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Abstract. Zero-knowledge (ZK) proofs receive wide attention, espe-
cially with respect to non-interactivity, small proof size, and fast ver-
ification. We instead focus on fast total proof time, in particular for
large Boolean circuits. Under this metric, Garbled Circuit (GC)-based
ZK, originally proposed by Jawurek et al. ([JKO], CCS 2013), remains
state-of-the-art due to the low-constant linear scaling of garbling.
We improve GC-ZK for proof statements with conditional clauses. Our
communication is proportional to the longest clause rather than to the
entire proof statement. This is most useful when the number of branches
m is large, resulting in up to m× communication improvement over JKO.
In our proof-of-concept illustrative application, the prover demon-
strates knowledge of a bug in a codebase consisting of any number of
snippets of C code. Our computation cost is linear in the size of the
codebase and communication is constant in the number of snippets. That
is, we require only enough communication for the single largest snippet!
Our conceptual contribution is stacked garbling for ZK, a privacy-free
circuit garbling scheme that, when used with the JKO GC-ZK protocol,
constructs efficient ZK proofs. Given a Boolean circuit C and computa-
tional security parameter κ, our garbling is L ·κ bits long, where L is the
length of the longest execution path in C. All prior concretely efficient
garbling schemes produce garblings of size |C|·κ. The computational cost
of our scheme is not increased over prior state-of-the-art.
We implemented our technique and demonstrate significantly improved
performance. For functions with branching factor m, we improve com-
munication by m× compared to JKO. Compared with recent systems
(STARK, Libra, KKW, Ligero, Aurora, Bulletproofs), our scheme offers
better proof times for large circuits: 35-1000× or more, depending on
circuit size and on the compared scheme.
For our illustrative application, we consider four C code snippets. Each
snippet has 30-50 LOC; one snippet allows an invalid memory derefer-
ence. The entire proof takes 0.15 seconds and communicates 1.5 MB.

Keywords: Garbled circuits, inactive branch elimination, ZK, proof of C bugs.

1 Introduction

Zero-knowledge (ZK) proofs have many applications and reducing their cost is
an active research direction. Many recent schemes focus on small proofs and



fast verification. These works are largely motivated by blockchain applications
[AHIV17,BCR+19,BBB+18,WTs+18,XZZ+19,BBHR19, etc.] and also by post-
quantum signatures [CDG+17,KKW18].

Our focus, in contrast, is the classical metric of fast total proof time, in-
cluding proof generation, transmission, and verification. Yao’s garbled circuit
technique (GC) is the fastest approach for proving in ZK generic statements
expressed as Boolean circuits. GC offers low-overhead linear prover complexity,
while other techniques’ prover costs are either superlinear or have high constants.

[JKO13] and [FNO15] demonstrated how to use GC for ZK without the costly
cut-and-choose technique, and [ZRE15] proposed an efficient garbling technique
that requires only 1 cryptographic ciphertext per AND gate in the ZK setting.
As a result, GC-ZK processes up to 20 million AND gates per second on a
regular laptop, and XOR gates are essentially free [KS08]. Unfortunately, while
GC-ZK computation is cheap, communication is expensive. Even a fast 1Gbps
LAN supports only ≈ 6 million AND gates per second (XOR gates are free).
While this rate is higher than recent NIZK systems, communication reduction
would make the approach stronger.

In this work, we achieve such a communication improvement: we reduce com-
munication for proof statements that include logically disjoint clauses. Disjoint
clauses arise from conditional branching, e.g., as a result of if or switch pro-
gram statements. We transmit GCs whose size is bounded by the largest clause
rather than by the entire circuit.

Our key idea is that the proof verifier, who is the GC generator, garbles from
seeds all clauses and XORs together, or stacks, the garblings before sending
them to the prover for evaluation. The prover receives via OT the seeds for
the inactive clauses, reconstructs their garblings, and then XORs them with
the stack to obtain the target clause’s garbling. By stacking the garblings, we
decrease the cost to transmit the GC from verifier to prover.

In Section 3, we formally present our approach as a garbling scheme, which we
call Privacy-Free Stacked (PFS) garbling. Accompanying proofs are in Section 4.
We implemented our approach in C++ and evaluate its performance against
state-of-the-art techniques in Section 6 (see also discussion in Section 1.6).

1.1 Use Cases: Hash Trees and Existence of Bugs in Program Code

Our technique is useful for proving in ZK one of several statements. We evaluate
our system in Sections 6 and 7 by considering two applications:

App 1: Existence of Bugs. Our most exciting application allows a prover
P to demonstrate knowledge of a bug in a potentially large codebase. Ours is not
a full-strength automated application, but rather a proof of concept. Still, we
handle C code with pointers, standard library calls, and simple data structures
(see Section 7).

We consider a number of code snippets motivated by real code used in operat-
ing systems, standard algorithms, etc. The snippets we consider contain between
30 and 50 lines of code; this number can be easily increased. We manually in-
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strument snippets with program assertions. Each snippet outputs a single bit
that indicates if an assertion failed and hence whether there is a bug.

We used and extended the EMP toolkit [WMK16] to compile instrumented
snippets to Boolean circuits. P demonstrates that she knows an input which
causes the snippet to output 1. We envision that the mechanical tasks of in-
strumenting a codebase will be automated in a practical tool; we leave further
development as important and imminent future work.

Our approach excels in this use case because it features (1) high concrete
performance and (2) communication that is constant in the number of code
snippets. We further elaborate on this use case in Section 7.

App 2: Merkle Tree Membership. We compare our performance to that
of recent ZK systems. We therefore consider an application that is typical in the
literature: proving Merkle tree membership.

Specifically, Alice asserts properties of her record which is embedded in a cer-
tificate signed by one of several acceptable authorities. Each authority includes
many players’ records in a Merkle tree and publishes the Merkle root. Alice
proves in ZK statements about her record by demonstrating that she knows
a Merkle path from her record to any one of the published roots. Certificate
authorities may use different hash functions or, in general, differ in arbitrary
aspects of the proof, creating a use case for proving one of many clauses. In
Section 6, we compare our performance to recent work based on this use case.

1.2 Contribution

Our contribution includes:
• A novel GC technique that we call stacked, or PFS, garbling. PFS garbling re-

quires communication linear in the longest execution path rather than in the
entire circuit. Specifically, the same circuit encryption sent from verifier to
prover compactly represents any of the disjoint clauses. Note, Free IF [Kol18]
does not work in our setting.
PFS garbling is useful in a number of applications. We highlight the use-case
of directly representing disjunctive proofs. Another key application of PFS
garbling is the efficient representation of the internal operations of a proces-
sor. A processor representation can handle a wider variety of ZK statements
than direct circuit encodings. On each cycle, the emulated processor condi-
tionally dispatches over an instruction to decide which operation to perform.
PFS garbling optimizes this kind of conditional dispatch.
• High concrete performance, improving over the state-of-the art baseline,

JKO with half-gates, approximately by the function branching factor; im-
provement over recent SNARKs is 35× – 1000× or more, depending on
function size, branching, and the compared scheme. Our technique has low
RAM requirements (146 MB for 7M gate circuit).
• A proof-of-concept system that proves knowledge of bugs in C code. We use

realistic C code snippets that include pointer manipulations and standard
library calls, and we use the implementation to prove the existence of a bug
relating to a misuse of sizeof() on a pointer.
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1.3 Preliminaries

Free IF review: We improve GC communication for circuits with conditional
branching. [Kol18] introduced Free IF, a technique that achieves a similar im-
provement to conditionals. Free IF decouples the circuit’s description (the topol-
ogy) from the encryptions of circuit’s gates (the material). While a topology is
required, it is assumed to be conveyed separately from the material or by implicit
agreement between the participants.

Let S = {C1, ..., Cm} be a set of Boolean circuits. Let only the GC generator
Gen know which circuit in S is evaluated, and let Ct be this target circuit. The
key idea is that Gen constructs material for Ct, but does not construct material
for the other circuits. Let Ĉ be the constructed material. The GC evaluator Eval
knows S, but does not know the target. From Eval’s perspective, Ĉ is a random-
looking string that could plausibly be the encryption of any circuit in S. For
each Ci ∈ S, Eval interprets Ĉ as material for Ci and evaluates, obtaining garbled
output. Only the output labels of Ct encrypt truth values; the other output labels
are garbage. Eval cannot distinguish garbage labels from valid labels and hence
does not learn t.

Eval obliviously propagates only the target output labels to Gen via an output
selection protocol. As input to the protocol, Eval provides all output labels,
including the garbage outputs, and Gen provides t and Ct’s output labels. The
protocol outputs re-encoded labels corresponding to the output of Ct.

PFS garbling is inspired by key ideas from Free IF:

• We also separate circuit topologies from material.
• We also use the same material to encrypt multiple topologies.

Superficially, both techniques omit inactive clauses when one player knows the
target clause. The difference is that in [Kol18] that player is Gen and in our
scheme it is Eval. Indeed, in GC-ZK, Gen must not know the evaluated branch.
This is a critical distinction that requires a different approach.

Garbled Circuits for Zero Knowledge: Until the work of Jawurek et al. [JKO13],
ZK research focused on proofs of algebraic statements. Generic ZK techniques
were known, but were based on generic NP reductions and were inefficient.
[JKO13] provided an efficient generic ZK technique based on garbled circuits.

The construction works as follows. The verifier V and the prover P run a
passively-secure GC protocol where V is the circuit generator and P is the circuit
evaluator. The agreed upon Boolean circuit C encodes the proof relation where
(1) the input is a witness supplied by P, (2) the output is a single bit, and (3) if
the output bit is 1, then the witness satisfies the relation. V garbles C and sends
the garbling to P. P evaluates the GC and sends to V the output label. GC
security, namely authenticity [BHR12], ensures that a computationally bounded
P cannot produce the correct output label without a valid witness. By computing
C, P and V achieve a ZK proof in the honest verifier setting.

While the approach so far is secure against an honest verifier, a mali-
cious V can send an invalid circuit or invalid OT inputs that leak P’s witness.
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[JKO13] solves this with a commitment step. P does not immediately send her
output label to V; she instead commits to it. Then, V sends to P the seed used to
generate the GC. P uses the seed to verify that the GC was honestly constructed.
If so, P opens her commitment, completing the proof.

Subsequent to [JKO13], [FNO15] observed that weaker privacy-free garbling
schemes suffice for [JKO13]’s ZK protocol. [FNO15] constructed a faster privacy-
free scheme that uses between 1 and 2 ciphertexts per AND gate. Subsequently,
Zahur et al. [ZRE15] presented a privacy-free variant of their half-gates scheme
which requires only 1 ciphertext per AND gate. In our implementation, we use
the [JKO13] protocol and build on top of half-gates.

1.4 High-level Approach

Our main contribution is a new ZK technique in the [JKO13] paradigm. The
key characteristic of our construction is that, for proof relations with disjoint
clauses, communication is bounded by the size of the largest clause rather than
the total circuit size. In Section 3, we present our approach in technical detail
as a garbling scheme that plugs into the [JKO13] protocol. For now, we explain
our approach at a high level.

Consider a proof statement represented as a Boolean circuit C with condi-
tional evaluation of one of several clauses. In Section 1.3, we reviewed existing
work that demonstrates how to efficiently evaluate C if the generator knows the
active clause. However, the [JKO13] ZK approach requires the generator to be
V. V has no input and so does not know the target clause. Instead, P must select
the target clause.

As a näıve first attempt, P can select the target clause via OT. However, this
involves transferring encryptions of all GC clauses, resulting in no improvement.

Instead, we propose the following idea, inspired by classic two-server pri-
vate information retrieval [CGKS95].1 Let S = {C1, .., Cm} be the set of circuits
implementing clauses of the ZK relation. Let Ct ∈ S be the target clause. For
simplicity, suppose all clauses are of the same size, meaning that they each gen-
erate GCs of equal size. Our approach naturally generalizes to clauses of different
sizes (see Section 3.7). The players proceed as follows.

V chooses m random seeds s1..sm and generates from them m GCs, Ĉ1..Ĉm.
V computes Ĉ =

⊕
i Ĉi and sends Ĉ to P. Informally, computing Ĉ can be under-

stood as stacking the garbled circuits for space efficiency.
We allow P to reconstruct, from seeds received via OT, all but one of the

stacked GCs. P XORs these reconstructions with the stack to retrieve the target
GC which she evaluates with her witness. We prevent P from receiving all m
GCs and thus from forging a proof. To do so, we introduce a ‘proof of retrieval’
string por. P receives por via OT only when she does not choose to receive a

1 [CGKS95] includes a PIR protocol where two non-colluding servers separately re-
spond to a client’s related queries. The client XORs the two encrypted responses to
compute the cleartext output.
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clause seed. P proves that she did not forge the proof by presenting por. This is
put together as follows.

V samples a uniform string por. For each i ∈ {1..m}, the players run 1-out-
of-2 OT, where V is the sender and P is the receiver. Players use committing
OT for this phase [KS06]. For the ith OT, V’s input is a pair (si,por). P selects
0 as her input in all instances except instance t, where she selects 1. Therefore
P receives por and seeds si 6=t, from which P reconstructs each Ĉi 6=t. P retrieves
material for the target clause by computing Ĉt = Ĉ ⊕ (

⊕
i6=t Ĉi).

Now, P holds material for the target clause, but we have not yet described
how P receives input labels for the target clause. We again simplify by specifying
that each clause has the same number, n, of inputs. Our approach generalizes
to clauses with different numbers of inputs (see Section 3.7). V’s random seed
si is used to generate the n pairs of input labels for each clause Ĉi. Let Xi be
the vector of n label pairs used to encode the input bits for clause i. V generates
m such vectors, X1..Xm. As an optimization similar to stacking garblings, V
computes X =

⊕
iXi. V and P now perform n committing 1-out-of-2 OTs,

where in each OT V provides two stacked labels, one label corresponding to 0
and one to 1, and P provides her corresponding input bit. P uses seeds obtained
in the first step to reconstruct each Xi 6=t and computes Xt = X ⊕ (

⊕
i6=tXi).

P now has the material Ĉt and appropriate input labels Xt. P evaluates Ĉt,
resulting in a single output label Yt. For security, we prevent V from learning t.
We accomplish this by allowing P to compute the correct output label for every
clause. Recall, P has seeds for every non-target clause. P uses the garblings
constructed from these seeds to obtain the output labels Yi 6=t. P computes Y =
por⊕(

⊕
i Yi) and commits to this value, as suggested in [JKO13]. Next, V opens

all commitments made during rounds of OT. From this, P checks that por is
consistent across all seed OTs and obtains the final seed st. P checks that the
circuits are properly constructed by reconstructing them from the seeds and, if
so, completes the proof by opening the output commitment.

1.5 Generality of top-level clauses

Our approach optimizes top-level clauses. That is, possible execution paths of the
proof relation are represented by separate clauses. Top-level clauses are general:
even nested conditionals can be represented by performing program transforma-
tions that lift inner conditionals to top-level conditionals.

Unfortunately, over-optimistically lifting conditionals can sometimes lead to
an exponential number of clauses. In particular, if two conditionals occur sequen-
tially in the relation, then the number of possible execution paths is the product
of the number of paths through both conditionals. Of course, it is not necessary
to lift all conditionals in a program; clauses can include unstacked conditional
logic. Our approach yields improvement for any separation of top level clauses.

Top-level clauses match our target use case of proving the existence of pro-
gram bugs: programs can be split into various snippets, each of which may
contain a bug. We represent snippets as top-level clauses.

6



1.6 Related Work

Our work is a novel extension to the GC-based ZK protocol of [JKO13] which
we reviewed in Section 1.3. Here we review other related work and provide brief
comparisons in Section 1.7. We focus on recent concretely efficient protocols.

Zero Knowledge is a fundamental cryptographic primitive [GMR85,GMW91].
ZK proofs of knowledge (ZKPoKs) [GMR85,BG93,DP92] allow a prover to con-
vince a verifier, who holds a circuit C, that the prover knows an input, or witness,
w such that C(w) = 1. There are several flavors of ZK proofs. In this work we
do not distinguish computational and information-theoretic soundness and refer
to both arguments and proofs simply as ‘proofs.’

ZK proofs were investigated both theoretically and practically in largely
non-intersecting bodies of work. Early practical ZK protocols focused on al-
gebraic relations, motivated mainly by signatures and identification schemes,
e.g. [Sch90,CDS94]. More recently, these two directions have merged. Today,
ZKPoKs and non-interactive ZKPoK (NIZKPoK) for arbitrary circuits are effi-
cient in practice.

Consider proving in ZK arbitrary statements represented as Boolean cir-
cuits. These can be straightline programs or, more generally and quite typically,
can include logical combinations of basic clauses. Several lines of work consider
ZK proofs of general functions, including MPC-in-the-head, SNARKs/STARKs,
JKO, and Sigma protocols [CDS94]; the latter specifically emphasizes proving
disjoint statements, e.g., [Dam10,CDS94,CPS+16,GK14]. We next discuss prior
generic ZK techniques.

Efficient ZK from MPC. Ishai et al. [IKOS07], introduced the ‘MPC-in-the-
head’ paradigm. Here, the prover emulates ‘in her head’ MPC evaluation of
C(w) among virtual players, where w is secret-shared among the players. The
verifier checks that the evaluation outputs 1 and asks the prover to open the
views of some virtual players. A prover who does not know w must cheat to
output 1; opening random players ensures a cheating prover is caught with some
probability. At the same time, ZK is preserved because (1) not all virtual players
are opened, (2) the witness is secret shared among the virtual players, and (3)
MPC protects the inputs of the unopened virtual players.

Based on [IKOS07]’s approach, Giacomelli et al. [GMO16] implemented ZK-
Boo, a protocol that supports efficient NIZKPoKs for arbitrary circuits. Later,
Chase et al. [CDG+17] introduced ZKB++, which succeeded ZKBoo. ZKB++
can implement a signature scheme based on symmetric-key primitives alone. A
version of the [CDG+17] scheme called Picnic [ZCD+17] was submitted to the
NIST post-quantum standardization effort. Katz et al. [KKW18] further im-
proved this line of research by computing a preprocessing-based protocol among
the virtual players. Because the [KKW18] approach is more efficient, Picnic has
since updated and is now based on [KKW18].

Ligero [AHIV17] offers proofs of length O(
√
|C|) and asymptotically outper-

forms ZKBoo, ZKB++, and [KKW18] in communication. The break-even point

7



between [KKW18] and Ligero depends on function specifics, and is estimated in
[KKW18] to be ≈ 100K gates.

SNARKs/STARKs. Succinct non-interactive arguments of knowledge
(SNARKs) [GGPR13,PHGR13,BCG+13,CFH+15,Gro16] offer proofs that
are particularly efficient both in communication and in verification time. They
construct proofs that are shorter than the input itself. Prior work demonstrated
the feasibility of ZK proofs with size sublinear in the input [Kil92,Mic94], but
were concretely inefficient. Early SNARKs require a semi-trusted party. This
disadvantage motivated development of succinct transparent arguments of
knowledge (STARKs) [BBHR18]. STARKs do not require trusted setup and
use more efficient primitives. STARKs are succinct, and thus are SNARKs. In
this work, we do not separate them; we see them as a body of work focused on
sublinear proofs. Thus, Ligero [AHIV17], which is based on MPC-in-the-head,
is a SNARK.

In our comparisons, we focus on JKO, [KKW18], and recent SNARKs Ligero,
Aurora, Bulletproofs [BBB+18], STARK [BBHR19], and Libra [XZZ+19].

Garbled RAM. Our technique reduces communication for circuits with condi-
tional branches. Another direction achieves a similar improvement by represent-
ing a low-level processor rather than directly representing the program. Garbled
RAM combines GC with ORAM to repeatedly perform individual processor cy-
cles [LO13]. Because the processor cycle circuit has fixed size, this technique has
cost proportional to the program execution path rather than to the full program.
Garbled RAM interfaces the GC with ORAM and so is not concretely efficient.
While our approach is not as general as Garbled RAM and related approaches,
we achieve high concrete efficiency for conditionals.

1.7 Comparison with prior work

We present detailed experimental results in Section 6; here, we reiterate that
our focus is fast total proof time, including proof generation, transmission, and
verification. In this total-time metric, GC is the fastest technique for proving
statements expressed as Boolean circuits. This is because GC offers low-overhead
linear prover complexity while other techniques’ provers are superlinear, have
high constants, or both.

In Section 1.1, we presented an exciting application where P demonstrates
knowledge of a program bug. However, when comparing to prior work, we in-
stead use a Merkle tree evaluation benchmark. This benchmark is convenient
since many other works report on it. In Section 6, we use this benchmark to
compare to JKO and to other modern ZK proof systems: KKW, Ligero, Aurora,
Bulletproofs, STARK, and Libra.

As expected, our total time improves over [JKO13] by a factor approximately
equal to the branching factor. Indeed, our communication cost is linear in the
longest execution path, while [JKO13,KKW18] are linear in |C|, and our con-
stants are similar to that of [JKO13] and significantly smaller than [KKW18].
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Our total time outperforms current SNARKS by 35× – 1, 000× or more. Like
JKO, and unlike KKW and SNARKs, our technique is interactive and requires
higher bandwidth.

2 Notation

The following variables relate to a given disjunctive proof statement:

• t is the target index. It specifies the clause for which the prover has a witness.
• m is the number of clauses.
• n is the number of inputs. Unless stated otherwise, each clause has n inputs.

We use ⊕ to denote a slight generalization of XOR: if one input to XOR is
longer than the other, the shorter input is padded by appending 0s until both
inputs are of the same length. We use

⊕
xi..xj as a vectorized version of this

length-aware XOR: ⊕
xi..xj = xi ⊕ xi+1 ⊕ . . . xj−1 ⊕ xj

We discuss in Section 3.7 that this generalization is not detrimental to security
in the context of our approach.

x || y is the string concatenation of x and y. We use κ as the computational
security parameter. We use V, he, him, his, etc. to refer to the verifier and P,
she, her, etc. to refer to the prover. We use . for namespacing; pack.proc is a
procedure proc defined as part of the package pack.

3 Our Privacy-Free Stacked Garbling Construction

We optimize the performance of ZK proofs for circuits that include disjoint
clauses. In this section, we present our approach in technical detail.

Our construction is a verifiable garbling scheme [BHR12,JKO13]. A verifiable
garbling scheme is a tuple of functions conforming to a specific interface and
satisfying certain properties such that protocols can be defined with the garbling
scheme left as a parameter. Thus, new garbling schemes can be plugged into
existing protocols. A garbling scheme does not specify a protocol. Instead, it
specifies a modular building block.

We specify an efficient verifiable garbling scheme where the function en-
coding, F , is proportional to the longest program execution path rather
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1 Proc Stack.Gb (1κ, f, R):
2 (f1..fm)← f
3 (por||s1..sm)← R
4 for i ∈ 1..m do
5 (Fi, ei, di)← Base.Gb (1κ, fi, si)
6 F ← f ||

(⊕
F1..Fm

)
7 d← por⊕

(⊕
d1..dm

)
8 e← por||s1..sm||e1..em
9 return (F, e, d)

1 Proc Stack.En (e, x):
2 (por || s1..sm || e1..em)← e
3 (t || xt)← x
4 for i ∈ 1..m do
5 if i 6= t then
6 ri ← si
7 else
8 ri ← por
9 Xi ← Base.En(ei, xt)

10 X ← r1..rm ||
(⊕

X1..Xm
)

11 return X

1 Proc Stack.De (Y, d):
2 y ← Y = d
3 return y

1 Proc Stack.ev (f, x):
2 (f1..fm)← f
3 (t || xt)← x
4 y ← Base.ev (ft, xt)
5 return y

1 Proc Stack.Ev (F,X, x):
2 (f1..fm || F )← F
3 (r1..rm || X)← X
4 (t || xt)← x
5 for i ∈ 1..m do
6 if i 6= t then
7 (Fi, ei, di)← Base.Gb (1κ, fi, ri)
8 Xi ← Base.En (ei, xt)
9 else

10 (Fi, di, Xi)← (0,0,0)
11 Ft ← F ⊕

(⊕
F1..Fm

)
12 Xt ← X ⊕

(⊕
X1..Xm

)
13 Yt ← Base.Ev (Ft, Xt)
14 Y ← Yt ⊕

(⊕
d1..dm

)
⊕ rt

15 return Y

1 Proc Stack.Ve (f, F, e):
2 (por || s1..sm || ·)← e
3 (F ′, e′, d′)←

Stack.Gb (1κ, f, por || s1..sm)
4 return e = e′ ∧ F = F ′

Fig. 1. PFS garbling scheme Stack. Stack is defined as six procedures: Stack.Gb,
Stack.Ev, Stack.ev, Stack.En, Stack.De, and Stack.Ve.

than to the entire program2. Our scheme satisfies security properties required
by [JKO13,FNO15].

A verifiable garbling scheme is a tuple of six algorithms:

(ev,Gb,En,Ev,De,Ve)

The first five algorithms define a garbling scheme [BHR12], while the sixth adds
verifiability [JKO13]. A garbling scheme specifies the functionality computed by
2 To be more precise, in the notation of Kolesnikov [Kol18], the function encoding
F = (T,E) consists of function topology T , thought of as the Boolean circuit, and
material E. In our work, E is proportional to the longest execution path.

In [BHR12], F implicitly includes a full description of the function. I.e., F includes
the topology. In this sense, F is also proportional to the full size of the function.
However, compared to the material needed for the longest clause, the topology is
small. Formally, the topology size is constant in κ. Most importantly, implementa-
tions can assume that the topology is known to both players and so need not send
the topology.
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V and P. Loosely speaking, V uses Gb to construct the garbled circuit sent to
P. V uses En to choose input labels and De to decode the output label. P uses
Ev to compute the garbled circuit with encrypted inputs and uses Ve to check
that the circuit was honestly constructed. Finally, ev provides a reference against
which the other algorithms can be compared. The idea is that if (1) a garbling
is constructed using Gb, (2) the inputs are encoded using En, (3) the encoded
output is computed using Ev, and (4) the output is decoded using De, then the
resulting bit should be the same as calling ev directly.

A verifiable garbling scheme must be correct, sound, and verifiable. We
present definitions of these properties and proofs that our scheme satisfies them
in Section 4.

Since we are primarily concerned with reducing the cost of disjoint clauses,
we offload the remaining work, i.e. work related to the handling of individual
clauses, to another garbling scheme. We parameterize our scheme over another
garbling scheme, Base. We place the following requirements on Base:

• Base must be correct and sound.
• Base must be projective [BHR12]. In a projective garbling scheme, each

bit of the prover’s input is encoded by one of two cryptographic labels. The
truth value of that bit determines which label the prover receives. Projec-
tivity allows us to stack input labels from different clauses. We can lift this
requirement by compromising efficiency: V can send an input encoding for
each clause rather than a stacked encoding.
• Base must output a single cryptographic label and decoding must be based

on an equality check of this label. This property is important because it
allows us to stack the output labels from each clause. Again, we can lift this
requirement by compromising efficiency: P can send each output label rather
than the stacked value.

These requirements are realized by existing schemes, including state-of-the-art
privacy-free half-gates [ZRE15].

In the following text, we describe our construction, the PFS verifiable garbling
scheme Stack. Pseudocode for our algorithms is presented in Figure 1.

3.1 Reference Evaluation

ev maps the computed function f and an input x to an output bit. ev provides
a specification for garbled evaluation: garbled evaluation should yield the same
output as ev. In our setting, the input is split into a clause selection index t
and the remaining input. Stack.ev delegates to Base.ev on the t-th clause. For
many practical choices of Base, including privacy-free half-gates, Base.ev simply
applies the function to the input: it returns f(x).

3.2 Garble

Gb maps the function f to a garbled function F , an encoding string e, and a
decoding string d. At a high level, Gb corresponds to the actions taken by V to
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construct the proof challenge for P. Typically, e contains input labels (conveyed
to P via OT), F contains material needed to evaluate the individual logic gates
and, in the ZK setting, d is a single label that convinces V that P has a witness.
P uses her witness to construct d.

Gb is usually described as a pseudorandom algorithm. However, we explicitly
parameterize Gb over a random string such that Gb is a deterministic algorithm.
This adjustment allows P to reconstruct material by starting from the same
random string as V. Gb takes as parameters the unary string 1κ, the desired
function f , and a random string R. It outputs a three-tuple of strings (F, e, d).

At a high level, Stack.Gb (Figure 1) delegates to Base.Gb for each clause and
XORs3 the resulting material. This XOR stacking reduces the material length
to that of a single largest clause.

In more detail, Stack.Gb deconstructs f into clauses and extracts from the
randomness (1) m different random seeds and (2) the proof of retrieval string
por. Later, in Section 3.3 we will see that the prover receives via OT the gar-
bling seed for each of m clauses, except for the target clause. por prevents P
from taking all m seeds and hence from forging a proof. We enforce that if P
takes all seeds, then she does not obtain por. Next, each seed is used to garble
its respective clause using the underlying scheme (Stack.Gb line 5). The mate-
rial from each clause is XORed together and concatenated with the function
description4 (Stack.Gb line 6). This is a key step in our approach: since we XOR
material together, we reduce the cost of sending the garbling F as compared to
sending each garbling separately. Similarly, output labels from each clause are
XORed together. por is also XORed onto the output label stack. The encoding
e contains por, each random string si, and each encoding string ei.

3.3 Encode

En maps the encoding string e and the function input x to an encoded input X.
En describes which input labels the verifier should send to the prover. Typically,
En is implemented by OT.

Stack.En ensures that the prover receives (1) the proof of retrieval string
por, (2) each random seed si 6=t, and (3) stacked inputs for the target clause.
Section 3.2 described how e contains por, s1..sm, and e1..em.

Stack.En deconstructs e into the above parts. It also deconstructs the circuit
input into t, the target clause index, and xt, the input for the target clause.
Next, a vector of secrets, r1..rm is constructed. This vector contains por and
si 6=t. We use the underlying scheme to construct m encodings and XOR the
encodings together (Stack.En line 10). Stack.En outputs the vector of secrets and
the stacked input encodings.

3 As discussed in Section 2, by XOR we mean length-aware XOR, where shorter strings
are padded with zeros such that all strings are of the same length.

4 Including the function description f is a formality to fit the BHR interface. In prac-
tice, f is often known to both parties and need not be explicitly handled/transmitted.
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Stack.En is a specification, not an implementation. As mentioned earlier,
Stack.En is implemented using OT. Our implementation realizes this function-
ality in the following way:

• For each clause, V generates n pairs of labels, one pair for each bit and one
label for each configuration of that bit.5

• V stacks these labels, yielding n pairs of stacked labels.
• For each i ∈ 1..m, V constructs the pair (si,por).
• Now, P and V participate in m+n executions of 1-out-of-2 OT, such that P

receives por, non-target seeds, and stacked garbled inputs according to En.

By running this protocol, V obliviously transfers encoded input, including the
seeds and por, to P.

3.4 Evaluate

Ev maps an encoded function, F , and encoded inputs, X, to the encoded output,
Y . In the ZK setting we (as do [JKO13] and [FNO15]) allow Ev to take the
unencoded input, x, as a parameter. In practice Ev is run by P who knows
the witness. Informally, Ev describes how P uses material and input labels to
construct a proof.

The bulk of the work done by Stack.Ev is concerned with ‘undoing’ the stack-
ing of the encoded functions F1..Fm and of the encoded inputs X1..Xm, in order
to extract the encoded function Ft, and inputs Xt for the target clause. First,
Stack.Ev deconstructs all inputs into their constituent parts. It then uses the ran-
dom strings included in the encoded input to re-garble each non-target clause
by calling Base.Gb (Stack.Ev line 7). Note that since Base.Gb is called with the
same random strings in both Stack.Ev and Stack.Gb, the resulting encodings
are the same. Stack.Ev cannot call Base.Gb on the target clause because the in-
put encoding does not include the corresponding random string. Instead, rt is
the proof of retrieval por. Stack.Ev XORs out the garblings of the non-target
clauses to obtain the encoded function (Stack.Ev line 11) and encoded input
(Stack.Ev line 12) for the target clause. P uses Ft and Xt to compute the output
Yt by calling Base.Ev. Finally, P XORs together Yt, d1..dm, and por and returns
the result.

3.5 Decode

De maps an encoded output, Y , and an output encoding string, d, to a de-
coded output. In the ZK setting, both Y and d are labels encoding a single bit.
Stack.De checks that the values are the same, and if so returns 1 (and 0 if not).
5 In fact, we use the Free XOR extension [KS08]. Therefore, each clause has only one

label for each input bit and one global ∆ value that separates 0 bit labels from 1
bit labels. Our implementation stacks ∆ from each clause as part of the stacked
projective garbling.
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3.6 Verify

Ve maps an input function f , the garbled function F , and the encoding string e
to a bit. Informally, the function returns 1 if (F, e) is correctly constructed.

Stack.Ve extracts the proof of retrieval por and input seeds s1..sm from e. It
uses these strings to garble the computed functions and checks that the result
matches the provided garbling.

In our implementation, we take advantage of an optimization available in
Stack.Ve. To verify V’s messages, the prover reconstructs the garblings of each
clause. However, the prover already garbled each circuit except the target while
computing Ev, so we simply reuse these already computed values and only garble
the target during verification. This is noteworthy, because our approach not only
transmits less information, it involves less computation on the part of P as well:
under previously defined ZK garbling schemes (e.g. [ZRE15]), P must both garble
and evaluate every clause. Under our scheme P garbles every clause but evaluates
only the target clause.

3.7 Generalizing to Diverse Clauses

In Section 1.4, we limited discussion to clauses of the same size and with the
same number of inputs. Our construction does not rely on these simplifications.
Here, we discuss generalizations to clauses with different sizes and numbers of
inputs.

Our approach supports clauses of various sizes. The only implementation de-
tail that relates to the size of the clauses is the XOR stacking of the garbled
material from each clause (Stack.Gb line 6 and Stack.Ev line 11). In Section 2,
we describe how ⊕ denotes a length-aware variant of XOR, i.e. the shorter string
is padded with 0s. Therefore, there is no correctness concern with stacking mis-
matched strings. The only potential concern is security. Our proofs formally al-
leviate this concern; informally, stacking material is secure because we can safely
allow the prover to obtain material for each clause Fi. Indeed, even sending each
clause Fi separately is secure, although inefficient. Giving P access to the gar-
bled material provides no aid in constructing a proof. Specifically, only having
a witness and running the garbled circuit allows P to construct the correct Yt.
Therefore, clause stacking does not hinder security.

We support clauses with different numbers of inputs. Regardless of her clause
choice t, the prover appends the input string xt with 0s until xt is appropriate
for an input of length n. Our technique allows P to learn every input encoding
Xi6=t and therefore to learn Xt. This is desirable: We must allow P to learn Xt

in order to evaluate the target clause on their input.

4 Proofs of Security

Jawurek et al. [JKO13] introduced a protocol that uses a garbling scheme as a
black-box to achieve malicious verifier Zero Knowledge. In this section, we prove
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that our construction satisfies the [JKO13] requirements. Thus, we leverage the
work of [JKO13] to construct a malicious verifier ZK protocol with efficient
disjoint clause handling.

[JKO13] requires the garbling scheme to be correct, sound, and verifiable.
We use simpler formulations of these definitions presented in [FNO15], a follow-
up work to [JKO13].

We now explicitly state the definitions of these properties in our notation.
We prove that Stack (Figure 1) satisfies each property (Theorems 1 to 3) if the
underlying scheme Base is correct and sound. We do not require Base to be
verifiable because we explicitly manage Base’s randomness.

4.1 Correctness

Correctness ensures that P constructs a valid proof if she, in fact, has a valid
witness. More precisely, Definition 1 states that if a garbling is constructed by
calling Gb and P provides as input a valid witness, then Ev yields the correct
output label d. Recall, we work with explicit randomness. Thus, Gb takes a
random string R as additional input.

Definition 1 (Correctness). A garbling scheme is correct if for all n =
poly(κ), all functions f : {0, 1}n → {0, 1}, all inputs x ∈ {0, 1}n such that
ev (f, x) = 1, and all random strings R ∈R {0, 1}κ:

(F, e, d) = Gb (1κ, f, R)⇒ Ev (F,En (e, x) , x) = d

Theorem 1. If Base is correct, then Stack is correct.

Proof. Stack.Gb constructs the output label d by XORing together the output
label of each clause, di, and the proof of retrieval string, por. Therefore, it
suffices to show P obtains each string di and por. Recall, P’s input includes the
bits that select a clause, t, concatenated with her remaining input, x. We show
that she obtains each output label di and por in three steps:

1. P obtains di for all i 6= t by garbling fi. This is immediate from the fact that
P receives every seed si for i 6= t as a part of her encoded input (Stack.En,
line 6). P garbles clause fi with seed si and obtains di (Stack.Ev, line 7).

2. P obtains dt by evaluating ft on her input x. We show this in three parts:
(1) P obtains the garbling of the selected clause, Ft, (2) P obtains encoded
inputs for the selected clause, Xt, and (3) P computes dt.
First, Stack.Gb constructs the XOR sum of the garbling of each clause, Fi
(Stack.Gb, line 6). Therefore, to show that P obtains Ft, it suffices to show
that she obtains Fi for all i 6= t and F . F is given as a parameter to Stack.Ev
and so is trivially available. P obtains the garblings of all clauses Fi by calling
Stack.Gb with the seeds in her encoded input.
Second, Stack.En constructs X by XORing together the encodings of each
clause Xi (Stack.En, line 10). Similar to the previous step, P computes each
Xi by garbling clause i with si. She uses each encoding ei to compute Xi =
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Base.En (ei, x) (Stack.Ev, line 8). She XORs these encodings with X to get
the appropriate input for clause t, Xt.
P computes Yt = Base.Ev(Ft, Xt, x). Base is assumed correct, so Yt = dt.

3. P obtains por. This string is immediately available as rt (Stack.En line 8).

P XORs together each of these elements (Stack.Ev line 14) to obtain the output
Y = d. That is, Stack.Ev (F,Stack.En (e, x) , x) = d. Stack is correct.

4.2 Soundness

Definition 2 (Soundness). A garbling scheme is sound if for all n = poly(κ),
all functions f : {0, 1}n → {0, 1}, all inputs x ∈ {0, 1}n such that ev (f, x) = 0,
and all probabilistic polynomial time adversaries A the following probability is
negligible in κ:

Pr (A (F,En (e, x) , x) = d : (F, e, d)← Gb (1κ, f))

Soundness is a succinct version of authenticity [BHR12], restricted to the
ZK setting. Soundness ensures that a prover who does not have a valid witness
cannot convince the verifier otherwise. More specifically, no malicious evaluator
can extract the garbling scheme’s secret d unless she knows an input x such that
f(x) = 1.

In our garbling scheme, d combines 1-labels of all clauses and the proof of
retrieval por. We show that an adversarial P who is given (F,Stack.En (e, x) , x),
such that Stack.ev (f, x) = 0, cannot obtain at least one of the components of d
and hence cannot output d except with negligible probability.

Theorem 2. If Base is sound, then Stack is sound.

Proof. Recall, d = (
⊕

i di)⊕por. That is, the output label is the XOR sum of the
output labels for each clause and por. Consider an arbitrary input (t || xt)← x,
such that Stack.ev (f, x) = 0. We proceed by case analysis on t.

• Suppose t is invalid (i.e., t 6∈ [1..m]) and thus Stack.En(x) outputs all seeds
s1..sm. By the definition of Stack.En, A does not receive por and hence
cannot construct d except with negligible probability.
• Suppose that t ∈ [1..m], i.e. t is valid. Because Stack.ev (f, x) = 0, it must

be that Base.ev (ft, xt) = 0. A’s input includes por and seeds for each clause
except for clause t. Due to the seeds, A can compute each output label
except dt. Stack prevents an adversary without a witness from successfully
constructing dt and hence prevents construction of d. dt is independent of all
values except for values related to the clause itself: st, ft, Ft, Xt, and et. Base
is assumed sound and hence, since xt is not a witness for clause t, A cannot
obtain dt. Thus, A cannot construct d except with negligible probability.

Stack is sound.
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1 Proc Stack.Ext (F, e):
2 (f1..fm || ·)← F
3 (por || s1..sm || ·)← e
4 (·, ·, d)← Stack.Gb (1κ, f1..fm, por || s1..sm)
5 return d

Fig. 2. The Stack.Ext algorithm demonstrates verifiability of Stack.

4.3 Verifiability

Definition 3 (Verifiability). A garbling scheme is verifiable if there exists
an expected polynomial time algorithm Ext such that for all x such that f(x) = 1,
the following probability is negligible in κ:

Pr (Ext(F, e) 6= Ev(F,En(e, x), x) : (F, e, ·)← A(1κ, f),Ve(f, F, e) = 1)

Verifiability prevents even a malicious verifier from learning the prover’s wit-
ness. In the ZK protocol, the prover checks the construction of the garbling via
Ve. Verifiability ensures that this check is reliable. That is, it guarantees that if
f(x) = 1, then the output value Ev (F,En (e, x) , x) is unique and moreover can
be efficiently extracted given the encoding. This implies that V knows d ahead
of time. Therefore, V learns nothing by receiving d from the prover, except for
the fact that f(x) = 1. This fact holds even for maliciously generated circuits,
as long as the verification procedure succeeds.

Theorem 3. If Base is correct, then Stack is verifiable.

Proof. By correctness of Stack. Let (F ′, e′) be a garbling of f constructed by A.
Let x satisfy f(x) = 1. Let Y be the value obtained by evaluating this garbling:

Y = Ev (F ′,En (e′, x) , x)

Let R be the randomness included in e′, i.e. R = por || s1..sm. Let (F, e, d) be
the result of calling Stack.Gb with this random string:

(F, e, d) = Stack.Gb (1κ, f, R)

We claim Y must be equal to d.
Suppose not, i.e. suppose Y 6= d. By correctness (Theorem 1), Ev returns d

so it must be the case that (F ′, e′) is different from (F, e). I.e., either F ′ 6= F or
e′ 6= e. But if so, Stack.Ve would have returned 0 (Stack.Ve line 4). Verifiability
assumes that Stack.Ve returns 1, so we have a contradiction. Therefore, Y = d.

Now, we prove that there exists a poly-time extraction algorithm Stack.Ext,
which extracts the output label from (F ′, e′). This construction and proof is im-
mediate: Stack.Ext delegates to Stack.Gb. Namely (see Figure 2), on input (F, e),
Stack.Ext parses (R, ·) ← e′, runs (·, ·, d) ← Stack.Gb (1κ, f, R) and outputs d.
We have shown that d constructed this way satisfies Y = d.

Stack is verifiable.
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work Experiment 1. Fig. 4 Experiment 2. [XZZ+19]
time (s) comm. (MB) time (s) comm. (MB)

Stack [this work]
LAN 0.395 4.205

sh. LAN 2.473 13.426 32.04 182.2
WAN 3.525 24.52

[JKO13]
LAN 0.782 4.205

sh. LAN 5.567 31.180 32.04 182.2
WAN 6.208 24.52

[KKW18] 140 20 840 120
Ligero [AHIV17] 60 0.3 404 1.5
Aurora [BCR+19] 1,000 0.15 3,214 0.174
Bulletproofs [BBB+18] 1,800 0.002 13,900 0.006
STARK [BBHR19] 40 0.5 300 0.6
Libra [XZZ+19] 15 0.03 202 0.051

Fig. 3. Experimental performance of our approach compared to state-of-the-art ZK
proof systems. 1. We compare circuit C (Figure 4) which calls AES, SHA-1, and SHA-
256 and has 7,088,734 gates (1,887,628 AND). 2. We compare based on an experiment
from [XZZ+19] where the prover builds a depth 8 Merkle tree from the leaves. The cir-
cuit invokes SHA-256 511 times. Resulting timings include prover computation, verifier
computation, and communication. For our and the [JKO13] GC-based approaches we
separate timing results for LAN, Shared LAN, and WAN networks. Results for works
other than ours and [JKO13] are either approximate interpolations from related works
[KKW18,BBHR19] or taken directly from the reporting of [XZZ+19].

5 Instantiating Our Scheme

We built our implementation on the publicly available EMP-Toolkit [WMK16].
We use privacy-free half-gates as the underlying garbling scheme [ZRE15]. That
is, XOR gates are free, requiring no material or operations, and AND gates are
implemented using fixed-key AES [BHKR13]. Each AND gate costs 1 ciphertext
of material, 2 AES encryptions to garble, and 1 AES encryption to evaluate. We
use security parameter κ = 128.

We instantiate all [JKO13] ingredients, including committing OT. We use
the maliciously-secure OT extension of [ALSZ15] in our implementation both
because it is efficient and because an implementation with support for commit-
ting OT is available in EMP.

6 Performance Evaluation

Recent advances in non-interactive ZK proofs (NIZK) are astounding. Blockchain
use cases motivate intense focus on fast verifier computation time and on short
proofs. Modern systems produce proofs as short as several hundred bytes! Prover
computation time is usually superlinear, O(|C| log |C|) or higher in most schemes,
with relatively large constants. As circuits grow larger, high constants and super-
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linear computational scaling becomes burdensome. Meanwhile, GC-based proof
systems remain efficient, thanks to linear scaling with small constants.

We focus our comparison on JKO and on fast NIZK systems, in-
cluding [KKW18,BBHR19], Bulletproofs [BBB+18], Ligero [AHIV17], Au-
rora [BCR+19], and Libra [XZZ+19]. Figure 3 shows that GC-based approaches
(Stack and JKO) outscale current NIZKs at the cost of interactivity. Figure 5
shows that Stack improves over JKO with respect to the branching factor.

A reader familiar with recent GC research and with related work discussed
in Section 1.6 may already have a good sense of Stack’s performance, both in
terms of computation and communication. Indeed, Stack simply calls privacy-
free half gates and XORs the results. Compared to Free IF [Kol18], our commu-
nication is 2× smaller, since we use 1-garbled-row privacy-free garbling.

Our and the baseline systems. We implemented and ran Stack as
well as a state-of-the-art baseline: [JKO13] instantiated with privacy-free half-
gates [ZRE15]. Most code is shared between the two systems. By comparing the
performance of these two protocols, we isolate the effect of stacking material.
In addition, we include detailed comparison to performance reported by other
state-of-the-art systems [BBB+18,KKW18,AHIV17,BCR+19,BBHR19,XZZ+19]
in Section 6.2.

Boolean and Arithmetic/R1CS representations are difficult to compare.
Arithmetic operations are costly in the Boolean world: program control flow
and other operations often cannot be done directly in arithmetic, so costly bit
decompositions are required. Because of this, we focus on a benchmark that
continually emerges in the literature: SHA-256 evaluations. We use standard
SHA-256 Boolean circuits available as part of EMP, and other works use R1CS
representations optimized for their work.

System and experiment setup. We implemented our protocol and the
JKO protocol using the EMP toolkit [WMK16]. We ran both P and V single-
threaded on the same machine, a ThinkPadTM Carbon X1 laptop with an IntelR©

CoreTM i7-6600U CPU @ 2.60GHz and 16GB of RAM. We record total commu-
nication and total wall-clock time. Each experimental result was averaged over
5 runs. We used the Linux tc command to simulate three network settings:

Network Setting bandwidth (mbps) latency (ms)
LAN 1000 2
Shared LAN 50 2
WAN 100 100

Shared LAN models settings where bandwidth is shared with other processes.
RAM and CPU consumption. GC-based ZK proofs are lightweight. In

particular, they have low RAM and CPU requirements. Both GC generation and
GC evaluation are highly serializable and streamlinable processes: the players
need only keep in RAM material proportional to the largest cross-section of the
GC. Wire labels and garbled gates can be discarded once they no longer appear
in future gates. Further, each AND gate garbling requires only 2 AES calls.
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Circuit # AND # XOR # INV
Clause C1: proof w.r.t. tree 1 812936 519699 986677
Clause C2: proof w.r.t. tree 2 546089 2243643 55237
Clause C3: proof w.r.t. tree 3 528601 944039 451828
C = (C1 ∨ C2 ∨ C3) 1887628 3707381 1493725

Fig. 4. Clause and circuit sizes in Experiment 1. Clauses are described in Section 6.1.

In contrast, recent NIZK systems are resource-hungry and are typically run
on high-end machines. For example, STARK was run on a powerful server with
32 3.2GHz AMD cores and 512GB RAM. In Experiment 2, Libra consumes
24.7GB of RAM [Zha19].

We execute our experiments on a standard laptop with 16GB RAM of which
146MB is used in Experiment 1 (as reported by the Linux time command). We
do not adjust our numbers to account for hardware differences.

6.1 Experiment 1: Merkle Tree Proof (JKO comparison focus)

We first evaluate our approach against prior work using a Merkle tree member-
ship benchmark, discussed in Section 1.1. This experiment compares Stack to
JKO. We include comparison to state-of-the-art NIZKs as additional reference.

For the sake of concreteness, we constructed a scenario where P’s record is
certified by inclusion in a Merkle tree whose root is published by an authority.
There are several such roots published, and P wishes to hide which root certifies
her record. P’s record, in addition to arbitrary data fields, contains a 128-bit
secret key which P uses as a proof witness. In our experiment, P proves her
record is in one of three Merkle trees and proves properties of her record.

The resulting circuit C (see Figure 4) consists of three conditional branches.
Each clause corresponds to a specific Merkle tree. The clauses execute various
combinations of calls to SHA256, SHA-1, and AES. The total Boolean circuit
has more than seven million gates.

Figure 3 tabulates results and includes estimated performance of NIZK sys-
tems [BBB+18,KKW18,AHIV17,BCR+19,BBHR19,XZZ+19]. The larger proof
sizes we consider exceed the reporting in [KKW18,BCR+19]; we estimate their
performance by considering their asymptotic complexity and extrapolating their
reported numbers. This experiment explores JKO comparison, and below we
discuss metrics with respect to JKO. We discuss at length other NIZKs in Sec-
tion 6.2.

• Total communication. Communication includes messages corresponding
to commitments, OTs, and material.
Discussion. Stacking yields a 2.3× improvement over JKO. This is optimal
for stacked garbling: the full circuit is 2.3× larger than the largest clause.
• Total LAN wall-clock time used to complete each protocol. The simulated

LAN features 1gbps bandwidth and 2ms latency.
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Discussion. Our approach yields a 2.0× speedup over JKO, due to reduced
communication. This speedup does not match the 2.3× communication im-
provement because our computation cost is similar to that of JKO. A 1gbps
is extremely fast, so computation takes a noticeable portion of overall wall-
clock time.

• Total shared LAN wall-clock time in a setting where LAN is shared
with other traffic and approximately 50Mbps of bandwidth is available.
Discussion. Our approach yields a 2.25× speedup, close to the optimal 2.3×.
In a shared LAN setting, computation cost is less important.

• Total WAN wall clock time with 100mbps bandwidth and 100ms latency.
Discussion. Our approach yields a 1.76× speedup. As network latency in-
creases, the number of rounds becomes important. Both [JKO13] and our
approach use the same number of rounds, and hence our performance im-
provement is less pronounced than in the shared LAN setting.

6.2 Experiment 2: Merkle Tree Building (NIZK comparison focus)

As discussed above, Boolean/arithmetic/R1CS representations each have ad-
vantages and comparison is nuanced. SHA-256 evaluation has become an infor-
mal standard by which recent NIZKs compare performance. We use a standard
Boolean circuit for SHA-256 that is included with EMP.

Libra [XZZ+19] includes a benchmark where P computes the root of a depth-
8 Merkle tree (256 leaves; 511 total SHA-256 evaluations) as part of a proof.
When compiled as a Boolean circuit, this benchmark includes ≈ 60 million gates.
Figure 3 includes results for this benchmark; our focus is on the relative efficiency
of our approach against Libra and other state-of-the-art NIZKs. Performance
numbers for NIZKs were obtained from [XZZ+19], except in the case of [KKW18]
and [BBHR19] which were not tabulated by [XZZ+19]. The numbers for these
two works were extrapolated based on their reported performance.

Discussion. This experiment does not present an opportunity to take ad-
vantage of stacking since there is no conditional branching. Therefore, our ap-
proach reduces to [JKO13] equipped with privacy-free half gates. Still, this helps
to demonstrate the high concrete efficiency of the GC-ZK approach. We and
[JKO13] are several orders of magnitude faster (over LAN; one or more orders
over WAN) in this second benchmark than each reported NIZKs except Libra.
We outperform Libra by 6× over WAN and nearly 50× over LAN.

We now present detailed discussion of Figure 3.

• Ligero, Aurora and STARK are NIZK proof systems in the ‘interactive oracle
proof’ paradigm. Among these three superlinear-runtime works, STARK is
most competitive in total runtime due to better constants. Our work outper-
forms STARK by 10-100×, depending on the network. Our advantage would
be higher for cases with branching (see Sections 6.1 and 6.3).

• [KKW18] is linear both in computation and proof size with moderate con-
stants. It may be preferable for smaller-size statements or for proofs of very
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Fig. 5. Plotted results of Experiment 2, evaluating 1-out-of-n randomly generated
clauses each of size 500K AND/2M total gates. Each data point plots the total wall
clock time needed to perform a proof.

large statements due to linear scaling of the prover work. [KKW18] sug-
gest that their scheme be used as a signature scheme based on AES or the
LowMC cipher. Our work outperforms [KKW18] in the proof time metric
because [KKW18] has higher constants: [KKW18] simulates 40-100-player
MPC and necessarily repeats proofs many times. We are two orders of mag-
nitude faster than [KKW18]. Further, our approach yields smaller proof size
in Experiment 1 due to our ability to stack the three clauses.

• Bulletproofs [BBB+18] features linear proof time and staggeringly small
proofs, logarithmic in the size of the witness! It has high constants due the
use of public key operations. We are 1,000s of times faster than Bulletproofs.

• Libra [XZZ+19] not only constructs small proofs, with size second only to
Bulletproofs amongst the considered works, but also features linear prover
time with low-moderate constants. Notably, and unlike all other considered
works, Libra requires one time trusted setup, which limits its applicability.
We outperform Libra by 6× over WAN and nearly 50× over LAN. Our
advantage will increase as the branching increases.

6.3 Experiment 3: Scaling to Many Clauses

We explore how our approach scales in overall proof time as the number of proof
disjuncts increases. This metric quantifies our advantage over [JKO13]. In this
experiment, we measure performance of proof statements with different numbers
of disjoint clauses and plot total proof time in Figure 5. To ensure there are no
shortcuts in proofs, e.g. exploiting common subcircuits across the branches, we
generate all clauses randomly. Each circuit has 500,000 AND gates and 2 million
total gates.

Discussion. This experiment shows the benefit of reduced communication
and its relative cost to computation. In a single-thread execution on a LAN,
our approach can complete the 1-out-of-15 clause proof (8M AND gates and
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1: static const char* SMALL BOARD = "small board v11";
2: int* alloc resources(const char* board type) {
3: int block size;
4: // The next line has a bug!!
5: if (!strncmp(board type, SMALL BOARD, sizeof(SMALL BOARD))) {
6: block size = 10;
7: } else { block size = 100; }
8: return malloc(block size * sizeof(int)); }
9: int incr clock(const char* board type, int* resources) {
10: int clock loc;
11: if (!strncmp(board type, SMALL BOARD, strlen(SMALL BOARD))) {
12: clock loc = 0;
13: } else { clock loc = 64 }
14: (*(resources + clock loc))++;
15: return resources[clock loc]; }
16: void snippet(const char* board type) {
17: int* res = alloc resources(board type);
18: incr clock(board type, res); }

Fig. 6. An example C snippet that the prover can demonstrate has a bug. Lines 5 and
11 contain inconsistent string comparisons that can cause undefined behavior.

30M total gates) in 1s. This is less than 15× communication improvement over
[JKO13] due to relatively high computation cost. As we scale up computation
relative to communication (by multi-threading, or, as in our experiment, by
consuming only 50Mbps bandwidth on a shared LAN), our performance relative
to [JKO13] increases. In single-threaded execution on shared LAN we are 10×
faster than [JKO13] with 15× smaller communication.

7 Proving Existence of Bugs in Program Code

We present a compelling application where our approach is particularly effective:
P demonstrates in ZK the existence of a bug in V’s program code. In particular,
V arranges a corpus of C code into various snippets annotated with assertions.
Some assertions, such as array bounds checks and division by zero checks, can
be automatically inserted. In general, assertions can include arbitrary Boolean
statements about program state. Once the program is annotated, P demonstrates
that she knows an input that causes a program assertion in a snippet to fail. The
instrumentation, which could be automated, does not help V to find the bug.
P’s secret is the snippet ID together with input that exercises an error condition
caught by an assertion.

As a simple example, consider the following C code:
1: char example(const char* s) { return s[1]; }
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experiment LAN time (s) WAN time (s) comm. (MB) compilation (s)
4 snippets 0.107 2.327 1.542 0.054
1,000 snippets 4.953 6.716 1.600 10.468

Fig. 7. Results for running Stack for the bug proving application with 4 and 1,000
snippets. We record LAN and WAN time to complete the proof, total communication,
and the time to compile all snippets to Boolean circuits.

Once the program has been instrumented to detect invalid memory dereferences,
the prover can submit the input "" (the empty string) as proof that this program
has a bug: the input is empty, but the program attempts to access index 1.

Ours is the best-in-class ZK approach to this application for two reasons:

1. Common programs contain seemingly innocuous constructs, such as pointer
dereferences and array accesses, that compile to large circuits and hence re-
sult in large proof statements. As we have demonstrated, the JKO paradigm,
and hence our proof system, is well-suited for proving large statements as
quickly as possible.

2. Many organizations have truly enormous repositories of code. This is prob-
lematic even for fast interactive techniques like JKO because larger code
bases require more communication.
In contrast, our approach remains realistic as the repository grows larger:
Communication is proportional to the maximum snippet length and so is
constant in the number of snippets. We believe that this advantage opens
the possibility of implementing this application in industrial settings.

We include a proof-of-concept implementation for this use case. Further ex-
panding this is an exciting direction for future work, both in the area of cryp-
tography and of software engineering/compiler design.

At the same time, we already handle relatively complex code. One of the
snippets we implemented (Figure 6) contains a mistake inspired by a real-world
bug in the in MITRE Common Weakness Enumeration CWE-467 [cwe19]. This
bug is potentially dangerous: MITRE illustrates how it can lead to overly per-
missive password checking code. We implemented this C code snippet and three
others that range between 30 and 50 lines of code.

Consider Figure 6 Lines 5 and 11. These two lines both perform string com-
parisons using strncmp. However, Line 5 incorrectly compares the first n char-
acters where n is the result of the sizeof call. This call returns the size of a
pointer (8 on 64-bit systems) rather than the length of the string. The compari-
son should have used strlen in place of sizeof. An observant prover can notice
that a malicious input like "small boERROR" will cause inconsistent behavior
that leads to a dereference of unallocated memory.

We instrumented this snippet and three others. Together, these four snip-
pets exercise everyday programming tasks such as user input validation, string
parsing, nontrivial memory allocation, and programming against a specification.
We will include the source code for all four snippets in the full version of this
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paper. When compiled to Boolean circuits, these four snippets range between
70,000 and 90,000 AND gates. The number of AND gates is largely determined
by the operations performed; e.g. dereferencing memory (array lookup) is ex-
pensive while adding integers is cheap. We use these snippets to exercise Stack
in two experiments:

1. First, we had P demonstrate that she knows a bug in at least 1 out of the 4
snippets. In particular, her input is the string "small boERROR" and triggers
an assertion in the code shown in Figure 6.

2. Second, we simulated a larger code base with 1,000 snippets of 30-50 LOC.
Ideally, this code base would contain 1,000 or more unique snippets, but since
in this work we hand-code instrumentations, this would be an unrealistic
effort. We approximate real performance by including multiple copies of each
of our four snippets (250 copies each) in the proof disjunction and carefully
ensuring that we do not take replication-related shortcuts. P proves the
existence of the bug in the first copy of the snippet from Figure 6.

In both experiments we recorded (1) the total LAN proof time, (2) the total
WAN proof time, (3) the total message transmission, and (4) the total time to
compile each snippet to a Boolean circuit using the EMP toolkit [WMK16]. The
results reflect our expectations and are tabulated in Figure 7. Note, both the 4
snippet experiment and the 1, 000 snippet experiment incur common costs such
as setting up a channel and evaluating OTs.

Communication stays nearly constant between the two experiments despite
a large increase in the size of the proof challenge. This is a direct result of clause
stacking. The small increase in communication is a result of additional OTs
needed for P to select 1 target out of 1,000. Because of the relatively small proof
size, both experiments run fast, even on our modest hardware: the 4-snippet
proof takes a tenth of a second and the 1,000 snippet proof takes fewer than 5
seconds. We also ran the same two experiments against [JKO13]. In the 4 snippet
experiment, JKO took 0.2211s on LAN and 3.056s on WAN, consuming 5.253MB
of communication. The 1,000 snippet experiment crashed our modest hardware
as JKO tried to allocate an enormous piece of memory to hold the garblings of
the large circuit. Therefore, we tried again with only 500 snippets. Here, JKO
took 13.868s on LAN and 86.356s on WAN, using 645.9MB of communication.
Again, our approach significantly outperforms [JKO13] due to clause stacking.
Performance may already be realistic for some use cases and will likely improve
through future work.

Compiling C programs into Boolean circuits is currently the slowest part
of our proof. Compilation speed has largely been ignored in prior work; it is
unsurprising that the EMP-toolkit is not heavily optimized for it. We believe
future work will significantly improve compilation.

7.1 Snippet Instrumentation

We instrument snippets by extending EMP [WMK16] with pointers, arrays, and
implementations of C standard library functions. These features are critical to
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handling realistic program code and Figure 6 prominently uses them. We briefly
discuss how these features are implemented.

First, we examine pointers and arrays. Our implementation of pointers is
greatly simplified, and we leave more general and efficient handling of pointers
for future work. In our implementation, a pointer is a triple of:

1. A cleartext pointer to an array. This array is allocated to a fixed publicly
known size by calls to our instrumentation of malloc.

2. An encrypted index into the array. Pointer operations, e.g. pointer offset by
an integer, operate over this index. Calls to malloc set this index to 0.

3. An encrypted maximum index. malloc determines this maximum value
based on the size argument.

Pointer dereferences contain an instrumented assertion that checks that the pri-
vate index is ≥ 0 and is less than the maximum index. It is this assertion that
allows the prover to demonstrate Figure 6 has a bug: the dereference on Line
14 triggers this assertion on particular inputs. After this assertion is checked,
the pointer dereference linearly scans the array. For each index of the array,
we check equality against the encrypted index. We multiply the output of each
equality check by the array entry at that index. Therefore, the result of each mul-
tiplication is 0 except at the target index, where the result is the dereferenced
value. We add all multiplication results together using XOR, which returns the
dereferenced value.

This pointer handling is limited. For example, we cannot handle a program
that conditionally assigns a pointer to one of two different memory locations
constructed by different calls to malloc: each pointer can only hold one cleartext
array pointer. Additionally, it is likely possible to concretely improve over linearly
scanning the entire cleartext array.

Second, we discuss C standard library functions. In fact, with the availability
of pointers this instrumentation is mostly uninteresting. The implementations
are relatively straightforward pieces of C code that we instrument in a manner
similar to the snippets. For example, our instrumentation of strlen takes an
instrumented pointer as an argument. It walks the cleartext array of the pointer
and increments an encrypted counter until the null character is reached.

Notably, we allow functions to contain loops, but place hard-coded upper
bounds on the number of allowed iterations for any loop.

Acknowledgment. This work was supported in part by NSF award
#1909769 and by the Office of the Director of National Intelligence (ODNI), In-
telligence Advanced Research Projects Activity (IARPA), via 2019-1902070008.
The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies, either ex-
pressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation therein. This work was also
supported in part by Sandia National Laboratories, a multi-mission laboratory
managed and operated by National Technology and Engineering Solutions of

26



Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration un-
der contract DE-NA-0003525.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press, Oc-
tober / November 2017.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
More efficient oblivious transfer extensions with security for malicious adver-
saries. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of LNCS, pages 673–701. Springer, Heidelberg, April
2015.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and Privacy, pages
315–334. IEEE Computer Society Press, May 2018.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, Report 2018/046, 2018. https://eprint.iacr.org/2018/
046.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable
zero knowledge with no trusted setup. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
701–732. Springer, Heidelberg, August 2019.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying program executions succinctly
and in zero knowledge. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
Heidelberg, August 2013.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 390–
420. Springer, Heidelberg, August 1993.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway.
Efficient garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on
Security and Privacy, pages 478–492. IEEE Computer Society Press, May
2013.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of gar-
bled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 2012, pages 784–796. ACM Press, October 2012.

27



[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key prim-
itives. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1825–1842. ACM Press, Oc-
tober / November 2017.

[CDS94] Ronald Cramer, Ivan Damgαrd, and Berry Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding protocols. In
Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 174–187.
Springer, Heidelberg, August 1994.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin
Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Ver-
satile verifiable computation. In 2015 IEEE Symposium on Security and
Privacy, pages 253–270. IEEE Computer Society Press, May 2015.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private
information retrieval. In 36th FOCS, pages 41–50. IEEE Computer Society
Press, October 1995.

[CPS+16] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi,
and Ivan Visconti. Improved OR-composition of sigma-protocols. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of
LNCS, pages 112–141. Springer, Heidelberg, January 2016.

[cwe19] Common weakness enumeration. https://cwe.mitre.org/, 2019.
[Dam10] Ivan Damgαrd. On Σ-protocols. http://www.cs.au.dk/˜ivan/Sigma.pdf,

2010. Retrieved May 11, 2019.
[DP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowl-

edge without interaction (extended abstract). In 33rd FOCS, pages 427–436.
IEEE Computer Society Press, October 1992.

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi.
Privacy-free garbled circuits with applications to efficient zero-knowledge. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 191–219. Springer, Heidelberg, April 2015.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

[GK14] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak
a secret and spend a coin. Cryptology ePrint Archive, Report 2014/764,
2014. http://eprint.iacr.org/2014/764.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-
knowledge for boolean circuits. In Thorsten Holz and Stefan Savage, edi-
tors, USENIX Security 2016, pages 1069–1083. USENIX Association, Au-
gust 2016.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291–304. ACM Press, May 1985.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity or all languages in np have zero-knowledge proof systems.
J. ACM, 38(3):690–728, July 1991.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
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