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Abstract. Constructing one-way functions from average-case hardness is a long-standing open
problem. A positive result would exclude Pessiland (Impagliazzo ’95) and establish a highly
desirable win-win situation: either (symmetric) cryptography exists unconditionally, or all NP
problems can be solved efficiently on the average. Motivated by the lack of progress on this
seemingly very hard question, we initiate the investigation of weaker yet meaningful candidate
win-win results of the following type: either there are fine-grained one-way functions (FGOWF),
or nontrivial speedups can be obtained for all NP problems on the average. FGOWFs only
require a fixed polynomial gap (as opposed to superpolynomial) between the running time of
the function and the running time of an inverter. We obtain three main results:
Construction. We show that if there is an NP language having a very strong form of average-
case hardness, which we call block finding hardness, then FGOWF exist. We provide heuristic
support for this very strong average-case hardness notion by showing that it holds for a random
language. Then, we study whether weaker (and more natural) forms of average-case hardness
could already suffice to obtain FGOWF, and obtain two negative results:
Separation I. We provide a strong oracle separation for the implication (∃ exponentially
average-case hard NP language =⇒ ∃ FGOWF).
Separation II. We provide a second strong negative result for an even weaker candidate
win-win result. Namely, we rule out a relativizing proof for the implication (∃ exponentially
average-case NP hard language whose hardness amplifies optimally through parallel repetitions
=⇒ ∃ FGOWF). This separation forms the core technical contribution of our work.

Keywords. Oracle separation; fine-grained one-way function; average-case hardness; exponen-
tial hardness; Pessiland

1 Introduction

In his celebrated 1995 position paper [Imp95], Impagliazzo describes his personal view of the study
of average-case complexity, an emergent (at the time) and fundamental area of computational com-
plexity initiated in a seminal work of Levin [Lev86], which aims to characterize NP problems which
are not only hard for a worst-case choice of inputs, but also for natural distributions over the in-
puts. In Impagliazzo’s view, our current understanding of the landscape of complexity theory is best
described by considering five possible worlds we might live in, which are now commonly known as
the five worlds of Impagliazzo, corresponding to the five possible outcomes regarding the existence
of worst-case hardness in NP, average-case hardness in NP, one-way function, and public-key cryp-
tography. The corresponding five worlds, Algorithmica, Heuristica, Pessiland, Minicrypt, and Cryp-
tomania, and their relations are summarized on Figure 1. Algorithmica and Heuristica correspond
to the “algorithmist’s wonderland”, where all NP languages can be decided efficiently on the aver-
age. Cryptomania and Minicrypt correspond to the “cryptographer’s wonderland”,3 where one-way
functions (and therefore, stream ciphers, signatures, pseudorandom functions, etc.) exist. Eventually,
Pessiland is what Impagliazzo describes as “the worst of all possible worlds”: a world in which many
NP problems might be untractable (even on natural instances), yet no one-way function (and thus no
cryptography) exists.

One-Way Functions based on Average-Case Hardness. In this article, we study whether (the
existence of) average-case hard NP problems imply (the existence of) one-way functions. Conceptually,
3 Though we heard that lately, some cryptographers have been found dreaming of an even higher heaven,

the mysterious land of Obfustopia.



Cryptomania
PKE

Minicrypt
OWF but no PKE

Pessiland
avgP ̸= DistNP but no OWF

Heuristica
P ̸= NP but avgP = DistNP

Algorithmica
P = NP

cryptographer’s
wonderland

“the worst of all
possible worlds”
Impagliazzo, 1995

algorithmist’s
wonderland

OWF ⇏ PKE [IR90]

avgP ̸= DistNP ⇏ OWF [Wee06]

P ̸= NP ⇏ avgP ̸= DistNP
[FF93,BT03,AGGM06,BB15]

Fig. 1: Impagliazzo’s five worlds. Known (black-box or oracle) separations are indicated on the right.

a positive answer to this question rules out Pessiland, i.e., it constitutes a win-win result: Either all
NP problems can be solved efficiently, on the average, or cryptographic one-way functions exist. Little
progress has been made on this question in the past three decades. There is a partial explanation for
this lack of success: we know that any construction of one-way functions from average-case hard NP
problems must rely on non-relativizing techniques (Wee [Wee06] attributes this simple observation to
Impagliazzo and Rudich). In fact, similar separations [IR90,FF93,BT03,AGGM06,BB15] are known
between any two of Impagliazzo’s worlds. However, outside of Pessiland, the situation is generally
somewhat better. At the bottom of the hierarchy, some strong forms of exponential hardness are known
to imply average-case hardness in NP (e.g. UP ̸⊆ DTIME(2O(n/ log n)) =⇒ DistNP ̸⊆ avgP [Hir21];
see also [CHV22] for results on fine-grained average-case hardness within NP from weaker worst-case
assumptions). At the top of the hierarchy, we know that exponentially secure one-way functions imply
a weak, but useful notion of public-key cryptography, namely fine-grained public-key cryptography
where there is a polynomial (rather than superpolynomial) gap between the time to encrypt and
the time needed to break the cryptosystem [Mer78,BGI08]. Interestingly, the very first publicly-
known work on public-key cryptography, the 1974 project proposal of Merkle4 (published much later
in [Mer78]) achieves exactly such a weak notion of security: Merkle shows that an ideal OWF (modeled
as a random oracle) can be used to construct a key agreement protocol where the honest parties run
in time n, while the best attack requires time n2. The assumption of an ideal OWF was later relaxed
to the existence of exponentially hard OWFs by Biham, Goren and Ishai [BGI08]. Hence, in essence,
Merkle establishes a weak exclusion of Minicrypt, by showing that strong hardness in Minicrypt
already implies some nontrivial form of public-key cryptography, with a quadratic gap between the
attacker’s runtime and the honest parties’ runtime.

1.1 Our Contribution: Inbetween Heuristica and Pessiland

The above result suggests a natural relaxation of Impagliazzo’s program: rather than ruling out
Pessiland entirely, one could hope to show that sufficiently strong forms of average-case hardness
suffice to construct weak forms of cryptography. Such a result would still have a very desirable win-
win flavor. For example, if one shows that exponential average-case hardness implies fine-grained
one-way functions, it would show that either all NP problems admit nontrivial (subexponential)
algorithms on the average, or there must exist some form of cryptography, with a polynomial security
gap. As the computational power increases, such a gap translates to an increasingly larger runtime
gap on concrete instances and thus a larger concrete security margin in realistic situations.

We can also consider starting from even stronger forms of average-case hardness. A very natural
target is non-amortizing average-case hardness, which states (in essence) that deciding whether k
words (x1, · · · , xk) belong to a language L is k times harder (on average) than deciding membership
of a single word. This stronger form of average-case hardness is closely related to the widely studied
4 Ralph Merkle, 1974 project proposal for CS 244 at U.C. Berkeley, http://www.merkle.com/1974/
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notion of proofs of work [BRSV18]. Building fine-grained one-way functions from this strong form of
average-case hardness would still be a very meaningful win-win result: it would show that either we
can obtain nontrivial savings on average for all NP problems when amortizing over many instances
(which would be an algorithmic breakthrough), or there must exist some weak form of cryptography.

In this work, we initiate the study of these intermediate layers between Heuristica and Pessiland,
obtaining both positive and negative results.

Fine-Grained OWFs from Block-Finding Hardness. We mentioned above two natural strength-
enings of average-case hardness: exponential average-case hardness, and non-amortizable average-case
hardness (deciding whether k words (x1, · · · , xk) belong to L is k times harder that deciding mem-
bership of a single word). Here, we consider even stronger notions: we assume that there is a lan-
guage where it is already hard to decide, given k random words (x1, · · · , xk), whether their language
membership satisfies some local structure. As a simple example of such a notion, consider the fol-
lowing (average-case) block-finding hardness notion: given k random words x⃗ = (x1, · · · , xk) and a
t ≈ log k-bit string s, computed as the t language membership bits of a randomly chosen sequence of t
consecutive words in x⃗, find these consecutive words. The notion states (informally) that finding such
a sequence (when it exists, and with probability significantly better than a random guess) cannot be
done much faster than by brute-forcing a significant fraction of all the language membership.

To get an intuition for this problem, it is helpful to consider an even simpler formulation: given k
random words (x1, · · · , xk) with the promise that t consecutive words are not in the language, find
these t consecutive words (with probability significantly better than 1/k). For a very hard language,
it is not clear how to do this without naively brute-forcing the language membership of Ω(k/t) words.
We show that this (very strong) average-case hardness notion already gets us outside of Pessiland:
if there is a block-finding hard language, then there exists fine-grained one-way functions (with a
quadratic hardness gap).

Heuristically evaluating the assumption on random languages. Given that this strong form of average-
case hardness is new, we provide some heuristic analysis to support the intuition that it plausibly holds
for some hard languages. To do so, we introduce a convenient tool for this heuristic analysis, a random
language model (RLM), analogous to how the random oracle model [BR93] is used to heuristically
study the security of constructions when instantiated with a sufficiently strong hash function. The
RLM provides oracle access to a truly random NP-language L. In the RLM, each bitstring x ∈ {0, 1}n

belongs to L with probability exactly 1/2, and the membership witness for a word x ∈ L ∩ {0, 1}n is
a uniformly random bitstring from {0, 1}n.5 To check membership to the language, the parties have
access to an oracle Chk which, on input a pair (x, w) ∈ {0, 1}n × {0, 1}n, returns 1 if x ∈ L and w is
the right corresponding witness, and 0 otherwise. Finding out whether a random bitstring x ∈ {0, 1}n

belongs to L requires 2n−1 calls to Chk on the average.6
The RLM captures an idealized hard language where it is not only (exponentially) hard to de-

cide language membership, but also hard to sample an element of the language with probability
significantly better than 1/2 (hence, in particular, it is also hard to generate a word together with
the corresponding witness). This captures hard languages where no further structure is assumed be-
yond the ability to efficiently check a candidate witness; note that the ability to sample instances
together with their witness is exactly the additional structure which implies the existence of one-way
functions [Imp95], hence the question of building one-way functions from average-case hardness asks
precisely about whether this can be done without assuming this additional structure to start with.

In this work, we prove that a random language satisfies block-finding hardness, providing some
heuristic support for this strong form of average-case hardness. Hence, we get as a corollary:

Corollary 1 (Informal). In the Random Language model, there exists a fine-grained one-way func-
tion which can be evaluated with n oracle calls, but cannot be inverted with o(n2) calls to the random
language.
5 Of course, this heuristic is simplified: most real languages can have more than a single witness, and the

choice of having |w| = |x| is a somewhat arbitrary way of tuning the hardness to make it exactly 2n.
Still, we believe that there is value in using a simple model to heuristically analyze the plausibility of an
assumption – even though, as any heuristic model, it must fail on artificial counter examples.

6 More precisely, it requires 2n−1 calls to Chk on the average to find a witness of language membership if x
is indeed in the language. In turn, it requires 2n calls to confirm that there is indeed no witness if x is not
in the language.
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Constructing a FGOWF from block-finding hardness. At a (very) high level, the construction proceeds
as follows: suppose that there exists hard puzzles where sampling a random puzzle p is easy (it takes
time, say, O(1)), but finding the unique solution s = s(p) to the puzzle, and verifying that a candidate
solution s to the puzzle is correct, are comparatively harder (they take some much larger respective
times N1 and N2 with N1 ≈ N2). For example, such puzzles can be constructed by sampling |s| words
(x1, · · · , x|s|), and asking for the length-|s| bitstring of the bits indicating for each word xi whether
it belongs to a given hard language L. Then we construct a fine-grained OWF as follows: an input to
the function is a list of n puzzles (p1, · · · , pn) for some bound n, and an integer i ≤ n. The function
F (p1, · · · , pn, i) first solves the puzzle pi, and outputs the solution s(pi) together with (p1, · · · , pn).
Evaluating F takes time O(n) + N1; on the other hand, when L is an ideally hard language, inverting
F requires brute-forcing many of the pi, which takes time O(n · N2). Setting n ≈ N1 ≈ N2 gives a
quadratic hardness gap. We refer to Section 3 for a technical overview and Section 7 for a formal
proof and analysis of block-finding hardness in the RLM.

Average-Case Hard Languages and Fine-Grained OWF. With the above, we know that a
sufficiently strong form of average-case hardness suffices to construct fine-grained one-way functions.
The natural next question is whether weaker forms of average-case hardness could possibly suffice.
We consider the two natural notions we mentioned previously: exponential average-case hardness,
and the stronger non-amortizing exponential average-case hardness. For both, our main results are
negative and rule out relativizing (black-box) constructions.

For exponential average-case hard languages, we show that any construction of fine-grained OWF
from an (even exponentially) average-case hard language, even with an arbitrarily small polynomial
security gap N1+ε (for any absolute constant ε > 0), must make non-relativizing use of the language.
We prove this by exhibiting an oracle relative to which there exists an exponentially hard language,
but no fine-grained one-way functions:

Theorem 2 (Informal). There is an oracle relative to which there exists an exponentially secure
average-case hard language, but any candidate fine-grained OWF f can be inverted with probability
O(1) and Õ(N) calls to the oracle, where N denotes the number of oracle calls to compute f in the
forward direction.

Black-Box Separation Between Non-Amortizable Average-Case Hard Languages and
Fine-Grained OWF. We then investigate whether non-amortizability (which states, roughly, that
deciding membership of k random instances to L should take O(k) times longer than deciding mem-
bership of a single instance to L) suffices to construct fine-grained OWFs. As we explained, this would
still constitute a very interesting win-win result: it would show that either weak forms of cryptography
exist unconditionally, or nontrivial speedups can be achieved for all NP problems when amortizing
over many random instances. In Section 1.2, we sketch a few other motivations for considering non-
amortizability.

Unfortunately, our result turns out to be negative: we prove that there is no black-box construction
of an N1+ε-hard OWF (where N is the time it takes to evaluate the function in the forward direction),
for an arbitrary constant ε > 0, even from an exponentially average-case hard language whose hardness
amplifies at an exponential rate through parallel repetition. Conceptually, our second negative result
separates fine-grained one-way functions from a much stronger primitive and can thus be seen as a
much stronger result. Note, however, that technically, the two negative results are incomparable since
the first one rules out relativizing reductions whereas the latter rules out black-box reductions, see
the beginning of Section 3 for a discussion.

Theorem 3 (Informal). There is no black-box construction of an N1+ε-hard OWF f , for an arbi-
trary constant ε > 0, from exponentially average-case hard languages L whose hardness amplifies at
an exponential rate through parallel repetition.

In the nomenclature of Reingold, Vadhan and Trevisan [RTV04], we rule out a ∀∃-weakly-reduction, a
slightly weaker notion than a relativizing reduction. Namely, the reduction can access the adversary.
Our result becomes a full oracle separation if the fine-grained one-way function f would be given
black-box access to the adversary A as well. Reingold, Vadhan and Trevisan point out that in some
cases, the adversary A can be embedded into the oracle O, but doing so did not seem straightforward
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for our case and is left as an open question. In the CAP nomenclature of Baecher, Brzuska and
Fischlin [BBF13], we rule out NNN reductions, since the construction f can depend on the language
L, and the reduction C can depend on both, the adversary and the primitive, i.e., each of these
dependencies can be seen as non-black-box, thus NNN.

1.2 Why Study Non-Amortizability?

As we explained above, building fine-grained one-way functions from non-amortizable languages would
still have interesting win-win implications. Below, we outline two further important reasons to study
non-amortizable average-case hardness.

1. Non-amortizability helps circumvent black-box impossibilities. In the past, non-amortizability has
proven to be a key feature to overcome black-box impossibility results for cryptographic primitives. For
example, the Biham-Goren-Ishai construction [BGI08] of fine-grained key agreement from exponential
OWFs only provides an inverse-polynomial bound on the probability that any (subquadratic-time)
attacker retrieves the shared key when relying on Yao’s XOR Lemma. In turn, when relying on a
(plausible) version of the XOR Lemma stating that success probability decreases exponentially fast in
the number of XORed instances, the adversary’s success probability can be brought down to negligible.
Yet, this “Dream XOR Lemma” cannot be proven under black-box reductions [BGI08]. An even more
striking example is given by Simon’s celebrated black-box separation between one-way functions and
collision-resistant hash functions [Sim98]: Holmgren and Lombardi [HL18] recently showed that a
one-way product function (i.e., a OWF that amplifies twice, meaning that inverting f on two random
images (y1, y2) takes twice the time of inverting f on a single random image) suffices to circumvent
Simon’s impossibility result and to build a collision-resistant hash function (in a black-box way).

2. A natural and promising attempt towards fine-grained OWFs gets “stuck” at non-amortizable hard-
ness. The goal (FGOWFs from “weaker” assumptions) was set forth in [BRSV17], with a promising
path: starting from a worst-case assumption (the strong exponential time hypothesis (SETH)), one
gets structured average-case hardness (through the orthogonal vector problem (OV)). Even more, a
follow-up work [BRSV18] improved the result further to obtain non-amortizable average-case hard-
ness from SETH via OV. The work of [BRSV17] explicitely asked the following question, which was
the initial motivation of our work: can we push this OV-based construction further, up to FGOWFs?

In a bit more details, an OV instance is a pair of sets (U, V ) of n vectors from {0, 1}log2 n, where
the goal is to find if there exists u ∈ U and v ∈ V such that ⟨u, v⟩ = 0 over Z. The result of [BRSV17]
builds upon a polylog-degree polynomial P : F2n log2 n 7→ F over a field F such that P (U, V ) counts the
number of orthogonal pairs (u, v) in (U, V ). Then, they prove, via the Berlekamp-Welch algorithm,
that if P can be computed on a random input x ∈ F2n log2 n in time O(n1+ε), OV can be solved in
time Õ(n1+ε) in the worst-case. [BRSV18] extends this to show that even amortizing the computation
of P over many random inputs (x1, · · · , xℓ) is hard under the worst-case hardness of OV (which is
implied by SETH).

One way to read our contributions is the following: our positive result can easily be framed as an
OV-based construction, where solving a block x becomes computing P (x), where P is an explicit low-
degree polynomial, and the hardness of inverting our candidate reduces to the hardness of finding,
given (x1, · · · , xℓ) and y ∈ F, an xi such that P (xi) = y. On the other hand, the key worst-case
to average-case reduction in [BRSV17,BRSV18] builds upon the Berlekamp-Welch algorithm, which
appears inherently stuck at showing the worst-case hardness (under SETH) of evaluating P on many
random inputs (x1, · · · , xℓ) (that is, we get non-amortizing average case hardness for P ). Block-
finding hardness formalizes what we would need to prove to achieve FG-OWF from SETH through
this approach. Then, our last separation says: the further the Berlekamp-Welch techniques seems to
get us (i.e., to non-amortizing hardness) will not suffice (in a black-box way) to obtain this form of
hardness, with any candidate construction. In other words, we need new non-relativizing techniques
that go beyond the Berlekamp-Welch algorithm.

On Basing FGOWF on the average-case hardness of a concrete NP-complete language. Our impossi-
bility results rule out constructions of fine-grained one-way function that would work using black-box
access to an arbitrary average-case hard language. However, it seems plausible that a construction of
FGOWFs from the average-case hardness of an arbitrary language could proceed differently. Typically,
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such a construction could first reduce the language to a SAT instance (or any other NP-complete
problem) using a non-relativizing reduction. Then, the construction of FGOWF would build upon
the concrete structure of SAT; such a construction would not be ruled out by our results.

In this setting, our negative results should be interpreted as saying that if such a construction is
possible, then it must crucially rely on specific structural hardness properties of the chosen language,
and not solely on natural properties such as its exponential hardness, or its non-amortizability. This is
especially relevant in the context of the attempt of [BRSV17] to get fine-grained OWF under SETH
via the OV problem, which gets average-case hardness and proof of works, but gets “stuck” at a
non-amortizable language, which we show does not suffice (in a relativizing way) to get all the way
to fine-grained OWFs.

In fact, we initially designed the construction of FGOWF from block-finding hardness as a con-
struction based on the average-case hard puzzles of [BRSV18], and dedicated an important effort to
trying to reduce its security to the non-amortizable average-case hardness of this puzzle, viewing this
approach as the most promising direction to base FGOWFs on a worst-case hardness assumption
such as SETH. After failing to prove it secure, we realized that our lack of success might be inher-
ent, and turned this realization into a proof by demonstrating the impossibility of basing a FGOWF
on non-amortizing hardness in a blackbox way. We hope and believe that our negative results will
therefore guide future attempts of basing FGOWFs on weaker assumptions, even attempts that do
not ultimately aim at building them from arbitrary hard languages.

1.3 A Core Abstract Lemma: the Hitting Lemma

At the heart of both our positive result and our black-box separations is an abstract lemma, which
we call the Hitting Lemma. While the statement of the lemma is very intuitive, its proof is quite
technical, and forms one of the core technical contributions of this work. In its abstract form, the
Hitting Lemma is a very general probability statement about a simple two-player game between a
challenger and an adversary. It shows up naturally on three seemingly unrelated occasions in our
work, hence it seems likely that it can have other applications, and we believe it to be of independent
interest.

At a high level, the Hitting Lemma provides a strong Chernoff-style bound on the number of
witnesses which an adversary can possibly find given oracle access to the relation of a hard language.
More precisely, we state the Hitting Lemma in an abstract way, as a game with the following structure:

– First, the game chooses a list of sets Vi. Each set Vi has size bounded by some value 2n and can
be thought of as the set of candidate witnesses for a size-n word.

– In each set Vi, the game chooses a uniformly random witness ri. The sets Vi are allowed to
have different sizes, to capture the more general setting where the adversary already obtained
preliminary information excluding candidate witnesses.

– Eventually, the adversary interacts with an oracle Guessr1···rℓ
which, on input (i, x), returns 1 if

x = ri and ⊥ otherwise.

We call a query (i, x) such that Guessr1···rℓ
(i, x) = 1 a hitting query (or a hit). The goal of the

adversary is to get as many distinct hits as possible within a bounded number of queries. Intuitively,
the most natural strategy to maximize the number of hits is to proceed as follows: first pick the
smallest set Vi, and query arbitrary positions one by one, until a hit is obtained. Then, pick the
second smallest set Vj and keep proceeding the same way, until all of the ri are found or the query
budget is exhausted.

In essence, the Hitting Lemma states that the above natural strategy is really the best possible
strategy, in a strong sense. Namely, denoting mQ the average number of hits obtained by a Q-query
adversary following the above strategy, the Hitting Lemma shows that for any possible adversarial
strategy, the probability of getting O(mQ)+c distinct hits using Q queries decreases exponentially with
c (for some explicit constant in the O(·)). The proof combines a reduction to a simpler probabilistic
statement, proven by induction over Q, with a tight concentration bound on the winning probability
of the above natural strategy.

Interestingly, the Hitting Lemma extends directly to the non-uniform setting, where the adversary
is allowed to receive an arbitrary k-bit advice about the Guess oracle; this property turns out to be
crucial in some of our results. Our bound shows that this advice cannot provide more than k additional
hits. More precisely, for any possible adversarial strategy where the adversary receives an arbitrary
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k-bit advice about the oracle, the probability of getting O(mQ) + k + c hits decreases exponentially
with c. We refer to Section 6 for the full statement and analysis of the Hitting Lemma. Interestingly,
the Hitting Lemma extends directly to the non-uniform setting, where the adversary is allowed to
receive an arbitrary k-bit advice about the Guess oracle; this property turns out to be crucial in some
of our results. Our bound shows that this advice cannot provide more than k additional hits. More
precisely, for any possible adversarial strategy where the adversary receives an arbitrary k-bit advice
about the oracle, the probability of getting O(mQ) + k + c hits decreases exponentially with c. We
refer to Section 6 for the full statement and analysis of the Hitting Lemma.

Analogy with the ROM. In the Random Oracle Model, a long line of work (see for example [Hel80],
[Unr07,DGK17,CDGS18] and references therein) has established the hardness of inverting an idealized
random function in a non-uniform setting, given a bounded-length advice about the oracle. These
results have proven to be important and powerful tools to reason about the Random Oracle Model.
At a high level, the hitting lemma provides a comparable tool in the Random Language Model and
captures the hardness of deciding language membership for an idealized hard language, even given a
non-uniform advice, and even when the adversary tries to amortize over many instances.

1.4 Related Work

Fine-Grained Cryptography. We already pointed out that Merkle’s construction [Mer78] provides
the first example of fine-grained cryptography (as well as the first known example of public-key
cryptography). It was further studied in [BGI08,BM09], and generalized to the quantum setting
in [BS08,BHK+11]. Fine-grained cryptography has only become a more active subject of study in
recent years. The work of [BRSV17,BRSV18] constructs proofs of work from explicit fine-grained
average-case hard languages which can be based on the strong exponential-time hypothesis (SETH),
and explicitly poses the problem of building fine-grained one-way functions (while showing some barri-
ers for basing them on SETH via natural approaches). The work of [DVV16] studies a different form of
fine-grained cryptography, showing cryptosystems secure against resource-bounded adversaries, such
as adversaries in NC1, under a worst-case hardness assumption. Eventually, the work of [LLW19] is the
most closely related to ours: it shows constructions of fine-grained one-way functions and fine-grained
encryption schemes from the average-case hardness of concrete problems, such as the Zero-k-Clique
problem.

Hardness in Pessiland. While building one-way functions from average-case hardness has remained
elusive, some works have investigated other useful forms of hardness which could possibly reside
in Pessiland. In particular, Wee [Wee06] shows that the existence of non-trivial succinct 2-round
argument systems for some languages in NP cannot be excluded from Pessiland in a black-box way.

Oracle Techniques. Besides new ideas, our oracle separation relies on several established techniques.
We use the two-oracle technique of [Sim98,HR04] where one oracle implements the base primitive and
the second oracle breaks constructions built from this primitive. As we argue about the efficiency of
the constructed one-way function, we use similar techniques to Gennaro and Trevisan [GT00] who
describe the emulation of a random oracle based on a bounded-length string, implicitly applying a
compression argument. We use Borel-Cantelli to extract a single oracle from a distribution of random
oracles as the seminal work on black-box separations by Impagliazzo and Rudich [IR89]. In order to
make our oracle deterministic, we use the hashing trick of Valiant-Vazirani [VV85] to obtain a unique
value out of many pre-image for a one-way function. In particular, we hash evaluation paths similar
to Bogdanov and Brzuska [BB15] who separate size-verifiable one-way functions from NP-hardness.

Relation to Pass-Venkitasubramaniam. Pass and Venkitasubramaniam [PV20] show that TFNP (the
class of total NP search problems) is unconditionally hard in Pessiland. More precisely, they show
the following: if there exists average-case hard languages, then either there exists average-case hard
TFNP problems, or there exists one-way functions. We note that, since their constructions are black-
box, combining their result with our work further implies the following result stating that proving
that total search average-case hardness suffices to construct fine-grained one-way functions is likely
to be hard, since any such black-box proof would unconditionally imply the existence of (full-fledged)
one-way functions:
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Theorem 4 (this work + [PV20], informal). If there is a black-box construction of N1+ε-hard
one-way function, for an arbitrary constant ε > 0, from average-case TFNP hardness, then one-way
functions exist unconditionally.

Relation to Liu-Pass Liu and Pass [LP20] show that mild average-case hardness of computing time-
bounded Kolmogorov complexity already suffices to establish (in a black-box way) the existence of
one-way functions. In particular, we note that, combined with our results, this implies that even
exponentially-strong, self-amplifiable average-case hardness in NP does not imply (in a black-box
way) mild average-case hardness of time-bounded Kolmogorov complexity.

Theorem 5 (this work + [LP20], informal). There is no black-box reduction from the mild
average-case hardness of computing time-bounded Kolmogorov complexity to the existence of expo-
nentially average-case hard languages whose hardness amplifies at an exponential rate via parallel
repetition.

2 Preliminaries

2.1 Notation, Computational Models and Oracles

For any n ∈ N, [n] denotes the set {1, · · · , n}. Throughout this paper, we represent algorithms as
families of boolean circuits (one for each input length), and use circuit size (i.e., the number of wires)
as the main measure of efficiency. We model oracle access by allowing circuits to have oracle gates.
We measure the size of such an oracle circuit as for a standard circuit, by the number of its wires.
Typically, if an oracle takes an n-bit entry as input and outputs an m-bit response, this will be
modeled by a fan-in-n fan-out-m oracle gate (hence this gate will contribute n+m to the total circuit
size).

As in the standard model for boolean circuits, wires typically carry bit values. For simplicity and
readability, we will generally allow the wires to directly carry other special symbols, such as ⊥ and
err (converting a circuit in this model to a “purely boolean” circuit only introduces some constant
blowup which has no impact on our asymptotic results). By default, even when we do not mention it
explicitly, we allow all (standard and oracle) gates to receive the symbol err as one of their inputs. If
a gate receives err as one of its inputs, it returns the err on all of its output wires. We use pseudo-code
as a description language and only argue about the size of the corresponding circuit informally.

2.2 Fine-Grained One-Way Functions

We start by introducing the notion of a fine-grained one-way function (FG-OWF) f which we model
as a family {fm}m of circuits, one for each input size, so that the runtime of fm is |fm|. At a high
level, f is an (ε, δ)-FG-OWF if all circuits of (slightly higher) size o(|fm|1+δ) have probability at most
ε to find a preimage of fm(x) for a random input x.

Definition 6 (Fine-Grained One-Way Function). Let ε : N 7→ R+ be a positive function and
δ > 0 be a constant. A function f : {0, 1}∗ → {0, 1}∗ is an (ε, δ)-fine-grained one-way function if for
all circuit families C = {Cm}m∈N and all large enough m, if |Cm| < |fm|1+δ, then we have

Prz←${0,1}m

[
Cm(f(z), 1m) ∈ f−1(f(z))

]
≤ ε(m).

One can also consider a slightly weaker notion, namely a fine-grained one-way function distribution
(FG-OWFD), were the hardness of inversion only holds with respect to a randomly sampled function
f from a distribution D.

Definition 7 (Fine-Grained One-Way Function Distribution). Let ε : N 7→ R+ be a positive
function and δ > 0 be a constant. A distribution D over functions f : {0, 1}∗ → {0, 1}∗ is an (ε, δ)-
fine-grained one-way function distribution if for all circuit families C = {Cm}m∈N and all large enough
m, if |Cm| < |fm|1+δ for all f in the support of D, then it holds that

Prz←${0,1}m,f←$D

[
Cm(f, f(z), 1m) ∈ f−1(f(z))

]
≤ ε(m).

Any distribution over FG-OWFs induces a FG-OWFD, but the converse need not hold in general.
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2.3 Languages

The class NP contains all languages L of the form L = {x | ∃w, (|w| = poly(|x|)) ∧ (R(x, w) = 1)},
where R is a relation computable by a polysize uniform circuit. This definition naturally extends to
the case where an oracle O is available; in this case, we say that the oracle language LO is in NPO if it
is of the above form, where R is computable by a uniform oracle circuit with |R| = poly(|x|). When
the oracle O is clear from the context, we will sometimes abuse this notation and simply say that the
oracle language LO is in NP. For a string x, we will denote by L(x) the bit which is 1 if x ∈ L, and 0
otherwise. We will also extend this definition to vectors of strings x⃗ in a natural way.

Average-Case Hard Languages. We now define (exponentially) average-case hard languages
(EACHLs). Note that the exponential hardness in the following definition refers to the success prob-
ability of the algorithm.

Definition 8 (Exponential Average-Case Hardness). A language L is exponentially average-
case hard if for any circuit family C = {Cn}n∈N and all large enough n,

Prx←${0,1}n [Cn(x) = L(x)] ≤ 1
2 + |Cn|

2n
.

Note that in the most common definition of EACHLs, one does usually not consider an exact bound
|Cn|, and instead define a language to be exponentially hard if a polytime algorithm Cn finds L(x)
with probability at most 1/2 + poly(n)/2n for a random word x ∈ {0, 1}n. However, since we will
work in the fine-grained setting, we settle for a stricter definition, with an explicit relation between
the running time of Cn and the probability of finding L(x). Similarly as for FG-OWFs, we can also
define a weaker notion of exponential average-case hard language distributions (EACHLD):

Definition 9 (Exponential Average-Case Hard Language Distribution). A distribution D
over languages L is exponentially average-case hard if for any circuit family C = {Cn}n∈N and all
large enough n,

Prx←${0,1}n,L←$D[Cn(x,L) = L(x)] ≤ 1
2 + |Cn|

2n
.

Note that any distribution over EACHLs induces an EACHLD, but the converse need not hold in
general.

2.4 Pairwise independent hash-functions

Definition 10. For all j, i ∈ N, we call a distribution Hj,i over functions h : {0, 1}j 7→ {0, 1}i+2 a
distribution of pairwise independent hash-functions, if for all p, p′ ∈ {0, 1}j with p ̸= p′, it holds that

Prh←$Hj,i+2

[
h(p) = 0i+2] = 2−i−2

Prh←$Hj,i+2

[
h(p′) = 0i+2] = 2−i−2

Prh←$Hj,i+2

[
h(p) = h(p′) = 0i+2] = 2−2i−4

The following fact is used, e.g., by Valiant and Vazirani in their randomized reduction which solves
SAT given a UniqueSAT oracle [VV85].

Claim 1 For all sets S ⊆ {0, 1}j such that 2i ≤ |S| ≤ 2i+1, it holds that

Prh←$Hj,i+2

[
∃!p ∈ S : h(p) = 0i+2] ≥ 1

8 .

3 Technical Overview: FGOWFs from Block-Finding Hardness

We first introduce the Random Language Model (RLM), which captures idealized average-case hard
languages, in the same way that random oracles capture idealized one-way functions.7 We will use this
7 More formally, since we consider an oracle sampled from a distribution over oracles, as for the Random

Oracle Model, this captures average-case hard language distributions. I.e., the hardness of a language is
averaged over the choice of the instance and the sampling of the oracle.
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model as a heuristic tool to analyze the new form of average-case hardness which we will introduce
next. We note that this model has limitations: it is a simplified model, and it is actually not too
hard to directly build a fine-grained OWF in this model (e.g. one can define the function F which
maps x to the list of language memberships of the words x||1, x · · · , x||n′, for an appropriate choice
of n′8). However, such simplified constructions do not correspond to any natural form of average-case
hardness that could be formulated on standard NP languages. Rather, our goal is only to use the
RLM as a heuristic rule of thumb to evaluate the plausibility of our new average-case hardness notion.

We define a random language L as follows: for each integer n and each word x ∈ {0, 1}n, sample a
uniformly random bit B[x]. Then the elements of L are all x with B[x] = 1. For notational convenience,
we extend this notation to vectors: given a vector x⃗ of words, B(x⃗) denotes the vector of the bits
B[xi]. For each x ∈ {0, 1}n, we also sample a uniformly random witness W [x] ←$ {0, 1}n. To check
membership to the language, we introduce an oracle Chk defined as follows: on input a pair (x, w), the
oracle checks whether B[x] = 0 or w ̸= W [x]. If one of these conditions hold, it outputs ⊥; otherwise,
it outputs 1 (See Figure 2). It is relatively easy to see that to check membership of a candidate
word x to L given access to Chk, the best possible strategy is to query (x, w) for all possible values
w ∈ {0, 1}n, hoping to hit the uniformly random value W [x]. Hence, deciding membership of a word x
to L requires on the average 2n−1 queries to Chk, which shows that L is (exponentially) average-case
hard.

Distribution T
for n ∈ N :

for x ∈ {0, 1}n :
W [x]←$ {0, 1}n

B[x]←$ {0, 1}
return (W, B)

Chk[W, B](x, w)
if W [x] = w ∧B[x] = 1

return 1
else return ⊥

Fig. 2: Distribution T for sampling a random language
LO = {x ∈ {0, 1}∗ | B[x] = 1} with associated list of
witnesses W . The oracle O = Chk[W, B] allows to check
membership of a word x ∈ LO given witness W [x].

We now define the notion of block-
finding hardness. We will show that (1)
block-finding hardness holds for a ran-
dom language, and (2) if there is a
block-finding hard language, then there
is an explicit construction of a FG-OWF
f such that every adversary running in
time N(n)2−ν for an arbitrarily small
constant ν has only a negligible proba-
bility of inverting f (in n) – id est, there
exists a (negl(n), 1− ν)-FG-OWF, where
negl(n) denotes some negligible function
of n.

3.1 Block-Finding Hardness of L

Informally, we say that a language satisfies block-finding hardness if for any adversary A and any
large enough n, the following holds: The adversary A is given N ≤ 2n/k many length-k vectors x⃗i of
distinct words xi,j ∈ {0, 1}n together with the string s = B[x⃗i] (the vector of language membership
bits for the words in x⃗i) for a uniformly random block index i ←$ [N ]. If A finds the block index i
with probability significantly better than guessing, it must run in time Ω̃(N · 2n) (in the RLM, this
corresponds to making Ω̃(N · 2n) queries to Chk). Intuitively, this means that (up to polylogarithmic
factors) the best strategy to find i is to find out the language membership bits of some of the words in
each of the blocks, by brute-forcing every possible witness for these words, until one finds membership
bits that are consistent with s. Slightly more formally, we show the following:

Lemma 11 (Block-Finding Hardness of L – Informal Version). For any adversary C, n ∈
N, block size k, and number of blocks N (with k · N ≤ 2n), and any tuple of blocks (x⃗i)i≤N =
(xi,1, · · · , xi,k)i≤N such that all the xi,j are distinct:

Pri←$[N ][Cn((x⃗j)j , B[x⃗i]) = i] ≤ 1
Õ(N)

·
(
|Cn|
2n

+ 1
)
· 2O(k).

In the RLM, the language L satisfies block-finding hardness essentially because distinct words
have truly independent witnesses and language membership bits. More formally, the above lemma
will follow from a strong and generic concentration bound, the hitting lemma. We state and formally
prove the hitting lemma separately in Section 6, Lemma 19, since it turns out that this lemma provides
a very convenient and versatile tool to bound the success probability of an adversary which attempts
8 We thank an anonymous reviewer for pointing out this construction.
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to decide membership of words in an oracle language (the hitting lemma will be needed on three
different occasions in this paper). In the context of proving the block-finding hardness of L, we will
need a variant of the hitting lemma of the following form:

Lemma 12 (Simplified Hitting Lemma with Advice – Informal Version). For every integers
n, N, k ∈ N with kN ≤ 2n, vector y⃗ of kN words, adversary A getting y⃗ and B[y⃗i] for a random i
(where y⃗i is a vector of k words), and for every integer c ≥ 1,

Pr(W,B)←T

[
#Hit ≥ O(|A|)

2n
+ k + c

]
≤ 2−O(c),

where #Hit counts the number of witnesses found by A for distinct words of length n among the
entries of y⃗.

At the same time, conditioned on making less than M hits in different blocks, it is straightforward
to show that A can find i with probability M/N : intuitively, this is because if i belongs to one of the
N−M blocks where no hits were made, then the indices of all these blocks are perfectly equiprobable
conditioned on the view of A. Applying Bayes rule to combine the above bounds, the probability that
A finds i is upper bounded by the probability that A finds i conditioned on making less than M hits,
plus the probability of making more than M hits. Therefore, for any M , the probability that A finds
i is upper bounded by

M

N
+ 2−O(M−|A|/2n−k).

From there, an appropriate choice of M (depending on |A|, N, and n) suffices to conclude that A
finds i with probability at most 1

Õ(N) ·
(
|Cn|
2n + 1

)
· 2O(k), which concludes the proof.

From Block-Finding Hardness to Fine-Grained One-Way Function. A block-finding hard
language immediately leads to a FG-OWF with a quadratic hardness gap: the input to the function is
a list of N = 2n/k blocks x⃗ of distinct words x⃗i together with an index i. Evaluating the function is
done by brute-forcing the languages membership bits of the words in x⃗i, which takes at most k · 2n

queries to Chk, and outputting (x⃗, s = B[x⃗i]). By the block finding hardness of L, inverting the
function on a random input, on the other hand, requires Õ(N · 2n) = Õ(22n/k) queries to Chk to
succeed with constant probability when the index i is uniquely defined (i.e., there is a unique index
i such that the block x⃗i satisfies s = B[x⃗i]). This can be guaranteed to hold except with negligible
probability, by choosing k = ω(log n). Overall, this leads to a FG-OWF with quadratic hardness gap
(up to polylogarithmic factors), with some small but non-negligible inversion probability ε. Parallel
amplification can then be used to make the inversion probability negligible, leading to the following
corollary:

Corollary 13. For any ε > 0, there exists a (negl(m), 1− ε)-fine-grained one-way function distribu-
tion in the Random Language Model.

4 Overview: no FGOWFs from Average-Case Hardness

Next, we study the possibility of instantiating the above construction using an average-case hard
language, instead of a block-finding hard language. At first sight, it is not clear that average-case
hardness suffices, since our construction crucially relies on the block-finding hardness of the language,
a seemingly much stronger property. Indeed, we show that there exists no construction of essentially
any non-trivial FG-OWF making a black-box use of an exponentially average-case hard language. To
do so, we exhibit an oracle distribution relative to which there is an exponentially average-case hard
language, but no FG-OWF, even with arbitrarily small hardness gap. This proof is the only part of
our paper that does not require the hitting lemma.

Language Description. We start by introducing our language. Our oracle defines a somewhat
exotic language: for each integer k, we let all words x ∈ {0, 1}n such that k = ⌈log n⌉ have the same
random witness w ←$ {0, 1}2k , and we put either all these words simultaneously inside or outside the
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language, by picking the same random membership bit bk for all of them. Intuitively, this provides an
extreme example of a language which is still hard to decide (since given a word x ∈ {0, 1}n, one must
still enumerate over 22⌈log n⌉

> 2n candidate witnesses to find out whether x ∈ L), but whose hardness
does not amplify at all (since finding a witness for a single word x gives the witness for all words whose
bitlength is close to that of x). This aims at capturing the intuition that any candidate FG-OWF built
from an average-case hard language L must somehow leverage some amplification properties of the
hardness of L. Then, the oracle Chk is similar as before: on input (x, w), it returns ⊥ if x /∈ L or w is
not the right witness for x, and 1 otherwise. We will show that any oracle adversary A requires O(2n)
queries to decide membership of a word x ∈ {0, 1}n to L. The proof is relatively straightforward and
relies on the fact that the membership of x to L remains random conditioned on the view of A as
long as A did not make any hit, i.e., a query with the right witness for x.

Inexistence of FG-OWF Relative to Chk. Next, we show that for any constant δ, there exists an
oracle algorithm A such that for any candidate FG-OWF f , A (given access to Chk) of size bounded
by |f |1+δ which inverts f with probability 0.99. The adversary works as follows: for any integer k,
it checks whether the function will make “too many” queries of the form (x, w) with x of length n

such that k = ⌈log n⌉ (we call this a k-query), where “too many” is defined as (22k )ε for a value
ε = (1 + δ/2)−1. Intuitively, making more than this number of queries ensures that f will have a
noticeable probability of making a hitting query. For all such “heavy queries”, A makes all possible
(22k ) queries to Chk with respect to some fixed word x, until he finds the witness. A also does the
same for all k-queries with k ≤ B(ε) for some bound B(ε) to be determined later, even when they
do not correspond to heavy query (this is to avoid some “border effects” of small queries in the
probability calculations). Note that this allows A to find the witness for all words of length n such
that k = ⌈log n⌉, since they all share the same witness. A defines the following oracle-less function
f ′ that contains all the hardcoded witnesses that A recovered. Now, on input x, f ′ runs exactly as f
and if f makes a k-query (x, w) for some k, then f ′ proceeds as follows:

– If k corresponds to a heavy query, then, using (22k ) queries, A already computed the witness for
all k-queries and thus f ′ contains the hardcoded witness to correctly answer the query.

– If k does not correspond to a heavy query, f ′ simulates the answer of the oracle as ⊥.

We prove that with high probability (at least 0.999), the function f ′ agrees with f on a random
input x; this is because f ′ disagrees with f only if there is a k-query with k > 10 where f makes
less than (22k )ε queries, yet hits a witness (for all other types of queries, A finds the witness by
brute-force, hence it can always simulate correctly the answer of the oracle). But this happens only
with probability 1 −

∑∞
k=B(ε)+1(22k )ε · 2−2k , which is bounded by 0.999 by picking a sufficiently

large bound B(ε) such that (1− ε)2B(ε) > B(ε). Then, by a straightforward probability calculation,
the probability that inverting f ′ (which A can easily do locally since f ′ is oracle-less) corresponds to
successfully inverting f on a random input x can be lower-bounded by 0.9992 > 0.99, which concludes
the proof.

5 Overview: no FG-OWF from Non-Amortizable Hardness

Note that the techniques from our simpler oracle separation crucially exploit that the hardness of the
average-case hard language implemented by Chk does not amplify well (in fact, this is the reason why
the hitting lemma is not needed in the analysis). We are thus interested in understanding whether
we can still provide a black-box impossibility result even when the underlying average-case hard
language satisfies non-amortizable exponential hardness, or whether non-amortizable average-case
hard languages suffice to construct a fine-grained one-way function.

We call a language L (exponentially) self-amplifiable average-case hard if for any superlogarithmic
(computable, total) function ℓ(·), for any circuit family C = {Cn : {0, 1}ℓ(n)·n 7→ {0, 1}n}n∈N of size
at most 2O(n) · ℓ(n), and for all large enough n ∈ N,

Prx⃗←${0,1}ℓ·n [Cn(x⃗) = L(x⃗)] ≤ poly(n) · 2−
(

ℓ(n)− Õ(|Cn|)
2O(n)

)
.

Informally, this means that to find the language membership bits of ℓ(n) challenge words, the
best an adversary Cn can do (up to polylogarithmic factors in |Cn| and constant factors in n) is
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to brute-force as many membership bits as it can (roughly, Õ(|Cn|)/2n since brute-forcing a single
membership bit requires O(2n) queries), and guessing the ℓ(n)− Õ(|Cn|)/2n missing membership bits
at random. Note that self-amplifiable average-case hardness is especially interesting when the circuit
Cn is allowed to run in time larger than 2n (for small circuits, of size much smaller than 2n, the
standard average-case hardness notion already bounds their probability of guessing correctly a single
entry of L(x⃗)). In this range, the poly(n) factor in our definition is absorbed in the Õ(|Cn|) term in
the exponent (note also that adversaries of size larger than 2O(n) · ℓ(n) can solve the full challenge by
brute-force).

Our main result rules out black-box reductions from any exponentially self-amplifiable average-
case hard language to fine-grained one-way functions, with arbitrarily small hardness gap. Slightly
more formally, we prove the following theorem:

Theorem 14 (Informal). There exists an oracle O and an oracle language LO such that for any fine-
grained one-way function f , there exists an (inefficient) adversary A that inverts f with probability
close to 1 such that L remains exponentially self-amplifiable average-case hard against any candidate
reduction C given oracle access to both O and A.

We prove Theorem 14 which is phrased in terms of reductions by establishing Theorem 15 which is
phrased in terms of oracle worlds.

Theorem 15 (Language Hardness and Good Inversion, Informal). There exists an oracle O
and an oracle Inv such that for all oracle functions f , there exists an inverter A of size |A| = Õ(|f |)
which, given oracle access to (O, Inv) and input (f, y), outputs a preimage of y with respect to fO

with probability close to 1. Moreover, there exists an oracle language LO which is exponentially self-
amplifiable average case hard against any candidate reduction C given oracle access to (O, Inv).

Theorem 15 is slightly different from our main theorem: the inverter A is now required to be
efficient, but gets the help of an additional oracle Inv. Furthermore, the reduction C is now given
oracle access to (O, Inv) instead of (O,A); the implication follows from the fact that the code of A is
linear in its input size, and thus, its code can be hardcoded into the code of C, hence the reduction
CO,A in our main theorem can be emulated by a reduction CO,Inv

A in Theorem 15, where |CA| ≈ |C|.
To prove Theorem 15, we rely on a standard method in oracle separations: we first prove a variant
of Theorem 15 with respect to a distribution over oracles O, Inv (where both the success probability
of the inverter and the probability of breaking the self-amplifiable average-case hardness of L will be
over the random choice of O, Inv as well). Then, we apply the Borel-Cantelli lemma to show that with
measure 1 over the choice of the oracle, the oracle is “good” and thus, in particular, a single good
oracle exists as required by Theorem 15. In summary, to prove Theorem 15 we prove two theorems
relative to an explicit distribution T over oracles O, Inv:

Theorem 16 (Language Hardness, Informal). For any ℓ : N 7→ N, circuit family C = {Cn}n,
and for all large enough n ∈ N,

Prx⃗←${0,1}ℓ·n,(O,Inv)←$T
[
CO,Inv

n (x⃗) = LO(x⃗)
]
≤ poly(n) · 2−

(
ℓ(n)− Õ(|Cn|)

2O(n)

)
.

Theorem 17 (Efficient Inversion, Informal). Let f : {0, 1}∗ → {0, 1}∗ be an oracle function.
There exists an efficient inverter AO,Inv(f, .) for f . More precisely, A is of size |A| = Õ(|f |) and for
sufficiently large m ∈ N, it holds that

Prz←${0,1}m,(O,Inv)←$T
[
fO(AO,Inv(f, fO(z))) = fO(z)

]
≈ 1.

5.1 Defining the Oracle Distribution T

The distribution T samples a triple (W, B, H) where:

– B defines a random language L: for every x ∈ {0, 1}∗, B[x] is set to 0 or 1 with probability 1/2;
– W defines a set of random witnesses: for any n ∈ N and x ∈ {0, 1}n, W [x] is set to a uniformly

random bitstring wx of length n.
– H contains a pairwise independent hash-function for each triple (i, C, y), where i ∈ N, C is an

encoding of a circuit and y is a bitstring.
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A sample (W, B, H) from T defines a pair of oracles (O, Inv), where the oracle O = (Chk, Pspace) is
defined as follows:

– Chk is a membership checking oracle: on input (x, w), it returns⊥ if W [x] ̸= w, and B[x] otherwise.
Note that this means that relative to Chk, L is a random language in NP∩co-NP, since Chk allows
to check both membership and non-membership in L, given the appropriate witness. A hit is a
query to Chk which does not output ⊥. To emphasize the dependency of L on O, we use the
notation LO.

– Pspace is a PSPACE oracle which allows the caller to efficiently perform computations that do
not involve calls to the oracles Chk, Inv.

We now turn our attention to the oracle Inv, which is the most involved component: Inv must be
defined such that there is an efficient oracle algorithm A which can, given access to O, Inv, invert any
candidate one-way function fO, yet no algorithm (reduction) can break the self-amplifiable average-
case hardness of the language LO given access to O, Inv. Hence, the goal of Inv is, given an input
(f, y), to help compute preimages z of y with respect to the oracle function fO, but with carefully
chosen safeguards to guarantee that Inv cannot be abused to decide the language LO. Our solution
relies on two crucial safeguards, which we describe below.

First Safeguard: Removing Heavy Paths. The oracle Inv refuses to invert functions f on outputs
y if the query-path from the preimage z to y in fO is “too lucky” with respect to O. To understand
this, consider the following folklore construction of a worst-case one-way function f : on input (x, w),
it queries Chk(x, w) and outputs (x, 1) if the check succeeds, and (x, 0) otherwise. Then, querying Inv
on input (f, (x, 1)) allows the adversary to find the witness w associated to x efficiently, since the
function f makes only a single query and thus the inversion query Inv(f, (x, 1)) has small cost for A.

But since fO is a normal (average-case) one-way function, we can allow the oracle to not invert on
a too lucky evaluation path, if we can show that it still inverts sufficiently often. Concretely, on input
(f, y), the oracle Inv computes the set S of all paths from an input z to y = fO(z), defined as the
sequence of input-output pairs. Then, for all k ≤ |f |, Inv discards from this set S all k-heavy paths,
i.e., the paths along which the number of Chk hits on k-bit inputs is much higher9 than expected,
i.e., N(k)/2k−1, where N(k) is the number of Chk gates with k-bit inputs in f .

If S is not empty, then Inv samples a uniformly random element from S and returns the set of
queries made on the path to the adversary. Since oracles need to be deterministic, we derandomize the
sampling via the use of the pairwise independent hash-function stored in the third output H of T at
H[log|S|, f, y] by the Valiant-Vazirani [VV85] trick that ensures that with probability 1

8 , there is only
a unique value in S that hashes to 0log(|S|−1). Note that it suffices to return the set of query-answer
pairs, as the adversary can use the Pspace oracle to find an input z that leads to y with this set of
query-answer pairs produced by fO. I.e., the Pspace uses the set to emulate the answers to queries
made by f and discards a candidate z as soon as it makes a query not in the set.

Let us return to the issue of k-lightness. Firstly, note that we need to check for lightness for all
values k, since the oracle Inv accepts functions that make queries to Chk on different k-values, and
the Inv-oracle does not “know” the length of the xi-values for which C tries to decide membership.
Secondly, we now need to clarify that we consider the number of hits as too high above its expected
value if there are more than O(N(k))/2k + log2(|f |) k-hits on the evaluation path. In this case, if
|f | = O(2k), then on input length k, the adversary could essentially get the same number of hits
without Inv queries by using a circuit of slightly bigger size Õ(|f |) that only makes Chk queries.
The point of the additive log2 |f | term is to ensure (via a concentration bound) that on a uniformly
random input z, the probability that the path on z is light is at least 1− 1

superpoly|f | (while at the same
time, the language hardness is maintained).

In turn, when |f | is smaller than, say, 2 k
6 , then the additive log2 |f | term turns out to allow

for too many hits. In this case, the probability of making even a single hit is 2−
5(k−1)

6 and thus
exponentially small in k whereas O(N(k))/2k + log2 |f | might potentially allow for many hits. Thus,
before performing all steps described in the first saveguard, we first replace f by a shaved function
fs, described below.
9 Determining an appropriate bound on much higher is crucial to avoid that deciding LO becomes too easy.

We return to this issue shortly.
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Second Safeguard: Shaving high levels. We shave all Chk-gates of |f | that are for large input
length k, i.e., for all Chk-gates with input length k such that |f | ≤ 2 k

6 . To do so, we replace f by a
shaved function fs where the answers of such Chk queries are hardcoded to be ⊥. The probability
(over O and z) that this changes the behaviour of f is equal to the probability of making a hit on one
of these high levels and thus 2−

5(k−1)
6 for the smallest k such that |f | ≤ 2 k

6 , i.e., k ≥ 6 log(|f |). Thus,
2−

5(k−1)
6 ≤ m−3, where m = |z|. Note that later, in the Borel-Cantelli Lemma, we need to sum over

these bad events, and thus, it is important that the sum of m−3 over all m is a constant.

Putting Everything Together. Finally, with the above two safeguards, our oracle Inv works as
follows: on input (f, y), it first shaves f of its higher-level Chk gates, computing fs ← shave(f). Then,
it constructs the set S of all paths from some input z to y = fO

s (z), where a path is defined to be the
set of all query pairs to O made during the evaluation of fs on z. Afterwards, it removes from S all
paths which are too heavy, where a path is called heavy if there is a k such that it contains a number
N(k) k-Chk queries, out of which more than O(N(k))/2k + log2|f | are hits. Eventually, it returns a
path from this set S of light paths using the hashing trick to derandomize the sampling.

As we already outlined, the last output H of T is therefore a set which contains, for every possible
triple (i, f, y) where i is an integer, f is an oracle function, and y is a bitstring, a hash function
h = H[i, f, y]. The guarantee offered by h is that for any set S′ of size 2i−1 ≤ |S′| ≤ 2i, the
probability of the random choice of h = H[i, f, y] that S′ contains exactly one entry s such that
h(s) = 0 is at least 1/8. Hence, after it computes the set S of light paths, Inv compute the unique
integer i such that 2i−1 ≤ |S| ≤ 2i, retrieves h ← H[i, f, y], and output the unique path p ∈ S such
that h(p) = 0, or ⊥ if there is no unique such path. Note that this oracle Inv can fail to return a
valid path from an input z to the target output y in f for three reasons: because shaving caused fs

to differ from f on input z (we show that this is unliquely for a random z), because the path from
z to y is heavy (again, we show that this is unlikely), and because there is not a unique p ∈ S such
that h(p) = 0 (but with probability at least 1/8, there will be a unique such p). This last source
of failure can be later removed by a straightforward parallel amplification, by querying Inv on many
pairs (fk, y) where the fi are functionally equivalent variants of f (in which case the corresponding
hk = H[i, fk, y] are independently random by construction). Note that we could have also hardcoded
“true” randomness into Inv instead of using the hashing trick. However, as we will see, the hashing
trick enables a compression argument since (a) the hash-functions are sampled independently from
W and B and (b) the sampling can be emulated when only knowing a single element in the set as
well as the size of the set S. Details follow in the next section.

5.2 Proving Theorem 16

Fix a function ℓ : N 7→ N, a circuit family C, and an integer n ∈ N. We want to bound the probability,
over the choice of x⃗ ←$ {0, 1}ℓ(n)·n and (O, Inv) ←$ T , that CO,Inv

n (x⃗) = LO(x⃗). We proceed in two
steps:

– First, we prove an emulation lemma which states that there is an explicit algorithm EmuO

which emulates CO,Inv
n without calling the oracle Inv, but using instead some partial informa-

tion g(W, B, H) about (W, B, H). By emulating, we mean that EmuO(x⃗, g(W, B, H)) = CO,Inv
n (x⃗),

and Emu makes the same number of queries to O as Cn.
– Second, we use the hitting lemma, which we already mentioned in Section 3 (in the technical

overview about the existence of FG-OWFs in the RLM), to bound the number of hits on x⃗ that
Emu can possibly make (where a hit on x⃗ is a query of the form (xi, W [xi]) to Chk, from which
Emu learns whether xi ∈ LO).

The Emulation Lemma. Concretely, we give an explicit algorithm Emu such that EmuO(L, x⃗, Cn) =
CO,Inv

n (x⃗) and Emu makes the same queries to O as Cn, where the leakeage string L contains the
following information:

– The sets H and (W¯⃗x, B¯⃗x) of all witnesses and membership bits except for those corresponding to
the entries of x⃗ (intuitively, this corresponds to giving to Emu all information about Inv which is
sampled independently of the W [xi], B[xi] and does not help with finding LO(x⃗)).
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– The sets (W Hit, BHit) which contains all Chk-hits on x⃗ in paths obtained by Cn through queries
to Inv.

– The set W Hit which contains all other (non-hitting) Chk-query pairs in paths obtained by Cn

through queries to Inv.
– A list I which for each query (f, y) of Cn to Inv indicates whether this query returned ⊥ or not,

and if it did not, the value i which was used to select the hash function h = H[i, f, y].

The emulation proceeds by using its information: Emu runs Cn internally on input x⃗, forwarding its
queries to O. Each time Cn makes a query (f, y) to Inv, Emu first retrieves from I the information
whether Inv outputs ⊥ or not. If it does not, Emu tries all possible inputs z to fO, but without actually
querying O: for each possible input z, Emu runs fO(z) by retrieving the answers of O from the sets
(W¯⃗x, B¯⃗x, W Hit, BHit, W Hit). If fO(z) makes a query whose answer is not contained in these sets or if
fO(z), Emu discards candidate z.

After trying all inputs to f , Emu has a set S′ of candidate inputs z, with a corresponding path.
Then, it retrieves the index i from I and selects h← H[i, f, y], and sets the output of Inv on (f, y) to
be the unique path p associated to some z ∈ S′ such that h(p) = 0; by construction, there will be a
unique such path. The correctness of the emulation follows by construction and by definition of the
sets (W¯⃗x, B¯⃗x, W Hit, BHit, W Hit) which Emu gets as input.

This emulation highlights the rationale behind the design of Inv: the use of a hash function h to
select the output guarantees that, on top of the sets (W¯⃗x, B¯⃗x, W Hit, BHit, W Hit), Emu will only need
to receive a relatively small amount of additional “leakage”, corresponding to the list of all values i
for each query to Inv. Now, by definition, i is at most log |S|, where S is a set of paths in f , hence
|S| ≤ 2|f |. Therefore, i ≤ |f |, hence i can be represented using at most log |f | bits. By construction, a
query (f, y) to Inv can leak information about x⃗ only if |f | ≥ 2n/C , because otherwise all n-Chk gates
gets removed by shave(f). Hence, our emulator gets a total amount of leakage about x⃗ bounded by
|Cn|/2O(n). From there, we want to prove that

Prx⃗←${0,1}ℓ·n,(O,Inv)←$T
[
CO,Inv

n (x⃗) = LO(x⃗)
]
≤ poly(n) · 2−

(
ℓ(n)− Õ(|Cn|)

2O(n)

)
.

We will do so by proving that
Prx⃗←${0,1}ℓ·n,(O,Inv)←$T

[
EmuO(L, x⃗, Cn) = LO(x⃗)

]
≤ poly(n) · 2−

(
ℓ(n)− Õ(|Cn|)

2O(n)

)
. (1)

Bounding Equation 1 is the goal of the hitting lemma.

Applying the Hitting Lemma. The hitting lemma states that for any circuit Cn, any algorithm A
having only access to the inputs and oracles of Cn’s emulator (i.e., B has only access to the oracle O
and L) cannot possibly make too many hit, even though the emulator gets |Cn|/2O(n) bits of leakage
about the oracle. Let HitO

B(L, x⃗, Cn) be the random variable that counts the number of hits on x⃗ made
by A on input (L, x⃗, Cn).

Lemma 18 (Hitting Lemma with Advice, Informal). For every ℓ(·), positive integers q, large
enough n, challenge x⃗, L with |W Hit| = q and list I represented by a string length |I| = |Cn|/2O(n),
adversaries Cn,B, and for every integer c ≥ 1,

Pr(W,B,H)←T |L
Ī

[
HitO
B(L, x⃗, Cn) ≥ O(|Cn|) + q

2n
+ c + |I|

]
≤ 1

2γ·c ,

where γ > 1, and where the probability is taken over the random sampling of (W, B, H) ←$ T ,
conditioned on L.

We first explain how the hitting lemma implies Equation 1. First, if EmuO got a total number of
hits t on x⃗, either through queries to O or through the hits contained in W Hit, then conditioned on
all observation seen by Emu, ℓ(n)− t bits of LO(x⃗) are truly undetermined. Hence,

Prx⃗←${0,1}ℓ·n,(O,Inv)←$T

[
EmuO(LĪ , x⃗, Cn) = LO(x⃗)

∣∣Emu gets ≤ t hits on x⃗
]
≤ 2−(ℓ−t).

Now, the number of hits seen by Emu is bounded by HitO
Emu(LĪ , x⃗, Cn) + |W Hit|, where |W Hit| is

at most poly(n) · Õ(|Cn|)
2n : this follows from the fact that the number of hits in W Hit is bounded by

design by the fact that Inv on input (f, y) only returns light paths, which cannot contain more than
poly(n) · Õ(|f |)

2n hits. The result follows by relying on the fact that
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Prx⃗←${0,1}ℓ·n,(O,Inv)←$T

[
EmuO(LĪ , x⃗, Cn) = LO(x⃗)

]
=
∑

t

Pr[Emu gets ≤ t hits on x⃗] · Pr
[
EmuO(LĪ , x⃗, Cn) = LO(x⃗) |Emu gets t hits

]
≤
∑

t

2−(ℓ−t) · Pr[Emu gets ≤ t hits on x⃗].

Now, the bound of Equation 1 will be obtained by plugging the bound on

Pr[Emu gets ≤ t hits on x⃗] ≤ HitO
Emu(L, x⃗, Cn) + |W Hit|,

by using the hitting lemma to bound HitO
Emu(L, x⃗, Cn). The proof then follows from the hitting lemma,

to which we devote Section 6.

5.3 Proving Theorem 17

Let f : {0, 1}∗ → {0, 1}∗ be an oracle function. We exhibit an efficient inverter AInv(f, .) for f , such
that

Prz←${0,1}m,(O,Inv)←$T
[
fO(AO,Inv(f, fO(z))) = fO(z)

]
≈ 1.

A works as follows: to invert a function f : {0, 1}m 7→ {0, 1}∗ given an image y, it queries Inv
log3 m times on independent inputs (fk, y), where each fk are syntactically different but functionally
equivalent to f (this guarantees that the failure probabilities introduced by the choice of the hash
function h are independent). Then, it takes a path p returned by any successful query to Inv (if any),
and returns a uniformly random preimage z consistent with this path (this requires a single query
to the PSPACE oracle). The proof that A is a successful inverter proceeds by a sequence of lemmas.
First, we define fapprox as fs = shave(f), except that it outputs ⊥ on any input z such that the path
in fO

s (z) is not light.

First Lemma. The first lemma states that

PrO,z←${0,1}m

[
fO

approx(z) = fO
s (z)

]
≈ 1.

This lemma will follow again from the Hitting lemma, which provides a strong concentration bound
on the probability that the path of fO

s (z) is light: by this concentration bound, it follows that the
path is light with probability at least 1− log |f | · 2−O(log2 |f |) (recall that a path is heavy if, for some
k, it contains N(k) k-Chk queries, and more than O(N(k)) + log2 |f | hits).

Second Lemma. The second lemma states that

PrO,z←${0,1}m

[
fO

s (z) = fO(z)
]
≈ 1.

This lemma follows from the definition of shaving: since only Chk gates with k ≥ 6 log |f | are shaved,
the probability that fO

s (z) ̸= fO(z) is bounded by the sum
∑

k≥6 log(|f |) 2− 5k
6 ≤ 4/m3. Combining the

above lemmas with an averaging argument, we will show that

Prz←${0,1}m

[
f(f−1

approx(f(z), 1m)) = f(z)
]
≈ 1.

When A makes a single query to Inv, its overall success probability is approximately 1/8. Since all
queries have independent probability of failing due to an unfortunate choice of h, we will show that
A inverts successfully with probability

Prz←${0,1}m,(O,Inv)←$T
[
fO(AO,Inv(f, fO(x))) = fO(x)

]
≈ 1−

(
7
8

)log3 m

.

Note that A, on input f , sends log3 m ≤ log3 |f | queries to Inv, selects one of the path from the
successful queries, and queries it to the PSPACE oracle to select the preimage z it outputs. Therefore,
the size of A is |A| = Õ(|f |).
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6 The Hitting Lemma

For any r⃗ = r1 · · · rℓ, we define an oracle Guessr⃗(i, r∗) as taking an input r∗ and an index i and checking
whether ri = r∗. If so, the oracle returns 1. Else, the oracle returns ⊥. We define HitGuessr⃗ (A) as the
number of distinct queries A makes which return something different than ⊥.

Lemma 19 (Abstract Hitting Lemma). For every positive integer q, large enough n, ℓ = ℓ(n),
sets V1, · · · , Vℓ of size 1 ≤ |Vi| ≤ 2n such that q = ℓ · 2n −

∑ℓ
i=1|Vi|, for every adversary A, and for

every integer c ≥ 1, ∃α > 0, ∃γ > 1:

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (A) ≥ 16 · qryA + q

2n
+ c

]
≤ α

2γc
.

The hitting lemma gives a strong Chernoff-style bound on the number of distinct hits which an
arbitrary adversary A can make using qryA queries. The strength of this bound allows to show that
the bound degrades gracefully even if A is additionally given an arbitrary advice string of bounded
size about the truth table of the Guess oracle. We discuss applications and variants of the Hitting
Lemma in Sections 6.3 and 6.4, respectively, and now turn to its proof.

6.1 Proof of the Hitting Lemma – Proof Structure

Algorithm BQ

qry← 0; r∗
1 , · · · , r∗

ℓ ← ⊥
for i = 1 to ℓ :

for j ∈ [1, vi] :
qry← qry + 1
if qry = Q then return (r∗

1 , · · · , r∗
ℓ )

if Guessr⃗(i, fi(j)) then r∗
σ(i) ← fi(j); break

return (r∗
1 , · · · , r∗

ℓ )

Fig. 3: Q-query adversary BQ

The goal ofA is to find as many distinct ri’s as pos-
sible, where each ri is sampled randomly from a set
Vi of size |Vi| ≤ 2n, given access to an oracle which
indicates whether a guess is correct or not. Intu-
itively, A’s best possible strategy is to first choose
the smallest set Vi1 , query its elements to Guess (in
arbitrary order) until it finds ri1 , then move on to
the second smallest set Vi2 , and so on. The proof
of the abstract hitting lemma closely follows this
intuition: we first show that this strategy is indeed
the best possible strategy, then bound it’s success
probability using a second moment concentration
bound. Formally, for any Q ≥ 1, let BQ be a Q-
query adversary that implements the following simple strategy: order V1, · · · , Vℓ by increasing size,
as Vσ(1), · · · , Vσ(ℓ) for some fixed permutation σ such that |Vσ(1)| ≤ · · · ≤ |Vσ(ℓ)|. For every i ≤ ℓ, let
vi ← |Vσ(i)|, and let fi be an arbitrary bijection between [vi] and Vσ(i). The algorithm BQ is given on
Figure 3.

The adversary BQ sequentially queries the values of the sets Vi ordered by increasing size, following
an arbitrary ordering of the values inside each Vi, until it finds ri (after which it moves to the
next smallest larger set) or exhausts its budget of Q queries. To simplify notations, for any vector
u⃗ ∈ [v1]× · · · × [vℓ], we write π(u⃗) = f−1

1 (uσ−1(1)), · · · , f−1
ℓ (uσ−1(ℓ)). Observe that for any t ∈ N,

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (BQ) ≥ t

]
= Pru⃗←$[v1]×···×[vℓ]

[
HitGuessπ(u⃗)(BQ) ≥ t

]
= Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q

]
,

where the last equality follows from the fact that BQ queries the positions one by one in a fixed order,
and needs exactly ui queries to find rσ(i) = fσ(i)(ui) for i = 1 to t. The proof of the hitting lemma
derives directly from two claims. The first claim states that no Q-query adversary can make t distinct
hits with probably better than that of BQ:

Claim 2 (BQ’s strategy is the best possible strategy) For every integers n, Q, ℓ = ℓ(n), sets
V1, .., Vℓ of size 1 ≤ |Vi| ≤ 2n, and for any Q-query algorithm A and integer t,

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (A) ≥ t

]
≤ Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q

]
.
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By construction, the average number of hits Er⃗[HitGuessr⃗ (BQ)] made by BQ is the largest value m

such that
∑m

i=1
vi+1

2 ≤ Q. Recall that q = ℓ · 2n −
∑ℓ

i=1|Vi| = ℓ · 2n −
∑ℓ

i=1 vi and vi ≤ 2n for every
i, which implies in particular that

∑m
i=1 vi ≥ m · 2n − q. We thus bound m as a function of Q, q, and

2n:
m∑

i=1

vi + 1
2 ≤ Q ⇐⇒ m +

m∑
i=1

vi ≤ 2Q

=⇒ m + m · 2n − q ≤ 2Q ⇐⇒ m ≤ 2Q + q

2n + 1 .

The second claim states, in essence, that the probability over r⃗ that BQ does t hits decreases expo-
nentially with the distance of t to the mean m (up to some multiplicative constant).

Claim 3 (Bounding BQ’s number of hits) There exists constants α > 0 and γ > 1 such that
for every ℓ(·), positive integers q, Q, large enough n, integers v1, · · · , vℓ with 1 ≤ vi ≤ 2n such that
q = ℓ · 2n −

∑ℓ
i=1 vi, and for every integer c ≥ 1,

Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q

]
≤ α

2γc
, where t = 16 ·Q + q

2n
+ c.

We prove Claim 2 and Claim 3 below.

6.2 Proof of Claim 2: BQ’s Strategy is the Best Possible Strategy

Fix an integer t and an arbitrary family of adversaries A = {AQ}Q∈N for each possible number of
query Q. We say that AQ is non-wasteful if it satisfies the following constraints:
1. AQ is deterministic;
2. AQ never makes the exact same query twice;
3. If any query of AQ hits in a set Vi, AQ will never make any more query in Vi.

We call queries prohibited by items 2 and 3 forbidden queries. For item 1, observe that by a standard
averaging argument, for any fixed t and any randomized adversary AQ with random tape R, there is
a deterministic adversary A′ such that Pr

[
HitGuessr⃗ (A′) ≥ t

]
≥ Pr

[
HitGuessr⃗ (AQ(R)) ≥ t

]
. To see this,

set R′ ← maxR Pr
[
HitGuessr⃗ (AQ(R)) ≥ t

]
and define A′ to be AQ with R′ hardcoded in its circuit. For

items 2 and 3, observe that for any adversary AQ that makes f forbidden queries, we can construct a
(Q−f)-query adversary A′ such that Pr

[
HitGuessr⃗ (A′) ≥ t

]
= Pr

[
HitGuessr⃗ (AQ) ≥ t

]
, by letting A′ run

AQ internally and retrieving locally the answers to any forbidden query (such answers are known by
definition) rather than querying them to Guess. Therefore, without loss of generality, in the following,
we can restrict our attention to non-wasteful adversaries when upper-bounding Pr

[
HitGuessr⃗ (A′) ≥ t

]
.

To simplify notations, for any Q and t, we let pt(AQ) and p′t,Q denote the left and right hand
terms of the claim respectively, that is:

pt(AQ)← Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (A) ≥ t

]
, and

p′t,Q ← Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q

]
= pt(BQ).

We prove Claim 2 by induction over Q:

Base Case. For Q = 1, there are three cases to distinguish: if t = 0, then p0(A1) = p′0,1 = 1
vacuously; if t > 1, then pt(A1) = p′t,1 = 0 vacuously. It remains to prove the bound for t = 1. Let
(j, x) be A′1s query (which is deterministically fixed given A1). Since A1 made no query before and rj

is uniformly random over Vj , the probability that x = rj is exactly p1(A1) = 1/vσ−1(j). Furthermore,
since the vi’s are monotonically increasing,

p′1,1 = Pru⃗←$[v1]×···×[vℓ]

[ 1∑
i=1

ui ≤ 1
]

= Pr[u1 = 1] = 1/v1 ≥ 1/vσ−1(j) = p1(A1).
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Induction. Fix an integer Q. For the induction step, we make the following hypothesis: for every
integer n, ℓ = ℓ(n), sets V1, .., Vℓ of size 1 ≤ |Vi| ≤ 2n, and for any (Q − 1)-query algorithm A′ and
any integer t,

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (A′) ≥ t

]
≤ Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q− 1

]
.

We bound the probability that AQ makes more than t distinct hits. Let (j, x) denote the first
query of AQ (which is deterministically fixed given AQ), and let j′ ← σ−1(j). We first bound the
probability conditioned on (j, x) being a hit: there exists a (Q− 1)-query adversary A′ such that

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (AQ) ≥ t |x = rj

]
= Prr⃗j̄←$V1···Vj−1×Vj+1···Vℓ

[
HitGuessr⃗

j̄ (A′) ≥ t− 1
]
,

where r⃗j̄ denotes the length-(ℓ − 1) vector r1 · · · rj−1rj+1 · · · rℓ. A′ is given access to Guessr⃗j̄
and is

constructed as follows: it runs AQ internally, forwarding any query (i, y) to Guessr⃗j̄
for any i ̸= j.

When AQ issues a query of the form (j, y), A′ inputs 1 to AQ on behalf of Guess (that is, it assumes
that (j, y) is a hit). Observe that conditioned on AQ’s first query (j, x) being a hit (i.e., the event
x = rj), since AQ is non-wasteful and will therefore never make any further query of the form (j, y),
A′ perfectly emulates a valid run of AQ with access to Guessr⃗, hence it makes exactly the same
number of hits minus one (the minus one corresponds to the first hit, which A′ does not actually
query). Therefore, we have

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (AQ) ≥ t ∧ x = rj

]
= Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (AQ) ≥ t |x = rj

]
· Prrj←$Vj

[x = rj ]

= Prr⃗j̄←$V1···Vj−1×Vj+1···Vℓ

[
HitGuessr⃗

j̄ (A′) ≥ t− 1
]
· 1
|Vj |

≤Pru⃗←$[v1]×···×[vℓ]

[∑
i∈S

ui ≤ Q− 1
]
· 1

vj′
,

where the last inequality follows from the induction hypothesis, and S denote the first t− 1 ui’s with
i ̸= j′ (i.e., S = [t− 1] if t < j′, and S = [t] \ {j′} otherwise). Observe that

Pru⃗←$[v1]×···×[vℓ]

[∑
i∈S

ui ≤ Q− 1
]
· 1

vj′

= Pru⃗←$[v1]×···×[vℓ]

[∑
i∈S

ui ≤ Q− 1
]
· Pruj′←$[vj′ ][uj′ = 1]

= Pru⃗←$[v1]×···×[vℓ]

[∑
i∈S

ui ≤ Q− 1 ∧ uj′ = 1
]

by independency (j′ /∈ S).

We now distinguish two cases: either j′ ≤ t, in which case

Pru⃗←$[v1]×···×[vℓ]

[∑
i∈S

ui ≤ Q− 1 ∧ uj′ = 1
]

= Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q ∧ uj′ = 1

]
, (2)

or j′ > t, in which case S = [t− 1]:

Pru⃗←$[v1]×···×[vℓ]

[∑
i∈S

ui ≤ Q− 1 ∧ uj′ = 1
]

= Pru⃗←$[v1]×···×[vℓ]

[
t−1∑
i=1

ui ≤ Q− 1 ∧ uj′ = 1
]

. (3)

We now bound the probability that AQ makes at least t distinct hits conditioned on (j, x) not
being a hit; let V ′j denote the set Vj \ {x}. There exists a (Q− 1)-query adversary A′ such that

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (AQ) ≥ t |x ̸= rj

]
= Prr⃗′←$V1···×V ′

j
×···Vℓ

[
HitGuessr⃗′ (A′) ≥ t

]
,
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where A′ runs AQ internally, assumes that AQ’s first query (j, x) is not a hit, and forward all
subsequent queries of AQ to Guessr⃗′ . Since AQ is non-wasteful, it will never query x again, hence
the probability that A′ makes at least t hits when r′j is sampled from V ′j is exactly the conditional
probability that AQ makes at least t hits when rj is sampled from Vj = V ′j ∪ {x}, conditioned on x
not being a hit. Therefore, we have

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (AQ) ≥ t ∧ x ̸= rj

]
= Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (AQ) ≥ t |x ̸= rj

]
· Prrj←$Vj [x ̸= rj ]

= Prr⃗′←$V1···×V ′
j
×···Vℓ

[
HitGuessr⃗′ (A′) ≥ t

]
·
(

1− 1
|Vj |

)
≤Pr

u⃗←$[v1]×···×
[

v′
j′

]
×···×[vℓ]

[
t∑

i=1
ui ≤ Q− 1

]
·
(

1− 1
vj′

)
,

where v′j′ = |V ′j | = |Vj | − 1 = vj′ − 1. This gives us

Pru⃗←$[v1]×···×[vj′−1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q− 1

]
·
(

1− 1
vj′

)

= Pru⃗←$[v1]×···×[vj′−1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q− 1

]
· Pruj′←$[vj′ ][uj′ > 1].

We again distinguish two cases: either j′ ≤ t, in which case

Pru⃗←$[v1]×···×[vj′−1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q− 1

]
· Pruj′←$[vj′ ][uj′ > 1]

= Pru⃗←$[v1]×···×[vj′−1]×···×[vℓ]

[
uj′ ← uj′ + 1 :

t∑
i=1

ui ≤ Q

]
· Pruj′←$[vj′ ][uj′ > 1]

= Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q |uj′ > 1

]
· Pruj′←$[vj′ ][uj′ > 1]

= Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q ∧ uj′ > 1

]
,

since sampling uj′ ←$ [vj′−1] and setting uj′ ← uj′ +1 is the same as sampling uj′ ←$ [vj′ ] conditioned
on uj′ > 1. Recall that from Equation 2, we had that when j′ ≤ t,

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (AQ) ≥ t ∧ x = rj

]
≤ Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q ∧ uj′ = 1

]
,

and we just showed that when j′ ≤ t,

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (AQ) ≥ t ∧ x ̸= rj

]
≤ Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q ∧ uj′ > 1

]
.

Combining the above inequalities gives

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (AQ) ≥ t

]
≤ Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q

]
.

It remains to address the case j′ > t:

Pru⃗←$[v1]×···×[vj′−1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q− 1

]
· Pruj′←$[vj′ ][uj′ > 1]
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= Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q− 1

]
· Pruj′←$[vj′ ][uj′ > 1] since j′ > t

= Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q− 1 ∧ uj′ > 1

]

≤Pru⃗←$[v1]×···×[vℓ]

[
t−1∑
i=1

ui ≤ Q− 1 ∧ uj′ > 1
]

= Pru⃗←$[v1]×···×[vℓ]

 ∑
i∈[t−1]∪{j′}

ui ≤ Q ∧ uj′ > 1

.

Recall that from Equation 3, we had that when j′ > t,

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (AQ) ≥ t ∧ x = rj

]
≤ Pru⃗←$[v1]×···×[vℓ]

[
t−1∑
i=1

ui ≤ Q− 1 ∧ uj′ = 1
]

= Pru⃗←$[v1]×···×[vℓ]

 ∑
i∈[t−1]∪{j′}

ui ≤ Q ∧ uj′ = 1

.

Combining the two inequalities, we get

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (AQ) ≥ t

]
≤ Pru⃗←$[v1]×···×[vℓ]

[
t−1∑
i=1

ui ≤ Q− 1 ∧ uj′ = 1
]

≤ Pru⃗←$[v1]×···×[vℓ]

 ∑
i∈[t−1]∪{j′}

ui ≤ Q


≤ Pru⃗←$[v1]×···×[vℓ]

[
t∑

i=1
ui ≤ Q

]
since vj′ ≥ vt,

which concludes the proof by induction.

6.3 Proof of Claim 3: Bounding B’s Number of Hits

To complete the proof of the hitting lemma, it remains to bound the probability that BQ makes
more than t hits (which is equal to Pru⃗←$[v1]×···×[vℓ]

[∑t
i=1 ui ≤ Q

]
). The proof relies on the following

second-moment concentration bound:

Lemma 20 (Bernstein). Let X1, · · · , Xm be independent zero-mean random variables, and let M
be a bound such that |Xi| ≤ M almost surely for i = 1 to m. Let X denote the random variable∑m

i=1 Xi. It holds that

Pr[X > B] ≤ exp
(
− B2

2
∑m

i=1 E[X2
i ] + 2

3 MB

)
.

We now introduce a few notations. For i = 1 to m, we let ui denote the random variable associated
to ui ←$ [vi], Xi denote the zero-mean random variable E[ui] − ui, and X ←

∑m
i=1 Xi. We let

M ← (2n−1)/2. Note that E[
∑m

i=1 ui] =
∑m

i=1(vi + 1)/2 ≤ (m ·2n− q)/2 + m, and for any i ∈ [1, m],
|Xi| ≤ |ui − E[ui]| ≤ (vi − 1)/2 ≤M . Let

B ← m · 2n − q

2 − (Q + 1),

which satisfies B <
∑m

i=1 Xi ≥ E[
∑m

i=1 ui]−Q.
Therefore, by the bound of Bernstein (Lemma 20),

Pru⃗←$[v1]×···×[vℓ]

[
m∑

i=1
ui ≤ Q

]
= Pr

[
m∑

i=1
Xi ≥ E

[
m∑

i=1
ui

]
−Q

]
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≤ Pr
[

m∑
i=1

Xi > B

]

≤ exp
(
− B2

2
∑m

i=1 E[X2
i ] + 2

3 MB

)
.

Hence, to upper bound Pru⃗←$[v1]×···×[vℓ]

[∑t
i=1 ui ≤ Q

]
, it suffices to lower bound

B2

2
∑m

i=1 E[X2
i ] + 2

3 MB
.

First, for i = 1 to m, denoting ti = (vi − 1)/2,

E[X2
i ] = 1

vi
·

ti∑
k=−ti

k2 = 2
vi
· ti(ti + 1)(2ti + 1)

6 = ti(ti + 1)
3 = v2

i − 1
12 .

Furthermore, since vi ≤ 2n for i = 1 to m and
∑m

i=1 vi ≤ m · 2n − q,
m∑

i=1
v2

i ≤ (m · 2n − q) · 2n,

which gives
m∑

i=1
E[X2

i ] ≤ 1
12 · ((m · 2

n − q) · 2n −m) ≤ (m · 2n − q) · 2n

12 .

Moreover,
MB ≤ 2n − 1

2 · (m · 2n − q)− 2(Q + 1)
2

hence, denoting by µ > 0 arbitrarily small constant, for every sufficiently large n, it holds that
m∑

i=1
E[X2

i ] + MB

3 ≤ (m · 2n − q) · 2n + ((m · 2n − q)− 2(Q + 1)) · (2n − 1)
12

≤ (m · 2n − q) · (2n+1 − 1)− (Q + 1) · (2n+1 − 2)
12

≤ (2n+1 − 1) · (m · 2n − q)− (Q + 1) · (1− µ)
12 ,

where the last inequality uses the fact that

2n+1 − 2
2n+1 − 1 ≥ 1− µ for n ≥ log

(
1 + 1

µ

)
.

We therefore obtain

B2

2
∑m

i=1 E[X2
i ] + 2

3 MB
≥ 3

(2n+2 − 2) ·
((m · 2n − q)− 2(Q + 1))2

(m · 2n − q)− (Q + 1) · (1− µ) .

Now, setting
m← 16 ·Q + q

2n
+ c

where c ≥ 1, we have m · 2n − q = 16 ·Q + 2nc. Therefore,

(m · 2n − q)− 2(Q + 1)
(m · 2n − q)− (Q + 1) · (1− µ) = 16 ·Q + 2nc− 2(Q + 1)

16 ·Q + 2nc− (Q + 1) · (1− µ) .

Now, we will show

Claim 4
16 ·Q + 2nc− 2(Q + 1)

16 ·Q + 2nc− (Q + 1) · (1− µ) ≥
16− 2

16− (1− µ) = 14
15 + µ

= δ.
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Observe that for the claim to hold, it suffices to have

16 ·Q + 2nc− 2(Q + 1) ≥ δ · (16 ·Q + 2nc− (Q + 1) · (1− µ))
⇐⇒ 0 ≤ (1− δ) · (16 ·Q + 2nc) + (Q + 1) · (δ(1− µ)− 2)
⇐⇒ 0 ≤ (1− δ) · (16 ·Q) + Q(δ(1− µ)− 2) + (1− δ)2nc + δ(1− µ)− 2.

Now, since δ = 14/(15 + µ), and 1 > µ > −1, we have 0 < δ < 1. Therefore, for every c ≥ 1 and every
sufficiently large n, it holds that (1− δ)2nc + δ(1− µ)− 2 ≥ 0, and the above becomes

0 ≤ Q(16(1− δ) + δ(1− µ)− 2)
⇐⇒ 0 ≤ 16(1− δ) + δ(1− µ)− 2
⇐⇒ γ ≥ (16− 2)/(16− (1− µ)) = 14/(15 + µ),

and the claim follows. Therefore,

B2

2
∑m

i=1 E[X2
i ] + 2

3 MB
≥ 3 · δ

(2n+2 − 2) · (16 ·Q + 2nc− 2(Q + 1))

≥ 3 · δ
(2n+2 − 2) · (14 ·Q + 2nc− 2)

≥ 3 · δ
(2n+2 − 2) · (2

nc− 2) since Q ≥ 0

≥ 3 · δ
4− 21−n

c− 6δ

2n+2 − 2

≥ 3 · δ
4 c− 3δ

2 = 3 · δ
4 (c− 2)

Eventually,

exp
(
− B2

2
∑m

i=1 E[X2
i ] + 2

3 MB

)
≤ exp

(
log e · 3 · δ

4 (c− 2)
)

.

Now, denoting
γ ← log e · 3 · δ

4 .

Furthermore, choosing µ < 1/13 (µ > 0 is an arbitrarily small constant), we get 13µ + 15 < 16.
Working out this inequality further, we get δ = 14/(15 + µ) > (3/4) log e, hence γ > 1. Furthermore,

exp
(
−3 · δ

2

)
= α > 0.

which concludes the proof of Claim 3 and of the hitting lemma.

6.4 The hitting lemma with advice

The hitting lemma gives a strong Chernoff-style bound on the number of distinct hits which an
arbitrary adversary A can make using qryA queries. The strength of this bound allows to derive
almost immediately a useful corollary, which shows that the bound degrades gracefully even if A is
additionally given an arbitrary advice string of bounded size about the truth table of the Guess oracle:

Corollary 21 (Abstract Hitting Lemma with Advice). For every positive integers (q, k), large
enough n, ℓ = ℓ(n), sets V1, · · · , Vℓ of size 1 ≤ |Vi| ≤ 2n such that q = ℓ · 2n −

∑ℓ
i=1|Vi|, for every

pair of adversaries (A1,A2), and for every integer c ≥ 1,

Prr⃗←$V1×···×Vℓ

[
a← A1(r⃗) : |a| ≤ k ∧ HitGuessr⃗ (A2(a)) ≥ 16 · qryA + q

2n
+ c

]
≤ α · 2k

2γc
,

or equivalently
Prr⃗←$V1×···×Vℓ

[
a← A1(r⃗) : |a| ≤ k ∧ HitGuessr⃗ (A2(a)) ≥ 16 · qryA + q

2n
+ k + c

]
≤ α

2γc
,

for some α > 0, and γ > 1.
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Proof. The proof follows by reduction to the hitting lemma through a simple guessing argument:
assume toward contradiction that the above bound does not hold; that is, there is an adversary
(A1,A2) such that

Prr⃗←$V1×···×Vℓ

[
a← A1(r⃗) : |a| ≤ k ∧ HitGuessr⃗ (A2(a)) ≥ 16 · qryA + q

2n
+ k + c

]
>

α

2γc
.

We construct an adversary A[a] by sampling a ←$ {0, 1}k and defining A[a], which has a hard-
coded in its description, to compute A2(a). Note that for any r⃗ ∈ [v1] × · · · × [vℓ], it holds that
Pra←${0,1}k [A1(r⃗) = a] = 1/2k. Therefore,

Prr⃗←$V1×···×Vℓ, a←${0,1}k

[
HitGuessr⃗ (A[a]) ≥ 16 · qryA + q

2n
+ k + c

]
>

α

2γc
· 1

2k
.

Let c′ ← c + k. By a standard averaging argument, there must therefore exist a string a ∈ {0, 1}k

such that

Prr⃗←$V1×···×Vℓ

[
HitGuessr⃗ (A[a]) ≥ 16 · qryA + q

2n
+ c′

]
>

α

2γc
· 1

2k
= α

2γc′ ·
2γk

2k

>
α

2γc′ since γ > 1.

However, the above contradicts the hitting lemma, which concludes the proof. ⊓⊔

Remark 22. Considering an adversary receiving an arbitrary length-k advice string about the truth
table r1 · · · rℓ of the oracle Guess is analogous to performing an analysis in the Random Oracle
Model with Auxiliary Input. Starting with the celebrated work of Hellman on time-space trade-
offs for inverting a random permutation [Hel80], this model developed into a long line of research
(see [Unr07,DGK17,CDGS18] and references therein). The model allows the adversary to inspect
the entire truth table of the random oracle in a preprocessing phase and to store a bounded-length
auxiliary input string to help it with inverting the oracle. Our hitting lemma captures, in essence,
the hardness of finding a witness in the Random Language Model (in a strong sense), analogous to
the hardness of inverting the random function in the Random Oracle Model, and the above corollary
extends this hardness result to adversaries with an arbitrary bounded auxiliary input.

6.5 Application to Block-Finding Hardness

We rely on a hitting lemma to heuristically support the notion of block-finding hardness, by proving
that it holds in the RLM (informally stated as Lemma 12, it omits the constants included the formal
Lemma 24). It can be derived from the Abstract Hitting Lemma with Advice by making the following
mapping of concepts:

– We can see Vi as the relevant set of witnesses for xi, each of size 2n. In this case, q =
∑ℓ

i=1 2n −
|Vi| = 0.

– The number of queries qryA is upper bounded by |A|.
– The k-bit string B[y⃗i] is treated as some arbitrary k-bit advice about the oracle which the adver-

sary is given as input.

The other two applications concern our main separation result (Sections 9, 10, and 11) where we rely
on the Hitting Lemma twice, to analyze the success probability of our inversion algorithm and to
argue about language hardness.

6.6 Application to Good Inversion

The proof of good inversion relies on a hitting lemma to show that “shaving off” the heavy queries
and omitting “heavy paths” is a modification of the function which, with high probability over the
choice of the oracle and the input to the function, does not change the output of the function. We
later show that if the function values change with probability ν, then inverting this ν-close function
yields a correct pre-image with probability 1− 2ν. In order to use the Hitting Lemma to bound ν, we
need to calculate the probability over the choice of the oracle and a random input z that there are
“too many” hits on the evaluation path of z. Formally stated in Lemma 41, this claim again views Vi

as the relevant set of witnesses for xi, each of size 2n. As before, q =
∑ℓ

i=1 2n−|Vi| = 0. As before, we
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might obtain a constant multiple D of the expected number h of hits. However, for any additional c
hits we make, the probability of making this many hits decays exponentially in c, i.e. the probability
of making Dh + c hits or more is upper bounded by 2

α
γc .

We now turn to the main application of the hitting lemma which relies on it in its most general
form.

6.7 Application to Language Hardness

In the analysis of Language Hardness in the oracle setting, we will apply several transformation to
our adversary before applying the hitting lemma. These transformations will allow our adversary to
have a set of non-hitting queries and a set of hitting queries. For such an adversary, we will count
as a hit only those queries which are “new”, i.e., the already known hitting queries will not count
towards the adversary’s number of hits. I.e., as a first step, for the analysis of (additional) hits, we
remove those xi from the challenge, for which the adversary knows a hit already. For each of the
other xi, we consider Vi the set of all possible witnesses minus the set of witnesses already contained
in the set of non-hitting queries for this xi. Thus, in this case, q =

∑ℓ
i=1 2n − |Vi| is equal to the

number of non-hitting queries on the challenge values xi. For our analysis, we need to sample the
oracle conditioned on the knowledge which the adversary has, but this conditional sampling merely
corresponds to sampling from smaller Vi, since each of the witnesses are sampled uniformly at random.
In summary:

– Only count hits on xi where the adversary does not know a hitting query a priori.
– Consider Vi as the set of potential witnesses for xi minus the set of witness candidates ruled out

by the set of non-hitting query. Thereby, q becomes equal to the set of non-hitting queries.
– Conditional sampling based on the knowledge which the adversary has merely means to sample a

uniform witness for each xi from the remaining (smaller) witness set (which is isomorphic to Vi).

7 A Fine-Grained One-Way Function from Block-Finding Hardness

In this section, we formally introduce the Random Language Model (RLM), which captures the notion
of an idealized average-case hard language, analogous to how the Random Oracle Model captures the
notion of an idealized OWF (see Section 3 for a discussion about using the RLM as a heuristic tool
to support our new assumption). In this model, a random language L is initially sampled by putting
each string x ∈ {0, 1}∗ inside or outside of L with independent probability 1/2. Then, to each word
x ∈ L is associated a uniformly random witness wx ←$ {0, 1}|x|. Eventually, an oracle Chk allows to
check membership to L: on input (x, w), it returns 1 if x ∈ L and w = W [x], and ⊥ otherwise. The
sampling procedure and the oracle O = Chk are represented on Figure 2. Observe that the sampling
procedure T induces a language distribution:

DL = {LO = {x ∈ {0, 1}∗ | B[x] = 1} | (B, W )←$ T }.

7.1 Average-Case Hardness of DL

We prove that the language distribution DL induced by the sampling procedure T is an exponentially
average-case hard language distribution. Actually, we prove a stronger statement (which we call
strong average-case hardness of DL): the language distribution DL satisfies exponential average-case
hardness with respect to arbitrary words, and not simply random words. That is, for any circuit
family C = {Cn}n∈N and all large enough n,

PrL←$DL[Cn(x) = L(x)] ≤ 1
2 + |Cn|

2n
.

Proof. Let n ∈ N be an integer. Consider sampling an oracle O = Chk[W, B]; let C = {Cn}n be
a circuit family which, on input a string x ∈ {0, 1}n, makes up to |Cn| queries to Chk[W, B], and
outputs a guess b for the value of B(x). Let (Wx, Bx) be (W, B) where the values of W [x] and B[x]
are undetermined (and the oracle always returns ⊥ when queried on this x). Let Hit(Chk[Wx̄, Bx̄], x)
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be the event that on input x, and with access to oracle Chk[Wx, Bx], Cn queries the pair (x, W [x]) to
its oracle. We have that for all x ∈ {0, 1}∗, for all Chk[Wx, Bx]:

Prw←${0,1}n [Hit(Chk[Wx, Bx], x)] ≤ |Cn|/2n.

Now, if no such hitting query occured, the conditional probability of x being in the language is 1/2:

Prw←${0,1}n [L(x) = 1 | ¬Hit(Chk[Wx, Bx], x) ] = 1
2

Putting the two equations together, we obtain that

Prx←${0,1}n,L←$DL[Cn(x) = L(x)]
≤Prx←${0,1}n,L←$DL[Cn(x) = L(x) | ¬Hit(Chk[Wx, Bx], x) ] · 1

+ 1 · Prx←${0,1}n,L←$DL[Hit(Chk[Wx, Bx], x)]

≤1
2 + |Cn|

2n
,

which concludes the proof.

7.2 Block-Finding Hardness of DL

We now establish a much stronger result about the hardness of DL: suppose we are given many
length-k blocks of inputs (x⃗i)i≤N = (xi,1, · · · , xi,k)i≤N , together with the language membership bits
B[xi,1, · · · , xi,k] of the i-th block, where i is a random block index. We prove, informally, that finding
the index i (with probability significantly better than the random guess) requires of the order of
N · 2n queries – id est, brute-forcing language membership of words from each of the N blocks – up
to logarithmic factors. This is summarized in the following lemma:

Lemma 23 (Block-Finding Hardness of DL). For any circuit family C, we have that for all
n ∈ N, any block size k, and number of blocks N (with k ·N ≤ 2n), and any tuple of blocks (x⃗i)i≤N =
(xi,1, · · · , xi,k)i≤N such that all the xi,j are distinct:

PrL←$DL,i←$[N ][Cn((x⃗j)j ,L(x⃗i)) = i] ≤ 1
Õ(N)

·
(
|Cn|
2n

+ 1
)
· 2γk,

for some explicit constant γ > 1.

Proof. Let n, N, k ∈ N be integers with kN ≤ 2n. Let C = {Cn}n be a family of circuits where
Cn, on input (x⃗j)j≤N ,L(x⃗i), makes some number T ≤ |Cn| of queries to Chk[W, B], and outputs a
guess i′ for the value of i. Each time Cn makes a query of the form (xi,j , w) such that w = wxi,j

(i.e., the adversary found the right witness for x), we say that the adversary made a hit. We first
provide a concentration bound on the number of hits the adversary can make; HitChk

Cn
(x⃗) denote

the random variable corresponding to the number of hits made by CChk
n (x⃗) through queries to Chk.

Our concentration bound relies on the Advice-String version of the Hitting Lemma 21. We state its
specialized version here:
Lemma 24 (Hitting Lemma – Specialized Version). For every integers n, N, k ∈ N with kN ≤
2n, vector y⃗ = (y1, · · · , yk·N ), circuit family C = {Cn}n, and for every integer c ≥ 1,

Pr(W,B)←T ,i←$[N ]

[
HitChk
Cn

(y⃗, B[y⃗i]) ≥
D · |Cn|

2n
+ k + c

]
≤ α

2γc
,

with constants D = 16, α > 0, and γ > 1.
To see that Hitting Lemma with Advice 21 implies Lemma 24, we see Vi (as defined in Lemma 21)
as the relevant set of witnesses for yi, each of size 2n, so that q = 0. The number of queries of Cn are
upper bounded by the size |Cn| of Cn. Finally, the advice string B[y⃗i] is of length k.

In addition to the concentration bound in Lemma 24 in hand, observe that for any M ≤ N , the
probability that Cn finds i conditioned on making at most M hits out of T ≤ |Cn| queries is upper
bounded by

PrL←$DL,i←$[N ]

[
Cn((x⃗j)j ,L(x⃗i)) = i

∣∣∣HitChk
Cn

((x⃗j)j ,L(x⃗i)) < M
]
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≤ N −M + 1
N

· 1
N −M + 1 + M − 1

N
= M

N
,

where M/N is the probability that i is the index of a block on which no hit is obtained, in which case
all blocks were no hits have been made are equiprobable conditioned on the view of Cn. Therefore,
we have for any M ≤ N ,

PrL←$DL,i←$[N ][Cn((x⃗j)j , B[x⃗i]) = i]

≤PrL←$DL,i←$[N ]

[
Cn((x⃗j)j , B[x⃗i]) = i

∣∣∣HitChk
Cn

((x⃗j)j , B[x⃗i]) < M
]
· 1

+ 1 · PrL←$DL,i←$[N ]

[
HitChk
Cn

((x⃗j)j , B[x⃗i]) ≥M
]

≤M

N
+ α · 2−γ(M−D·|Cn|/2n−k).

In particular, when Dγ|Cn| > 2n, using M = (log N + 1) ·D · |Cn|/2n,

PrL←$DL,i←$[N ][Cn((x⃗j)j , B[x⃗i]) = i]

≤ (log N + 1) ·D · |Cn|
N · 2n

+ α · 2−γ(log N ·D·|Cn|/2n−k)

= 1
Õ(N)

· |Cn|
2n

+ α ·
(

1
N

)Dγ· |Cn|
2n

· 2γk

≤ 1
Õ(N)

·
(
|Cn|
2n

+ 1
)
· 2γk.

When Dγ|Cn| ≤ 2n, using M = log N ,

PrL←$DL[Cn((x⃗j)j , B[x⃗i]) = i]

≤ log N

N
+ α · 2−γ log N+γD·|Cn|/2n−k

≤ 1
Õ(N)

+ α ·
(

1
N

)γ

· 2γD·|Cn|/2n

· 2γk

≤ 1
Õ(N)

+ α ·
(

1
N

)γ

·
(

γD · |Cn|
2n

+ 1
)
· 2γk since 2x ≤ x + 1 when x ∈ [0, 1]

≤ 1
Õ(N)

·
(
|Cn|
2n

+ 1
)
· 2γk since γ > 1.

This concludes the proof.

7.3 A FG-OWFD from a Block-Finding Hard Language Distribution

We now show that the existence of a block-finding hard language distribution gives rise to a fine-
grained one-way function. The construction is relatively straightforward: fix an arbitrary constant
1 > ε > 0, a security parameter λ = 2n ∈ N, a block size k(n) = ε · n/(2γ), and a number of blocks
N(n) = 2n/k. Let I ⊂ {0, 1}n·k·N denote the space of all N -tuples of length-k vectors (xj,1, · · · , xj,k)
over {0, 1}n, such that for any (j, j′) ≤ N and (ℓ, ℓ′) ≤ k with (j, ℓ) ̸= (j′, ℓ′), it holds that xj,ℓ ̸= xj′,ℓ′

(i.e., no two vector components are equal, across all vectors in the N -tuple). The function FL takes
inputs from I × [N ]. On input ((x⃗j)j≤N , i) ∈ I × [N ], it computes the value of L(x⃗i) by trying all
possible witnesses; this takes at most k · 2n oracle calls. Then, it outputs (x⃗j)j≤N together with
s⃗ = L(x⃗i). The function FL is represented on Figure 4.

Security of F . We prove that FL is a FG-OWFD with near-quadratic hardness gap in the Random
Language Model.

Theorem 25. The function distribution FL is a (polylog(λ) ·λ−ε/2, 1−ε)-fine-grained one-way func-
tion distribution.
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Proof. To invert F , the adversary A must find some i∗ such that L(x⃗i∗) = s⃗. Since all words in the
input are distinct and belong to L with independent uniform probability 1/2, the probability (over
the randomness of DL) that there exists i∗ ̸= i with L(x⃗i) = L(x⃗i∗) is upper bounded by (1/2)k.
Therefore, for any X = (x⃗j)j≤N and any adversary |A| of size |A| ≤ |FL|2−ε:

PrL←$DL,i←$[N ]
[
A(FL(X, i), 1λ) ∈ F−1

L (FL(X, i))
]

≤ PrL←$DL,i←$[N ]
[
A(FL(X, i), 1λ) = i

]
+ 1

2k

≤ 1
Õ(N)

·
(

1 + (k · 2n)2−ε

2n−1

)
· 2γk + 1

2k

≤ 1
Õ(2n)

·
(

1 + n · (εn · 2n−1/γ)2−ε

2n−1

)
· 2εn/2 + 1

2εn/2γ

= polylog(λ) · λ−ε/2,

which concludes the proof.

Function FL(X, i)
parse X as (x⃗j)j≤N ∈ I

for ℓ ∈ [k] :
sℓ ← 0
for w ∈ {0, 1}n :

if Chk[W, B](xi,ℓ, w) = 1
sℓ ← 1

s⃗← (s1, · · · , s)
return (x⃗, s⃗)

Fig. 4: Fine-grained OWF dis-
tribution FL in the RLM

Security Amplification. The previous construction achieves a
near-quadratic hardness gap, but only guarantee an inverse polyno-
mial inversion probability. However, it is straighforward to strengthen
the construction to achieve negligible inversion probability in the
RLM. The idea, given the security parameter λ = 2n, is to emu-
late n = log λ independent random languages over {0, 1}n, as fol-
lows: define the language Lu, for u ∈ {1, · · · , n}, to be the lan-
guage Lu = {x ∈ {0, 1}n | u||x ∈ L}. One can easily check that,
in the Random Language Model, the Lu are independent random
languages over {0, 1}n. Then, a new FG-OWFD F ′ is obtained by
using n = log λ parallel instances of the previous construction F
instantiated with k = n2 and N = 2n/n2, where each of the n in-
stances uses a different language Lu. A straightforward calculation
shows that for any ε > 0, any adversary running in time bounded by
(timeF ′

L
(X1, i1, · · · , Xn, in))2−ε inverts F ′ with probability at most

polylog(λ) · λ−ε log λ, which is negligible.

Corollary 26. For any ε > 0, there exists a (negl(λ), 1−ε)-fine-grained one-way function distribution
in the Random Language Model.

8 Oracle Separation Between Fine-Grained One-Way Functions and
Average-Case Hardness

The result of the previous section shows that given a block-finding average-case hard language, one
can construct a fine-grained one-way function with near-quadratic hardness gap. This provide the first
positive result toward excluding Pessiland: it shows that in a very strong version of Pessiland, there
exists a weak version of Minicrypt. However, this builds on a strong and exotic security requirement,
namely, block-finding hardness. This is unsatisfying, as it does not seem that this results establishes an
interesting win-win situation: the inexistence of weak Minicrypt implies the inexistence of languages
with block-finding hardness, but it is not clear whether the latter implies any useful generic algorithmic
improvements. A much more desirable result would be to show that the inexistence of weak Minicrypt
rules out the existence of average-case hard languages generically. However, in this section, we establish
a strong barrier toward obtaining such a result: we show that there is no black-box construction of
FG-OWFs (represented as families of oracle circuits), even with arbitrarily small polynomial gap, from
(even exponentially) average-case hard language. We prove this result by building an oracle relative to
which there exists an exponentially hard average-case hard language in NP∩ co-NP, yet all functions
which can be evaluated in time n can be inverted in time Õ(n).

Theorem 27. There exists an oracle distribution O relative to which there exists a exponentially
hard average-case language distribution in NP, but every family {Cn}n of oracle circuits is not an
(ε, 0.99)-fine-grained one-way function for any constant ε.
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8.1 The Oracle Distribution

The sampling procedure and the oracle Chk are represented on Figure 5. We define the time of a query
to Chk to be time(Chk(x, w)) = 1 for any (x, w). Observe that the sampling procedure T induces a
language distribution:

DL = {LO = {x ∈ {0, 1}∗ | B[x] = 1} | (B, W )←$ T }.

Distribution T

for k ∈ N :

wk ←$ {0, 1}2k

bk ←$ {0, 1}
for n ∈ N :

for x ∈ {0, 1}n :
W [x]← w⌈log|x|⌉

B[x]← bk

return (W, B)

Chk[W, B](x, w)

if W [x] = w

return B[x]
else return ⊥

Fig. 5: Distribution T for sampling a random language LO = {x ∈ {0, 1}∗ | B[x] = 1} with the
associated list of witnesses W . The oracle Chk[W, B] allows to check membership of a word x ∈ LO

given the witness W [x].

8.2 Average-Case Hardness of DL

Claim 5 The language distribution DL is exponentially average-case hard.

Proof. Let C be an oracle circuit family. For k ∈ N, we denote by Chkk a Chk oracle, where all witnesses
are determined except for wk. On x values such that k = ⌈log|x|⌉, Chkk returns ⊥ throughout; we
denote by DLk̄ the corresponding language distribution. Let n ∈ N be an integer. Let Hit(Chkk, wk, x)
be the event that on input x, and with access to oracle Chkk, Cn queries a pair (x∗, wk) to its oracle.
We have that for all k ∈ N, for all Chkk, for all x ∈ {0, 1}∗ such that k = ⌈log|x|⌉,

Prwk

[
Hit(Chkk, wk, x)

]
≤ |Cn|/2|wk| ≤ |Cn|/2|x|.

Now, if such a hitting query does not occur, then the conditional probability of x being in the language
is 1

2 :
Prwk

[
L(x) = 1

∣∣¬Hit(Chkk, wk, x)
]

= 1
2

Putting the two equations together, we obtain that for any x ∈ {0, 1}n and k such that k = ⌈log n⌉

PrL←$DL[Cn(x) = L(x)]
≤PrL←$DL[Cn(x) = L(x) | ¬Hit(Chk, x, r) ] · 1 + 1 · PrL←$DLk̄,wk←${0,1}2k

[
Hit(Chkk, wk, x)

]
≤1

2 + |Cn|
2n

as desired.

8.3 Inexistence of FG-OWFD Relative to Chk

We now prove the following:
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Claim 6 For any constant δ > 0, there exists a family C = {Cn}n of oracle circuits with the following
properties: for any candidate one-way function f : {0, 1}∗ → {0, 1}∗ represented as a family or oracle
circuits {fn}n, for all large enough n, Cn makes o(|fn|1+δ) queries and successfully inverts fn on a
random image with probability at least 0.99.

Proof. Let f : {0, 1}∗ → {0, 1}∗ be a function computed by a family {fn}n or oracle circuits. Let
δ > 0 be a constant. We set

ε := 1
1 + δ

2
.

We first introduce some notations. We say that a query x to Chk is a k-query if ⌈log|x|⌉ = k. For
k ∈ N, we let qk = qk(n) ≤ N denote the number of k-queries made by f on an input of length n (i.e.,
the number of Chk gates with k-bit intputs in fn); note that |fn| ≥

∑
k k · qk(n). We now construct

an inverter A for f . Before receiving the challenge y to invert, A does the following: define t = t(ε)
to be the smallest integer above 10 such that (1 − ε) · 2t > t (which exists since ε < 1). For every
k ∈ [1, · · · , t], as well as for every k > t such that qk ≥ (22k )ε, A enumerates over all strings sk,i

(1 ≤ i ≤ 22k ) of length 2k. For each string sk,i, and queries Chk(02k

, sk,i). Observe that by definition
of Chk, there exists a single i∗ such that Chk(02k

, sk,i∗) does not return ⊥. A identifies i∗ and stores
bk ← Chk(02k

, sk,i∗) and wk ← sk,i∗ .
We define f ′ to be the following (oracle-less) function: on input x, f ′ runs f|x|(x). Each time f

makes a k-query Chk(u, v), f ′ simulates the answer of Chk as follows:

– if k ≤ t(ε), or if qk ≥ (22k )ε, f ′ checks whether w⌈log|u|⌉ = v and outputs b⌈log|u|⌉ if the check
succeeds, and ⊥ otherwise;

– else, f ′ sets the (simulated) answer of Chk to be 0.

On input a value y, which is the output of f on an n-bit input, A picks a uniformly random n-bit
string x′ in the set {(f ′)−1(y)} (if there is none, A sets x′ ← ⊥) and outputs x′.

Efficiency. For any k > t, observe that A makes exactly 22k queries if and only if qk ≥ (22k )ε; else,
it makes no queries. Hence, it always holds that A makes at most q

1/ε
k queries for any given k > t.

Therefore, the circuit size of A can be upper-bounded (up to a constant factor) by

∑
k>t

k · q1/ε
k +

t(ε)∑
k=1

22k

≤

(∑
k>t

k · qk

)1/ε

+
t(ε)∑
k=1

22k

= O(|fn|1+δ/2) = o(|fn|1+δ).

Success Probability. We now analyze the probability that our inverter succeeds, i.e., that fChk(x′) = y,
over the random choice of y and the oracle Chk. Let us denote

α(n) := PrChk,x←${0,1}n

[
fChk(x) = f ′(x)

]
.

We now bound α(n). First observe that f ′ perfectly simulates the answers of Chk for any k-query
with k ≤ t. Fix any k > t, and any k-query (u, v). Observe that if qk ≥ (22k )ε, f ′ perfectly simulates
the answer of Chk (since it uses the right witness wk). Else, if qk < (22k )ε, then since the probability
over a random choice of Chk that Chk(u, v) ̸= ⊥ is equal to Pr

wk←${0,1}2k [v = wk], which can be upper
bounded by 2−2k , we have the following: by a union bound, on any given input x, f ′(x) correctly
simulates all the calls of fChk(x) to Chk with probability at least

β(n) = 1−
∞∑

k=11
(22k

)ε · 2−2k

.

Observe now that when this happens, it necessarily holds that fChk(x) = f ′(x). Therefore, we have
α(n) ≥ β(n).

We now bound β(n) (recall that (1− ε) · 2t > t and t > 10 by definition of t):
∞∑

k=t+1
2(ε−1)·2k

<

∞∑
k=11

2−k < 10−3
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which gives α(n) > 0.999. Now, we conclude by observing that

PrChk,x←${0,1}n,x′←${(f ′)−1(fChk(x))}
[
fChk(x′) = fChk(x)

]
≥α(n) · PrChk,x←${0,1}n,x′←${(f ′)−1(f ′(x))}

[
fChk(x′) = f ′(x)

]
≥α(n)2 · Prx←${0,1}n,x′←${(f ′)−1(f ′(x))}[f ′(x′) = f ′(x)]
=α(n)2 > 0.99

where the second inequality follows by observing that

{x′ : x←$ {0, 1}n, x′ ←$ {(f ′)−1(f ′(x))}}

is just the uniform distribution.

9 Black-Box Separation Between FG-OWF and Self-Amplifiable
Average-Case Hardness

9.1 Self-Amplifying Average-Case Hard Language

Definition 28. A language L is (exponentially) self-amplifiable average-case hard if there is a con-
stant c and a quasilinear function q(·) such that for any superlogarithmic function ℓ(·), for any uniform
circuit family C = {Cn : {0, 1}ℓ(n)·n 7→ {0, 1}n}n∈N such that q(|Cn|) < 2c·n · ℓ(n)/2, and for all large
enough n ∈ N,

Prx⃗←${0,1}ℓ·n [Cn(x⃗) = L(x⃗)] ≤ poly(n) · 2−
(

ℓ(n)− q(|Cn|)
2c·n

)
.

To explain the meaning of Definition 28, consider a circuit Cn that implements the following
trivial strategy: it only contains check gates and queries the challenge words at random (harcoded)
positions, one by one, until it finds the corresponding witness and language membership bit, after
which it moves to the next word. Then, for any challenge word xi for which it found the corresponding
witness and language membership bit bi, it outputs bi; for all other words, it outputs a random guess.
On average, this circuit should find≈ |Cn|/(n2n) = Õ(|Cn|)/2n language membership bits. By guessing
uniformly at random the ℓ(n) − Õ(|Cn|)/2n remaining membership bits of the challenge, it succeeds
with probability

2−
(

ℓ(n)− Õ(|Cn|)
2n

)
.

Therefore, Definition 28 states, in essence, that no adversary can do much better (note that if |Cn| =
O(2n), then the poly(n) is already subsumed by the polylogarithmic leverage in |Cn|). The restriction
on the size of circuits to q(|Cn|) < 2c·n · ℓ(n)/2 captures the fact that circuits of size Õ(ℓ(n)) · 2O(n)

are already large enough to solve the full challenge x⃗ via brute-force queries, hence requiring hardness
against such circuits is meaningless. The above definition can be also adapted to an oracle language
LO.

Definition 29. Let O be an oracle and let LO be an oracle language. LO is (exponentially) self-
amplifiable average-case hard relative to O if there is a constant c and a quasilinear function q(·) such
that for any superlogarithmic function ℓ(·), for any uniform circuit family C = {Cn : {0, 1}ℓ(n)·n 7→
{0, 1}n}n∈N such that q(|Cn|) < 2c·n · ℓ(n)/2, and for all large enough n ∈ N,

Prx⃗←${0,1}ℓ·n

[
CO

n (x⃗) = LO(x⃗)
]
≤ poly(n) · 2−

(
ℓ(n)− q(|Cn|)

2cn

)
.

9.2 Black-Box Separation Between Self-Amplifiable Average-Case Hard Languages
and FG-OWF

We prove the following theorem which establishes a black-box separation between exponentially self-
amplifying average-case hardness and fine-grained one-way functions.
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Fig. 6: Structure of the proof of Theorem 30

Theorem 30. There exists an oracle O and an induced language LO such that for all uniform can-
didate constructions f = (fm)m∈N of a fine-grained one-way function there exists an (inefficient)
adversary A that inverts f with probability 1− 1

superpoly(m) on inputs z of length m, and such that there
is a constant c and a quasilinear function q(·) such that for all superlogarithmic function ℓ : N → N
and uniform circuits C = {Cn}n∈N with q(|Cn|) < 2c·n · ℓ(n)/2, and for all large enough n ∈ N,

Prx⃗←${0,1}ℓ·n

[
CO,A

n (x⃗) = LO(x⃗)
]
≤ poly(n) · 2−

(
ℓ(n)− Õ(|Cn|)

2O(n)

)
. (4)

The remainder of this paper will be devoted to the proof of Theorem 30. To help the reader with
getting a bird eye view of the proof, we represent the general structure of the proof on Figure 6,
with pointers to all relevant theorems, lemmas, claims and sections. Note that C is typically called
a reduction. The above statements constitutes a black-box separation since there exists a successful
adversary A which does not help the reduction C to decide LO when C is given oracle access to A.
We now simplify the statement of Theorem 30 as follows.

Theorem 31 (Language Hardness and Good Inversion). There exists an oracle O and an
oracle Inv such that for all uniform oracle functions f = (fm)m∈N, there exists an inverter AO,Inv

which satisfies, on input fm and y ∈ Im(fm) and for sufficiently large m ∈ N,

Prz←${0,1}m

[
fO

m(AO,Inv(fm, fO
m(z))) = fO

m(z)
]
≥ 1− 1

poly(m) . (5)

Furthermore, A can be represented as a uniform family of circuits A = {Am}m∈N such that for any
m ∈ N, |Am| = Õ(|fm|). Moreover, there exists an oracle language LO such that for any ℓ : N → N,
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any uniform circuit family C = {Cn : {0, 1}ℓ(n)·n 7→ {0, 1}n}n∈N, and for all large enough n ∈ N,

Prx⃗←${0,1}ℓ·n

[
CO,Inv

n (x⃗) = LO(x⃗)
]
≤ poly(n) · 2−

(
ℓ(n)− Õ(|Cn|)

2O(n)

)
. (6)

Claim 7 Theorem 31 implies Theorem 30.

Proof. The oracle O and the language LO is the same in both theorems. Now, to prove Theorem 30,
consider a candidate construction f . Then, by Theorem 31, AO,Inv is a good inverter for f . We can
think of AO,Inv as (AInv)O to emphasize that AInv is a uniform oracle algorithm with oracle O.

Now, we need to show that no black-box reduction C exists for f and (AInv)O. Consider a black-
box reduction CO,(AInv)O . We build a reduction CO,Inv

A by “pushing the code of A into C”: each time C
queries A on some input (fm, y), CA runs the size-Õ(|fm|) circuit AInv

m using the oracle Inv. Since this
increases the size of CA by at most Õ(|fm|) each time C makes a query (fm, y) to A (and the circuit
size of |C| is at least the sum of the length of all its queries to A), it holds that |CA| = Õ(|C|). Hence,
we can apply Inequality 6 to it which then yields Inequality 4.

9.3 Oracle Definition

In Figure 7, we describe our oracle. For an intuitive explanation of the various components of this
oracle, we refer the reader to the technical overview in Section 5.

Paths and Light Paths. The definition of the oracle Inv on Figure 7 involves the notion of a light
path PO′

Cs
(z) from an input z in an oracle circuit Cs relative to an oracle O′; we define this notion

below.

Definition 32 (Path). Given an oracle function fO′ with O′ = (Chk′, Pspace), the evaluation path
of f on an input z to its output with respect to O′, denoted PO′

f (z), is the set of all pairs (q, a) such
that q was queried to Chk′ during the execution of fO′(z) and a = Chk′(q).

Looking ahead, the oracle Chk′ in the above definition will correspond either to the actual oracle
Chk defined on Figure 7, or to alternative variants which will be introduced and used in our analysis.
For any k ∈ N, we denote by k-PO′

f (z) the set of k-Chk′ queries in PO′

f (z) (id est, the set of pairs
(q, a) ∈ PO′

f (z) with q ∈ {0, 1}k × {0, 1}k), and by k-HO′

f (z) the subset of k-PO′

f (z) of query pairs
which are hits (id est of the form (q, a) with a ̸= ⊥). Note that since f is specified via a circuit, the
size of k-PO′

f (z) is independent from O′.

Definition 33 (Light Path). Given an oracle O′ = (Chk′, Pspace), an oracle function fO′ , and an
input z, we say that the path PO′

f (z) from z to fO′(z) in f is k-light if

|k-HO′

f (z)| ≤ D ·
|k-PO′

f (z)|
2k−1 + log2 |f |,

where D = 16 is a constant. We say that a path is light if it is k-light for all k ∈ N.

9.4 Theorem Statement

Given (W, B, H) in the support of T , we denote by LO = {x ∈ {0, 1}∗ | B[x] = 1} denote the
associated hard language, where O = (Chk[B, W ], Pspace). We now first state our theorems regarding
language hardness and good inversion probability of A for distributions of oracles and then show
via Borel-Cantelli that a single such oracle exists and, even stronger, that the measure of such good
oracles is 1.

Theorem 34 (Language Hardness). For any ℓ : N 7→ N, uniform circuit family C = {Cn}n∈N,
and for all large enough n ∈ N,

Prx⃗←${0,1}ℓ·n,(W,B,H)←$T
[
CO,Inv

n (x⃗) = LO(x⃗)
]
≤ poly(n) · 2−

(
ℓ(n)− Õ(|Cn|)

2O(n)

)
, (7)

where O = (Chk[B, W ], Pspace).
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Distribution T

for n ∈ N :
for x ∈ {0, 1}n :

W [x]←$ {0, 1}n

B[x]←$ {0, 1}
for (i, C, y) ∈

N× {0, 1}∗ × {0, 1}∗ :
H[i, C, y]←$H|C|,i

return (W, B, H)

shave(C)

N ← max
k∈N

2
k
6 ≤ |C|

for k ∈ {N, .., |C|} :
C ← botk(C)

return C

Inv[W, B, H](C, y)

m← input-size(C)
Cs ← shave(C)
O′ ← (Chk[W, B], Pspace)

S := {p : ∃z ∈ {0, 1}m : p = PO′
Cs

(z)∧

CO′
s (z) = y ∧ PO′

Cs
(z) is light}

i← max
i∈N

2i−1 ≤ |S| ≤ 2i

h← H[i, C, y]
if ∃!p ∈ S s. t.

bs← bitstr|C|(p)

h(bs) = 0i then

return PO′
Cs

(z)
else return ⊥

Chk[W, B](x, w)

if W [x] = w

return B[x]
return ⊥

Fig. 7: Distribution T for sampling a random language LO = {x ∈ {0, 1}∗ | B[x] = 1} with the
associated list of witnesses W . The oracle Chk[W, B] allows to check membership of a word x ∈ LO

given the witness W [x], and Inv allows to invert an arbitrary function. Here, Qryk(C) denotes the
number of queries Chk[W, B](x, w) for some x with |x| = k. The function botk(C) returns a circuit
C, where each queries of length k have been replaced by a hardcoded ⊥ answer symbol. The function
bitstr|C| maps each set to a bitstring of length |C|.

The proof of Theorem 34 is given in Section 10.

Theorem 35 (Good Inversion). Let f : {0, 1}∗ → {0, 1}∗ be an oracle function. We show that
AInv[W, B, H](f, .) is an efficient inverter for f , i.e., for sufficiently large m ∈ N, it holds that

Prz←${0,1}m,(B,W,H)←$T

[
fO

m(AO,Inv[W,B,H](fm, fO
m(z))) = fO

m(z)
]
≥ 1− µ(m), (8)

where O = (Chk[B, W ], Pspace) and A is given in Figure 8 and µ(m) = 1/m2.5.

Intuitively, the adversary A works as follows: to invert a function fm : {0, 1}m 7→ {0, 1}∗ given an
image y, it queries Inv log3 m times on independent inputs (fk

m, y), where the fk
m are syntactically

different but functionally equivalent to f , to ensure that the failure probability introduced by the
hashing is independent across the instances. Then, it takes a path p returned by any successful query
to Inv (if any), and returns a uniformly random preimage z consistent with this path (this requires a
single query to the PSPACE oracle). The proof of Theorem 35 is given in Section 11.

Claim 8 Theorem 34 and Theorem 35 imply Theorem 31.

Proof. We recall that the Borel-Cantelli Lemma states that for each sequence of events En with∑
n∈N Pr(B,W,H)←$T [En] = O(1), it holds that the measure of lim supn→∞En is 0, where

lim sup
n→∞

En :=
⋃

N∈N

⋂
n≥N

En.

Using a standard averaging argument (see e.g. the splitting lemma from [PS96]), from Inequality 8,
we obtain that

Pr(B,W,H)←$T

[
Prz←${0,1}m

[
fO

m(AO,Inv[W,B,H](fm, fO
m(z))) ̸= fO

m(z)
]
≥ µ(m)/2

]
≤ µ(m)/2, (9)
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AInv[W,B,H],Sample(y)

for i from 1 to log3(m)
fm,i ← encode(fm, i)
p← Inv(fm,i, y)
if p ̸= ⊥

r ←$ {0, 1}101m

z ← Sample(f, y, p, r)
return z

return ⊥
Chk[p](x, w)

if (x, w, b) ∈ p :
return b

return ⊥
Sample[p](f, y, p, r)

Z := {z ∈ {0, 1}m : fChk[p]
approx (z) = y

∧ pathChk[p]
fapprox

(z) = p}

z ← unif(Z, r)
return z

Fig. 8: Inverter A. unif(Z, r) samples (approximately) uniformly from set Z using randomness r.
encode(fm, i) returns an encoding fm,i Sample can be implemented via a PSPACE oracle by asking
for z bitwise with multiplicative overhead |z|.

and from Inequality 7, we obtain that there is a constant c and a quasilinear function q(·) such that for
any superlogarithmic function ℓ(·), for any uniform circuit family C = {Cn : {0, 1}ℓ(n)·n 7→ {0, 1}n}n∈N
such that q(|Cn|) < 2c·n · ℓ(n)/2, and for all large enough n ∈ N,

Prx⃗←${0,1}ℓ·n,(W,B,H)←$T
[
CChk,Inv,Pspace

n (x⃗) = LO(x⃗)
]
≤ poly(n) · 2−

(
ℓ(n)− q(|Cn|)

2cn

)
(10)

≤ 1
superpoly(n) . (11)

Let C and f be as in Theorem 34 and Theorem 35. We define event EC,f
n over the sampling of

(W, B, H)←$ T as true when for O = (Chk[B, W ], Pspace) and Inv[B, W, H], it holds that

Prz←${0,1}m

[
fO(AO,Inv

m (fm, fO
m(z))) = fO

m(z)
]
≤ 1

m2.5 .

and
Prx⃗←${0,1}ℓ·m

[
CO,Inv

m (x⃗) = LO(x⃗)
]
≤ 1

superpoly(m) .

By Inequality 9 and Inequality 10, we then obtain that

Pr(B,W,H)←$T
[
EC,f

m

]
≤ 1

m2

and thus,

Pr(B,W,H)←$T

[
lim sup

n→∞
EC,f

n

]
= 0.

Hence, with probability 1 over the choice of (B, W, H), event En holds for all but finitely many
n. As we regard uniform circuits C and functions f , there is a countable number of them, and the
measure of the union of countably many measure zero events is zero and thus, with measure 1 over T ,
Inequality 7 and Inequality 8 holds for the induced oracles O = (Chk[B, W ], Pspace) and Inv[B, W, H],
respectively. Thus, in particular, oracles O and Inv with the desired properties exist.
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10 Proof of the Self-Amplifiable Average-Case Hardness Theorem

The core of the proof consists of two lemmas:

– The emulation lemma states that for any adversary A which, given access to O, makes a given
number of hits, there exists another adversary B which emulates A, in the sense that B makes
exactly the same queries to Chk as A (and, in particular, makes the same number of hits), but
is not given access to Inv. Instead, B receives an advice string, computed from the truth table T
of O, which provably contains only a bounded amount of information about the witnesses and
language membership bits of the challenge string.

– The hitting lemma gives a Chernoff-style bound on the number of hits that any adversary B,
which is only given access to Chk and receives in addition an advice string about T of which only
a bounded part contains possible information about the challenge string, can make after doing
at most Q queries to Chk. A generic formulation of the hitting lemma is given (and proven) in
Section 6.

10.1 The Emulation Lemma

For any u ∈ {0, 1}n, we define the table W¯⃗x[u] as equal to W [u] if u /∈ x⃗ and as ⊥ if u ∈ x⃗. Analogously,
for any u ∈ {0, 1}n, we define the table B¯⃗x[u] as equal to B[u] if u /∈ x⃗ and as ⊥ if u ∈ x⃗. Given
a list I, we denote I.append(x) the function which appends a value x at the end of the list I, and
I.getlast() the function which returns the item at the end of the list I (and removes it from I).

Lemma 36 (Emulation Lemma). There exists an emulator Emu such that for every function
ℓ : N 7→ N, every oracle circuit family {Cn : {0, 1}n·ℓ(n) 7→ {0, 1}ℓ(n)}n∈N with access to O =
(Chk, Inv, Pspace), every n ∈ N, every x⃗ ∈ {0, 1}n·ℓ(n), and every (W, B, H) in the support of T ,
the following conditions hold:

1. EmuChk,Pspace(LeakPspace(W, B, H, x⃗, Cn), W¯⃗x, B¯⃗x, x⃗, Cn) = CO
n (x⃗), and

2. Emu and Cn make exactly the same queries to Chk (hence in particular, the same number of
queries to Chk),

where the function Leak is given on Figure 9.

Proof. The emulator Emu is represented on Figure 9. We now argue why properties 1 and 2 of
Lemma 36 hold. Observe that Emu internally runs AO′(x⃗), but using a new oracle O′ whose behavior
it simulates. This oracle O′ is identical to O, except that Emu replaces the standard inversion oracle
Inv by a locally emulated version of Inv (denoted Invemu[L]) which relies on the information about O
which are given to Emu in the form of a list L. Hence, it is clear that property 2 will hold if Invemu[L]
correctly emulates Inv during the computation of A: if, for any call made by A on input x⃗ to the
inversion oracle, the answer of Invemu[L] is the same as the answer of Inv, then AO′(x⃗) will clearly
return the same b⃗ as AO(x⃗), and will make exactly the same calls to Chk in the process (which is
provided as part of both O and O′). It remains to argue the following:

Claim 9 For any call made by A on input x⃗ to the inversion oracle, the answer of Invemu[L] is the
same as the answer of Inv.

There are three differences between Invemu[L] and Inv, which are highlighted in blue on Figure 9.
In both cases, the set S of candidate preimages is computed by looking at all bitstrings z ∈ {0, 1}n

such that the path obtained by running Cs(z) (i.e., the list of all queries to Chk made by Cs on input
z) is light (see Definition 33) and ends at y. The three differences are:

– for Inv, the path is computed by running Cs with oracle access to (Chk, Pspace), while for Invemu[L],
the path is computed by running Cs with oracle access to (Chkemu[L], Pspace).

– The values z whose corresponding path contains an err symbol are discarded from S in Invemu[L].
– The value i is computed as maxi∈N 2i−1 ≤ |S| ≤ 2i in Inv, while in Invemu[L], it is taken from the

end of the list I (and subsequently removed from the list).
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Leak(W, B, H, x⃗,A)ii

I ← ∅; W Hit ← ∅

W Hit ← ∅; BHit ← ∅
O′ ← (Chkleak[W, B, x⃗], Invleak[W, B, x⃗], Pspace)

b⃗← AO′

return (I, W Hit, W Hit, BHit, H)

Chkleak[W, B, x⃗](u, w)ii

if u ∈ x⃗

if W [u] ̸= w :

W Hit[u]←W Hit[u] ∪ {w}
if W [u] = w :

BHit[u]← B[u]

W Hit[u]←W [u]
if W [u] = w :

return B[u]ii

return ⊥

Invleak[W, B, x⃗, H](C, y)

m← input-size(C)
Cs ← shave(C)
O′ ← (Chk[W, B], Pspace)

S := {p : ∃z ∈ {0, 1}m : CO′
s (z) = y ∧

p = PO′
Cs

(z) is light}

i← max
i∈N
{2i−1 ≤ |S| ≤ 2i}

h← H[i, C, y]
if ∃!p ∈ S s. t.

bs← bitstr|C|(p)

h(bs) = 0i then
O′ ← (Chkleak[W, B, x⃗], Pspace)

CO′
s (z)

I ← I.append(i)

return PO′
Cs

(z)
I ← I.append(⊥)
else return ⊥

EmuChk,Pspace(I, W Hit, W Hit, BHit, H, W¯⃗x, B¯⃗x, x⃗,A)

L← (I, W Hit, W Hit, BHit, H, W¯⃗x, B¯⃗x)
O′ ← (Chk, Invemu[L], Pspace)

b⃗← AO′
(x⃗)

return b⃗

Chkemu[L](u, w)ii

if u ∈ x⃗

if u ∈W Hit[u] :
return ⊥

if u ∈W Hit[u] :

return BHit[u]
return err

if W¯⃗x[u] = w :

return B¯⃗x[u]
return ⊥

Invemu[L](C, y)

a← I.getlast()
if a = ⊥ : return ⊥
m← input-size(C)
Cs ← shave(C)
O′ ← (Chkemu[L], Pspace)

S := {p : ∃z ∈ {0, 1}m : CO′
s (z) = y ∧

p = PO′
Cs

(z) is light∧ err /∈ PO′
Cs

(z)}

i← a

h← H[i, C, y]
if ∃!p ∈ S s. t.

bs← bitstr|C|(p)

h(bs) = 0i then

return PO′
Cs

(z)

else return err

Fig. 9: The left column contains an algorithmic description of Leak, and the right column contains an
algorithmic description of Emu.
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Let us first show that the value i obtained is the same for Invemu[L] and Inv. This follows from the
way I is constructed: I is obtained as the first output of Leak(W, B, H, x⃗,A). This leakage function
fully simulates a run of A on input x⃗ internally (which it can do since it contains the full truth
table W, B, H of the oracle O, hence it can perfectly emulate its behavior), and stores some partial
information during this simulated run. This is formalized by running internally A on input x⃗ with ac-
cess to the modified oracle O′ = (Chkleak[W, B, x⃗], Invleak[W, B, x⃗], Pspace), where Chkleak[W, B, x⃗] and
Invleak[W, B, x⃗] behave exactly as Chk, Inv from the viewpoint of A, but store information in the sets
W Hit, W Hit, BHit and in the list I along the way. I is constructed through each call to Invleak[W, B, x⃗]
by appending the values i computed as maxi∈N 2i−1 ≤ |S| ≤ 2i (exactly as in Inv). Hence, as long as
A (emulated by Emu) will, on input x⃗, make exactly the same calls to Invemu[L] as it does to Inv in
the real execution, Invemu[L] will use exactly the same values i (taken from i) as those computed by
Inv.

It remains to show that each call to Invemu[L] made by A on input x⃗ will return the same answer
as what Inv would have returned on the same query. We prove it by induction and consider a given
call to Invemu[L], assuming that all previous calls to Invemu[L] returned the same answer as Inv. Let
us denote S the set associated to Inv and Semu the set associated to Invemu[L]. First, we show that
Semu ⊂ S: any path included in Semu is, by definition, a path such that CO′

s (z) = y for some z,
where O′ is the oracle (Chkemu, Pspace). This emulated Chk oracle only answer queries whose answer
is contained in either W Hit or W Hit (for all other queries, it answers err and the corresponding path
is not added to Semu). By construction, any query pair in either W Hit or W Hit has been added there
when emulating a run of A on input x⃗ with access to Chkleak, which answers queries exactly as the
true oracle Chk by definition (Chkleak knows the full truth table of Chk; its only job is to store a subset
of the queries in W Hit and W Hit, namely, those that query one of the words from the challenge vector
x⃗). Hence, any valid path from z to y with respect to O′ is a valid path from z to y with respect to
O = (Chk, Pspace), therefore Semu ⊂ S.

Next, we consider the path p from S that satisfies h(bs) = 0i with bs ← bitstr|C|(p); there is a
unique such path unless Invemu returns err. By definition of Invemu, each time there is a unique such
path from z to y in S, then the circuit Cs is ran on input z with the oracle (Chkemu[L], Pspace) (see
the lines in blue in the description of Invemu on Figure 9). This implies that all queries made along
the path from z to y which are not already in W¯⃗x will be added to the sets W Hit and W Hit. As a
consequence, the oracle Chkemu will never return err on any query made along this path, but will
instead return exactly the same answers as Chk. This implies that p also belongs to the set Semu.

Summarizing, when there is a unique path p ∈ S such that h(bs) = 0i with bs ← bitstr|C|(p),
then the same path p belongs to Semu as well, and since Semu ⊂ S, it is also the unique path in Semu
such that h(bs) = 0i (where, as we already argued, the value i is the same as with Inv). On the
other hand, when there is no such unique path p, then Inv returns ⊥. This implies that when the
function LeakPspace runs internally AO′ with the oracle O′ = (Chkleak[W, B, x⃗], Invleak[W, B, x⃗], Pspace)
to generate the emulation material (I, W Hit, W Hit, BHit, H), the oracle Invleak will add ⊥ to the list I
(see the lines in blue in the description of Invleak on Figure 9), hence Invemu will retrieve ⊥ from I (see
the lines in blue in the description of Invemu on Figure 9) by our induction hypothesis. Therefore, it
will output ⊥ as well, which completes the induction. ⊓⊔

Bounding the Length of the Emulation String. Fix ℓ(·), n, a challenge vector x⃗ ∈ ({0, 1}n)ℓ,
and a circuit family C = {Cn : {0, 1}n·ℓ(n) 7→ {0, 1}n}n∈N. For (W, B, H) in the support of T , denoting
(I, W Hit, W Hit, BHit, H) ← LeakPspace(W, B, H, x⃗, Cn), we say that I is represented by a string rep if
there is a deterministic algorithm ReconstructPspace which, given (H, W¯⃗x, B¯⃗x, x⃗, Cn), outputs I. Observe
that without loss of generality, if rep represents I, we can assume that EmuChk,Pspace gets rep instead
of I as input (since it can recompute I locally, without any call to the oracles, from rep and its other
inputs). We now bound the size of rep.

Lemma 37 (Emulation String Length). There exists an algorithm Reconstruct such that for every
function ℓ(·), every circuit family

C = {Cn : {0, 1}n·ℓ(n) 7→ {0, 1}n}n∈N,

and every large enough n ∈ N, for all x⃗ ⊆ {0, 1}n, every (W, B, H) in the support of T , denoting
(I, W Hit, W Hit, BHit, H) ← LeakPspace(W, B, H, x⃗, Cn), it holds that I = ReconstructPspace(rep, H, W¯⃗x,
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B¯⃗x, x⃗, Cn), for some string rep satisfying

|rep| = Õ(|Cn|)
2n/6 . (12)

Proof. Consider a query (C, y) to Invleak[W, B, x⃗, H]. Every such query will result in appending an
integer i to the list I, where i is computed from the set S of path from some input z to y in
Cs = shave(C). Assume that |C| < 2n/6. Then, by definition of the shave function, it holds that Cs

does not contain any n-Chk gate. Therefore, no path in Cs from any input z can possibly contain
any query to x⃗. This implies that the S can be fully computed solely from Cs, y and W¯⃗x, B¯⃗x (i.e. the
full information about the oracle Chk, except for all witnesses and languages membership bits for the
words in x⃗).

Now, the circuit Cn can contain at most |Cn|/2n/6 Inv gates which take as input a circuit C of size
at least 2n/6. Furthermore, for every query (C, y) to Invleak[W, B, x⃗, H], the integer i appended to the
list I is of size at most log |S|+1, where S is a set of paths from some input to y in Cs = shave(C), and
the number of such path is trivially bounded by 2|Cs| ≤ 2|C| (by definition of shave, |shave(C)| ≤ |C|).
Therefore, the bitlength of i is at most

log(log |S|+ 1) ≤ log(log(2|C|) + 1)
= log(|C|+ 1) = O(log |Cn|).

We now define the string rep that represents I: rep is a self-delimiting encoding (e.g. a prefix-free
encoding) of the sub-list of I of all integer i appended to I through a query (C, y) to Invleak[W, B, x⃗, H]
with |C| ≥ 2n/6. Using any efficient prefix-free encoding (it is well known that a list containing items
of total length t can be prefix-free encoded with a string of length at most t + O(log t)), the length of
rep can therefore be bounded by

|rep| ≤ Õ(|Cn|)
2n/6 ·O(log |Cn|)) = Õ(|Cn|)

2n/6 .

Eventually, the reconstruction algorithm Reconstruct works as follows: on input (rep, H, W¯⃗x, B¯⃗x, x⃗, Cn),
it reconstructs I by running LeakPspace(W, B, H, x⃗, Cn) internally. For each call to Invleak[W, B, x⃗, H]
made by LeakPspace, if the query (C, y) satisfies |C| < 2n/6, Reconstruct can locally compute the value
i to append to I solely from Cs, y and W¯⃗x, B¯⃗x. Else, Reconstruct retrieves the value i from the string
rep. This concludes the proof. ⊓⊔

10.2 Applying The Hitting Lemma

We want to apply the hitting lemma (Lemma 19) to prove the following: for any circuit Cn, any
algorithmA having only access to the inputs and oracles of Cn’s emulator (i.e.,A has only access to the
oracles Chk, Pspace and W

x⃗
, B

x⃗
, LeakPspace(W, B, H, x⃗, Cn)) cannot possibly make too many hits out

of Q queries, for any Q. Recall that the hitting lemma is a strong Chernoff-type bound, which shows
that the probability of making c more hits than some number (that depends on Q and the information
in W

x⃗
, B

x⃗
, LeakPspace(W, B, H, x⃗, Cn)) decreases exponentially with c. In the following lemma, we treat

Leak(W, B, H, x⃗, Cn) as a given and abstract properties of Emu into a class of adversaries that have
access to a Chk oracle. Note that

LeakPspace(W, B, H, x⃗, Cn) = (I, W Hit
I , W Hit

I , BHit
I , H).

We denote by I(W, B, x⃗, Cn) the first component of Leak.

Notations. Given an adversary A with access to the oracles Chk, Pspace, we let:

– L← (I, W Hit, W Hit, BHit, H, W¯⃗x, B¯⃗x),
– HitChk,Pspace

B (L, x⃗, Cn) denote the random variable corresponding to the number of hits made by
BChk,Pspace(L, x⃗, Cn) through queries to Chk of the form (xi, w), where xi is a component of x⃗ such
that W Hit[xi] = ⊥ (i.e., Hit counts the new hitting queries with respect to components of x⃗, which
are not already contained in W Hit);

– qryA denote the number of Chk gates in the circuit A.
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With these notations, we can now state the version of the Hitting Lemma which we need in this section.
Note that the notation (W, B, H) ← T |L means that (W, B, H) is sampled from T conditioned on
being consistent with L:

Lemma 38 (Hitting Lemma with Advice – Specialized Version). For every ℓ(·), positive
integers q, large enough n, challenge x⃗ = (x1, · · · , xℓ(n)), witness sets W

x⃗
, W Hit with bit sets B

x⃗
, BHit,

non-hitting set W Hit of size q, function I, adversaries A, Cn, and for every integer c ≥ 1,

Pr(W,B,H)←T |L

[
HitChk,Pspace
A (L, x⃗, Cn) ≥ D · qryB + q

2n
+ c

]
≤ α · 2|rep|

2γc
,

with L = (I, W Hit, W Hit, BHit, H, W¯⃗x, B¯⃗x), |rep| ≤ Õ(|Cn|)/2n/6, constants D = 16, α > 0, and γ > 1,
where the probability is taken over the random sampling of (W, B, H)←$ T , conditioned on L.

Lemma 38 follows from the abstract hitting lemma with advice (Corollary 21) by mapping the
respective sets as follows: We first remove the xi values for which hits are registered in W Hit from x⃗.
Note that HitChk,Pspace

A (L, x⃗, Cn) only counts hits not already contained in W Hit. Next, for each of the
remaining xi, we denote by Vi the set of witnesses which are not already contained as a non-hit in
W Hit. Eventually, recall that the abstract hitting lemma with advice does not make any assumption
about the power of the adversary (beyond the fact that it makes a bounded number of queries) and
allows the adversary to be given a bounded length advice string which can depend arbitrarily on
the truth table of the oracle. Therefore, we apply the abstract hitting lemma with to an adversary
(A′)Chk which emulates APspace,Chk =

(
APspace)Chk, locally emulating the Pspace oracle in exponential

time. A′ has (W Hit
I , W Hit

I , BHit
I , H) and the reconstruction string rep hardcoded in its description (by

Lemma 37, the value of I can be reconstructed as ReconstructPspace(rep, H, W¯⃗x, B¯⃗x, x⃗, Cn), using an
advice string rep of length bounded by Õ(|Cn|)/2n/6, and uses it to reconstruct I before running A on
input (L, x⃗, Cn). Given this mapping, bounding HitChk,Pspace

A (L, x⃗, Cn) becomes identical to bounding
HitGuessr⃗ (A′) where the oracle Guess is defined with respect to the witness sets Vi given above, using
the fact that sampling r⃗ from V1×· · ·Vℓ is identical to sampling the witnesses for each xi from {0, 1}n

conditioned on the witnesses not being equal to any non-hit contained in W Hit.

10.3 Proof of Theorem 34 from the Emulation Lemma and the Hitting Lemma

We now prove Theorem 34 assuming the Emulation Lemma (Lemma 36) and the Hitting Lemma
with Advice (Lemma 38). Fix a function ℓ(·) and a uniform circuit family C = {Cn : {0, 1}ℓ(n)·n 7→
{0, 1}n}n∈N. Given (W, B, H) in the support of T , we let LO denote the language LO = {x ∈ {0, 1}∗ :
B[x] = 1}. Let p denote the quantity

p = Pr(W,B,H)←$T ,x⃗←${0,1}ℓ·n

[
CChk,Inv,Pspace

n (x⃗) = LO(x⃗)
]
.

By the Emulation Lemma (Lemma 36), there exists an algorithm Emu such that

p = Pr(W,B,H)←$T ,x⃗←${0,1}ℓ·n

[
L← LeakPspace(W, B, H, x⃗, Cn) :
EmuChk,Pspace(L, W¯⃗x, B¯⃗x, x⃗, Cn) = LO(x⃗)

]
;

furthermore, EmuChk,Pspace, on input (L, W¯⃗x, B¯⃗x, x⃗, Cn), makes exactly the same number of queries to
Chk as CChk,Inv,Pspace

n (x⃗) (in particular, Emu makes at most |Cn| queries to Chk). We now bound p. Let
XEmu = XEmu(W, B, H, x⃗, Cn) be a random variable which counts the total number of hits (among
the words of x⃗) contained in W Hit and made by EmuChk,Pspace(L, W¯⃗x, B¯⃗x, x⃗, Cn). Then for any t ∈ N,

Pr(W,B,H)←$T ,x⃗←${0,1}ℓ·n

[
EmuChk,Pspace(L, W¯⃗x, B¯⃗x, x⃗, Cn) = LO(x⃗)

∣∣XEmu = t
]
≤ 2t−ℓ(n).

Indeed, conditioned on XEmu = t for some integer t, at most t bits of LO(x⃗) are fully determined,
and all other remaining bits are truly undetermined (since all other information obtained by Emu
through queries to Chk or contained in (W Hit, W¯⃗x, B¯⃗x, H) are sampled independently of LO(x⃗) by
the distribution T ), hence the bound. Furthermore, a trivial bound on XEmu is ℓ(n) (the number of
entries in x⃗). Therefore,

p = Pr(W,B,H)←$T ,x⃗←${0,1}ℓ·n

[
EmuChk,Pspace(L, W¯⃗x, B¯⃗x, x⃗, Cn) = LO(x⃗)

]
=
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ℓ∑
t=1

Pr(W,B,H)←$T ,x⃗←${0,1}ℓ·n

[
EmuChk,Pspace(L, W¯⃗x, B¯⃗x, x⃗, Cn) = LO(x⃗)

∣∣XEmu = t
]
· Pr[XEmu = t]

≤
ℓ∑

t=1
2t−ℓ(n) · Pr(W,B,H)←$T ,x⃗←${0,1}ℓ·n [XEmu = t].

Furthermore, the size of |W Hit| satisfies the following bound:

Claim 10 For every function ℓ(·), every circuit family C = {Cn : {0, 1}n·ℓ(n) 7→ {0, 1}n}n∈N, and
every large enough n ∈ N, for all x⃗ ⊆ {0, 1}n, every (W, B, H) in the support of T , denoting
(I, W Hit, W Hit, BHit, H)← Leak(W, B, H, x⃗, Cn), it holds that

|W Hit| = poly(n) · Õ(|Cn|)
2n

.

Proof. The set W Hit contains all hits made through queries to Inv. More precisely, every hit contained
in W Hit belongs to a light path from some input z to y in a circuit Cs = shave(C), where (C, y) is a
query to Inv. By the definition of a light path, the number of hits contained in any given light path
is at most

|n-HO′

Cs
(z)| ≤

|n-PO′

Cs
(z)|

2n−1 + log2 |Cs| ≤
|Cs|
2n−1 + log2 |Cs|.

Furthermore, by definition of shave, if |C| < 2n, no hits will be added to W Hit, and |Cs| ≤ |C|.
Therefore, any query (C, y) can add at most poly(n) · Õ(|C|)/2n−1 hits to W Hit. Since the total size
of all queries (C, y) to Inv made by Cn is at most |Cn|, the bound follows. ⊓⊔

Therefore,

Pr(W,B,H)←$T ,x⃗←${0,1}ℓ·n [XEmu = t]

≤ Pr(W,B,H)←$T ,x⃗←${0,1}ℓ·n

[
HitChk,Pspace

Emu (L, x⃗, Cn) ≥ t− poly(n) · Õ(|Cn|)
2n

]
Since HitChk,Pspace

Emu counts the number of hits made by EmuChk,Pspace(L, W¯⃗x, B¯⃗x, x⃗, Cn), which means
that HitChk,Pspace

Emu = XEmu− |W Hit| by definition. By the Hitting Lemma with Advice (Lemma 38), for
every c ∈ N, it holds that

Pr(W,B,H)←T |L

[
HitChk,Pspace

Emu (L, x⃗, Cn) ≥ D · qryA + q

2n
+ c

]
≤ α · 2|rep|

2γc
,

where D is some constant, q is the number of entries in W Hit, α > 0 and γ > 1. Since A makes exactly
the same number of queries to Chk as Cn, a straightforward bound on qryA is |Cn|. Furthermore, it
also holds that q ≤ |Cn|, since q is the number of non-hitting Chk queries made by Cn through queries
to Inv, and the total number of Chk queries made by Cn (directly or through calls to Inv) is at most
|Cn|. Hence,

Pr(W,B,H)←T |L

[
HitChk,Pspace
A (L, x⃗, Cn) ≥ O(|Cn|)

2n
+ c

]
≤ α · 2|rep|

2γc
,

and therefore for any t ∈ N, since |rep| = Õ(|Cn|)
2n/6 = poly(n) · Õ(|Cn|)

2O(n) , setting

c← t− poly(n) · Õ(|Cn|)
2n

− O(|Cn|)
2n

= t− poly(n) · Õ(|Cn|)
2O(n) ,

we get

Pr(W,B,H)←$T ,x⃗←${0,1}ℓ·n [XEmu = t] ≤ α · 2poly(n)· Õ(|Cn|)
2O(n)

2γt
.

Eventually, this gives

p ≤
ℓ∑

t=1
2t−ℓ(n) · α · 2poly(n)· Õ(|Cn|)

2O(n)

2γt
= α · 2poly(n)· Õ(|Cn|)

2O(n) −ℓ(n) ·
ℓ∑

t=1
2(1−γ)t
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≤ β · 2poly(n)· Õ(|Cn|)
2O(n) −ℓ(n) for some constant β = α ·

∞∑
t=1

2(1−γ)t, which exists since γ > 1

≤ 2poly(n)· Õ(|Cn|)
2O(n) −ℓ(n) by absorbing the β in the Õ(),

which concludes the proof of Theorem 34.

11 Proof of the Inversion Lemma

We now prove Theorem 35. The proof proceeds as follows. We first show that on a random input
f and its shaved counterpart fs return the same value with high probability over the choice of the
oracle O. We define a function fapprox which returns an error when it is evaluating a heavy path and we
bound the probability over a random choice of the input and the oracle O that fs and fapprox return a
different value. We then show that inverting fapprox uniformly suffices to invert f with overwhelming
probability, essentially losing the error between f and fapprox twice, once in the forward and once
in the backward direction. Additionally, we loose a small factor due to the universal hashing in the
oracle. For convenience, we write f instead of fm.

Definition 39 (approximate f). Let f be an oracle circuit with O = (Chk, PSPACE). We define
fs := shave(f) and

fO
approx(z) 7→

{
fO

s if PO
fs

(z) is light.
⊥ else.

Lemma 40 (fapprox ≈ fs).

PrO,z←${0,1}m

[
fO

approx(z) = fO
s (z)

]
≥ 1− 1

superpoly(|f |) ,

where superpoly denotes some explicit superpolynomial function.

Proof.

PrO,z←${0,1}m

[
fO

approx(z) ̸= fO
s (z)

]
= PrO,z←${0,1}m

[
PO

fs
(z) is not light.

]
= PrO,z←${0,1}m

[
∃k ≥ 1 : PO

fs
(z) is not k-light.

]
≤

k′(f)∑
k=1

PrO,z←${0,1}m

[
PO

fs
(z) is not k-light.

]
=

k′(f)∑
k=1

PrO,z←${0,1}m

[
|k-HO

f (z)| ≥
|k-PO

f (z)|
2k−1 + log2 |f |

]
. (13)

We now prove that for each k, the probability over O and z that |k-HO
f (z)| ≤ |k-PO

f (z)|
2k−1 + log2 |f | is

upper bounded by 2−O(log2|f |). To be able to show this, we use a specialized version of the abstract
Hitting Lemma 19, stated below. We map the parameters as follows: For each k ∈ N, we consider the
hits made on any of the possible x ∈ {0, 1}k, i.e., for each x ∈ {0, 1}k, we consider a set Vi with 2k

candidate witnesses, i.e., ℓ = 2k and |V1| = .. = |Vℓ| = 2k and thus q = ℓ · k −
∑2k

i=1|Vi| = 0.
The adversary A in the hitting lemma corresponds to the function f . However, let us make the

sampling of O explicit to fully appreciate the mapping between A and f . Namely, O consists of
a PSPACE oracle which we consider a part of A. Since the Hitting Lemma does not have efficiency
constraints, A can simply emulate PSPACE inefficiently. Additionally, sampling O consists of sampling
(W, B, H)← T . We consider the sampling of H as part of A (since it is independent of the witnesses
of length k). Additionally, denoting by W{0,1}¬k and B{0,1}¬k the set of witnesses and language
membership bits for x ∈ {0, 1}∗ \ {0, 1}k, we can consider the sampling of W{0,1}¬k and B{0,1}¬k as
part of A since it is independent of the witnesses and membership bits sampled for x ∈ {0, 1}k. Let
us denote by HitChk

APspace(f, {0, 1}k, H, W{0,1}¬k , B{0,1}¬k ) the number of k-hits which the so-constructed
adversary makes, and observe that this number is equal to |k-HO

f (z)|, since A merely runs f internally.
Hence, we obtain the following customized Hitting Lemma from Lemma 19:
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Lemma 41. For any c, k ∈ N,

Pr(W,B,H)←T ,z←${0,1}m

[
HitChk
APspace(f, {0, 1}k, H, W{0,1}¬k , B{0,1}¬k ) ≥

16 · |k-PO
f (z)|

2k
+ c

]
≤ α

2γc
,

for some α > 0 and γ > 1.

Therefore, for any c, k ∈ N,

PrO,z←${0,1}m

[
|k-HO

f (z)| ≥
|k-PO

f (z)|
2k−1 + c

]

≤PrO,z←${0,1}m

[
|k-HO

f (z)| ≥ 16 ·
|k-PO

f (z)|
2k

+ c

]
≤ 2−O(c). (14)

From Inequality 13 and Inequality 14, we now obtain

PrO,z←${0,1}m

[
fO

approx(z) ̸= fO
s (z)

]
≤

k′(f)∑
k=1

PrO,z←${0,1}m

[
|k-HO

f (z)| ≥ 16 ·
|k-PO

f (z)|
2k

+ log2 |f |

]

≤
k′(f)∑
k=1

2−O(log2 |f |) ∗≤ |f | · 2−O(log2 |f |)

where inequality (∗) follows from the fact that k′ ≤ |f |. This concludes the proof of Lemma 40. ⊓⊔

Lemma 42 (fs ≈ f).
PrO,z←${0,1}m

[
fO

s (z) = fO(z)
]
≥ 1− 4

m3

Proof.

PrO,z←${0,1}m

[
fO

s (z) ̸= fO(z)
]

= PrO,z←${0,1}m

[
∃k ≥ 6 log(|C|) : k-HO

f (z) ̸= ∅
]

≤
∑

k≥6 log(|C|)

PrO,z←${0,1}m

[
k-HO

f (z) ̸= ∅
]

≤
∑

k≥6 log(|C|)

2− 5k
6 ≤

∑
k≥6 log(|C|)

2− k
2 ≤ 22 · 2−3 log(|C|) ≤ 4

m3

Putting Lemma 40 and Lemma 42 together, we obtain

Lemma 43 (fapprox ≈ f).

PrO,z←${0,1}m

[
fO

approx(z) = fO(z)
]
≥ 1− ν(m), (15)

where ν(m) = 1
superpoly(m) + 4

m3 ≤ 1
m2.9 .

An averaging argument yields from Inequality 15 that

Pr(B,W )←$T
[
Prz←${0,1}m

[
fO(z) = fO

approx(z)
]
≥ 1− 2ν(m)

]
≥ 1− 2ν(m), (16)

where O denotes Chk[B, W ], Inv[B, W ]. We say that such an oracle O is (1 − 2ν(m))-good and refer
to the functions fO and fO

approx as (1 − 2ν(m))-close w.r.t. O. We now show that if two functions
f and fapprox are (1 − 2ν(m))-close, then fapprox can be used to approximately invert f , losing the
approximation error ν(m) twice since we need to apply it to the original x as well as the inverse x′,
see Inequality 19.

Lemma 44 (Approximate Inversion). Let f and fapprox be two (1− 2ν(m))-close functions, then

Prz←${0,1}m

[
f(f−1

approx(f(z), 1m)) = f(z)
]
≥ 1− 4ν(m), (17)

where we denote by f−1
approx(f(z), 1m) a uniformly random sample from f−1

approx(f(z), 1m).
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Proof (Lemma 44). We first lower bound the probability by considering only the case where f(z) =
fapprox(z).

Prz←${0,1}m

[
f(f−1

approx(f(z), 1m)) = f(z)
]

≥Prz←${0,1}m

[
f(f−1

approx(f(z), 1m)) = f(z) ∧ f(z) = fapprox(z)
]

= Prz←${0,1}m

[
f(f−1

approx(fapprox(z), 1m)) = f(z) ∧ f(z) = fapprox(z)
]

(18)

Observe that when z is uniformly distributed over {0, 1}m, then z′ ←$ f−1
approx(fapprox(z), 1m) is uni-

formly distributed. By considering only the case that f(z′) = fapprox(z′), we lower bound (18) by the
following term:

Prz←${0,1}m,z′←$f−1
approx(fapprox(z),1m)[f(z′) = f(z) ∧ f(z) = fapprox(z)]

≥Prz←${0,1}m,z′←$f−1
approx(fapprox(z),1m)[f(z′) = f(z) ∧ f(z) = fapprox(z) ∧ f(z′) = fapprox(z′)]

= Prz←${0,1}m,z′←$f−1
approx(fapprox(z),1m)[f(z) = fapprox(z) ∧ f(z′) = fapprox(z′)]

The last equation follows since, by definition of z′, it holds that fapprox(z′) = fapprox(z) and thus,
f(z) = fapprox(z) and f(z′) = fapprox(z′) imply that also f(z) = f(z′). Using a union bound, we obtain
Lemma 44:

Prz←${0,1}m,z′←$f−1
approx(fapprox(z),1m)[f(z) = fapprox(z) ∧ f(z′) = fapprox(z′)]

≥1− 4ν(m) (19)

Figure 8 describes our inverter A that inverts fapprox uniformly provided that it returns an answer
at all. We now show that for all y ∈ Im(f), A returns a uniformly random pre-image of y with
probability at least 1−

( 7
8
)log3(m).

Lemma 45 (Approximate Inversion II). Let f be an oracle function with oracles O = (Chk, Pspace)
and let fapprox be as in Definition 39. For all W0, B0, y ∈ Im(f) and z′ ∈ {0, 1}m, it holds that

PrH←$H,r←${0,1}101m

[
z′ = AChk[W0,B0],Inv[W0,B0,H0],Pspace(y)

]
≥
(

1− 7
8

log3(m) − 2−100m
)
· Pr
[
z′ = f−1,Chk[W0,B0],Pspace

approx (y)
]

(20)

where, by abuse of notation, we denote by f
−1,Chk[W0,B0],Pspace
approx (y) a uniformly random sample from

said set.

Proof. For each y, sampling via z ← unif(Z, r) might make y more or less likely than it should be by
at most 2−100m, and each of the for loops succeeds with probability at least 1

8 by Claim 1 since H is a
pairwise independent hash-function distribution. We can thus prove Inequality 20 in two game-hops,
bounding the difference each time, see Figure 10.

Putting Lemma 44 and Lemma 45 together, we obtain the following Lemma.

Lemma 46 (A inverts quite uniformly).

Pr(W,B,H)←$T ,z←${0,1}m

[
fO(AO,Inv[W0,B0,H0](fO(z))) = fO(z)

]
≥ (1− 7

8
log3(m) − 2−100m)(1− 4ν),

where O = (Chk[W, B], Pspace).

Proof (Lemma 46). Throughout the following, O = (Chk[W, B], Pspace), O0 = (Chk[W0, B0], Pspace)
and

δfO0 (z′)=fO0 (z0) =
{

1 if fO0(z′) = fO0(z0)
0 else.

Pr(W,B,H)←$T ,z←${0,1}m

[
fO(AO,Inv[W,B,H](fO(z))) = fO(z)

]
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=
∑

W0,B0,z0

2−m Pr[(W0, B0, ∗) = (W, B, H)←$ T ]·

PrH←$H,r←${0,1}101m

[
fO0(AO0,Inv[W0,B0,H](fO0(z0))) = fO0(z0)

]
=

∑
W0,B0,z0

2−m Pr[(W0, B0, ∗) = (W, B, H)←$ T ]·

∑
z′

PrH←$H,r←${0,1}101m

[
z′ = AO0,Inv[W0,B0,H](fO0(z0))

]
· δfO0 (z′)=fO0 (z0)

Lem. 45
≥

∑
W0,B0,z0

2−m Pr[(W0, B0, ∗) = (W, B, H)←$ T ]·

∑
z′

(
1− 7

8
log3(m) − 2−100m

)
Pr
[
z′ = f−1,O

approx(AO,Inv[W0,B0,H](fO(z0)))
]
· δfO0 (z′)=fO0 (z0)

=
(

1− 7
8

log3(m) − 2−100m
) ∑

W0,B0,z0

2−m Pr[(W0, B0, ∗) = (W, B, H)←$ T ]

· Pr
[
fO(f−1,O

approx((fO(z0)))) = fO(z0)
]

Lem. 44
≥ (1− 7

8
log3(m) − 2−100m)(1− 4ν)

≥1− 1/m2.5.

Exp1(y)

(W, B, H)←$ T
m← input-size(f)
fs ← shave(f)
O′ ← (Chk[W, B], Pspace)

S := {p : ∃z ∈ {0, 1}m : p = PO
fs

(z)∧

fO′
s (z) = y ∧ PO

fs
(z) is light}

i← max
i∈N

2i−1 ≤ |S| ≤ 2i

for i from 1 to log3(m)
fm,i ← encode(fm, i)
h← H[i, fm,i, y]
if ∃!p ∈ S s. t.

bs← bitstr|f |(p)

h(bs) = 0i then

p← PO
fs

(z)
r ←$ {0, 1}101m

Z := {z ∈ {0, 1}m : fChk[p]
approx (z) = y

∧ pathChk[p]
fapprox

(z) = p}

z ← unif(Z, r)
return z

return ⊥

Chk[p](x, w)

if (x, w, b) ∈ p :
return b

return ⊥

Exp2(y)

(W, B, H)←$ T
m← input-size(f)
fs ← shave(f)
O′ ← (Chk[W, B], Pspace)

S := {p : ∃z ∈ {0, 1}m : p = PO
fs

(z)∧

fO′
s (z) = y ∧ PO

fs
(z) is light}

i← max
i∈N

2i−1 ≤ |S| ≤ 2i

for i from 1 to log3(m)
fm,i ← encode(fm, i)
h← H[i, fm,i, y]
if ∃!p ∈ S s. t.

bs← bitstr|f |(p)

h(bs) = 0i then

p← PO
fs

(z)

Z := {z ∈ {0, 1}m : fChk[p]
approx (z) = y

∧ pathChk[p]
fapprox

(z) = p}

z ←$ Z

return z

return ⊥

Chk[p](x, w)

if (x, w, b) ∈ p :
return b

return ⊥

Exp3(y)

(W, B, H)←$ T
m← input-size(f)
fs ← shave(f)
O′ ← (Chk[W, B], Pspace)

S := {p : ∃z ∈ {0, 1}m : p = PO
fs

(z)∧

fO′
s (z) = y ∧ PO

fs
(z) is light}

i← max
i∈N

2i−1 ≤ |S| ≤ 2i

p←$ S

if p = ⊥

return ⊥

Z := {z ∈ {0, 1}m : fChk[p]
approx (z) = y

∧ pathChk[p]
fapprox

(z) = p}

z ←$ Z

return z

Chk[p](x, w)

if (x, w, b) ∈ p :
return b

return ⊥

unf. sampl. correctness 2−100m univ. hashing loss ( 7
8 )log3 m

Fig. 10: Proof of Lemma 45
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