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Abstract. Most efficient zero-knowledge arguments lack a concrete security analysis, making parame-
ter choices and efficiency comparisons challenging. This is even more true for non-interactive versions
of these systems obtained via the Fiat-Shamir transform, for which the security guarantees generically
derived from the interactive protocol are often too weak, even when assuming a random oracle.
This paper initiates the study of state-restoration soundness in the algebraic group model (AGM) of Fuchs-
bauer, Kiltz, and Loss (CRYPTO ’18). This is a stronger notion of soundness for an interactive proof or
argument which allows the prover to rewind the verifier, and which is tightly connected with the concrete
soundness of the non-interactive argument obtained via the Fiat-Shamir transform.
We propose a general methodology to prove tight bounds on state-restoration soundness, and apply it
to variants of Bulletproofs (Bootle et al, S&P ’18) and Sonic (Maller et al., CCS ’19). To the best of our
knowledge, our analysis of Bulletproofs gives the first non-trivial concrete security analysis for a non-
constant round argument combined with the Fiat-Shamir transform.
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1 Introduction

The last decade has seen zero-knowledge proof systems [1] gain enormous popularity in the de-
sign of efficient privacy-preserving systems. Their concrete efficiency is directly affected by the
choice of a security parameter, yet concrete security analyses are rare and, as we explain below,
hit upon technical barriers, even in ideal models (such as the random-oracle [2] or the generic-
group models [3,4]). This has led to parameter choices not backed by proofs, and to efficiency
comparisons across protocols with possibly incomparable levels of security. This paper addresses
the question of narrowing this gap for protocols whose security can be analyzed in the Algebraic
Group Model [5].
A CONCRETE EXAMPLE. It is convenient to start with an example to illustrate the challenges en-
countered in proving concrete security of proof systems. We focus on Bulletproofs [6], which are
argument systems with applications across the cryptocurrencies1 and in verifiably deterministic
signatures [9], which in turn optimize prior work [10]. The soundness2 analysis (of their inter-
active version) is asymptotic, based on the hardness of the discrete logarithm problem (DLP). Even
when instantiated from 256-bit elliptic curves, due to the absence of a tight, concrete, reduction,
we have no formal guarantee on concrete security. Indeed, recent work [11] gives concrete sound-
ness bounds in the generic-group model with somewhat unfavorable dependence on the size of
the statement being proved, and no better analysis is known.

Even more importantly, existing bounds are for the interactive version of the protocol, but Bul-
letproofs are meant to be used non-interactively via the Fiat-Shamir (FS) transform [12]. However,
the (folklore) analysis of the FS transform gives no useful guarantees: 3 Namely, for a soundness
bound ε on the interactive ZK proof system, the resulting NIZK has soundness qrε, where q is the
number of random-oracle queries, and r is the number of challenges sent by the verifier. For Bul-
letproofs, we have ε ¥ 2�256 (this is the probability of merely guessing the discrete log), and if (say)
r � Θplogpnqq ¥ 16, we only get security for (at best) q ¤ 216 queries, which is clearly insufficient.
OVERVIEW OF THIS PAPER. This paper studies the concrete security of succinct proof systems in
the algebraic group model (AGM) [5], with the goal of developing (near-)exact security bounds. The
AGM considers in particular algebraic provers that provide representations of group elements to
the reduction (or to the extractor), and has been successful to study security in a variety of contexts.
More specifically, this work is the first to look at multi-round public-coin protocols and their non-
interactive version obtained via the Fiat-Shamir transform. For the latter, we aim for bounds with
linear degradation in the number of random oracle queries q even for a large number of rounds r,
as opposed to the qr degradation obtained from naı̈ve analyses. Prior work [5] has focused on the
simpler case of linear-PCP based SNARKs [13], which are built from two-move interactive proofs
and without the FS transform.

The soundness of non-interactive systems resulting from the FS transform is tightly related
to the state-restoration soundness [14,15] of the underlying interactive protocol, where the cheating
prover can rewind the verifier as it pleases, until it manages to complete a full accepting interaction
with the verifier. No non-trivial bounds on state-restoration soundness are currently known on
any non-constant round argument.

1 In particular, Bulletproofs have been deployed in Monero [7] and Signal’s upcoming MobileCoin [8].
2 In this introduction, security is with respect to soundness – usually the analysis of zero-knowledge security is much

more straightforward.
3 We are actually not aware of any pointer to a write up of this folklore analysis, and we give it for completeness in the

paper below
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We propose a general framework to quantitatively study state-restoration version of witness-
extended emulation (wee) [16,17] (which implies both state-restoration soundness and a proof-of-
knowledge property) in the AGM. We then and apply it to three case studies, which include two
variants of Bulletproofs, as well as Sonic [18]. These protocols have previously been analyzed only
with respect to plain soundness in the interactive setting. The analysis of Bulletproofs relies in
particular on the Forking Lemma of Bootle et al. [10], which was only very recently made con-
crete [11]. We believe that our framework can be applied to a number of other protocols, such as
Hyrax [19], Dory [20] or pairing-based instantiations of IOPs [21,22], and leave their analysis for
future work.

Remark 1. We stress that our approach differs formally from prior and concurrent works (e.g.,
[18,22]) which use the AGM to give a heuristic validation of the security of a component of a
protocol, which is then however assumed to satisfy extractability properties compatible with a
standard-model proof (i.e., an AGM extractor is used as a standard-model extractor.) Here, we
aim for full analyses in the AGM, and as we point out in our technical overview below, these ap-
proaches actually do not give a full-fledged proof in the AGM (beyond not giving a proof in the
standard model either).

BULLETPROOFS. We apply our framework to two instantiations of Bulletproofs – the first is for
range proofs, and the other is for general satisfiability of arithmetic circuits. For example, in the
former, a prover shows in Oplog nq rounds that for a given Pedersen commitment C � gvhr in a
cyclic group G of prime order p we have v P r0, 2nq. (Here, clearly, 2n ¤ p.)

For the final non-interactive protocol obtained via the FS transform, our result implies that an
(algebraic) t-time prover making q random-oracle queries can break security as a Proof of Knowl-
edge (when properly formalized) with advantage roughly

εpt, qq ¤ Opqn{pq � AdvdlGptq , (1)

where AdvdlGptq is the advantage of breaking the DLP within time t. In the generic group model,
this is roughly Opt2{pq, and this bound justifies the instantiation of Bulletproofs from a 256-bit
curve. For arithmetic circuit satisfiability, we obtain a similar bound.
TIGHTNESS AND DISCUSSION. Assuming AdvdlGptq � t2{p (which is true in the generic group
model), the above bound implies in particular that for most values of n,4 the term Opqn{pq is
not leading. Still, we show that the dependence on n is necessary – in particular, we show that
there exist n, p for which we can construct a cheating prover that can break soundness with prob-
ability Ωpqn{pq, meaning that this part of the bound is tight. (Our argument can be extended to
all bounds claimed in the paper.) Also, the term AdvdlGptq is clearly necessary, given that breaking
the DLP would directly give us an attack. This makes our bound essentially exact (up to small
constants).
AGM AND COMPOSITION. A challenging aspect of our analysis is the difficulty of dealing with
composition. The core of the Bulletproofs is indeed its Oplogpnqq-round inner-product argument. In
the standard model, and in the interactive case, it is not hard to reduce the security (as a proof of
knowledge) of the full-fledged system using Bulletproofs to the analysis of the underlying inner-
product argument, but it is not that clear how to do this generically in the AGM. In particular,
in the AGM, the adversary provides representations of group elements to the reduction (or the

4 For the circuit satisfiability version of our result, one should think of n � 220 and p � 2256 as representative values.
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extractor), and these are as a function of all priorly given group elements. The problem is that
when analyzing a protocol in isolation (such as the inner-product argument) the bases to which
elements are described are not necessarily the same as those that would be available to a cheating
algebraic prover against the full protocol. This makes it hard to use an extractor for the inner-
product argument in isolation as a sub-routine to obtain an extractor for a protocol using it. Also,
because we consider state-restoration soundness, a sub-protocol can be initiated by a cheating
prover several times, with several choices of these basis elements.

The downside of this is that our analyses are not modular, at least not at a level which consid-
ers sub-protocols are isolated building blocks – we give two different analyses for two different
instantiations of Bulletproofs, and the shared modularity is at the algebraic level.

We discuss this further at the end of our technical overview below.

SONIC. As a second application, we study Sonic [18]. This is a constant-round protocol, and in
particular with 3M � 2 challenges for some constant M ¥ 1. In this case, the folklore analysis
of the FS transform can be used to obtain a non-trivial bound, incurring a multiplicative loss of
q3M�2 from the soundness of the interactive version. Here, we want to show that this loss is not
necessary and also obtain a bound which degrades linearly in q. Moreover, no concrete bound on
the concrete soundness of Sonic was given in the interactive setting.

We ignore the stronger requirement of updatable witness-extended emulation because our
pedagogical point here is that our framework can improve soundness even for constant-round
protocols.

We also note that Sonic’s proof already uses the AGM to justify security of the underlying poly-
nomial commitment scheme, but follows a (heuristic) pattern described above where the resulting
extractor is expected to behave as a standard-model one, and is used within a standard-model
proof.

ADAPTIVE VS NON-ADAPTIVE SOUNDNESS. It is important to understand that one can consider
both adaptive and non-adaptive provers, where the former also chooses the input for which it at-
tempts to provide a proof. Clearly, one expects adaptive provers to be harder to handle, but this
is not necessarily true for algebraic provers – in particular, if the input contains group elements,
the extractor can obtain useful information (and, possibly, directly extract) from their group rep-
resentation. While this does not render the proof trivial at all, it turns out that for non-adaptive
security, the proof is even harder. In this paper, we deal mostly with adaptive provers, but for the
case of range proofs (where the inputs are commitments in a group), we also give a proof for non-
adaptive security – the resulting bound is increased to the square root of the adaptive bound, due
to our limited use of rewinding.

RELATED WORK: PROOFS VS ARGUMENTS. We clarify that state-restoration soundness has been
studied for several forms of interactive proofs [14,15,23,24], also in its equivalent form of “round-
by-round” soundness. Some proof systems satisfy it directly (such as those based on the sumcheck
protocol [25]), whereas any proof with non-trivial (plain) soundness can be amplified into one with
sufficient stare-restoration soundness (e.g., with parallel repetition). This is because (similar to our
statement about the Fiat-Shamir transform above) one can naı̈vely infer that a concrete soundness
bound ε implies a state-restoration soundness bound qrε, where r is the number of challenges,
and thus ε needs to be smaller than q�r.

However, we do not know of any non-trivial bounds on state-restoration soundness for multi-
round arguments based on computational assumptions (as opposed to, say, arguments in the
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ROM), and moreover, soundness amplification (e.g., [26,27,28,29]) does not reduce soundness be-
yond the largest negligible function, and this is insufficient to absorb the qr loss.
BEYOND THE AGM. Our results are inherently based on online extraction, which is only mean-
ingful in ideal models or using knowledge assumptions. One scenario where ideal models are
inherently used is in the compilation of IOPs into NIZKs in the ROM via the BCS transform [14] –
it is unclear whether our technique can be used to give tight state-restoration soundness bounds
for systems such as Aurora [30] and STARK [31].
CONCURRENT WORK. In a recently updated version of [32], Bünz et. al. analyse the soundness
of the non-interactive inner-product argument of Bulletproofs in the AGM. We provide a brief
comparison with their result Appendix A,but note here that their analysis is asymptotic, and gives
weaker concrete security (insufficient for instantiations on 256-bit curves) when made concrete.

1.1 Overview of our Techniques

We give a general framework to derive tight bounds on state-restoration soundness in the AGM.
In fact, we will target the stronger notion of witness-extended emulation [16,17], which we adapt to
state-restoration provers. Recall first that the main characteristic of the AGM is that it allows the
reduction, or in our case the extractor, to access representations of group elements. A contribution
of independent interest is to set up a formal framework to define extraction in the AGM.
PREFACE: ONLINE EXTRACTION IN THE AGM. In the AGM, the reduction (or an extractor) obtains
representations of each group element in terms of all previously seen group elements. A useful
feature of the AGM is that it often (but not always) allows us to achieve online witness extraction, as
already observed in [5,33]. In other words, by looking at the representation of the group elements
provided by the prover in a single interaction, the extractor is able to extract a witness, without the
need of rewinding.

Online extraction however immediately appears to be very useful to tame the complexity of
state-restoration provers. Indeed, one can visualize an interaction of an adversarial state-restoration
prover P� with the verifier V as defining an execution tree. In particular, P� wins if it manages to
create a path in the execution tree associated with an accepting (simple) transcript

τ � pa1, c1, a2, . . . , cr, ar�1q ,

where a1, a2, . . . , ar�1 are P�’s messages, and c1, . . . , cr are the verifier’s challenges. (We focus on
public-coin protocols here.) Online extraction from a single transcript τ directly implies extraction
here, because a witness can directly be extracted locally from the path τ (and the corresponding
representations of group elements), disregarding what happened in the rest of the execution tree.
In particular, the probability that P� succeeds equals the probability that a witness is extracted.
Without online extraction, we would have to use rewinding – but current techniques [10,11] do
not seem to easily extend to state-restoration provers.

However, this only holds for perfect online extraction – in general, we may be able to gener-
ate transcripts which are accepting, but for which no witness can be extracted. This is typically
because of two reasons:

- Bad Challenges. A bad choice of challenges may prevent witness extraction.
- Violating an assumption. A transcript is accepting, but the resulting interaction corresponds

to a violation of some underlying assumption (i.e., one can extract a non-trivial discrete loga-
rithm relation).
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Our framework will exactly follow this pattern. For an r-challenge public-coin protocol, we iden-
tify bad challenges, i.e., for each i P rrs, input x, and partial transcript τ 1 � pa1, c1, . . . , ai�1, ci�1, aiq,
we define a set of bad challenges ci which would make extraction impossible. Crucially, these sets
are defined according to a simple interaction transcript (i.e., not a state-restoration one) and can be
defined according to the representation of group elements in the transcript so far. Then, given a
transcript τ with no bad challenges, we show that:

- We can either extract a witness for x from τ (and the representations of the group elements in
τ ).

- We can use τ (and the representation of the group elements in terms of the public parameters)
to break some underlying assumption.

To illustrate this, we give a non-trivial example next, which considers a simplified instance of the
inner product argument at the core of Bulletproofs, but which already captures all subtleties of the
model.
INNER-PRODUCT ARGUMENT OF BULLETPROOFS. In the inner product argument the prover proves
that a group element P P G is a well-formed commitment to vectors a,b P Znp and their inner-
product xa,by.5 More precisely, the prover wants to prove to the verifier that P � gahbuxa,by

where g P Gn,h P Gn, u P G are independent generators of G.
Here, we shall focus on the special case n � 2 first, and below discuss challenges in scaling our

analysis up to any n. The prover first sends to the verifier group elements L,R where

L � ga12 h
b2
1 u

a1b2 , R � ga21 h
b1
2 u

a2b1 .

The verifier samples x uniformly at random from Z�
p and sends it to the prover. We then define

P 1 � Lx
2
PRx

�2
, g1 � gx

�1

1 gx2 , h
1 � hx1h

x�1

2 .

The prover sends a1 � a1x � a2x
�1 and b1 � b1x

�1 � b2x to the verifier, which in turns accepts if
and only if

P 1 � pg1qa
1
ph1qb

1
ua

1b1 .

EXTRACTION FOR n � 2. For this discussion, we focus in particular on the notion of adaptive
soundness – i.e., the prover provides P along with its representation, i.e, we get a1 � ppg1 , pg2q,
b1 � pph1 , ph2q and pu such that P � ga1hb1upu . At first, it looks like we are done – after all, we
can just check whether xa1,b1y � pu, and if so, output pa1,b1q as our witness. Unfortunately, things
are not that simple – we need to ensure that no accepting transcript τ � ppL,Rq, x, pa1, b1qq, i.e.,
such that P 1 � pg1qa

1
ph1qb

1
ua

1b1 , is ever produced if xa1,b1y � pu, for otherwise our naı̈ve extraction
would fail.

To this end, we will prove that if the cheating prover can produce an accepting interaction such
while xa1,b1y � pu, then we can solve the discrete logarithm problem in the group G. We construct
an adversary A that takes as inputs g1, g2, h1, h2, u and attempts to return a non-trivial discrete
logarithm relation between them. (Breaking this is tightly equivalent to breaking the discrete log-
arithm problem.) Concretely, the adversary A gives g1, g2, h1, h2, u as input to the cheating prover
P , which first returns an adaptively chosen input P P G, along with is algebraic representation

P � g
pg1
1 g

pg2
2 h

ph1
1 h

ph2
2 upu .

5 We use boldface to denote vectors. For two vectors a � pa1, . . . , anq,g � pg1, . . . , gnq, we use ga to denote
n±
i�1

gaii .
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The adversary then simulates the execution of P with a honest verifier further, and assumes it gen-
erates an accepting transcript τ � ppL,Rq, x, pa1, b1qq – this transcript contains the representations
of L,R such that L � g

lg1
1 g

lg2
2 h

lh1
1 h

lh2
2 ulu and R � g

rg1
1 g

rg2
2 h

rh1
1 h

rh2
2 uru and since it is an accepting

transcript we have
Lx

2
PRx

�2
� gx

�1a1

1 gx
1a1

2 hx
1b1

1 hx
�1b1

2 ua
1b1 .

We can plug in the representations of L, R into the equality and obtain values eg1 , eg2 , eh1 , eh2 , eu
such that

g
eg1
1 g

eg2
2 h

eh1
1 h

eh2
2 ueu � 1 . (2)

For example eg1 � x�1a1 � lg1x
2 � rg1x

�2 � pg1 and eu � a1b1 � lux
2 � rux

�2 � pu.
The adversary A then simply outputs peg1 , eg2 , eh1 , eh2 , euq – it has found a non-trivial discrete

logarithm relation if peg1 , eg2 , eh1 , eh2 , euq � p0, 0, 0, 0, 0q, which we next show happens with very
high probability if pu � pg1ph1 � pg2ph2 .

Suppose peg1 , eg2 , eh1 , eh2 , euq � p0, 0, 0, 0, 0q. From eg1 � 0, we have that x�1a1�lg1x
2�rg1x

�2�
pg1 � 0. Since x � 0, we get that a1 � lg1x

3 � rg1x
�1 � pg1x. Similarly from eg2 � 0, we would get

a1 � lg2x � pg2x
�1 � rg2x

�3. With high probability over the choice of x’s, by the Schwartz-Zippel
Lemma, we can infer by equating both right-hand sides that

a1 � xpg1 � x�1pg2 .

Similarly, from eh1 � 0 and eh2 � 0, we obtain that

b1 � x�1ph1 � xph2

for most x’s. Finally, from eu � 0, we similarly learn that

a1b1 � x2lu � pu � x�2ru .

Hence from the above

x2lu � pu � x�2ru � pg1ph1 � pg2ph2 � pg1ph2x
2 � pg2ph1x

�2 .

Since we have that pg1ph1 � pg2ph2 � pu, the above equality holds with very small probability over
the choice of x’s.

Hence we have shown that peg1 , eg2 , eh1 , eh2 , euq � p0, 0, 0, 0, 0q with very small probability.
Therefore A succeeds with high probability.
NON-ADAPTIVE SECURITY. The above proof exploits the fact that the prover provides a represen-
tation of P – this corresponds to the case of an adaptive prover. But there are scenarios where the
prover may be non-adaptive and not be able to do that – for example, the input P has been gener-
ated by another party, and the prover tries to prove knowledge with respect to this P . It turns out
that in this case, one needs a different proof. In fact, one could give an extraction strategy which
does not require knowing an initial representation for P , but it is then hard to give a reduction to
the discrete logarithm problem to show correctness.

We stress that non-adaptive provers and adaptive provers are equivalent in many applica-
tions – they only differ when the input includes group elements. We give a formalization and a
case study (for Bulletproofs range proofs) in Section 7. There, we can actually give a reduction
to the discrete logarithm problem (to bound the probability of failing to extract), but this requires
rewinding once – this allows us to prove a bound which is the square root of the bound for adaptive
provers.
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THE RECURSIVE PROTOCOL FOR n � 4. Scaling the protocol to an arbitrary n proceeds via recur-
sion. For concreteness, let us focus on the case n � 4. The prover first sends to the verifier group
elements L,R where

L � ga13 g
a2
4 h

b3
1 h

b4
2 u

a1b3�a2b4 , R � ga31 g
a4
2 h

b1
3 h

b2
4 u

a3b1�a4b2 .

The verifier samples x uniformly at random from Z�
p and sends it to the prover. The prover and

the verifier both compute

P 1 � Lx
2
PRx

�2
, g11 � gx

�1

1 gx3 , g
1
2 � gx

�1

2 gx4 , h
1
1 � hx1h

x�1

3 , h12 � hx2h
x�1

4 .

The prover also computes a11 � a1x�a3x
�1, a12 � a2x�a4x

�1, b11 � b1x
�1�b3x and b12 � b2x

�1�b4x.
Observe that

P 1 � pg11q
a11pg12q

a12ph11q
b11ph13q

b12ua
1
1b

1
1�a

1
2b

1
2 .

Now, the prover and the verifier engage, recursively, in the protocol for n � 2 with inputs

pg11, g
1
2q, ph

1
1, h

1
2q, u, P

1, pa11, a
1
2q, pb

1
1, b

1
2q .

The difficulty in analyzing this is that we would like our proof strategy to be recursive, i.e., given
we analyzed the protocol for n secure, we can now infer that the one for 2n also is secure. This will
not be so direct, unfortunately. One major technical issue is for example that the recursive call uses
different generators than the ones used for the calling protocol – in our case, here, pg11, g

1
2q, ph

1
1, h

1
2q

– however, when looking at the combined protocol in the AGM, all element representations would
be with respect to the generators g1, . . . , g4, h1, . . . , h4, and this makes it difficult to directly recycle
the above analysis.

THE CHALLENGES WITH COMPOSITION. The inability to leverage recursion to simplify the ap-
proach from the previous paragraph is not an isolated incident. We note that a non-trivial aspect
of our analyses is due to the lack of easy composition properties in the AGM. In particular, we
encounter the following problem – if we have a protocol Π 1 (e.g., the inner-product argument)
which is used as a sub-protocol for Π (a Bulletproofs range proof), and we prove extractability
for Π 1, it is not clear we can infer extractability for Π in a modular way by just calling the extrac-
tor for Π 1. This is because a stand-alone analysis of Π 1 may assume group elements output by a
malicious prover P 1 are represented with respect to some set of basis elements – say, the genera-
tors g1, . . . , gn, h1, . . . , hn, u in the concrete example of inner-product argument described above.
However, when Π 1 is used within Π , the generators of the inner-product argument are functions
of different group elements. When studying a prover P attacking Π , then, representations of group
elements are with respect to this different set of group elements, and this makes it hard to use an
extractor for Π 1 directly, as it assumes different representations.

This is a problem we encounter in our analyses, and which prevents us from abstracting a
theorem for the inner-product argument which we could use, in a plug-and-play way, to imply
security of higher-level protocols using it. The flip side is that this lack of composability also comes
to our advantage – our extractors will in fact not even need to extract anything from the transcript
of an accepting execution of the inner-product argument, but only use the fact that it is accepting
to infer correctness of the extracted value.
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THE ISSUE WITH PRIOR AGM ANALYSES. Composition issues seemingly affect existing analyses of
proof systems in the literature (e.g., [18,22]), whenever some components are analyzed in the AGM
(typically, a polynomial commitment scheme), but the overall proof is expressed in the standard
model. As far as we can tell, unlike this work, one cannot directly extract a full AGM analysis from
these works – let us elaborate on this.

Obviously, from a purely formal perspective, the standard model and the algebraic group
model cannot be quite mixed, as in particular the AGM extractor for the component cannot be
used in the standard model – the only formally correct way to interpret the analysis is as fully in
the AGM, but part of the analysis does not leverage the full power of the model, and is effectively
a standard-model reduction. Yet, in order for composition to be meaningful, it is important to ver-
ify that the basis elements assumed in the AGM analysis of the components are the same available
to a prover attacking the complete protocol. While we cannot claim any issues (in fact, we give an
analysis of Sonic in this paper with a concrete bound), it does appear that all existing works do
not attempt to provide a formal composition – they use the existence of an AGM extractor as a
heuristic validation for the existence of a standard-model extractor, rather than making formally
correct use as an AGM extractor within an AGM proof. Making this composition sound is poten-
tially non-trivial. Having said this, for pairing-based polynomial commitment schemes, the basis
elements are generally the same, and thus this can likely be made rigorous fairly easily (unlike the
case of inner-product arguments).

2 Preliminaries

Let N � t0, 1, 2, . . .u represent the set of all natural numbers and let N� � Nzt0u. For N P N�, let
rN s � t1, . . . , Nu. We use Pr rGs to denote the probability that the game G returns true. Let G be
a cyclic group of prime order p with identity 1 and let G� � Gzt1u be the set of its generators. We
use boldface to denote a vector, e.g., g P Gn is a vector of n group elements with its ith element
being gi, i.e., g � pg1, . . . , gnq. For two vectors a � pa1, . . . , anq,g � pg1, . . . , gnq, we use ga to
denote

±n
i�1 g

ai
i . We use python notation to denote slices of vectors:

gr:ls � pg1, . . . , glq P Gl , grl:s � pgl�1, . . . , gnq P Gn�l .

For z P Z�
p , we use zn to denote the vector p1, z, z2, . . . , zn�1q. Similarly, we use z�n to denote the

vector p1, z�1, z�2, . . . , z�n�1q. If Z is a variable, Zn represents the vector p1, Z, Z2, . . . , Zn�1q. Our
vectors are indexed starting from 1, so zn�1

r1:s is the vector pz, z2, . . . , znq. The operator � denotes the
Hadamard product of two vectors, i.e.,

a � pa1, . . . , anq , b � pb1, . . . , bnq , a � b � pa1b1, . . . , anbnq .

We use capitalized boldface letters to denote matrices, e.g., W P Zn�mp is a matrix with n rows and
m columns.

We denote the inner product of two vectors a,b P Znp using xa,by. We also define vector poly-
nomials, e.g., fpXq �

°d
i�0 fiX

i, where each coefficient fi is a vector in Znp .
The function bitpk, i, tq returns the bit ki where pk1, . . . , ktq is the t-bit representation of k.

SCHWARTZ-ZIPPEL LEMMA. The polynomial ring in variables X1, . . . , Xn over the field F is de-
noted by FrX1, . . . , Xns.
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Game Gdl
GpA, λq:

gÐ$ Gλ�; hÐ$ Gλ
aÐ$ Aλpg, hq
Return pga � hq

Game Gdl-rel
G,n pA, λq:

g1, . . . , gnÐ$ Gλ
pa1, . . . , anq Ð$ Aλpg1, . . . , gnq

Return p
n±
i�1

gaii � 1^ pa1, . . . , anq � 0nq

Game Gq-dl
G pA, λq:

gÐ$ Gλ�
xÐ$ Zppλq
x1 Ð$ Aλptg

xduqd��qq
Return px � x1q

Fig. 1. The games used to define the advantage of a non-uniform adversary A � tAλuλPN� against the discrete
logarithm problem, the discrete logarithm relation problem and the q-DLOG problem in a family of cyclic groups
G � tGλuλPN� with prime order order p � ppλq. The set Gλ� is the set of generators of Gλ.

Lemma 1 (Schwartz-Zippel Lemma). Let F be a finite field and let f P FrX1, . . . , Xns be a non-zero n
variate polynomial with maximum degree d. Let S be a subset of F.Then Pr rfpx1, . . . , xnq � 0s ¤ d{|S|,
where the probability is over the choice of x1, . . . , xn according to xiÐ$ S.

In particular if p is a prime and f P ZprXs is a polynomial of degree d and x is sampled uniformly
at random from Z�

p , then Pr rfpxq � 0s ¤ d{pp� 1q. Further this implies that if gpXq � fpXq{Xi

for i P N and x is sampled uniformly at random from Z�
p , then Pr rgpxq � 0s � Pr rfpxq � 0s ¤

d{pp� 1q.
THE DISCRETE LOGARITHM PROBLEM. The game Gdl

G in Figure 1 is used for is used for defining
the advantage of a non-uniform adversary A � tAλuλPN� against the discrete logarithm problem
in a family of cyclic groups G � tGλuλPN� of prime order p � ppλq with identity 1 and set of
generators G� � tG�

λuλPN� � tGλzt1uuλPN� . We define

AdvdlGpA, λq � Pr
�
Gdl

GpA, λq
�
.

THE DISCRETE LOGARITHM RELATION PROBLEM. The game Gdl-rel
G,n in Figure 1 is used for defining

the advantage of a non-uniform adversary A � tAλuλPN� against the discrete logarithm relation
problem in a family of cyclic groups G � tGλuλPN� . We define A � tAλuλPN� as

Advdl-relG,n pA, λq � Pr
�
Gdl-rel

G,n pA, λq
�
.

The following lemma shows that hardness of the discrete logarithm relation problem in G is tightly
implied by the hardness of discrete logarithm problem in a family of cyclic groups G � tGλuλPN� .

Lemma 2. Let n P N�. Let G � tGλuλPN� be a family of cyclic groups with order p � ppλq. For every
non-uniform adversary A � tAλuλPN� there exists a non-uniform adversary B � tBλuλPN� such that for
all λ P N�, Advdl-relG,n pA, λq ¤ AdvdlGpB, λq � 1{p. Moreover, B is nearly as efficient as A.

We refer the reader to [11] for a proof of this lemma.

THE q-DLOG PROBLEM. The game Gq-dl
G in Figure 1 is used for defining the advantage of a

non-uniform adversary A � tAλuλPN� against the q-DLOG problem in a family of groups G �
tGλuλPN� . We define

Advq-dlG pA, λq � Pr
�
Gq-dl

G pA, λq
�
.

We note that there are other problems known as q-DLOG which are not equivalent to the one
we use here. We use the version stated above because it was the version used in the analysis of
Sonic [18] which we analyse in this paper.
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Game SRSP
IPpλq:

win Ð false; tr Ð ε
pp Ð$ IP.Setupp1λq
px, stPq Ð$ Pλpppq
Run POext

λ pstPq
Return win

Oracle Oextpτ � pa1, c1, . . . , ai�1, ci�1q, aiq:
If τ P tr then

If i ¤ r then
ciÐ$ Chi; tr Ð tr } pτ, ai, ciq; Return ci

Else if i � r � 1 then
dÐ IP.Vppp, x, pτ, aiqq; tr Ð tr } pτ, aiq
If d � 1 then win Ð true
Return d

Return K

Fig. 2. Definition of state-restoration soundness. The game SRS defines state-restoration soundness for a non-uniform
prover P and a public-coin interactive proof IP. Here, IP has r � rpλq challenges and the i-th challenge is sampled from
Chi.

3 Interactive Proofs and State-restoration Soundness

We introduce our formalism for handling interactive proofs and arguments, which is particularly
geared towards understanding their concrete state-restoration soundness.
INTERACTIVE PROOFS. An interactive proof [1] IP is a triple of algorithms: (1) the setup algorithm
IP.Setup which generates the public parameters pp, (2) the prover IP.P and (3) the verifier IP.V. In
particular, the prover and the verifier are interactive machines which define a two-party protocol,
where the prover does not produce any output, and the verifier outputs a decision bit d P t0, 1u. We
let xIP.Ppxq, IP.Vpyqy denote the algorithm which runs an execution of the prover and the verifier
on inputs x and y, respectively, and outputs the verifier’s decision bit. We say that IP is public coin
if all messages sent from IP.V to IP.P are fresh random values from some understood set (which
we refer to as challenges).
COMPLETENESS. A relation R is (without loss of generality) a subset of t0, 1u� � t0, 1u� � t0, 1u�.
We denote a relation R that uses specified public parameters pp, instance x and witness w as
tppp, x, wq : fRppp, x, wqu where fRppp, x, wq is a function that returns true if ppp, x, wq P R and
false otherwise. For every λ P N� and every A, define the following experiment:

ppÐ$ IP.Setupp1λq , px,wq Ð$ Apppq , dÐ$ xIP.Pppp, x, wq, IP.Vppp, xqy .

Then, we say that IP is an interactive proof for the relation R if for all A and all λ P N�, in the
above experiment the event pd � 1q _ pppp, x, wq R Rq holds with probability one.
STATE-RESTORATION SOUNDNESS. We target a stronger notion of soundness – state-restoration
soundness (SRS) [14,15] – which (as we show below) tightly reduces to the soundness of the non-
interactive proof obtained via the Fiat-Shamir transform. The SRS security game allows the cheat-
ing prover to rewind the verifier as it pleases, and wins if and only if it manages to produce
some accepting interaction. We only consider an rpλq-challenge public-coin interactive proof IP,
and consider the case where challenges are drawn uniformly from some sets Ch1, . . . ,Chr. We
also assume that the verifier is described by an algorithm which given pp, x, and a transcript
τ � pa1, c1, . . . , ar, cr, ar�1q, outputs a decision bit d P t0, 1u. We overload notation and write
IP.Vppp, x, τq for this output.

Our definition considers a game SRSPIPpλq (which is formalized in Figure 2) that involves a
non-uniform cheating prover P � tPλuλPN. (Henceforth, whenever we have any non-uniform
adversary A, it is understood A � tAλuλPN – we shall not specify this explicitly). The prover is
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initially responsible for generating the input x on which it attempts to convince the verifier on
some execution. Its rewinding access to the verifier is ensured by an oracle Oext, to which it has
access. Roughly speaking, the oracle allows the prover to build an execution tree, which is extended
with each query to it by the prover. This execution tree can be inferred from tr, which sequentially
logs all (valid) queries to Oext by the prover. For a partial transcript τ 1, we write τ 1 P tr to mean
that a partial execution corresponding to τ 1 can be inferred from tr.

We then associate the probability of winning the game with the srs advantage metric,

AdvsrsIP pP, λq � Pr
�
SRSIPP pλq

�
.

For notational convenience, we do not restrict the input x not to have a witness. Therefore, if
IP is an interactive proof for a relation R, we cannot hope to show that AdvsrsIP pP, λq is small for
all P . Clearly, if P outputs px, aq such that ppp, x, aq P R, then a is a witness and P can simply
(honestly) convince the verifier. The classical notion of state-restoration soundness is recovered by
only considering P’s which output x such that ppp, x, wq R R for any w.

The following lemma shows a (generally loose) connection between (plain) soundness and
state restoration soundness.

Lemma 3 (Naı̈ve Reduction). Let IP be a rpλq-challenge public-coin interactive proof. Then, for every
non-uniform prover P invoking Oext at most q � qpλq times, there exists a linear prover P 1 (with com-
plexity similar to that of P) such that for all λ P N�, AdvsrsIP pP, λq ¤

� qpλq
rpλq�1

�
� AdvsrsIP pP 1, λq.

We omit the (simple) proof – the adversary P 1 simply “guesses” the accepting path, which
consists of r � 1 queries.

If IP is publicly verifiable, we can prove the following slightly improved bound.AdvsrsIP pP, λq ¤�qpλq
rpλq

�
� AdvsrsIP pP 1, λq. In this case the adversary P 1 would need to guess only the first r messages

and use the public verification procedure to check if any of the q queries is a valid last message.

4 Proofs of Knowledge in the AGM

THE ALGEBRAIC GROUP MODEL. We start here with a brief review of the AGM [5]. For an under-
stood group G with prime order p, an algebraic algorithm Aalg is an interactive algorithm whose
inputs and outputs are made of distinct group elements and strings. Furthermore, each (encoding)
of a group element X output by Aalg is accompanied by a representation pxA1 , xA2 , . . . , xAkq P Zkp
such that X �

±k
i�1A

xAi
i , where A1, . . . , Ak are all group elements previously input and out-

put by Aalg. Generally, we write rXs for a group element X enhanced with its representation,
e.g.,rXs � pX,xA1 , xA2 , . . . , xAkq. In particular, when we use a group element X output by Aalg,
e.g. it is input to a reduction or used in a cryptographic game, we write rXs to make explicit that
the representation is available, whereas write X only when the representation is omitted. The no-
tation extends to a mix of group elements and strings a – ras enhances each group element with
its representation.

DEFINING AGM EXTRACTION. We formalize a notion of proof-of-knowledge (PoK) security in the
AGM, following the lines of witness-extended emulation [16,17], which we extend to provers that
can rewind the verifier.
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Game WEE-1Palg,D
IP pλq:

tr Ð ε
pp Ð$ IP.Setupp1λq
prxs , stPq Ð$ Palg,λpppq

Run PO1
ext

alg,λ pstPq
bÐ$ Dptrq
Return pb � 1q

Oracle O1
extpτ � pa1, c1, . . . , ai�1, ci�1q, aiq:

If τ P tr then
If i ¤ r then
ciÐ$ Chi; tr Ð tr } pτ, ai, ciq; return ci

Else if i � r � 1 then
dÐ IP.Vppp, x, τ } aiq
Return d

Return K
Game WEE-0E,Palg,D

IP,R pλq:
tr Ð ε
pp Ð$ IP.Setupp1λq
prxs , stPq Ð$ Palg,λpppq
stE Ð p1λ, pp, rxsq

Run PO0
ext

alg,λ pstPq
wÐ$ EpstE ,Kq
bÐ$ Dptrq
Return pb � 1q ^ pAccptrq ñ ppp, x, wq P Rq

Oracle O0
extpτ � pa1, c1, . . . , ai�1, ci�1q, aiq:

If τ P tr then
If i ¤ r then
presp, stEq Ð$ EpstE , rpτ, aiqsq
tr Ð tr } pτ, ai, respq
Return resp

Else if i � r � 1 then
dÐ IP.Vppp, x, τ } aiq
Return d

Return K

Fig. 3. Definition of online srs-wee security in the AGM. The games WEE-1,WEE-0 define online srs-wee security in
the AGM for a non-uniform algebraic prover Palg, a distinguisher D, an extractor E and a public-coin interactive proof
IP. We assume here that IP has r � rpλq challenges and the i-th challenge is sampled from Chi.

We will be interested in cases where the AGM allows for online extraction, i.e., the additional
group representations will allow for extraction without rewinding the prover. We target an adap-
tive notion of security, where the input is generated by the adversarial prover itself, depending on
the public parameters pp, and can contain group elements.

ONLINE SRS-WEE SECURITY. The definition consists of two games – denoted WEE-1Palg,D
IP and

WEE-0E,Palg,D
IP,R , and described in Figure 3. The former captures the real game, lets our prover

P � tPλuλPN interact with an oracle O1
ext as in the state-restoration soundness game defined above,

which additionally stores a transcript tr. The latter is finally given to a distinguisher D which out-
puts a decision bit. In contrast, the ideal game delegates the role of answering P’s oracle queries
to a (stateful) extractor E . The extractor, at the end of the execution, also outputs a witness can-
didate for w. The extractor in particular exploits here the fact that P is algebraic by learning the
representation of every input to the oracle O0

ext. (This representation can be thought, without loss
of generality, as being in terms of all group elements contained in pp.) Here, the final output of the
game is not merely D’s decision bit – should the latter output 1, the output of the game is true
only if additionally the extracted witness is correct assuming the interaction with O0

ext resulted in
an accepting execution – a condition we capture via the predicate Accptrq.

For an interactive proof IP and an associated relation R, non-uniform algebraic prover Palg, a
distinguisher D, and an extractor E , we define

Advsr-weeIP,R pPalg,D, E , λq � Pr
�
WEE-1Palg,D

IP pλq
�
� Pr

�
WEE-0E,Palg,D

IP,R pλq
�
. (3)

One can consider also scenarios where the prover may be non-adaptive – for example, the input
has been generated by another party, and the prover tries to prove knowledge with respect to this
input. For this reason, introduce the notion of non-adaptive srs-wee in Section 7.
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SOUNDNESS FROM POK. The definition of state-restoration soundness from Section 3 also applies
to any algebraic prover. The following theorem relates soundness to the witness-extended emula-
tion – the proof is immediate.

Lemma 4. Let IP be an interactive proof for a relation R, and let Palg an algebraic prover which, on input
pp, outputs x such that ppp, x, wq R R for all w. Then, for any extractor E , and Dp�q � Accp�q, we have for
all λ P N�, AdvsrsIP pPalg, λq ¤ Advsr-weeIP,R pPalg,D, E , λq.

4.1 The Basic Framework

We develop a general framework that we will use, via Theorem 1, to derive concrete AGM bounds
on srs-wee security. Our goal, in particular, is to give conditions on single path executions – i.e.,
executions not involving any rewinding of the verifier by the prover, which could be seen as root-
to-leaf paths in an execution tree generated by the interaction of a state-restoration prover.
TRANSCRIPTS. From now on, let us fix an interactive public-coin proof IP � pIP.Setup, IP.P, IP.Vq
for a relation R. Assume further this protocol has exactly r rounds of challenges. Then, we rep-
resent a (potential) single-execution transcript generated by an algebraic prover in different forms,
depending on whether we include the representations of group elements or not. Specifically, we
let the (plain) transcript be τ � ppp, x, a1, c1, a2, c2, . . . , ar, cr, ar�1q, where pp are the generated
parameters, x is the input produced by Palg, ci P Chi for all i P t1, . . . , ru are the challenges, and
a1, . . . , ar�1 are the prover’s messages. The corresponding extended transcript with representations
is denoted as rτ s � ppp, rxs , ra1s , c1, ra2s , c2, . . . , rars , cr, rar�1sq.

In particular, the representation of each group element contained in ai is with respect to all
elements contained in pp, x, a1, . . . , ai�1. We let T IP be the set of all possible extended transcripts
rτ s. We also let T IP

Acc � T IP be the set of accepting transcripts rτ s, i.e., IP.Vpτq � 1.
PATH EXTRACTION. We now would like to define a function e which extracts a witness from any
accepting transcript rτ s P T IP

Acc. For a particular function e we now define the set of extended
transcripts on which it succeeds in extracting a valid witness, i.e.,

T IP,e,R
correct �

!
rτ s � ppp, rxs , . . .q P T IP

Acc : w Ð eprτ sq, ppp, x, wq P R
)
.

Therefore, a natural extractor E just answers challenges honestly, and applies e to a path in the
execution tree which defines an accepting transcript, and returns the corresponding witness w.
The probability of this extractor failing can be upper bounded naı̈vely by the probability that
the prover generates, in its execution tree, a path corresponding to an extended transcript rτ s P
T IP
AcczT

IP,e,R
correct . This is however not directly helpful, as the main challenge is to actually estimate this

probability.
BAD CHALLENGES. In all of our examples, the analysis of the probability of generating a transcript
in T IP

AcczT
IP,e,R
correct will generally consist of an information-theoretic and a computational part.

The information-theoretic part will account to choosing some bad challenges. We capture such
choices of bad challenges by defining, for any partial extended transcript�

τ 1
�
� ppp, rxs , ra1s , c1, . . . , raisq ,

a set BadChpτ 1q � Chi of such bad challenges. (Crucially, whether a challenge is bad or not only
depends on the extended transcript so far.) We now denote as T IP

BadCh the set of all extended tran-
scripts which contain at least one bad challenge. It turns out that the probability of generating
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such a bad challenge is easily bounded by q � ε for a prover making q oracle queries, assuming
|BadChpτ 1q| { |Chi| ¤ ε.

The only case that the extractor can now fail is if the execution tree contains an extended
transcript rτ s in the set T IP,e,R

fail � T IP
Acc z pT

IP,e,R
correct Y T IP

BadChq. We denote the probability that this
happens in SRS

Palg

IP pλq as pfailpIP,Palg, e, R, λq. Generally, in all of our applications, upper bounding
this probability for a suitably defined extractor will constitute the computational core of the proof
– i.e., we will prove (generally tight) reductions to breaking some underlying assumption.
THE MASTER THEOREM. We are now ready to state our master theorem, which assumes the formal
set up.

Theorem 1 (Master Theorem). Let IP be an r � rpλq-challenge public coin interactive proof for a
relation R. Assume there exist functions BadCh and e for IP as described above, and let pfail be as defined
above. Let τ 1 be a partial transcript such that the challenge that comes right after is sampled from Chi.
Assume that for all i P t1, . . . , ru, we have |BadChpτ 1q| { |Chi| ¤ ε, for some ε P r0, 1s. Then, there exists
an extractor E that uses e such that for any non-uniform algebraic prover Palg making at most q � qpλq
queries to its oracle, and any (computationally unbounded) distinguisher D, for all λ P N�,

Advsr-weeIP,R pPalg,D, E , λq ¤ qε� pfailpIP,Palg, e, R, λq .

The time complexity of the extractor E is Opq � tV � teq where tV is the time required to run IP.V and te is
the time required to run e.

Proof. The extractor E , as stated in Section 4.1, just answers challenges honestly, and applies e to a
path in the execution tree which defines an accepting transcript, and returns whatever e returns.
The running time of the extractor E consists of the time required to answers q queries, run IP.V in
at most q paths in the execution tree and the time required to run e. Hence it’s time complexity is
Opq � tV � teq.

Since, E answers challenges honestly, the view of Palg is identical in the games WEE-1Palg,D
IP and

WEE-0E,Palg,D
IP,R . So, tr will be identical in both games and hence b will be identical in both games.

Therefore, the output of WEE-0E,Palg,D
IP,R differs from the output of WEE-1Palg,D

IP only if pAccptrq ñ
ppp, x, wq P Rq � false i.e., if Accptrq is true but ppp, x, wq R R.

Since Accptrq is true, there is an accepting transcript τ such that E gives rτ s as input to e. Now,
e outputs w such that ppp, x, wq R R only if τ P T IP,e,R

fail or τ P T IP
BadCh (these sets are defined in

Section 4.1).
By definition, τ P T IP

BadCh only if any of the challenges ci P BadChpτ 1q for some partial transcript
τ 1 that is a prefix of τ . Now, since there are at most q queries and each of the challenges are sampled
uniformly at random from Chi, and |BadChpτ 1q| { |Chi| ¤ ε, the probability that τ P T IP

BadCh is at most
q � ε.

The probability that τ P T IP,e,R
fail is pfailpIP,Palg, e, R, λq in game SRSPIP. Since E answers chal-

lenges honestly, the probability that τ P T IP,e,R
fail in WEE-0E,Palg,D

IP,R is pfailpIP,Palg, e, R, λq as well.

Therefore, the probability that the output of WEE-0E,Palg,D
IP,R differs from the output of WEE-1Palg,D

IP
is at most qε� pfailpIP,Palg, e, R, λq, i.e.,

Advsr-weeIP,R pPalg,D, E , λq ¤ qε� pfailpIP,Palg, e, R, λq .

[\
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Game FS-EXT-1Palg,E
IP,R pλq:

pp Ð$ IP.Setupp1λq; prxs , stPq Ð$ Palg,λpppq; HÐ$ΩhLenpλq

rπs Ð$ PHalg,λpstPq; pa1, c1, . . . , ar, cr, ar�1q Ð π
accept Ð pIP.Vppp, x, πq � 1q ^ p@i P rrs : ci � Hppp, x, a1, c1, . . . , aiqr: cLenisq
wÐ$ Ep1λ, pp, rxs , rπsq; Return paccept ^ ppp, x, wq R Rq

Fig. 4. Definition of fs-ext-1 security in the AGM. The game FS-EXT-1 defines fs-ext-1 security in the AGM for a non-
uniform algebraic prover Palg, an extractor E and a non-interactive argument obtained by applying the Fiat-Shamir
transform to an interactive protocol IP. Here, IP has r � rpλq challenges where the ith challenge is of length cLeni �
cLenipλq such that sLenpλq ¤ cLenipλq ¤ hLenpλq. The setΩhLenpλq contains all functions mapping t0, 1u� to t0, 1uhLenpλq.

4.2 The Fiat-Shamir Transform

The Fiat-Shamir transform uses a family of hash functions H to convert a r-challenge public
coin interactive protocol (proof or argument) IP to a non-interactive argument FSrIP,Hs. When
H is modelled as a random oracle, we denote the non-interactive argument using FSROrIPs. In
FSrIP,Hs, a hash function H is first sampled from H. A proof on public parameters pp and input
x is π � pa1, c1, a2, c2, . . . , ar, cr, ar�1q, such that

ci � Hppp, x, a1, c1, . . . , ai�1, ci�1, aiqr: cLenis

for i P t1, . . . , ru, and IP.V returns 1 on input ppp, x, πq.
FS-EXT-1 SECURITY. We formalize a notion of proof-of-knowledge (PoK) security in the AGM for
non-interactive arguments obtained by applying the Fiat-Shamir transform to an interactive pro-
tocol IP. For simplicity, this notion just captures extractability instead of witness-extended emula-
tion. We define a notion of soundness called fs-ext-1 that captures the setting where the prover has
to commit to the instance beforehand. It is formally defined using the game FS-EXT-1 in Figure 4.

For an interactive proof IP and an associated relation R, algebraic prover Palg, and an extractor

E , we define Advfs-ext-1
FSROrIPs,R

pPalg, E , λq � Pr
�
FS-EXT-1Palg,E

IP,R pλq
�
.

The following theorem connects the online srs-wee security of a public-coin protocol IP and
the fs-ext-1 soundness of non-interactive protocol FSROrIPs, obtained by applying the Fiat-Shamir
transform using a random oracle.

Theorem 2. Let R be a relation. Let IP be a r � rpλq-challenge public coin interactive protocol for the
relation R where the length of the ith challenge is cLenipλq such that sLenpλq ¤ cLenipλq ¤ hLenpλq for
i P t1, . . . , ru. Let E be an extractor for IP. We can construct an extractor E� for FSROrIPs such that for
every non-uniform algebraic prover P�

alg against FSROrIPs that makes q � qpλq random oracle queries,
there exists a non-uniform algebraic prover Palg and D such that for all λ P N�,

Advfs-ext-1
FSROrIPs,R

pP�
alg, E�, λq ¤ Advsr-weeIP,R pPalg,D, E , λq � pq � 1q{2sLenpλq .

Moreover, Palg makes at most q queries to its oracle and is nearly as efficient as P�
alg. The extractor E� is

nearly as efficient as E .

Proof. Without loss of generality we assume that P�
alg does not repeat random oracle queries. Let

r � rpλq, hLen � hLenpλq, sLen � sLenpλq and cLeni � cLenipλq for i � 1, . . . , r. Let the length of
the ith prover message in IP be li � lipλq bits for i P t1, . . . , r � 1u.
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First we define the extractor E� – it simply outputs whatever E returns. It follows that E� is no
less efficient than E .

We set Dp�q � Accp�q. So, Advsr-weeIP,R pPalg,D, E , λq is essentially the probability that in WEE-0, Acc
returns true and E fails to return a valid witness.

We define adversary Palg that runs simulates the game FS-EXT-1 to P�
alg. The first stage of Palg

on input pp shall run the first stage of the P� on pp. If P� returns px, stP�q, Palg returns px, stP �
pstP� , pp, xqq. The second stage of Palg maintains set of states called S – each state is of the form
pa1, c1, a2, c2, . . . , ai, ciq. We say the length of such a state is i. On input stP � pstP� , pp, xq, it first
intializes S to tεu where ε is the empty string . Then it runs P�

alg on stP� . It simulates the random
oracle H to P�

alg as follows. On receiving a H query on y

1. Palg first checks if there exists s P S of length i such that ppp, x, sq is a prefix of y i.e. y �
ppp, x, s, tq and t is of length li�1. If the check fails, Palg returns a randomly sampled string
from t0, 1uhLen. If the check succeeds, Palg chooses the longest such state s.

2. Palg parses as y as ppp, x, s, tq and makes a query to Oext on ps, tq ans receives c as the response.
Palg adds ps, t, cq to the set S, samples a string c1 from t0, 1uhLen�cLeni�1 and returns pc, c1q.

Finally, when P�
alg returns an output π, Palg queries Oext on π and stops. It follows that Palg makes

no more than q queries to its oracle and is nearly as efficient as P�
alg.

Suppose the game FS-EXT-1 returns true. In other words P�
alg returns an accepting proof, i.e.,

it returns τ � pa1, c1, . . . , ar, cr, ar�1q and E� fails to extract a witness w.
Let τi � pa1, c1, . . . , ai�1, ci�1, aiq. Now, let E be the event that P�

alg made H queries on all
of ppp, x, τ1q, . . . , ppp, x, τrq in order, i.e., for all i P t1, . . . , r � 1u, it queried Hppp, x, τiq before
Hppp, x, τi�1q. If E happens, it is easy to see that Palg must have succeeded and E must have
failed (since E� fails only when E fails).

Hence, we need to upper bound the probability that τ is an accepting transcript and the event
E does not happen. If τ is an accepting transcript and the event E does not happen either there
exists an i P t1, . . . , ru such thatHppp, x, τiqwas never queried by P�

alg or there exists i P t1, . . . , r�
1u such thatHppp, x, τi�1qwas queried beforeHppp, x, τiq. The probability of the former happening
is at most 1{2sLen since Hppp, x, τiq was never queried but ci � Hppp, x, τiqr: cLenis is satisfied. The
probability of the latter is upper bounded by the probability that a H query was made on some
y before the H query on ppp, x, τiq such that the last cLeni � li�1 bits of y were pci, ai�1q. Since ci
was not fixed before the H query on ppp, x, τiq, this happens with probability no more than 1{2sLen

for every query before the H query on ppp, x, τiq. Hence, the probability that for all i P t1, . . . , ru,
Hppp, x, τiq was queried by P�

alg but there exists i P t1, . . . , r � 1u such that Hppp, x, τi�1q was
queried before Hppp, x, τiq is q{2sLen. Therefore, the probability that τ is an accepting transcript,
but E does not happen is at most pq � 1q{2sLen. Hence

Advfs-ext-1
FSROrIPs,R

pP�
alg, E�, λq ¤ Advsr-weeIP,R pPalg,D, E , λq �

q � 1

2sLenpλq
.

[\

In the above theorem we considered challenges in IP to be bitstrings – however, this can be
adapted to protocols where the challenges are from sets that are not bitstrings. The denominator
of the fraction of the bound would become the size of smallest set from which the challenges
are sampled, e.g., if the challenges in the a protocol were all from the set Z�

p , the fraction would
become pq � 1q{pp� 1q.
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Game FS-EXT-2Palg,E
IP,R pλq:

pp Ð$ IP.Setupp1λq; HÐ$ΩhLenpλq; prxs , rπsq Ð$ PHalg,λpppq
pa1, c1, . . . , ar, cr, ar�1q Ð π
accept Ð pIP.Vppp, x, πq � 1q ^ p@i P rrs : ci � Hppp, x, a1, c1, . . . , aiqr: cLenisq
wÐ$ Ep1λ, pp, rxs , rπsq; Return paccept ^ ppp, x, wq R Rq

Fig. 5. Definition of fs-ext-2 security in the AGM. The game FS-EXT-2 defines fs-ext-2 security in the AGM for a non-
uniform algebraic prover Palg, an extractor E and a non-interactive argument obtained by applying the Fiat-Shamir
transform to an interactive protocol IP. Here, IP has r � rpλq challenges where the ith challenge is of length cLeni �
cLenipλq such that sLenpλq ¤ cLenipλq ¤ hLenpλq. The setΩhLenpλq contains all functions mapping t0, 1u� to t0, 1uhLenpλq.

We can also consider an adaptive notion of soundness where the prover can output the instance
and proof together – we call this notion fs-ext-2. It is formally defined using the game FS-EXT-2 in
Figure 5. Unlike fs-ext-1, here the prover need not commit to the instance beforehand and can out-
put the instance and proof together. For an interactive proof IP and an associated relation R, alge-
braic prover Palg, and an extractor E , we define Advfs-ext-2

FSROrIPs,R
pPalg, E , λq � Pr

�
FS-EXT-2Palg,E

IP,R pλq
�
.

We assume that IP has BadCh, e functions as described previously. Further, we assume T IP
BadCh

is defined as above. We use pfail,FSpFS
ROrIPs,Palg, e, R, λq to denote the probability that in the

game FS-EXT-2Palg,E
IP,R , Palg outputs prxs , rπsq, accept is true, π R T IP

BadCh but e on input prxs , rπsq
fails to produce a valid witness. The following theorem upper bounds the fs-ext-2 soundness of
non-interactive protocol FSROrIPs.

Theorem 3. Let IP be an r � rpλq-challenge public coin interactive proof for a relation R where the length
of the ith challenge is cLenipλq such that sLenpλq ¤ cLenipλq ¤ hLenpλq for i P t1, . . . , ru. Assume
there exist functions BadCh and e as described previously and let pfail,FS be as described above. Let τ 1 be a
partial transcript such that the challenge that comes right after is sampled from Chi. Assume that for all
i P t1, . . . , ru, we have that |BadChpτ 1q| { |Chi| ¤ ε for some ε P r0, 1s. Then, there exists an extractor E�
that uses e such that for any non-uniform algebraic prover P�

alg for FSROrIPs making at most q � qpλq

queries to its random oracle, for all λ P N�,

Advfs-ext-2
FSROrIPs,R

pP�
alg, E�, λq ¤ qε� pfail,FSpFS

ROrIPs,P�
alg, e, R, λq .

The time complexity of the extractor E� is Opq � tV � teq where tV is the time required to run IP.V and te
is the time required to run e.

The proof of this theorem is similar to Theorem 1 and has been omitted.

5 Online srs-wee Security of Bulletproofs

In this section, we shall apply our framework to prove online srs-wee security in the AGM for
two instantiations of Bulletproofs- range proofs (RngPf) and proofs for arithmetic circuit satisfia-
bility (ACSPf). We first introduce the Bulletproofs inner product argument (InPrd) in Section 5.1
which forms the core of both RngPf and ACSPf. Then, in Sections 5.2 and 5.3 we introduce and
analyze online srs-wee security of RngPf and ACSPf respectively.

17



InPrd.Ppppn,g,h, uq, P q, pa,bqq InPrd.Vppn,g,h, uq, P q

gp0q Ð g;hp0q Ð h gp0q Ð g;hp0q Ð h

n0 Ð n;P p0q Ð P ;ap0q Ð a;bp0q Ð b n0 Ð n;P p0q Ð P
For i � 1, . . . , logn For i � 1, . . . , logn
ni Ð ni�1{2 ni Ð ni�1{2

cL Ð xapiqr: nis,b
piqrni :sy

cR Ð xapiqrni :s,b
piqr: nisy

Li Ð
�
g
pi�1q
rni:s

	apiqr:nis
�
h
pi�1q
r:nis

	bpiqrni:s

ucL

Ri Ð
�
g
pi�1q
r:nis

	apiqrni:s
�
h
pi�1q
rni:s

	bpiqr:nis

ucR
Li,RiÝÝÝÝÑ
xiÐÝÝÝÝ xiÐ$ Z�

p

gpiq Ð
�
g
pi�1q
r:nis

	x�1
i

�
�
g
pi�1q
rni:s

	xi
gpiq Ð

�
g
pi�1q
r:nis

	x�1
i

�
�
g
pi�1q
rni:s

	xi
hpiq Ð

�
h
pi�1q
r:nis

	xi
�
�
h
pi�1q
rni:s

	x�1
i

hpiq Ð
�
h
pi�1q
r:nis

	xi
�
�
h
pi�1q
rni:s

	x�1
i

P piq Ð L
x2i
i P

pi�1qR
x�2
i
i P piq Ð L

x2i
i P

pi�1qR
x�2
i
i

apiq Ð api�1qr: nisx
�1 � apiqrni :sx

bpiq Ð bpi�1qr: nisx� bpiqrni :sx
�1

g Ð gplognq;hÐ hplognq g Ð gplognq;hÐ hplognq

aÐ aplognq; bÐ bplognq a,b
ÝÝÝÝÑ Return pP plognq � gahbuabq

Fig. 6. Bulletproofs inner-product argument InPrd.

5.1 Inner Product Argument InPrd

We shall assume that InPrd � InPrdrGs is instantiated on an understood family of groups G �
tGλuλPN� of order p � ppλq. Using InPrd, a prover can convince a verifier that P P G is a well-
formed commitment to vectors a,b P Znp and their inner-product xa,by. More precisely, the prover
wants to prove to the verifier that P � gahbuxa,by where g P Gn,h P Gn, u P G are independent
generators of G. We assume that n is a power of 2 without loss of generality since if needed, one
can pad the input appropriately to ensure that this holds. The prover and the verifier for InPrd is
formally defined in Figure 6.

5.2 Online srs-wee Security of RngPf

We shall assume that RngPf � RngPfrGs is instantiated on an understood family of groups G �
tGλuλPN� of order p � ppλq. The argument RngPf is an argument of knowledge for the relation

R �
!�
pn P N, g, h P Gq, V P G, pv, γ P Zpq

	
: gvhγ � V ^ v P r0, 2n � 1s

)
. (4)

DESCRIPTION OF RngPf . RngPf.Setup returns g P Gn,h P Gn, g, h, u P G where g,h are vectors of
independent generators and g, h, u are other independent generators of the group G. The prover
and verifier for RngPf are defined in Figure 7.

In Theorem 4, we analyze the online srs-wee security for RngPf. Since RngPf has a group el-
ement V in its input, the analysis of non-adaptive srs-wee security would differ from the online
srs-wee analysis. In Section 7, we analyse the non-adaptive srs-wee security of RngPf – it turns out
that the proof is even harder for this case because the function e does not have the representation
of V . The resulting bound is increased to the square root of the adaptive bound, due to our limited
use of rewinding.
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RngPf.Ppppn,g,h, g, h, uq, V q, pv, γqq RngPf.Vppn,g,h, g, h, uq, V q
aL Ð BinReppv, nq;aR Ð aL � 1n

αÐ$ Zp;AÐ hαgaLhaR

sLÐ$ Znp ; sRÐ$ Znp
ρÐ$ Zp;S Ð hρgsLhsR A,S

ÝÝÝÝÑ
y,z

ÐÝÝÝÝ y, zÐ$ Z�
p

lpXq Ð paL � z � 1nq � sL �X δpy, zq Ð pz � z2q � x1n,yny � z2 � 2n

rpXq Ð yn � paR � z � 1n � sR �Xq � z2 � 2n

tpXq Ð xlpXq, rpXqy � t0 � t1X � t2X
2

β1, β2 Ð$ Zp
Ti Ð gtihβi for i P t1, 2u T1,T2ÝÝÝÝÑ

x
ÐÝÝÝÝ xÐ$ Z�

p

lÐ lpxq; rÐ rpxq; t̂Ð xl, ry

βx Ð β2 � x
2 � β1 � x� z2γ;µÐ α� ρ � x

βx,µ,t̂ÝÝÝÝÑ
w

ÐÝÝÝÝ wÐ$ Z�
p

h1 Ð hy�n ;u1 Ð uw h1 Ð hy�n ;u1 Ð uw

P Ð ASxg�z�1
n

h1z�y
n�z2�2n

P Ð ASxg�z�1
n

h1z�y
n�z2�2n

P 1 Ð h�µP pu1qt̂ P 1 Ð h�µP pu1qt̂

InPrd.Pppg,h1, u1, P 1q, pl, rqq ðùùùñ InPrd.Vpg,h1, u1, P 1q Ñ b

RÐ V z
2

gδpy,zqT x1 T
x2

2

If b � 1^ gt̂hβx � R then
Return 1

Return 0

Fig. 7. Prover and Verifier for RngPf. The function BinReppv, nq outputs the n-bit representation of v. The symbol ðñ
denotes the interaction between InPrd.P and InPrd.V with the output of the InPrd.V being b.

Theorem 4. Let G � tGλuλPN� be a family of groups of order p � ppλq. Let RngPf � RngPfrGs be the
interactive argument as defined in Figure 7, for the relation R in (4). We can construct an extractor E such
that for any non-uniform algebraic prover Palg making at most q � qpλq queries to its oracle, there exists
a non-uniform adversary F with the property that for any (computationally unbounded) distinguisher D,
for all λ P N�,

Advsr-weeRngPf,RpPalg,D, E , λq ¤ p14n� 8qq{pp� 1q � AdvdlGpF , λq � 1{p .

Moreover, the time complexity of the extractor E is Opq � nq and that of adversary F is Opq � nq.

We show that the bound above is tight in Theorem 5. Using Theorem 2, we get the following
corollary.

Corollary 1. Let G � tGλuλPN� be a family of groups of order p � ppλq. Let RngPf � RngPfrGs be
the interactive argument as defined in Figure 7, for the relation R in (4). Let FSROrRngPfs be the non-
interactive argument obtained by applying the Fiat-Shamir transform to RngPf using a random oracle. We
can construct an extractor E such that for any non-uniform algebraic prover Palg making at most q � qpλq
queries to the random oracle there exists a non-uniform adversary F with the property that for all λ P N�,

Advfs-ext-1
FSROrRngPfs,R

pPalg, E , λq ¤ pp14n� 9qq � 1q{pp� 1q � AdvdlGpF , λq � 1{p .

Moreover, the time complexity of the extractor E is Opq � nq and that of adversary F is Opq � nq.
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In order to prove Theorem 4, we invoke Theorem 1 by defining BadCh and e and showing that ε ¤
p14n� 8q{pp� 1q and there exists an adversary F such that pfailpRngPf,Palg, e, R, λq ¤ AdvdlGpFq �
1{p. In more detail, we construct a function h such that for an accepting transcript τ R T RngPf

BadCh if
eprτ sq fails to produce a valid witness, then hprτ sq returns a non-trivial discrete logarithm relation
with respect to the generators. This h is used to construct an adversary H against the discrete
logarithm relation problem and we invoke Lemma 2 to transform into adversary F against the
discrete logarithm problem, thus upper bounding pfailpRngPf,Palg, e, R, λq using AdvdlGpFq.

Proof (Theorem 4). We extend the notation for representation of group elements introduced in
Section 4 for representation with respect to vector of group elements like g. The representation of
a group element A � gaggag with respect to pg, gq is rAs � pA, ag, agq where ag � pag1 , � � � , agnq.

DEFINING BadCh AND UPPER BOUNDING ε. To start off, we define BadChpτ 1q for all partial tran-
scripts τ 1. Let Ch be the set from which the challenge that just follows τ 1 is sampled. We use a
helper function CheckBad to define BadChpτ 1q. The function CheckBad takes as input a partial ex-
tended transcript rτ 1s and a challenge c P Ch and returns true if and only if c P BadChpτ 1q. For
each verifier challenge in RngPf, there is a definition of CheckBad in Figure 8. Every CheckBad func-
tion defines several bad conditions that depend on τ 1 – most of these bad conditions are checked
using the predicate SZ. This predicate takes as input a vector of polynomials and a correspond-
ing vector of points to evaluate the polynomial on and returns true iff any of the polynomials is
non-zero but its evaluation at the corresponding point is zero. One can safely ignore the details of
the definitions of CheckBad functions for now – the rationale behind their definitions shall become
apparent later on.

The following lemma establishes an upper bound of p14n� 8q{pp� 1q on |BadChpτ 1q|{|Ch|.

Lemma 5. Let τ 1 be a partial transcript for RngPf. Let Ch be the set from which the challenge that comes
right after τ 1 is sampled. Then, |BadChpτ 1q|{|Ch| ¤ p14n� 8q{pp� 1q.

Proof. The proof of this lemma proceeds by computing an upper bound on the maximum fraction
of c’s in Ch for which CheckBadpτ 1, cq will return true, for all the definitions of CheckBad, using
the Schwartz-Zippel Lemma.

The function CheckBadpτ 1, py, zqq returns true if SZpfpY,Zq, py, zqq is true. The polynomial
fpY, Zq is a polynomial of degree at most n�1. So, the fraction of py, zq’s for which SZpfpY,Zq, py, zqq
is true is at most pn� 1q{pp� 1q using the Schwartz-Zippel Lemma. Hence, the fraction of y, z P
Z�
p for which CheckBadpτ 1, py, zqq returns true is at most pn� 1q{pp� 1q.

The function CheckBadpτ 1, xq returns true if any of SZpfipXq, xq for i � 1, 2, 3, 4 is true.
Since f1pXq and f2pXq are vectors of n polynomials, each polynomial of degree 2, we get that
the fraction of x’s in Z�

p for which SZpfipXq, xq is true for i � 1, 2 is at most 2n{pp� 1q. The
polynomials f3pXq, f4pXq are polynomials of degree at most 2. The fraction of x’s in Z�

p for which
SZpf3pXq, xq or SZpf4pXq, xq is true is at most 2{pp� 1q. Using the union bound, the fraction of
x’s in Z�

p such that CheckBadpτ 1, xq returns true is at most p4n� 4q{pp� 1q.
The function CheckBadpτ 1, wq returns true if SZpfpW q, wq is true. The polynomial fpW q is

a polynomial of degree 1, hence using the Schwartz-Zippel Lemma the fraction of w’s in Z�
p for

which CheckBadpτ 1, wq returns true is at most 1{pp� 1q.
The function CheckBadpτ 1, xmq returns true if and only if SZ is true for any of the

°m�1
t�1 2n{2t

polynomials of degree at most 4 (the degree here is the difference between highest and lowest
degree), 2n{2m polynomials of degree at most 6 and one polynomial of degree at most 8. Using
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Procedure CheckBadp
�
τ 1
�
, py, zqq:

//
�
τ 1
�
�
�
pn,g,h, u, g, hq, rV s , prAs , rSsq

�
fpY,Zq Ð Z2pvg � xag,2

nyq � Zxag � ah � 1n,Yny � xag � ah,Y
ny

Return SZpfpY,Zq, py, zqq

Procedure CheckBadp
�
τ 1
�
, xq:

//
�
τ 1
�
�
�
pn,g,h, u, g, hq, rV s , prAs , rSsq, py, zq, prT1s , rT2sq

�
f1pXq Ð vgz

2 � t1gX � t2gX
2; f2pXq Ð vhz

2 � t1hX � t2hX
2

f3pXq Ð vuz
2 � t1uX � t2uX

2; δpy, zq Ð pz � z2qx1n,yny � z3x1n,2ny
lpXq Ð pag�z�1

nq�sg �X ; rpXq Ð yn�pah�z�1
n�sh�Xq�z

2�2n; f4pXq Ð vgz
2�δpy, zq�t1gX�t2gX

2�xlpXq, rpXqy
Return SZpf1pXq, xq _ SZpf2pXq, xq _ SZpf3pXq, xq _ SZpf4pXq, xq

Procedure CheckBadp
�
τ 1
�
, wq:

//
�
τ 1
�
�
�
pn,g,h, u, g, hq, rV s , prAs , rSsq, py, zq, prT1s , rT2sq, x, pβx, µ, t̂q

�
lÐ pag � z � 1nq � sg � x; rÐ pah � xsh � z1nq � yn � z22n; fpW q ÐWt̂�W xl, ry
Return SZpfpW q, wq

Procedure CheckBadp
�
τ 1
�
, xmq:

//
�
τ 1
�
�
�
pn,g,h, u, g, hq, rV s , prAs , rSsq, py, zq, prT1s , rT2sq, x, pβx, µ, t̂q, w, prL1s , rR1sq, x1, . . . , prLms , rRmsq

�
p1g Ð ag � xsg � z1n; p1h Ð ah � xsh � y�n � pzyn � z22nq; p1u Ð au � xsu � wt̂
For j � 0, . . . , n� 1 do
fg
m,jpXq Ð lmg1�j �X2 � rmg1�jX

�2 � p1g1�j �
°m�1
i�1 plig1�jx

2
i � rig1�jx

�2
i q

fh
m,jpXq Ð lmh1�jX

2 � rmh1�jX
�2 � p1h1�j

�
°m�1
i�1 plih1�jx

2
i � rih1�jx

�2
i q

fumpXq Ð lmuX
2 � rmuX

�2 � p1u �
°m�1
i�1 pliux

2
i � riux

�2
i q

flag Ð false
For t � 1, . . . ,m� 1 do for j � 0, . . . , n{2t � 1 do

flag Ð flag _ SZpfg
m,jpXq � x

2
t � fg

m,j�n{2t
pXq, xmq _ SZpfh

m,jpXq � fh
m,j�n{2tpXq � x

2
t , xmq

For j � 0, . . . , n{2m � 1 do
flag Ð flag _ SZpfg

m,jpXq �X
2 � fg

m,j�n{2mpXq, xmq _ SZpfh
m,jpXq � fh

m,j�n{2mpXq �X
2, xmq

flag Ð flag _ SZ
�
fumpXq � w �

°n{2m�1
j�0 fg

m,jpXq � f
h
m,jpXq � y

j , xm
	

Return flag

Fig. 8. The functions CheckBad function for the RngPf.

Schwartz Zippel Lemma and the union bound the fraction of xm’s for which CheckBadpτ 1, xmq
returns true is at most

8

p� 1

�
m�1̧

t�1

n

2t

�
�

12n

2mpp� 1q
�

8

p� 1
.

This fraction is at most p14n� 8q{pp� 1q for m P t1, . . . , log nu.
Therefore the maximum value of |BadChpτ 1q|{|Ch| for any partial transcript τ 1, i.e., the maxi-

mum fraction of c’s for which CheckBadpτ 1, cq is true is upper bounded by p14n� 8q{pp� 1q. [\

DEFINING e. Let τ be a transcript of RngPf as defined below.

τ �
�
pn,g,h, u, g, hq, V ; pA,Sq, py, zq, pT1, T2q, x, pβx, µ, t̂q, w, pL1, R1q, x1, pL2, R2q, x2, . . . ,

pLlogn, Rlognq, xlogn, pa, bq
�
.

(5)

Let us represent using τ |c the prefix of τ just before the challenge c. For example

τ |py,zq �
�
pn,g,h, u, g, hq, V, pA,Sq

�
.
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Procedure eprτ sq:

//rτ s �
�
pn,g,h, u, g, hq, rV s ; prAs , rSsq, py, zq, prT1s , rT2sq, x, pβx, µ, t̂q, w, prL1s , rR1sq, x1, . . . , prLlogns , rRlognsq, xlogn,
pa, bq

�
v� Ð vg ; γ� Ð vh; Return pv�, γ�q

Fig. 9. The function e for RngPf.

The function e simply returns pvg, vhq. However, its output is a valid witness only if vg � vh �
0n, vu � 0 and vg P r0, 2n � 1s.

PROVING AN UPPER BOUND ON pfailpRngPf,Palg, e, R, λq. We construct an adversary H against the
discrete logarithm relation problem that takes as input independent generators g,h, g, h, u of the
group G and works as follows. It simulates the game SRSRngPf to Palg using public parameters
n,g,h, g, h, u. If Palg manages to produce an accepting transcript τ , H calls a helper function h on
input rτ s and outputs whatever h outputs. We shall define h in such a way that for τ R T RngPf

BadCh if
eprτ sq does not return a valid witness, then hprτ sq returns a non-trivial discrete logarithm relation.
In other words, we have that whenever eprτ sq fails to extract a valid witness for an accepting
transcript τ R T RngPf

BadCh , H succeeds. So we have that pfailpRngPf,Palg, e, R, λq ¤ Advdl-relG,2n�3pHq. Using
Lemma 2 we would have that there exists an adversary F such that pfailpRngPf,Palg, e, R, λq ¤
AdvdlGpFq � 1{p. We also have that F is nearly as efficient as H.

DEFINING h. We next describe the h function. Let τ , as defined in (5), be an accepting transcript.
V z2gδpy,zqT x1 T

x2
2 � gt̂hβx . must hold since τ is an accepting transcript.

The function h can plug in the representations of T1, T2, V into the above equation and compute
e
p1q
g , e

p1q
h , e

p1q
g , e

p1q
h , e

p1q
u such that ge

p1q
g he

p1q
h ge

p1q
g he

p1q
h ue

p1q
u � 1. If not all of these are zero, h returns

e
p1q
g , e

p1q
h , e

p1q
g , e

p1q
h , e

p1q
u .

Again since τ is an accepting transcript, InPrd.V must have returned 1 and hence P plognq �
pgplognqqaphplognqqbuab must hold. All the terms in the above equality can be expressed in terms
of g,h, g, h, u and one can compute ep2qg , e

p2q
h , e

p2q
g , e

p2q
h , e

p2q
u such that ge

p2q
g he

p2q
h ge

p2q
g he

p2q
h ue

p2q
u � 1.

The function h computes and returns ep2qg , e
p2q
h , e

p2q
g , e

p2q
h , e

p2q
u . We define the function h formally in

Figure 10. It follows from the description of h that it runs in time Opnq. The running time of H
consists of the time required to answers q queries, run RngPf.V in at most q paths in the execution
tree and the time required to run h. Hence its time complexity is Opq � nq. Using Lemma 2, time
complexity of F is Opq � nq.

RELATING h, e. In order to complete the proof of Theorem 4, in the following lemma we show that
– for an accepting transcript τ such that τ R T RngPf

BadCh if eprτ sq does not return a valid witness, then
hprτ sq returns a non-trivial discrete logarithm relation. Proving this lemma would conclude the
proof of Theorem 4.

Lemma 6. Let τ , as defined in (5), be an accepting transcript of RngPf such that τ R T RngPf
BadCh . If eprτ sq

returns pv�, γ�q such that at least one of the following hold: gv�hγ� � V or v� R r0, 2n � 1s, then hprτ sq
returns a non-trivial discrete logarithm relation.

Proof (Lemma 6). For simplicity, we shall prove the contrapositive of the statement, i.e., assuming
hprτ sq returns a trivial discrete logarithm relation, then gv

�
hγ

�
� V and v� P r0, 2n � 1s.
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Procedure hprτ sq:

//rτ s �
�
pn,g,h, u, g, hq, rV s ; prAs , rSsq, py, zq, prT1s , rT2sq, x, pβx, µ, t̂q, w, prL1s , rR1sq, x1, . . . ,
prLlogns , rRlognsq, xlogn, pa, bq

�
δpy, zq Ð pz � z2qx1n,yny � z3x1n,2ny

e
p1q
g Ð vgz

2�t1gx�t2gx
2; ep1qh Ð vhz

2�t1hx�t2hx
2; ep1qu Ð vuz

2�t1ux�t2ux
2; ep1qg Ð vgz

2�δpy, zq�t1gx�t2gx
2� t̂;

e
p1q
h Ð vhz

2 � t1hx� t2hx
2 � βx

If pep1qg , e
p1q
h , e

p1q
u , e

p1q
g , e

p1q
h q � p0n,0n, 0, 0, 0q then return pep1qg , e

p1q
h , e

p1q
u , e

p1q
g , e

p1q
h q

p1g Ð pagq � xsg � z1n; p1h Ð ah � xsh � y�n � pzyn � z22nq
p1g Ð ag � xsg ; p1h Ð ah � xsh � µ; p1u Ð au � xsu � wt̂
For k � 0 to n� 1 do

e
p2q
gk�1 Ð p1g1�k �

logn°
i�1

lig1�kx
2
i � rig1�kx

�2
i � a �

logn±
i�1

x
p�1q1�bitpk,i,lognq

i

e
p2q
hk�1

Ð p1h1�k
�

logn°
i�1

lih1�kx
2
i � rih1�k � x�2

i � byp�pkqq �
logn±
i�1

x
p�1qbitpk,i,lognq

i

e
p2q
g Ð pe

p2q
g1 , . . . , e

p2q
gn q; e

p2q
h Ð pe

p2q
h1
, . . . , e

p2q
hn
q; ep2qu Ð p1u �

logn°
i�1

liux
2
i � riux

�2
i � w � ab

e
p2q
g Ð

logn°
i�1

ligx
2
i � rigx

�2
i � p1g ; ep2qh Ð

logn°
i�1

lihx
2
i � rihx

�2
i � p1h

Return pep2qg , e
p2q
h , e

p2q
u , e

p2q
g , e

p2q
h q

Fig. 10. The function h for RngPf.

In order to prove gv
�
hγ

�
� V and v� P r0, 2n � 1s, it suffices to show that vg � vh � 0n, vu � 0

and vg P r0, 2
n � 1s. Let us denote using τ |c the partial transcript that is the prefix of τ just before

the challenge c. For example

τ |py,zq �
�
pn,g,h, u, g, hq, V, pA,Sq

�
.

Since we assumed that hprτ sq returns p0n,0n, 0, 0, 0q, we have that for i � 1, 2, pepiqg , e
piq
h , e

piq
g , e

piq
h , e

piq
u q �

p0n,0n, 0, 0, 0q.
Writing out the expression for ep1qg we get

vgz
2 � t1gx� t2gx

2 � 0n .

Since τ R T RngPf
BadCh , we have that x R BadChpτ |xq. Therefore, SZpf1pXq, xq is false where f1 is as

defined in CheckBadpτ 1, xq. Since we have here that f1pxq � 0, the polynomial f1pXq is the zero
vector polynomial. In particular, its constant term vgz

2 � 0n.Since z � 0 it follows that vg � 0n.
Similarly using ep1qh � 0n and e

p1q
u � 0 we can show that vh � 0n and vu � 0 respectively. Writing

out the expression for ep1qg we have vgz2 � δpy, zq � t1gx� t2gx
2 � t̂ � 0. Hence,

t̂ � vgz
2 � δpy, zq � t1gx� t2gx

2 . (6)

Using ep2qg � 0n we get for all k P t0, . . . , n� 1u

p1g1�k �

log ņ

i�1

plig1�kx
2
i � rig1�kx

�2
i q � a �

logn¹
i�1

x
p�1q1�bitpk,i,lognq

i � 0 . (7)
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Using ep2qh � 0n we get for all k P t0, . . . , n� 1u

p1h1�k �

log ņ

i�1

plih1�kx
2
i � rih1�kx

�2
i q � byp�pkqq �

logn¹
i�1

x
p�1qbitpk,i,lognq

i � 0 . (8)

Using ep2qu � 0 we get that

p1u �

log ņ

i�1

pliux
2
i � riux

�2
i q � w � ab � 0 . (9)

We shall next use the following lemma which essentially says that if all of ep2qg , e
p2q
h , e

p2q
u , e

p2q
g , e

p2q
h

are zero and τ R T RngPf
BadCh , then w � xp1g, p1h � y

ny � p1u.

Lemma 7. Let τ , as shown in (5), be an accepting transcript of RngPf such that τ R T RngPf
BadCh . Let

p1g � ag � xsg � z1n , p1h � ah � xsh � y�n � pzyn � z22nq , p1u � au � xsu � wt̂ .

Suppose, the for all k P t0, . . . , n� 1u

� log ņ

i�1

plig1�kx
2
i � rig1�kx

�2
i q � p1g1�k

	
� a �

�
logn¹
i�1

x
p�1q1�bitpk,i,lognq

i

�
� 0 ,

� log ņ

i�1

plih1�kx
2
i � rih1�kx

�2
i q � p1h1�k

	
� byp�pkqq �

�
logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
� 0 .

Also,

�
logn°
i�1

pliux
2
i � riux

�2
i q

�
� p1u � w � ab � 0. Then w � xp1g, p1h � y

ny � p1u.

The proof of this lemma is a generalization of the proof that we gave for the inner product argu-
ment for n � 2 in the technical overview.

Proof. We define a function Bad in Figure 11 that takes as input x P Z�
p and an indexm P t1, . . . , log nu.

It returns true if and only if x P BadChpτ |xmq. We shall then use Lemma 8, which is a purely al-
gebraic lemma.

Lemma 8. Let n P N� be a power of 2. Let tlig P Znp , lih P Znp , liu P Zp, rig P Znp , rih P Znp , riu P Zpulogni�1 .
Let a, b, p1g, p1h, p

1
u P Zp. Let

params �
!
tlig, lih, liu, rig, rih, riuu

logn
i�1 , p

1
g, p

1
h, p

1
u

)
.

Let x1, . . . , xlogn P Z�
p such that Badpparams, xi, iq � false for i � 1, . . . , log n where Bad is defined in

Figure 11. Suppose, the following equalities hold.

1. For all k P t0, . . . , n� 1u

� log ņ

i�1

plig1�kx
2
i � rig1�kx

�2
i q � p1g1�k

	
� a �

�
logn¹
i�1

x
p�1q1�bitpk,i,lognq

i

�
� 0 .
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Procedure Badpparams, x,mq:

//params �
!
tlig, lih, liu, rig, rih, riuu

logn
i�1 , p

1
g, p

1
h, p

1
u

)
For j � 0, . . . , n� 1 do

fg
m,jpXq Ð lmg1�j �X2 � rmg1�jX

�2 � p1g1�j �
m�1°
i�1

plig1�jx
2
i � rig1�jx

�2
i q

fh
m,jpXq Ð lmh1�jX

2 � rmh1�jX
�2 � p1h1�j

�
m�1°
i�1

plih1�jx
2
i � rih1�jx

�2
i q

fumpXq Ð lmuX
2 � rmuX

�2 � p1u �
m�1°
i�1

pliux
2
i � riux

�2
i q

For t � 1, . . . ,m� 1 do
For j � 0, . . . , n{2t � 1 do

flag Ð flag _ SZpfg
m,jpXq � x

2
t � fg

m,j�n{2t
pXq, xq _ SZpfh

m,jpXq � fh
m,j�n{2tpXq � x

2
t , xq

For j � 0, . . . , n{2m � 1 do
flag Ð flag _ SZpfg

m,jpXq �X
2 � fg

m,j�n{2mpXq, xq _ SZpfh
m,jpXq � fh

m,j�n{2mpXq �X
2, xq

flag Ð flag _ SZ

�
fumpXq � w �

n{2m�1°
j�0

fg
m,jpXq � f

h
m,jpXq � y

j , x

�

Return flag

Fig. 11. The function Bad for Lemma 8.

2. For all k P t0, . . . , n� 1u

� log ņ

i�1

plih1�kx
2
i � rih1�kx

�2
i q � p1h1�k

	
� byp�pkqq �

�
logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
� 0 .

3. �
log ņ

i�1

pliux
2
i � riux

�2
i q

�
� p1u � w � ab � 0 .

Then
w � xp1g, p

1
h � y

ny � p1u .

Let params �
!
tlig, lih, liu, rig, rih, riuu

logn
i�1 , p

1
g, p

1
h, p

1
u

)
. Note that Badpparams, x, jq returns true if

and only if x P BadChpτ |xj q. Therefore, we have that x1, . . . , xlogn in τ satisfy the condition for xi’s
in Lemma 8. Moreover all the equalities required in Lemma 8 hold and p1g, p1h, p

1
u P Zp. So we using

Lemma 8 we have that
w � xp1g, p

1
h � y

ny � p1u .

The proof of Lemma 8 is deferred to Section 5.4. [\

Since τ is an accepting transcript of RngPf and τ R T RngPf
BadCh and (7) to (9) hold, using Lemma 7,

we get wxp1g, p1h � y
ny � p1u. Plugging in the values of p1g, p1h, p

1
u we get

w � xag � xsg � z1n, pah � xsh � z1nq � yn � z22ny � au � xsu � wt̂ .

Since τ R T RngPf
BadCh , we have that w R BadChpτ |wq. Therefore, SZpfpW q, wq is false where f is as

defined in CheckBadpτ 1, wq. Since we have here that fpwq � 0, the polynomial fpW q must be the
zero polynomial. In particular its W term must be zero, i.e.,

xag � xsg � z1n, pah � xsh � z1nq � yn � z22ny � t̂ .
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Plugging in the value of t̂ obtained in (6), we have that

pvgz
2 � δpy, zq � t1gx� t2gx

2q � xag � xsg � z1n, pah � xsh � z1nq � yn

� z22ny � 0 .

Similarly, using x R BadChpτ |xq, we get

vgz
2 � δpy, zq � xag � z1n, pah � z1nq � yn � z22ny � 0 .

Plugging in the value of δpy, zq, rearranging and simplifying we get

z2pvg � xag,2
nyq � zxag � ah � 1n,yny � xag � ah,y

ny � 0 .

Using py, zq R BadChpτ |py,zqq, we get that vg � xag,2
ny � 0, ag � ah � 1n � 0n, ag � ah � 0n.

Note that ag � ah � 1n � 0n and ag � ah � 0n imply that ag P t0, 1un. Further vg � xag,2
ny � 0,

i.e., vg � xag,2
ny. So, vg P r0, 2n � 1s. Therefore, v�, γ� output by eprτ sq satisfy V � gv

�
hγ

�
and

v� P r0, 2n � 1s. This concludes the proof of Lemma 6 and Theorem 4.
[\

Further for a prover Palg for FSROrRngPfs, and the e we define in the proof of Theorem 4, we
can upper bound pfail,FSpFS

ROrRngPfs,Palg, e, R, λq using techniques very similar to those used
in the proof of Theorem 4. This is because we can prove that if the prover outputs an instance
and an accepting proof and e fails to produce a valid witness, then we can compute a non-trivial
discrete logarithm relation from the representation of the transcript and instance unless one of
the challenges in the transcript are bad which we can show happens with small probability. Then
using Theorem 3 we obtain a bound for the fs-ext-2 security of FSROrRngPfs similar to the one we
obtained for fs-ext-1 security in Corollary 1.
TIGHTNESS OF THEOREM 4. We next argue that the factor Opnq{pp� 1qq in Theorem 4 is tight. We
first note that the protocol RngPf can be used for the following relation

R1 �
!
pn P N, g, V P G, v P Zpq : gv � V ^ v P r0, 2n � 1s

)
, (10)

by fixing γ to 0.
We shall construct a cheating prover P (that makes Opqq queries to Oext) for the relation R1

that outputs an instance V � gv such that v R r0, 2n � 1s but can still convince the RngPf verifier
with probability Ωpnq{pp � 1qq if n divides p � 1. In other words, we show that there exist n, p
such that AdvsrsRngPfpP, λq � Ωpnq{pp � 1qq. This would imply that for any λ P N�, D � Accp.q,
Advsr-weeRngPf,RpPalg,D, E , λq � Ωpnq{pp�1qq for any extractor E – meaning that the bound in Theorem 4
is tight up to constant factors.

Theorem 5. Let G � tGλuλPN� be a family of groups of prime order p � ppλq. Let RngPf � RngPfrGs
be the interactive argument for the relation R1 in (10) obtained by setting γ � 0 in the protocol defined in
Figure 7. If n divides p� 1, we can construct a non-uniform prover P making at most q� log n� 1 queries
to its oracle, such that for all λ P N�, AdvsrsRngPfpP, λq � pn� 1qq{pp� 1q.

Proof. In SRSRngPf , on receiving n,g,h, g, h, u as input, the first stage of P fixes v � 2n�1 � 2 and
outputs stP � v and V � gv. The second stage of the cheating prover P interacts with the game
SRSRngPf as follows.

26



1. It initializes attemptsÐ 0.
2. If attempts ¡� q, it just aborts. Otherwise it increments attempts by 1.
3. It sets aL � 2 � 1n,aR � 1n. It samples sL, sR uniformly at random from Znp and α, ρ uniformly

at random from Zp. It computes A � hα, S � hρgsLhsR and queries Oext with pε, pA,Sqq and
receives y, z. In other words, it restores the state of the verifier to the initial state and sends
A,S as the first message and receives y, z.

4. It checks if
°n�1
i�0 y

i � 0. If the check succeeds, it moves to step 5. Otherwise it moves to step 2.
5. It now behaves like the honest prover RngPf.P till the end of the protocol. In particular, it does

not attempt any more state-restorations.

First, we claim that if P reaches step 5, the game SRSRngPf outputs true. Since P behaves like the
honest prover after it has sent A,S and received y, z it is easy to see that the InPrd.V shall return
1. We need to argue that the check R � gt̂hτ succeeds. Since P behaves like an honest prover after
receiving y, z, we have that

t̂ � tpxq � xlpxq, rpxqy � t0 � t1x� t2x
2 .

This would give us
t0 � xaL � z � 1n,yn � paR � z � 1nq � z2 � 2ny

Further, βx � β1x � β2x
2, R � V z2gδpy,zqT x1 T

x2
2 � gz

2v�t1x�t2x2�δpy,zqhβ1x�β2x
2
. Now since t̂ �

t0 � t1x� t2x
2 we have

pz2v � t1x� t2x
2 � δpy, zqq � t̂ � z2v � δpy, zq � t0 � z2pv � xaL,2

nyq

� zxaL � aR � 1n,yny � xaL � aR,y
ny .

Since P had set v � 2n�1 � 2,aL � 2 � 1n,aR � 1n we have

pz2v � t1x� t2x
2 � δpy, zqq � t̂ � �2

n�1̧

i�0

yi � 0 .

Therefore
R � gz

2v�t1x�t2x2�δpy,zqhβ1x�β2x
2
� gt̂hβx .

Hence, if P reaches step 5, the game SRSRngPf outputs true. We need to compute the probability
that

°n�1
i�0 y

i � 0 for a random y in Z�
p . First, we observe that

py � 1q
n�1̧

i�0

yi � 0 � yn � 1 .

Now, if n divides p� 1, we claim that there are n distinct y’s in Z�
p that satisfy yn� 1 � 0. Consider

a generator g of Z�
p (since p is a prime, the group Z�

p is cyclic). Now gj is a root of the equation
yn � 1 � 0 if gjn � 1 � 0, i.e., if p� 1 divides jn. Since n divides p� 1, this condition is equivalent
to pp � 1q{n divides j. So, gj is a root of the equation yn � 1 � 0 for j � t0, pp � 1q{n, 2pp �
1q{n, . . . , pn � 1qpp � 1q{nu. In other words yn � 1 � 0 has n distinct roots in Z�

p . So, the equation°n�1
i�0 y

i � 0 has n � 1 distinct roots because the factorization of a polynomial in a finite field is
unique. Since y is picked uniformly at random, the probability that

°n�1
i�0 y

i � 0 is pn� 1q{pp� 1q.
Since P tries at most q different pA,Sq, the probability that it reaches step 5, is pn � 1qq{pp � 1q –
therefore AdvsrsRngPfpP, λq � pn� 1qq{pp� 1q. [\
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5.3 Online srs-wee Security for ACSPf

In this section, we introduce ACSPf and apply our framework to prove online srs-wee security.
As shown in [10], any arithmetic circuit with n multiplication gates can be represented using a
constraint system that has three vectors aL,aR,aO P Znp representing the left inputs, right inputs,
and outputs of multiplication gates respectively, so that aL � aR � aO, with additional Q ¤ 2n
linear constraints. The linear constraints can be represented as aL �WL � aR �WR � aO �WO � c,
where WL,WR,WO P ZQ�np .

We shall assume that ACSPf � ACSPfrGs is instantiated on an understood family of groups
G � tGλuλPN� of order p � ppλq. The argument ACSPf is an argument of knowledge for the
relation

R �
! �
pn,Q P Nq, pWL,WR,WO P ZQ�np , c P ZQp q, paL,aR,aO P Znp q

�
:

aL � aR � aO ^WL � aL �WR � aR �WO � aO � c
)
.

(11)

We note that in [6], an argument for a more generalized relation was given of which this is a special
case. We can extend our proof for the more general relation. Here, for simplicity we only consider
the above relation R that is enough for proving arithmetic circuit satisfiability.
DESCRIPTION OF ACSPf . The ACSPf.Setup procedure returns independent generators g P Gn,h P

Gn, g, h, u P G of the group G. The instance for ACSPf is WL,WR,WO P ZQ�np , c P ZQp such that
an honest prover knows a witness paL,aR,aOq that satisfies aL �aR � aO and WL �aL�WR �aR�
WO � aO � c.

The prover and verifier for ACSPf is shown in Figure 12. The prover commits to aL,aR,aO and
proves to the verifier that these vectors satisfy the relation in (11). The prover and the verifier of
ACSPf engage in InPrd in the final step to avoid the prover sending over vectors of length n.

We prove the following theorem that gives an upper bound on the advantage against online
srs-wee security of ACSPf.

Theorem 6. Let G � tGλuλPN� be a family of groups of order p � ppλq. Let ACSPf � ACSPfrGs be the
interactive argument as defined in Figure 12,for the relationR in (11). We can construct an extractor E such
that for any non-uniform algebraic prover Palg making at most q � qpλq queries to its oracle, there exists
a non-uniform adversary F with the property that for any (computationally unbounded) distinguisher D,
for all λ P N�,

Advsr-weeACSPf,RpPalg,D, E , λq ¤ pp14n� 8qqq{p� 1� AdvdlGpF , λq � 1{p .

Moreover, the time complexity of the extractor E is Opq � nq and that of adversary F is Opq � nq.

We can show that the bound in Theorem 6 is tight by constructing a cheating prover like we did
in Theorem 5.

Corollary 2. Using Theorem 2, we get a corollary about fs-ext-1 security of FSROrACSPfs. Let G �
tGλuλPN� be a family of groups of order p � ppλq. Let ACSPf � ACSPfrGs be the interactive argument as
defined in Figure 12, for the relationR in (11). Let FSROrACSPfs be the non-interactive argument obtained
by applying the Fiat-Shamir transform to ACSPf using a random oracle. We can construct an extractor E
such that for any non-uniform algebraic prover Palg making at most q � qpλq queries to the random oracle
there exists a non-uniform adversary F with the property that for all λ P N�,

Advfs-ext-1
FSROrACSPfs,R

pPalg, E , λq ¤ pp14n� 9qq � 1q{pp� 1q � AdvdlGpF , λq � 1{p .
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ACSPf.Ppppn,Q,g,h, g, h, uq, ACSPf.Vppn,Q,g,h, g, h, uq,

pWL,WR,WO, cqq, paL,aR,aOqq pWL,WR,WO, cqq

αÐ$ Zp;AÐ hαgaLhaR

sLÐ$ Znp ; sRÐ$ Znp
α, β, ρÐ$ Zp;S Ð hρgsLhsR

AI Ð hαgaLhaR ;AO Ð hβgaO
AI ,AO,SÝÝÝÝÝÝÝÝÝÝÝÝÑ

y,z
ÐÝÝÝÝÝÝÝÝÝÝÝÝ y, zÐ$ Z�

p

lpXq Ð aLX � aOX
2 � y�n � pzQ�1

r1:s �WRq �X δpy, zq Ð xy�n � pzQ�1
r1:s �WRq, z

Q�1
r1:s �WLy

�sLX
3

rpXq Ð yn � aR �X � yn � zQ�1
r1:s � pWL �X �WOq

�yn � sR �X
3

tpXq Ð xlpXq, rpXqy �
6°
i�1

tiX
i

βiÐ$ Zp for i P t1, 3, 4, 5, 6u

Ti Ð gtihβi for i P t1, 3, 4, 5, 6u T1,T3,T4,T5,T6ÝÝÝÝÝÝÝÝÝÝÝÝÑ
x

ÐÝÝÝÝÝÝÝÝÝÝÝÝ xÐ$ Z�
p

lÐ lpxq; rÐ rpxq; t̂Ð xl, ry

βx Ð β1 � x�
6°
i�3

βi � x
i

µÐ α � x� β � x2 � ρ � x3
βx,µ,t̂ÝÝÝÝÝÝÝÝÝÝÝÝÑ
w

ÐÝÝÝÝÝÝÝÝÝÝÝÝ wÐ$ Z�
p

h1 Ð hy�n ;u1 Ð uw h1 Ð hy�n ;u1 Ð uw

WL Ð h1z
Q�1
r1:s

�WL WL Ð h1z
Q�1
r1:s

�WL

WR Ð g
y�n�pz

Q�1
r1:s

�WRq WR Ð g
y�n�pz

Q�1
r1:s

�WRq

WO Ð h1z
Q�1
r1:s

�WO WO Ð h1z
Q�1
r1:s

�WO

P Ð AxI �A
x2

O � h1�yn
�W x

L �W
x
R �WO � S

x3 P Ð AxI �A
x2

O � h1�yn
�W x

L �W
x
R �WO � S

x3

P 1 Ð h�µP pu1qt̂ P 1 Ð h�µP pu1qt̂

InPrd.Pppg,h1, u1, P 1q, pl, rqq ðùùùùùùùùùùñ InPrd.Vpg,h1, u1, P 1q Ñ b

RÐ g
x2pδpy,zq�xz

Q�1
r1:s

,cyq
� T x1 �

6±
i�3

T x
i

i

If b � 1^ gt̂hβx � R then
Return 1

Return 0

Fig. 12. Bulletproofs argument for arithmetic circuit satisfiability ACSPf.
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Moreover, the time complexity of the extractor E is Opq � nq and that of adversary F is Opq � nq.

Additionally, using techniques similar to those in the proof of Theorem 6, we can prove a similar
bound for fs-ext-2 security of FSROrACSPfs.

Proof (Theorem 6). In order to prove this theorem, we invoke Theorem 1 by defining BadCh and e
and showing that ε ¤ 14n�8

p�1 and there exists an adversary F such that pfailpACSPf,Palg, e, R, λq ¤

AdvdlGpFq � 1
p .

DEFINING BadCh AND UPPER BOUNDING ε. To start off, we shall define BadChpτ 1q for all partial
extended transcripts τ 1. Let Ch be the set from which the challenge that comes right after τ 1 is
sampled. We define a helper function CheckBad that takes as input a partial extended transcripts
rτ 1s and a challenge c P Ch and returns true if and only if c P BadChpτ 1q. For each verifier challenge
in ACSPf, there is a definition of CheckBad in Figure 8. Every CheckBad function defines several
bad conditions that depend on τ 1 – most of these bad conditions are checked using the predicate
SZ (as defined before). One can safely ignore the details of the definitions of CheckBad functions
for now – the rationale behind their definitions shall become apparent later on.

Next, we need to compute an upper bound ε on the size of |BadChpτ 1q|{|Ch|. To this end, we
compute an upper bound on the maximum fraction of c’s in Ch for which CheckBadpτ 1, cq will
return true, for all the definitions of CheckBad, using the Schwartz-Zippel Lemma.

The function CheckBadpτ 1, py, zqq returns true if SZpfpY,Zq, py, zqq is true. The polynomial
fpY, Zq is a polynomial of degree at most n� 1. So, the fraction of y, z for which SZpfpY, Zq, py, zqq
is true is at most pn� 1q{pp� 1q. So the the fraction of y, z in Z�

p for which CheckBadpτ 1, py, zqq
returns true is at most pn� 1q{pp� 1q.

The function CheckBadpτ 1, xq returns true if at least one of SZpfipXq, xq is true for i P r4s.
Since f1pXq and f2pXq are vector of n polynomials, each polynomial of degree 6, using the union
bound the fraction of x’s in Z�

p for which SZpf1pXq, xq or SZpf2pXq, xq is true is at most 12n{pp� 1q.
The polynomial f3pXq is a polynomial of degree at most 6. The fraction of x’s in Z�

p for which
SZpf3pXq, xq is true is at most 6{pp� 1q. The polynomial f4pXq is a polynomial of degree at most
4. The fraction of x’s for which SZpf4pXq, xq is true is at most 4{pp� 1q. Using the union bound,
the fraction of x’s in Z�

p for which CheckBadpτ 1, xq returns true is at most p12n� 10q{ppp� 1qq.
The function CheckBadpτ 1, wq returns true if SZpfpW q, wq is true. The polynomial fpW q is

a polynomial of degree 1, hence using the Schwartz-Zippel Lemma the fraction of w’s in Z�
p for

which CheckBadpτ 1, wq returns true is at most 1{pp� 1q.
The function CheckBadpτ 1, xmq for m P t1, . . . , log nu returns true if and only if SZ is true for

any of the
°m�1
t�1 2n{2t polynomials of degree at most 4, 2n{2m polynomials of degree at most 6

and one polynomial of degree at most 8. Using Schwartz Zippel Lemma and the union bound the
fraction of xm’s in Z�

p for which CheckBadpτ 1, xmq is true is at most

8

p� 1

�
m�1̧

t�1

n

2t

�
�

12n

2mpp� 1q
�

8

p� 1
.

This fraction is at most p14n� 8q{pp� 1q for m P t1, . . . , log nu. Therefore the fraction of c’s in
Ch for which CheckBadpτ 1, cq will return true for any partial transcript τ 1 is upper bounded by
p14n� 8q{pp� 1q, i.e., in the context of Theorem 1, ε ¤ 14n�8

p�1 .
DEFINING e AND PROVING AN UPPER BOUND ON pfailpACSPf,Palg, e, R, λq. The function e simply
outputs paIg, aIh, aOgq and outputs them. It follows from the description of e that it runs in time
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Procedure CheckBadp
�
τ 1
�
, py, zqq:

//
�
τ 1
�
�
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; prAI s , rAOs , rSsq

�
fpY,Zq Ð xZQ�1

r1:s , c�WL � aIg �WR � aIh �WO � aOgy � xaIg � aIh � aOg,Y
ny

Return SZpfpY,Zq, py, zqq

Procedure CheckBadp
�
τ 1
�
, xq:

//
�
τ 1
�
�
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; prAI s , rAOs , rSsq, py, zq, prT1s , rT3s , rT4s , rT5s , rT6sq

�
f1pXq Ð t1gX �

6°
i�3

tigX
i; f2pXq Ð t1hX �

6°
i�3

tihX
i; f3pXq Ð t1uX �

6°
i�3

tiuX
i

lpXq Ð aIg �X�aOg �X
2�y�n �pzQ�1

r1:s �WRq �X�sh �X
3; rpXq Ð yn �aIh �X�yn�zQ�1

r1:s � pWL �X�WOq�yn �sh

δpy, zq Ð xy�n � pzQ�1
r1:s �WRq, z

Q�1
r1:s �WLy; f4pXq Ð X2pδpy, zq � xzQ�1

r1:s , cyq � t1gX �
3°
i�1

tigX
i � xlpXq, rpXqy

Return SZpf1pXq, xq _ SZpf2pXq, xq _ SZpf3pXq, xq _ SZpf4pXq, xq

Procedure CheckBadp
�
τ 1
�
, wq:

//
�
τ 1
�
�
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; prAI s , rAOs , rSsq, py, zq, prT1s , rT3s , rT4s , rT5s , rT6sq, x, pβx, µ, t̂q

�
lÐ aIg � x� aOg � x

2 � y�n � pzQ�1
r1:s �WRq � x� sh � x

3

rÐ yn � aIh � x� yn � zQ�1
r1:s � pWL � x�WOq � yn � sh; fpW q ÐWt̂�W xl, ry

Return SZpfpW q, wq

Procedure CheckBadp
�
τ 1
�
, xmq:

//
�
τ 1
�
�
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; prAI s , rAOs , rSsq, py, zq, prT1s , rT3s , rT4s , rT5s , rT6sq, x, pβx, µ, t̂q, w,
prL1s , rR1sq, x1, . . . , prLms , rRmsq

�
p1g Ð aIg � x� aOg � x

2 � y�n � pzQ�1
r1:s �WRq � x� sg � x

3; p1u Ð aIu � x� aIu � x
2 � su � x

3 � wt̂

p1h Ð aIh � x� aOh � x
2 � 1n � y�n � pzQ�1

r1:s �WLq � x� y�n � pzQ�1
r1:s �WOq � sg � x

3

For j � 0, . . . , n� 1 do

fg
m,jpXq Ð lmg1�j �X2 � rmg1�jX

�2 � p1g1�j �
m�1°
i�1

plig1�jx
2
i � rig1�jx

�2
i q

fh
m,jpXq Ð lmh1�jX

2 � rmh1�jX
�2 � p1h1�j

�
m�1°
i�1

plih1�jx
2
i � rih1�jx

�2
i q

fumpXq Ð lmuX
2 � rmuX

�2 � p1u �
m�1°
i�1

pliux
2
i � riux

�2
i q

flag Ð false
For t � 1, . . . ,m� 1 do

For j � 0, . . . , n{2t � 1 do
flag Ð flag _ SZpfg

m,jpXq � x
2
t � fg

m,j�n{2t
pXq, xmq _ SZpfh

m,jpXq � fh
m,j�n{2tpXq � x

2
t , xmq

For j � 0, . . . , n{2m � 1 do
flag Ð flag _ SZpfg

m,jpXq �X
2 � fg

m,j�n{2mpXq, xmq _ SZpfh
m,jpXq � fh

m,j�n{2mpXq �X
2, xmq

flag Ð flag _ SZ

�
fumpXq � w �

n{2m�1°
j�0

fg
m,jpXq � f

h
m,jpXq � y

j , xm

�

Return flag

Fig. 13. The function CheckBad function for the ACSPf.
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Procedure eprτ sq:

//rτ s �
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; prAs , rSsq, py, zq, prT1s , rT3s , rT4s , rT5s , rT6sq, x, pβx, µ, t̂q, w,
prL1s , rR1sq, x1, . . . , prLlogns , rRlognsq, xlogn, pa, bq

�
Return paIg, aIh, aOg q

Fig. 14. The function e for ACSPf.

Procedure hprτ sq:

//rτ s �
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; prAs , rSsq, py, zq, prT1s , rT3s , rT4s , rT5s , rT6sq, x, pβx, µ, t̂q, w,
prL1s , rR1sq, x1, . . . , prLlogns , rRlognsq, xlogn, pa, bq

�
δpy, zq Ð xy�n � pzQ�1

r1:s �WRq, z
Q�1
r1:s �WLy; e

p1q
g Ð t1gx�

6°
i�3

tigx
i; ep1qh Ð t1hx�

6°
i�3

tihx
i; ep1qu Ð t1ux�

6°
i�3

tiux
i

e
p1q
g Ð x2pδpy, zq � xzQ�1

r1:s , cyq � t1gx�
6°
i�3

tigx
i � t̂; ep1qh Ð t1hx�

6°
i�3

tihx
i � βx

If pep1qg , e
p1q
h , e

p1q
u , e

p1q
g , e

p1q
h q � p0n,0n, 0, 0, 0q then

Return pep1qg , e
p1q
h , e

p1q
u , e

p1q
g , e

p1q
h q

p1g Ð aIg � x� aOg � x
2 � y�n � pzQ�1

r1:s �WRq � x� sg � x
3

p1h Ð aIh � x� aOh � x
2 � 1n � y�n � pzQ�1

r1:s �WLq � x� y�n � pzQ�1
r1:s �WOq � sg � x

3

p1g Ð aIg �x�aIg �x
2� sg �x

3; p1h Ð aIh �x�aIh �x
2� sh �x

3�µ; p1u Ð aIu �x�aIu �x
2� su �x

3�wt̂; p1V Ð aV �xsV
For k � 0 to n� 1 do

e
p2q
gk�1 Ð

� logn°
i�1

plig1�kx
2
i � rig1�kx

�2
i q � p1g1�k

	
� a �

�
logn±
i�1

x
p�1q1�bitpk,i,lognq

i




e
p2q
hk�1

Ð
� logn°
i�1

plih1�kx
2
i � rih1�kx

�2
i q � p1h1�k

	
� byp�pkqq �

�
logn±
i�1

x
p�1qbitpk,i,rq

i



e
p2q
g Ð pe

p2q
g1 , . . . , e

p2q
gn q; e

p2q
h Ð pe

p2q
h1
, . . . , e

p2q
hn
q

e
p2q
u Ð

�
logn°
i�1

pliux
2
i � riux

�2
i q � p1u



� w � ab; ep2qg Ð

�
logn°
i�1

ligx
2
i � rigx

�2
i



� p1g ; ep2qh Ð

�
logn°
i�1

lihx
2
i � rihx

�2
i



� p1h

Return pep2qg , e
p2q
h , e

p2q
u , e

p2q
g , e

p2q
h q

Fig. 15. The function h for ACSPf.

Opnq. Note that ACSPf.V runs in time Opnq. Therefore, using Theorem 1, the time complexity of E
is Opq � nq.

In order to complete our proof we need to upper bound pfailpACSPf,Palg, e, R, λq. To do so we
shall construct an adversary H (that runs Palg) against that takes as input independent generators
g,h, g, h, u of the group G and finds a non-trivial discrete logarithm relation between them, i.e.,
computes peg, eh, eg, eh, euq � p0n,0n, 0, 0, 0q such that geghehgeghehueu � 1. Then we shall invoke
Lemma 2 to transform H into an F against the discrete logarithm problem.

The adversary H has inputs g,h, g, h, u, it chooses Q ¤ 2n and runs Palg on public parameters
n,Q,g,h, g, h, u and simulates the game SRSACSPf to it. If Palg manages to produce an accepting
transcript τ , H calls a helper function h on input rτ s and outputs whatever h outputs.

DEFINING h. The function h is defined in Figure 15. It follows from the description of h that it runs
time at most Opnq. The running time of H consists of the time required to answers q queries, run
ACSPf.V in at most q paths in the execution tree and the time required to run h. Hence its time
complexity is Opq � nq. Using Lemma 2, time complexity of F is Opq � nq.
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We shall next discuss the rationale behind the definition of h. Let τ be a transcript of ACSPf as
shown below.

τ �
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; pAI , AO, Sq, py, zq, pT1, T3, T4, T5, T6q, x, pβx, µ, t̂q, w,

pL1, R1q, x1, pL2, R2q, x2, . . . , pLlogn, Rlognq, xlogn, pa, bq
�
.

(12)

The following equality must hold if τ is an accepting transcript.

gt̂hβx � g
x2pδpy,zq�xzQ�1

r1:s
,cyq
T x1 �

6¹
i�3

T x
i

i .

Writing out T1, T3, T4, T5, T6 in terms of their representations and rearranging we shall get that

ge
p1q
g he

p1q
h ge

p1q
g he

p1q
h ue

p1q
u � 1 ,

where ep1qg , e
p1q
h , e

p1q
g , e

p1q
h , e

p1q
u are as defined in h. Again since τ is an accepting transcript the inner

product verifier must have returned 1 and hence the following equality must hold.

P plognq � pgplognqqaphplognqqbuab .

Now we can write the left hand side of the above equality as

�
logn¹
i�1

L
x2i
i

�
h�µAxI �A

x2

O � h�1n � phy�nq
zQ�1
r1:s

�WL
x

� g
y�n�pzQ�1

r1:s
�WRq

x

� phy�nq
zQ�1
r1:s

�WO � Sx
3
� puwqt̂ �

�
logn¹
i�1

R
x�2
i
i

�
.

Let the function bitpk, i, tq return the bit ki where pk1, . . . , ktq is the t-bit representation of k. Then
we can write

gplognq �
n�1¹
k�0

g

logn±

i�1
x
p�1q1�bitpk,i,lognq

i

1�k ,

and

hplognq �
n�1¹
k�0

h
yp�1�kq

logn±

i�1
x
p�1qbitpk,i,lognq

i

1�k .

Plugging these into the inequality and rearranging we shall get that

ge
p2q
g he

p2q
h ge

p2q
g he

p2q
h ue

p2q
u � 1 ,

where ep2qg , e
p2q
h , e

p2q
g , e

p2q
h , e

p2q
u are as defined in h.

Therefore, h always returns a valid discrete logarithm relation when it gets an accepting tran-
script as input.
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RELATING h, e. In order to complete the proof of Theorem 6, in the following lemma we show that
– on an accepting transcript τ such that τ R T ACSPf

BadCh if hprτ sq returns a trivial discrete logarithm
relation, then eprτ sq returns a valid witness.

Lemma 9. Let τ , as shown in (12), be an accepting transcript of ACSPf such that τ R T ACSPf
BadCh . If hprτ sq

returns p0n,0n, 0, 0, 0q then eprτ sq returns pa�L,a
�
R,a

�
Oq such that

a�L � a
�
R � a�O and WL � a

�
L �WR � a

�
R �WO � a

�
O � c .

Taking the contrapositive, we have that whenever eprτ sq fails to extract a valid witness for an
accepting transcript τ R T ACSPf

BadCh , hprτ sq outputs a non-trivial discrete logarithm relation, i.e., H
succeeds. So we have that

pfailpACSPf,Palg, e, R, λq ¤ Advdl-relG,2n�3pHq

Using Lemma 2 we would have that there exists an adversary F such that

pfailpACSPf,Palg, e, R, λq ¤ AdvdlGpFq �
1

p
.

Moreover, F is nearly as efficient as H.
[\

We next prove Lemma 9.

Proof (Lemma 9). For simplicity let us represent using τ |c the prefix of τ just before the challenge
c. For example

τ |py,zq �
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq, pAI , AO, Sq

�
.

Since hprτ sq returns p0n,0n, 0, 0, 0q, we have that for i � 1, 2

pe
piq
g , e

piq
h , epiqg , e

piq
h , e

piq
u q � p0n,0n, 0, 0, 0q .

Since ep1qg � 0 we have that x2pδpy, zq � xzQ�1
r1:s , cyq � t1gx�

6°
i�3

tigx
i � t̂ � 0. Hence

t̂ � x2pδpy, zq � xzQ�1
r1:s , cyq � t1gx�

6̧

i�3

tigx
i . (13)

We define p1g, p1h, p
1
u as defined in h, i.e.,

p1g � aIg � x� aOg � x
2 � y�n � pzQ�1

r1:s �WRq � x� sg � x
3 ,

p1h � aIh � x� aOh � x
2 � 1n � y�n � pzQ�1

r1:s �WLq � x� y�n � pzQ�1
r1:s �WOq � sg � x

3 ,

p1u � aIu � x� aIu � x
2 � su � x

3 � wt̂ .

Since ep2qg � 0n, we have that for all k P t0, . . . , n� 1u

� log ņ

i�1

plig1�kx
2
i � rig1�kx

�2
i q � p1g1�k

	
� a �

�
logn¹
i�1

x
p�1q1�bitpk,i,lognq

i

�
� 0 . (14)
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We also have ep2qh � 0n, i.e., for all k P t0, . . . , n� 1u

� log ņ

i�1

plih1�kx
2
i � rih1�kx

�2
i q � p1h1�k

	
� byp�pkqq �

�
logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
� 0 . (15)

From e
p2q
u � 0 we have that �

log ņ

i�1

pliux
2
i � riux

�2
i q

�
� p1u � w � ab � 0 . (16)

We shall next use the following lemma which essentially says that if none of ep2qg , e
p2q
h , e

p2q
u , e

p2q
g , e

p2q
h

are non-zero and τ R T ACSPf
BadCh , then w � xp1g, p

1
h � y

ny � p1u. It is very similar to Lemma 7 that we
encountered in the analysis of RngPf. This similarity is due to both ACSPf and RngPf use the
inner-product argument.

The equalities in the statement of this lemma hold if the inner-product argument verifier ac-
cepts and the discrete logarithm problem is hard in group G. The lemma shows that if none of the
challenges in the inner-product argument were bad, then the inner-product of the vectors p1g and
p1h � y

n is p1u{w. This is a generalization of the proof that we saw in the technical overview where
we analysed the inner-product argument for n � 2.

Lemma 10. Let τ , as shown in (12), be an accepting transcript of ACSPf such that τ R T ACSPf
BadCh . Let

p1g �aIg � x� aOg � x
2 � y�n � pzQ�1

r1:s �WRq � x� sg � x
3 ,

p1h �aIh � x� aOh � x
2 � 1n � y�n � pzQ�1

r1:s �WLq � x� y�n � pzQ�1
r1:s �WOq � sg � x

3 ,

p1u �aIu � x� aIu � x
2 � su � x

3 � wt̂ .

Suppose, the for all k P t0, . . . , n� 1u

� log ņ

i�1

plig1�kx
2
i � rig1�kx

�2
i q � p1g1�k

	
� a �

�
logn¹
i�1

x
p�1q1�bitpk,i,lognq

i

�
� 0 ,

� log ņ

i�1

plih1�kx
2
i � rih1�kx

�2
i q � p1h1�k

	
� byp�pkqq �

�
logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
� 0 .

Additionally, �
log ņ

i�1

pliux
2
i � riux

�2
i q

�
� p1u � w � ab � 0 . (17)

Then
w � xp1g, p

1
h � y

ny � p1u .

Proof (Lemma 10). We shall invoke Lemma 8 to prove this lemma. Let

params �
!
tlig, lih, liu, rig, rih, riuu

logn
i�1 , p

1
g, p

1
h, p

1
u

)
.

Consider the function Bad defined in Figure 11. Note that since Badpparams, x, jq returns true if
and only if x P BadChpτ |xj q, x1, . . . , xlogn in τ satisfy the condition for xi’s in Lemma 8. Moreover
all the equalities required in Lemma 8 hold and p1g, p1h, p

1
u P Zp. So we using Lemma 8 we have that

w � xp1g, p
1
h � y

ny � p1u .
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Since τ is an accepting transcript of ACSPf and τ R T ACSPf
BadCh and (14) to (16) hold, using Lemma 10,

we get
wxp1g, p

1
h � y

ny � p1u .

Plugging in the values of p1g, p1h, p
1
u we get

w �

〈�
aIgx� aOgx

2 � y�n � pzQ�1
r1:s �WRqx� sgx

3
�
,yn �

�
aIhx� aOhx

2 � 1n

� y�n � pzQ�1
r1:s �WLq � x� y�n � pzQ�1

r1:s �WOq � sgx
3
�〉

� aIux� aIux
2 � sux

3 � wt̂ .

Since τ R T ACSPf
BadCh , we have that w R BadChpτ |wq. Therefore, SZpfpW q, wq is false where f is as

defined in CheckBadpτ 1, wq. Since we have here that fpwq � 0, the polynomial fpW q must be the
zero polynomial. In particular its W term must be zero, i.e.,

t̂ �

〈�
aIgx� aOgx

2 � y�n � pzQ�1
r1:s �WRqx� sgx

3
�
,

yn �
�
aIhx� aOhx

2 � 1n � y�n � pzQ�1
r1:s �WLqx� y�n � pzQ�1

r1:s �WOq � sgx
3
�〉

.

Plugging in the value of t̂ obtained in (13), we have that

x2pδpy, zq � xzQ�1
r1:s , cyq � t1gx�

6̧

i�3

tigx
i �

〈
aIgx� aOgx

2 � y�n � pzQ�1
r1:s �WRqx� sgx

3,

yn �
�
aIhx� aOhx

2 � 1n � y�n � pzQ�1
r1:s �WLqx� y�n � pzQ�1

r1:s �WOq � sgx
3
�〉

� 0 .

Since τ R T ACSPf
BadCh , we have that x R BadChpτ |xq. Therefore, SZpf4pXq, xq is false where f4 is as

defined in CheckBadpτ 1, xq. Since we have here that f4pxq � 0, the polynomial f4pXq must be the
zero polynomial. In particular its X2 term must be zero, i.e.,

δpy, zq � xzQ�1
r1:s , cy � xaIg,y

n � aIhy � xaIg, z
Q�1
r1:s �WLy � xaOg,y

ny

� xy�n � pzQ�1
r1:s �WRq,y

n � aIhy � xy�n � pzQ�1
r1:s �WRq, pz

Q�1
r1:s �WLqy � 0 .

Plugging in δpy, zq � xy�n � pzQ�1
r1:s �WRq, pz

Q�1
r1:s �WLqy, we get

xzQ�1
r1:s , cy � xaIg,y

n � aIhy � xaIg, z
Q�1
r1:s �WLy � xaOg,y

ny � xy�n � pzQ�1
r1:s �WRq,y

n � aIhy

� xaOg, z
Q�1
r1:s �WOy � 0 .

Simplifying and rearranging we get

xzQ�1
r1:s , c�WL � aIg �WR � aIh �WO � aOgy � xaIg � aIh � aOg,y

ny � 0 .
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Since τ R T ACSPf
BadCh , we have that py, zq R BadChpτ |py,zqq. Therefore, SZpfpY,Zq, py, zqq is falsewhere

f is as defined in CheckBadpτ 1, py, zqq. Since we have here that fpy, zq � 0, the polynomial fpY,Zq
is the vector polynomial. Equating all its coefficients to zero, we get

WL � aIg �WR � aIh �WO � aOg � c , aIg � aIh � aOg .

Since pa�L,a
�
R,a

�
Oq returned by e is paIg, aIh, aOgq we have that

a�L � a
�
R � a�O and WL � a

�
L �WR � a

�
R �WO � a

�
O � c .

[\

5.4 Proof of Lemma 8

From the statement of the algebraic lemma, it is evident that we need to eliminate everything
except for p1g, p1h, y, p

1
u, w to obtain a relation between them. Our first step would be to plug in the

values of a, b from the first two sets of equalities into the third – this would eliminate a, b. Then we
shall exploit the first two sets of equalities and the definition of Bad to arrive at an equation solely
in terms of p1g, p1h, y, p

1
u, w.

Proof (Lemma 8).
First we observe that given that Badpparams, x, jq � true, if for any of the polynomials ppXq

on which SZ is called in Bad, ppxq is zero, then the polynomial ppXq is the zero polynomial. We
shall use this observation repeatedly in this proof.
SIMPLIFYING NOTATION. We introduce some new notation for simplicity. We define the following
polynomials. For all k P t1, . . . , log nu, for all j P t0, . . . , n� 1u

fgk,jpXq � lkg1�jX
2 � rkg1�jX

�2 � p1g1�j �
k�1̧

i�1

plig1�jx
2
i � rig1�jx

�2
i q ,

fhk,jpXq � lkh1�jX
2 � rkh1�jX

�2 � p1h1�j �
k�1̧

i�1

plih1�jx
2
i � rih1�jx

�2
i q .

(18)

For all k P t1, . . . , log nu

fuk pXq � lkuX
2 � rkuX

�2 � p1u �
k�1̧

i�1

pliux
2
i � riux

�2
i q . (19)

Using our notation in (18) and (19), we can re-write our given equalities as

1. for k � 0, . . . , n� 1

a � fglogn,kpxlognq �

�
logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
.

2. for k � 0, . . . , n� 1

b � fhlogn,kpxlognq � y
ppkqq �

�
logn¹
i�1

x
p�1q1�bitpk,i,lognq

i

�
.

3.
fulognpxlognq � w � ab � 0 .
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ELIMINATING a, b IN THE THIRD EQUALITY. First off, we plug the values of a, b we obtain for k � 0
into the third equality. We obtain

fulognpxlognq � w � fglogn,1pxlognq � f
h
logn,1pxlognq � 0 . (20)

In order to eliminate all variable except p1g, p1h, y, p
1
u, w, we need to use the first two sets of equalities

to obtain relations that we can plug back into (20).
RELATIONS FROM THE FIRST SET OF EQUALITIES. The first set of equalities gave us that for k �
0, . . . , n� 1

a � fglogn,kpxlognq �

�
logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
. (21)

Let t P t1, . . . , log nu and j P t0, . . . , n{2t � 1u. Equating the values of a for k � j and k � j � n{2t,
we get

fglogn,jpxlognq �

�
logn¹
i�1

x
p�1qbitpj,i,lognq

i

�
� fglogn,j�n{2tpxlognq �

�
logn¹
i�1

x
p�1qbitpj�n{2

t,i,lognq

i

�
.

Since j P t0, . . . , n{2t� 1u, j and j�n{2t differ only in the tth bit. So, we have for t P t1, . . . , log nu,
j P t0, . . . , n{2t � 1u

fglogn,jpxlognq � x
2
t � fglogn,j�n{2tpxlognq . (22)

We shall next show that for all t P t1, . . . , log nu, for all j P t0, . . . , n{2t � 1u

ltg1�j � 0 , rtg1�j � fgt�1,j�n{2tpxt�1q .

First we show it for t � log n- in this case j can take the value only 0. We have that

fglogn,0pxlognq � x
2
logn � fglogn,1pxlognq � 0 .

Since Badpparams, xlogn, log nq � false

fglogn,0pXq �X
2 � fglogn,1pXq

is the zero polynomial. Equating the constant term to 0 we get

rplognqg1 � fglogn�1,1pxlogn�1q ,

Equating the X4 term to 0 we get,
lplognqg1 � 0 .

Hence, it holds for t � log n. Now let t � t1   log n. We have that for j P t0, . . . , n{2t
1
� 1u.

fglogn,jpxlognq � x
2
t1 � fg

logn,j�n{2t1
pxlognq � 0 .

Since Badpparams, xlogn, log nq � false

fglogn,jpXq � x
2
t1 � fg

logn,j�n{2t1
pXq
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is the zero polynomial. Therefore, its constant term is 0, i.e.,

fglogn�1,jpxlogn�1q � x
2
t1 � fg

logn,j�n{2t1
pxlogn�1q � 0 .

Using similar series of arguments (since for all j P tlog n�1, log n�2, . . . , t1u : Badpparams, xj , jq �
false) we can arrive at

fgt1,jpxt1q � x
2
t1 � fg

t1,j�n{2t1
pxt1q � 0 .

Now, since Badpparams, x1t, t
1q � false

fgt1,jpXq �X
2 � fg

t1,j�n{2t1
pXq

must be the zero polynomial. Equating the constant term to 0 we get for t1 ¡ 1

rt1gj � fg
t1�1,j�n{2t1

pxt1�1q ,

and for t1 � 1
r1g1�j � p1g1�j�n{2 .

Equating the X4 term to 0 we get,
lt1gj � 0 .

Hence for all t P t2, . . . , log nu, for all j P t0, . . . , n{2t � 1u

ltg1�j � 0 , rtg1�j � fgt�1,j�n{2tpxt�1q , (23)

and for all j P t0, . . . , n{2� 1u

r1g1�j � p1g1�j�n{2 , l1g1�j � 0 . (24)

RELATIONS FROM THE SECOND SET OF EQUALITIES. Now, we can go through an identical process
for the second set of equalities and obtain that (we omit the calculations since they are identical to
the ones we saw previously)

1. for all t P t2, . . . , log nu, for all j P t0, . . . , n{2t � 1u

rth1�j � 0 , lth1�j � fht�1,j�n{2tpxtq � y
n{2t . (25)

2. for all j P t0, . . . , n{2� 1u

r1h1�j � 0 , l1h1�j � p1h1�j�n{2 � y
n{2 . (26)

PUTTING IT ALL TOGETHER. Finally, we are ready to use the obtained relations. We shall show
using induction on k that for all k P t1, . . . , log nu

fuk pxkq � w �

n{2k�1¸
j�0

fgk,jpxkq � f
h
k,jpxkq � y

j � 0 .

The base case for k � log n is true since (20) holds.
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Now assuming it holds for some k � k1 we shall show that it holds for k1 � 1 as well. Using
induction hypothesis we have that

fuk1pxk1q � w �

n{2k
1
�1¸

j�0

fgk1,jpxk1q � f
h
k1,jpxk1q � y

j � 0 .

Since Badpparams, x1k, k
1q � true, the polynomial

fuk1pXq � w �

n{2k
1
�1¸

j�0

fgk1,jpXq � f
h
k1,jpXq � y

j

must be the zero polynomial, i.e., in particular its constant term is zero. It’s constant term can be
written as

fuk1�1pxk1�1q � w �

n{2k
1
�1¸

j�0

fgk1�1,jpxk1�1q � f
h
k1�1,jpxk1�1q � y

j

� w �

n{2k
1
�1¸

j�0

plk1g1�j � rk1h1�j � rk1g1�j � lk1h1�j q � y
jq .

From (23) and (25) we have that for j P t0, . . . , n{2k
1
� 1u

rk1g1�j � fg
k1�1,j�n{2k1

pxk1�1q , lk1g1�j � 0 , rk1h1�j � 0 , lk1h1�j � fh
k1�1,j�n{2k1

pxk1�1q � y
n{2k

1

.

So, equating the constant term to 0 we have that

fuk1�1pxk1�1q � w �

n{2k
1
�1¸

j�0

pfgk1�1,jpxk1�1q � f
h
k1�1,jpxk1�1q � y

jq

� w �

n{2k
1
�1¸

j�0

ppfg
k1�1,j�n{2k1

pxk1�1q � f
h
k1�1,j�n{2k1

pxk1�1qq � y
j�n{2k

1

q � 0 .

This can be simplified to

fuk1�1pxk1�1q � w �

n{2k
1�1�1¸
j�0

pfgk1�1,jpxk1�1q � f
h
k1�1,jpxk1�1q � y

j � 0 .

Hence we have shown that it holds for k � k1 � 1. Hence, by induction we arrive at

fu1 px1q � w �

n{2�1¸
j�0

pfg1,jpx1q � f
h
1,jpx1q � y

j � 0 .

Since Badpparams, x1k, k
1q � true, the polynomial

fu1 pXq � w �

n{2�1¸
j�0

pfg1,jpXq � f
h
1,jpXq � y

jq

40



is the zero polynomial, i.e., in particular its constant term is 0. So, we have that

p1u � w

n{2�1¸
j�0

p1g1�j � p
1
h1�j

� yj � w

n{2�1¸
j�0

pl1g1�j � r1h1�j � r1g1�j � l1h1�j q � y
j � 0 .

From (24) and (26) we have that for j P t0, . . . , n{2� 1u

r1g1�j � p1g1�j�n{2 , l1g1�j � 0, r1h1�j � 0 , l1h1�j � p1h1�j�n{2 � y
n{2 .

So, we have that

p1u � w

n{2�1¸
j�0

p1g1�j � p
1
h1�j

� yj � w

n{2�1¸
j�0

pl1g1�j � r1h1�j � r1g1�j � l1h1�j � y
n{2q � yj � 0 .

Simplifying we get that
p1u � w � xp1g, p

1
h � y

ny .
[\

6 Online srs-wee Security of Sonic

We apply our framework to prove srs-wee security of Sonic [18] which is an interactive argu-
ment for arithmetic circuit satisfiability based on pairings (we refer to this argument as SnACSPf).
The argument SnACSPf is again an argument of knowledge for the relation (11). Sonic represents
arithmetic circuits using the same constraint system as the one used in Bulletproofs. The con-
straint system has three vectors aL,aR,aO P Znp representing the left inputs, right inputs, and
outputs of multiplication gates respectively, so that aL � aR � aO, with additional Q ¤ 2n linear
constraints. The linear constraints can be represented as aL �WL� aR �WR� aO �WO � c, where
WL,WR,WO P ZQ�np .
PAIRINGS. As stated before, SnACSPf is based on pairings. Let G1,G2,GT be groups of prime order
pwith generators g P G1, h P G2. A pairing is a bilinear map e : G1�G2 Ñ GT such that epga, hbq �
epg, hqab for all a, b P Zp and epg, hq is a generator of GT . In our AGM analysis, we shall consider
symmetric pairings, i.e., G1 � G2 � G. We shall assume that SnACSPf � SnACSPfrG,GT , es
is instantiated on the understood families of groups G � tGλuλPN� (with order p � ppλq) and
GT � tGT,λuλPN� such that there exists a bilinear map e : G�GÑ GT .

The interactive argument SnACSPf. is a argument of knowledge for the following relation.

R �t
�
ppn,Q P N�q, pWL,WR,WO P ZQ�np , c P ZQp qq, paL,aR,aO P Znp q

�
:

aL � aR � aO ^WL � aL �WR � aR �WO � aO � cu .

The setup algorithm SnACSPf.Setup fixes an integer d such that 4n ¡ d ¡ 3n. It generates the
bilinear parameters bp � ppp,G,GT , e, g, hqq. It then samples α, x uniformly at random from Zp. It
sets

srs � tg, tgx
i
udi��d, th

xiudi��d, th
αxiudi��d, tg

αxiudi��d
i�0

, epg, hαqu .

It returns pbp, srsq as its output.
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As shown in [18] the argument for the above relation proceeds by defining following polyno-
mials rpX,Y q, kpY q, spX,Y q, tpX,Y q and proving that the constant term of tpX,Y q is zero.

rpX,Y q Ð xaL,X
n�1
r1:s �Y

n�1
r1:s y � xaR,X

�n�1
r1:s �Yn�1

r1:s y � xaO,X
�2n�1
rn�1:s �Y

�2n�1
rn�1:s y ,

kpY q Ð xc,YQ�n�1
rn�1:s y ,

spX,Y q Ð YQ�n�1
rn�1:s � pWL �X

�n�1
r1:s �WR �X

n�1
r1:s �WO �X

2n�1
rn�1:sq � x�Yn�1

r1:s �Y�n�1
r1:s ,X2n�1

rn�1:sy ,

tpX,Y q Ð rpX, 1qprpX,Y q � spX,Y qq � kpY q .

Note that the verifier can evaluate spX,Y q, kpY qwithout the witness. However evaluating spX,Y q
is expensive, hence the prover the prover computes the value and the prover and the verifier
engage in an argument for signature of correct computation where the prover demonstrates to
the verifier that it sent the correct evaluation. This argument for signature of correct computation
assumes that the polynomial spX,Y q can be expressed as a sum of M polynomials of the form
ψjpX,Y q �

°n
i�1 ψj,σj,iX

iY σj,i where σj � pσj,1, . . . , σj,nq is a permutation of p1, . . . , nq. As stated
in [18], for any given arithmetic circuit, one can devise a constraint system such that spX,Y q can
be represented as a sum of M � Op1q such polynomials.

The prover and the verifier algorithms, SnACSPf.P, SnACSPf.V are shown in Figure 16 with all
sub-components defined in Figures 17 to 21. The complexity of the protocol necessitates this mod-
ular description. Figure 17 describes the polynomial commitments used in Sonic and Figure 18
describes the signature of correct computation which uses the polynomial permutation argument
defined in Figure 19 which in turn uses the grand product argument in Figure 20. The argument
for well-formedness of commitments used by the grand product argument is defined in Figure 21.

In the soundness analysis of SnACSPf in [18], only the bounded polynomial extractibility and
evaluation binding of the commitment scheme is analysed in the AGM.6 Here we give an analysis
of the srs-wee of SnACSPf in the AGM.

We prove the following theorem that establishes an upper bound on the advantage against
online srs-wee security of SnACSPf.

Theorem 7. Let G � tGλuλPN� be a family of groups with order p � ppλq. Let GT � tGT,λuλPN� be a
family of groups such that there exists a bilinear map e : G�GÑ GT . Let SnACSPf � SnACSPfrG,GT , es
be the interactive argument system as described in Figure 16,for the relation R in (11). We can construct
an extractor E such that for any non-uniform algebraic prover Palg making at most q � qpλq queries to
its oracle, there exist non-uniform adversaries F1,F2,F3 with the property that for any (computationally
unbounded) distinguisher D, for all λ P N�,

Advsr-weeSnACSPf,RpPalg,D, E , λq ¤
18nq

p� 1
� Adv4n-dl

G pF1, λq � AdvdlGpF2, λq � AdvdlGpF3, λq .

Moreover, the time complexities of the extractor E and adversaries F1,F2,F3 are all Opq � nq.

We can show that the bound in Theorem 7 is tight by constructing a cheating prover like we did
in Theorem 5. Using Theorem 2, we get a corollary about fs-ext-1 security of FSROrSnACSPfs.

Corollary 3. Let G � tGλuλPN� be a family of groups with order p � ppλq. Let GT � tGT,λuλPN� be a
family of groups such that there exists a bilinear map e : G�GÑ GT . Let SnACSPf � SnACSPfrG,GT , es

6 The reduction of bounded polynomial extractibility to the variant of q-dl defined in the paper does not seem to
account for the fact that an algebraic adversary can represent the commitments in terms of powers of h as well.
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SnACSPf.Pppbp, srs, spX,Y q, kpY q, SnACSPf.Vpbp, srs, spX,Y q, kpY q,
tψjpX,Y q, σju

M
j�1q, prpX,Y q, tpX,Y qqq tψjpX,Y q, σju

M
j�1q

cn�1, cn�2, cn�3, cn�4 Ð$ Zp
rpX,Y q Ð rpX,Y q

�
4°
i�1

cn�iX
�2n�iY �2n�i

RÐ PC.Cpbp, srs, n, rpX, 1qq
R

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ
y

ÐÝÝÝÝÝÝÝÝÝÝÝÝÝ yÐ$ Z�
p

T Ð PC.Cpbp, srs, d, tpX, yqq
T

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ
z

ÐÝÝÝÝÝÝÝÝÝÝÝÝÝ zÐ$ Z�
p

pa,Waq Ð PC.Opbp, srs, R, z, rpX, 1qq
pb,Wbq Ð PC.Opbp, srs, R, yz, rpX, 1qq
pt,Wtq Ð PC.Opbp, srs, T, z, tpX, yqq

sÐ spx, yq
a,Wa,b,Wb,Wt,sÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

tÐ apb� sq � kpyq
If PC.Vpbp, srs, n,R, z, pa,Waqq � 0
_PC.Vpbp, srs, n,R, yz, pb,Wbqq � 0
_PC.Vpbp, srs, d, T, z, pt,Wtqq � 0 then

Return 0
SnSCS.Pppbp, srs, y, z, s, ðùùùùùùùùùùùùñ SnSCS.Vppbp, srs, y, z, s,
tψjpX,Y q, σju

M
j�1q tψjpX,Y q, σju

M
j�1q Ñ b

Return b

Fig. 16. The interactive argument for arithmetic circuit satisfiability in Sonic.

PC.Cpbp, srs, n, fpXqq

F Ð gαx
d�n

Return F

PC.Opbp, srs, F, z, fpXqq

wpXq Ð fpXq�fpzq
X�z

W Ð gwpxq

Return pfpzq,W q

PC.Vpbp, srs, n, F, z, pv,W qq

F Ð gαx
d�n

If epW,hαxqepgvW�z, hαq � epF, hx
�d�n

q then
Return 0

Return 1

Fig. 17. Polynomial commitments in Sonic

43



SnSCS.Ppbp, srs, y, z, s, SnSCS.Vpbp, srs, y, z, s,
, tψjpX,Y q, σju

M
j�1q tψjpX,Y q, σju

M
j�1q

For j � 1 to M do For i � 1 to M do
P1 Ð PC.Cpbp, srs, d,

°n
i�1X

iq P1 Ð PC.Cpbp, srs, d,
°n
i�1X

iq
P2 Ð PC.Cpbp, srs, d,

°n
i�1 ψj,iX

iq P2 Ð PC.Cpbp, srs, d,
°n
i�1 ψj,iX

iq
P3 Ð PC.Cpbp, srs, d,

°n
i�1 iX

iq P3 Ð PC.Cpbp, srs, d,
°n
i�1 iX

iq
P4 Ð PC.Cpbp, srs, d,

°n
i�1 σj,iX

iq P4 Ð PC.Cpbp, srs, d,
°n
i�1 σj,iX

iq
SnPP.Pppbp, srs, P1, P2, P3, P4, y, zq, ðùùùùñ SnPP.Vpbp, srs, P1, P2, P3,
pψipX,Y q, σiqq P4, y, zq Ñ pbj , sjq

If bj � 0 then return 0

If s �
°M
j�1 sj then return 1

Return 0

Fig. 18. The signature of correct computation in Sonic.

SnPP.Pppbp, srs, P1, P2, P3, P4, y, zq, SnPP.Vpbp, srs, P1, P2, P3, P4, y, zq
, ψpX,Y q, φpX,Y q, σiq
S Ð PC.Cpbp, srs, d, ψpX, yqq

S1 Ð PC.Cpbp, srs, d, φpX, yqq
S,S1

ÝÝÑ
δ,β,γ
ÐÝÝ δ, β, γÐ$ Z�

p

U Ð SP β4 P
γ
1 ;V Ð S1P β3 P

γ
1

ps,W q Ð PC.Opbp, srs, S, z, ψpX, yqq
pv,W 1q Ð PC.Opbp, srs, S1, δ, φpX, yqq
pv,Q1q Ð PC.Opbp, srs, P2, δy,

°n
i�1 ψiX

iq
upXq Ð

°n
i�1 ψσiy

σiXi � βσiX
i � γXi

vpXq Ð
°n
i�1 ψiy

iXi � βiXi � γXi s,W,v,W 1,Q1

ÝÝÑ

U Ð SP β4 P
γ
1 ;V Ð S1P β3 P

γ
1

If PC.Vpbp, srs, d, S, z, ps,W qq � 0
_PC.Vpbp, srs, d, S1, δ, pv,W 1qq � 0
_PC.Vpbp, srs, d, P2, δy, pv,Q

1qq � 0
Return p0,Kq

SnGP.Pppbp, srs, U, V q, pupXq, vpXqqq ðùùñ SnGP.Vpbp, srs, U, V q Ñ b
If b � 0 then return p0,Kq
Return p1, sq

Fig. 19. The polynomial permutation argument in Sonic.

be the interactive argument as described in Figure 16, for the relation R in (11). Let FSROrSnACSPfs be
the non-interactive argument obtained by applying the Fiat-Shamir transform to SnACSPf using a random
oracle. We can construct an extractor E such that for any non-uniform algebraic prover Palg making at most
q � qpλq queries to the random oracle there exist non-uniform adversaries F1,F2,F3 with the property that
for all λ P N�,

Advfs-ext-1
FSROrSnACSPfs,R

pPalg, E , λq ¤
18nq � q � 1

p� 1
� Adv4n-dl

G pF1, λq � AdvdlGpF2, λq � AdvdlGpF3, λq .

Moreover, the time complexities of the extractor E and adversaries F1,F2,F3 are all Opq � nq.

Additionally, using techniques similar to those in the proof of Theorem 7, we can prove a similar
bound for fs-ext-2 security of FSROrSnACSPfs.
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SnGP.Pppbp, srs, U, V q, SnGP.Vpbp, srs, U, V q

pupXq �
n°
i�1

uiX
i, vpXq �

n°
i�1

viX
iqq

pa1, . . . , anq Ð pu1, . . . , unq
pan�2, . . . , a2n�1q Ð pv1, . . . , vnq
an�1 Ð p

±n
i�1 aiq

�1

c1 Ð a1
For i � 2 to 2n� 1 do
ci Ð ci�1 � ai

cpXq Ð
2n�1°
i�1

ciX
i; apXq Ð

2n�1°
i�1

aiX
i

rpX,Y q Ð Y p
2n�1°
i�1

aiX
iY i

�an�1X
n�1Y n�1q

spX,Y q Ð Xn�2 �Xn�1Y �X2n�2Y

r1pX,Y q Ð X�1 �
n°
i�1

ciX
�i�1

kpY q Ð 1�
2n�1°
i�1

ciY
i�1

tpX,Y q Ð prpX,Y q � spX,Y qqr1pX,Y q
�kpY q

AÐ gan�1αx
n�1

UV x
n�1

C Ð PC.Cpbp, srs, d, cpXqq
Cw Ð SnWF.Prvpbp, srs, 2n� 1, cpXqq
Uw Ð SnWF.Prvpbp, srs, n, upXqq

Vw Ð SnWF.Prvpbp, srs, n, vpXqq
A,C,Cw,Uw,Vw,an�1

ÝÝÑ
y

ÐÝÝ yÐ$ Z�
p

T Ð PC.Cpbp, srs, d, tpX, yqq
T

ÝÝÑ
z

ÐÝÝ zÐ$ Z�
p

pa,Waq Ð PC.Opbp, srs, A, yz, apXqq
pc,Wcq Ð PC.Opbp, srs, C, z�1, cpXqq
pk,Wkq Ð PC.Opbp, srs, C, y, cpXqq

pt,Wtq Ð PC.Opbp, srs, T, z, tpX, yqq
a,Wa,b,Wb,k,Wk,WtÝÝÑ

tÐ pya� zn�2 � zn�1y
�z2n�2yqpc� 1qz�1 � ky � 1

If epgαan�1x
n�1

U, hqepV, hx
n�1

q
� epA, hq
_PC.Vpbp, srs, d, A, yz, pa,Waqq � 0
_PC.Vpbp, srs, d, C, z�1, pc,Wcqq � 0
_PC.Vpbp, srs, d, C, y, pk,Wkqq � 0
_PC.Vpbp, srs, d, T, z, pt,Wtqq � 0
_SnWF.Vpbp, srs, 2n� 1, C, Cwq � 0
_SnWF.Vpbp, srs, n, U, Uwq � 0
_SnWF.Vpbp, srs, n, V, Vwq � 0

Return 0
Return 1

Fig. 20. The grand product argument in Sonic.
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SnWF.Prvpbp, srs, n, fpXqq

W Ð pgx
�dfpxq, gx

d�nfpxqq
Return W

SnWF.Vpbp, srs, n, F,W � pL,Rqq

If epF, hq � epL, hαx
d

q ^ epF, hq � epR, hαx
n�d

q then
Return 1

Return 0

Fig. 21. Well-formedness argument in Sonic

Proof. (Theorem 7) We shall invoke Theorem 1 by defining BadCh and e and showing that ε ¤ 18n
p�1

and there exists adversaries F1,F2,F3 such that

pfailpSnACSPf,Palg, e, R, λq ¤ Adv4n-dl
G pF1q � AdvdlGpF2q � AdvdlGpF3q .

DEFINING BadCh AND UPPER BOUNDING ε. To start off, we shall define BadChpτ 1q for all partial
extended transcripts τ 1. Let Ch be the set from which the challenge that comes right after τ 1 is
sampled. We define a helper function CheckBad that takes as input a partial extended transcripts
rτ 1s and a challenge c P Ch and returns true if and only if c P BadChpτ 1q. Since SnACSPf has two
challenges, there are two definitions of CheckBad in Figure 22. We again use the predicate SZ here
like before. Next, we need to compute an upper bound ε on the size of |BadChpτ 1q|{|Ch|. In other
words, we need to compute an upper bound on the fraction of c’s in Ch that CheckBadpτ 1, cq will
return true for all the definitions of CheckBad.

The function CheckBadpτ 1, yq returns true if SZpfpY q, yq is true. We shall use the Schwartz-
Zippel lemma to fraction bound the number of y’s that SZpfpY q, yq is true for y P Z�

p . The polyno-
mial fpY q is a polynomial of degree at most 2n�Q (the maximum positive degree is n�Q while
the maximum negative degree is �n). Since Q ¤ 2n, the degree of fpY q is at most 4n. So, for at
most at most 4n values of y P Z�

p , SZpfpY q, yq is true. So the CheckBadpτ 1, yq returns true for at
most 4n{pp� 1q fraction of y’s.

The function CheckBadpτ 1, zq returns true if SZpfpZq, zq is true. The polynomial fpZq is a
polynomial of degree at most 18n (the maximum positive degree is d   4n while the maximum
negative degree is 2n � 4d ¡ �16d). So, the fraction of z’s in Z�

p for which SZpfpZq, zq is true is
at most 18n{pp� 1q. So the fraction of z’s in Z�

p for which CheckBadpτ 1, zq returns true is at most
18n{pp� 1q.

Similarly we can argue that for j � 1, . . . ,M , CheckBadpτ 1, zjq returns true with probability at
most p10n� 1q{pp� 1q , CheckBadpτ 1, yjq returns true with probability at most p2n� 2q{pp� 1q,
CheckBadpτ 1, pβj , γjqq returns true with probability at most n{pp� 1q, CheckBadpτ 1, δjq returns
true with probability at most 8n{pp� 1q.

Therefore CheckBadpτ 1, cq will return true for any partial transcript τ 1 for a no more than
18n{pp� 1q values of c, i.e., in the context of the Master Theorem ε ¤ 18n

p�1 .
DEFINING e. Next, we define the function e for SnACSPf in Figure 23. It gets as input an extended
accepting transcript rτ s with the representation of the input removed. Without loss of generality
we assume that the representations of all the messages of the prover in the transcript that are from
G are in terms of the elements of G in srs. The function e computes pa�L,a

�
R,a

�
Oq and outputs them.

It follows from the description of e that it runs in time Opnq. Note that SnACSPf.V runs in time
Opnq. Therefore, using Theorem 1, the time complexity of E is Opq � nq.
PROVING AN UPPER BOUND ON pfailpSnACSPf,Palg, e, R, λq. To that end, we construct the follow-
ing three adversaries F1,F2,F3.
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Procedure CheckBadp
�
τ 1
�
, zq:

fpZq Ð

�
� d°
i��d
i�0

Zit
gαx

i

�

�

�
� n°
i�n�2d
i�n�d

Zir
gαx

i�n�d

�


�
� n°
i�n�2d
i�n�d

pyZqir
gαx

i�n�d � spZ, yq

�

� kpyq

Return SZpfpZq, zq

Procedure CheckBadp
�
τ 1
�
, yq:

For i � 1, . . . , n do
a�i Ð r

gαx
d�n�i ; b�i Ð r

gαx
d�n�i ; c�i Ð r

gαx
d�2n�i

a�L Ð pa�1 , . . . , a
�
nq;a

�
R Ð pb�1 , . . . , b

�
nq;a

�
O Ð pc�1 , . . . , c

�
nq

fpY q Ð r
gαx

d�n r
gαx

d�n �xa�L � a
�
R � a�O,Y

n�1
r1:s �Y�n�1

r1:s y�YQ�n�1
rn�1:s � pWL �a

�
L�WR �a

�
R�WO �a

�
Oq�xc,Y

Q�n�1
rn�1:s y

Return SZpfpY q, yq
Procedure CheckBadp

�
τ 1
�
, zjq:

fpZq Ð

�
� d°
i��d
i�0

Zit
jgαx

i

�

�

�
�yj

�
� d°
i��d
i�0

pyjZq
ia
jgαx

i

�

� Zn�2 � Zn�1y � Z2n�2yj

�

 �

�
2n�1°
i�1

Z�ic
jgαx

i � 1



Z�1 �

�
2n�1°
i�1

yijcjgαxi



yj � 1

Return SZpfpZq, zjq

Procedure CheckBadp
�
τ 1
�
, yjq:

fpY q Ð
2n�1°
i�1

Y i�1
�
a
jgαx

i c
jgαx

i�1 � c
jgαx

i�1

	
� pc

jgαx
n�1 � 1q � Y pcjgαxn � c

jgαx
2n�1 q

Return SZpfpY q, yjq
Procedure CheckBadp

�
τ 1
�
, pβj , γjq:

fpB, Γ q Ð
±n
i�1

�
s
jgαx

i � Bσj,i � Γ
	
�
±n
i�1

�
s1
jgαx

i � Bi� Γ
	

Return SZpfpB, Γ q, pβj , γjqq
Procedure CheckBadp

�
τ 1
�
, δjq:

fp∆q Ð

�
� d°
i��d
i�0

∆is1
gαx

i

�

�

�
� d°
i��d
i�0

p∆yjq
iψi

�



Return SZpfp∆q, δjq

Fig. 22. The function CheckBad function for the SnACSPf.

Procedure eprτ sq:

//rτ s �
�

bp, srs, n, d, spX,Y q, kpY q, tψjpX,Y q, σju
M
j�1; rRs , y, rT s , z, pa, rWas , b, rWbs , rWts , sq, tp

�
Si, S

1
i

�
q, pδi, βi, γiq,

psi, rWis , vi,
�
W 1
i

�
,
�
Q1
i

�
q, prAi, Ci, Ci,w, Ui,w, Vi,ws , ai,n�1q, yi, Ti, zi, pai, rWi,as , bi, rWi,bs , ki, rWi,ks , rWi,tsqu

M
i�1



a�i Ð r

gαx
d�n�i ; b�i Ð r

gαx
d�n�i ; c�i Ð r

gαx
d�2n�i

a�L Ð pa�1 , . . . , a
�
nq;a

�
R Ð pb�1 , . . . , b

�
nq;a

�
O Ð pc�1 , . . . , c

�
nq

Return pa�L,a
�
R,a

�
Oq

Fig. 23. The function e for SnACSPf.

1. Adversary F1 is an adversary against d-DLOG in the group G that runs Palg. It has inputs
pg, gx, gx

2
, . . . , gx

d
q. It fixes a positive integer n such that 4n ¡ d ¡ 3n. It samples α, β P Zp, and
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Procedure h1prτ s, α, β,Xq:

//rτ s �
�

bp, srs, n, d, spX,Y q, kpY q, tψjpX,Y q, σju
M
j�1; rRs , y, rT s , z, pa, rWas , b, rWbs , rWts , sq, tp

�
Si, S

1
i

�
q, pδi, βi, γiq,

psi, rWis , vi,
�
W 1
i

�
,
�
Q1
i

�
q, prAi, Ci, Ci,w, Ui,w, Vi,ws , ai,n�1q, yi, Ti, zi, pai, rWi,as , bi, rWi,bs , ki, rWi,ks , rWi,tsqu

M
i�1



x� Ð ComHelper1pX, rRs , rWas , a, z, nq
If x� � K then return x�

x� Ð ComHelper1pX, rRs , rWbs , b, yz, nq
If x� � K then return x�

tÐ apb� sq � kpyq
x� Ð ComHelper1pX, rT s , rWts , t, z, dq
If x� � K then return x�

For i � 1, . . . ,M do
x� Ð ComHelper1pX, rSis , rWis , si, z, dqx; If x� � K then return x�

x� Ð ComHelper1pX,
�
S1
i

�
, rQis , vi, δi, dq; If x� � K then return x�

x� Ð ComHelper1pX, rP2,is ,
�
Q1
i

�
, vi, δiy, dq; If x� � K then return x�

x� Ð ComHelper1pX, rCis , rWi,cs , ci, z
�1, dq; If x� � K then return x�

x� Ð ComHelper1pX, rCis , rWi,ks , ki, y, dq; If x� � K then return x�

x� Ð ComHelper1pX, rTis , rWi,ts , ti, z, dq; If x� � K then return x�

x� Ð EqHelper1pX, rUis , rVis , rAis , ai,n�1, nq; If x� � K then return x�

x� Ð WfHelper1pX, rCs , rCi,w,1, Ci,w,2s , 2n� 1q;If x� � K then return x�

x� Ð WfHelper1pX, rU s , rUi,w,1, Ui,w,2s , nq;If x
� � K then return x�

x� Ð WfHelper1pX, rV s , rVi,w,1, Vi,w,2s , nq
If x� � K then return x�

Return K

Fig. 24. The function h1 for SnACSPf.

sets bp � pp,G,GT , e, g, g
βq and

srs � tg, tgx
i
udi��d, tg

xiβudi��d, tg
xiαβudi��d, tg

xiαudi��d
i�0

, epg, gαβqu .

Note that pn, d, bp, srsq is a valid output of SnACSPf.Setup. Adversary F1 runs Palg on public
parameters pn, d, bp, srsq and simulates the game SRSSnACSPf to it. If Palg manages to produce an
accepting transcript τ , F1 calls a helper function h1 on input rτ s , α, β, gx and outputs whatever
h1 outputs. The function h1 is defined in Figure 24. The subroutines used in h1 are defined in
Figures 27 to 29.

2. Adversary F2 is an adversary against DLOG in the group G that runs Palg. It has inputs
pg, V q. It fixes a positive integer n such that 4n ¡ d ¡ 3n. It samples α, x P Zp, and sets
bp � pp,G,GT , e, g, V q and

srs � tg, tgx
i
udi��d, tV

xiudi��d, tV
xiαudi��d, tg

xiαudi��d
i�0

, epg, V αqu .

Note that pn, d, bp, srsq is a valid output of SnACSPf.Setup. Adversary F2 runs Palg on public
parameters pn, d, bp, srsq and simulates the game SRSSnACSPf to it. If Palg manages to produce an
accepting transcript τ , F2 calls a helper function h2 on input rτ s , x, α, V and outputs whatever
h2 outputs. The function h2 is defined in Figure 25. The subroutines used in h2 are defined in
Figures 27 to 29.

48



Procedure h2prτ s, α, x,Xq:

//rτ s �
�

bp, srs, n, d, spX,Y q, kpY q, tψjpX,Y q, σju
M
j�1; rRs , y, rT s , z, pa, rWas , b, rWbs , rWts , sq, tp

�
Si, S

1
i

�
q, pδi, βi, γiq,

psi, rWis , vi,
�
W 1
i

�
,
�
Q1
i

�
q, prAi, Ci, Ci,w, Ui,w, Vi,ws , ai,n�1q, yi, Ti, zi, pai, rWi,as , bi, rWi,bs , ki, rWi,ks , rWi,tsqu

M
i�1



β� Ð ComHelper2pX,x, α, rRs , rWas , a, z, nq
If β� � K then return β�

β� Ð ComHelper2pX,x, α, rRs , rWbs , b, yz, nq
If β� � K then return β�

tÐ apb� sq � kpyq
β� Ð ComHelper2pX,x, α, rT s , rWts , t, z, dq
If β� � K then return β�

For i � 1, . . . ,M do
β� Ð ComHelper2pX,x, α, rSis , rWis , si, z, dqx; If β� � K then return β�

β� Ð ComHelper2pX,x, α,
�
S1
i

�
, rQis , vi, δi, dq; If β� � K then return β�

β� Ð ComHelper2pX,x, α, rP2,is ,
�
Q1
i

�
, vi, δiy, dq; If β� � K then return β�

β� Ð ComHelper2pX,x, α, rCis , rWi,cs , ci, z
�1, dq; If β� � K then return β�

β� Ð ComHelper2pX,x, α, rCis , rWi,ks , ki, y, dq; If β� � K then return β�

β� Ð ComHelper2pX,x, α, rTis , rWi,ts , ti, z, dq; If β� � K then return β�

β� Ð EqHelper2pX,x, α, rUis , rVis , rAis , ai,n�1, nq; If β� � K then return β�

β� Ð WfHelper2pX,x, α, rCs , rCi,w,1, Ci,w,2s , 2n� 1q;If β� � K then return β�

β� Ð WfHelper2pX,x, α, rU s , rUi,w,1, Ui,w,2s , nq;If β
� � K then return β�

β� Ð WfHelper2pX,x, α, rV s , rVi,w,1, Vi,w,2s , nq; If β� � K then return β�

Return K

Fig. 25. The function h2 for SnACSPf.

3. Adversary F3 is an adversary against DLOG in the group G that runs Palg. It has inputs
pg, V q. It fixes a positive integer n such that 4n ¡ d ¡ 3n. It samples β, x P Zp, and sets
bp � pp,G,GT , e, g, g

βq and

srs � tg, tgx
i
udi��d, tg

βxiudi��d, tV
xiβudi��d, tV

xiudi��d
i�0

, epg, V βqu .

Note that pn, d, bp, srsq is a valid output of SnACSPf.Setup. Adversary F3 runs Palg on public
parameters pn, d, bp, srsq and simulates the game SRSSnACSPf to it. If Palg manages to produce an
accepting transcript τ , F3 calls a helper function h3 on input rτ s , x, β, V and outputs whatever
h3 outputs. The function h3 is defined in Figure 26. The subroutines used in h3 are defined in
Figures 27 to 29.

Note that the definitions of the helper functions are modular, i.e., hi use the subroutines PCi,
EqHelperi, WfHelperi for i � 1, 2, 3. The subroutine PCi produces a solution to the relevant hard
problem if the prover manages to break the binding of any of the commitment. Similarly the
subroutine WfHelperi produces a solution to the relevant hard problem if the prover manages to
pass the well-formedness verification for a commitment that is not well-formed.

We now make the following observations about adversaries F1,F2,F3

- Adversary F1 succeeds if h1prτ s , α, βq computes x� such that pgx
�
� gxq. From the code of h1

it is easy to see that that whenever h1 returns a non-K value x�, it satisfies pgx
�
� gxq, i.e.,

adversary F1 succeeds. Also, it follows from the description of h1 that it runs in time at Opnq
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Procedure h3prτ s, x, β,Xq:

//rτ s �
�

bp, srs, n, d, spX,Y q, kpY q, tψjpX,Y q, σju
M
j�1; rRs , y, rT s , z, pa, rWas , b, rWbs , rWts , sq, tp

�
Si, S

1
i

�
q, pδi, βi, γiq,

psi, rWis , vi,
�
W 1
i

�
,
�
Q1
i

�
q, prAi, Ci, Ci,w, Ui,w, Vi,ws , ai,n�1q, yi, Ti, zi, pai, rWi,as , bi, rWi,bs , ki, rWi,ks , rWi,tsqu

M
i�1



α� Ð ComHelper3pX,x, rRs , rWas , a, z, nq
If α� � K then return α�

α� Ð ComHelper3pX,x, rRs , rWbs , b, yz, nq
If α� � K then return α�

tÐ apb� sq � kpyq
α� Ð ComHelper3pX,x, rT s , rWts , t, z, dq
If α� � K then return α�

For i � 1, . . . ,M do
α� Ð ComHelper3pX, a, x, rSis , rWis , si, z, dqx; If α� � K then return α�

α� Ð ComHelper3pX,x,
�
S1
i

�
, rQis , vi, δi, dq; If α� � K then return α�

α� Ð ComHelper3pX,x, rP2,is ,
�
Q1
i

�
, vi, δiy, dq; If α� � K then return α�

α� Ð ComHelper3pX,x, rCis , rWi,cs , ci, z
�1, dq; If α� � K then return α�

α� Ð ComHelper3pX,x, rCis , rWi,ks , ki, y, dq; If α� � K then return α�

α� Ð ComHelper3pX,x, rTis , rWi,ts , ti, z, dq; If α� � K then return α�

α� Ð EqHelper3pX,x, rUis , rVis , rAis , ai,n�1, nq; If α� � K then return α�

α� Ð WfHelper3pX,x, rCs , rCi,w,1, Ci,w,2s , 2n� 1q;If α� � K then return α�

α� Ð WfHelper3pX,x, rU s , rUi,w,1, Ui,w,2s , nq;If α
� � K then return α�

α� Ð WfHelper3pX,x, rV s , rVi,w,1, Vi,w,2s , nq; If α� � K then return α�

Return K

Fig. 26. The function h3 for SnACSPf.

(since M � Op1q). The running time of F1 consists of the time required to answers q queries,
run SnACSPf.V in at most q paths in the execution tree and the time required to run h1. Hence
its time complexity is Opqnq.

- Adversary F2 succeeds if h2prτ s , x, αq computes β� such that gβ
�
� V . From the code of h2

it is easy to see that that whenever h2 returns a non-K value β�, it satisfies pgβ
�
� hq, i.e.,

adversary F2 succeeds. Also, it follows from the description of h2 that it runs in time Opnq
(since M � Op1q). The running time of F2 consists of the time required to answers q queries,
run SnACSPf.V in at most q paths in the execution tree and the time required to run h2. Hence
its time complexity is Opqnq.

- Adversary F3 succeeds if h3pτ, x, βq computes α� such that gα
�
� V . From the code of h3

it is easy to see that that whenever h3 returns a non-K value α�, it satisfies pgα
�
� gxq, i.e.,

adversary F3 succeeds. Also, it follows from the description of h3 that it runs in time Opnq
(since M � Op1q). The running time of F3 consists of the time required to answers q queries,
run SnACSPf.V in at most q paths in the execution tree and the time required to run h3. Hence
its time complexity is Opqnq.

We shall prove the following lemma showing that if τ is an accepting transcript such that τ R
T SnACSPf
BadCh and h1prτ s , α, βq, h2prτ s , x, αq, h3pτ, x, βq all return K, then eprτ sq returns a valid witness.
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Procedure ComHelper1pX, rCs , rW s , v, z, nq

fpXq Ð pX � zq

�
d°

i��d

Xiw
gx
i

�
� v �X�d�n

�
� d°
i��d
i�0

Xic
gαx

i

�



If fpXq � 0 then
Solve for x� such that fpx�q � 0

If X � gx
�

then return x�

Return K
Procedure ComHelper2pX,x, α, rCs , rW s , v, z, nq :

fpBq Ð B

�
αpx� zq

�
d°

i��d

xiw
hx
i � αxiw

hαx
i

�
� x�d�n

�
d°

i��d

xic
hx
i � αxic

hαx
i

��

� αpx� zq

�
� d°
i��d

xiw
gx
i �

d°
i��d
i�0

αxiw
gαx

i

�

� αv � x�d�n

�
� d°
i��d

xic
gx
i �

d°
i��d
i�0

αxic
gαx

i

�



If fpBq � 0 then
Solve for β� such that fpβ�q � 0

If X � gβ
�

then return β�

Return K
Procedure ComHelper3pX,x, rCs , rW s , v, z, nq

fpAq Ð Apx� zq

�
� d°
i��d

xiw
gx
i �

d°
i��d
i�0

Axiw
gαx

i

�

�Av � x�d�n

�
� d°
i��d

xic
gx
i �

d°
i��d
i�0

Axic
gαx

i

�



If fpAq � 0 then
Solve for α� such that fpα�q � 0

If X � gα
�

then return α�

Return K

Fig. 27. Subroutines for h1, h2, h3.

Lemma 11. Let n, d P N such that d ¡ 3n. Let x, α, β P Zp, bp � pp,G,GT , e, g, hq. Let srs �

tg, tgx
i
udi��d, tg

βxiudi��d, tg
αβxiudi��d, tg

αxiudi��d
i�0

, epg, hαqu. Let

τ �
�
bp, srs, n, d, spX,Y q, kpY q, tψjpX,Y q, σju

M
j�1; rRs , y, rT s , z, pa, rWas , b, rWbs ,

rWts , sq, tp
�
Si, S

1
i

�
q, pδi, βi, γiq, psi, rWis , vi,

�
W 1
i

�
,
�
Q1
i

�
q, prAi, Ci, Ci,w, Ui,w, Vi,ws ,

ai,n�1q, yi, Ti, zi, pai, rWi,as , bi, rWi,bs , ki, rWi,ks , rWi,tsqu
M
i�1

be an accepting transcript of SnACSPf such that τ R T SnACSPf
BadCh . If h1prτ s , α, β, gxq, h2prτ s , x, α, V q and

h3prτ s , x, β, V q return K, then eprτ sq returns pa�L,a
�
R,a

�
Oq such that

a�L � a
�
R � a�O and a�L �WL � a�R �WR � a�O �WO � c .

Taking the contrapositive, we get that if τ is an accepting transcript such that τ R T SnACSPf
BadCh and

eprτ sq fails to return a valid witness, then one of h1prτ s , α, β, gxq, h2prτ s , x, α, V q, h3pτ, x, β, V q re-
turns a non-K value, i.e., one of adversaries F1,F2,F3 succeed. Therefore

pfailpSnACSPf,Palg, e, R, λq ¤ Adv4n-dl
G pF1q � AdvdlGpF2q � AdvdlGpF3q .

[\

We shall next prove Lemma 11.
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Procedure EqHelper1pX, rU s , rV s , rAs , an�1, nq

fpXq Ð

�
� d°
i��d
i�0

Xiu
gαx

i �Xi�n�1v
gαx

i

�

� an�1X

n�1 �

�
� d°
i��d
i�0

Xia
gαx

i

�



If fpXq � 0 then
Solve for x� such that fpx�q � 0

If X � gx
�

then return x�

Return K
Procedure EqHelper2pX,x, α, rU s , rV s , rAs , an�1, nq :

fpBq Ð

�
� d°
i��d

xiu
gx
i � xi�n�1v

gx
i �

d°
i��d
i�0

αxiu
gαx

i � xi�n�1v
gαx

i

�



� B

�
d°

i��d

xiu
hx
i � αxiu

hαx
i � xi�n�1v

hx
i � αxi�n�1v

hαx
i �

d°
i��d

xia
hx
i � αxia

hαx
i

�
� αan�1x

n�1

�

�
� d°
i��d

xia
gx
i �

d°
i��d
i�0

αxia
gαx

i

�



If fpBq � 0 then
Solve for β� such that fpβ�q � 0

If X � gβ
�

then return β�

Return K
Procedure EqHelper3pX,x, rU s , rV s , rAs , an�1, nq

fpAq Ð

�
� d°
i��d

xiu
gx
i � xi�n�1v

gx
i �

d°
i��d
i�0

Axiu
gαx

i � xi�n�1v
gαx

i

�

�Aan�1x

n�1 �

�
� d°
i��d

xia
gx
i �

d°
i��d
i�0

Axia
gαx

i

�



If fpAq � 0 then
Solve for α� such that fpα�q � 0

If X � gα
�

then return α�

Return K

Fig. 28. Subroutines for h1, h2, h3.

Proof (Lemma 11). Since τ is an accepting transcript the following equality holds.

epWa, h
αxqepgaW z

a , h
αq � epR, hx

�d�n
q .

We can express Wa in terms of its representations, let h � gβ and re-write the first equality as

epg, hqf � 1 ,

where

f �αpx� zq

�
�� ḑ

i��d

xiw
agxi

� βxiw
ahxi

� αβxiw
ahαxi

�
ḑ

i��d
i�0

αxiw
agαxi

�
�
� αa

� x�d�n

�
�� ḑ

i��d

xir
gxi

� βxir
hxi

� αβxir
hαxi

�
ḑ

i��d
i�0

αxir
gαxi

�
�
.
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Procedure WfHelper1pX, rAs , rL,Rs , nq :

f1pXq Ð xd

�
d°

i��d

Xil
gx
i

�
�

�
� d°
i��d
i�0

AXia
gαx

i

�



If f1pXq � 0 then
Solve for x� such that f1px�q � 0

If X � gx
�

then return x�

Return K

f2pXq Ð Xn�d

�
d°

i��d

Xir
gx
i

�
�

�
� d°
i��d
i�0

Xia
gαx

i

�



If f2pXq � 0 then
Solve for x� such that f2px�q � 0

If X � gx
�

then return x�

Return K
Procedure WfHelper2pX,x, α, rAs , rL,Rs , nq :

f1pBq Ð B

�
αxd

�
d°

i��d

xil
hx
i � αxil

hαx
i

�
�

�
d°

i��d

xia
hx
i � αxia

hαx
i

��
� αxd

�
� d°
i��d

xil
gx
i �

d°
i��d
i�0

αxil
gαx

i

�



�

�
� d°
i��d

xia
gx
i �

d°
i��d
i�0

αxia
gαx

i

�



If f1pBq � 0 then
Solve for β� such that f1pβ�q � 0

If X � gβ
�

then return β�

f2pBq Ð B

�
αxn�d

�
d°

i��d

xir
hx
i � αxir

hαx
i

�
�

�
d°

i��d

xia
hx
i � αxia

hαx
i

��
�αxn�d

�
� d°
i��d

xir
gx
i �

d°
i��d
i�0

αxir
gαx

i

�



�

�
� d°
i��d

xia
gx
i �

d°
i��d
i�0

αxia
gαx

i

�



If f2pBq � 0 then
Solve for β� such that f2pβ�q � 0

If X � gβ
�

then return β�

Return K
Procedure WfHelper3pX,x, rAs , rL,Rs , nq :

f1pAq Ð Axd

�
� d°
i��d

xil
gx
i �

d°
i��d
i�0

Axil
gαx

i

�

�

�
� d°
i��d

xia
gx
i �

d°
i��d
i�0

Axia
gαx

i

�



If f1pAq � 0 then
Solve for α� such that f1pα�q � 0

If X � gα
�

then return α�

f2pAq Ð Axn�d

�
� d°
i��d

xir
gx
i �

d°
i��d
i�0

Axir
gαx

i

�

�

�
� d°
i��d

xia
gx
i �

d°
i��d
i�0

Axia
gαx

i

�



If f2pAq � 0 then
Solve for α� such that f2pα�q � 0

If X � gα
�

then return α�

Return K

Fig. 29. Subroutines for h1, h2, h3.
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We therefore have

αpx� zq

�
�� ḑ

i��d

xiw
agx

i � βxiw
ahxi

� αβxiw
ahαxi

�
ḑ

i��d
i�0

αxiw
agαxi

�
�


� αa� x�d�n

�
�� ḑ

i��d

xir
gxi

� βxir
hxi

� αβxir
hαxi

�
ḑ

i��d
i�0

αxir
gαxi

�
�
� 0 .

(27)

Therefore β is a root fpBq � 0 in ComHelper2pX,x, α, rRs , rWas , a, z, nq invoked by h2. Since
h2prτ s , x, α, V q returned K we have that fpBq must be the zero polynomial, i.e.,

αpx� zq

�
ḑ

i��d

xiw
ahxi

� αxiw
ahαxi

�
� x�d�n

�
ḑ

i��d

xir
hxi

� αxir
hαxi

�
� 0 .

Plugging this into (27) we get that

αpx� zq

�
�� ḑ

i��d

xiw
agxi

�
ḑ

i��d
i�0

αxiw
agαxi

�
�
� αa

� x�d�n

�
�� ḑ

i��d

xir
gxi

�
ḑ

i��d
i�0

αxir
gαxi

�
�
� 0 .

Thereforeα is a root fpAq � 0 in ComHelper3pX,x, rRs , rWas , a, z, nq invoked by h3. Since h3prτ s , x, β, V q
returned K it means that fpAq is the zero polynomial. In particular its A term is 0 i.e.

px� zq

�
ḑ

i��d

xiw
agxi

�
� a� x�d�n

�
�� ḑ

i��d
i�0

xir
gαxi

�
�
� 0 .

Therefore x is a root fpXq � 0 in ComHelper1pX, rRs , rWas , a, z, nq invoked by h1. Now, since
h1prτ s , x, β, g

xq returned K we have that f1pXq is the zero polynomial, i.e.,

pX � zq

�
ḑ

i��d

Xiw
agxi

�
� a�X�d�n

�
�� ḑ

i��d
i�0

Xir
gαxi

�
�
 .

is the zero polynomial. The above polynomial is an zero for any value of X . So, plugging in X � z
we get

a� z�d�n

�
�� ḑ

i��d
i�0

zir
gαxi

�
�
� 0 .
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So,

a �

�
�� ņ

i�n�2d
i�n�d

zir
gαxi�n�d

�
�
 .

Similarly, since τ is an accepting transcript, the equalities

epWb, h
αxqepgbW yz

b , hαq � epR, hx
�d�n

q , epWt, h
αxqepgtW z

t , h
αq � epT, hq

hold. Using arguments similar to the ones we used above, we can show that

b �

�
�� ņ

i�n�2d
i�n�d

pyzqir
gαxi�n�d

�
�
 , t �

�
�� ḑ

i��d
i�0

zit
gαxi

�
�
 .

Next we can show that for the opening of commitments Tj , Cj , Aj (similar to how we derived the
value for a above) for j � 1, . . . ,M

tj �

�
�� ḑ

i��d
i�0

zijtjgαxi

�
�
 , kj �

�
�� ḑ

i��d
i�0

yijcjgαxi

�
�
 , cj �

�
�� ḑ

i��d
i�0

z�ij c
jgαxi

�
�
 , aj �

�
�� ḑ

i��d
i�0

pyjzjq
ia
jgαxi

�
�
 .

Also using that for j � 1, . . . ,M ,

WfHelper1pg
x, rCs , rCj,w,1, Cj,w,2s , 2n� 1q � K ,

WfHelper2pV, x, α, rCs , rCj,w,1, Cj,w,2s , 2n� 1q � K ,

WfHelper3pX,x, rCs , rCj,w,1, Cj,w,2s , 2n� 1q � K ,

we can show that c
jgαxi

� 0 for i  � 0 and for i ¡ 2n � 1 and c
jgxi

� 0, c
jhαxi

� 0, c
jhxi

� 0 for
all i. Similarly, we can show that u

jgαxi
� 0 for i  � 0 and for i ¡ n and u

jgxi
� 0, u

jhαxi
� 0,

u
jhxi

� 0 for all i and v
jgαxi

� 0 for i  � 0 and for i ¡ n and v
jgxi

� 0, v
jhαxi

� 0, v
jhxi

� 0 for all
i.

Hence cj �
�

2n�1°
i�1

z�ij c
jgαxi



. We also have that tj � pyaj � zn�2

j � zn�1
j yj � z2n�2

j yjqpcj �

1qz�1
j � yjkj � 1. Therefore, for j � 1, . . . ,M�
�� ḑ

i��d
i�0

zijtjgαxi

�
�
�

�
��yj

�
�� ḑ

i��d
i�0

pyjzjq
ia
jgαxi

�
�
� zn�2

j � zn�1
j y � z2n�2

j yj

�
�
�

�
2n�1¸
i�1

z�ij c
jgαxi

� 1

�
z�1
j �

�
2n�1¸
i�1

yijcjgαxi

�
yj � 1 .

Since τ |zj R T SnACSPf
BadCh , we have that zj R BadChpτ |zj q. Therefore, SZpfpZq, zjq is false where f is

as defined in CheckBadpτ 1, zjq. Since we have here that fpzjq � 0, the polynomial fpZq is the zero
polynomial. In particular, its constant term is zero, i.e.,

2n�1¸
i�1

yi�1
j

�
a
jgαxi

c
jgαxi�1 � c

jgαxi�1

	
� pc

jgαxn�1 � 1q � yjpcjgαxn � c
jgαx2n�1 q � 0 .
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Since τ |yj R T SnACSPf
BadCh , we have that yj R BadChpτ |yj q. Therefore, SZpfpY q, yjq is false where f is

as defined in CheckBadpτ 1, yjq. Since we have here that fpyjq � 0, the polynomial fpY q is the zero
polynomial. In particular, its constant term is zero and we have that for j � t1, . . . ,Mu

cjgαx � ajgαx , cjgαxn�1 � 1 , cjgαxn � c
jgαx2n�1 ,

for i � 2, . . . , 2n� 1
c
jgαxi

� c
jgαxi�1ajgαxi .

Combining, we get that
n¹
i�1

a
jgαxi

�
2n�1¹
i�n�2

a
jgαxi

. (28)

We also have that
epgαaj,n�1x

n�1
Uj , hqepVj , h

xn�1
q � epAj , hq

Using that for j � 1, . . . ,M ,

EqHelper1pX, rUis , rVis , rAis , ai,n�1, nq � K ,

EqHelper2pX,x, α, rUis , rVis , rAis , ai,n�1, nq � K ,

EqHelper3pX,x, rUis , rVis , rAis , ai,n�1q � K ,

we can show that

a
jgαxi

�

#
u
jgαxi

for 1 ¤ i ¤ n

v
jgαxi�n�1 for n� 2 ¤ i ¤ 2n� 1

.

Combining with (28) we have that

n¹
i�1

u
jgαxi

�
n¹
i�1

v
jgαxi

.

Now from the definition of Uj , Vj we have that u
jgαxi

� αs
jgαxi

xi� βjασj,ix
i� γjαx

i and v
jgαxi

�

αs1
gαxi

xi � βαixi � γjαx
i. Therefore,

n¹
i�1

�
αs

jgαxi
xi � βjασj,ix

i � γjαx
i
	
�

n¹
i�1

�
αs1

gαxi
xi � βαixi � γjαx

i
	

Simplifying we get,

n¹
i�1

�
s
jgαxi

� βjσj,i � γj

	
�

n¹
i�1

�
s1
jgαxi

� βji� γj

	

Since τ |pβj ,γjq R T SnACSPf
BadCh , we have that pβj , γjq R BadChpτ |pβj ,γjqq. Therefore, SZpfpB, Γ q, pβj , γjqq

is false where f is as defined in CheckBadpτ 1, pβj , γjqq. Since we have here that fpβj , γjq � 0, the
polynomial fpB, Γ q is the zero polynomial. Hence we have that for j � t1, . . . ,Mu

s
jgαxi

� sjgαxσi .
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Additionally we can infer the following from the opening of the commitments W 1
j , Q

1
j (similar to

how we derived the value for a above)

vj �

�
�� ḑ

i��d
i�0

δijs
1
gαxi

�
�
 , vj �

�
�� ḑ

i��d
i�0

pδjyjq
iψi

�
�
 .

Equating the two values of vj we get that�
�� ḑ

i��d
i�0

δijs
1
gαxi

�
�
�

�
�� ḑ

i��d
i�0

pδjyjq
iψi

�
�
 .

Since τ |δj R T SnACSPf
BadCh , we have that δj R BadChpτ |δj q. Therefore, SZpfp∆q, δjq is false where f is

as defined in CheckBadpτ 1, δjq. Since we have here that fpδjq � 0, the polynomial fpY q is the zero
polynomial. In particular, its constant term is zero and we have that for j � t1, . . . ,Mu

s1
jgαxi

� ψiy
i for i � 1, . . . , n ,

and s1
jgαxi

� 0 for i  � 0 and i ¡ n. Since we derived s
jgαxi

� sjgαxσi above, we have that

s
jgαxi

� ψσiy
σi ,

and s
jgαxi

� 0 for i  � 0 and i ¡ n. Additionally we can infer the following from the opening of
the commitment Wj (similar to how we derived the value for a above)

sj �

�
�� ḑ

i��d
i�0

zis
jgαxi

�
�
 .

Plugging in the values of s
jgαxi

sj �

�
ņ

i�1

ziψσiy
σi

�
.

Since spX,Y q �
°M
j�1

°n
i�1X

iψσj,iY
σj,i , we have that s �

°M
i�1 si � spz, yq. So, we have that

t � apb� spz, yqq � kpyq .

Plugging the values of a, b, t, spz, yq we get that�
�� ḑ

i��d
i�0

zit
gαxi

�
�
�

�
�� ņ

i�n�2d
i�n�d

zir
gαxi�n�d

�
�

�
�� ņ

i�n�2d
i�n�d

pyzqir
gαxi�n�d

� spz, yq

�
�


� kpyq

Since τ |z R T SnACSPf
BadCh , we have that z R BadChpτ |zq. Therefore, SZpfpZq, zq is false where

f is as defined in CheckBadpτ 1, zq. Since we have here that fpzq � 0, the polynomial fpZq must
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Game NWEE-1Palg,D
IP,Gen pλq:

tr Ð ε
pp Ð$ IP.Setupp1λq
xÐ$ Genpppq

Run PO1
ext

alg,λ ppp, xq
bÐ$ Dptrq
Return pb � 1q

Oracle O1
extpτ � pa1, c1, . . . , ai�1, ci�1q, aiq:

If τ P tr then
If i ¤ r then
ciÐ$ Chi; tr Ð tr } pτ, ai, ciq; return ci

Else if i � r � 1 then
dÐ IP.Vppp, x, τ } aiq
Return d

Return K
Game NWEE-0E,Palg,D

IP,R,Gen pλq:
tr Ð ε
pp Ð$ IP.Setupp1λq
xÐ$ Genpppq
stE Ð p1λ, pp, xq

Run PO0
ext

alg,λ ppp, xq
w1 Ð$ EpstE ,Kq
bÐ$ Dptrq
Return pb � 1q ^ pAccptrq ñ ppp, x, w1q P Rq

Oracle O0
extpτ � pa1, c1, . . . , ai�1, ci�1q, aiq:

If τ P tr then
If i ¤ r then
presp, stEq Ð$ EpstE , rpτ, aiqsq
tr Ð tr } pτ, ai, respq
Return resp

Else if i � r � 1 then
dÐ IP.Vppp, x, τ } aiq
Return d

Return K

Fig. 30. Definition of the security notion n-srs-wee. The games NWEE-1,NWEE-0 define n-srs-wee security in the AGM
for a non-uniform algebraic prover Palg, a distinguisher D, an extractor E , generator Gen and a public-coin interactive
proof IP. We assume here that IP has r � rpλq challenges and the i-th challenge is sampled from Chi.

be the zero polynomial. In particular, its constant term must be zero. Writing out the constant
term of fpZq and using a�L � pr

gαx1�n�d
, . . . , r

gαxd
q, a�R � pr

gαx�1�n�d , . . . , rgαxd�2n q and a�O �

pr
gαx�1�2n�d , . . . , rgαxd�3n q) we get

r
gαxd�n

r
gαxd�n

� xa�L � a
�
R � a�O,y

n�1
r1:s � y�n�1

r1:s y

� yQ�n�1
rn�1:s � pWL � a

�
L �WR � a

�
R �WO � a

�
Oq � xc,yQ�n�1

rn�1:s y � 0

Since τ |y R T SnACSPf
BadCh we have that y R BadChpτ |yq. Therefore, SZpfpY q, yq is false where f is

as defined in CheckBadpτ 1, yq. Since we have here that fpyq � 0, the polynomial fpY q is the zero
polynomial. Therefore, equating all the coefficients of fpY q to zero, we have that

a�L � a
�
R � a�O and a�L �WL � a�R �WR � a�O �WO � c .

[\

7 Non-adaptive srs-wee security

The notion of srs-wee security that we defined in Section 4 allows the prover to adaptively choose
its input. In the srs-wee analysis the extractor had access to the representation of the instance
since the algebraic prover generated the instance. But there are scenarios where the prover may
be non-adaptive and not be able to do that – for example, the input could be generated by another
party, and the prover tries to prove knowledge with respect to this input. Hence this section, we
consider a setting where instead of the prover adaptively choosing its input, an instance generator
generates an instance which is given to the prover. For protocols where the instance contains
group elements, we need an analysis entirely different from the analysis for srs-ewe because here
the representation of the instance will not available to the extractor.
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FORMALIZING N-SRS-WEE SECURITY. We formalize another notion of proof-of-knowledge (PoK)
security in the AGM where the input is not generated by the prover, instead the prover is given
an instance generated by an instance generator (we assume that Gen is an algorithm that takes as
input the public parameters and returns an instance x). We give a definition along the lines of srs-
wee. This new security notion called non-adaptive srs-wee or n-srs-wee is formally defined using
games NWEE-0,NWEE-1 in Figure 30. For an interactive proof IP, an associated relation R and an
instance generator Gen, non-uniform algebraic prover Palg, a distinguisher D, and an extractor E ,
we define

Advn-sr-weeIP,R,GenpPalg,D, E , λq � Pr
�
NWEE-1Palg,D

IP,Genpλq
�
� Pr

�
NWEE-0E,Palg,D

IP,R,Genpλq
�
. (29)

N-FS-EXT SECURITY. We can formalize a notion of non-adaptive proof-of-knowledge (PoK) secu-
rity in the AGM for non-interactive arguments obtained by applying the Fiat-Shamir transform to
an interactive protocol IP analogous to fs-ext-1 security. We can define it through a game N-FS-EXT
whose only difference from the game FS-EXT-1 is that there is an instance generator Gen which
outputs an instance x and the prover has to output a proof for the instance x instance of being able
to choose it adaptively. For an interactive proof IP and an associated relationR, instance generator
Gen algebraic prover Palg and an extractor E , we define

Advn-fs-ext
FSROrIPs,Gen,R

pPalg, E , λq � Pr
�
N-FS-EXTPalg,E

IP,R pλq
�
.

The following theorem connects the n-srs-wee of a public-coin protocol IP and the n-fs-ext sound-
ness of non-interactive protocol FSROrIPs, obtained by applying the Fiat-Shamir transform using
a random oracle. Its proof is very similar to the proof of Theorem 2 and has been omitted.

Theorem 8. Let R be a relation. Let IP be a r � rpλq-challenge public coin interactive protocol for the
relation R where the length of the ith challenge is cLenipλq such that sLenpλq ¤ cLenipλq ¤ hLenpλq
for i P t1, . . . , ru. Let Gen be an instance generator for the relation R. Let E be an extractor for IP such
that it always responds to queries with bit-strings of appropriate length chosen uniformly at random. We
can construct an extractor E� for FSROrIPs such that for every non-uniform algebraic prover P�

alg against
FSROrIPs that makes q � qpλq random oracle queries, there exists a non-uniform algebraic prover Palg and
D such that for all λ P N�,

Advn-fs-ext
FSROrIPs,R

pP�
alg, E , λq ¤ Advn-sr-weeIP,R pPalg,D, E , λq �

q � 1

2sLenpλq
.

Moreover, Palg makes at most q queries to its oracle and is nearly as efficient as P�
alg. The extractor E� is

nearly as efficient as E .

N-SRS-WEE SECURITY OF RngPf . Among the protocols whose srs-wee security we analysed earlier,
the only protocol which had a group element in its input was RngPf. The protocols ACSPf, SnACSPf
do not have a group element in their input and therefore their n-srs-wee security analysis would
be identical to the analysis for srs-wee security. For RngPf however, since we needed to use the
representation of the element V , which is not available in the n-srs-wee setting, we need to give a
new analysis. Next, in the following theorem we analyse the n-srs-wee security of RngPf.

Theorem 9. Let G � tGλuλPN� be a family of groups of order p � ppλq. Let RngPf � RngPfrGs be the
interactive argument as defined in Figure 7, for the relation R in (4). Let Gen be an instance generator for
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Procedure eprτ sq:

//rτ s �
�
pn,g,h, u, g, hq, rV s ; prAs , rSsq, py, zq, prT1s , rT2sq, x, pβx, µ, t̂q, w, prL1s , rR1sq, x1, . . . ,
prLlogns , rRlognsq, xlogn, pa, bq

�
If z2 � t1V x� t2V x

2 � 0 then return K
δpy, zq Ð pz � z2qx1n,yny � z3x1n,2ny

v� Ð pt̂� δpy, zq � t1gx� t2gx
2qpz2 � t1V x� t2V x

2q�1

γ� Ð pβx � t1hx� t2hx
2qpz2 � t1V x� t2V x

2q�1

Return pv�, γ�q

Fig. 31. The function e for RangeProof.

the relationR. We can construct an extractor E such that for any non-uniform algebraic prover Palg making
at most q � qpλq queries to its oracle, there exists a non-uniform adversary F with the property that for
any (computationally unbounded) distinguisher D, for all λ P N�,

Advn-sr-weeRngPf,R,GenpPalg,D, E , λq ¤

d
AdvdlGpFq �

2qp14n� 8q

p� 1
�

1

p
.

Moreover, the time complexity of the extractor E is Opq � nq and that of adversary F is Opq � nq.

Using Theorem 8, we get the following corollary.

Corollary 4. Let G � tGλuλPN� be a family of groups of order p � ppλq. Let RngPf � RngPfrGs be the
interactive argument as defined in Figure 7, for the relation R in (4). Let Gen be an instance generator for
the relation R. Let FSROrRngPfs be the non-interactive argument obtained by applying the Fiat-Shamir
transform to RngPf using a random oracle. We can construct an extractor E such that for any non-uniform
algebraic prover Palg making at most q � qpλq queries to the random oracle there exists a non-uniform
adversary F with the property that for all λ P N�,

Advn-fs-ext
FSROrRngPfs,Gen,R

pPalg, E , λq ¤

d
AdvdlGpFq �

2qp14n� 8q

p� 1
�

1

p
�
q � 1

p� 1
.

Moreover, the time complexity of the extractor E is Opq � nq and that of adversary F is Opq � nq.

We cannot reuse the framework we developed in section 4 to prove theorem 9 because the repre-
sentation of V is not available. However, at the algebraic level this proof shares similarities with
the proof of Theorem 4. So we provide a proof sketch omitting some details which are similar to
that in Theorem 4.

Proof (Sketch).
Like previously, we construct an extractor E that just answers challenges honestly, and applies

the function e (defined in Figure 31) to a path in the execution tree which defines an accepting
transcript, and returns whatever e returns. Observe from the definition of RngPf.V that if τ as
defined in (5) is an accepting transcript,

V z2gδpy,zqT x1 T
x2

2 � gt̂hβx .

Now, e can plug in the representations of T1, T2 into the above equation and compute the values
eV , eg, eh, eu, eg, eh such that V eV � geghehueugegheh . For example

eg � t̂� δpy, zq � t1gx� t2gx
2 , eV � z2 � t1V x� t2V x

2 .
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The procedure e returns eg{eV and eh{eV . However, its output is a valid witness only if eg � eh �
0n, eu � 0 and eg{eV P r0, 2n � 1s.

In order to upper bound the failure probability of e, we shall again construct an adversary H
against the discrete logarithm relation problem. In this case, it would first run Gen with its inputs
and get V . Like previously, it would run Palg on n,g,h, g, h, u, V . If Palg manages to produce an
accepting transcript τ1, H runs Palg on n,g,h, g, h, u, V with fresh randomness. The adversary H
needs to re-run Palg twice because the representation of V is not available.

If Palg manages to produce an accepting transcript τ2, H calls a helper function h on input
prτ1s , rτ2sq and outputs whatever h outputs. The definition of h is given in Figure 32.

Define E as the event that Palg succeeds in producing an accepting transcript but E fails. Let
Pr rEs � δ. Let δV � Pr rE|V was output by Gens. It follows that δ � E rδV s where the expectation
is over all V output by Gen.

We shall show that

Advdl-relG,2n�3pHq ¥ E
�
δ2V
�
�

2qp14n� 8q

p� 1
.

Using Lemma 2 we would have that there exists an adversary F such that

E
�
δ2V
�
¤ AdvdlGpFq �

2qp14n� 8q

p� 1
�

1

p
.

Using Jensen’s inequality we have that E
�
δ2V
�
¥ pE rδV sq

2 � δ2.
So, we have that

δ ¤

d
AdvdlGpFq �

2qp14n� 8q

p� 1
�

1

p
.

Then, it is easy to see that

Advn-sr-weeRngPf,R,GenpPalg,D, E , λq ¤

d
AdvdlGpFq �

2qp14n� 8q

p� 1
�

1

p
.

To conclude the proof of the theorem we need to show that

Advdl-relG,2n�3pHq ¥ E
�
δ2V
�
�

2qp14n� 8q

p� 1
.

Suppose H runs Palg, and it succeeds in producing accepting transcripts τ1, τ2 where for i � 1, 2

rτis �
�
pn,g,h, u, g, hq, V ; prAis , rSisq, pyi, ziq, prTi1s , rTi2sq, xi, pβix, µi, t̂iq, wi,

prLi1s , rRi1sq, xi1, . . . , prLi logns , rRi lognsq, xi logn, pai, biq
�
.

Define for i � 1, 2,

δpyi, ziq � pzi � z2i qx1
n,yi

ny � z3i x1
n,2ny ,

v�i � pt̂i � δpyi, ziq � ti1gxi � ti2gx
2
i qpz

2
i � ti1V xi � ti2V x

2
i q

�1 ,

γ�i � pβix � ti1hxi � ti2hx
2
i qpz

2
i � ti1V xi � ti2V x

2
i q

�1 .

Let E1 be the event that H runs Palg, and it succeeds in producing accepting transcripts τ1, τ2
and both of the following are true
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Procedure hprτ1s , rτ2sq:

//rτis �
�
pn,g,h, u, g, hq, V ; prAis , rSisq, pyi, ziq, prTi1s , rTi2sq, xi, pβix, µi, t̂iq, wi, prLi1s , rRi1sq, xi1, . . . ,
prLi logns , rRi lognsq, xi logn, pai, biq

�
δpY,Zq Ð pZ � Z2qx1n,Yny � Z3x1n,2ny

e
p1q
g Ð pz22 � t21V x2 � t22V x

2
2qpt11gx1 � t12gx

2
1q � pz21 � t11V x1 � t12V x

2
1qpt21gx2 � t22gx

2
2q; e

p1q
h Ð pz22 � t21V x2 �

t22V x
2
2qpt11hx1 � t12hx

2
1q � pz21 � t11V x1 � t12V x

2
1qpt21hx2 � t22hx

2
2q

e
p1q
u Ð pz22 � t21V x2 � t22V x

2
2qpt11ux1 � t12ux

2
1q � pz21 � t11V x1 � t12V x

2
1qpt21ux2 � t22ux

2
2q; e

p1q
g Ð pz22 � t21V x2 �

t22V x
2
2qpδpy1, z1q � t11gx1 � t12gx

2
1 � t̂1q � pz21 � t11V x1 � t12V x

2
1qpδpy2, z2q � t21gx2 � t22gx

2
2 � t̂2q

e
p1q
h Ð pz22 � t21V x2 � t22V x

2
2qpt11hx1 � t12hx

2
1 � β1xq � pz21 � t11V x1 � t12V x

2
1qpt21hx2 � t22hx

2
2 � β2xq

If pep1qg , e
p1q
h , e

p1q
u , e

p1q
g , e

p1q
h q � p0n,0n, 0, 0, 0q then return pep1qg , e

p1q
h , e

p1q
u , e

p1q
g , e

p1q
h q

For i � 1, 2 do
vig Ð pδpyi, ziq � ti1gxi � ti2gx

2
i � t̂iqpz

2
i � ti1V xi � ti2V x

2
i q

�1

vih Ð pti1hxi � ti2hx
2
i � βixqpz

2
i � ti1V xi � ti2V x

2
i q

�1

p1iV Ð aiV � xisiV ; p1ig Ð paigq � xisig � zi1
n

p1ih Ð aih � xsih � yi
�n � pziyi

n � z2i 2
nq; p1ig Ð aig � xisig

p1ih Ð aih � xisih � µi; p1iu Ð aiu � xisiu � wit̂i
For k � 0 to n� 1 do

e
pi,2q
gk�1 Ð

�
p1ig1�k �

logn°
m�1

limg1�kx
2
m � rimg1�kx

�2
m

	
� a �

�
logn±
m�1

x
p�1q1�bitpk,m,lognq

m




e
pi,2q
hk�1

Ð
�
p1ih1�k �

logn°
m�1

limh1�kx
2
m � rimh1�kx

�2
m

	
� byp�pkqq �

�
logn±
m�1

x
p�1qbitpk,m,lognq

m



e
pi,2q
g Ð pe

pi,2q
g1 , . . . , e

pi,2q
gn q; e

pi,2q
h Ð pe

pi,2q
h1

, . . . , e
pi,2q
hn

q

e
pi,2q
u Ð

�
p1iu �

logn°
m�1

limux
2
m � rimux

�2
m



� wi � aibi

e
p2q
g Ð

�
logn°
m�1

plimg � limV vigqx
2
m � primg � rimV vigqx

�2
m



� p1ig � p1iV vig

e
p2q
h Ð

�
logn°
m�1

plimh � limV vihqx
2
m � primh � rimV vihqx

�2
m



� p1ih � p1iV vih

If pep1,2qg , e
p1,2q
h , e

p1,2q
u , e

p1,2q
g , e

p1,2q
h q � p0n,0n, 0, 0, 0q then return pep1,2qg , e

p1,2q
h , e

p1,2q
u , e

p1,2q
g , e

p1,2q
h q

Return pep2,2qg , e
p2,2q
h , e

p2,2q
u , e

p2,2q
g , e

p2,2q
h q

Fig. 32. The function h for RngPf.

- v�1 R r0, 2
n � 1s _ gv

�
1 hγ

�
1 � V

- v�2 R r0, 2
n � 1s _ gv

�
2 hγ

�
2 � V

It is easy to see that Pr rE1s � E
�
δ2V
�
. We define the pair of transcripts pτ1, τ2q to be bad if any of

the following is true.

- CheckBadprτi|wis , wiq is false for i � 1, 2 where CheckBadprτ 1s , wq is defined in Figure 8.
- CheckBadprτi|xims , ximq is false for i � 1, 2 and m � 1, . . . , log n where CheckBadprτ 1s , xmq is

defined in Figure 8.
- CheckBadprτ1s , rτ2s , x1, x2q is false where CheckBadprτ1s , rτ2s , x1, x2q is defined in Figure 33.
- CheckBadprτ1s , rτ2s , py1, y2q, pz1, z2qq is falsewhere CheckBadprτ1s , rτ2s , py1, y2q, pz1, z2qq is de-

fined in Figure 33.

It can be shown that if Palg makes at most q queries in each execution, the probability that the
transcripts pτ1, τ2q are bad is at most 2qp14n�8q

p�1 . The proof of this statement is similar to the proof
of 5 and we omit the proof here.

First it is easy to see that the output h is always a discrete logarithm relation between g,h, u, g, h
but might be a trivial relation. Now we shall show that for a fixed pτ1, τ2q, hpτ1, τ2q returns a trivial
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Procedure CheckBadprτ1s , rτ2s, py1, z1q, py2, z2qq:

f1pY,Zq Ð Z2pδpy1, z1q�t11gx1�t12gx
2
1�t̂1q�pz

2
1�t11V x1�t12V x

2
1qpδpY,Zq�xa2g � Z1n, pa2h � Z1nq �Yn � Z22nyq

f2pY,Zq Ð Z2pxa2g,2
ny � xag,2

nyq � Zxag � ah � 1n,Yny � xag � ah,Y
ny

Return SZpf1pZq, zq _ SZpf2pZq, zq

Procedure CheckBadp
�
τ 11
�
,
�
τ 12
�
, x1, x2q:

//
�
τ 1i
�
�
�
pn,g,h, u, g, hq, V, prAis , rSisq, pyi, ziq, prTi1s , rTi2sq

�
δpY,Zq Ð pZ � Z2qx1n,Yny � Z3x1n,2ny
If z21 � t11V x1 � t12V x

2
1 � 0 then return true

If z22 � t21V x2 � t22V x
2
2 � 0 then return true

f11pXq Ð pz22 � t21VX � t22VX
2qpt11gx1 � t12gx

2
1q � pz21 � t11V x1 � t12V x

2
1qpt21gX � t22gX

2q
f12pXq Ð pz22 � t21V x2 � t22V x

2
2qpt11gX � t12gX

2q � pz21 � t11VX � t12VX
2qpt21gx2 � t22gx

2
2q

f21pXq Ð pz22 � t21VX � t22VX
2qpt11hx1 � t12hx

2
1q � pz21 � t11V x1 � t12V x

2
1qpt21hX � t22hX

2q
f22pXq Ð pz22 � t21V x2 � t22V x

2
2qpt11hX � t12hX

2q � pz21 � t11VX � t12VX
2qpt21hx2 � t22hx

2
2q

f31pXq Ð pz22 � t21VX � t22VX
2qpt11ux1 � t12ux

2
1q � pz21 � t11V x1 � t12V x

2
1qpt21uX � t22uX

2q
f32pXq Ð pz22 � t21V x2 � t22V x

2
2qpt11uX � t12uX

2q � pz21 � t11VX � t12VX
2qpt21ux2 � t22ux

2
2q

For i � 1, 2 do
lipXq Ð paig � zi � 1

nq � sig �X ; ripXq Ð yn � paih � zi � 1
n � sih �Xq � z2i � 2

n

δpy, zq Ð pz � z2qx1n,yny � z3x1n,2ny
f4pXq Ð pz22 � t21VX � t22VX

2qpδpy1, z1q � t11gx1 � t12gx
2
1 � t̂1q � pz21 � t11V x1 � t12V x

2
1qpδpy2, z2q � t21gX � t22gX

2

� xa2g �Xs2g � z21
n, pa2h �Xs2h � z21

nq � y2
n � z222

nyq
f5pXq Ð pxa2g,2

nyqpz21 � t11VX � t12VX
2q � δpy1, z1q � t11gX � t12gX

2 � xl1pXq, r1pXqy
Return SZpf11pXq, xq_SZpf12pXq, xq_SZpf21pXq, xq_SZpf22pXq, xq_SZpf31pXq, xq_SZpf32pXq, xq_SZpf4pXq, xq_
SZpf5pXq, xq

Fig. 33. The functions CheckBad function for the RngPf.

discrete logarithm relation and transcripts pτ1, τ2q are not bad then the event E1 cannot happen.
In other words, if E1 happens then either h returns a non-trivial discrete logarithm relation or
transcripts pτ1, τ2q are bad i.e.,

Pr rE1s ¤ AdvdlGpFq �
2qp14n� 8q

p� 1
.

This would give us

Advdl-relG,2n�3pHq ¥ E
�
δ2V
�
�

2qp14n� 8q

p� 1
.

We shall use the approach we used in the proof of Lemma 6 to prove that for a fixed pτ1, τ2q,
hpτ1, τ2q returns a trivial discrete logarithm relation and transcripts pτ1, τ2q are not bad then the
event E1 cannot happen. We shall first use that pep1qg , e

p1q
h , e

p1q
u , e

p1q
g , e

p1q
h q � p0n,0n, 0, 0, 0q and

pτ1, τ2q is not bad to conclude that gv
�
1 hγ

�
1 � V holds. First using ep1qg � 0n we get that

pz22 � t21V x2 � t22V x
2
2qpt11gx1 � t12gx

2
1q � pz21 � t11V x1 � t12V x

2
1qpt21gx2 � t22gx

2
2q � 0

Since pτ1, τ2q is not a bad transcript we can show that t11g � 0n, t12h � 0n, t21g � 0n, t21h � 0n.
Similarly using ep1qh � 0n and ep1qu � 0 we can show that ti1h � 0n, ti2h � 0n, tiu � 0 for i � 1, 2.

This means that we have that

V z21�t11vx1�t12vx
2
1 � gt̂1�δpy1,z1q�t11gx1�t12gx

2
1hβ1x�t11hx1�t12hx

2
1 .
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Since pτ1, τ2q are not bad, we have that z21 � t11vx1 � t12vx
2
1 � 0, so gv

�
1 hγ

�
1 � V .

Now, using pe
pi,2q
g , e

pi,2q
h , e

pi,2q
u , e

pi,2q
g , e

pi,2q
h q � p0n,0n, 0, 0, 0q for i � 1, 2 and that τ1, τ2 are not

bad, we can conclude like in Theorem 4 (since the values (pep2qg , e
p2q
h , e

p2q
u , e

p2q
g , e

p2q
h q and bad chal-

lenge function for challenges w and xi’s are defined identically to here) that for i � 1, 2

xaig � xisig � zi1
n, paih � xisih � zi1

nq � yi
n � z2i 2

ny � t̂i .

Now, using ep1qg � 0, we get that

pz22 � t21V x2 � t22V x
2
2qpδpy1, z1q � t11gx1 � t12gx

2
1 � t̂1q �

pz21 � t11V x1 � t12V x
2
1qpδpy2, z2q � t21gx2 � t22gx

2
2

� pxa2g � x2s2g � z21
n, pa2h � x2s2h � z21

nq � y2
n � z222

nyqq .

Since pτ1, τ2q are not bad we can show that

pδpy1, z1q � t11gx1 � t12gx
2
1 � t̂1qpz

2
1 � t11V x1 � t12V x

2
1q

�1 � xa2g,2
ny .

This means that v�1 � xa2g,2
ny. Now plugging in the value of t̂1 into above and using pτ1, τ2q are

not bad we can show that

xa2g,2
ny � xa1g,2

ny , a1h � a1g � 1n , a1h � a1g � 0n .

From this it follows that xa2g,2ny P r0, 2n � 1s i.e., v�1 P r0, 2n � 1s. So we have shown that v�1 P

r0, 2n � 1s and gv
�
1 hγ

�
1 � V . Hence we proved that for a fixed pτ1, τ2q, hpτ1, τ2q returns a trivial

discrete logarithm relation and transcripts pτ1, τ2q are not bad then the event E1 cannot happen.
This concludes the proof. [\
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Supplementary Materials

A Concurrent work by Bünz et. al.

Bünz et. al. [32] analyse the soundness of the non-interactive protocol obtained by applying the
Fiat-Shamir transform to a generalized version of the inner-product argument of Bulletproofs in
the AGM. Their analysis is asymptotic and they do not give a concrete bound in the paper.

However, as far as we can tell, making their analysis concrete against an algebraic t-time prover

making q random oracle queries would give a bound which contains the term
b
q � AdvdlGptq. In fact,

we think this term may be larger, and of order q
b
q � AdvdlGptq �

b
q3 � AdvdlGptq, but we are not sure

due to a lack of concrete analysis in the paper. This bound is not tight – the multiplicative factor
of q before the AdvdlGptq term is due to reduction to a problem that does not have a tight reduction
to the discrete logarithm problem.

This multiplicative factor of q would already be a problem. In the generic-group model, for
example, this would result in a term qt2{p � t3{p (assuming q � t), which only gives us roughly
85 bits of security on a 256-bit curve.

In our analysis, we give a single reduction to the discrete logarithm relation problem whose
hardness is tightly implied by the hardness of discrete logarithm problem, we avoid this multi-
plicative factor.

Additionally, analysing the inner product argument in the AGM in isolation does not directly
give the soundness bound for the full protocol because the bases to which elements are described
are not necessarily the same as those that would be available to a cheating algebraic prover against
the full protocol.
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