.10: Assuming EnLT = (EnTrapGen,EnSamplePre) satisfies the 𝑞-well sampledness of
matrix property, for any adversary 𝒜, there exists a negligible function negl10(·) such that for all
𝜆 ∈ ℕ, |𝑝𝒜,9(𝜆)− 𝑝𝒜,10(𝜆)| ≤ negl10(𝜆).

Proof: Suppose on the contrary, there exists an adversary 𝒜 and a non-negligible function 𝜂(·)
such that |𝑝𝒜,9(𝜆)− 𝑝𝒜,10(𝜆)| ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ. Using 𝒜 as a sub-routine, we will construct
a reduction algorithm ℬ below such that Adv

EnLTmatrix,𝑞,𝜎

ℬ (𝜆) ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ.
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Generating the Global Public Parameters: The reduction algorithm ℬ receives 1𝜆, 𝑞, 𝜎
from its EnLTmatrix,𝑞,𝜎 challenger and proceeds as follows:
1. It chooses dimensions 𝑛,𝑚, and distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described in Section 6.

2. Next, it samples 𝒚 ← ℤ𝑛
𝑞 and sets 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
.

3. Subsequently, it samples (𝑩′ =
[︀
𝑩′⊤2 | · · · |𝑩′⊤𝑠max

]︀⊤
, 𝑇𝑩′)← EnTrapGen(1𝑛(𝑠max−1), 1𝑚−1, 𝑞)

such that
{︁
𝑩′𝑗

}︁
𝑗∈{2,...,𝑠max}

∈ ℤ𝑛×(𝑚−1)
𝑞 .

4. It additionally samples
{︁
𝒃′𝑗

}︁
𝑗∈{2,...,𝑠max}

← ℤ𝑛
𝑞 . And sets 𝑩𝑗 =

[︀
𝒃′⊤𝑗 |𝑩′𝑗

]︀
for all ∀𝑗 ∈

{2, . . . , 𝑠max}.
5. It invokes 𝒜 on input 1𝜆 and the global public parameters

GP = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1) .

Attacker’s Commitments and Queries: Upon receiving GP, 𝒜 sends the following to ℬ:
(a) A set 𝒞 ⊂ 𝒜𝒰 of corrupt authorities and their respective public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒞 ,

where 𝑨𝑢,𝑯𝑢 ∈ ℤ𝑛×𝑚
𝑞 for all 𝑢 ∈ 𝒞.

(b) A set 𝒩 ⊂ 𝒜𝒰 of non-corrupt authorities, i.e., 𝒞 ∩𝒩 = ∅, for which 𝒜 requests the public
keys.

(c) A set ℋ = {GID} of H oracle queries, where each GID ∈ 𝒢ℐ𝒟 is distinct.
(d) A set 𝒬 = {(GID, 𝑈)} of secret key queries, where each GID ∈ 𝒢ℐ𝒟 is distinct and each

𝑈 ⊂ 𝒩 .
(e) A challenge LSSS access policy (𝑴 , 𝜌) with 𝑴 = (𝑀𝑖,𝑗)ℓ×𝑠max =

[︀
𝑴⊤

1 | · · · |𝑴⊤
ℓ

]︀⊤ ∈
{−1, 0, 1}ℓ×𝑠max ⊂ ℤℓ×𝑠max

𝑞 and 𝜌 : [ℓ]→ 𝒞 ∪𝒩 subject to the restriction that for each pair
(GID, 𝑈) ∈ 𝒬, the rows of 𝑴 having indices in 𝜌−1(𝒞 ∪ 𝑈) must be linearly independent
and unauthorized with respect to (𝑴 , 𝜌).

Generating Public Keys for Non-corrupt Authorities: In order to generate the public
keys for the authorities 𝑢 ∈ 𝒩 , ℬ proceeds as follows:
1. It applies Lemma 4.2 on the matrix 𝑴 to determine the matrix 𝑴 ′ = (𝑀 ′𝑖,𝑗)ℓ×𝑠max ∈

ℤℓ×𝑠max
𝑞 with the properties guaranteed by the lemma.

2. Subsequently, it sends 1𝑛, 1𝑚, 1|𝒩∩𝜌([ℓ])| to its EnLTmatrix,𝑞,𝜎 challenger and receives back
{𝑨𝑢}𝑢∈𝒩∩𝜌([ℓ]) ⊂ ℤ𝑛×𝑚

𝑞 .
3. It also generates {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩∖𝜌([ℓ]) ← EnTrapGen(1𝑛, 1𝑚, 𝑞) such that {𝑨𝑢}𝑢∈𝒩∖𝜌([ℓ]) ∈

ℤ𝑛×𝑚
𝑞 .

4. After that, it samples {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ← {−1, 1}𝑚×𝑚 and sets 𝑯𝑢 = 𝑀 ′𝜌−1(𝑢),1𝑩1 +∑︀
𝑗∈{2,...,𝑠max}𝑀

′
𝜌−1(𝑢),𝑗𝑩𝑗 +𝑨𝑢𝑹𝑢 for all 𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]), where 𝑠max = 𝑠max −

⃒⃒
𝜌−1(𝒞)

⃒⃒
.

5. It also samples {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

6. It provides 𝒜 with the authority public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating the Outputs of the Oracle 𝗛: The outputs of the oracle H are generated in an
identical manner to that in Hyb11 (or in Hyb12). More precisely, for each GID ∈ ℋ and each
(GID, 𝑈) ∈ 𝒬, ℬ generates H(GID) as follows:
– Case (I) (GID, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅:

1. It first samples 𝒕GID ← 𝜒𝑚−1
big .

2. Next, it samples
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒𝑚
big and

{︁
𝒌̃GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒2.
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3. Next, it determines a vector 𝒅 ∈ ℤ𝑠max
𝑞 such that 𝑑1 = 1 and

∑︀
𝑗∈[𝑠max]

𝑀 ′𝑖,𝑗𝑑𝑗 = 0 for
all 𝑖 ∈ 𝜌−1(𝒞 ∪ 𝑈).

4. It additionally samples {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 satisfying

∑︀
𝑗∈{2,...,𝑠max}𝑀

′
𝜌−1(𝑢),𝑗𝒇𝑗 =

𝒌̃GID,𝑢𝑨
⊤
𝑢 − (1, 𝒕GID)𝑹

⊤
𝑢𝑨
⊤
𝑢 + 𝒌̂GID,𝑢𝑨

⊤
𝑢 for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]). The well-definedness of

this sampling procedure is justified in Lemma 6.8.
5. It further samples {𝒚𝑗 }𝑗∈{𝑠max+1,...,𝑠max} ← ℤ𝑛

𝑞 .

6. After that, it generates 𝒕GID ← EnSamplePre
(︁
𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 + 𝒇2, . . . , 𝑑𝑠max𝒚 +

𝒇𝑠max ,𝒚𝑠max+1, . . . ,𝒚𝑠max)− (1, 𝒕GID)
[︀
𝑩⊤2 | · · · |𝑩⊤𝑠max

]︀ )︁
..

7. It provides H(GID) = 𝒕GID + 𝒕GID to 𝒜.
– Case (II) Otherwise:

1. It samples 𝒕GID ← 𝜒𝑚−1
big .

2. It provides H(GID) = 𝒕GID to 𝒜.
Generating Secret Keys: The secret key queries of 𝒜 are answered in an identical manner to

that in Hyb9 (or in Hyb10). More precisely, to answer a secret key query of 𝒜 corresponding
to a pair (GID, 𝑈) ∈ 𝒬, ℬ runs the following steps:
1. It first samples

{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∖𝜌([ℓ])

← 𝜒𝑚
big.

2. Next, it sets 𝒕GID = (1,H(GID)).
3. Then, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), it sets SKGID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 + (0, 𝒕GID)𝑹

⊤
𝑢 . Note that by

the generation strategy for H(GID) described above, we have H(GID) = 𝒕GID + 𝒕GID in this
case.

4. Also, for all 𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]), it samples 𝒌̃GID,𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕GID𝑯
⊤
𝑢 −

𝒌̂GID,𝑢𝑨
⊤
𝑢 ) and sets SKGID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢

5. It provides {SKGID,𝑢}𝑢∈𝑈 to 𝒜.
Generating the Challenge Ciphertext: This challenge ciphertext is generated in an identical

manner to that in Hyb9 (or in Hyb10). More precisely, in order to generate the challenge
ciphertext, ℬ selects a random bit 𝑏← {0, 1} and proceeds as follows:
1. It first samples 𝒔← ℤ𝑛

𝑞 , {𝒗𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 , and {𝒙𝑖}𝑖∈[ℓ] ← ℤ𝑛

𝑞 .
2. It also samples {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚

lwe and {𝒆𝑖}𝑖∈[ℓ] ← 𝜒𝑚
big.

3. Next, for all 𝑖 ∈ [ℓ], it sets

𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖

𝒄𝑖 = 𝑀 ′𝑖,1𝒔𝑩1 +
∑︁

𝑗∈{2,...,𝑠max}

𝑀 ′𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖

4. It gives 𝒜 the challenge ciphertext

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,MSB(𝒔𝒚⊤)⊕ 𝑏

)︁
.

Guess: 𝒜 finally outputs a guess 𝑏′ ∈ {0, 1}. If 𝑏′ = 𝑏, ℬ outputs 1. Otherwise, ℬ outputs 0.

Note that the game simulated by the reduction algorithm ℬ coincides with Hyb9 (Fig. 6.10)
or Hyb10 (Fig. 6.11) according as the matrices {𝑨𝑢}𝑢∈𝒩∩𝜌([ℓ]) ∈ ℤ𝑛×𝑚

𝑞 it obtains from its
EnLTmatrix,𝑞,𝜎 challenger while generating the public keys for non-corrupt authorities queried by
𝒜 are generated as (𝑨𝑢, 𝑇𝑨𝑢)← EnTrapGen(1𝑛, 1𝑚, 𝑞) for all 𝑢 ∈ 𝒩 ∩𝜌([ℓ]) or {𝑨𝑢}𝑢∈𝒩∩𝜌([ℓ]) ←
ℤ𝑛×𝑚
𝑞 . Hence, it follows that the advantage of ℬ in the EnLTmatrix,𝑞,𝜎 game is at least
|𝑝𝒜,9(𝜆)− 𝑝𝒜,10(𝜆)| ≥ 𝜂(𝜆). This completes the proof of Lemma 6.10. ⊓⊔

Lemma 6.11: For any adversary 𝒜, there exists a negligible function negl11(·) such that for all
𝜆 ∈ ℕ, |𝑝𝒜,10(𝜆)− 𝑝𝒜,11(𝜆)| ≤ negl11(𝜆).
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Proof: Let us consider the difference between Hyb10 and Hyb11. The only difference between the
two games is with respect to the challenge ciphertext. In particular, while preparing the challenge
ciphertext, the components {𝒄𝑖}𝑖∈[ℓ] are generated differently in the two games. In Hyb10, for all
𝑖 ∈ [ℓ], the challenger sets 𝒄𝑖 = 𝑀 ′𝑖,1𝒔𝑩1+

∑︀
𝑗∈{2,...,𝑠max}𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗−𝒙𝑖𝑯𝜌(𝑖)+𝒆𝑖, where 𝒆𝑖 ← 𝜒𝑚

big.
In contrast, in Hyb11, for all 𝑖 ∈ [ℓ], it sets 𝒄𝑖 = 𝑀 ′𝑖,1𝒔𝑩1 +

∑︀
𝑗∈{2,...,𝑠max}𝑀

′
𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒙𝑖𝑯𝜌(𝑖) −

𝒆𝑖𝑹𝜌(𝑖) + 𝒆′𝑖, where 𝒆𝑖 ← 𝜒𝑚
lwe, 𝑹𝜌(𝑖) ←{−1, 1}𝑚×𝑚, and 𝒆′𝑖 ← 𝜒𝑚

big.
Using the smudging lemma, since 𝐵̂ ≥ 𝑚3/2𝜎2𝜆 holds, we can argue that there exists a

negligible function neglsmudge(·) such that for all 𝜆 ∈ ℕ, 𝑚 ∈ ℕ, SD(𝒟1,𝒟2) ≤ 𝑚 · neglsmudge(𝜆),
where

𝒟1 ≡
{︀
𝒆𝑖 | 𝒆𝑖 ← 𝜒𝑚

big

}︀
,

𝒟2 ≡
{︀
−𝒆𝑖𝑹𝜌(𝑖) + 𝒆′𝑖 | 𝒆𝑖 ← 𝜒𝑚

lwe,𝑹𝜌(𝑖) ←{−1, 1}𝑚×𝑚 , 𝒆′𝑖 ← 𝜒𝑚
big

}︀
.

As a result, since the total number of 𝒄𝑖 components included in the challenge ciphertext is
ℓ, it follows that for any 𝜆 ∈ ℕ,

|𝑝𝒜,10(𝜆)− 𝑝𝒜,11(𝜆)| ≤ ℓ ·𝑚 · neglsmudge(𝜆).

This completes the proof of Lemma 6.11. ⊓⊔

Lemma 6.12: If the LWE𝑛,𝑞,𝜎 assumption holds, then for all PPT adversary 𝒜, there exists a
negligible function negl12(·) such that for all 𝜆 ∈ ℕ, |𝑝𝒜,11(𝜆)− 𝑝𝒜,12(𝜆)| ≤ negl12(𝜆).

Proof: Suppose on the contrary, there exists an adversary 𝒜 and a non-negligible function 𝜂(·)
such that |𝑝𝒜,11(𝜆)− 𝑝𝒜,12(𝜆)| ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ. Using 𝒜 as a sub-routine, we will construct
a reduction algorithm ℬ below such that Adv

LWE𝑛,𝑞,𝜎

ℬ (𝜆) ≥ 𝜂(𝜆) for all 𝜆 ∈ ℕ.

Generating the Global Public Parameters: The reduction algorithm ℬ receives 1𝜆, 𝑛, 𝑞, 𝜎
from its LWE𝑛,𝑞,𝜎 challenger and proceeds as follows:
1. It chooses dimension 𝑚, and distributions 𝜒lwe, 𝜒1, 𝜒2, 𝜒big as described in Section 6.
2. ℬ uses its LWE𝑛,𝑞,𝜎 challenger to define the vector 𝒚 ∈ ℤ𝑛

𝑞 . ℬ makes a query to its LWE𝑛,𝑞,𝜎

challenger, and receives back (𝒂, 𝑟), where 𝒂← ℤ𝑛
𝑞 and either 𝑟 = 𝒔𝒂⊤+𝑒 mod 𝑞 for some

𝒔← ℤ𝑛
𝑞 and 𝑒← 𝒟ℤ,𝜎 or 𝑟 ← ℤ𝑞. It sets 𝒚 = 𝒂 and 𝑩1 =

[︃
𝒚⊤|

𝑚−1⏞  ⏟  
0⊤| · · · |0⊤

]︃
.

3. Subsequently, it samples (𝑩′ =
[︀
𝑩′⊤2 | · · · |𝑩′⊤𝑠max

]︀⊤
, 𝑇𝑩′)← EnTrapGen(1𝑛(𝑠max−1), 1𝑚−1, 𝑞)

such that
{︁
𝑩′𝑗

}︁
𝑗∈{2,...,𝑠max}

∈ ℤ𝑛×(𝑚−1)
𝑞 .

4. It additionally samples
{︁
𝒃′𝑗

}︁
𝑗∈{2,...,𝑠max}

← ℤ𝑛
𝑞 . And sets 𝑩𝑗 =

[︀
𝒃′⊤𝑗 |𝑩′𝑗

]︀
for all ∀𝑗 ∈

{2, . . . , 𝑠max}.
5. It invokes 𝒜 on input 1𝜆 and the global public parameters

GP = (𝑛,𝑚, 𝑞, 𝑠max, 𝜒lwe, 𝜒1, 𝜒2, 𝜒big,𝑩1) .

Attacker’s Commitments and Queries: Upon receiving GP, 𝒜 sends the following to ℬ:
(a) A set 𝒞 ⊂ 𝒜𝒰 of corrupt authorities and their respective public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒞 ,

where 𝑨𝑢,𝑯𝑢 ∈ ℤ𝑛×𝑚
𝑞 for all 𝑢 ∈ 𝒞.

(b) A set 𝒩 ⊂ 𝒜𝒰 of non-corrupt authorities, i.e., 𝒞 ∩𝒩 = ∅, for which 𝒜 requests the public
keys.

(c) A set ℋ = {GID} of H oracle queries, where each GID ∈ 𝒢ℐ𝒟 is distinct.
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(d) A set 𝒬 = {(GID, 𝑈)} of secret key queries, where each GID ∈ 𝒢ℐ𝒟 is distinct and each
𝑈 ⊂ 𝒩 .

(e) A challenge LSSS access policy (𝑴 , 𝜌) with 𝑴 = (𝑀𝑖,𝑗)ℓ×𝑠max =
[︀
𝑴⊤

1 | · · · |𝑴⊤
ℓ

]︀⊤ ∈
{−1, 0, 1}ℓ×𝑠max ⊂ ℤℓ×𝑠max

𝑞 and 𝜌 : [ℓ]→ 𝒞 ∪𝒩 subject to the restriction that for each pair
(GID, 𝑈) ∈ 𝒬, the rows of 𝑴 having indices in 𝜌−1(𝒞 ∪ 𝑈) must be linearly independent
and unauthorized with respect to (𝑴 , 𝜌).

Generating Public Keys for Non-corrupt Authorities: In order to generate the public
keys for the authorities 𝑢 ∈ 𝒩 , ℬ proceeds as follows:
1. It applies Lemma 4.2 on the matrix 𝑴 to determine the matrix 𝑴 ′ = (𝑀 ′𝑖,𝑗)ℓ×𝑠max ∈

ℤℓ×𝑠max
𝑞 . By Lemma 4.2 we must have 𝑀 ′𝑖,𝑗 = 0 for all (𝑖, 𝑗) ∈ 𝒞 × [𝑠max].

2. Then, it uses its LWE𝑛,𝑞,𝜎 challenger to define matrices {𝑨𝑢}𝑢∈𝒩∩𝜌([ℓ]) ⊂ ℤ𝑛×𝑚
𝑞 . Let 𝒩 ∩

𝜌([ℓ]) = {𝑢𝑧 }𝑧∈[|𝒩∩𝜌([ℓ])|]. ℬ makes 𝑚 |𝒩 ∩ 𝜌([ℓ])| more queries to its LWE𝑛,𝑞,𝜎 challenger,
and receives back {(𝒂𝜄, 𝑟𝜄)}𝜄∈[𝑚|𝒩∩𝜌([ℓ])|] ⊂ ℤ𝑛

𝑞 × ℤ𝑞, where for all 𝜄 ∈ [𝑚 |𝒩 ∩ 𝜌([ℓ])|],
𝒂𝜄 ← ℤ𝑛

𝑞 and either 𝑟𝜄 = 𝒔𝒂⊤𝜄 + 𝑒𝜄 mod 𝑞 for some 𝒔 ← ℤ𝑛
𝑞 and 𝑒𝜄 ← 𝒟ℤ,𝜎 or 𝑟𝜄 ← ℤ𝑞. ℬ

sets the matrix 𝑨𝑢𝑧 =
(︁
𝒂⊤𝑚(𝑧−1)+1| · · · |𝒂

⊤
𝑚𝑧

)︁
∈ ℤ𝑛×𝑚

𝑞 for all 𝑧 ∈ [|𝒩 ∩ 𝜌([ℓ])|].
3. It also generates {(𝑨𝑢, 𝑇𝑨𝑢)}𝑢∈𝒩∖𝜌([ℓ]) ← EnTrapGen(1𝑛, 1𝑚, 𝑞) such that {𝑨𝑢}𝑢∈𝒩∖𝜌([ℓ]) ∈

ℤ𝑛×𝑚
𝑞 .

4. Subsequently, it samples {𝑹𝑢}𝑢∈𝒩∩𝜌([ℓ]) ← {−1, 1}
𝑚×𝑚 and sets 𝑯𝑢 = 𝑀 ′𝜌−1(𝑢),1𝑩1 +∑︀

𝑗∈{2,...,𝑠max}𝑀
′
𝜌−1(𝑢),𝑗𝑩𝑗 +𝑨𝑢𝑹𝑢 for all 𝑢 ∈ 𝒩 ∩ 𝜌([ℓ]), where 𝑠max = 𝑠max −

⃒⃒
𝜌−1(𝒞)

⃒⃒
.

5. It also samples {𝑯𝑢}𝑢∈𝒩∖𝜌([ℓ]) ← ℤ𝑛×𝑚
𝑞 .

6. It provides 𝒜 with the authority public keys

{PK𝑢 = (𝑨𝑢,𝑯𝑢)}𝑢∈𝒩 .

Generating the Outputs of the Oracle 𝗛: The outputs of the oracle H are generated in an
identical manner to that in Hyb11 (or in Hyb12). More precisely, for each GID ∈ ℋ and each
(GID, 𝑈) ∈ 𝒬, ℬ generates H(GID) as follows:
– Case (I) (GID, 𝑈) ∈ 𝒬 and 𝑈 ∩ 𝜌([ℓ]) ̸= ∅:

1. It first samples 𝒕GID ← 𝜒𝑚−1
big .

2. Next, it samples
{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒𝑚
big and

{︁
𝒌̃GID,𝑢

}︁
𝑢∈𝑈∩𝜌([ℓ])

← 𝜒2.

3. Next, it determines a vector 𝒅 ∈ ℤ𝑠max
𝑞 such that 𝑑1 = 1 and

∑︀
𝑗∈[𝑠max]

𝑀 ′𝑖,𝑗𝑑𝑗 = 0 for
all 𝑖 ∈ 𝜌−1(𝒞 ∪ 𝑈).

4. It additionally samples {𝒇𝑗 }𝑗∈{2,...,𝑠max} ← ℤ𝑛
𝑞 satisfying

∑︀
𝑗∈{2,...,𝑠max}𝑀

′
𝜌−1(𝑢),𝑗𝒇𝑗 =

𝒌̃GID,𝑢𝑨
⊤
𝑢 − (1, 𝒕GID)𝑹

⊤
𝑢𝑨
⊤
𝑢 + 𝒌̂GID,𝑢𝑨

⊤
𝑢 for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]). The well-definedness of

this sampling procedure is justified in Lemma 6.8.
5. It further samples {𝒚𝑗 }𝑗∈{𝑠max+1,...,𝑠max} ← ℤ𝑛

𝑞 .

6. Subsequently, it generates 𝒕GID ← EnSamplePre
(︁
𝑩′, 𝑇𝑩′ , 𝜎, (𝑑2𝒚 + 𝒇2, . . . , 𝑑𝑠max𝒚 +

𝒇𝑠max ,𝒚𝑠max+1, . . . ,𝒚𝑠max)− (1, 𝒕GID)
[︀
𝑩⊤2 | · · · |𝑩⊤𝑠max

]︀ )︁
.

7. It provides H(GID) = 𝒕GID + 𝒕GID to 𝒜.
– Case (II) Otherwise:

1. It samples 𝒕GID ← 𝜒𝑚−1
big .

2. It provides H(GID) = 𝒕GID to 𝒜.
Generating Secret Keys: The secret key queries of 𝒜 are answered in an identical manner to

that in Hyb11 (or in Hyb12). More precisely, to answer a secret key query of 𝒜 corresponding
to a pair (GID, 𝑈) ∈ 𝒬, ℬ runs the following steps:
1. It first samples

{︁
𝒌̂GID,𝑢

}︁
𝑢∈𝑈∖𝜌([ℓ])

← 𝜒𝑚
big.

2. Next, it sets 𝒕GID = (1,H(GID)).
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3. Then, for all 𝑢 ∈ 𝑈 ∩ 𝜌([ℓ]), it sets SKGID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢 + (0, 𝒕GID)𝑹
⊤
𝑢 . Note that by

the generation strategy for H(GID) described above, we have H(GID) = 𝒕GID + 𝒕GID in this
case.

4. Also, for all 𝑢 ∈ 𝑈 ∖ 𝜌([ℓ]), it samples 𝒌̃GID,𝑢 ← EnSamplePre(𝑨𝑢, 𝑇𝑨𝑢 , 𝜎, 𝒕GID𝑯
⊤
𝑢 −

𝒌̂GID,𝑢𝑨
⊤
𝑢 ) and sets SKGID,𝑢 = 𝒌̂GID,𝑢 + 𝒌̃GID,𝑢

5. It provides {SKGID,𝑢}𝑢∈𝑈 to 𝒜.
Generating the Challenge Ciphertext: In order to generate the challenge ciphertext, ℬ

selects a random bit 𝑏← {0, 1} and proceeds as follows:
1. It first samples

{︁
𝒗′𝑗

}︁
𝑗∈{2,...,𝑠max}

← ℤ𝑛
𝑞 , {𝒗𝑗 }𝑗∈{𝑠max+1,...,𝑠max} ← ℤ𝑛

𝑞 , {𝒙′𝑖}𝑖∈𝜌−1(𝒩 ) ← ℤ𝑛
𝑞 ,

and {𝒙𝑖}𝑖∈𝜌−1(𝒞) ← ℤ𝑛
𝑞 .

2. It also samples {𝒆𝑖}𝑖∈𝜌−1(𝒞) ← 𝜒𝑚
lwe, {𝒆𝑖}𝑖∈𝜌−1(𝒞) ← 𝜒𝑚

big, and {𝒆′𝑖}𝑖∈𝜌−1(𝒩 ) ← 𝜒𝑚
big.

3. Then, for all 𝑖 ∈ 𝜌−1(𝒩 ), it defines the vector 𝒓𝑖 as 𝒓 = (𝑟𝑚(𝑧−1)+1, . . . , 𝑟𝑚𝑧) ∈ ℤ𝑚
𝑞 if

𝜌(𝑖) = 𝑢𝑧 ∈ 𝒩 ∩ 𝜌([ℓ]), where it obtained {𝑟𝜄}𝜄∈[𝑚|𝒩∩𝜌([ℓ])|] from its LWE𝑛,𝑞,𝜎 challenger
while generating the public keys for non-corrupt authorities above, and sets the following:

𝒄𝑖 = 𝒙′𝑖𝑨𝑢𝑧 + 𝒓𝑖

𝒄𝑖 =
∑︁

𝑗∈{2,...,𝑠max}

𝑀 ′𝑖,𝑗(𝒗
′
𝑗 − 𝒙′𝑖)𝑩𝑗 +

∑︁
𝑗∈{𝑠max+1,...,𝑠max}

𝑀 ′𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒄𝑖𝑹𝜌(𝑖) + 𝒆′𝑖

4. Next, for all 𝑖 ∈ 𝜌−1(𝒞), it sets

𝒄𝑖 = 𝒙𝑖𝑨𝜌(𝑖) + 𝒆𝑖

𝒄𝑖 =
∑︁

𝑗∈{𝑠max+1,...,𝑠max}

𝑀 ′𝑖,𝑗𝒗𝑗𝑩𝑗 − 𝒙𝑖𝑯𝜌(𝑖) + 𝒆𝑖

5. It gives 𝒜 the challenge ciphertext

CT =
(︁
{𝒄𝑖}𝑖∈[ℓ] ,{𝒄𝑖}𝑖∈[ℓ] ,MSB(𝑟)⊕ 𝑏

)︁
,

where it obtained 𝑟 ∈ ℤ𝑞 from its LWE𝑛,𝑞,𝜎 challenger while setting up the global public
parameters above.

Guess: 𝒜 finally outputs a guess 𝑏′ ∈ {0, 1}. If 𝑏′ = 𝑏, ℬ outputs 1. Otherwise, ℬ outputs 0.

Note that the game simulated by the reduction algorithm ℬ coincides with Hyb11 (Fig. 6.12) if
the responses

(︁
(𝒂, 𝑟),{(𝒂𝜄, 𝑟𝜄)}𝜄∈[𝑚|𝒩∩𝜌([ℓ])|]

)︁
∈ (ℤ𝑛

𝑞×ℤ𝑞)
𝑚|𝒩∩𝜌([ℓ])|+1 it receives from its LWE𝑛,𝑞,𝜎

challenger are a collection of perfectly distributed LWE samples, i.e. if 𝒂← ℤ𝑛
𝑞 and 𝑟 = 𝒔𝒂⊤+ 𝑒,

and 𝒂𝜄 ← ℤ𝑛
𝑞 and 𝑟𝜄 = 𝒔𝒂⊤𝜄 + 𝑒𝜄 mod 𝑞 for all 𝜄 ∈ [𝑚 |𝒩 ∩ 𝜌([ℓ])|] for some 𝒔 ← ℤ𝑛

𝑞 and(︁
𝑒,{𝑒𝜄}𝜄∈[𝑚|𝒩∩𝜌([ℓ])|]

)︁
← 𝒟ℤ,𝜎 (which is statistically close to ̃︀𝐷ℤ,𝜎). This is accomplished by

ℬ by implicitly setting {𝒗𝑗 }𝑗∈{2,...,𝑠max} and {𝒙𝑖}𝑖∈𝜌−1(𝒩 ) used in Hyb11 as 𝒗𝑗 = 𝒔 + 𝒗′𝑗 for
all 𝑗 ∈ {2, . . . , 𝑠max} and 𝒙𝑖 = 𝒔 + 𝒙′𝑖 for all 𝑖 ∈ 𝜌−1(𝒩 ) while simulating the ciphertext
components

(︁
{𝒄𝑖}𝑖∈𝜌−1(𝒩 ) ,{𝒄𝑖}𝑖∈𝜌−1(𝒩 )

)︁
. Further, the ciphertext components {𝒄𝑖}𝑖∈𝜌−1(𝒞) are

perfectly simulated as those in Hyb11 by ℬ in this case since according to Lemma 4.2, 𝑀 ′𝑖,𝑗 = 0

for all (𝑖, 𝑗) ∈ 𝜌−1(𝒞) × [𝑠max]. On the other hand, the game simulated by ℬ above coincides
with Hyb12 (Fig. 6.13) if the responses

(︁
(𝒂, 𝑟),{(𝒂𝜄, 𝑟𝜄)}𝜄∈[𝑚|𝒩∩𝜌([ℓ])|]

)︁
∈ (ℤ𝑛

𝑞 × ℤ𝑞)
𝑚|𝒩∩𝜌([ℓ])|+1

of its LWE𝑛,𝑞,𝜎 challenger are uniformly random. The ciphertext components {𝒄𝑖}𝑖∈𝜌−1(𝒩 ) are
perfectly simulated to those in Hyb12 by ℬ since 𝜌 is injective and {𝒓𝑖}𝑖∈𝜌−1(𝒩 ) as defined by ℬ
in the simulation above are uniformly and independently distributed over ℤ𝑚

𝑞 in this case. Also,
observe that since 𝑟 ← ℤ𝑞 in this case, MSB(𝑟) ⊕ 𝑏 is distributed identically to MSB(𝜏) with
𝜏 ← ℤ𝑞. Finally, it is straightforward to observe that all the other ciphertext components are
generated identically to those in Hyb12 by ℬ in this case. Hence, it follows that the advantage
of ℬ in solving the LWE𝑛,𝑞,𝜎 problem is at least |𝑝𝒜,11(𝜆)− 𝑝𝒜,12(𝜆)| ≥ 𝜂(𝜆). This completes the
proof of Lemma 6.12. ⊓⊔
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