Tight State-Restoration Soundness in the Algebraic Group Model*

Ashrujit Ghoshal and Stefano Tessaro

Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, USA
{ashrujit, tessaro}@cs.washington.edu

Abstract. Most efficient zero-knowledge arguments lack a concrete security analysis, making parame-
ter choices and efficiency comparisons challenging. This is even more true for non-interactive versions
of these systems obtained via the Fiat-Shamir transform, for which the security guarantees generically
derived from the interactive protocol are often too weak, even when assuming a random oracle.

This paper initiates the study of state-restoration soundness in the algebraic group model (AGM) of Fuchs-
bauer, Kiltz, and Loss (CRYPTO 18). This is a stronger notion of soundness for an interactive proof or
argument which allows the prover to rewind the verifier, and which is tightly connected with the concrete
soundness of the non-interactive argument obtained via the Fiat-Shamir transform.

We propose a general methodology to prove tight bounds on state-restoration soundness, and apply it
to variants of Bulletproofs (Bootle et al, S&P "18) and Sonic (Maller et al., CCS “19). To the best of our
knowledge, our analysis of Bulletproofs gives the first non-trivial concrete security analysis for a non-
constant round argument combined with the Fiat-Shamir transform.
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1 Introduction

The last decade has seen zero-knowledge proof systems [1] gain enormous popularity in the de-
sign of efficient privacy-preserving systems. Their concrete efficiency is directly affected by the
choice of a security parameter, yet concrete security analyses are rare and, as we explain below,
hit upon technical barriers, even in ideal models (such as the random-oracle [2] or the generic-
group models [3,4]). This has led to parameter choices not backed by proofs, and to efficiency
comparisons across protocols with possibly incomparable levels of security. This paper addresses
the question of narrowing this gap for protocols whose security can be analyzed in the Algebraic
Group Model [5].

A CONCRETE EXAMPLE. It is convenient to start with an example to illustrate the challenges en-
countered in proving concrete security of proof systems. We focus on Bulletproofs [6], which are
argument systems with applications across the cryptocurrencies' and in verifiably deterministic
signatures [9], which in turn optimize prior work [10]. The soundness? analysis (of their inter-
active version) is asymptotic, based on the hardness of the discrete logarithm problem (DLP). Even
when instantiated from 256-bit elliptic curves, due to the absence of a tight, concrete, reduction,
we have no formal guarantee on concrete security. Indeed, recent work [11] gives concrete sound-
ness bounds in the generic-group model with somewhat unfavorable dependence on the size of
the statement being proved, and no better analysis is known.

Even more importantly, existing bounds are for the interactive version of the protocol, but Bul-
letproofs are meant to be used non-interactively via the Fiat-Shamir (FS) transform [12]. However,
the (folklore) analysis of the FS transform gives no useful guarantees: > Namely, for a soundness
bound ¢ on the interactive ZK proof system, the resulting NIZK has soundness ¢"¢, where g is the
number of random-oracle queries, and r is the number of challenges sent by the verifier. For Bul-
letproofs, we have £ > 27256 (this is the probability of merely guessing the discrete log), and if (say)
r = O(log(n)) > 16, we only get security for (at best) ¢ < 2'¢ queries, which is clearly insufficient.

OVERVIEW OF THIS PAPER. This paper studies the concrete security of succinct proof systems in
the algebraic group model (AGM) [5], with the goal of developing (near-)exact security bounds. The
AGM considers in particular algebraic provers that provide representations of group elements to
the reduction (or to the extractor), and has been successful to study security in a variety of contexts.
More specifically, this work is the first to look at multi-round public-coin protocols and their non-
interactive version obtained via the Fiat-Shamir transform. For the latter, we aim for bounds with
linear degradation in the number of random oracle queries ¢ even for a large number of rounds r,
as opposed to the ¢" degradation obtained from naive analyses. Prior work [5] has focused on the
simpler case of linear-PCP based SNARKSs [13], which are built from two-move interactive proofs
and without the FS transform.

The soundness of non-interactive systems resulting from the FS transform is tightly related
to the state-restoration soundness [14,15] of the underlying interactive protocol, where the cheating
prover can rewind the verifier as it pleases, until it manages to complete a full accepting interaction
with the verifier. No non-trivial bounds on state-restoration soundness are currently known on
any non-constant round argument.

'In particular, Bulletproofs have been deployed in Monero [7] and Signal’s upcoming MobileCoin [8].

2 In this introduction, security is with respect to soundness — usually the analysis of zero-knowledge security is much
more straightforward.

? We are actually not aware of any pointer to a write up of this folklore analysis, and we give it for completeness in the
paper below



We propose a general framework to quantitatively study state-restoration version of witness-
extended emulation (wee) [16,17] (which implies both state-restoration soundness and a proof-of-
knowledge property) in the AGM. We then and apply it to three case studies, which include two
variants of Bulletproofs, as well as Sonic [18]. These protocols have previously been analyzed only
with respect to plain soundness in the interactive setting. The analysis of Bulletproofs relies in
particular on the Forking Lemma of Bootle et al. [10], which was only very recently made con-
crete [11]. We believe that our framework can be applied to a number of other protocols, such as
Hyrax [19], Dory [20] or pairing-based instantiations of IOPs [21,22], and leave their analysis for
future work.

Remark 1. We stress that our approach differs formally from prior and concurrent works (e.g.,
[18,22]) which use the AGM to give a heuristic validation of the security of a component of a
protocol, which is then however assumed to satisfy extractability properties compatible with a
standard-model proof (i.e., an AGM extractor is used as a standard-model extractor.) Here, we
aim for full analyses in the AGM, and as we point out in our technical overview below, these ap-
proaches actually do not give a full-fledged proof in the AGM (beyond not giving a proof in the
standard model either).

BULLETPROOFS. We apply our framework to two instantiations of Bulletproofs — the first is for
range proofs, and the other is for general satisfiability of arithmetic circuits. For example, in the
former, a prover shows in O(logn) rounds that for a given Pedersen commitment C' = g"h" in a
cyclic group G of prime order p we have v € [0,2"). (Here, clearly, 2" < p.)

For the final non-interactive protocol obtained via the FS transform, our result implies that an
(algebraic) t-time prover making ¢ random-oracle queries can break security as a Proof of Knowl-
edge (when properly formalized) with advantage roughly

et,q) < O(qn/p) + Advg(t) , (1)

where Advl!(t) is the advantage of breaking the DLP within time . In the generic group model,
this is roughly O(#?/p), and this bound justifies the instantiation of Bulletproofs from a 256-bit
curve. For arithmetic circuit satisfiability, we obtain a similar bound.

TIGHTNESS AND DISCUSSION. Assuming Advd(t) ~ t2/p (which is true in the generic group
model), the above bound implies in particular that for most values of n,* the term O(qn/p) is
not leading. Still, we show that the dependence on n is necessary — in particular, we show that
there exist n, p for which we can construct a cheating prover that can break soundness with prob-
ability {2(¢n/p), meaning that this part of the bound is tight. (Our argument can be extended to
all bounds claimed in the paper.) Also, the term Advd(t) is clearly necessary, given that breaking
the DLP would directly give us an attack. This makes our bound essentially exact (up to small
constants).

AGM AND COMPOSITION. A challenging aspect of our analysis is the difficulty of dealing with
composition. The core of the Bulletproofs is indeed its O(log(n))-round inner-product argument. In
the standard model, and in the interactive case, it is not hard to reduce the security (as a proof of
knowledge) of the full-fledged system using Bulletproofs to the analysis of the underlying inner-
product argument, but it is not that clear how to do this generically in the AGM. In particular,
in the AGM, the adversary provides representations of group elements to the reduction (or the

— 9256

* For the circuit satisfiability version of our result, one should think of n = 2?° and p as representative values.
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extractor), and these are as a function of all priorly given group elements. The problem is that
when analyzing a protocol in isolation (such as the inner-product argument) the bases to which
elements are described are not necessarily the same as those that would be available to a cheating
algebraic prover against the full protocol. This makes it hard to use an extractor for the inner-
product argument in isolation as a sub-routine to obtain an extractor for a protocol using it. Also,
because we consider state-restoration soundness, a sub-protocol can be initiated by a cheating
prover several times, with several choices of these basis elements.

The downside of this is that our analyses are not modular, at least not at a level which consid-
ers sub-protocols are isolated building blocks — we give two different analyses for two different
instantiations of Bulletproofs, and the shared modularity is at the algebraic level.

We discuss this further at the end of our technical overview below.

SONIC. As a second application, we study Sonic [18]. This is a constant-round protocol, and in
particular with 3M + 2 challenges for some constant M/ > 1. In this case, the folklore analysis
of the FS transform can be used to obtain a non-trivial bound, incurring a multiplicative loss of
¢*M+2 from the soundness of the interactive version. Here, we want to show that this loss is not
necessary and also obtain a bound which degrades linearly in ¢q. Moreover, no concrete bound on
the concrete soundness of Sonic was given in the interactive setting.

We ignore the stronger requirement of updatable witness-extended emulation because our
pedagogical point here is that our framework can improve soundness even for constant-round
protocols.

We also note that Sonic’s proof already uses the AGM to justify security of the underlying poly-
nomial commitment scheme, but follows a (heuristic) pattern described above where the resulting
extractor is expected to behave as a standard-model one, and is used within a standard-model
proof.

ADAPTIVE VS NON-ADAPTIVE SOUNDNESS. It is important to understand that one can consider
both adaptive and non-adaptive provers, where the former also chooses the input for which it at-
tempts to provide a proof. Clearly, one expects adaptive provers to be harder to handle, but this
is not necessarily true for algebraic provers — in particular, if the input contains group elements,
the extractor can obtain useful information (and, possibly, directly extract) from their group rep-
resentation. While this does not render the proof trivial at all, it turns out that for non-adaptive
security, the proof is even harder. In this paper, we deal mostly with adaptive provers, but for the
case of range proofs (where the inputs are commitments in a group), we also give a proof for non-
adaptive security — the resulting bound is increased to the square root of the adaptive bound, due
to our limited use of rewinding.

RELATED WORK: PROOFS VS ARGUMENTS. We clarify that state-restoration soundness has been
studied for several forms of interactive proofs [14,15,23,24], also in its equivalent form of “round-
by-round” soundness. Some proof systems satisfy it directly (such as those based on the sumcheck
protocol [25]), whereas any proof with non-trivial (plain) soundness can be amplified into one with
sufficient stare-restoration soundness (e.g., with parallel repetition). This is because (similar to our
statement about the Fiat-Shamir transform above) one can naively infer that a concrete soundness
bound ¢ implies a state-restoration soundness bound ¢"¢, where r is the number of challenges,
and thus ¢ needs to be smaller than ¢~".

However, we do not know of any non-trivial bounds on state-restoration soundness for multi-

round arguments based on computational assumptions (as opposed to, say, arguments in the
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ROM), and moreover, soundness amplification (e.g., [26,27,28,29]) does not reduce soundness be-
yond the largest negligible function, and this is insufficient to absorb the ¢" loss.

BEYOND THE AGM. Our results are inherently based on online extraction, which is only mean-
ingful in ideal models or using knowledge assumptions. One scenario where ideal models are
inherently used is in the compilation of IOPs into NIZKs in the ROM via the BCS transform [14] —
it is unclear whether our technique can be used to give tight state-restoration soundness bounds
for systems such as Aurora [30] and STARK [31].

CONCURRENT WORK. In a recently updated version of [32], Biinz et. al. analyse the soundness
of the non-interactive inner-product argument of Bulletproofs in the AGM. We provide a brief
comparison with their result Appendix A but note here that their analysis is asymptotic, and gives
weaker concrete security (insufficient for instantiations on 256-bit curves) when made concrete.

1.1 Overview of our Techniques

We give a general framework to derive tight bounds on state-restoration soundness in the AGM.
In fact, we will target the stronger notion of witness-extended emulation [16,17], which we adapt to
state-restoration provers. Recall first that the main characteristic of the AGM is that it allows the
reduction, or in our case the extractor, to access representations of group elements. A contribution
of independent interest is to set up a formal framework to define extraction in the AGM.

PREFACE: ONLINE EXTRACTION IN THE AGM. In the AGM, the reduction (or an extractor) obtains
representations of each group element in terms of all previously seen group elements. A useful
feature of the AGM is that it often (but not always) allows us to achieve online witness extraction, as
already observed in [5,33]. In other words, by looking at the representation of the group elements
provided by the prover in a single interaction, the extractor is able to extract a witness, without the
need of rewinding.

Online extraction however immediately appears to be very useful to tame the complexity of
state-restoration provers. Indeed, one can visualize an interaction of an adversarial state-restoration
prover P* with the verifier V' as defining an execution tree. In particular, P* wins if it manages to
create a path in the execution tree associated with an accepting (simple) transcript

T = (alvclaGQa s 7cr’a7‘+1) )

where aq,as,...,a,+1 are P*’s messages, and cy, . . ., ¢, are the verifier’s challenges. (We focus on
public-coin protocols here.) Online extraction from a single transcript 7 directly implies extraction
here, because a witness can directly be extracted locally from the path 7 (and the corresponding
representations of group elements), disregarding what happened in the rest of the execution tree.
In particular, the probability that P* succeeds equals the probability that a witness is extracted.
Without online extraction, we would have to use rewinding — but current techniques [10,11] do
not seem to easily extend to state-restoration provers.

However, this only holds for perfect online extraction — in general, we may be able to gener-
ate transcripts which are accepting, but for which no witness can be extracted. This is typically
because of two reasons:

- Bad Challenges. A bad choice of challenges may prevent witness extraction.

- Violating an assumption. A transcript is accepting, but the resulting interaction corresponds
to a violation of some underlying assumption (i.e., one can extract a non-trivial discrete loga-
rithm relation).



Our framework will exactly follow this pattern. For an r-challenge public-coin protocol, we iden-
tify bad challenges, i.e., for each i € [r], input z, and partial transcript 7’ = (a1, c1,. .., ai—1,¢i—1,a;),
we define a set of bad challenges ¢; which would make extraction impossible. Crucially, these sets
are defined according to a simple interaction transcript (i.e., not a state-restoration one) and can be
defined according to the representation of group elements in the transcript so far. Then, given a
transcript 7 with no bad challenges, we show that:

- We can either extract a witness for = from 7 (and the representations of the group elements in
T).

- We can use 7 (and the representation of the group elements in terms of the public parameters)
to break some underlying assumption.

To illustrate this, we give a non-trivial example next, which considers a simplified instance of the
inner product argument at the core of Bulletproofs, but which already captures all subtleties of the
model.

INNER-PRODUCT ARGUMENT OF BULLETPROOFS. In the inner product argument the prover proves
that a group element P € G is a well-formed commitment to vectors a,b € Z; and their inner-
product {a, b).> More precisely, the prover wants to prove to the verifier that P = g2hPu(®P
where g € G",h € G",u € G are independent generators of G.

Here, we shall focus on the special case n = 2 first, and below discuss challenges in scaling our
analysis up to any n. The prover first sends to the verifier group elements L, R where

I = 91211 hiizumbz . R= gibzhgluazln )
The verifier samples z uniformly at random from Z; and sends it to the prover. We then define
p = LxQPR:r_Q I B = hxh:p_l
= 9 =91 92,0 =Ry

The prover sends a’ = ayz + agz ™! and b’ = byx ! + bex to the verifier, which in turns accepts if
and only if
P = (g/)a’(h/)b’ua’b' .

EXTRACTION FOR n = 2. For this discussion, we focus in particular on the notion of adaptive
soundness — i.e., the prover provides P along with its representation, i.e, we get a’ = (pg,,pg,),
b’ = (pn,,pn,) and p, such that P = ga'hb'up“. At first, it looks like we are done — after all, we
can just check whether (a’, b") = p,,, and if so, output (a’, b’) as our witness. Unfortunately, things
are not that simple — we need to ensure that no accepting transcript 7 = ((L, R), z, (a/, 1)), i.e.,
such that P = (¢')% (h')"u®"?, is ever produced if (a’, b’y # p,, for otherwise our naive extraction
would fail.

To this end, we will prove that if the cheating prover can produce an accepting interaction such
while (&', b") # p,, then we can solve the discrete logarithm problem in the group G. We construct
an adversary A that takes as inputs g1, g2, h1, ho, u and attempts to return a non-trivial discrete
logarithm relation between them. (Breaking this is tightly equivalent to breaking the discrete log-
arithm problem.) Concretely, the adversary A gives g1, g2, h1, ho, v as input to the cheating prover
P, which first returns an adaptively chosen input P € G, along with is algebraic representation

_ Pg1 Pgo phl phg P
P =g,"" g, h; " hy 2 uP .

® We use boldface to denote vectors. For two vectors a = (a1, ..., an), g = (g1, - -, 9n), We use g* to denote [ | g.
=1
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The adversary then simulates the execution of P with a honest verifier further, and assumes it gen-

erates an accepting transcript 7 = ((L, R), z, (a/, b)) — this transcript contains the representations
loy lgy o lny o1 S .

of L, R such that L = ¢" g2h{" hy'?ul* and R = ¢," go"2h}"* hy"?u" and since it is an accepting

transcript we have

LwQ PRJ/.72 _ gllx—la/ggla/ h%,lb/ hg—lb/ua/b/ )
We can plug in the representations of L, R into the equality and obtain values ey, , e4,, €p, , €n,, €u
such that

91" g5 b hyu =1, @

For example e;, = 2z 'a' — I 2% —ry 22 —p,y, and e, = @'V — 1, 2% — ry2 2 — py.

The adversary A then simply outputs (eg, , €g,, €n,, €n,, €4) — it has found a non-trivial discrete
logarithm relation if (ey,, €g,, €n,, €hy,€u) # (0,0,0,0,0), which we next show happens with very
high probability if p,, # pg, Pr, + DgoDhs-

Suppose (eg, , €gys €hy» €hyy €u) = (0,0,0,0,0). From ey, = 0, wehave thatz1a'—1g 2? —rg 72—
pg: = 0.Since z # 0, we get that @’ = [y, 2% + g, 27! + py, 2. Similarly from e,, = 0, we would get
a' = lgx + pgx ' + rgx3. With high probability over the choice of z’s, by the Schwartz-Zippel
Lemma, we can infer by equating both right-hand sides that

a = TPg, + $*1p92 .
Similarly, from ej,, = 0 and ep, = 0, we obtain that
V' =2 'pp, + zph,
for most «’s. Finally, from e,, = 0, we similarly learn that
't = 2%l 4 pu + 7%y .
Hence from the above

2%y + pu + T 2Ty = Py Phy + PgaDhs + P PhaT” + DgyDha T2

Since we have that py, pn, + pg.Pn, # Pu, the above equality holds with very small probability over
the choice of z’s.

Hence we have shown that (ey,, eg,,€n,,€ny,e4) = (0,0,0,0,0) with very small probability.
Therefore A succeeds with high probability.

NON-ADAPTIVE SECURITY. The above proof exploits the fact that the prover provides a represen-
tation of P — this corresponds to the case of an adaptive prover. But there are scenarios where the
prover may be non-adaptive and not be able to do that — for example, the input P has been gener-
ated by another party, and the prover tries to prove knowledge with respect to this P. It turns out
that in this case, one needs a different proof. In fact, one could give an extraction strategy which
does not require knowing an initial representation for P, but it is then hard to give a reduction to
the discrete logarithm problem to show correctness.

We stress that non-adaptive provers and adaptive provers are equivalent in many applica-
tions — they only differ when the input includes group elements. We give a formalization and a
case study (for Bulletproofs range proofs) in Section 7. There, we can actually give a reduction
to the discrete logarithm problem (to bound the probability of failing to extract), but this requires
rewinding once — this allows us to prove a bound which is the square root of the bound for adaptive
provers.



THE RECURSIVE PROTOCOL FOR n = 4. Scaling the protocol to an arbitrary n proceeds via recur-
sion. For concreteness, let us focus on the case n = 4. The prover first sends to the verifier group
elements L, R where

_ a1 ,a23b37bs, arbs+asby _ 03 ,a43b17b2  azbi+asbo
L = g3t g,*hi’ hy'u s R=9¢1%95"h3' hiu .

The verifier samples = uniformly at random from Z; and sends it to the prover. The prover and
the verifier both compute

P =L"PR" " gl=gt g8, gh=g5 oi, Wy =hing | hy=hshy .

The prover also computes a} = a1x+azz ™!, ay, = asz+asz™1, b = biz 1 +bsz and by = box ! +by.
Observe that

P’ = (gh)% () ()15 (1P

Now, the prover and the verifier engage, recursively, in the protocol for n = 2 with inputs

(91, 92), (h1, ha), u, P, (a1, az), (b7, 5) -

The difficulty in analyzing this is that we would like our proof strategy to be recursive, i.e., given
we analyzed the protocol for n secure, we can now infer that the one for 2n also is secure. This will
not be so direct, unfortunately. One major technical issue is for example that the recursive call uses
different generators than the ones used for the calling protocol — in our case, here, (g}, g5), (R}, h})
—however, when looking at the combined protocol in the AGM, all element representations would
be with respect to the generators g1, ..., g4, b1, ..., hs, and this makes it difficult to directly recycle
the above analysis.

THE CHALLENGES WITH COMPOSITION. The inability to leverage recursion to simplify the ap-
proach from the previous paragraph is not an isolated incident. We note that a non-trivial aspect
of our analyses is due to the lack of easy composition properties in the AGM. In particular, we
encounter the following problem - if we have a protocol II’ (e.g., the inner-product argument)
which is used as a sub-protocol for II (a Bulletproofs range proof), and we prove extractability
for IT’, it is not clear we can infer extractability for IT in a modular way by just calling the extrac-
tor for II'. This is because a stand-alone analysis of /I’ may assume group elements output by a
malicious prover P’ are represented with respect to some set of basis elements — say, the genera-
tors g1,...,9n,h1,..., hy,u in the concrete example of inner-product argument described above.
However, when 11’ is used within II, the generators of the inner-product argument are functions
of different group elements. When studying a prover P attacking II, then, representations of group
elements are with respect to this different set of group elements, and this makes it hard to use an
extractor for 11’ directly, as it assumes different representations.

This is a problem we encounter in our analyses, and which prevents us from abstracting a
theorem for the inner-product argument which we could use, in a plug-and-play way, to imply
security of higher-level protocols using it. The flip side is that this lack of composability also comes
to our advantage — our extractors will in fact not even need to extract anything from the transcript
of an accepting execution of the inner-product argument, but only use the fact that it is accepting
to infer correctness of the extracted value.



THE ISSUE WITH PRIOR AGM ANALYSES. Composition issues seemingly affect existing analyses of
proof systems in the literature (e.g., [18,22]), whenever some components are analyzed in the AGM
(typically, a polynomial commitment scheme), but the overall proof is expressed in the standard
model. As far as we can tell, unlike this work, one cannot directly extract a full AGM analysis from
these works — let us elaborate on this.

Obviously, from a purely formal perspective, the standard model and the algebraic group
model cannot be quite mixed, as in particular the AGM extractor for the component cannot be
used in the standard model — the only formally correct way to interpret the analysis is as fully in
the AGM, but part of the analysis does not leverage the full power of the model, and is effectively
a standard-model reduction. Yet, in order for composition to be meaningful, it is important to ver-
ify that the basis elements assumed in the AGM analysis of the components are the same available
to a prover attacking the complete protocol. While we cannot claim any issues (in fact, we give an
analysis of Sonic in this paper with a concrete bound), it does appear that all existing works do
not attempt to provide a formal composition — they use the existence of an AGM extractor as a
heuristic validation for the existence of a standard-model extractor, rather than making formally
correct use as an AGM extractor within an AGM proof. Making this composition sound is poten-
tially non-trivial. Having said this, for pairing-based polynomial commitment schemes, the basis
elements are generally the same, and thus this can likely be made rigorous fairly easily (unlike the
case of inner-product arguments).

2 Preliminaries

Let N = {0,1,2,...} represent the set of all natural numbers and let Nt = N\{0}. For N € N7, let
[N] ={1,..., N}. We use Pr[G] to denote the probability that the game G returns t rue. Let G be
a cyclic group of prime order p with identity 1 and let G* = G\{1} be the set of its generators. We
use boldface to denote a vector, e.g., g € G" is a vector of n group elements with its ith element
being g¢;, i.e., g = (g1,...,9n). For two vectors a = (ai,...,a,),8 = (91,...,9n), We use g2 to
denote | [, g;*. We use python notation to denote slices of vectors:

g = (91,90 €G, gy = (141, -, 9n) €G" L.

For z € Z;, we use z" to denote the vector (1, z, 22, 2", Similarly, we use z=" to denote the
vector (1,271,272 ... 2 ") If Z is a variable, Z" represents the vector (1, Z, Z2,..., Z"1). Our
vectors are indexed starting from 1, so zﬁf]l is the vector (z, 22, ..., 2™). The operator o denotes the

Hadamard product of two vectors, i.e.,
a = (al,...,an) 5 b = (bl,...,bn) , aob= (albl,...,anbn) .

We use capitalized boldface letters to denote matrices, e.g., W € Z;*™ is a matrix with n rows and
m columns.

We denote the inner product of two vectors a, b € Z; using (a, b). We also define vector poly-
nomials, e.g., f(X) = Z?:o f; X, where each coefficient f; is a vector in Ly

The function bit(k, i, t) returns the bit k; where (k1, ..., k:) is the ¢-bit representation of .

SCHWARTZ-ZIPPEL LEMMA. The polynomial ring in variables X, ..., X,, over the field F is de-
noted by F[ X7, ..., X,].



Game G (A, \): Game G 7(A, \): Game GL¥(A, \):

g 3 Gr*; h s Gy g1y gn <3Gy g s Gy*

a<«s Ax(g,h) (a1,...,an) s Ax(g1, ..., gn) T 5 Zp(x)

Return (¢* = h) Return ([] g% =1 A (a1,...,an) % 0") 2 s A,\({gzd}L,q)
=1

Return (z = ')

Fig.1. The games used to define the advantage of a non-uniform adversary A = {A,\},cn+ against the discrete
logarithm problem, the discrete logarithm relation problem and the ¢-DLOG problem in a family of cyclic groups
G = {Ga}ren+ with prime order order p = p()). The set G ™ is the set of generators of G.

Lemma 1 (Schwartz-Zippel Lemma). Let F be a finite field and let f € F[ X1, ..., X,] be a non-zeron
variate polynomial with maximum degree d. Let S be a subset of F.Then Pr | f(z1,...,2,) = 0] < d/|S|,
where the probability is over the choice of x1, . .., x, according to z; <s S.

In particular if p is a prime and f € Z,| X | is a polynomial of degree d and «x is sampled uniformly
at random from Z;, then Pr [f(z) = 0] < d/(p — 1). Further this implies that if g(X) = f(X)/Xx?
for i € N and z is sampled uniformly at random from Z, then Pr[g(x) = 0] = Pr[f(z) = 0] <
d/(p = 1).

THE DISCRETE LOGARITHM PROBLEM. The game G in Figure 1 is used for is used for defining
the advantage of a non-uniform adversary A = {A\},cn+ against the discrete logarithm problem
in a family of cyclic groups G = {G)},en+ of prime order p = p(\) with identity 1 and set of
generators G* = {G}} en+ = {GA\{1}}ren+- We define

Advdl(A4, )) = Pr [G&'(A, )\)] .

THE DISCRETE LOGARITHM RELATION PROBLEM. The game qu;f:,;e' in Figure 1 is used for defining

the advantage of a non-uniform adversary A = {A,} e+ against the discrete logarithm relation
problem in a family of cyclic groups G = {G)}\en+. We define A = { Ay} en+ as

AV (A, ) = Pr [GEE (A, )|

The following lemma shows that hardness of the discrete logarithm relation problem in G is tightly
implied by the hardness of discrete logarithm problem in a family of cyclic groups G = {G} en+-

Lemma 2. Let n € N*t. Let G = {G}en+ be a family of cyclic groups with order p = p(X). For every
non-uniform adversary A = { Ay} en+ there exists a non-uniform adversary B = {Bx} \en+ Such that for
all \ e Nt, Adqu;fjrge' (A, \) < Adv¥ (B, \) + 1/p. Moreover, B is nearly as efficient as A.

We refer the reader to [11] for a proof of this lemma.

THE ¢-DLOG PROBLEM. The game (:‘u(%:dI in Figure 1 is used for defining the advantage of a
non-uniform adversary A = {A)}\en+ against the ¢-DLOG problem in a family of groups G =
{G)\})\GI\H . We define

AdVE (A, \) = Pr [ng'(A, /\)] .
We note that there are other problems known as ¢-DLOG which are not equivalent to the one

we use here. We use the version stated above because it was the version used in the analysis of
Sonic [18] which we analyse in this paper.



Game SRS ()\): Oracle Oyt (7 = (a1, ¢1,...,Qi—1,Ci—1), ai):

win « false;tr < ¢ If 7 € tr then
pp s IP.Setup(1*) If i < r then
(z,stp) <s Pr(pp) ¢i <3 Chy; tr — tr| (7, ai, ¢;); Return ¢;
Run PO (stp) Elseif i = r + 1 then
Return win d — IP.V(pp,z, (1,a:)); tr < tr || (1, as)
If d = 1 then win « true
Return d
Return L

Fig. 2. Definition of state-restoration soundness. The game SRS defines state-restoration soundness for a non-uniform
prover P and a public-coin interactive proof IP. Here, IP has r = r(\) challenges and the i-th challenge is sampled from
Ch;.

3 Interactive Proofs and State-restoration Soundness

We introduce our formalism for handling interactive proofs and arguments, which is particularly
geared towards understanding their concrete state-restoration soundness.

INTERACTIVE PROOFS. An interactive proof [1] IP is a triple of algorithms: (1) the setup algorithm
IP.Setup which generates the public parameters pp, (2) the prover IP.P and (3) the verifier IP.V. In
particular, the prover and the verifier are interactive machines which define a two-party protocol,
where the prover does not produce any output, and the verifier outputs a decision bit d € {0, 1}. We
let {IP.P(z),IP.V(y)) denote the algorithm which runs an execution of the prover and the verifier
on inputs x and y, respectively, and outputs the verifier’s decision bit. We say that IP is public coin
if all messages sent from IP.V to IP.P are fresh random values from some understood set (which
we refer to as challenges).

COMPLETENESS. A relation R is (without loss of generality) a subset of {0,1}* x {0,1}* x {0, 1}*.
We denote a relation R that uses specified public parameters pp, instance x and witness w as
{(pp,z,w) : fr(pp,z,w)} where fr(pp,z,w) is a function that returns true if (pp,z,w) € R and
false otherwise. For every A € N* and every A, define the following experiment:

pp «s IP.Setup(1*) , (z,w) s A(pp) , d s (IP.P(pp,z,w),IP.V(pp,)) .

Then, we say that IP is an interactive proof for the relation R if for all A and all A € N¥, in the
above experiment the event (d = 1) v ((pp, z, w) ¢ R) holds with probability one.

STATE-RESTORATION SOUNDNESS. We target a stronger notion of soundness — state-restoration
soundness (SRS) [14,15] — which (as we show below) tightly reduces to the soundness of the non-
interactive proof obtained via the Fiat-Shamir transform. The SRS security game allows the cheat-
ing prover to rewind the verifier as it pleases, and wins if and only if it manages to produce
some accepting interaction. We only consider an r(\)-challenge public-coin interactive proof IP,
and consider the case where challenges are drawn uniformly from some sets Chy,...,Ch,. We
also assume that the verifier is described by an algorithm which given pp, x, and a transcript
T = (a1,c1,...,ar,¢r,ar41), Outputs a decision bit d € {0,1}. We overload notation and write
IP.V(pp, z, 7) for this output.

Our definition considers a game SRS/p()\) (which is formalized in Figure 2) that involves a
non-uniform cheating prover P = {Py}en. (Henceforth, whenever we have any non-uniform
adversary A, it is understood A = {A)} en — we shall not specify this explicitly). The prover is
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initially responsible for generating the input  on which it attempts to convince the verifier on
some execution. Its rewinding access to the verifier is ensured by an oracle O, to which it has
access. Roughly speaking, the oracle allows the prover to build an execution tree, which is extended
with each query to it by the prover. This execution tree can be inferred from tr, which sequentially
logs all (valid) queries to Oyt by the prover. For a partial transcript 7/, we write 7/ € tr to mean
that a partial execution corresponding to 7’ can be inferred from tr.

We then associate the probability of winning the game with the srs advantage metric,

AdViE(P, \) = Pr [SRS'pP(/\)] :

For notational convenience, we do not restrict the input « not to have a witness. Therefore, if
IP is an interactive proof for a relation R, we cannot hope to show that Adv{5 (P, \) is small for
all P. Clearly, if P outputs (z,a) such that (pp,z,a) € R, then a is a witness and P can simply
(honestly) convince the verifier. The classical notion of state-restoration soundness is recovered by
only considering P’s which output x such that (pp, z, w) ¢ R for any w.

The following lemma shows a (generally loose) connection between (plain) soundness and
state restoration soundness.

Lemma 3 (Naive Reduction). Let IP be a r(\)-challenge public-coin interactive proof. Then, for every
non-uniform prover P invoking Oexy at most g = q(\) times, there exists a linear prover P’ (with com-

plexity similar to that of P) such that for all X\ € N*, Advi5 (P, \) < (T(‘&()’\ll) - AdViE (P!, N).

We omit the (simple) proof — the adversary P’ simply “guesses” the accepting path, which
consists of r + 1 queries.

If IP is publicly verifiable, we can prove the following slightly improved bound.Advig (P, \) <
(383) - Advip (P’, A). In this case the adversary P’ would need to guess only the first r messages
and use the public verification procedure to check if any of the ¢ queries is a valid last message.

4 Proofs of Knowledge in the AGM

THE ALGEBRAIC GROUP MODEL. We start here with a brief review of the AGM [5]. For an under-
stood group G with prime order p, an algebraic algorithm A,¢ is an interactive algorithm whose
inputs and outputs are made of distinct group elements and strings. Furthermore, each (encoding)
of a group element X output by A, is accompanied by a representation (xa,, 4, - ..,x,) € ZE

such that X = ]_[?:1 AfAi, where Ay, ..., Aj are all group elements previously input and out-
put by A,jg. Generally, we write [X] for a group element X enhanced with its representation,
eg,[X] = (X,24,,24,,...,24,). In particular, when we use a group element X output by A,,
e.g. it is input to a reduction or used in a cryptographic game, we write [ X | to make explicit that
the representation is available, whereas write X only when the representation is omitted. The no-
tation extends to a mix of group elements and strings a — [a] enhances each group element with
its representation.

DEFINING AGM EXTRACTION. We formalize a notion of proof-of-knowledge (PoK) security in the
AGM, following the lines of witness-extended emulation [16,17], which we extend to provers that
can rewind the verifier.
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Game WEE-1/"%"" ()\): Oracle Ol (7 = (a1,c1,. .., ai1,ci1), a:):

tr ¢ If 7 € tr then
pp <= IP.Setup(1*) If i < rthen
([x] , stp) <3 Paig,A(pP) c; < Chy; tr « tr | (7, a4, ¢;); return ¢;
Run 'Pacl)i:it (stp) Elseif i = r + 1 then
b s D(tr) d — IP.V(pp,z,7 | as)
Return (b = 1) Return d

P Return L
Game WEE-0,; "~ (\): Oracle O, (7 = (a1,¢1,...,0i-1,¢i—1),a:):
tre—e If 7 € tr then
pp «s IP.Setup(1*) If i < r then
([],5tP) = P (pP) (resp, ste) <= (ste., [(7, a:)])
ste « (1%, pp, [z]) tr «— tr|| (7, as, resp)
Run P;’g&; (stp) Return resp
w<—$€(§tg,J_) Elseif i = r 4+ 1 then
b s D(tr) d < IP.V(pp,z,7 | a:)
Return (b = 1) A (Acc(tr) = (pp,z,w) € R) Return d

Return L

Fig. 3. Definition of online srs-wee security in the AGM. The games WEE-1, WEE-0 define online srs-wee security in
the AGM for a non-uniform algebraic prover P, a distinguisher D, an extractor £ and a public-coin interactive proof
IP. We assume here that IP has r = r()) challenges and the i-th challenge is sampled from Ch;.

We will be interested in cases where the AGM allows for online extraction, i.e., the additional
group representations will allow for extraction without rewinding the prover. We target an adap-
tive notion of security, where the input is generated by the adversarial prover itself, depending on
the public parameters pp, and can contain group elements.

D

ONLINE SRS-WEE SECURITY. The definition consists of two games — denoted WEE—lﬁ;'g’ and

WEE—O,gp’%'g’D, and described in Figure 3. The former captures the real game, lets our prover

P = {Px}en interact with an oracle O/, as in the state-restoration soundness game defined above,
which additionally stores a transcript tr. The latter is finally given to a distinguisher D which out-
puts a decision bit. In contrast, the ideal game delegates the role of answering P’s oracle queries
to a (stateful) extractor £. The extractor, at the end of the execution, also outputs a witness can-
didate for w. The extractor in particular exploits here the fact that P is algebraic by learning the
representation of every input to the oracle OY,;. (This representation can be thought, without loss
of generality, as being in terms of all group elements contained in pp.) Here, the final output of the
game is not merely D’s decision bit — should the latter output 1, the output of the game is true
only if additionally the extracted witness is correct assuming the interaction with O, resulted in
an accepting execution — a condition we capture via the predicate Acc(tr).

For an interactive proof IP and an associated relation R, non-uniform algebraic prover P,jg, a
distinguisher D, and an extractor £, we define

AdVi5 e (Paig, D, £, ) = Pr [WEE-1Z§'€’D(A)] —Pr [WEE-ofF;?j;'g’D(A)] . 3)

One can consider also scenarios where the prover may be non-adaptive — for example, the input
has been generated by another party, and the prover tries to prove knowledge with respect to this
input. For this reason, introduce the notion of non-adaptive srs-wee in Section 7.
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SOUNDNESS FROM POK. The definition of state-restoration soundness from Section 3 also applies
to any algebraic prover. The following theorem relates soundness to the witness-extended emula-
tion — the proof is immediate.

Lemma 4. Let IP be an interactive proof for a relation R, and let P, an algebraic prover which, on input
pp, outputs x such that (pp, x,w) ¢ R for all w. Then, for any extractor £, and D(-) = Acc(-), we have for
all X € N*, AdviF (Paig, A) < Advip 5°(Paig, D, €, ).

4.1 The Basic Framework

We develop a general framework that we will use, via Theorem 1, to derive concrete AGM bounds
on srs-wee security. Our goal, in particular, is to give conditions on single path executions —i.e.,
executions not involving any rewinding of the verifier by the prover, which could be seen as root-
to-leaf paths in an execution tree generated by the interaction of a state-restoration prover.

TRANSCRIPTS. From now on, let us fix an interactive public-coin proof IP = (IP.Setup, IP.P,IP.V)
for a relation R. Assume further this protocol has exactly  rounds of challenges. Then, we rep-
resent a (potential) single-execution transcript generated by an algebraic prover in different forms,
depending on whether we include the representations of group elements or not. Specifically, we
let the (plain) transcript be 7 = (pp,z,a1,c1,a2,¢2,...,ar, ¢, ary1), Where pp are the generated
parameters, x is the input produced by P,ig, ¢; € Ch; for alli € {1,...,r} are the challenges, and
ai,...,ar+1 are the prover’s messages. The corresponding extended transcript with representations
is denoted as [7] = (pp, [2], [a1] , c1, [a2] , c2, - . -, [ar] , cr, [ars1])-

In particular, the representation of each group element contained in a; is with respect to all
elements contained in pp, z,a1, ..., a; 1. We let T'7 be the set of all possible extended transcripts
[7]. We also let TAP. = T'P be the set of accepting transcripts [7], i.e., IP.V(7) = 1.

PATH EXTRACTION. We now would like to define a function e which extracts a witness from any
accepting transcript [7] € TAP . For a particular function e we now define the set of extended
transcripts on which it succeeds in extracting a valid witness, i.e.,

Tegset = {11 = (b, [2],..) € TAEe + w = e([7]), (PP, 2, w) € R .

Therefore, a natural extractor £ just answers challenges honestly, and applies e to a path in the
execution tree which defines an accepting transcript, and returns the corresponding witness w.
The probability of this extractor failing can be upper bounded naively by the probability that
the prover generates, in its execution tree, a path corresponding to an extended transcript [7] €
722\715;2;?. This is however not directly helpful, as the main challenge is to actually estimate this
probability.
BAD CHALLENGES. In all of our examples, the analysis of the probability of generating a transcript
in TP \T2P¢H will generally consist of an information-theoretic and a computational part.

The information-theoretic part will account to choosing some bad challenges. We capture such
choices of bad challenges by defining, for any partial extended transcript

[T,] = (ppa [SU] s [al] yCly o ooy [az]) s

a set BadCh(7’) < Ch; of such bad challenges. (Crucially, whether a challenge is bad or not only
depends on the extended transcript so far.) We now denote as 7", the set of all extended tran-
scripts which contain at least one bad challenge. It turns out that the probability of generating
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such a bad challenge is easily bounded by ¢ - ¢ for a prover making ¢ oracle queries, assuming
|BadCh(7")| /|Ch;| < e.

The only case that the extractor can now fail is if the execution tree contains an extended
transcript [7] in the set To- e = TP\ (T 7P ). We denote the probability that this

ail
happens in SRSZZ;"g (A) as prail (IP, Paig, €, R, A). Generally, in all of our applications, upper bounding
this probability for a suitably defined extractor will constitute the computational core of the proof
—i.e., we will prove (generally tight) reductions to breaking some underlying assumption.

THE MASTER THEOREM. We are now ready to state our master theorem, which assumes the formal
set up.

Theorem 1 (Master Theorem). Let IP be an r = r(\)-challenge public coin interactive proof for a
relation R. Assume there exist functions BadCh and e for |P as described above, and let pe,; be as defined
above. Let 7' be a partial transcript such that the challenge that comes right after is sampled from Ch;.
Assume that for all i € {1, ..., r}, we have |BadCh(7')| / |Ch;| < ¢, for some ¢ € [0, 1]. Then, there exists
an extractor € that uses e such that for any non-uniform algebraic prover Pyg making at most ¢ = q(\)
queries to its oracle, and any (computationally unbounded) distinguisher D, for all A € N*,

Adv?lgjvéee(,])ﬂga Da 87 A) < QE + pfaiI(IP, Pa|g7 e7 R7 )\) .

The time complexity of the extractor £ is O(q - ty + t.) where ty is the time required to run IP.V and t. is
the time required to run e.

Proof. The extractor £, as stated in Section 4.1, just answers challenges honestly, and applies e to a
path in the execution tree which defines an accepting transcript, and returns whatever e returns.
The running time of the extractor £ consists of the time required to answers ¢ queries, run IP.V in
at most ¢ paths in the execution tree and the time required to run e. Hence it’s time complexity is

O(q ty + te)
D

Since, £ answers challenges honestly, the view of P, is identical in the games WEE-1, a'g’ and
WEE—OlgP%'g’ . So, tr will be identical in both games and hence b will be identical in both games.

Therefore, the output of WEE- Olgpzf‘i'g " differs from the output of WEE-1,

(pp,x,w) € R) = falseie., if Acc(tr) is true but (pp, z, w) ¢ R.

Since Acc(tr) is t rue, there is an accepting transcript 7 such that £ gives [7] as input to e. Now,
e outputs w such that (pp,z,w) ¢ R only if 7 € 7':3 e orr e 7]3'§dCh (these sets are defined in
Section 4.1).

By definition, 7 € T3%,c,, only if any of the challenges ¢; € BadCh(7’) for some partial transcript
7’ that is a prefix of 7. Now, since there are at most ¢ queries and each of the challenges are sampled
uniformly at random from Ch;, and |[BadCh(7’)| /|Ch;| < ¢, the probability that 7 € TaF,, is at most
q-e.

The probability that 7 € TIP e g Prail (IP, Paig, €, R, A) in game SRS@. Since £ answers chal-

lenges honestly, the probability that 7 € ﬁ;‘;’e’R in WEE-Oﬁ;ﬁ;'g’D is prail (IP, Paig, &, R, A) as well.

Therefore, the probability that the output of WEE-OlgFZ%'g’ differs from the output of WEE-1,

is at most g + peai (1P, Paig, &, R, A), e,

Pa'g’ only if (Acc(tr) =

7)alga

Advlsgyvéee('])mg, D,E,N) < qe + prai (IP, Paig. &, R, A) .
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Game FS-EXT-17"5% (\):

pp s IP.Setup(1*); ([x] ,stp) <= Pag x(pp); H <5 2iLen(n)

[7] «s Pi,A(StP)} (a1,¢1y. oy @ryCryare1) < T

accept « (IP.V(pp,z,m) =1) A (Vi€ [r] : c; = H(pp,z,a1,c1,...,a;)[: cLen;])
w s E(1*, pp, [z], [7]); Return (accept A (pp,z, w) ¢ R)

Fig. 4. Definition of fs-ext-1 security in the AGM. The game FS-EXT-1 defines fs-ext-1 security in the AGM for a non-
uniform algebraic prover P,j,, an extractor £ and a non-interactive argument obtained by applying the Fiat-Shamir
transform to an interactive protocol IP. Here, IP has 7 = r(\) challenges where the i™ challenge is of length cLen; =
cLen;(\) such thatsLen()\) < cLen;(\) < hLen(\). The set 2 en(x) contains all functions mapping {0, 1}* to {0, 1}"-"(*).

4.2 The Fiat-Shamir Transform

The Fiat-Shamir transform uses a family of hash functions H to convert a r-challenge public
coin interactive protocol (proof or argument) IP to a non-interactive argument FS[IP, #]. When
H is modelled as a random oracle, we denote the non-interactive argument using FSRO[IP]. In
FS[IP, #], a hash function H is first sampled from H. A proof on public parameters pp and input
xis T = (a1, c1,a2,¢2,...,ar, Cr,art1), such that

C; = H(pp, ,a1,C1y.-.,QA;-1,Ci—1, ai)[: cLeni]

forie {1,...,r},and IP.V returns 1 on input (pp, z, 7).

FS-EXT-1 SECURITY. We formalize a notion of proof-of-knowledge (PoK) security in the AGM for
non-interactive arguments obtained by applying the Fiat-Shamir transform to an interactive pro-
tocol IP. For simplicity, this notion just captures extractability instead of witness-extended emula-
tion. We define a notion of soundness called fs-ext-1 that captures the setting where the prover has
to commit to the instance beforehand. It is formally defined using the game FS-EXT-1 in Figure 4.

For an interactive proof IP and an associated relation R, algebraic prover P,j¢, and an extractor

: S—ext- Pa 78
&, we define Adv;SRé[}P]’R(PMg, E,N) =Pr [FS'EXT'HPE ()\)]

The following theorem connects the online srs-wee security of a public-coin protocol IP and
the fs-ext-1 soundness of non-interactive protocol FSRO[IP], obtained by applying the Fiat-Shamir

transform using a random oracle.

Theorem 2. Let R be a relation. Let |P be a r = r(\)-challenge public coin interactive protocol for the
relation R where the length of the i challenge is cLen;(\) such that sLen(\) < cLen;(\) < hLen()) for
i€ {l,...,7}. Let & be an extractor for IP. We can construct an extractor £* for FSRO[IP] such that for
every non-uniform algebraic prover Pj, against FSRO[IP] that makes ¢ = q(\) random oracle queries,
there exists a non-uniform algebraic prover Pag and D such that for all A e N¥,

AdVEES o) o (Plig: €75 A) < AdVEIE(Paig, D, €, 0) + (g + 1)/21"

*®

g The extractor E* is

Moreover, Paig makes at most q queries to its oracle and is nearly as efficient as
nearly as efficient as £.

Proof. Without loss of generality we assume that P}, does not repeat random oracle queries. Let
r = r(A), hLen = hLen()), sLen = sLen(\) and cLen; = cLen;(A) fori = 1,...,r. Let the length of
the i prover message in IP be I; = ;(\) bits fori € {1,...,r +1}.
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First we define the extractor £* — it simply outputs whatever € returns. It follows that £* is no
less efficient than £.

We set D(+) = Acc(-). So, Advip r(Paig, D, €, A) is essentially the probability that in WEE-0, Acc
returns t rue and & fails to return a valid witness.

We define adversary P, that runs simulates the game FS-EXT-1 to P;g. The first stage of Pag
on input pp shall run the first stage of the P* on pp. If P* returns (z, stp+), Pajg returns (z,stp =
(stpx, pp,x)). The second stage of P,j; maintains set of states called S — each state is of the form
(a1,c1,a2,c2,. .., a4 c;). We say the length of such a state is i. On input stp = (stp=, pp, z), it first
intializes S to {¢} where ¢ is the empty string . Then it runs P, on stp=. It simulates the random

alg
oracle H to Pj, as follows. On receiving a H query ony

1. Paig first checks if there exists s € S of length i such that (pp,x,s) is a prefix of y ie. y =
(pp,z,s,t) and ¢ is of length [;1 ;. If the check fails, P, returns a randomly sampled string
from {0, 1}"ten. If the check succeeds, P,ig chooses the longest such state s.

2. Paig parses as y as (pp, «, s, t) and makes a query to Oy On (s,t) ans receives c as the response.
Paig adds (s, t, ¢) to the set S, samples a string ¢’ from {0, 1}Pten—cleni+1 and returns (c, ¢/).

Finally, when P},

no more than ¢ queries to its oracle and is nearly as efficient as

Suppose the game FS-EXT-1 returns t rue. In other words P}, returns an accepting proof, i.e.,
it returns 7 = (a1, c1, ..., ar, ¢, ar41) and E fails to extract a witness w.

Let ; = (a1,¢1,-..,ai-1,¢i—1,a;). Now, let E be the event that P:lg made H queries on all
of (pp,z,71),...,(pp,x,7) in order, i.e., for all i« € {1,...,r — 1}, it queried H (pp,z, ;) before
H(pp,z,7—1). If E happens, it is easy to see that P, must have succeeded and £ must have
failed (since £* fails only when £ fails).

Hence, we need to upper bound the probability that 7 is an accepting transcript and the event
E does not happen. If 7 is an accepting transcript and the event £ does not happen either there
existsani € {1,...,r} such that H(pp, z, 7;) was never queried by 7):|g or there existsi € {1,...,r—
1} such that H(pp, =, 7;+1) was queried before H(pp, =, 7;). The probability of the former happening
is at most 1/2°-*" since H (pp, =, 7;) was never queried but ¢; = H(pp, x, 7;)[: cLen;] is satisfied. The
probability of the latter is upper bounded by the probability that a H query was made on some
y before the H query on (pp, z, 7;) such that the last cLen; + ;1 bits of y were (c¢;, a;+1). Since ¢;
was not fixed before the H query on (pp, z, 7;), this happens with probability no more than 1,/25-e"
for every query before the H query on (pp, z, 7;). Hence, the probability that for all i € {1,...,7},
H(pp,z,7;) was queried by P}, but there exists ¢ € {1,...,r — 1} such that H(pp, z, 7;11) was
queried before H(pp,x, ;) is ¢/2°-°". Therefore, the probability that 7 is an accepting transcript,
but E does not happen is at most (g + 1)/2°". Hence

returns an output 7, P, queries O¢y; on 7 and stops. It follows that P, makes

*
alg*

qg+1
9sLen())

ADVESRS oy (Pligr €7 0) < AVIEH(Paig, D, €, 0) +

O

In the above theorem we considered challenges in IP to be bitstrings — however, this can be
adapted to protocols where the challenges are from sets that are not bitstrings. The denominator
of the fraction of the bound would become the size of smallest set from which the challenges
are sampled, e.g., if the challenges in the a protocol were all from the set Z7, the fraction would
become (¢ +1)/(p — 1).
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Game FS-EXT-2/%% (\):

pp s IP.Setup(1*); H «s 2nien(n); ([2], [7]) < Pai 1 (PP)

(a1,¢1, 005 ar, Cry@ry1) & T

accept < (IP.V(pp,z,m) =1) A (Vi€ [r] : ¢; = H(pp,z,a1,c1,...,a;)[: cLen;])
w s E(1*, pp, [z], [7]); Return (accept A (pp,z,w) ¢ R)

Fig. 5. Definition of fs-ext-2 security in the AGM. The game FS-EXT-2 defines fs-ext-2 security in the AGM for a non-
uniform algebraic prover P,j,, an extractor £ and a non-interactive argument obtained by applying the Fiat-Shamir
transform to an interactive protocol IP. Here, IP has 7 = r(\) challenges where the i™ challenge is of length cLen; =
cLen;(\) such thatsLen()\) < cLen;(\) < hLen(\). The set 2 en(x) contains all functions mapping {0, 1}* to {0, 1}"-"(*).

We can also consider an adaptive notion of soundness where the prover can output the instance
and proof together — we call this notion fs-ext-2. It is formally defined using the game FS-EXT-2 in
Figure 5. Unlike fs-ext-1, here the prover need not commit to the instance beforehand and can out-
put the instance and proof together. For an interactive proof IP and an associated relation R, alge-

braic prover P,j, and an extractor £, we define Advas;f{%'ﬁPL r(Paig, €, \) = Pr [FS—EXT_Q%J%S ( )\)]

We assume that IP has BadCh, e functions as described previously. Further, we assume 7]3”:dCh

is defined as above. We use pfa;LFs(FSRO[IP],733|g,e, R, \) to denote the probability that in the

game FS-EXT-2|7;€"§?:€, Paig outputs ([z],[r]), accept is true, m ¢ Tib,c, but e on input ([z], [7])

fails to produce a valid witness. The following theorem upper bounds the fs-ext-2 soundness of
non-interactive protocol FSRO[IP].

Theorem 3. Let IP be an r = r(\)-challenge public coin interactive proof for a relation R where the length
of the i challenge is cLen;(\) such that sLen(\) < clen;(\) < hLen()\) for i € {1,...,7}. Assume
there exist functions BadCh and e as described previously and let pe,i ps be as described above. Let 7' be a
partial transcript such that the challenge that comes right after is sampled from Ch;. Assume that for all
i€ {l,...,r}, we have that |BadCh(7")| / |Ch;| < € for some ¢ € |0, 1]. Then, there exists an extractor £*
that uses e such that for any non-uniform algebraic prover P}, for FSRO[IP] making at most ¢ = q(\)
queries to its random oracle, for all A € N,
Advg%‘ﬁpm( S €5 N) < g2 + prailps (FSRO[IP], Pl e, R, A)

The time complexity of the extractor £* is O(q - ty + te) where ty is the time required to run |P.V and t.
is the time required to run e.

The proof of this theorem is similar to Theorem 1 and has been omitted.

5 Online srs-wee Security of Bulletproofs

In this section, we shall apply our framework to prove online srs-wee security in the AGM for
two instantiations of Bulletproofs- range proofs (RngPf) and proofs for arithmetic circuit satisfia-
bility (ACSPf). We first introduce the Bulletproofs inner product argument (InPrd) in Section 5.1
which forms the core of both RngPf and ACSPf. Then, in Sections 5.2 and 5.3 we introduce and
analyze online srs-wee security of RngPf and ACSPf respectively.
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InPrd.P(((n, g, h,u), P), (a,b)) InPrd.V((n, g, h,u), P)

g(0) —g; h® — h g(O) —g; h® «— h

no «—n; P «— P;a® — a;b® — b no «n; PO «— P

Fori=1,...,logn Fori=1,...,logn
ng < ni—1/2 n; < ni—1/2

cr «— <a(Z:) [: ni], b("‘) [n: :])
cr «— <@ [n; :],b9[: n;])

. a(®) [:ng] b(%) [ng:]
L; « (g&;ﬁ)) (h 171)> i

(
[ina]

A

R (gn)) (i

(.,
EYTE en et

————  I; <8 Z;:

—1 -1
(%) (i-1) )" (i=1)\ " ) (i=1)\ % ( (i—l))xi
g < (g[:ni] ) © (g[niz] ) ) g < (g[:ni] ) © \8ln,1)
(@) (i=1)\ " (i=1)\"i (i) (i—1)\ % ( (1:_1))“”1:
h* (h[:ni] ) ° (?[nlc] ) h* (h[:ni] ) ° t}[ni:]
. 2 . P . 2 . .
PO PR PO L PR

a” —at V:n)e™ +aWn;
b — bV ngle + b [n; ot
g — gloe™). p « ploen) g — glo8™. p « ploen)

a «— a(log ”); b «— b(lOg n) a—‘b) Return (P(IOg n) _ gahbuab)

Fig. 6. Bulletproofs inner-product argument InPrd.

5.1 Inner Product Argument InPrd

We shall assume that InPrd = InPrd[G] is instantiated on an understood family of groups G =
{Ga} en+ of order p = p()\). Using InPrd, a prover can convince a verifier that P € G is a well-
formed commitment to vectors a, b € Z) and their inner-product (a, b). More precisely, the prover
wants to prove to the verifier that P = g2hPu(®P) where g € G”,h € G",u € G are independent
generators of G. We assume that n is a power of 2 without loss of generality since if needed, one
can pad the input appropriately to ensure that this holds. The prover and the verifier for InPrd is
formally defined in Figure 6.

5.2 Online srs-wee Security of RngPf

We shall assume that RngPf = RngPf[G] is instantiated on an understood family of groups G =
{Gx}en+ Of order p = p(X). The argument RngPf is an argument of knowledge for the relation

R= {((neN,g,heG),VGG,(v,fyeZp)> :gvmzvme[o,zn—u}. 4)

DESCRIPTION OF RngPf. RngPf.Setup returns g € G™, h € G™, g, h, u € G where g, h are vectors of
independent generators and g, h, u are other independent generators of the group G. The prover
and verifier for RngPf are defined in Figure 7.

In Theorem 4, we analyze the online srs-wee security for RngPf. Since RngPf has a group el-
ement V' in its input, the analysis of non-adaptive srs-wee security would differ from the online
srs-wee analysis. In Section 7, we analyse the non-adaptive srs-wee security of RngPf — it turns out
that the proof is even harder for this case because the function e does not have the representation
of V. The resulting bound is increased to the square root of the adaptive bound, due to our limited
use of rewinding.
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RngPf.P(((n,g,h, g, h,u), V), (v,7)) RngPf.V((n,g,h,g,h,u),V)
ar < BinRep(v,n);ar « ar — 1"
s Zp; A — h g*Lh®R
Sp <5 Zy; SR < Ly
p s Zp; S «— hPg°Lhk BELLEN
cvE Y, 2 <8 Z;:
I(X)—(ap—2z-1")+s. - X §5(y,2) « (z—2%) - QA" y") + 2% - 2"
r(X)e—y"o(ar+2-1"+sp-X)+2%-2"
HX) « (X)), (X)) =to+ t1 X +12X?
B, P2 s Zy

T « g'ihPi fori e {1,2} NTe
— 2 s Z;
L= l(a);r « r(z);i 1)
Bo—Bo-2>+ B2+ 2y pe—atp-x Past,
— Y W Z;‘
h' — hy77"; U —u? h' — hy*";ul —u¥
P« Asxg_z'lnh/z'ynJrZQ'zn P« Ang_z-I"h/z-y"+z2-2"
P« h"P) P« hHP)

InPrd.P((g,h’,u’, P'), (l,r)) &= InPrd.V(g,h’, v/, P') > b
R« V= g TeTy”
Ifb=1nA g'hP = Rthen
Return 1
Return 0

Fig.7. Prover and Verifier for RngPf. The function BinRep(v, n) outputs the n-bit representation of v. The symbol <
denotes the interaction between InPrd.P and InPrd.V with the output of the InPrd.V being b.

Theorem 4. Let G = {G)} \en+ be a family of groups of order p = p(\). Let RngPf = RngPf|G| be the
interactive argument as defined in Figure 7, for the relation R in (4). We can construct an extractor £ such
that for any non-uniform algebraic prover Pyg making at most ¢ = q(\) queries to its oracle, there exists

a non-uniform adversary F with the property that for any (computationally unbounded) distinguisher D,
forall A e Nt,

Advinest r(Paig: D, €, ) < (14n +8)q/(p — 1) + AdvE(F, A) + 1/p .
Moreover, the time complexity of the extractor € is O(q - n) and that of adversary F is O(q - n).

We show that the bound above is tight in Theorem 5. Using Theorem 2, we get the following
corollary.

Corollary 1. Let G = {G)} en+ be a family of groups of order p = p(X). Let RngPf = RngPf[G]| be
the interactive argument as defined in Figure 7, for the relation R in (4). Let FSRO[RngPf] be the non-
interactive argument obtained by applying the Fiat-Shamir transform to RngPf using a random oracle. We
can construct an extractor € such that for any non-uniform algebraic prover Pyg making at most ¢ = q(\)
queries to the random oracle there exists a non-uniform adversary F with the property that for all X € N¥,

Advg;xg[}engpf]’ 2(Paig: £, < (14n+ 9)g + 1) /(p — 1) + AdVE (F, A) + 1/p .

Moreover, the time complexity of the extractor € is O(q - n) and that of adversary F is O(q - n).
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In order to prove Theorem 4, we invoke Theorem 1 by defining BadCh and e and showing that ¢ <
(14n + 8)/(p — 1) and there exists an adversary JF such that pii(RngPf, Pag, e, R, \) < Advl(F) +
1/p. In more detail, we construct a function h such that for an accepting transcript 7 ¢ Ezr:jgcif if
e([7]) fails to produce a valid witness, then h(|7]) returns a non-trivial discrete logarithm relation
with respect to the generators. This h is used to construct an adversary H against the discrete
logarithm relation problem and we invoke Lemma 2 to transform into adversary F against the

discrete logarithm problem, thus upper bounding pr.ii(RngPf, Paig, €, R, \) using Advg (F).

Proof (Theorem 4). We extend the notation for representation of group elements introduced in
Section 4 for representation with respect to vector of group elements like g. The representation of
a group element A = g g% with respect to (g, g) is [A]| = (A, ag, ay) where ag = (ag,,- - ,aq, ).
DEFINING BadCh AND UPPER BOUNDING e. To start off, we define BadCh(7’) for all partial tran-
scripts 7. Let Ch be the set from which the challenge that just follows 7’ is sampled. We use a
helper function CheckBad to define BadCh(7’). The function CheckBad takes as input a partial ex-
tended transcript [7'] and a challenge ¢ € Ch and returns true if and only if ¢ € BadCh(7’). For
each verifier challenge in RngPf, there is a definition of CheckBad in Figure 8. Every CheckBad func-
tion defines several bad conditions that depend on 7’ — most of these bad conditions are checked
using the predicate SZ. This predicate takes as input a vector of polynomials and a correspond-
ing vector of points to evaluate the polynomial on and returns t rue iff any of the polynomials is
non-zero but its evaluation at the corresponding point is zero. One can safely ignore the details of
the definitions of CheckBad functions for now — the rationale behind their definitions shall become
apparent later on.
The following lemma establishes an upper bound of (14n + 8)/(p — 1) on |BadCh(7)|/|Ch].

Lemma 5. Let 7/ be a partial transcript for RngPf. Let Ch be the set from which the challenge that comes
right after 7' is sampled. Then, |BadCh(7')|/|Ch| < (14n + 8)/(p — 1).

Proof. The proof of this lemma proceeds by computing an upper bound on the maximum fraction
of ¢’s in Ch for which CheckBad(7’, ¢) will return true, for all the definitions of CheckBad, using
the Schwartz-Zippel Lemma.

The function CheckBad(7’, (y, z)) returns true if SZ(f(Y, Z), (y, z)) is true. The polynomial
f(Y, Z) is a polynomial of degree at most n+1. So, the fraction of (y, z)’s for which SZ(f(Y, Z), (y, z))
is true is at most (n + 1)/(p — 1) using the Schwartz-Zippel Lemma. Hence, the fraction of y, z €
Zy, for which CheckBad(7’, (y, 2)) returns t rue is at most (n + 1)/(p — 1).

The function CheckBad(7',z) returns true if any of SZ(f;(X),z) for i = 1,2,3,4 is true.
Since f1(X) and f2(X) are vectors of n polynomials, each polynomial of degree 2, we get that
the fraction of z’s in Zj for which SZ(f;(X),r) is true for i = 1,2 is at most 2n/(p — 1). The
polynomials f3(X), f4(X) are polynomials of degree at most 2. The fraction of z’s in Z; for which
SZ(f3(X),z) or SZ(f4(X),z) is true is at most 2/(p — 1). Using the union bound, the fraction of
x’s in Zy such that CheckBad(7’, z) returns t rue is at most (4n +4)/(p — 1).

The function CheckBad(7/, w) returns true if SZ(f(W),w) is true. The polynomial f(W) is
a polynomial of degree 1, hence using the Schwartz-Zippel Lemma the fraction of w’s in Z5 for
which CheckBad(7/, w) returns t rue is at most 1/(p — 1).

The function CheckBad (7', ,,,) returns t rue if and only if SZ is t rue for any of the 37" 2n/2!
polynomials of degree at most 4 (the degree here is the difference between highest and lowest
degree), 2n/2™ polynomials of degree at most 6 and one polynomial of degree at most 8. Using
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Procedure CheckBad([7'], (y, 2)):

//7] = ((n, &, h,u, g,h), [V], ([A], [S]))

JY,2) « Z%(vg —{ag, 2")) = Z{ag — an — 1", Y") — {ag o an, Y")
Return SZ(f(Y; 2), (y,2))

Procedure CheckBad([7'], z):

//[T,] = ((717 g, h7 u, g, h)7 [V] ) ([A] ) [S])7 (ya Z)a ([Tl] ) [T2]))

fi (X) «— Ug2’2 +tig X + thXZ; fQ(X) «— ’Uh22 +t1nX + t2hX2

f3(X) « V02?2 + t1u X + tou X2 0(y,z) « (2 — z2)<1”, y*y — 23<1”7 2"

U(X) « (ag—2-1")4+55-X;7(X) < y"0o(an+2-1"+sn-X)+22-2"; f4(X)  032° +6(y, 2) +t14X +t2, X2 —U(X), r(X))
Return SZ(f1(X),z) v SZ(f2(X),z) v SZ(f3(X),z) v SZ(f4(X), z)

Procedure CheckBad([7'], w):

//[7'] = ((n, g, hyu,g,h), [V, ([A]L [SD), (9, 2), (ITh] [T2]), 2, (Ba, 1, 1))
le (ag —2-1") + sg - z; 1  (an + x5p + 21™) 0 y" + 2°27; f(W)(—Wf—W(l,r)
Return SZ(f (W), w)

Procedure CheckBad([7'], zm):

/7] = ((n,g,h,u, g, k), [V], ([A], [S]), (3, 2), (IT1], [T2]), @, (Ba, 1, 1), w, ([La], [Ra]) s ([m] [Rm]))
Pl < ag + T8g — 21", phy «— an + xsp +y "o (zy" + 2°2"); Pl — au + TSy + Wi
Forj=0,....,n—1do

fi,j (X) «— lm91+j + X2+ Tm91+jX72 + p;]1+j + Z;l_ll(li91+jx12 + Tig1y, "Ez_2)

_ m—1 _

frlrlw' (X) « lmh1+jX2 + Tmhy ;X : +p,hl+j +20 (lih1+j x? + Tihy 150 2)
Fo(X) e lnu X + P X724 Pl + 20 i + riwz;?)
flag « false
Fort=1,...,m—1doforj=0,...,n/2" —1do

flag « flag v SZ(f5_,(X) - — f5 . (X)) v SZ(fBH(X) = 54 (X) -2, 2)
Forj=0,...,n/2™ —1do

flag « flag v SZ(f5 ;(X) - X2 = f& . om (X),2m) v SZ(fm ;(X) = fim jnjzm (X) - X2, 2m)

flag « flag v SZ( [ (X) —w - 373" 15 (X) - f;(X) - o)
Return flag

Fig. 8. The functions CheckBad function for the RngPf.

Schwartz Zippel Lemma and the union bound the fraction of z,,’s for which CheckBad(7’, z,)

returns t rue is at most .
8 (& n 12n 8
— — |+ + .
p_l(; 2t> 2n(p—1) p-—1

This fraction is at most (14n + 8)/(p — 1) form € {1,...,logn}.
Therefore the maximum value of |BadCh(7")|/|Ch| for any partial transcript 7/, i.e., the maxi-
mum fraction of ¢’s for which CheckBad(7’, ¢) is t rue is upper bounded by (14n + 8)/(p —1). ©

DEFINING e. Let 7 be a transcript of RngPf as defined below.

T :((n7g7h7 U,g,h), V7 (A7 S)7 (y72)7 (Tl,TQ),l‘, (5$7N)£)7w7 (LluRl)a‘Tlu (LQ,RQ),.’EQ, ceey
(Llogrn Rlogn)v Tlogn, (a7 b)) .

Let us represent using 7|. the prefix of 7 just before the challenge c. For example

7—|(y,z) = ((n, g, h,u,g,h),V, (A7 S)) :

()
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Procedure e([7]):

//[T] = E(nvb)g)7 h,u, g, h‘)’ [V] ) ([A] ) [S])7 (y,Z), ([Tl] ) [TQ])vxv (5167/1/’ i)vw7 ([Ll] ) [Rl])7w17 LR ([Llog’ﬂ] ) [Rlogn])vzlognv

v¥* — vg; v* « vp; Return (v*, %)

Fig.9. The function e for RngPf.

The function e simply returns (vy, v,). However, its output is a valid witness only if vg = vy =
0",v, = 0and v, € [0,2" — 1].

PROVING AN UPPER BOUND ON pr,il (RngPf, P,ig, €, R, X). We construct an adversary H against the
discrete logarithm relation problem that takes as input independent generators g, h, g, h, u of the
group G and works as follows. It simulates the game SRSgngpf to P using public parameters
n,g,h, g, h,u. If P,z manages to produce an accepting transcript 7, H calls a helper function h on
input [7] and outputs whatever h outputs. We shall define h in such a way that for 7 ¢ 7%2’;%? if
e([7]) does not return a valid witness, then h([7]) returns a non-trivial discrete logarithm relation.
In other words, we have that whenever e([7]) fails to extract a valid witness for an accepting
transcript 7 ¢ Eizgcif/ H succeeds. So we have that peji(RngPf, Pajg, e, R, A) < Adv%!}%' . 3(H). Using
Lemma 2 we would have that there exists an adversary F such that pe.i(RngPf, Pag, e, R, A) <
Adv¥l(F) + 1/p. We also have that F is nearly as efficient as #.

DEFINING h. We next describe the h function. Let 7, as defined in (5), be an accepting transcript.
v gé(y’z)Tf”Tzf‘C2 = g'h%s . must hold since T is an accepting transcript.

The function h can plug in the representations of 7', 75, V' into the above equation and compute

@ 1) @), (1) (1)
eg),eg),eg),eg),eg) such that g h® " ¢ "h% u°

), e e 0 ),

Again since 7 is an accepting transcript, InPrd.V must have returned 1 and hence P(°s™) =

(glloem))e(h1o8m))by% must hold. All the terms in the above equality can be expressed in terms
@ @ @ (@
o= 1.

(2)
of g,h, g, h,u and one can compute eg), ef), e§2), ef), eg) such that geg2 hen g% R u
The function h computes and returns e(gQ), ef), ef), 622), e!?). We define the function h formally in
Figure 10. It follows from the description of h that it runs in time O(n). The running time of H
consists of the time required to answers g queries, run RngPf.V in at most ¢ paths in the execution

tree and the time required to run h. Hence its time complexity is O(q - n). Using Lemma 2, time
complexity of F is O(q - n).

= 1. If not all of these are zero, h returns

RELATING h, e. In order to complete the proof of Theorem 4, in the following lemma we show that
— for an accepting transcript 7 such that 7 ¢ Eizgcif if e([7]) does not return a valid witness, then
h([7]) returns a non-trivial discrete logarithm relation. Proving this lemma would conclude the

proof of Theorem 4.

Lemma 6. Let 7, as defined in (5), be an accepting tmnscript*of =anng such that T ¢ 7;:;%?. If e([7])
returns (v*,~y*) such that at least one of the following hold: g"" hY" # V or v* ¢ [0,2" — 1], then h([7])
returns a non-trivial discrete logarithm relation.

Proof (Lemma 6). For simplicity, we shall prove the contrapositive of the statement, i.e., assuming
h([r]) returns a trivial discrete logarithm relation, then g**h"* = V and v* € [0,2" — 1].
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Procedure h([7]):

//[T] = ((n7 g; h7 u, g, h)7 [V] ; ([A] ) [S])7 (y7 Z)> ([Tl] ) [TQ])7 z, (6967 y 5)7 w, ([Ll] ) [Rl])7$17 HERN
([Liogn] s [Riog n])s Tiog n, (a, b))

8y, z) « (2 = 2°)A",y") — 2°Q", 2">

eg1 «— vg22+t1gaz+t2gx2;e£) “«— Vnz +t1hx+t2hx [

egll) —vp2? + tint + t2n2® — Ba

If (eg),eilm,eqal),egl),eg)) # (0",07,0,0,0) then return (e (1)7 ﬁ),eﬁl)mgl%eg))

Pe « (ag) + xsg — 21", py, < an +xsp +y " o (zy" + 2%2")

Py Qg + TSg; Pl < Qn + TSh — 4 Py < Qu + TSy + wi

Fork=0ton —1do

logn logn

O w2t trer+tana?; el — 022 +6(y, 2) gz +tagr® —1;

(2) 9 (—1)t—bit(k,islog n)
€or41 ‘_ng_k + Z l7'91+kml t Tigy T T — G| ) Zg
=
logn logn

2 _ _1)bit(k,i,log n)
e]('bk)+1 ph1+k + Z l“11+1c5”Z + Tihy gy T T5 — by~ 1_[1 acf )
im
logn
e(g ) (65721), ce egi)) ef) (egi) .. ,ef)) e —pl + M lwx? 4 iz —w - ab
i=1

(2) — Z lzg:c + rigx; +pg, ef) — Z Linaz? + rinx; +p'h

7=1

1=1
Return(gg e?, (2), 52),622))

Fig.10. The function h for RngPf.

In order to prove ¢*"h"" = V and v* € [0,2" — 1], it suffices to show that vy = v, = 0", v, = 0
and vy € [0,2" — 1]. Let us denote using 7|. the partial transcript that is the prefix of 7 just before
the challenge c. For example

7_|(y,z) = ((n, g, h,u,g,h),V, (A7 S)) .

Since we assumed that h(|7]) returns (0", 07,0, 0,0), we have that fori = 1,2, (eg), e,(a), e_g ), 62), e(u)) =
(0",0",0,0,0).
Writing out the expression for e(gl) we get
vg22 +tigx + t2g$2 =0".
Since 7 ¢ BF:'ZF;CT, we have that x ¢ BadCh(7|;). Therefore, SZ(f1(X),x) is false where f; is as
defined in CheckBad(7’, x). Since we have here that f1(z) = 0, the polynomial f;(X) is the zero
vector polynomial. In particular, its constant term vg2z? = 0".Since z # 0 it follows that vy = 0".

Similarly using egll) — 0" and ¢\ = 0 we can show that v, = 0" and v, = 0 respectively. Writing
out the expression for e( ) we have vg2? + 8(y, 2) + t1gx + togz® — t = 0. Hence,

t =022 + 0y, 2) + t1gx + toga” . (6)

Usmge( ) =0"wegetforall ke {0,...,n — 1}

logn logn o
I + 2 24 xX: 2) —a- H x(._l)lfb't(k»%logn) _ -
Pgy iy ig14k T ig1 41 L;
=1 i=1
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Usmge( ) =0"wegetforall ke {0,...,n —1}

logn logn )bt(k logn)
/ 2 2 1 I Z ogn
Phyy T 2 (Liny s, 7+ Tiny Ty 7)) — H z; =0. (8)

i=1

Using P = o we get that

logn

Py + Z (lia? + rigx; %) —w-ab=0. 9)
i=1

We shall next use the following lemma which essentially says that if all of e(gQ), ef), eg ), egz)’ ef)

are zero and 7 ¢ BF:;gCT, then w - (ply, py, 0 ¥") = ;-

Lemma 7. Let 7, as shown in (5), be an accepting transcript of RngPf such that T ¢ T BR'fCT Let
Py = ag + w5g — 21" ,py = ap +wsp +y "o (zy™ + 222") ,pl, = ay + x5, + Wi .

Suppose, the for all k € {0,...,n — 1}

logn logn P
(_1)17b|t(k,z,logn) _
( 2 (llg1+k it Tigi % ) +pg1+k) —a: (H Ty =0,

i=1 i=1

logn logn 1 bit(k,i,log n)
( Z (Z’Lh1+kx7, + T2h1+k i ) +ph1+k) — by(_(k)) . (H xE_ ) ) =0.

i=1 =1

=1

logn
Also, ( > (liwx? + riuxi2)> +pl, —w-ab=0.Then w - (P, p}, °y") = py-

The proof of this lemma is a generalization of the proof that we gave for the inner product argu-
ment for n = 2 in the technical overview.

Proof. We define a function Bad in Figure 11 that takes as input x € Z and anindexm € {1,...,logn}.
It returns t rue if and only if z € BadCh(7|,,, ). We shall then use Lemma 8, which is a purely al-
gebraic lemma.

Lemma 8. Let n € N bea power of 2. Let {lig € Zy, lin € Zy}, lju € Ly, 1ig € Ly, Tim € Ly, T € Zp}log".
Let a,b, pl, Py Py, € Zp. Let
1
params = {{l’iga lih, lan Tig, Tih, Tiu}icflnap/gap/hap{u} .
Let zy, ..., Tiogn € Zy such that Bad(params, x;,1) = falsefori=1,...,logn where Bad is defined in

Figure 11. Suppose, the following equalities hold.
1. Forall ke {0,...,n — 1}

logn logn ( 1)17bit(k,i,logn)
( Z (llg1+k i T Tig141L; ) +pg1+k> —a- H L; =0.

=1
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Procedure Bad(params, z, m):

logn 7 / /
//params = {{ligalih7liU7rig7rih7riU}i:gl 7pg7ph7pu}

Forj=0,....,n—1do
m—1
frgn.,j (X) « lmg1; + X? + ngl+jX_2 + p271+j + .Zl (li91+y‘mz2 + ”91+jwi_2)
i

m—1
flw;t,j (X) « lmhl+jX2 + Tmhl+jX72 + p,h1+j + 21 (lihlﬂx? + Tih1+jxi_2)
m—1
m <~ lmu + TmuX +pu + iuly + Tiux‘_
Fo(X) = lnu X® X2 4pu+ X (lua? )
i=1
Fort=1,...,m—1do
Forj=0,...,n/2" —1do
flag « flag v SZ(fE ;(X) - af — [ . (X)) v SZ(fim i (X) = fr simjot (X) - 27, @)
Forj=0,...,n/2™ —1do
flag — flag v SZ(fE ;(X) - X? = f& . om(X),2) v SZ(fim ;(X) = f jinjom (X) - X2, 2)

flag  flag v SZ (flé(X) _w- N ) 0 yf,x>
j=0

Return flag

Fig. 11. The function Bad for Lemma 8.
2. Forall ke {0,...,n—1}

logn ) N logn (—1)bitCksdsloa )
2 — _ _ KN
< Z (lih1+k1’i + Tihy 11 T; ) +p;7«1+k> — by( (k) . | | x; =0.
=1

i=1
3.
logn
<Z(lz’u$§+rm$i—2)> +p;—w-ab=0.
i=1
Then

w - (P, Ph oY) = 1y -
Let params = {{lig, Lin, Liw, Tigs Tin, r,-u}?fl”,p’g,pil,p;}. Note that Bad(params, z, j) returns t rue if
and only if x € BadCh(7|,,). Therefore, we have that 1, ..., 710g, in 7 satisfy the condition for z;’s
in Lemma 8. Moreover all the equalities required in Lemma 8 hold and p’g, P Ply € Zyp. SO we using
Lemma 8 we have that

W Py, PpOY") = Dy -
The proof of Lemma 8 is deferred to Section 5.4. m]

Since 7 is an accepting transcript of RngPf and 7 ¢ TBF;';%T and (7) to (9) hold, using Lemma 7,

we get w(py, py, 0 y") = p,. Plugging in the values of py, py,, p, we get

w - {ag + w55 — 21", (ap + x5 + 21™) 0 y" + 222" = ay, + w5, + Wi .

Since 7 ¢ To'e"f, we have that w ¢ BadCh(r|,,). Therefore, SZ(f(W), w) is false where f is as

defined in CheckBad(7/, w). Since we have here that f(w) = 0, the polynomial f(7W) must be the
zero polynomial. In particular its W term must be zero, i.e.,

(ag + xsg — 21", (an + xsp + 21") o y" + 222"y =1 .
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Plugging in the value of ¢ obtained in (6), we have that

(Vg2 + 0(y, 2) + t1gx + toga®) — {ag + x5g — 21", (ap + zsp + 21™) o y"
+222M =0

Similarly, using = ¢ BadCh(7|,), we get
V22 +8(y, 2) — {ag — 21", (ap + 21™) o y" + 2?2") = 0.
Plugging in the value of §(y, z), rearranging and simplifying we get
22 (vg — {ag, 2™)) — 2{ag — ap — 1™, y") — {ag o an,y") = 0.

Using (y,z) ¢ BadCh(7|(, .)), we get that v, — (ag,2") = 0, ag — ap — 1" = 0", agoap = 0".
Note that ag — ap, — 1" = 0" and ag © ap, = 0" imply that ag € {0, 1}". Further v, — (ag, 2") = 0,
ie., vy = (ag,2"). So, vy € [0,2" — 1]. Therefore, v*,v* output by e([7]) satisfy V' = g"*h7* and
v* € [0, 2™ — 1]. This concludes the proof of Lemma 6 and Theorem 4.

O
Further for a prover P, for FSRO[Rnng], and the e we define in the proof of Theorem 4, we
can upper bound pfaiLFS(FSRO[Rnng], Palg, €, R, \) using techniques very similar to those used
in the proof of Theorem 4. This is because we can prove that if the prover outputs an instance
and an accepting proof and e fails to produce a valid witness, then we can compute a non-trivial
discrete logarithm relation from the representation of the transcript and instance unless one of
the challenges in the transcript are bad which we can show happens with small probability. Then
using Theorem 3 we obtain a bound for the fs-ext-2 security of FSR?[RngPf] similar to the one we
obtained for fs-ext-1 security in Corollary 1.

TIGHTNESS OF THEOREM 4. We next argue that the factor O(ng/(p — 1)) in Theorem 4 is tight. We
first note that the protocol RngPf can be used for the following relation

R’z{(neN,g,VeG,veZp):g”zV/\ve[O,2”—1]}, (10)

by fixing v to 0.

We shall construct a cheating prover P (that makes O(q) queries to Oy:) for the relation R’
that outputs an instance V' = g" such that v ¢ [0,2" — 1] but can still convince the RngPf verifier
with probability 2(ng/(p — 1)) if n divides p — 1. In other words, we show that there exist n,p
such that Advgs.pe(P,A) = 2(ng/(p — 1)). This would imply that for any A € N, D = Acc(.),
AdVR,gpt r(Paig: D, €, A) = £2(ng/(p—1)) for any extractor £ — meaning that the bound in Theorem 4
is tight up to constant factors.

Theorem 5. Let G = {Gy}\en+ be a family of groups of prime order p = p(\). Let RngPf = RngPf[G]
be the interactive argument for the relation R’ in (10) obtained by setting -y = 0 in the protocol defined in
Figure 7. If n divides p — 1, we can construct a non-uniform prover P making at most q + logn + 1 queries
to its oracle, such that for all A € N*, Advgpe(P, \) = (n — 1)g/(p — 1).

Proof. In SRSrngps, On receiving n, g, h, g, h, u as input, the first stage of P fixes v = 2nt1l _ 2 and
outputs stp = v and V = g". The second stage of the cheating prover P interacts with the game
SRSRngps as follows.
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—_

. It initializes attempts « 0.

If attempts >= g, it just aborts. Otherwise it increments attempts by 1.

3. Itsetsa;, = 2-1",ag = 1". It samples sy, sg uniformly at random from Z; and «, p uniformly
at random from Z,,. It computes A = h*, S = h”g3-h%k and queries O¢y With (¢, (A4, 5)) and
receives y, z. In other words, it restores the state of the verifier to the initial state and sends
A, S as the first message and receives y, z.

4. Tt checks if 37~ y* = 0. If the check succeeds, it moves to step 5. Otherwise it moves to step 2.

5. It now behaves like the honest prover RngPf.P till the end of the protocol. In particular, it does

not attempt any more state-restorations.

N

First, we claim that if P reaches step 5, the game SRSgngps Outputs t rue. Since P behaves like the
honest prover after it has sent A, .S and received v, z it is easy to see that the InPrd.V shall return
1. We need to argue that the check R = g'h™ succeeds. Since P behaves like an honest prover after
receiving y, z, we have that

t=t(x) = d(x),r(x)) = to + 1o + tox? .

This would give us
to=<(ar, —z-1",y"o(ag +z-1") + 22 . 2"

Further, 8, = Bz + f22?, R = Vz2gé(y’Z)Tf:TQI2 = glvtthiatha®1i(y.2) phiet 22 Now since § =
to + tiz + taz® we have

(220 + tix + tox? + 5(y, 2)) — & = 2%v + 8(y, 2) — to = 22 (v — (ar,2™))
—z(ap —ap —1"y") —(aLcar,y").
Since P had set v = 2"*! — 2 a; = 2-1",ap = 1™ we have
n—1 '
(220 + i + tox? + 6(y, 2)) — & = —2 2 Yy =
i=0

Therefore
R = gz2v+t1x+t2:p2+5(y,z)hﬁ1m+62x2 _ gfhﬁz '

Hence, if P reaches step 5, the game SRSg,gps outputs t rue. We need to compute the probability
that Z?;ol y" = 0 for arandom y in Z;. First, we observe that

n—1

(Y- D y=0=y"—1.
=0

Now, if n divides p — 1, we claim that there are n distinct y’s in Z; that satisfy y" — 1 = 0. Consider
a generator g of Zy (since p is a prime, the group Z; is cyclic). Now g’ is a root of the equation
y"—1=0if ¢’ — 1 =0, i.e, if p— 1 divides jn. Since n divides p — 1, this condition is equivalent
to (p — 1)/n divides j. So, ¢/ is a root of the equation y" — 1 = 0 for j = {0,(p — 1)/n,2(p —
/n,...,(n —1)(p — 1)/n}. In other words y" — 1 = 0 has n distinct roots in Z;. So, the equation

S 4y’ = 0 has n — 1 distinct roots because the factorization of a polynomial in a finite field is
unique. Since y is picked uniformly at random, the probability that 3.7 * = 0is (n — 1)/(p — 1).
Since P tries at most ¢ different (A, S), the probability that it reaches step 5, is (n — 1)g/(p — 1) —

therefore Advign.ps(P,A) = (n — 1)g/(p — 1). m)
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5.3 Online srs-wee Security for ACSPf

In this section, we introduce ACSPf and apply our framework to prove online srs-wee security.
As shown in [10], any arithmetic circuit with n multiplication gates can be represented using a
constraint system that has three vectors ar, ag,ap € Z; representing the left inputs, right inputs,
and outputs of multiplication gates respectively, so that a; o ar = ap, with additional Q < 2n
linear constraints. The linear constraints can be represented asar, - Wz +ar-Wpgr +ap-Wp =c,
where Wi, Wgr, Wp € ZI(‘?X”.

We shall assume that ACSPf = ACSPf|G] is instantiated on an understood family of groups
G = {Ga}yen+ of order p = p(A). The argument ACSPf is an argument of knowledge for the
relation

R :{ ((TL, Q € N)u (WL7WR7WO € ngn)c € Zg)v (aL,aR,aO € ZZ)) :
(11)
aLoaR:aO/\WL-aL—i—WR-aR—i-Wo-aO:c}.

We note that in [6], an argument for a more generalized relation was given of which this is a special
case. We can extend our proof for the more general relation. Here, for simplicity we only consider
the above relation R that is enough for proving arithmetic circuit satisfiability.

DESCRIPTION OF ACSPf. The ACSPf.Setup procedure returns independent generators g € G™,h €
G", g,h,u € G of the group G. The instance for ACSPf is Wy, Wgr, Wg € ZZ?X", ce Z;C;2 such that
an honest prover knows a witness (ar,, ar, ap) that satisfies apcar = ap and Wy -ar, + Wg-ar +
WO rap = C.

The prover and verifier for ACSPf is shown in Figure 12. The prover commits to ar,, ar, ap and
proves to the verifier that these vectors satisfy the relation in (11). The prover and the verifier of
ACSPf engage in InPrd in the final step to avoid the prover sending over vectors of length n.

We prove the following theorem that gives an upper bound on the advantage against online
srs-wee security of ACSPf.

Theorem 6. Let G = {Gy} en+ be a family of groups of order p = p(\). Let ACSPf = ACSPf[G] be the
interactive arqument as defined in Figure 12 for the relation R in (11). We can construct an extractor £ such
that for any non-uniform algebraic prover Pyg making at most ¢ = q(\) queries to its oracle, there exists
a non-uniform adversary F with the property that for any (computationally unbounded) distinguisher D,
forall A e Nt,

AdVACSE: r(Palg, D, €, A) < ((14n + 8)q)/p — 1+ AdVE(F, A) + 1/p .
Moreover, the time complexity of the extractor £ is O(q - n) and that of adversary F is O(q - n).

We can show that the bound in Theorem 6 is tight by constructing a cheating prover like we did
in Theorem 5.

Corollary 2. Using Theorem 2, we get a corollary about fs-ext-1 security of FSRO[ACSPf]. Let G =
{Gx}ren+ be a family of groups of order p = p(X). Let ACSPf = ACSPf[G] be the interactive argument as
defined in Figure 12, for the relation R in (11). Let FSRO[ACSPf] be the non-interactive argument obtained
by applying the Fiat-Shamir transform to ACSPf using a random oracle. We can construct an extractor £
such that for any non-uniform algebraic prover P, making at most ¢ = q(\) queries to the random oracle
there exists a non-uniform adversary F with the property that for all A € N,

AdvaS;‘E{((t{[lACSPfL 2(Paig: £, < (14n +9)g + 1) /(p — 1) + AdVE (F, A) + 1/p .
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ACSPf.P(((n,Q,g,h,g,h,u),
(WL,WR,Wo,C)), (aL,aR,ao))
o s Zp; A — hog?Lh®R

Sy, «$ ZZ; SR «$ Z;}

a, B, p s ZLp; S « hPg*Lh®F

Ar « h®g®Lh®R; Ap « hPg®o

I(X)«—arX+aoX?+y "o (zﬁjl -Wg) - X

+SLX3
r(X) <—y"oaR-X—y"+zﬁjl (W X +Wp)
+y"osR -X3

6 )
HX) < UX),r(X)) = X t: X"’
i=1
Bi <8 Zyp fori € {1,3,4,5,6}
T; « gtihPi forie {1,3,4,5,6}

L l(z);r e r(z);l < {r)
Be — P1-x+ i /31561
i=3

pe—oa-z+p-22+p-2°

—_n
h < hY o «u®
Q+1
Wy, « b1 Ve

Wgr « gy_no(z[Qlj]'I'WR)
it

Wo « h' ]
2 _yn 3

P A7 AL W WE W Wo - S

P — hHP@)t

ACSPf.V((n,Q,g,h, g, h,u),
(WL7 WR7 WO7 C))

Ar,Ao0,S
Y,z E3
—— Yy, z s Zp
—n Q+1 Q+1
6(y,2) —<y "o (Z[L] -Whg), 211
T1,73,7T4,75,Ts
z *
— T Zp
ﬁmvl%f
w *
— W« Zp
—n
h' «hY ;o «u®
Q+1
Wy, « b1 Ve
—n Q+1
Wr g Cng Wr)
Q+1
Wo « h'*na We
2 —
P« A7 AL -1 Y Wi -Wg-Wo

P — hHP@)t

InPrd.P((g,b’, v, P’), (l,r)) &———— InPrd.V(g,h', v/, P") > b

2 Q+1 6 i
R« gz (5(y,z)+<z[1:] ,€) . le . 1—[ le
i=3

Ifb=1 A g'h* = Rthen
Return 1
Return 0

‘WL

. g%°

Fig. 12. Bulletproofs argument for arithmetic circuit satisfiability ACSPf.
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Moreover, the time complexity of the extractor £ is O(q - n) and that of adversary F is O(q - n).

Additionally, using techniques similar to those in the proof of Theorem 6, we can prove a similar
bound for fs-ext-2 security of FSRO[ACSPS].

Proof (Theorem 6). In order to prove this theorem, we invoke Theorem 1 by defining BadCh and e
and showing that ¢ < % and there exists an adversary F such that pg,ii (ACSPf, Pag, e, R, A) <

AdvE (F) + 1.
DEFINING BadCh AND UPPER BOUNDING ¢. To start off, we shall define BadCh(7’) for all partial
extended transcripts 7. Let Ch be the set from which the challenge that comes right after 7’ is
sampled. We define a helper function CheckBad that takes as input a partial extended transcripts
[7'] and a challenge ¢ € Ch and returns t rue if and only if ¢ € BadCh(7’). For each verifier challenge
in ACSPf, there is a definition of CheckBad in Figure 8. Every CheckBad function defines several
bad conditions that depend on 7/ — most of these bad conditions are checked using the predicate
SZ (as defined before). One can safely ignore the details of the definitions of CheckBad functions
for now — the rationale behind their definitions shall become apparent later on.

Next, we need to compute an upper bound ¢ on the size of |BadCh(7')|/|Ch|. To this end, we
compute an upper bound on the maximum fraction of ¢’s in Ch for which CheckBad(7’, ¢) will
return t rue, for all the definitions of CheckBad, using the Schwartz-Zippel Lemma.

The function CheckBad(7’, (y, z)) returns true if SZ(f(Y, Z), (y, z)) is true. The polynomial
f(Y, Z) is a polynomial of degree at most n + 1. So, the fraction of y, z for which SZ(f(Y, Z), (v, z))
is true is at most (n +1)/(p — 1). So the the fraction of y, z in Zj for which CheckBad(7', (y, 2))
returns true is at most (n + 1)/(p — 1).

The function CheckBad(7', x) returns true if at least one of SZ(f;(X),z) is true for i € [4].
Since f1(X) and f>(X) are vector of n polynomials, each polynomial of degree 6, using the union
bound the fraction of 2’s in Zj for which SZ(f1(X), x) or SZ(f2(X),z) is t rue isat most 12n/(p — 1).
The polynomial f3(X) is a polynomial of degree at most 6. The fraction of z’s in Z; for which
SZ(f3(X),z)is trueisatmost 6/(p — 1). The polynomial f4(X) is a polynomial of degree at most
4. The fraction of z’s for which SZ(f4(X), z) is true is at most 4/(p — 1). Using the union bound,
the fraction of 2s in Zj for which CheckBad(7’, ) returns t rue is at most (12n + 10)/((p — 1)).

The function CheckBad(7/, w) returns true if SZ(f(W),w) is true. The polynomial f(W) is
a polynomial of degree 1, hence using the Schwartz-Zippel Lemma the fraction of w’s in Zj for
which CheckBad(7/, w) returns t rue is at most 1/(p — 1).

The function CheckBad(7’, x,,) for m € {1,...,log n} returns true if and only if SZ is t rue for
any of the > ' 2n/2! polynomials of degree at most 4, 2n/2™ polynomials of degree at most 6
and one polynomial of degree at most 8. Using Schwartz Zippel Lemma and the union bound the
fraction of z,,’s in Zj, for which CheckBad (7', z,,) is t rue is at most

s [m=lgy 12n 8
p—1 (Z 2t>+2m(p—1)+p—1‘

t=1

This fraction is at most (14n + 8)/(p — 1) for m € {1,...,logn}. Therefore the fraction of ¢s in
Ch for which CheckBad(7’, ¢) will return true for any partial transcript 7’ is upper bounded by
(14n +8)/(p — 1), i.e., in the context of Theorem 1, ¢ < %.

DEFINING e AND PROVING AN UPPER BOUND ON pg,ii (ACSPf, Py, €, R, \). The function e simply
outputs (arg, arn, aog) and outputs them. It follows from the description of e that it runs in time
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Procedure CheckBad([7'], (y, 2)):

//[T,] = ((n7Q7g7h, UyQ,h), (WL7WR7W07C); ([AI] ’ [AO] ) [S]))
fV,2) — (23N e = Wi arg = Wr-am — Wo - aog) — {arg © am — aog, Y™)
Return SZ(f(Y, Z), (y, z))

Procedure CheckBad([7'], z):
//[TI] = ((n7 Q7 g, h, u, g, h), (WL7 WR7WO7 C), ([AI] ; [AO] ) [S])7 (y7 Z)> ([Tl] ; [TS] ) [T4] ) [T5] ) [Tﬁ]))
6 ) 6 ) 6 .
fl(X) (—tng + Z ting,' fQ(X) <—t1hX + Z tz‘th; fg(X) «— tluX+ Z tiqu
i=3 i=3 i=3
I(X) « a1g~X+aog~X2+y*"o(zﬁ31 “WR)- X +sn-X%7(X) —y"oam -X—y7l+Zﬁ31~(WL ‘X +Wo)+y"osnh
3 .
8(y,2) —(y "o (20 Wr), 235" WL, fa(X) « X2 (5(y, 2) + (205 ©)) + tig X + 2 tig X" = (U(X), (X))

ng -
Return SZ(f1(X),z) v SZ(f2(X),x) v SZ(f3(X),z) v SZ(fa(X),x)

Procedure CheckBad([7'], w):

//[T,] = ((77,7 Qa g, h7 u, g, h)7 (Wlw WR7W07 C); ([Al] ’ [AO] ) [S])7 (ya Z)v ([Tl] s [T3] P [T4] ) [T5] ) [Tﬁ])a z, (Bfﬂaua t))
l<—a1g~m+aog-x2+y7"0(zﬁ31~WR)-x+8h~m3
reyloam -z —y"+25 - (Wr -2+ Wo)+y"osn; f(W) « Wi—W{,r)

Return SZ(f(W),w)

Procedure CheckBad([7'], zm):

//[T,] = ((TL, Q: g, h, u,9g, h)7 (WL7 Wg,Wo, C); ([AI] ) [AO] ’ [S])a (yv Z)? ([Tl] ) [T3] ) [T4] ) [T5] ) [TG])v T, (ﬁzaﬂ7£)a w,
(LLa], [Ba])s 21 oy ([Lm] s [Ria]) A

p'g<—a1g-cv+a0g~:r2+y7n0(zﬁ31 “WR) -2+ sg- 2% phy < a1y -+ are - 2% + 54 - 2 +wi

p’h<—a1h-x+a0h-m2—1"+y_"o(zﬁj]'1 -WL)-x-i-y_"o(zgj]'l “Wo) + sg - z°

Forj=0,...,n—1do

m—1
_ 2
i,j (X) — lmg1i; + X%+ Tmgy ;X 2+ p’91+j + '21 ai‘“ﬂ'ﬁ + Tigi; T )

m—1
Fg (X)) lonny gy X2 ot vy, X720 Phiy; + 2 Uity g @7 + Ting 77 °)
i=1

m—1
F(X) b X2 + 1 X 2+ pu + Y (liww? + 1))
i=1
flag < false
Fort=1,...,m—1do
Forj=0,...,n/2" —1do
flag « flag v SZ(f% ;(X) cx? — i,j+n/2t (X),zm) v SZ(fR ;(X) — :17]-4_”/? (X) 27, xm)
Forj=0,...,n/2™ —1do
flag « flag v SZ(f5 ;(X) - X* = f& . om (X),2m) v SZ(fm ;(X) = fom jrnjzm (X) - X2, 2m)

n/2m—1 )
flag — flag v SZ | frn(X) —w- X f5 (X)- fim ;(X) 'y],:r:m>
j=0

Return flag

Fig. 13. The function CheckBad function for the ACSPf.
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Procedure e([7]):

//[T] = ((n7 Q7 g, h7u7g> h)7 (WL,WR7 WO7 C), ([A] ) [S]), (117 Z)7 ([Tl] ) [T3] ) [T4] ) [T5] ) [Tﬁ])7x, (/67J7M7 £)7w7
([L4], [Ra])s 21, - - -, ([Liog ] , [Riog nl), Trog ns (a, b))
Return (azg, arn, ao,)

Fig.14. The function e for ACSPf.

Procedure h([7]):
//[T] = ((nv Q7 g,h,u,g, h)7 (WL7WR’ Wo, C); ([A] ) [S])7 (yv Z)7 ([Tl] ’ [T3] ) [T4] ) [T5] ’ [TG])7x7 (ﬂznu‘v tA)va
([Ll] ) [Rl])a Tlyenny ([Llogn] 5 [Rlogn])axlogna (a7 b))

6 .
5y, 2) — Gy 0 (825 W), 285 - Wiy el g + 3 tiga's ell)  tina +
=3

i=

6 (1) 6 )
tinx'; eq’ — tiwx + Y tinz’
i=3 i=3
6 ) N 6 )
egl) A $2(5(y7 z) + <Zﬁgl7 C>) + tigxr + Z tiga:" —t; 61(11) — tipT + Z tinx' — Bz
i=3 i=3
If (eg), 6;11>7 eM, 651)7 6%1)) # (0™,0™,0,0,0) then

Return (efgl)7 61(11), e, 6.511)7 5511))
3

p’g<—a1g-x+aog-m2+y7"o(zﬁjl-WR)-x+sg-x‘
p’h<—a1h-a7+a0h-a:2—1"+y*"o(zﬁ?-WL)m—i-y*"o(zSHl “Wo) + sg - 2°
Py —arg T +arg T’ + g% ph — amn T a7+ 8k 7% — Pl aru T+ ar 2+ 80 - 2° +wh iy — av + sy
Fork=0ton —1do

logn

logn 1—bit(k,i,log n)
(2) 2 -2 / (=1) o8
€11 ( Z (li91+kxi Tt Tigr Ty ) +pg1+k> —a- < H L

i=1

i= 1=1

logn log n bit(k,i,r)
2 2 —2 —(k -1
eﬁbk)ﬂ — ( Z (lihy 4 T7 + Ting 5 )+p’h1+k) — by~ <£[1 mE ) )

2 2 2 2 2 2
eé) — (egl),...7egn)); eé) — (621)"”765173)

1=

logn logn logn
e? N (liw? + riwx?) +ply | —w - ab; 65;2) — ( ligx? + rig:pi_2> + D ef) — < Linx? + n-hxi_2> + Pl
=1 i=1

i=1
Return (eg)7 6512), ef), egz), ef))

Fig. 15. The function h for ACSPf.

O(n). Note that ACSPf.V runs in time O(n). Therefore, using Theorem 1, the time complexity of £
is O(q - n).

In order to complete our proof we need to upper bound pr,ji(ACSPf, P,jg, €, R, ). To do so we
shall construct an adversary # (that runs P,|¢) against that takes as input independent generators
g,h, g, h,u of the group G and finds a non-trivial discrete logarithm relation between them, i.e.,
computes (eg, €n, €g, €h, €4) # (0™,0",0,0,0) such that g®eh®k g9 hu = 1. Then we shall invoke
Lemma 2 to transform # into an F against the discrete logarithm problem.

The adversary H has inputs g, h, g, h, u, it chooses ) < 2n and runs P,z on public parameters
n,Q,g,h, g, h,u and simulates the game SRSacspr to it. If P,z manages to produce an accepting
transcript 7, H calls a helper function h on input || and outputs whatever h outputs.

DEFINING h. The function h is defined in Figure 15. It follows from the description of h that it runs
time at most O(n). The running time of H consists of the time required to answers g queries, run
ACSPf.V in at most ¢ paths in the execution tree and the time required to run h. Hence its time
complexity is O(q - n). Using Lemma 2, time complexity of F is O(q - n).
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We shall next discuss the rationale behind the definition of h. Let 7 be a transcript of ACSPf as
shown below.

:((TL, Q7g> h, u, g, h)7 (WL>WR7W07 C); (Afa AOa 5)7 (yv Z)? (T17T37T47T57T6)7 Z, (6%”?5)711}

(Lh Rl)a X1, (L2> R2)7 A P (Llogna Rlogn)> Llogns (aa b)) .
(12)

The following equality must hold if 7 is an accepting transcript.

P e 220w HE@C T e T
g'h’* =g [1:] Ts 'HTz’ ,
1=3

Writing out T4, T3, Ty, Ts, Ts in terms of their representations and rearranging we shall get that

L @ @) 1) (1)
ge hen ge hen =1,

n @ 1) @ 1)

where eg’, ¢, 7, e5’, e, 7, ey’ are as defined in h. Again since 7 is an accepting transcript the inner
product verifier must have returned 1 and hence the following equality must hold.

P(logn) _ (g(logn))a(h(logn))buab )

Now we can write the left hand side of the above equality as

logn 041 2
HL WRAT . AZ RV () W gy el W)

logn _
e s o (f).

Let the function bit(k, i, t) return the bit k; where (k1, ..., kt) is the ¢-bit representation of k. Then

we can write
108‘" ( 1)1 bit(k,i,log n)

l
(logmn) _ l_[ gl+k ,

and
1 y( 1+k) H ( l)bit(k,i,logn)

1 i=
h( ogn) H h1+k 1

Plugging these into the inequality and rearranging we shall get that

2) 2 (2) (2 (2)
geg hen geg hen yfu = 1,

where e(g ), ef), eg ), egl ), () are as defined in h.
Therefore, h always returns a valid discrete logarithm relation when it gets an accepting tran-

script as input.
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RELATING h, e. In order to complete the proof of Theorem 6, in the following lemma we show that

— on an accepting transcript 7 such that 7 ¢ TESe if h([7]) returns a trivial discrete logarithm

relation, then e(|7]) returns a valid witness.

Lemma 9. Let 7, as shown in (12), be an accepting transcript of ACSPf such that T ¢ Tger!. If h([7])
returns (0",0",0,0,0) then e(|]) returns (aj,a}, apy) such that

ajoap=apHand W -a] + Wgr-ap + Wp-a), =c.

Taking the contrapositive, we have that whenever e([7]) fails to extract a valid witness for an

accepting transcript 7 ¢ Ta G, h([7]) outputs a non-trivial discrete logarithm relation, i.e., H

succeeds. So we have that
Prait (ACSPS, Paig, e, R, \) < Advl 3¢, ()

Using Lemma 2 we would have that there exists an adversary F such that
1
Prait (ACSPF, Paig, €, R, A) < Advgt (F) + .
Moreover, F is nearly as efficient as H.

We next prove Lemma 9.

Proof (Lemma 9). For simplicity let us represent using 7|. the prefix of 7 just before the challenge
c. For example

T|(y,z) = ((n7Q7g7h7uagv h)7 (WL7WR7W07C)7 (A[7A07 S)) .
Since h([7]) returns (0™,0™,0,0,0), we have that fori = 1,2
(i e ef) e ell) = (07,07,0,0,0).

Q+1

6 S
Since egl) = 0 we have that 2%(6(y, z) + <z[1.] ,€)) +tigr + Y, tigr' —t = 0. Hence
' i=3

6
t=2%(0(y, 2) + <zﬁj]”1, c)) +tigx + 2 tign’ . (13)
i=3

We define py, py,, p), as defined in h, i.e.,

—

Dg alg-x—kaog-x?—l—y_”O(zﬁjl-WR)'£U+Sg'333a

p'hzth-w—i—aOh-:cz—ln—l-y_”o(zﬁj]”l-WL)-x—i—y_”o(z[Qlj]”l-Wo)—i-sg-:r?’,

p'uzaju-x+a1u-x2+su-x3+wt.

Since e(gQ) = 0", we have that forall k € {0,...,n — 1}

logn logn (—1)1-bit(ksi log m)
2 —2 / - v
( 2 (li91+k37i + Tigy T ) +pg1+k) —a- H x,; =0. (14)
i=1 i=1
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We also have ef) =0"ie,forallke{0,...,n— 1}

logn logn o
_ _ -1 bit(k,i,log n)
(D5 Cinia? + ring 07 + B, ) — byt~ (H Y ) =0. (15)
i=1 i=1
From e&z) = 0 we have that
logn
(Z (liwx? + rmwﬁ)) +pl,—w-ab=0. (16)
i=1

We shall next use the following lemma which essentially says that if none of e(g2), ef), eq(f), egz), 622)

are non-zero and 7 ¢ 7]3Aa%scif, then w - ’g, pyoy™) = pl,. It is very similar to Lemma 7 that we
encountered in the analysis of RngPf. This similarity is due to both ACSPf and RngPf use the
inner-product argument.

The equalities in the statement of this lemma hold if the inner-product argument verifier ac-
cepts and the discrete logarithm problem is hard in group G. The lemma shows that if none of the
challenges in the inner-product argument were bad, then the inner-product of the vectors p, and
Py © Y™ is p,/w. This is a generalization of the proof that we saw in the technical overview where
we analysed the inner-product argument for n = 2.

Lemma 10. Let 7, as shown in (12), be an accepting transcript of ACSPf such that T ¢ TaGeh' . Let
p'g zajg-a?—i-aog-xQ—i-y*”O(zﬁj]rl - Wg) '$+8g'$3,

”o(zQH-WL)-x—l—y_”o(zQH-Wo)+sg-x3,

Pl =Qrn T + aon 22 —1" 4y~ [1] [1]

p; zafu-:c—i-a[u-a;Q—i-su-x?’—i-wt.

Suppose, the for all k € {0,...,n — 1}

logn ) . , logn (— 1)1 bit(kilog n)
( 2 (Ligy o T7 + Tigyx Ty 7) —i—ngk) —a- H x; =0,
i=1 i=1
i 2 N ) [T plceties
( D iy + Tiny ;) +ph1+k) — by SuBE: =0.
i=1 i=1
Additionally,
logn
(Z (liwz? + rmxiz)) +pl, —w-ab=0. (17)
i=1
Then

w - {Pg, PhoY") =1y -
Proof (Lemma 10). We shall invoke Lemma 8 to prove this lemma. Let
1
params = {{liga lih) liU7 Tig, Tih, Tiu}ic;glna plga plh7 p;:,} .

Consider the function Bad defined in Figure 11. Note that since Bad(params, z, j) returns t rue if
and only if z € BadCh(7|;), 71, ..., T1ogn in 7T satisfy the condition for x;’s in Lemma 8. Moreover
all the equalities required in Lemma 8 hold and py,, py,, pi, € Z;. So we using Lemma 8 we have that

w- Py, Pp0Y") =1y -
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O

Since 7 is an accepting transcript of ACSPf and 7 ¢ 7253 " and (14) to (16) hold, using Lemma 10,

we get
W{Pg, ProY") =1y -

Plugging in the values of pj, pj,, pi, we get

w - <(a1g33 +apgr® +y "o (z ([QJ]FI Wg)z + sgz°),y" o (ammz + apna® — 1"

+y "o (zfﬁl -Wp)-x+y "o (zﬁgl -Wo) + ng3)> = ap® + apr® + sy + wt .

Since T ¢ TgSehf, we have that w ¢ BadCh(r|,,). Therefore, SZ(f(W),w) is false where f is as
defined in CheckBad(7’, w). Since we have here that f(w) = 0, the polynomial f(7W) must be the
zero polynomial. In particular its W term must be zero, i.e.,

t= <(a1gac +apgr® +y "o (zgj]rl -WR)z + sgz°),
y" o (amz + aonz® —1" +y "o (Zﬁj]rl -Wpz+y "o (Zﬁj]rl -Wo) + 5g$3)> :
Plugging in the value of £ obtained in (13), we have that

6
2 (5(y, 2) + <z ©) + tigr + D iga’ — <a1g:c +aogr” +y "o (21! - Wr)z + sga’,
=3

y" o (amz + aonz® —1" +y "o (Zﬁj]rl W)z +y "o (Zgj]rl -Wo) + 3g$3)> =0.
Since 7 ¢ Tg.Gehf, we have that » ¢ BadCh(7|,). Therefore, SZ(f1(X), ) is false where f; is as

defined in CheckBad(7’, z). Since we have here that f4(z) = 0, the polynomial f;(X) must be the
zero polynomial. In particular its X? term must be zero, i.e.,

0y, 2) + (1) ©) = g, ¥ 0 am) — Carg, 71} W) + (aog,y")
—(y ozl WR),Y" 0 am) =y o(zﬁgl-WR>,<Z[151-WL>>=0.
Plugging in d(y, z) = (y ™ o (231" - W), (20" - W), we get
<ZQ.+ ;€)= <a1g;y °arm) — <a1g7[ W)+ {aog,y") =y " O(ZSHI'WR);YTLOGIQ
<aog, [] -Wp)=0.
Simplifying and rearranging we get

<Z8j]rl’c — Wy arg = Wg-am —Wo - aog) —{arg o am — aog,y") = 0.
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Since T ¢ Tg.Seh, we have that (y, z) ¢ BadCh(7|(y,.))- Therefore, SZ(f(Y; Z), (y, 2)) is false where
f is as defined in CheckBad(7’, (v, z)). Since we have here that f(y, z) = 0, the polynomial f(Y, Z)
is the vector polynomial. Equating all its coefficients to zero, we get

WL-a[g-i-WR-a]h—i-Wo-aog =C,0Jg O afh = AQg -
Since (aj , a}j, ag)) returned by e is (arg, arn, aog) We have that

ajoap=ahand Wy -a; + Wr-ap+ Wp-apH =c.

5.4 Proof of Lemma 8

From the statement of the algebraic lemma, it is evident that we need to eliminate everything
except for p’g, Phs Y» Pl w to obtain a relation between them. Our first step would be to plug in the
values of a, b from the first two sets of equalities into the third — this would eliminate a, b. Then we
shall exploit the first two sets of equalities and the definition of Bad to arrive at an equation solely
in terms of py, py,, ¥, Py, W-

Proof (Lemma 8).

First we observe that given that Bad(params, z, j) # true, if for any of the polynomials p(X)
on which SZ is called in Bad, p(x) is zero, then the polynomial p(X) is the zero polynomial. We
shall use this observation repeatedly in this proof.

SIMPLIFYING NOTATION. We introduce some new notation for simplicity. We define the following
polynomials. Forall k € {1,...,logn}, forall j € {0,...,n — 1}

k—1
g _ 2 -2 / 2 -2
fkyj(X) = lkgy; X7+ Thgr ;X7 +0g, (Ligi 7 + Tigi ;77 °)
% 11 (18)
h 2 —2 / 2 —2
fk:,j (X) = lkh1+jX + Tkh1+jX + Dhyy; + (lihl_,_jxi + Tihyy;T; ) .
1

T

i

Forall k € {1,...,logn}

k—1
X)) = X2 4 i X724l + ) (] + riny?) (19)
=1

Using our notation in (18) and (19), we can re-write our given equalities as

1. fork=0,...,n—1
logn

1 bit(k,z,logn)
a = fl%)gn,k(xlog”) | (H J:z( ) ) .

i=1
2. fork=0,...,n—1

logn _ 1\1—bit(k,i,Jlogn)
b= fllggn,k(xlogn) : y((k)) : (H mg K :
=1

fiogn(Tlogn) —w-ab=0.
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ELIMINATING a, b IN THE THIRD EQUALITY. First off, we plug the values of a,b we obtain for k = 0
into the third equality. We obtain

fl%gn(xlogn) —w- fligng(xlogn) ) fll;gn,l(xlogn) =0. (20)

In order to eliminate all variable except p’g, Phs Y, Phy, w, we need to use the first two sets of equalities
to obtain relations that we can plug back into (20).

RELATIONS FROM THE FIRST SET OF EQUALITIES. The first set of equalities gave us that for k£ =
0,....,n—1

) logn (—1)bit(kslog )
a = flognyk(.r]ogn) - H xi . (21)
i=1

Lette {1,...,logn}and j € {0,...,n/2" — 1}. Equating the values of a for k = j and k = j + n/2!,
we get

logn (_1)bit(j,i,10gn) logn (_1)bit(j+n/2t,7l,logn)
Fogng(@ogn) - | ] = =/ (z10gn) - | [ ] i
logn,j \*logn i log n,j+n/2t logn i .
i=1 i=1

Since j € {0,...,n/2! — 1}, j and j + n/2! differ only in the ¢ bit. So, we have for t € {1,...,logn},
j€{0,...,n/2" — 1}
fl%gn,j(wlogn) ) .7}? = fl%gn,jJrn/Zt (xlogn) . (22)

We shall next show that for all ¢ € {1,...,logn}, forall j € {0,...,n/2" — 1}
lt91+j =0,7t9,,; = ftg_Lj_;_n/zt (z1-1) -
First we show it for ¢t = log n- in this case j can take the value only 0. We have that
fl%gn’(](mlogn) ) $120gn - f]%gml(xlogn) =0.
Since Bad(params, Zjogp, logn) = false
2
fl%)gn,O(X) P X — fl%gn,l(X)

is the zero polynomial. Equating the constant term to 0 we get
T(logn)gr = fl%g n—1,1 (wlog n-1)

Equating the X* term to 0 we get,
l(logn)g1 =0.

Hence, it holds for ¢t = logn. Now let t = t' < logn. We have that for j € {0,...,n/2" —1}.

2
fl%gn,j(xlog”) Sy ign,ﬂn/zt’ (10gn) = 0.

Since Bad(params, Ziogp, logn) = false

2
fl%g n,j (X) "y lig n,j+n/2t' (X)
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is the zero polynomial. Therefore, its constant term is 0, i.e.,

2 _ g

fl%gn—l,j(xbgn—l) " Nognyjn/2t (Ziogn-1) = 0.

Using similar series of arguments (since for all j € {logn—1,logn—2,...,t'} : Bad(params, z;,j) =
false) we can arrive at

fﬁ,j@t’) - — ftgf’

Now, since Bad(params, z},t') = false

ft%,j(X) ) X2 - ft%,j+n/2t'(X)

j+n/2t (zv) =0.

must be the zero polynomial. Equating the constant term to 0 we get for ¢’ > 1

_ (8

and fort' =1
o
rlglJrj - pgl+j+n/2 .

Equating the X* term to 0 we get,
g, = 0.

Hence for all t € {2,...,logn}, forall j € {0,...,n/2! — 1}
ligr; =0, 7tg,, = ftg,LjJrn/gt (z1-1) (23)
and forall j € {0,...,n/2 — 1}
Tigy e, = p;1+j+n/2 7llgl+j =0. (24)

RELATIONS FROM THE SECOND SET OF EQUALITIES. Now, we can go through an identical process
for the second set of equalities and obtain that (we omit the calculations since they are identical to
the ones we saw previously)

1. forallt e {2,...,logn}, forall j € {0,...,n/2! — 1}
t
Tth1+j =0 7lth1+j = fthf]_’j+n/2t (.I't) ' yn/z . (25)
2. forall je{0,...,n/2 -1}
=0,l = p) 2 26
T1h1+j y U1h14j ph1+j+n/2 Yy . ( )

PUTTING IT ALL TOGETHER. Finally, we are ready to use the obtained relations. We shall show
using induction on k that for all k € {1, ..., logn}

n/2k -1

filar) —w- DT fE k) fRy(ak) -y = 0.
§=0
The base case for k = logn is true since (20) holds.
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Now assuming it holds for some k = £’ we shall show that it holds for £’ — 1 as well. Using
induction hypothesis we have that

n/2K —1
[y —w- Y fE () £ (aw) -y = 0.
j=0
Since Bad(params, z, k') # true, the polynomial
n/zk -1

fE(X) - ka, ) fo i (X) -y

must be the zero polynomial, i.e., in particular its constant term is zero. It’s constant term can be
written as

n/2k/—1
fk’/ 1(1‘]# 1 2 fk/ 1, fEkJ 1) fk' 1](xk, 1) y
n/2’C —1
- 2 (lklglﬂ' Thhiyy T TR g1y, 'lk’h1+j) 7).
j=0

From (23) and (25) we have that for j € {0, ... ,n/Qk/ -1}

_ 8 _ _ _ ¢h /2
rk)’g1+j - fklfl,j+n/2k/ (‘rk/—l) 9 lk:’g1+j - O 9 Tk"h1+j - 0 9 lk)’h1+j - fk’*l,j+n/2kl ('/’Uk’—l) ) y .

So, equating the constant term to 0 we have that

n/2k —1

fi () —w D (FEy e ) - i (ew 1) - y))

j=0
n/2k —1

. k/
—w - ZO (( kg] 1,j+n/2% (.Tk/ 1) f:’—Lj-‘rn/Qk' (:Ek’—l)) . yj-i-n/? ) =0.
J:

This can be simplified to

n/2K =1-1

foa(w ) —we Y (B (mw 1) f (e 1)y =0,

§=0
Hence we have shown that it holds for £ = k¥’ — 1. Hence, by induction we arrive at

n/2—1

fa) w3 () o) o' 0.
j=0

Since Bad(params, z}, k') # true, the polynomial

n/2—1

—w- Z (5 (X) - f15(X) - )
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is the zero polynomial, i.e., in particular its constant term is 0. So, we have that

n/2—1 n/2—1
/o / . Lad . . P -
Dy —w Z pglﬂ ph1+]- Yy w 2 (l191+]‘ T1h14; +T191+j llh1+j) Yy = 0.
Jj=0 j=0

From (24) and (26) we have that for j € {0,...,n/2 — 1}

— — _ — L an/2
Tlgl+]' - pgl+j+n/2 7llgl+j - 07r1h1+]’ - 0 7l1h1+j - ph1+j+n/2 y :

So, we have that

n/2—1 n/2—1
/ / ! ; 2 .
pu —w Z pgl+j .ph1+j ’ yj —w Z (llgl+j . T1h1+]- + Tlg1+j N l1h1+j . yn/ ) ) yj - 0 .
j=0 3=0
Simplifying we get that

Py =w - {Pg,Phoy").

6 Online srs-wee Security of Sonic

We apply our framework to prove srs-wee security of Sonic [18] which is an interactive argu-
ment for arithmetic circuit satisfiability based on pairings (we refer to this argument as SnACSPf).
The argument SnACSPf is again an argument of knowledge for the relation (11). Sonic represents
arithmetic circuits using the same constraint system as the one used in Bulletproofs. The con-
straint system has three vectors aj,ag,ap € Zj representing the left inputs, right inputs, and
outputs of multiplication gates respectively, so that a; o ar = ap, with additional ) < 2n linear
constraints. The linear constraints can be represented as ar, - Wy, +ar-Wg +ap - Wp = ¢, where
Wi, Wgr Wp e ngn.

PAIRINGS. As stated before, SnACSPf is based on pairings. Let G1, G2, Gt be groups of prime order
p with generators g € Gy, h € Go. A pairing is a bilinear map e : G; x Ga — G such that e(¢?, h) =
e(g,h)® for all a,b € Z, and (g, h) is a generator of Gr. In our AGM analysis, we shall consider
symmetric pairings, i.e,, G; = Gy = G. We shall assume that SnACSPf = SnACSPf[G, Gr, €]
is instantiated on the understood families of groups G = {G)} en+ (With order p = p()\)) and
Gr = {G7r} en+ such that there exists a bilinear map e : G x G — Gr.

The interactive argument SnACSPf. is a argument of knowledge for the following relation.

R :{(((n7 Q € N+)7 (WL7WR7WO € ngrz’(: € Zg))v (aLa aRr,ap € Z;T)L)) :

aroagp=ap AWg-ar +Wpgr-ap+ Wp-ap =c}.

The setup algorithm SnACSPf.Setup fixes an integer d such that 4n > d > 3n. It generates the
bilinear parameters bp = ((p, G, Gr, e, g, h)). It then samples «,  uniformly at random from 7Z,,. It
sets

sts = {9, {9 Y__ao {h" gy (PO Vas {977 ?;_(]dve(g,ha)}-
17

It returns (bp, srs) as its output.
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As shown in [18] the argument for the above relation proceeds by defining following polyno-
mials (X, Y), k(Y), s(X,Y),t(X,Y) and proving that the constant term of ¢(X,Y") is zero.

oY 2n—1

[1:] [1:] ] [n+1:]

k(YY) — (e, Y

Q+n+1 —n— n n n n— n
Y) Y[njﬁ (W - X5 1+WR-X[1T]1+W anjll )+<—Y[1:+]1 Y 1 anjll]>

V) —r(X,1)(r(X,Y) +s(X,Y)) — k(YY) .

rX,Y) — <aL,X”+1 oY”+ >+<aR,X n—l oY"+ Y +{ap, X
(

s(X
tH(X
Note that the verifier can evaluate s(X, Y'), k(YY) without the witness. However evaluating s(X,Y)
is expensive, hence the prover the prover computes the value and the prover and the verifier
engage in an argument for signature of correct computation where the prover demonstrates to
the verifier that it sent the correct evaluation. This argument for signature of correct computation
assumes that the polynomial s(X,Y) can be expressed as a sum of M polynomials of the form
Vi(X)Y) =30 jo, , XY where 0 = (01, ..,0j,) is a permutation of (1,...,n). As stated
in [18], for any given arithmetic circuit, one can devise a constraint system such that s(X,Y’) can
be represented as a sum of M = O(1) such polynomials.

The prover and the verifier algorithms, SnACSPf.P, SnACSPf.V are shown in Figure 16 with all
sub-components defined in Figures 17 to 21. The complexity of the protocol necessitates this mod-
ular description. Figure 17 describes the polynomial commitments used in Sonic and Figure 18
describes the signature of correct computation which uses the polynomial permutation argument
defined in Figure 19 which in turn uses the grand product argument in Figure 20. The argument
for well-formedness of commitments used by the grand product argument is defined in Figure 21.

In the soundness analysis of SnACSPf in [18], only the bounded polynomial extractibility and
evaluation binding of the commitment scheme is analysed in the AGM.® Here we give an analysis
of the srs-wee of SnACSPf in the AGM.

We prove the following theorem that establishes an upper bound on the advantage against
online srs-wee security of SnACSPf.

Theorem 7. Let G = {G\} en+ be a family of groups with order p = p(\). Let G = {G7 )} en+ be a
family of groups such that there exists a bilinear map e : GxG — Gr. Let SnACSPf = SnACSPf[G, Gr, €]
be the interactive arqument system as described in Figure 16, for the relation R in (11). We can construct
an extractor £ such that for any non-uniform algebraic prover P, g making at most ¢ = q(\) queries to
its oracle, there exist non-uniform adversaries JF1, Fa, F3 with the property that for any (computationally
unbounded) distinguisher D, for all A\ € NT,

18nq

AdvE Aesps r(Paig, D, €, A) < — + AdvETd (FL ) 4+ AdvE (Fa, A) + AdvE (F3, \) .

Moreover, the time complexities of the extractor € and adversaries Fy, Fa, F3 are all O(q - n).

We can show that the bound in Theorem 7 is tight by constructing a cheating prover like we did
in Theorem 5. Using Theorem 2, we get a corollary about fs-ext-1 security of FSRO[SnACSPf].

Corollary 3. Let G = {G)}\en+ be a family of groups with order p = p(\). Let G = {Gra}ren+ bea
family of groups such that there exists a bilinear map e : GxG — Gr. Let SnACSPf = SnACSPf|G, G, €]

® The reduction of bounded polynomial extractibility to the variant of ¢-dl defined in the paper does not seem to
account for the fact that an algebraic adversary can represent the commitments in terms of powers of i as well.
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SnACSPf.P((bp,srs, s(X,Y), k(Y), SnACSPf.V(bp,srs, s(X,Y), k(Y),
{wj (X7 Y)7 Uj}?i1)7 (T(X7 Y)> t(X7 Y))) {1/0 (Xv Y)7 gj };\il)
Cn+1,Cn+2,Cn+3,Cn+4 «—$ Zp

T(Xv Y) «~ T(Xv Y)
4 . .
+ Z cn+iX—2n—1y—2n—1,

i=1
R « PC.C(bp,srs,n,r(X,1)) ——
P Y s Z;’;
T « PC.C(bp,srs,d, t(X,y)) —_—

— 2§ Z:
(a, W) « PC.O(bp,srts, R, z,7(X, 1))
(b, Wy) « PC.O(bp,sts, R,yz,7(X,1))
t,Wy) « PC.O(bp,srs, T, z,t(X, y))

a,Wa,b,W;, ,Wy,s

s s(z,y)
t—a(b+s)—k(y)
If PC.V(bp,srs,n, R, z, (a,Ws)) =0
vPC.V(bp,srs,n, R,yz, (b, Wp)) =0
vPC.V(bp,srs,d, T, z, (t, W:)) = 0 then
Return 0
SnSCS.P((bp,sts, y, z, s, ————— SnSCS.V((bp, srs, y, 2, s,
{¥i(X,Y),05}751) {¥5(X,Y),0;}21) = b
Return b
Fig. 16. The interactive argument for arithmetic circuit satisfiability in Sonic.
PC.C(bp,srs,n, f(X)) PC.O(bp,srs, F, z, f (X)) PC.V(bp,srts,n, F, z, (v, W))
Fe g w(X) « LI Fe gt
Return F° W e g If e(W, h*®)e(g" W=, h®) = e(F,h* ") then
Return (f(z), W) Return 0
Return 1

Fig.17. Polynomial commitments in Sonic
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SnSCS.P(bp, srs, y, z, s, SnSCS.V(bp,srs, y, z, s,

,{%‘(X: Y)vo—j};'bil) {wj(X7 Y)’o—j};'vil)

Forj =1to M do Fori =1to M do
Py < PC.C(bp,srs,d, > | X) Py < PC.C(bp,srs,d, > | X)
Py < PC.C(bp, srs,d, 3" | ;X" Py < PC.C(bp, srs,d, 3" | ;X"
Py < PC.C(bp,srs,d, > | iX") Py < PC.C(bp,srs,d, > | iX")
Py < PC.C(bp,srs,d, 3" 0;:X") Py < PC.C(bp,srs,d, > 0;:X")
SnPP.P((bp,sts, P1, P2, Ps, Py,y,z), &= SnPP.V(bp,srs, P1, P, Ps,
(wi(va)vo—i)) P47yvz)_’(ijsj)

If b; = 0 then return 0
If s = ZJNil s; then return 1
Return 0

Fig. 18. The signature of correct computation in Sonic.

SnPP.P((bp,srs, P, P2, Ps, Py, y, z), SnPP.V(bp,srs, P1, P>, P3, Py, y, 2)
3 1/)(X7 Y)7 (b(Xv Y)7 Ui)
S" « PC.C(bp,srs,d, (X, y)) 55,
&1 5,8,y s LY
U« SP)P;V « S'P} P}
(s, W) « PC.O(bp, sts, S, 2,9 (X, y))
(v, W) = PC.O(bp, 515, 5,6, 6(X, 1))
(v,Q") « PC.O(bp,srs, P2, 8y, > 1, i X")
u(X) <320, Yo, y7 X 4 Boi X' 4+ X!
0(X) = N, ' X 4 BiXE Xt ML
U« SP’P;V « S'P}P)
If PC.V(bp,sts,d, S, z, (s, W)) = 0
vPC.V(bp,srs,d, S, 3, (v, W')) =0
vPC.V(bp,srs,d, P, dy, (v,Q")) =0
Return (0, 1)
SnGP.P((bp,srs, U, V), (u(X),v(X))) <= SnGP.V(bp,srs,U,V) - b
If b = 0 then return (0, L)
Return (1, s)

Fig.19. The polynomial permutation argument in Sonic.

be the interactive arqument as described in Figure 16, for the relation R in (11). Let FS®O[SnACSPf] be
the non-interactive arqument obtained by applying the Fiat-Shamir transform to SnACSPf using a random
oracle. We can construct an extractor £ such that for any non-uniform algebraic prover P making at most

q = q(\) queries to the random oracle there exist non-uniform adversaries Fy, Fo, F3 with the property that
forall A e Nt,

18ng +q+1 An-dl

AdviEgst (Patg, €, ) < o1 + Adv{

FSRO[SnACSPf],R (F1,A) + AdvE (F2, A) + Advgl(Fs, A)

Moreover, the time complexities of the extractor € and adversaries Fy, Fa, F3 are all O(q - n).

Additionally, using techniques similar to those in the proof of Theorem 7, we can prove a similar
bound for fs-ext-2 security of FSRO[SnACSPf].
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SnGP.P((bp7srs U, V),
((X) = 3 wX'v(X) = 2 v X))

i=1

(a1, yan) « (U1,...,un)
(an+27...,a2n+1) <«— (Uh...,’l)n)
An+1 < (1_[?:1 ai)_l

C1 < a1

For:=2to2n + 1do
Ci < Ci—1 " Q4
2n+1 . 2n+1 .
(X))« X aXha(X)«— > a:X®

i=1 _— - i=1
r(X,)Y)<Y( > aX'YV*
i=1
+an+1Xn+1yn+l)
S(X, Y) P Xn+2 + Xn+1Y _ X2n+2Y
P(X,Y) « X7 Y e X!
i=1

2n+1
EY)«—1+ 2 Yt
HX,Y) < (r (X Y) +s(X,Y)r'(X,Y)
—Kk(Y)
R /A TE
C « PC.C(bp,srs, d, c(X))
Cw < SnWF.Prv(bp,srs, 2n + 1, ¢(X))
Uw < SnWEF.Prv(bp,srs, n, u(X))

A,C,Co Uy, Vay yap,
Vi < SnWF.Prv(bp,srs, n,v(X)) Lyttt
Yy *
—— Yy s 7,

T « PC.C(bp, srs, d, t(X,y)) z,

(Lz<—$Z:

SnGP.V(bp,srs, U, V)

(a,Wa) « PC.O(bp,srs, A, yz,a(X))

(¢, W.) < PC.O(bp,srs, C, 27+, ¢(X))

(k, Wi) « PC.O(bp,srs,C,y, c(X))

(t,W,) « PC.O(bp,srs, T, z, t(X, )" = " Lol Wi Ve
t— (ya+ Zn+2 +Zn+1y
—aA ) (4 1)t~y — 1

n+1 n+1
If e(g**+1® U h)e(V,h® )
(A, h)

vPC.V(bp,srs,d, A, yz, (a,Wa))
vPC.V(bp,srs,d, C, 27", (c, W.)) =
vPC.V(bp,srs,d,C,y, (k,Wy)) = 0
vPC.V(bp,srs,d, T, z, (t, W:)) =0
vSnWE.V(bp,sts, 2n + 1, 7Cu,) =

vSnWF.V(bp,srs,n, U, U,
vSnWEF.V(bp,sts,n, V, V,,
Return 0

Return 1

\_/VQ

Fig. 20. The grand product argument in Sonic.
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SnWF.Prv(bp, srs,n, f(X)) SnWEF.V(bp,srs,n, F,W = (L, R))

W e (g7 1@ g=" " F @)y If e(F,h) = e(L, h°™") A e(F, h) = e(R, h°™" ") then
Return W Return 1
Return 0

Fig. 21. Well-formedness argument in Sonic

Proof. (Theorem 7) We shall invoke Theorem 1 by defining BadCh and e and showing that ¢ < }%
and there exists adversaries Fi, F2, F3 such that

D5ail (SNACSPF, Paig, €, R, A) < Adve (7)) + Advl (F2) + Advl (Fs) .

DEFINING BadCh AND UPPER BOUNDING e. To start off, we shall define BadCh(7') for all partial
extended transcripts 7. Let Ch be the set from which the challenge that comes right after 7’ is
sampled. We define a helper function CheckBad that takes as input a partial extended transcripts
[7'] and a challenge ¢ € Ch and returns t rue if and only if ¢ € BadCh(7’). Since SnACSPf has two
challenges, there are two definitions of CheckBad in Figure 22. We again use the predicate SZ here
like before. Next, we need to compute an upper bound ¢ on the size of |BadCh(7")|/|Ch|. In other
words, we need to compute an upper bound on the fraction of ¢’s in Ch that CheckBad(7’, ¢) will
return t rue for all the definitions of CheckBad.

The function CheckBad(7', y) returns t rue if SZ(f(Y),y) is t rue. We shall use the Schwartz-
Zippel lemma to fraction bound the number of y’s that SZ(f(Y'), ) is true for y € Zy. The polyno-
mial f(Y') is a polynomial of degree at most 2n + @ (the maximum positive degree is n + @ while
the maximum negative degree is —n). Since ) < 2n, the degree of f(Y') is at most 4n. So, for at
most at most 4n values of y € Zj, SZ(f(Y),y) is true. So the CheckBad(7’,y) returns t rue for at
most 4n/(p — 1) fraction of y’s.

The function CheckBad(7’, z) returns true if SZ(f(Z), z) is true. The polynomial f(Z) is a
polynomial of degree at most 18n (the maximum positive degree is d < 4n while the maximum
negative degree is 2n — 4d > —16d). So, the fraction of z’s in Z for which SZ(f(Z), z) is true is
at most 18n/(p — 1). So the fraction of z’s in Z; for which CheckBad(7’, z) returns t rue is at most
18n/(p — 1).

Similarly we can argue that for j = 1,..., M, CheckBad(7’, z;) returns t rue with probability at
most (10n + 1)/(p — 1) , CheckBad(7', y;) returns t rue with probability at most (2n + 2)/(p — 1),
CheckBad(7’, (8;,7;)) returns true with probability at most n/(p — 1), CheckBad(7’,d;) returns
true with probability at most 8n/(p — 1).

Therefore CheckBad(7’,c) will return true for any partial transcript 7’ for a no more than

18n/(p — 1) values of ¢, i.e., in the context of the Master Theorem ¢ < z%'
DEFINING e. Next, we define the function e for SnACSPf in Figure 23. It gets as input an extended
accepting transcript [7] with the representation of the input removed. Without loss of generality
we assume that the representations of all the messages of the prover in the transcript that are from
G are in terms of the elements of G in srs. The function e computes (aj , a},ay) and outputs them.
It follows from the description of e that it runs in time O(n). Note that SnACSPf.V runs in time
O(n). Therefore, using Theorem 1, the time complexity of £ is O(q - n).

PROVING AN UPPER BOUND ON pg,ji (SNACSPf, P,iq, €, R, A). To that end, we construct the follow-
ing three adversaries Fi, F2, F3.
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Procedure CheckBad([7'], 2):

d X n . n .
f(Z) « (_Z thgaxi) — <._22d Z’L'rgamin+d> (._Zw(yZ)lrgwinM —s(Z, y)) + k(y)

Return SZ(f(Z), z)

Procedure CheckBad([7'],):
Forz‘ =1,...,ndo

af <—rgmd nti ) bF T agd—n— el T agpd—2n—i
R e Rt et N -
fOY) &7 papant aga—n +{af oaf — aO,Y’[lf] Yo O+YR U (We-af + Wr-ah +Wo-ab) —{(c, Y 1]

Return SZ(f(Y),y)
Procedure CheckBad([7'], z;):

d X d 2n+1 X
1(2) ( s thjgw> - <yj ( S 2)a ) t 72 +Z“+1y—z2“+2yj> (8 7 1) 27

i1=— 1=1

i;;O
2n+1
> yje ngz> yi +1

Re.turn SZ(f(Z), z;)

Procedure CheckBad([7'],y;):

2n+1 .
fY) « ,Z:l yitl (ajg‘”i Cjgaxi=l ~ ngazi—l) + (C goantl — 1)+ Y( gaz™ = C; Q12n+1)
Return SZ(f(Y), y;)

Procedure CheckBad([7'], (8;,7;):

fB,T) <[ 1(3(](”7 +Ba]l+F) I 1<J wl—i—Bz—}—F)

Return SZ(f(B, I'), (8;,7;))
Procedure CheckBad([7'],4;):

1) (2 A) - (2 (Aywi)
o iy
Return SZ(f(A), ;)

Fig. 22. The function CheckBad function for the SnACSPf.

Procedure e([7]):
//[T] = (bp,srs,n,d,s(X,Y) ( ) W;(X Y) UJ}] 1,[R] yv[ ] (a7 [Wa]7b7 [Wb]7[Wt]75)7{([51'751/'])7(5i7ﬁi77i)7

(6, [Wi] v, [Wi ], [Q1]), ([As, Ci, Ciwo, Ui, Vi), @ing1), Y, Ti, 2y (iy [Wisal s biy [Win] s ki, [Wik] [Wzt])}{z1>

af T and= nti; bF T agd—n— _i;ct T agpd—2n—i

aL (alv"'van)vaR « (bikvvb:)va(ﬂs « (Clv'--vc:)
Return (a¥,ak, a¥)

Fig. 23. The function e for SnACSPf.

1. Adversary F; is an adversary against d-DLOG in the group G that runs P,j. It has inputs
(9,9%, g:”Q, e gmd). It fixes a positive integer n such that 4n > d > 3n. It samples «, 8 € Z,, and
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Procedure h, ([7], o, 8, X):

//[7] = (bp, srs,n, d, s(X,Y),k(Y), {¢;(X,Y), ;1)1 [R), v, [T], 2, (a, [Wa] , b, [W] , [Wi], s), {([ Si, Si]). (6i, Bis 74),

(6, [Wi] v, [Wi ], [Q:]), ([As, Ci, Ciw, Ui, Visw) , Gins1)s ¥i, Ti, 24, (aiy [Wisal , b, [Win], ki, [Wik] , [Wie]) fvi1>

x* « ComHelper, (X, [R], [W.], a, z,n)
If z* # 1 then return z*
x* « ComHelper, (X, [R], [Ws],b,yz,n)
If z* # 1 then return z*
t—alb+s)—k(y)
x* « ComHelper, (X, [T], [W:] ,t, 2,d)
If z* # 1 then return z*
Fori=1,...,M do

x* « ComHelper,
« ComHelper, [
« ComHelper, , , Vi, 0y, d); If 2 # L then return o™
[Wicl,ci,27t,d); If 2* # L then return 2*
[ ykiyy,d); If * # | then return z*

« EqHelper, (X, [Ui],[Vi], [Ai] ; @ijnt1,n); If 2 # L then return z*
C1,[Ciw,1sCiw2],2n + 1);If 2* # L then return z*
U], [Uiw,1, Ui we],n)If x* # L then return z*

V] 5 [‘/i,w,ly ‘/i,w,Z] 777/)

88 8 8 8 8 88
* %X X ¥ ¥ ¥ ¥ % %

8
T
=
=
I
[N
kel
o
»—-‘
>
S R,

Return L

Fig. 24. The function h; for SnACSPf.

sets bp = (p, G, Gr, e, g,9”) and

R UR V HRN e TR T TR U TR T 18
i#0

Note that (n,d, bp, srs) is a valid output of SnACSPf.Setup. Adversary F; runs P,j; on public
parameters (n, d, bp, srs) and simulates the game SRSsnacspr to it. If P, manages to produce an
accepting transcript 7, F; calls a helper function h; on input [7] , a, £, ¢* and outputs whatever
hi outputs. The function h; is defined in Figure 24. The subroutines used in h; are defined in
Figures 27 to 29.

2. Adversary F» is an adversary against DLOG in the group G that runs P,,. It has inputs
(g9, V). It fixes a positive integer n such that 4n > d > 3n. It samples o,z € Z,, and sets
bp = (p,G,Grp,e,9,V) and

sts = {9, 0" Ve a (VI HE 0 (VT HE 0 (™Y elo, V)
Note that (n,d, bp, srs) is a valid output of SnACSPf.Setup. Adversary J> runs P,z on public
parameters (n, d, bp, srs) and simulates the game SRSsyacspr to it. If P, manages to produce an
accepting transcript 7, F» calls a helper function hy on input [7] , z, o, V and outputs whatever
ho outputs. The function hy is defined in Figure 25. The subroutines used in hy are defined in
Figures 27 to 29.
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Procedure hs([7], o, z, X):

//[T] = (bp7srs, n, d7S(X7 Y),k’(Y), {w]'(Xv Y)vaj}jA/iH [R] s Ys [T] » %y (a7 [Wa] 7b7 [Wb] ) [Wt] 75)7 {([517 S;])v (51'7/61'771')7

(5i7 [Wz] y Uiy [WZ/:I 5 I:Q:,])v ([Al, Cv?7 Ci,un Ui,w: ‘/i,w] 7a11,n+1)7 Yi, T;, zi, (ai7 [Wi,a] ; 04,y [ i b] ku [WL k] [W1 t]) i= 1)

B* « ComHelper, (X, z,a, [R], [W.],a, z,n)
If 8* # L then return g8*

B* « ComHelper, (X, z,, [R], [Ws],b,yz,n)
If 3* # L then return 8*

t—alb+s)—k(y)

B* « ComHelper, (X, z,, [T], [W:],t, z,d)
If 3* # L then return 8*

Fori=1,...,M do

B* « ComHelper, (X, z, o, [Si], [Wi], si, 2, d)z; If B* # L then return 3*
B* « ComHelper, (X, z, o, [S7], [Q:] , vi, 6i, d); If B* # L then return 8*
B* « ComHelper, (X, z, o, [P2,i], [Q}] , vi, 6iy, d); If B* # L then return 8*
B* « ComHelper, (X, z, o, [Ci], [Wi,c] , ci, 277 d) If 8* # L then return 8*
B* « ComHelpery (X, z, , [Ci], [Wi k], ki, y,d); If B* # L then return 8*
B* « ComHelper, (X, z, o, [T3], [Wiz] , ti, 2,d); If B* # L then return §*

B* « EqHelpery (X, =, o, [Ui] , [Vi], [A ] ain+1,n); If B* # L then return g*

B* «— WfHelpery (X, z, o, [C], [Ci w1, Ciw,2] , 2n + 1);If B* # L then return 8*

B* «— WiHelpery (X, z, o, [U] , [Ui,w,1, Ul w,2],n);If B* # L then return 8*

B* «— WfHelper, (X, z, o, [V], [Visw,1, Visw,2],n); If B* # L then return g*
Return L

Fig. 25. The function hy for SnACSPf.

3. Adversary F3 is an adversary against DLOG in the group G that runs P,j,. It has inputs
(9,V). It fixes a positive integer n such that 4n > d > 3n. It samples 3,z € Z,, and sets
bp = (p7 Ga GT7 €9, gﬁ) and

Srs = {97 {g }z——d7 {gﬂxl}g;—d? {Vm }z——d7 {Vm 2_75_0[1, e(g, VB)} .
Note that (n,d, bp, srs) is a valid output of SnACSPf.Setup. Adversary F3 runs P,z on public
parameters (n, d, bp, srs) and simulates the game SRSsnacspr to it. If P, manages to produce an
accepting transcript 7, F3 calls a helper function h3 on input [7] , z, 3, V and outputs whatever
hs outputs. The function h3 is defined in Figure 26. The subroutines used in h3 are defined in
Figures 27 to 29.

Note that the definitions of the helper functions are modular, i.e., h; use the subroutines PC;,
EqHelper;, WfHelper; for ¢ = 1,2, 3. The subroutine PC; produces a solution to the relevant hard
problem if the prover manages to break the binding of any of the commitment. Similarly the
subroutine WfHelper, produces a solution to the relevant hard problem if the prover manages to
pass the well-formedness verification for a commitment that is not well-formed.

We now make the following observations about adversaries Fi, F2, F3

- Adversary F; succeeds if hi([7] , a, 3) computes z* such that (¢** = ¢*). From the code of h;
it is easy to see that that whenever h; returns a non-_L value z*, it satisfies (g"”f* = ¢%), ie,
adversary F; succeeds. Also, it follows from the description of h; that it runs in time at O(n)
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Procedure h3([7],z, 3, X):

//[T] = (bp7srs, n, d7S(X7 Y),k’(Y), {w]'(Xv Y)vaj}jA/iH [R] s Ys [T] » %y (a7 [Wa] 7b7 [Wb] ) [Wt] 75)7 {([517 S;])v (51'7/61'771')7

(5i7 [Wz] y Uiy [WZ/:I 5 I:Q:,])v ([Al, Cv?7 Ci,un Ui,w: ‘/i,w] 7a11,n+1)7 Yi, T;, zi, (ai7 [Wi,a] ; 04,y [ i b] ku [WL k] [W1 t]) i= 1)

a* « ComHelper; (X, z, [R] , [Wa] ,a,2,n)
If o* # 1 then return o*

a* « ComHelper, (X, z,[R], [Ws], b, yz,n)
If o* # 1 then return o*
t—alb+s)—k(y)

a* « ComHelpery (X, z, [T],[W:] , t, 2, d)
If o* # 1 then return o*

Fori=1,...,M do

a* « ComHeIper3(X a,z,[Si], [Wil, si, 2, d)z; If o™ # L then return o*

o « ComHelper, (X, z, [Si], [Qi] , vi, 6i, d); If & # L then return o*

a® ComHeIper3(X z, [P, Q1] s vis 61y,d); If a* # 1 then return o*

a* « ComHelper, (X, x, [Ci], [Wic],ci, 271, d); If a* # | then return a*

a™® « ComHelper; (X, z, [Ci], [Wik], ki, y, d); If a # 1 then return a

a* « ComHelpery (X, z, [Ti] , [Wir] , i, 2, d); If o # L then return o*

a* « EqHelper; (X, z, [Ui], [Vi], [A4 ] aint1,n); If o # L then return o*

a* « WifHelper; (X, z, [C], [Ci,w,1, Ci,w,2] s 2n + 1);If o™ # L then return o*

a* «— WifHelper; (X, z, [U], [Us,w,1, Ul w2],n);If o # L then return o*

a* « WifHelper; (X, z, [V], [Vi,w,1, Visw,2] ,n); If a® # L then return o*
Return L

Fig. 26. The function hs for SnACSPf.

(since M = O(1)). The running time of F; consists of the time required to answers ¢ queries,
run SnACSPf.V in at most ¢ paths in the execution tree and the time required to run h;. Hence
its time complexity is O(gn).

- Adversary F; succeeds if hy([7], z, o) computes 5* such that ¢%* = V. From the code of hy
it is easy to see that that whenever hy returns a non-1 value 3%, it satisfies (gﬁ* = h), i.e,
adversary F; succeeds. Also, it follows from the description of hy that it runs in time O(n)
(since M = O(1)). The running time of > consists of the time required to answers ¢ queries,
run SnACSPf.V in at most ¢ paths in the execution tree and the time required to run hy. Hence
its time complexity is O(gn).

- Adversary F3 succeeds if h3(7,z, 3) computes o* such that ¢®" = V. From the code of hs
it is easy to see that that whenever hs returns a non-L value o, it satisfies (ga* = ¢%), i.e.,
adversary F3 succeeds. Also, it follows from the description of hs that it runs in time O(n)
(since M = O(1)). The running time of F3 consists of the time required to answers ¢ queries,
run SnACSPf.V in at most ¢ paths in the execution tree and the time required to run hz. Hence
its time complexity is O(gn).

We shall prove the following lemma showing that if 7 is an accepting transcript such that 7 ¢

omACSPEand hy([7], «, B), ha([7], 7, @), h3(7, z, B) all return L, then e([7]) returns a valid witness.
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Procedure ComHelper, (X, [C], [W],v, z,n)

f(X) = (X —2) < i Xiwgwi> +o— Xt ( Zd: Xicgmi>
i=—d i=—d

If f(X) # 0 then
Solve for x* such that f(z*) =0
If X = ¢** then return z*

Return L
Procedure ComHelper, (X, z, o, [C], [W],v, z,n) :

f(B) < B (a(:c— z) < Zd: " whw + ax whmﬂ) — g < > oz chxl + ax chml>>

1=—d

d . d X d . d )
+alz—2)| X r'w i+ > ar'w .0 |+ v —m N gie i+ Y] ozatlcgwi>

If f(B) # 0 then
Solve for 8* such that f(8*) =0
IfX =g¢° * then return B*

Return L
Procedure ComHelper; (X, z, [C], [W],v, z,n)

a d .
f(A) « Az — 2) ( > a2 w oi T Z Azlw ML>+AU—:U‘H" ( 2 owlei+ X Aa:lcgwi>
i=—d i=—d . .
If f(A) # 0 then
Solve for a* such that f(a™®) =0
If X = g®* then return a*
Return L

Fig. 27. Subroutines for hy, ha, hs.

Lemma1l. Let n,d € N such that d > 3n. Let z,«, 8 € Zy, bp = (p,G,Gr,e,g,h). Let srs =

{g’ {g }szd7 {gﬁaz }177d7 {ga,@a: 1=—d’ {goca," ld:,d, 6(9, hoc)}‘ Let
170

= (bp,srs,n. d, s(X,Y), k(Y), {;(X,Y),05}}21: [R] 9. [T] . 2, (a, [Wa] , b, [W3]
[Wt]75)7{([Sivsz{])’(éivﬂiv%)’(Si’[Wi]’viv[Wi] [ ])’([A & Clw’UHUvVZ ]v
Qint1)s Yis Tis 2iy (@iy [Wisal s bis [Win) s iy Wil s [Wid]) 1oLy

be an accepting transcript of SNACSPS such that T ¢ TorRS P IFhi([7], o, 8, 9%), ha([7], 2,0, V) and
hs([7],z, B, V) return L, then e([7]) returns (aj , a},, af,) such that

ajocap=ap and a}-Wp+ap -Wgrp+ayH -Wp=c.

Taking the contrapositive, we get that if 7 is an accepting transcript such that 7 ¢ T3P an

e([7]) fails to return a valid witness, then one of hy([7], e, 8, ¢%), h2(|7],z, o, V), h3(7,x, 5, V) re-
turns a non-_L value, i.e., one of adversaries F1, F», F3 succeed. Therefore

D5l (SNACSPF, Paig, €, R, A) < Adv™ (7)) + Advil (F2) + AdvE (F3) .

We shall next prove Lemma 11.
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Procedure EqHelper, (X, [U], [V], [A4], an+1,n)

d d
; i+n+1 +1 ;
X))« | X Xlugwi + X Vyaui |+ a1 X" — | ] Xlagazi
i=—d i=—d
i#0 i#£0

If f(X) # 0 then
Solve for x* such that f(z*) =0
If X = g“* then return z*

Return L
Procedure EqHelper, (X, z, o, [U],[V],[4] , an+1,7n) :

d d
) R . N
fB)« | X xzugmi + gttt Voai + > amlugwi + gttt Vi
T im——d

d d
. . R R . . L
+B ( 2 TU i+ U et gttt Uy 4t az'tnt Vpooi — 25 L0 + ax’ah(,mf) + aanpz™t

1=— i=—d
d d
—| X z'a i+ D az'a ..

If f(B) # 0 then
Solve for 8* such that f(3*) =0
If X = ¢°" then return g*

Return L
Procedure EqHelper, (X, z, [U], [V], [4] , an+1, 1)

d d d d
F(A) « i;daciugmi + m”"“vgxi + i;dAxiugwi + m”"“vgwi +Adappz"tt — i;dxiagzi + i;dAxiagami
If f(A) # 0 then

Solve for a* such that f(a™) =0

If X = g** then return a*
Return L

Fig. 28. Subroutines for hy, h2, hs.

Proof (Lemma 11). Since 7 is an accepting transcript the following equality holds.

—d+n

e(Wa, h**)e(g"W5, h*) = e(R,h* ).

We can express W, in terms of its representations, let h = g” and re-write the first equality as

e(g,h)) =1,
where
d d
_ _ i , i , i , i ,
f=alz —2) Z r'w, .+ Br'w i + aBr'w . + Z ar'w, .0 | +aa
i=—d i=—d
1#0
d d
— g4 2 .Z'lrgwi + Bx'r) i + QBT 00 + Z ax’rgwi
i=——d i=——d

1#0

52



Procedure WfHelper, (X, [A], [L, R] ,n) :

If f1(X) # 0 then
Solve for x* such that f1(z*) =0
If X = ¢** then return z*
Return L

f2(X) « X774 <Z_dXZ ) (i_ Xiagw>

1#0
If f2(X) # 0 then
Solve for x* such that f, (m*) =0
IfX = gm* then return z*

Return
Procedure WriHelper, (X, z,a, [A], [L, R] ,n) :

a . ) d d
fi(B) « B (aa:d < 2 Tl +a1:’lhmi> — < >z ahTz + ax ahml>> + az? ( 3ozl oot T Z ax’ ga"r’)
i=—d i— i=—d i——

170

If f1(B) # 0 then
Solve for 3* such that f;(8*) =0

IfX =¢° * then return B*

d d
f2(B) < B (am < de Thei T QT rhwl> - < Zdaz a, i +ox ahmz>>+ax ( de Tyei Zdax r ML)
i=— i=— i=— i=—

(Z :ca,1+ 2 amawz>
1=—d 1=—d

1#0
If f2(B) # 0 then
Solve for * such that f2(8*) =0
If X = ¢°" then return g*

Return L
Procedure WfHelper, (X, z, [4],[L, R] ,n) :

i=——d i=—d

d d ) d )
fi(A) « Az? ( > oz l gt T Z Azl Ml) - ( > x’aqmi + Aa:’agmi>
If f1(A) # 0 then

Solve for a* such that f1(a®) =0
IfX = g“* then return o*

f2(A) « Az™™ (Z xrlL-i—ZAxrwl)—(Z :Eaﬂ-i—ZAxawL)
i=—d i=—d i=—d i=—d
1#0 1#0

If f2(A) # 0 then
Solve for a* such that f2(a®) =0
If X = ga* then return o*
Return L

Fig. 29. Subroutines for hy, h, hs.
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We therefore have

d d
a(z — 2) 2 rw, .0+ Br'w i + BT w . + Z LW, o
i=—d i=—d
1#0
(27)
d d
+ aaq — z~" Z $7'7’in + Bx'r) 0+ aBT'T 0 + Z axzrgazi =0.
i=d i=d
1#0

Therefore /5 is a root f(B) = 0 in ComHelper,(X,z, o, [R],[W,],a,z,n) invoked by hy. Since
ha([7], x, a, V') returned L we have that f(B) must be the zero polynomial, i.e.,

d d
_ i _ i \ _—d+n i, i o\
alz — 2) ( Z w0 + o wah%’) x < Z T+ ox rhazz> =0.

1=—d i=—d

Plugging this into (27) we get that

d d
alz — z) r'w i+ ar'w i |+ aa
ag ag

i=—d i=—d
17#0
d d
P Z 'r i+ Z ax'r i | =0
i=— =—
1#0

Therefore avis aroot f(A) = 0in ComHelpers(X, z, [R], [W,], a, z,n) invoked by hs. Since h3([7], z, 3, V)
returned L it means that f(A) is the zero polynomial. In particular its A term is 0 i.e.

d d
(x —2) ( Z a:’wagﬂ-) +a—g 4 2 Z'ngawi =0.
i=—d

Therefore x is a root f(X) = 0 in ComHelper,(X,[R],[W,],a,z,n) invoked by h;. Now, since
hi([7],z, B, g") returned L we have that f;(X) is the zero polynomial, i.e.,

d
i . —d+ i )
(X —2) (Z Xlwagzz> +a—X"%T" Z X’rng

i=—d

is the zero polynomial. The above polynomial is an zero for any value of X. So, plugging in X = z
we get



i
a= 2 2T jagi=ntd

i=n—2d
i#En—d

Similarly, since 7 is an accepting transcript, the equalities

—d+n

e(Wb,hax)e(ngl;yz,ha) =e(R,h" ), e(Wt,haz)e(gtWtz,ho‘) =e(T,h)

hold. Using arguments similar to the ones we used above, we can show that

n d
b= 2 (yZ)ZT'gaIi—n+d , t= Z 2 i
i=n—2d i=—d
i#n—d i#0

Next we can show that for the opening of commitments 7}, C;, A; (similar to how we derived the
value for a above) forj =1,..., M

d d d d
i i —i i
tj = Z thjgazi k= Z YiCigani | ¢ = Z 25 Cipani | 505 = Z (y;z) @ jaai
i=—d i=—d i=—d i=—d
170 1#0 17#0 i#0

Also using that for j =1,..., M,

WfHelper, (¢°,[C],|Cjw1,Cjwel,2n+1) = L,
WfHelpery(V, z, o, [C], [Cjw,1,Cjwel,2n +1) = L,
WfHelpers(X, z, [C], [Cj w1, Cjw2].2n+1) = L,

we can show that Cjgaci = 0 fori <= 0and fori > 2n + 1 and Ciget = 0, Cipasi = 0, Cipat = 0 for
all <. Similarly, we can show that Us poai = 0 for i <= 0 and for i > n and Ujai = 0, Ujpaoi = 0,

U =0,v.,, =0forall
Jh

et = 0 for all s and Vs jaai = 0 for i <= 0and for¢ > n and Vi = 0,v

jhazi

2n+1 .
Hence ¢; = 27 ..i ). We also have that t; = (ya; + 2712 + 2"y — 227729 (¢; +
J J Tig J J 9 i J i J J
i=1

1)7;j_1 — yjk; — 1. Therefore, for j = 1,..., M

d d
% N . o \0 . n+2 n+1 2n+2,
2 2t paai | = | Ui 2 (yj25) Gpaat |25 27y =25y,
i=—d i=—
i#0 i#0

2n+1 2n+1

—i , —1 i _ o
2 Zj € paai +1 z; " — Z YjCigost | Yi 1.
i=1 i=1

Since 7|, ¢ TonRSSPE we have that 2; ¢ BadCh(7|,;). Therefore, SZ(f(Z), z;) is false where f is
as defined in CheckBad(7’, z;). Since we have here that f(z;) = 0, the polynomial f(Z) is the zero
polynomial. In particular, its constant term is zero, i.e.,

2n+1

i+1 _
Z Y; (ajgwi € gaai=1 — ngaxi—l) + (ngazn+1 — 1) +yj(cjgoem — cjgazgnﬂ) =0.
i=1
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Since 7|, ¢ SACSPE e have that y; ¢ BadCh(7|,,). Therefore, SZ(f(Y),y;) is false where f is
as defined in CheckBad(7’,y;). Since we have here that f(y;) = 0, the polynomial f(Y) is the zero
polynomial. In particular, its constant term is zero and we have that for j = {1,..., M}

ngaac = ajgaac s ngaz7l+1 =1 s ngaxn = ngaz2n+l 5

fori=2,...,2n+1

Cjgaat = Cjgoai=t Ujgoat
Combining, we get that
n 2n+1
Hajgazi = H @ act - (28)
i=1 i=n+2

We also have that )
e(g*m1 " Uy h)e(Vy, h"

Using thatforj =1,..., M,

EquIperl (X7 [Ul] ) [V;] ’ [Al] ) Qi,n+1, 7'[,) =1,

EqHEIPGI’Q(X, x, o, [Ul] ) [‘/Z] ) [Al] ) in+1, n) =1,

EqHEIPGI’S(X, Z, UZ] ) [V;] ) [A’L] 7ai,n+1) =1 )
we can show that

U, i forl<i<n
A, opi =3 79 .
J9 Ujgazifnfl fOI‘ n + 2 § 7/ < 2n + ].
Combining with (28) we have that
[T = [y

initi — ol . Lt Lyt -
Now from the definition of U}, V; we have that Ujjaai = A8 api T + Bjaojxt 4+ ozt and V) ot =

as’ Lzt + Baiz® + vjaz’. Therefore,

gt
ol 1 (2 _ (A . 2 7
211 (asjgazzx + Bjac;x’ + yjox ) = 11 (asgazix + foix’ + yjoax )
Simplifying we get,
n n
(Sjgaxi + ﬂjiji + 7j> = H <S;gawi + ,Bji + ’)/j>
i=1 i=1

Since 7/(3,.,) ¢ Tomen | we have that (8;,7;) ¢ BadCh(7]g, ). Therefore, SZ(f(B, I'), (8;,7;))
is false where f is as defined in CheckBad(7’, (3;,7;)). Since we have here that f(5;,7;) = 0, the
polynomial f(B, I') is the zero polynomial. Hence we have that for j = {1,..., M}

S

S az%i .

jgert T g
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Additionally we can infer the following from the opening of the commitments W}, @’; (similar to
how we derived the value for a above)

d d
Vj = Z 5‘;8;0‘“ ,Vj = Z (5jyj)zwi
"0 "0

d d
2 st | = | 2 5wy
i=—d i=—d
1#0 170

Since 7|s; ¢ TonrSSPf we have that §; ¢ BadCh(7|s;). Therefore, SZ(f(A),d;) is false where f is
as defined in CheckBad(7’, d;). Since we have here that f(d;) = 0, the polynomial f(Y) is the zero
polynomial. In particular, its constant term is zero and we have that for j = {1,..., M}

/

i .
get =y fori=1,...,n,

S

jgoeTi above, we have that

and s’ , =0fori <= 0and i > n.Since we derived 8jgazi = 8
jg
o
Sjga:ci = wm@/ ‘ I

and s, .. = 0 for i <= 0 and ¢ > n. Additionally we can infer the following from the opening of
the commitment W; (similar to how we derived the value for a above)

d
_ i
sj = 2 'S jaai
i=—d
i#0
Plugging in the values of 8 jgact
n
sj=| 27" bay | -
i=1

Since s(X,Y) = Zjvil Yy X'y, Y4, we have that s = Zf‘il si = s(z,y). So, we have that

t=a(b+s(z,y)) —k(y) .

Plugging the values of a, b, t, s(z, y) we get that

n

d n
Z Zztgazi = Z ergazifn+d Z (yz)’rgmifmd + s(z,y)

i=—d i=n—2d i=n—2d
1#0 i#n—d i#=n—d
— k(y)

Since 7|, ¢ Ta$Pf, we have that z ¢ BadCh(7|,). Therefore, SZ(f(Z),2) is false where
f is as defined in CheckBad(7’, z). Since we have here that f(z) = 0, the polynomial f(Z) must

57



Game NWEE-15.7 (\):
tr < ¢

pp <= IP.Setup(1*)

a <= Gen(pp)

Ol
Run P, (pp, z)
b s D(tr)

Return (b = 1)

Game NWEE-0,, 727 (\):
tr—¢

pp «s IP.Setup(1*)

x «s Gen(pp)

ste «— (1%, pp, )

Ot
Run Palg,A (pp7 l‘)

Oracle Ol (7 = (a1, c1,...,ai-1,¢i—1),a:):

If 7 € tr then
If i < r then
¢i <3 Chy; tr — tr| (7, ai, ¢;); return ¢;
Else if i = r + 1 then
d — IP.V(pp,z, 7| a:)
Return d
Return L
Oracle ngt(T = (0,17 Cly...,Q;—1, Cifl), ai):

If 7 € tr then
If i < r then
(resp, ste) «s (ste, [(7,a:)])
tr «— tr|| (7, as, resp)
Return resp
Elseifi = r + 1 then

w' s E(ste, L)
b s D(tr) d — IP.V(pp,z, 7| a;)
Return (b = 1) A (Acc(tr) = (pp,x,w') € R) Return d

Return L

Fig. 30. Definition of the security notion n-srs-wee. The games NWEE-1, NWEE-0 define n-srs-wee security in the AGM
for a non-uniform algebraic prover P, a distinguisher D, an extractor £, generator Gen and a public-coin interactive
proof IP. We assume here that IP has r = r()) challenges and the i-th challenge is sampled from Ch;.

be the zero polynomial. In particular, its constant term must be zero. Writing out the constant

term of f(Z) and using aj = (Tgazl—n+d, .. .,Tgazd), ap = (T‘gal—l—n+d, .. ,Tgazdf?n) and a}, =

(Tgazflf2n+d, e rgazd73n )) we get

T apd—nT ..d—n +{a] 0 @R —ap, yﬁﬁl + y[ilﬁ71>

9 g
+yp it (We-al + We-ah+ Wo -ap) — (c,y(l 111 =0

Since 7|, ¢ Tome$>P" we have that y ¢ BadCh(r|,). Therefore, SZ(f(Y),y) is false where f is
as defined in CheckBad(7',y). Since we have here that f(y) = 0, the polynomial f(Y') is the zero
polynomial. Therefore, equating all the coefficients of f(Y') to zero, we have that

ajoap=apanda; - Wy +ap-Wgr+as-Wp=c.

7 Non-adaptive srs-wee security

The notion of srs-wee security that we defined in Section 4 allows the prover to adaptively choose
its input. In the srs-wee analysis the extractor had access to the representation of the instance
since the algebraic prover generated the instance. But there are scenarios where the prover may
be non-adaptive and not be able to do that — for example, the input could be generated by another
party, and the prover tries to prove knowledge with respect to this input. Hence this section, we
consider a setting where instead of the prover adaptively choosing its input, an instance generator
generates an instance which is given to the prover. For protocols where the instance contains
group elements, we need an analysis entirely different from the analysis for srs-ewe because here
the representation of the instance will not available to the extractor.
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FORMALIZING N-SRS-WEE SECURITY. We formalize another notion of proof-of-knowledge (PoK)
security in the AGM where the input is not generated by the prover, instead the prover is given
an instance generated by an instance generator (we assume that Gen is an algorithm that takes as
input the public parameters and returns an instance x). We give a definition along the lines of srs-
wee. This new security notion called non-adaptive srs-wee or n-srs-wee is formally defined using
games NWEE-0, NWEE-1 in Figure 30. For an interactive proof IP, an associated relation R and an
instance generator Gen, non-uniform algebraic prover Paig, a distinguisher D, and an extractor &,
we define

AV (Paig, D, €, \) = Pr [NWEE-lE}'gG’eDn()\)] — Pr [NWEE-ofF;ﬁ;[gfn(A)] . (29)

N-FS-EXT SECURITY. We can formalize a notion of non-adaptive proof-of-knowledge (PoK) secu-
rity in the AGM for non-interactive arguments obtained by applying the Fiat-Shamir transform to
an interactive protocol IP analogous to fs-ext-1 security. We can define it through a game N-FS-EXT
whose only difference from the game FS-EXT-1 is that there is an instance generator Gen which
outputs an instance x and the prover has to output a proof for the instance x instance of being able
to choose it adaptively. For an interactive proof IP and an associated relation R, instance generator
Gen algebraic prover P,j; and an extractor £, we define

n-fs-ex Paig,€
AVISESTE) con o (Poigs € 2) = Pr [N-FS-EXTlP"; (/\)] .
The following theorem connects the n-srs-wee of a public-coin protocol IP and the n-fs-ext sound-
ness of non-interactive protocol FSRC[IP], obtained by applying the Fiat-Shamir transform using
a random oracle. Its proof is very similar to the proof of Theorem 2 and has been omitted.

Theorem 8. Let R be a relation. Let |P be a r = r(\)-challenge public coin interactive protocol for the
relation R where the length of the i*" challenge is cLen;(\) such that sLen(\) < clen;(\) < hLen()\)
fori e {1,...,r}. Let Gen be an instance generator for the relation R. Let £ be an extractor for |P such
that it always responds to queries with bit-strings of appropriate length chosen uniformly at random. We

can construct an extractor £* for FSRO[IP] such that for every non-uniform algebraic prover g A8ainst

FSRO[IP] that makes g = q(\) random oracle queries, there exists a non-uniform algebraic prover Pag and
D such that for all X € N¥,

q+1

AdVEGES ip) 1(Paig: €5 ) < AV (Patg, D, €,0) + s -

FSRO[IP],R\" alg’
Moreover, Pag makes at most q queries to its oracle and is nearly as efficient as Pj,,. The extractor £* is
nearly as efficient as &.

N-SRS-WEE SECURITY OF RngPf. Among the protocols whose srs-wee security we analysed earlier,
the only protocol which had a group element in its input was RngPf. The protocols ACSPf, SnACSPf
do not have a group element in their input and therefore their n-srs-wee security analysis would
be identical to the analysis for srs-wee security. For RngPf however, since we needed to use the
representation of the element V/, which is not available in the n-srs-wee setting, we need to give a
new analysis. Next, in the following theorem we analyse the n-srs-wee security of RngPf.

Theorem 9. Let G = {G)}\en+ be a family of groups of order p = p(\). Let RngPf = RngPf[G] be the
interactive arqument as defined in Figure 7, for the relation R in (4). Let Gen be an instance generator for
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Procedure e([7]):

//[T] = ((n7 g h,u,g, h)7 [V] ; ([A] ) [S])7 (y7 Z)> ([Tl] ) [TQ])v T, (6967 122 E)v w, ([Ll] ) [Rl])7$17 ceey
([L1ogn] ;s [Riogn])s Trog n, (a, b))

If 22 + t1ya + toyz? = 0 then return L

8(y,2) « (z = 2°)A", y") — 22", 2")

v¥ — (t—=6(y,2) — tigr — t29x2)(22 + tive + taya®) !

V¥ (Be — tinx — top?) (22 + tive + tovaz?) ™!

Return (v*,v*)

Fig. 31. The function e for RangeProof.

the relation R. We can construct an extractor € such that for any non-uniform algebraic prover Pag making
at most ¢ = q(\) queries to its oracle, there exists a non-uniform adversary F with the property that for
any (computationally unbounded) distinguisher D, for all A € N*,

-sr- 2q(14n + 8 1
AdVRnSgI’PV%I,e}%,Gen (Pa|g7 D7 5; >\) < \/Advg}'(]—“) + q(pill) + ]; .

Moreover, the time complexity of the extractor £ is O(q - n) and that of adversary F is O(q - n).

Using Theorem 8, we get the following corollary.

Corollary 4. Let G = {G )} en+ be a family of groups of order p = p(\). Let RngPf = RngPf[G] be the
interactive argument as defined in Figure 7, for the relation R in (4). Let Gen be an instance generator for
the relation R. Let FSRO[RngPf] be the non-interactive arqument obtained by applying the Fiat-Shamir
transform to RngPf using a random oracle. We can construct an extractor £ such that for any non-uniform
algebraic prover P, making at most ¢ = q(\) queries to the random oracle there exists a non-uniform
adversary F with the property that for all X € NT,

e 2g(14n + 8 1 +1
n-fs-ext dl q( ) q
AdVFSRO[Rngpf],Gen,R(Palg’ g’ )\) < \/AdVG (‘F) + ﬁ + 5 + Ifl .

Moreover, the time complexity of the extractor £ is O(q - n) and that of adversary F is O(q - n).

We cannot reuse the framework we developed in section 4 to prove theorem 9 because the repre-
sentation of V' is not available. However, at the algebraic level this proof shares similarities with
the proof of Theorem 4. So we provide a proof sketch omitting some details which are similar to
that in Theorem 4.

Proof (Sketch).

Like previously, we construct an extractor £ that just answers challenges honestly, and applies
the function e (defined in Figure 31) to a path in the execution tree which defines an accepting
transcript, and returns whatever e returns. Observe from the definition of RngPf.V that if 7 as
defined in (5) is an accepting transcript,

VZQg‘s(y’z)TfTé”Q — gfhﬁz _

Now, e can plug in the representations of 77,75 into the above equation and compute the values
eV, €g, €h, €y, €g, €, Such that Vv = gh®ry g h® . For example

eg=t—10(y,2) —tigx — tgga:z L ey =22 + tiyx + toya® .
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The procedure e returns e, /ey and ey /ey. However, its output is a valid witness only if eg = e, =
0",e, =0and eg/ey € [0,2" —1].

In order to upper bound the failure probability of e, we shall again construct an adversary H
against the discrete logarithm relation problem. In this case, it would first run Gen with its inputs
and get V. Like previously, it would run P,z on n,g,h, g, h,u, V. If P,y manages to produce an
accepting transcript 71, H runs P, on n,g, h, g, h,u, V with fresh randomness. The adversary #H
needs to re-run P,|; twice because the representation of V' is not available.

If P, manages to produce an accepting transcript 7, H calls a helper function h on input
([71], [2]) and outputs whatever h outputs. The definition of h is given in Figure 32.

Define E as the event that P,z succeeds in producing an accepting transcript but £ fails. Let
Pr[E] = ¢. Let 0y = Pr[E|V was output by Gen]. It follows that 6 = E [dy/] where the expectation
is over all V output by Gen.

We shall show that

—re 2¢(14n + 8)
Adv%7|727,}+3(7'[) 2 E [5‘2/] - pf .

Using Lemma 2 we would have that there exists an adversary F such that

2¢(14n +8) 1
271 < Agdyd! 1
Using Jensen’s inequality we have that E [6%] > (E [6v])* = 62.

So, we have that

2¢(14n +8) 1
0 < 4 |Advg _— .
Then, it is easy to see that
—sr- 2q(14n +8 1
AVESEES Gen(Paigs D, €, ) < \/Adv:a(f) pHCREE
To conclude the proof of the theorem we need to show that
2¢(14n + 8)

A () > 5] - 20

Suppose H runs P,jq, and it succeeds in producing accepting transcripts 71, 72 where for ¢ = 1,2

[Ti] = ((n7 g, h,u,g, h)? V; ([AZ] ) [Sl])ﬂ (yi’ Zi)7 ([TZ ] ’ [Tl ])7 s, (ﬁiﬂ&vuhfi)vwiv
([Lir], [Ral)s @ity - - -, ([Litogn] s [Ritogn]) Titogn, (@i, bi)) -

Define fori = 1,2,

8(yi,zi) = (20— 20)A" yi") — 21", 2")

vf = (t; — 8(yi, 1) — ti1g®; — ti2g96@2)(2i2 + tiive; + tz‘2vmg)71 ;

V= (Bia — taanmi — tionw}) (2] + tavas + tiova;) "

Let E be the event that H runs P,jg, and it succeeds in producing accepting transcripts 7, 7
and both of the following are true

61



Procedure h([1], [72]):
//[Tl] = ((TL, g2, h7 u, g, h’)v V§ ([Al] ) [Sl])v (yi7 Zi)7 ([Tll] ) [Tiz])v T, (61967 Mhii)ﬂui» ([Lil] ) [R“])7xi17 sy
([Lilogn] 5 [Rz logn])awilogny (az'7 bz))
5(Y,2Z) «— (Z — Z*)QaA™, Y™y — Z3(1™, 2™
(1) — (2’2 + to1ves + t22v$2)(t11g$1 + t12g$1) — (2’1 + t1ivzer + t12vﬂf%)(t21gl’2 + t22g$%); 61(11)
tzzviﬂg)(tuhm + tlth%) (21 +tuivaer + t12vx1)(t21h962 + t22h$g)
(1) (Zz + to1ves + t22v132)(t11u551 + t12u$%) — (2’1 + t1ivzer + t12v$1)(t21u$2 + t22ux%) eél)
t22V1‘2)( (yl, Zl) + t11971 + t12gI1 — tl) (21 +tiivaer + t12v1‘1)(5(y2, ZQ) + to197T2 + t22gI2 — fz)
21) (22 + tor1vaxo + t22v$2)(t11h$1 + tiopat — Biz) — (2’1 +tiiver + t12v$1)(t21h$2 + toonx3 — B2z)
If (e g), S), e, gl), S)) # (0™,0™,0,0,0) then return (e(gl)7 6511)’ e, f,l), 21))
For:=1,2do
Vig < (6(?!17 Zz) + tzquz + tz2qx? — fz)(zf +tiive + t,‘g\/ﬂ??)
vin < (tinzi + tionx? ﬂzz)(zzz + tiavae: + ti2V11712)71
Piv < aiv + TiSiv; Pig < (Qig) + TiSig — 211"
Pih < Qih + TSin +yi "0 (ziyi" + 272"); Pl — Qig + Tisig
Phn = Qin + TiSin — [hij Pioy < Gin + TiSin + Wwits
Fork=0ton—1do1 1
ogn ogn 1—bit(k,m,logn
e (P§g1+k +mzlzimgl+kx3n +rimgl+km;2) —a- ( T =5%Y (,m,log >>

m=1

logn e
2 p. —+ 2 2 b ( 1
(4,2) ( {ih1+k mzl limh1+kﬂjm Timhq 41, Tm ) — by( (k) . ( H

ehk+1
el — (e el el = (e e

— (Z% + torves +

«— (2’3 + to1ves +

-1

ey

. logn
67(1,272) «— <p + Z lzmuan + T'zmuxm2) —w; - ab;

m=1

logn
eg2) — ( Zl(limg F Limv0ig) T2 4 (Pimg + TimvVig) T ) + pig + Pivvig
m=
@) logn 5
e — | X (limh + limvvin)To, + (Timh + TimvUin) T > + pin + Pivvin

m=1
If (D), el el o1 0) 2 (07, 07,0,0,0) then return (09, 6D, (1D, (012 ((1:2)

Return( () o(22) @22) ((22) (22))

Fig. 32. The function h for RngPf.

-0k g [0,20 —1] v guthT £V

-0k g [0,20 —1] v guhE £V
It is easy to see that Pr[E;] = E[6%|. We define the pair of transcripts (71, 72) to be bad if any of
the following is true.
CheckBad([7;|w, ], w;) is false fori = 1,2 where CheckBad([7'] , w) is defined in Figure 8.
CheckBad([7i|s,,, | s Tim) is false fori = 1,2and m = 1,...,logn where CheckBad([7'] , z,,) is
defined in Figure 8.
CheckBad([71], [72] , 1, z2) is false where CheckBad([r1], [72] , x1, z2) is defined in Figure 33.
CheckBad([r1], [72] , (y1, y2), (21, 22)) is false where CheckBad([71], [T2] , (y1, y2), (21, 22)) is de-
fined in Figure 33.

It can be shown that if P,; makes at most ¢ queries in each execution, the probability that the
transcripts (71, 72) are bad is at most W. The proof of this statement is similar to the proof
of 5 and we omit the proof here.

First it is easy to see that the output h is always a discrete logarithm relation between g, h, u, g, h

but might be a trivial relation. Now we shall show that for a fixed (71, 72), h(71, 72) returns a trivial
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Procedure CheckBad([T1] s [7‘2], (y17 2’1), (yg, 22))

f1 (Y, Z) «— Z2(5(y1, z1)+t119x1+t129x%—51) (2’1 +tuv1‘1+t12v$1)(5(y Z) <a2g — Z].n7 (agh + Zln) oY"™ + Z22n>)
f2(Y,2) — Z%({azg, 2") —{ag, 2")) — Z{ag — an — 1", Y") —{ag 0 an, Y")

Return SZ(f1(2), 2) v SZ(fa(Z), 2)

Procedure CheckBad([71], [72], z1, 2):

//[T’Z] = ((n7 g, hv u, g, h)v ‘/7 ([AZ] ) [S'L])7 (yi7 Zi)7 ([Tzl] 5 [Tz2]))
Y, Z) — (Z - ZHQA™, Y™y — 731", 2™

If 22 + t11v 21 + tioyz? = 0 then return true

If 22 + to1vxe + taov a3 = 0 then return true

J11(X) « (Z2 +torv X + taov X?) (t11g71 + t12g$1) (2’1 +tuvar + tmvxl)(tmgX + to2g X7)
f12(X) « (22 +torvas + tzzvfﬂz)(tngX + t12g X (21 +tiv X + tioy X?) (t21g22 + tzzgmg)
f21(X) (23 + torv X + tooy X)) (t1inzs + t12h$1) (23 + tuvae + t12vI1)(t21hX + taon X ?)
f22(X) « (22 +toavas + t22V$2)(t11hX + t12n X?) — (21 +t1v X + tiov X?) (tainz2 + t22h$2)
f31(X) « (22 + tory X + tooy X?) (11021 + t12u961) (2% + tive + t12v$1)(t21uX + t22,X?)
f32(X) < (25 + tarvea + taove3) (11X + t120 X32) — (27 + tiiv X + t1av X2) (t21072 + t22u23)

For:=1,2do
1:(X) « (aig — 2 - 1™) + 5ig - X; 7:(X) —y" 0 (ain+2i - 1" + 5 - X) + 27 -2
8(y,z) «— (z = 2°)QA", y") — 22", 2")
fa(X) — (25 + tarv X + t2av X2) (8 (y1, 21) + t114T1 + tiogx: —11) — (2§ + tiiver + tizval) (6 (y2, 22) + ta1g X + t229X2
—{asg + Xs2g — 221", (a2n + X son + 221™") 0 y2" + 252™))
f5(X)  ((azg; 2™) (21 + tuv X + trav X?) + 6(y1, 21) + t11g X + t12g X — (1 (X), 71(X))
Return SZ(f11(X),x) vSZ(f12(X), ) vSZ(f21(X),x) v SZ(f22(X),x) vSZ(f31(X), ) vSZ(f32(X),z) vSZ(fa(X),x) Vv
SZ(f5(X), )

Fig. 33. The functions CheckBad function for the RngPf.

discrete logarithm relation and transcripts (71, 72) are not bad then the event £; cannot happen.
In other words, if E; happens then either h returns a non-trivial discrete logarithm relation or
transcripts (71, 72) are bad i.e.,

2q(14
PrlEi] < Advil(F) + W .
p—
This would give us
. 2¢(14n + 8)
AdvElse) 3(H) = E[67] — o1

We shall use the approach we used in the proof of Lemma 6 to prove that for a fixed (71, 72),
h(71, 72) returns a trivial discrete logarithm relation and transcripts (71, 72) are not bad then the

event F; cannot happen. We shall first use that (e(g),eg), &1), (1) (1)) = (0",0",0,0,0) and
(71, 72) is not bad to conclude that g"i K7 = V holds. First using e( ) = 0" we get that

(Z% + to1yxo + tQQVx%)(t11g$1 + tlgglt%) — (Z% +tiivxr + tlgvl‘%)(tglgxg + t22g$%) =0

Since (71, 72) is not a bad transcript we can show that t11g = 0", t12n = 0", ta1g = 0", to1n = 0™.
Similarly using eg) = 0" and ez(}) = 0 we can show that t;1, = 0", t;on, = 0™, t;, = 0fori =1, 2.

This means that we have that

V2f+t11v901+t12nx§ _ gfl*5(y1721)*t119$1*t12gﬂ7%hﬂlm*tllth*tIth% )
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Since (71, 72) are not bad, we have that 2? + t11,21 + t12,27 # 0, 50 g”ik Rt = V.

Now, using (e(gm), eg’m, eg’Q), 62@'72)’ eg’m) = (0",0™,0,0,0) for ¢ = 1,2 and that 7y, 75 are not
bad, we can conclude like in Theorem 4 (since the values ((e(gQ), ef), 6&2), 65]2), eg)) and bad chal-
lenge function for challenges w and x;’s are defined identically to here) that fori = 1,2

(aig + iSig — 21", (@in + Tisin + 2 1") o yi" + z222”> =1;.

Now, using eél) = 0, we get that

(25 + torywa + tooya3) (0(y1, 21) + tiigwy + tigge? — 1) =
(Z% +tiiver + tlgva}%)((s(yg, 22) + tglgl'g + tgggl'%
— ({azg + was2g — 221", (aon + T28on + 221") 0 y2™ + 2352™))) .

Since (71, 72) are not bad we can show that
(5(:1]1, 2’1) + tng.fl + tlzg.f% — 1?1)(2% +tiiver + tlgvx%)fl = <a2g, 2n> .

This means that v} = {asg,2"). Now plugging in the value of #; into above and using (71, 72) are
not bad we can show that

{azg,2") = {a1g,2"), a1nh = a1g — 1", ah 0 a1g = 0" .

From this it follows that {asg,2") € [0,2" — 1] i.e.,, v] € [0,2" — 1]. So we have shown that v} €
[0,2" — 1] and g”f T = V. Hence we proved that for a fixed (71, 72), h(71, 72) returns a trivial
discrete logarithm relation and transcripts (71, 72) are not bad then the event £; cannot happen.
This concludes the proof. )
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Supplementary Materials
A Concurrent work by Biinz et. al.

Biinz et. al. [32] analyse the soundness of the non-interactive protocol obtained by applying the

Fiat-Shamir transform to a generalized version of the inner-product argument of Bulletproofs in

the AGM. Their analysis is asymptotic and they do not give a concrete bound in the paper.
However, as far as we can tell, making their analysis concrete against an algebraic ¢-time prover

making ¢ random oracle queries would give a bound which contains the term 4/q - Advg (¢). In fact,

we think this term may be larger, and of order Q\/ q-Advdl(t) = \/ ¢3 - Adv (t), but we are not sure
due to a lack of concrete analysis in the paper. This bound is not tight — the multiplicative factor
of ¢ before the Adv{{(t) term is due to reduction to a problem that does not have a tight reduction
to the discrete logarithm problem.

This multiplicative factor of ¢ would already be a problem. In the generic-group model, for
example, this would result in a term ¢t?/p ~ t3/p (assuming ¢ ~ t), which only gives us roughly
85 bits of security on a 256-bit curve.

In our analysis, we give a single reduction to the discrete logarithm relation problem whose
hardness is tightly implied by the hardness of discrete logarithm problem, we avoid this multi-
plicative factor.

Additionally, analysing the inner product argument in the AGM in isolation does not directly
give the soundness bound for the full protocol because the bases to which elements are described
are not necessarily the same as those that would be available to a cheating algebraic prover against
the full protocol.
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