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Abstract

Secure software leasing (SSL) is a quantum cryptographic primitive that enables an authority
to lease software to a user by encoding it into a quantum state. SSL prevents users from generating
authenticated pirated copies of leased software, where authenticated copies indicate those run on
legitimate platforms. Although SSL is a relaxed variant of quantum copy protection that prevents
users from generating any copy of leased softwares, it is still meaningful and attractive. Recently,
Ananth and La Placa proposed the first SSL scheme. It satisfies a strong security notion called
infinite-term security. On the other hand, it has a drawback that it is based on public key quantum
money, which is not instantiated with standard cryptographic assumptions so far. Moreover, their
scheme only supports a subclass of evasive functions.

In this work, we present SSL schemes that satisfy a security notion called finite-term security
based on the learning with errors assumption (LWE). Finite-term security is weaker than infinite-term
security, but it still provides a reasonable security guarantee. Specifically, our contributions consist of
the following.

• We construct a finite-term secure SSL scheme for pseudorandom functions from the LWE
assumption against quantum adversaries.

• We construct a finite-term secure SSL scheme for a subclass of evasive functions from the LWE
assumption against sub-exponential quantum adversaries.

• We construct finite-term secure SSL schemes for the functionalities above with classical
communication from the LWE assumption against (sub-exponential) quantum adversaries.

SSL with classical communication means that entities exchange only classical information though
they run quantum computation locally.

Our crucial tool is two-tier quantum lightning, which is introduced in this work and a relaxed
version of quantum lighting. In two-tier quantum lightning schemes, we have a public verification
algorithm called semi-verification and a private verification algorithm called full-verification. An
adversary cannot generate possibly entangled two quantum states whose serial numbers are the same
such that one passes the semi-verification, and the other also passes the full-verification. We show
that we can construct a two-tier quantum lightning scheme from the LWE assumption.
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1 Introduction

1.1 Background

Secure software leasing (SSL) introduced by Ananth and La Placa [AL21] is a quantum cryptographic
primitive that enables an authority (the lessor) to lease software1 to a user (the lessee) by encoding it into
a quantum state. SSL prevents users from generating authenticated pirated copies of leased software,
where authenticated copies indicate those run on the legitimate platforms.

More specifically, an SSL is the following protocol between the lessor and lessee. The lessor generates
a secret key sk used to create a leased version of a circuit C. The leased version is a quantum state and
denoted by sft C. The lessor leases the functionality of C to the lessee by providing sft C. The lessee can
compute C(x) for any input x by using sft C. That is, there exists a quantum algorithm Run and it holds
that Run(sft C, x) = C(x) for any x. The lessor can validate the states returned from the user by using the
secret key. That is, there exists a quantum algorithm Check and Check (sk, sft C) outputs whether sft C is a
valid leased state or not. Since users can create as many copies of classical information as they want, we
need the power of quantum computing to achieve SSL.

Ananth and La Placa introduced two security notions for SSL, that is, infinite-term security and finite
term security. Infinite-term security guarantees that given a single leased state of a circuit C, adversaries
cannot generate possibly entangled bipartite states sft ∗0 and sft ∗1 both of which can be used to compute C
with Run . Finite-term security guarantees that adversaries cannot generate possibly entangled bipartite
states sft ∗0 and sft ∗1 such that Check (sk, sft ∗0) = > (returning a valid leased state) and Run(sft ∗1 , x) = C(x)
(adversary still can compute C by using sft ∗1) in an SSL scheme. Roughly speaking, finite-term security
guarantees that adversaries cannot compute C(x) via Run after they return the valid leased state to the
lessor.

SSL and copy-protection. Quantum software copy-protection [Aar09] is a closely related notion to
SSL. Quantum copy-protection guarantees the following. When adversaries are given a copy-protected
circuit for computing C, they cannot create two (possibly entangled) quantum states, both of which
can be used to compute C. Here, adversaries are not required to output a quantum state that follows
an honest evaluation algorithm Run (they can use an arbitrary evaluation algorithm Run ′). Software
copy-protection can be crucial technology to prevent software piracy since users lose software if they
re-distribute it. Quantum copy-protection for some circuits class is also known to yield public-key
quantum money [ALZ20].

Although SSL is weaker than copy-protection, SSL (with even finite-term security) has useful
applications such as limited-time use software, recalling buggy software, preventing drain of propriety
software from malicious employees [AL21]. SSL makes software distribution more controllable. In
addition, achieving SSL could be a crucial stepping stone to achieve quantum software copy-protection.

One motivative example of (finite-term secure) SSL is a video game platform. A user can borrow a
video game title from a company and enjoy it on an appropriate platform (like Xbox of Microsoft). After
the user returned the title, s/he cannot enjoy it on the appropriate platform. The title is not guaranteed to
work on another (irregular) platform. Thus, SSL is a useful tool in this use case.

(Im)possibility of SSL and copy-protection. Although SSL and software copy-protection have many
useful applications, there are few positive results on them. Aaronson observed that learnable functions
could not be copy-protected [Aar09]. He also constructed a copy-protection scheme for arbitrary
unlearnable Boolean functions relative to a quantum oracle and two heuristic copy-protection schemes
for point functions in the standard model [Aar09]. Aaronson, Liu, and Zhang constructed a quantum
copy-protection scheme for unlearnable functions relative to classical oracles [ALZ20]. There is no secure

1Software is modeled as (Boolean) circuits or functions.
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quantum copy-protection scheme with a reduction-based proof without classical/quantum oracles. We do
not know how to implement such oracles under cryptographic assumptions in the previous works.

Ananth and La Placa constructed an infinite-term secure SSL scheme for a sub-class of evasive
functions in the common reference string (CRS)model by using public-key quantummoney [AC12, Zha21]
and the learning with errors (LWE) assumption [AL21]. Evasive functions is a class of functions such
that it is hard to find an accepting input (a function outputs 1 for this input) only given black-box access to
a function. They also prove that there exists an unlearnable function class such that it is impossible to
achieve an SSL scheme for that function class even in the CRS model. The SSL scheme by Ananth and
La Placa is the only one positive result without classical/quantum oracles on this topic before our work.2

Motivation. There are many fascinating questions about SSL/copy-protection. We focus on the
following three questions in this study.

The first one is whether we can achieve SSL/copy-protection from standard assumptions. Avoiding
strong assumptions is desirable in cryptography. It is not known whether public-key quantum money is
possible under standard assumptions. Zhandry proves that post-quantum indistinguishability obfuscation
(IO) [BGI+12] implies public-key quantum money [Zha21]. Several works [CHVW19, AP20, BGMZ18,
GP21, BDGM20,WW21] presented candidate constructions of post-quantum secure IO by using lattices.3
There are several other candidate constructions of public key quantum money [FGH+12, Zha21].
However, none of them has a reduction to standard assumptions.

The second question is whether we can achieve SSL/copy-protection only with classical communication
and local quantum computing as in the case of quantum money [RS19, AGKZ20]. Even if quantum
computers are available, communicating only classical data is much easier than communicating quantum
data over quantum channels. Communication infrastructure might not be updated to support quantum
data soon, even after practical quantum computers are commonly used.

The third question is whether we can achieve SSL/copy-protection beyond for evasive functions. The
function class is quite limited. For practical software protection, it is crucial to push the function class’s
boundaries where we can achieve SSL/copy-protection.

1.2 Our Results

We constructed finite-term secure SSL schemes from standard assumptions in this study. We prove the
following theorems.

Theorem 1.1 (informal). Assuming the hardness of the LWE problem against polynomial time quantum
adversaries, there is a finite-term secure SSL scheme and SSL scheme with classical communication for
pseudorandom functions (PRFs) in the CRS model.

Theorem 1.2 (informal). Assuming the hardness of the LWE problem against sub-exponential time quan-
tum adversaries, there is a finite-term secure SSL scheme and SSL scheme with classical communication
for a subclass of evasive functions in the CRS model.

The notable features of our SSL schemes are the following.

• Constructed via a clean and unified framework.

• Secure under standard assumptions (the LWE assumption).

2We will refer to a few concurrent works in Section 1.4.
3Their constructions need heuristic assumptions related to randomness leakage and circular security [BDGM20, GP21], a

heuristic construction of oblivious LWE sampling [WW21], a heuristic construction of noisy linear functional encryption [AP20],
or an idealized model [BGMZ18, CHVW19]. Some heuristic assumptions [GP21, WW21, BDGM20] were found to be
false [HJL21].
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• Can be achieved only with classical communication.

• Supporting functions other than a sub-class of evasive functions.

The crucial tools in our framework are two-tier quantum lighting, which we introduce in this study,
and (a relaxed version of) software watermarking [BGI+12, CHN+18]. Two-tier quantum lighting is a
weaker variant of quantum lighting [Zha21]. Interestingly, two-tier quantum lightning can be instantiated
with standard assumptions, while quantum lightning is not so far. Another exciting feature is that software
watermarking can be a building block of SSL. Our study gives a new application of software watermarking.
By using these tools, our SSL constructions are modular, and we obtain a clean perspective to achieve
SSL. Our abstracted construction ensures that a relaxed watermarking scheme for any circuit class can be
converted to SSL for the same class assuming the existence of two-tier QL. As a bonus, our schemes are
based on standard assumptions (i.e., do not rely on public-key quantum money). However, our schemes are
finite-term secure while the scheme by Ananth and La Placa [AL21] is infinite-term secure. See Section 1.5
for an overview of our technique, (two-tier) quantum lightning, and software watermarking.

We can achieve SSL schemes with classical communication, where entities send only classical
information to other entities (though they generate quantum states for their local computation). Our
schemes are the first SSL schemes with classical communication.

We present the first SSL schemes for function classes other than evasive functions. Our schemes open
the possibilities of software copy-protection for broader functionalities in the standard model.

1.3 Related Work

Amos, Georgiou, Kiayias, and Zhandry presented many hybrid quantum cryptographic protocols, where
we exchange only classical information and local quantum operation can yield advantages [AGKZ20].
Their constructions are secure relative to classical oracles. Radian and Sattath presented the notion
of semi-quantum money, where both minting and verification protocols are interactive with classical
communication [RS19]. Georgiou andZhandry presented the notion of unclonable decryption keys [GZ20],
which can be seen as quantum copy-protection for specific cryptographic tasks.

1.4 Concurrent Work

Aaronson et al. [ALZ20] significantly revised their paper in October 2020 and added new results in
the revised version with additional authors [ALL+21]. They use a similar idea to ours to achieve their
additional results. They achieved software copy-detection, which is a version of finite-term secure SSL,
from public key quantum money and watermarking. They defined their copy detection so that it can
provide natural security guarantee even if we consider leasing decryption or signing functionalities of
cryptographic primitives. As previously discussed in the context of watermarking [GKM+19], when
considering those functionalities, we need to take a wider class of adversaries into consideration than
considering just functions including PRF. In fact, the reason why we focus only on PRF functionalities
among cryptographic functionalities is that there was no definition of SSL that can handle decryption or
signing functionalities. We believe that by combining the work by Aaronson et al. [ALL+21] and our
work, we can realize finite-term secure SSL for decryption and signing functionalities based on the LWE
assumption under a reasonable definition.

Coladangelo, Majenz, and Poremba [CMP20] realized finite-term secure SSL for the same sub-class
of evasive functions as Ananth and La Placa [AL21] using the quantum random oracle. Based on their
work, Broadbent, Jeffery, Lord, Podder, and Sundaram [BJL+21] showed that finite-term secure SSL for
the class can be realized without any assumption. We note that the definition of SSL used in these two
works is different from the definition by Ananth and La Placa that we basically follow in this work. Their
definition has a nice property that their security notion captures any form of pirated copies rather than
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just authorized copies. On the other hand, in their definition, not only the security notion, but also the
correctness notion is parameterized by distributions on inputs to functions. The security and correctness
of the SSL schemes proposed in those works hold with respect to a specific distribution.

The advantage of our results over the above concurrent results is that we achieve SSL for functions
beyond evasive functions, that is, PRF under standard lattice assumptions. Moreover, our work is the first
one that considers classical communication in the context of SSL.

1.5 Technical Overview

Definition of SSL We review the definition of SSL given in [AL21]. In this paper, we use a calligraphic
font to represent quantum algorithms and calligraphic font or bracket notation to represent quantum states
following the notation of [AGKZ20].

Formally, an SSL for a function class C consists of the following algorithms.

Setup(1λ)→ crs: This is a setup algorithm that generates a common reference string.

Gen(crs)→ ssl.sk: This is an algorithm supposed to be run by the lessor that generates lessor’s secret
key ssl.sk. The key is used to generate a leased software and verify the validity of a software
returned by the lessee.

Lessor (ssl.sk, C)→ sft C: This is an algorithm supposed to be run by the lessor that generates a leased
software sft C that computes a circuit C.

Run(crs, sft C, x)→ C(x): This is an algorithm supposed to be run by the lessee to evaluate the software.
As correctness, we require that the output should be equal to C(x) with overwhelming probability
if sft C is honestly generated.4

Check (ssl.sk, sft C)→ >/⊥: This is an algorithm supposed to be run by the lessor to check the validity
of the software sft C returned by the lessee. As correctness, we require that this algorithm returns >
(i.e., it accepts) with overwhelming probability if sft C is an honestly generated one.

In this work, we focus on finite-term secure SSL. Roughly speaking, the finite-term security of
SSL requires that no quantum polynomial time (QPT) adversary given sft C (for randomly chosen C
according to a certain distribution) can generate (possibly entangled) quantum states sft 0 and sft 1 such
that Check (ssl.sk, sft 0) → > and Run(crs, sft 1, ·) computes C with non-negligible probability. Thus,
intuitively, the finite-term security ensures that finite-term security guarantees that adversaries cannot
compute C(x) via Run after they return the valid leased state to the lessor.

Construction of SSL in [AL21] We review the construction of SSL in [AL21]. Their construction is
based on the following three building blocks:

Publicly verifiable unclonable state generator. This enables us to generate a pair (pk, sk) of public and
secret keys in such a way that the following conditions are satisfied:

1. Given sk, we can efficiently generate a quantum state |ψpk〉.
2. Givenpk, we can efficiently implement a projectivemeasurement {|ψpk〉 〈ψpk| , I−|ψpk〉 〈ψpk|}.
3. Given pk and |ψpk〉, no QPT algorithm can generate |ψpk〉⊗2 with non-negligible probability.

Aaronson and Christiano [AC12] constructed a publicly verifiable unclonable state generator (under
the name “quantum money mini-scheme”) relative to a classical oracle, and Zhandry [Zha21] gave
an instantiation in the standard model assuming post-quantum IO.

4In the actual syntax, it also outputs a software, which is negligibly close to a software given as input.
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Input-hiding obfuscator. This converts a circuit C ∈ C (that is taken from a certain distribution) to a
functionally equivalent obfuscated circuit C̃ in such a way that no QPT algorithm given C̃ can find
accepting point i.e., x such that C(x) = 1.
Ananth and La Placa [AL21] constructed an input-hiding obfuscator for a function class called
compute-and-compare circuits under the LWE assumption.5

Simulation-extractable non-interactive zero-knowledge. A non-interactive zero-knowledge (NIZK) en-
ables a prover to non-interactively prove an NP statement without revealing anything beyond the
truth of the statement assuming a common reference string (CRS) generated by a trusted third
party. A simulation-extractable NIZK (seNIZK) additionally enables us to extract a witness from
an adversary that is given arbitrarily many proofs generated by a zero-knowledge simulator and
generates a new valid proof. This property especially ensures that an seNIZK is an argument of
knowledge where a prover can prove not only truth of a statement but also that it knows a witness
for the statement.
Ananth and La Placa [AL21] showed that an seNIZK can be constructed from any (non-simulation-
extractable) NIZK andCCA secure PKE,which can be instantiated under the LWEassumption [PS19,
PW11].

Then their construction of SSL for C is described as follows:

Setup(1λ): This just generates and outputs a CRS crs of seNIZK.

Gen(crs): This generates a pair (pk, sk) of public and secret keys of the publicly verifiable unclonable
state generator and outputs ssl.sk := (pk, sk).

Lessor (ssl.sk = (pk, sk), C): This obfuscates C to generate an obfuscated circuit C̃ by the input-hiding
obfuscator and generates an seNIZK proof π for a statement (pk, C̃) that it knows an accepting
input x of C̃.6 Then it outputs a leased software sft C := (|ψpk〉 , pk, C̃, π). We call |ψpk〉 and
(pk, C̃, π) as quantum and classical parts of sft C, respectively.

Run(crs, sft C, x): This immediately returns ⊥ if π does not pass the verification of seNIZK. It performs
a projective measurement {|ψpk〉 〈ψpk| , I − |ψpk〉 〈ψpk|} on the quantum part of sft C by using pk
and if the latter projection was applied, then it returns ⊥. Otherwise, it outputs C̃(x).

Check (ssl.sk, sft C): It performs a projective measurement {|ψpk〉 〈ψpk| , I− |ψpk〉 〈ψpk|} on the quantum
part of sft C and returns > if the former projection was applied and ⊥ otherwise.

Intuitively, the finite-term security of the above SSL can be proven as follows.7 Suppose that
there exists an adversary that is given sft C = (|ψpk〉 , pk, C̃, π) and generates sft 0 = (psi0, pk0, C̃0, π0)

and sft 1 = (psi0, pk1, C̃1, π1) such that Check (ssl.sk, sft 0) → > and Run(crs, sft 1, ·) computes C with
non-negligible probability. Then we consider the following two cases:

Case 1. pk1 = pk: In this case, if Run(crs, sft 1, ·) correctly computes C (and especially outputs a non-⊥
value), then the quantum part of sft 1 after the execution should be |ψpk〉 by the construction of

5A compute-and-compare circuit is specified by a circuit C and a target value α and outputs 1 on input x if and only if
C(x) = α.

6In the original construction in [AL21], seNIZK also proves that pk and C̃ was honestly generated. However, we found that
this is redundant, and essentially the same security proof works even if it only proves the knowledge of an accepting input of
C̃. We note that it is important to include pk in the statement to bind a proof to pk even though the knowledge proven by the
seNIZK has nothing to do with pk. In fact, this observation is essential to give our simplified construction of SSL.

7 Note that Ananth and La Placa proved that the construction in fact satisfies infinite-term security that is stronger than
finite-term security. For ease of exposition of our ideas, we explain why the construction satisfies finite-term security.
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Run . On the other hand, if we have Check (ssl.sk, sft 0)→ >, then the quantum part of sft 0 after the
verification should also be |ψpk〉 by the definition of the verification. Therefore, they can happen
simultaneously only with a negligible probability due to the unclonability of |ψpk〉.

Case 2. pk1 6= pk: In this case, if Run(crs, sft 1, ·) correctly computes C, then π1 is a valid proof for a
statement (pk1, C̃1) and C̃1 is functionally equivalent to C. Since we have (pk1, C̃1) 6= (pk, C̃),
by the simulation extractability of seNIZK, even if we replace π with a simulated proof, we can
extract a witness for (pk1, C̃1), which contains an accepting input for C. Since simulation of π can
be done only from the statement (pk, C̃), this contradicts security of the input-hiding obfuscator,
and thus this happens with a negligible probability.

In summary, an adversary cannot win with a non-negligible probability in either case, which means that
the SSL is finite-term secure.

Our idea for weakening assumptions. Unfortunately, their construction is based on a very strong
assumption of post-quantum IO, which is needed to construct a publicly verifiable unclonable state
generator. Indeed, a publicly verifiable unclonable state generator implies public key quantum money by
combining it with digital signatures [AC12]. Therefore, constructing a publicly verifiable unclonable
state generator is as difficult as constructing a public key quantum money scheme, which is not known to
exist under standard assumptions.

Our main observation is that we actually do not need the full power of public key quantum money
for the above construction of SSL if we require only finite-term security since Check can take a secret
key, and thus it can run a private verification algorithm. Then, does secret key quantum money suffice?
Unfortunately, the answer is no. The reason is that even though Check can take a secret key, Run cannot
since the secret key should be hidden from the lessee. Based on this observation, we can see that what
we actually need is something between public key quantum money and secret key quantum money. We
formalize this as two-tier quantum lightning, which is a significant relaxation of quantum lightning
introduced by Zhandry [Zha21].

Two-tier quantum lightning. Roughly speaking, quantum lightning (QL) is a special type of public
key quantum money where anyone can generate a money state. In QL, a public key pk is published
by a setup algorithm and given pk, anyone can efficiently generate a serial number snum along with a
corresponding quantum state called bolt, which we denote by bolt . We call this a bolt generation algorithm.
As correctness, we require that given pk, snum, and any quantum state bolt , anyone can verify if bolt is a
valid state corresponding to the serial number snum. Especially, if bolt is an honestly generated bolt, then
the verification accepts with overwhelming probability. On the other hand, as security, we require that no
QPT algorithm given pk can generate two (possibly entangled) quantum states bolt 0 and bolt 1 and a serial
number snum such that both states pass the verification w.r.t. the serial number snum with non-negligible
probability.

We introduce a weaker variant of QL which we call two-tier QL. In two-tier QL, a setup algorithm
generates both a public key pk and a secret key sk, and given pk, anyone can efficiently generate a serial
number snum along with a corresponding quantum state bolt similarly to the original quantum lightning.
The main difference from the original QL is that it has two types of verification: full-verification and
semi-verification. Full-verification uses a secret key sk while semi-verification only uses a public key pk.
As correctness, we require that an honestly generated bolt passes both verifications with overwhelming
probability. On the other hand, as security, we require that no QPT algorithm given pk can generate
two (possibly entangled) quantum states bolt 0 and bolt 1 and a serial number snum such that bolt 0 passes
the full-verification w.r.t. the serial number snum and bolt 1 passes the semi-verification w.r.t. the serial
number snum with non-negligible probability. We note that this does not prevent an adversary from
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generating two states that pass semi-verification. Thus, we cannot use the semi-verification algorithm as a
verification algorithm of the original QL.

We show that this two-tier verificationmechanism is a perfect fit for finite-term secure SSL. Specifically,
based on the observation that Check can take a secret key whereas Run cannot as explained in the previous
paragraph, we can use two-tier QL instead of publicly verifiable quantum state generators. This replacement
is a slight adaptation of the construction in [AL21] by implementing verification by Check and Run with
full- and semi-verification of two-tier QL, respectively. We omit the detailed construction since that is
mostly the same as that in [AL21] except that we use two-tier QL.

Constructions of two-tier quantum lightning. Although no known construction of the original QL is
based on a standard assumption, we give two two-tier QL schemes based on standard assumptions.

The first construction is based on the SIS assumption inspired by the recent work by Roberts and
Zhandry [RZ21]. The SIS assumption requires that no QPT algorithm given a matrix A ← Zn×m

q
can find a short s ∈ Zm such that As = 0 mod q. Using this assumption, a natural approach to
construct QL is as follows:8 Given a public key A, a bolt generation algorithm generates a bolt of the
form ∑x:Ax=y and x is “short” αx |x〉 and a corresponding serial number y. This can be done by generating a
superposition of short vectors in Zm, multiplying by A in superposition to write the result in an additional
register, and measuring it. The SIS assumption ensures that no QPT algorithm can generate two copies of
a well-formed bolt for the same serial number with non-negligible probability. If it is possible, one can
break the SIS assumption by measuring both bolts and returns the difference between them as a solution.
However, the fundamental problem is that we do not know how to publicly verify that a given state is a
well-formed bolt for a given serial number. Roughly speaking, Roberts and Zhandry showed that such
verification is possible given a trapdoor behind the matrix A, which yields a secretly verifiable version
of QL (which is formalized as franchised quantum money in [RZ21]). We use this verification as the
full-verification of our two-tier QL. On the other hand, we define a semi-verification algorithm as an
algorithm that just checks that a given state is a superposition of short preimages of snum = y regardless
of whether it is a well-formed superposition or not. This can be done by multiplying A in superposition,
and especially can be done publicly. Though a state that passes the semi-verification may collapse to a
classical state, a state that passes the full-verification should not. Therefore, if we measure states that pass
full- and semi- verification w.r.t. the same serial number, then the measurement outcomes are different
with non-negligible probability. Thus the difference between them gives a solution to the SIS problem.
This implies that this construction of two-tier QL satisfies the security assuming the SIS assumption.

The second construction is based on the LWE assumption. The design strategy is based on a
similar idea to the proof of quantumness by Brakerski et al. [BCM+18]. We especially use a family
of noisy trapdoor claw-free permutations constructed based on the LWE assumption in [BCM+18].
For simplicity, we describe the construction based on a family of clean (non-noisy) trapdoor claw-free
permutations in this overview. A family of trapdoor claw-free permutations enables us to generate a
function f : {0, 1} × {0, 1}n → {0, 1}n such that both f (0, ·) and f (1, ·) are permutations along with a
trapdoor. As claw-free property, we require that no QPT algorithm given a description of f can generate
x0, x1 ∈ {0, 1}n such that f (0, x0) = f (1, x1) with non-negligible probability. On the other hand, if
one is given a trapdoor, then one can efficiently computes x0, x1 such that f (0, x0) = f (1, x1) = y for
any y ∈ {0, 1}n. Based on this, we construct two-tier QL as follows: The setup algorithm generates
f and its trapdoor td, and sets a public key as the function f and secret key as the trapdoor td. A
bolt generation algorithm first prepares a uniform superposition ∑b∈{0,1},x∈{0,1}n |b〉 |x〉, applies f
in superposition to generate ∑b∈{0,1},x∈{0,1}n |b〉 |x〉 | f (b, x)〉, measures the third register to obtain
y ∈ {0, 1}n along with a collapsed state 1√

2
(|0〉 |x0〉+ |1〉 |x1〉) where f (0, x0) = f (1, x1) = y.

Then it outputs a serial number snum := y and a bolt bolt := 1√
2
(|0〉 |x0〉+ |1〉 |x1〉). The full-

8This approach was also discussed in the introduction of [Zha21].
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verification algorithm given a trapdoor td, a serial number snum = y, and a (possibly malformed)
bolt bolt , computes x0, x1 such that f (0, x0) = f (1, x1) = y using the trapdoor, and checks if bolt
is 1√

2
(|0〉 |x0〉+ |1〉 |x1〉). More formally, it performs a projective measurement {Π, I −Π} where

Π := 1
2 (|0〉 |x0〉+ |1〉 |x1〉) (〈0| 〈x0|+ 〈1| 〈x1|) and accepts if Π is applied. The semi-verification

algorithm given f , snum = y and a (possibly malformed) bolt bolt just checks that bolt is a (not necessarily
uniform) superposition of (0, x0) and (1, x1) by applying f in superposition. Suppose that we are given
states bolt 0 and bolt 1 that pass the full- and semi-verification respectively w.r.t. the same serial number
snum = y with probability 1. Then after these verifications accept, if we measure bolt 0, then we get x0 or
x1 with equal probability and if we measure bolt 1, we get either of x0 and x1. Therefore, with probability
1/2, we obtain both x0 and x1, which contradicts the claw-free property. This argument can be extended
to show that the probability that bolt 0 and bolt 1 pass the full- and semi-verification respectively is at most
1/2 + negl(λ). By parallel repeating it many times, we can obtain two-tier QL.

Abstracted construction of SSL via watermarking. Besides weakening the required assumption, we
also give a slightly more abstracted SSL construction through the lens of watermarking. In general, a
watermarking scheme enables us to embed a mark into a program so that the mark cannot be removed or
modified without significantly changing the functionality. We observe that the classical part (pk, C̃, π) of
a leased software of [AL21] can be seen as a watermarked program of C where pk is regarded as a mark.
In this context, we only need to ensure that one cannot remove or modify the mark as long as one does not
change the program’s functionality when it is run on a legitimate evaluation algorithm similarly to the
security requirement for SSL. We call a watermarking with such a weaker security guarantee a relaxed
watermarking. With this abstraction along with the observation that two-tier QL suffices as already
explained, we give a generic construction of SSL for C based on two-tier QL and relaxed watermarking
for C. This construction is in our eyes simpler than that in [AL21].9 From this point of view, we can see
that [AL21] essentially constructed a relaxed watermarking for compute-and-compare circuits based on
seNIZK and input-hiding obfuscator for compute-and-compare circuits. We observe that an input-hiding
obfuscator for compute-and-compare circuits can be instantiated from any injective one-way function,
which yields a simpler construction of relaxed watermarking for compute-and-compare circuits without
explicitly using input-hiding obfuscators.

SSL for PRF. Our abstracted construction ensures that a relaxed watermarking scheme for any circuit
class can be converted to SSL for the same class assuming the existence of two-tier QL. Here, we sketch
our construction of a relaxed watermarking scheme for PRF. Let FK be a function that evaluates a PRF
with a key K. We assume that the PRF is a puncturable PRF. That is, one can generate a punctured
key Kx∗ for any input x∗ that can be used to evaluate FK on all inputs except for x∗ but FK(x∗) remains
pseudorandom even given Kx∗ . For generating a watermarked version of FK with a mark m, we generate
(Kx∗ , y∗ := FK(x∗)) for any fixed input x∗ and an seNIZK proof π for a statement (m, Kx∗ , y∗) that it
knows K. Then a watermarked program is set to be (m, Kx∗ , y∗, π). A legitimate evaluation algorithm
first checks if π is a valid proof, and if so evaluates FK by using Kx∗ and y∗, and returns ⊥ otherwise.
Roughly speaking, this construction satisfies the security of relaxed watermarking since if an adversary is
given (m, Kx∗ , y∗, π) can generate a program with a mark m′ 6= m that correctly computes FK on the
legitimate evaluation algorithm. The program should contain a new valid proof of seNIZK that is different
from π. By the simulation extractability, we can extract K by using such an adversary. Especially, this
enables us to compute K from (Kx∗ , y∗), which contradicts security of the puncturable PRF. 10

By plugging the above relaxed watermarking for PRF into our generic construction, we obtain SSL
for PRF. This would be impossible through the abstraction of [AL21] since input-hiding obfuscator can

9Strictly speaking, our construction additionally uses message authentication code (MAC).
10Strictly speaking, we need to assume the key-injectiveness for the PRF as defined in Definition 2.8.
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exist only for evasive functions, whereas PRF is not evasive.

SSL with classical communication. As a final contribution, we give a construction of finite-term
secure SSL where communication between the lessor and lessee is entirely classical. At a high level, the
only quantum component of our SSL is two-tier QL, which can be seen as a type of quantum money.
Thus we rely on techniques used for constructing semi-quantum money [RS19], which is a (secret key)
quantum money with classical communication. More details are explained below.

In the usage scenario of finite-term secure SSL, there are two parts where the lessor and lessee
communicate through a quantum channel. The first is when the lessor sends a software to the lessee. The
second is when the lessee returns the software to the lessor.

For removing the first quantum communication, we observe that the only quantum part of a software
is a bolt of two-tier QL in our construction, which can be generated publicly. Then, our idea is to let the
lessee generate the bolt by himself and only send the corresponding serial number to ask the lessor to
generate a classical part of a software while keeping the bolt on lessee’s side. This removes the quantum
communication at the cost of introducing an interaction. Though we let the lessor generate a bolt and a
serial number by himself, the security of SSL is not affected because the security of two-tier QL ensures
that an adversary cannot clone a bolt even if it is generated by himself.

For removing the second quantum communication, we assume an additional property for two-tier QL
called bolt-to-certificate capability, which was originally considered for (original) QL [CS20]. Intuitively,
this property enables us to convert a bolt to a classical certificate that certifies that the bolt was broken.
Moreover, it certifies that one cannot generate any state that passes the semi-verification. With this
property, when returning the software, instead of sending the software itself, it can convert the bolt to
a corresponding certificate and then send the classical certificate. Security is still maintained with this
modification since if the verification of the certification passes, then this ensures that the lessee no longer
possesses a state that passes the semi-verification, and thus Run always returns ⊥.

Finally, we show that our LWE-based two-tier QL can be modified to have the bolt-to-certificate
capability based on ideas taken from [BCM+18, RS19]. Recall that in the LWE-based construction, a
bolt is of the form 1√

2
(|0〉 |x0〉+ |1〉 |x1〉). If we apply a Hadamard transform to the state and then

measures both registers in the standard basis, then we obtain (m, d) such that m = d · (x0⊕ x1) as shown
in [BCM+18]. Moreover, Brakerski et al. [BCM+18] showed that the LWE-based trapdoor claw-free
permutation satisfies a nice property called adaptive hardcore property, which roughly means that no QPT
algorithm can output (m, d, x′, y) such that d 6= 0, m = d · (x0 ⊕ x1) and x′ ∈ {x0, x1} with probability
larger than 1/2 + negl(λ) where x0 and x1 are the unique values such that f (0, x0) = f (1, x1) = y.11
Since a quantum state that passes the semi-verification w.r.t. a serial number y is a (not necessarily
uniform) superposition of x0 and x1, we can see that (m, d) works as a certificate with a weaker security
guarantee that if one keeps a quantum state that passes the semi-verification, then one can generate
(m, d) that passes verification of m = d · (x0 ⊕ x1) with probability at most 1/2 + negl(λ). But this
still does not suffice for our purpose since one can generate a certificate that passes the verification
without discarding the original bolt with probability 1/2 by just randomly guessing (m, d). To reduce
this probability to negligible, we rely on an amplification theorem in [RS19] (which in turn is based on
[CHS05]). As a result, we can show that a parallel repetition to the above construction yields a two-tier
QL with the bolt-to-certificate capability.

2 Preliminaries

We review notations and definitions of cryptographic tools used in this paper.

11More precisely, they prove an analogous property for a family of noisy trapdoor claw-free permutations.
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2.1 Notations

In this paper, standard math or sans serif font stands for classical algorithms (e.g., C or Gen) and classical
variables (e.g., x or pk). Calligraphic font stands for quantum algorithms (e.g., Gen) and calligraphic font
and/or the bracket notation for (mixed) quantum states (e.g., sk or |ψ〉).

In this paper, for a finite set X and a distribution D, x ← X denotes selecting an element from X
uniformly at random, x ← D denotes sampling an element x according to D, and Let y ← A(x) and
y← A(x ) denote assigning to y the output of a probabilistic or deterministic algorithm A and a quantum
algorithm A on an input x and x , respectively. When we explicitly show that A uses randomness r, we
write y ← A(x; r). Let [`] denote the set of integers {1, · · · , `}, λ denote a security parameter, and
y := z denote that y is set, defined, or substituted by z. PPT and QPT algorithms stand for probabilistic
polynomial time algorithms and polynomial time quantum algorithms, respectively. Let negl denote a
negligible function.

Let X be a random variable over a set S. The min-entropy of X, denoted by H∞(X), is defined
byH∞(X) := − log2 maxx∈S Pr[X = x] .The conditional min-entropy of X conditioned on a correlated
variableY, denoted byH∞(X|Y), is defined asH∞(X|Y) := − log2

(
Ey←Y [maxx∈S Pr[X = x|Y = y]]

)
.

LetH denote a finite-dimensional Hilbert space. For an operator X onH, let ‖X‖ denote the operator
norm of X, and ‖X‖tr := 1

2‖X‖1 = 1
2

√
XX† for the trace norm.

2.2 Distributions and Distance

• D: a distribution over a finite domain X.

• f : density on X. That is, a function f : X → [0, 1] such that ∑x∈X f (x) = 1.

• DX: the set of all densities on X.

• For any f ∈ DX, Supp( f ) := {x ∈ X | f (x) > 0}.

• For two densities f0 and f1 over the same finite domain X, the Hellinger distance between f0 and f1
is

H2( f0, f1) := 1− ∑
x∈X

√
f0(x) f1(x).

• For density matrices X , Y , the trace distance ‖X − Y ‖tr is equal to

1
2

Tr(
√
(X − Y )2).

The following lemma relates Hellinger distance and the trace distance of superpositions.

Lemma 2.1. Let X be a finite set, f0, f1 ∈ DX, and

|ψb〉 := ∑
x∈X

√
fb(x) |x〉

for b ∈ {0, 1}. It holds that

‖|ψ0〉 〈ψ0| − |ψ1〉 〈ψ1|‖tr =
√

1− (1−H2( f0, f1))2.
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2.3 Lattices

Definition 2.2 (Learning with Errors). Let n, m, q ∈N be integer functions of the security parameter
λ. Let χ = χ(λ) be a error distribution over Z. The LWE problem LWEn,m,q,χ is to distinguish the
following two distributions.

D0 := {(A, As + e) | A← Zn×m
q , s← Zn

q , e← χm} and D1 := {(A, u) | A← Zn×m
q , u← Zm

q }.

When we say we assume the quantum hardness of the LWE problem, we assume that for any QPT
adversary A , it holds that

|Pr[A(D0) = 1]− Pr[A(D1) = 1]| ≤ negl(λ).

Definition 2.3 (Short Integer Solution). Let n, m, q ∈N be integer functions of the security parameter
λ. The SIS problem SISn,m,q,β is as follows. Given A ← Zn×m

q and a positive real β, find a non-zero
vector s ∈ Zm such that As = 0 mod q and ‖s‖ ≤ β.

When we say we assume the quantum hardness of the SIS problem, we assume that for any QPT
adversary A , it holds that

Pr
[

As = 0 mod q ∧ ‖s‖ ≤ β | A← Zn×m
q , s← A(A, β)

]
≤ negl(λ).

2.4 One-Way Functions

We introduce the definition of a family of one-way functions (OWF) for high min-entropy sources.

Definition 2.4 (OWF for High Min-Entropy Sources). Let Fow = { f : Dowf → Rowf} be a family of
efficiently computable deterministic functions. Let γ(λ) be a function and D a distribution D = {Dλ}λ,
where (x, z)← Dλ outputs x ∈ Dowf and some auxiliary information z such that H∞(x|z) ≥ α(λ). We
say that Fow is a family of OWF for for α-sources if for all QPT adversaries A , we have

Pr

 f (x′) = y

∣∣∣∣∣∣
f ← Fow

(x, z)← Dλ

x′ ← A(1λ, f , z, f (x))

 ≤ negl(λ).

Alwen, Krenn, Pietrzak, and Wichs [AKPW13] prove that we can achieve deterministic encryption
secure for any λη min-entropy source for any η > 0 under the LWE assumption. Such deterministic
encryption implies a family of injective OWF for λη-sources. This is the case when we consider QPT
adversaries. Formally, we have the following theorem.

Theorem 2.5. Let η > 0 be any constant. Assuming the quantum hardness of the LWE problem, there
exists a post-quantum injective OWF family for λη-sources.

2.5 Pseudorandom Functions and Related Notions

We introduce the definitions of pseudorandom functions (PRF) and puncturable PRF.

Definition 2.6 (Pseudorandom Functions). For sets K, {0, 1}n, and {0, 1}m, let {FK(·) : {0, 1}n →
{0, 1}m | K ∈ K} be a family of polynomially computable functions. We say that F is pseudorandom if
for any QPT adversary A , it holds that

Advprf
F,A(λ) = |Pr

[
AFK(·)(1λ) = 1 : K← K

]
− Pr

[
AR(·)(1λ) = 1 : R← U

]
| = negl(λ) ,

where U is the set of all functions from {0, 1}n to {0, 1}m.
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Definition 2.7 (Puncturable PRF). For sets {0, 1}n and {0, 1}m, a puncturable PRF PPRF whose key
space is K consists of a tuple of algorithms (PRF.Eval, Puncture, PRF.pEval) that satisfies the following
two conditions.

Functionality preserving under puncturing: For all polynomial size subset {xi}i∈[k] of {0, 1}n, all
x ∈ {0, 1}n \ {xi}i∈[k], and all K ∈ K, we have PRF.Eval(K, x) = PRF.pEval(K∗, x), where
K∗ ← Puncture(K, {xi}i∈[k]).

Pseudorandomness at punctured points: For all polynomial size subset {xi}i∈[k] of {0, 1}n, and any
QPT adversary A , it holds that∣∣∣Pr

[
A(K∗, {PRF.Eval(K, xi)}i∈[k]) = 1

]
− Pr

[
A(K∗,U k) = 1

]∣∣∣ = negl(λ) ,

where K ← K, K∗ ← Puncture(K, {xi}i∈[k]), and U denotes the uniform distribution over
{0, 1}m.

We recall the notion of key-injectiveness for puncturable PRF [CHN+18].

Definition 2.8 (Key-Injectiveness). We say that a puncturable PRF PPRF is key-injective if we have

Pr
K←K

[∃x ∈ {0, 1}n, K′ ∈ K s.t. K 6= K′ ∧ PRF.Eval(K, x) = PRF.Eval(K′, x)] ≤ negl(λ).

We can realize puncturable PRF based on any one-way function. Moreover, even if we require
key-injectiveness, we can realize it under the LWE assumption, as shown by Cohen et al. [CHN+18].
This is the case when we consider QPT adversaries. Formally, we have the following theorem.

Theorem 2.9. There exists a key-injective puncturable PRF secure against QPT adversaries assuming
the quantum hardness of the LWE problem.

2.6 One-Time Message Authentication Code

We introduce the definition of one-time message authentication code (OT-MAC).

Definition 2.10 (OT-MAC). An OT-MAC MAC is a three tuple (MAC.Gen, MAC.Tag, MAC.Vrfy) of
PPT algorithms. Below, let Dmac be the domain of MAC.

• MAC.Gen(1λ) : Given a security parameter 1λ, outputs a key s.

• MAC.Tag(s, m) : Given a key s and a message m ∈ Dmac, outputs tag.

• MAC.Vrfy(s, m, tag) : Given a key s, message m ∈ Dmac, and tag, outputs > or ⊥.

We require the following properties.

Correctness: For everym ∈ Dmac and s← MAC.Gen(1λ), we haveMAC.Vrfy(s, m, MAC.Tag(s, m)) =
>.

Security: For any QPT adversary A , it holds that

Pr
[

MAC.Vrfy(s, m, tag) = >∧
m 6= m1

∣∣∣∣ s← MAC.Gen(1λ)

(m, tag)← A(1λ)MAC.Tag(s,·)

]
≤ negl(λ)

where A can access to the oracle only once and m1 is the query from A .

We have the following theorem.

Theorem 2.11. There exists an information-theoretically secure OT-MAC.
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2.7 Non-interactive Zero-Knowledge Systems

We introduce the definition of a non-interactive zero-knowledge (NIZK) system and true-simulation
extractability for it.

Definition 2.12 (NIZK). Let L be an NP language associated with the corresponding NP relation R. A
NIZK system for L is a tuple of algorithms (NIZK.Setup, NIZK.Prove, NIZK.Vrfy).

• NIZK.Setup(1λ): The setup algorithm takes as input the security parameter 1λ and outputs a
common reference string crs.

• NIZK.Prove(crs, x, w): The prove algorithm takes as input common reference string crs, NP
instance x, and witness w, and outputs a proof π.

• NIZK.Vrfy(crs, x, π): The verification algorithm takes as input common reference string crs, NP
instance x, and proof π, and outputs > or ⊥.

Definition 2.13 (Completeness). ANIZK system for NP is said to be complete if we haveNIZK.Vrfy(crs, x,
NIZK.Prove(crs, x, w)) = > for all common reference string crs output by NIZK.Setup(1λ) and all
valid statement/witness pairs (x, w) ∈ R.

Definition 2.14 (True-Simulation Extractability). Let NIZK be a NIZK system and A a QPT adversary.
Let Sim = (FkSetup, Sim1, Sim2) be a tuple of PPT algorithms. We define the following experiment
Exptse-real

A ,NIZK.

1. The challenger first generates crs← NIZK.Setup(1λ) and sends crs to A .

2. A sends q statement/witness pairs (xi, wi)i∈[q] to the challenger. The challenger responds with
{πi}i∈[q], where πi ← NIZK.Prove(crs, xi, wi) for every i ∈ [q].

3. Finally, A outputs (x′, π′). The challenger outputs 1 if NIZK.Vrfy(crs, x′, π′) = >, (xi, wi) ∈ R
for every i ∈ [q], and xi 6= x′ for every i ∈ [q] hold. Otherwise, the challenger outputs 0.

We also define the following experiment Exptse-sim
A ,Sim,NIZK.

1. The challenger first generates (crs, td)← FkSetup(1λ) and sends crs to A .

2. A sends q statement/witness pairs (xi, wi)i∈[q] to the challenger. The challenger computes
({πi}i∈[q], stSim)← Sim1(crs, td, {xi}i∈[q]) and returns {πi}i∈[q] to A .

3. Finally, A outputs (x′, π′). The challenger computes w′ ← Sim2(stSim, x′, π′). The challenger
outputs 1 if NIZK.Vrfy(crs, x′, π′) = >, (xi, wi) ∈ R for every i ∈ [q], (x′, w′) ∈ R, and xi 6= x′

for every i ∈ [q] hold. Otherwise, the challenger outputs 0.

A NIZK system is said to be true-simulation extractable if for any QPT adversary A , there exists a
tuple of PPT algorithms Sim such that we have∣∣∣Pr

[
1← Exptse-real

A ,NIZK

]
− Pr

[
1← Exptse-sim

A ,Sim,NIZK
]∣∣∣ ≤ negl(λ).

Ananth and La Placa [AL21] showed the following theorem.

Theorem 2.15. There exists a true-simulation extractable NIZK system secure against polynomial (resp.
sub-exponential) time quantum adversaries assuming the quantum hardness of the LWE problem against
polynomial (resp. sub-exponential) time quantum adversaries.
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2.8 Noisy Trapdoor Claw-Free Hash Function

We recall the notion of noisy trapdoor claw-free (NTCF) hash function [BCM+18].

Definition 2.16 (NTCF Hash Function [BCM+18]). Let X , Y be finite sets, DY the set of probability
densities over Y , and KF a finite set of keys. A family of functions

F := { fk,b : X → DY}k∈KF ,b∈{0,1}

is a NTCF family if the following holds.

Efficient Function Generation: There exists a PPT algorithm NTCF.GenF which generates a key
k ∈ KF and a trapdoor td.

Trapdoor Injective Pair: For all keys k ∈ KF , the following holds.

1. Trapdoor: For all b ∈ {0, 1} and x 6= x′ ∈ X , Supp( fk,b(x)) ∩ Supp( fk,b(x′)) = ∅. In
addition, there exists an efficient deterministic algorithm InvF such that for all b ∈ {0, 1}, x ∈
X and y ∈ Supp( fk,b(x)), InvF (td, b, y) = x.

2. Injective pair: There exists a perfect matching relationRk ⊆ X ×X such that fk,0(x0) =
fk,1(x1) if and only if (x0, x1) ∈ Rk.

Efficient Range Superposition: For all keys k ∈ KF and b ∈ {0, 1}, there exists a function f ′k,b : X →
DY such that the following holds.

1. For all (x0, x1) ∈ Rk and y ∈ Supp( f ′k,b(xb)), InvF (td, b, y) = xb and InvF (td, b⊕ 1, y) =
xb⊕1.

2. There exists an efficient deterministic procedureChkF that takes as input k, b ∈ {0, 1}, x ∈ X
and y ∈ Y and outputs 1 if y ∈ Supp( f ′k,b(x)) and 0 otherwise. This procedure does not
need the trapdoor td.

3. For all k ∈ K and b ∈ {0, 1},

E
x←X

[H2( fk,b(x), f ′k,b(x))] ≤ negl(λ).

Here H2 is the Hellinger distance (See Section 2.2). In addition, there exists a QPT algorithm
SampF that takes as input k and b ∈ {0, 1} and prepare the quantum state

∣∣ψ′〉 = 1√
|X | ∑

x∈X ,y∈Y

√
( f ′k,b(x))(y) |x〉 |y〉 .

This property and Lemma 2.1 immediately imply that∥∥|ψ〉 〈ψ| − ∣∣ψ′〉 〈ψ′∣∣∥∥tr ≤ negl(λ),

where |ψ〉 = 1√
|X |

∑x∈X ,y∈Y
√
( fk,b(x))(y) |x〉 |y〉.

Adaptive Hardcore Bit: For all keys k ∈ KF , the following holds. For some integer w that is a
polynomially bounded function of λ,

1. For all b ∈ {0, 1} and x ∈ X , there exists a set Gk,b,x ⊆ {0, 1}w such that Prd←{0,1}w [d /∈
Gk,b,x] ≤ negl(λ). In addition, there exists a PPT algorithm that checks for membership in
Gk,b,x given k, b, x, and td.
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2. There is an efficiently computable injection J : X → {0, 1}w such that J can be inverted
efficiently on its range, and such that the following holds. Let

Hk := {(b, xb, d, d · (J(x0)⊕ J(x1))) | b ∈ {0, 1}, (x0, x1) ∈ Rk, d ∈ Gk,0,x0 ∩ Gk,1,x1},
Hk := {(b, xb, d, c) | (b, x, d, c⊕ 1) ∈ Hk},

then for any QPT A, it holds that∣∣∣∣ Pr
(k,td)←NTCF.GenF (1λ)

[A(k) ∈ Hk]− Pr
(k,td)←NTCF.GenF (1λ)

[A(k) ∈ Hk]

∣∣∣∣ ≤ negl(λ).

Brakerski et al. showed the following theorem.

Theorem 2.17 ([BCM+18]). If we assume the quantum hardness of the LWE problem, then there exists
an NTCF family.

2.9 Secure Software Leasing

We introduce the notion of secure software leasing (SSL) defined by Ananth and La Placa [AL21].

Definition 2.18 (SSL with Setup [AL21]). Let C = {Cλ}λ be a circuit class such that Cλ contains
circuits of input length n and output length m. A secure software lease scheme with setup for C is a tuple
of algorithms (Setup, Gen, Lessor , Run , Check ).

• Setup(1λ): The setup algorithm takes as input the security parameter 1λ and outputs a classical
string crs.

• Gen(crs): The key generation algorithm takes as input crs and outputs a secret key sk.

• Lessor (sk, C): The lease algorithm takes as input sk and a polynomial-sized classical circuit
C ∈ Cλ and outputs a quantum state sft C.

• Run(crs, sft C, x): The run algorithm takes as input crs, sft C, and an input x ∈ {0, 1}n for C, and
outputs y ∈ {0, 1}m and some state sft ′. We use the notation Runout(crs, sft C, x) = y to denote
that Run(crs, sft C, x) results in an output of the form (sft ′, y) for some state sft ′.

• Check (sk, sft ∗C): The check algorithm takes as input sk and sft ∗C, and outputs > or ⊥.

Definition 2.19 (Correctness for SSL). An SSL scheme (Setup, Gen, Lessor , Run , Check ) for C = {Cλ}λ

is correct if for all C ∈ Cλ, the following two properties hold:

• Correctness of Run:

Pr

∀x Pr
[
Runout(crs, sft C, x) = C(x)

]
≥ 1− negl(λ)

∣∣∣∣∣∣
crs← Setup(1λ)
sk← Gen(crs)
sft C ← Lessor (sk, C)

 ≥ 1−negl(λ).

• Correctness of Check :

Pr

Check (sk, sft C) = >

∣∣∣∣∣∣
crs← Setup(1λ)
sk← Gen(crs)
sft C ← Lessor (sk, C)

 ≥ 1− negl(λ).
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Definition 2.20 (Reusability for SSL). An SSL scheme (Setup, Gen, Lessor , Run , Check ) for C = {Cλ}λ

is reusable if for all C ∈ Cλ and for all x ∈ {0, 1}n, it holds that∥∥∥sft ′C,x − sft C

∥∥∥
tr
≤ negl(λ),

where sft ′C,x is the quantum state output by Run(crs, sft C, x).

Lemma 2.21 ([AL21]). If an SSL scheme (Setup, Gen, Lessor , Run , Check ) for C = {Cλ}λ is correct,
then there exists a QPT algorithm Run ′ such that (Setup, Gen, Lessor , Run ′, Check ) is a reusable SSL
scheme for C = {Cλ}λ.

Below, we introduce a security notion called finite-term lessor security for SSL. We can also consider
a stronger security notion called infinite-term lessor security for SSL. For the definition of infinite-term
lessor security, see the paper by Ananth and La Placa [AL21].

In the security experiment of SSL, an adversary outputs a bipartite state sft ∗ on the first and second
registers. Let sft ∗0 := Tr2[sft ∗] and sft ∗0 is verified by Check .12 In addition, P2(sk, sft ∗) denotes the
resulting post-measurement state on the second register (after the check on the first register). We write

P2(sk, sft ∗) ∝ Tr1[Π1[(Check (sk, sft ∗)1 ⊗ I2)(sft ∗)]]

for the state that A keeps after the first register has been returned and verified. Here, Π1 denotes projecting
the output of Check onto >, and where (Check (sk, sft ∗)1 ⊗ I2)(sft ∗) denotes applying Check on to the
first register, and the identity on the second register of sft ∗.

Definition 2.22 (Perfect Finite-Term Lessor Security). Let β be any inverse polynomial of λ and DC
a distribution on C. We define the (β,DC)-perfect finite-term lessor security game Exptpft-lessor

A ,DC (λ, β)
between the challenger and adversary A as follows.

1. The challenger generates C ← DC , crs← Setup(1λ), sk← Gen(crs), and sft C ← Lessor (sk, C),
and sends (crs, sft C) to A .

2. A outputs a bipartite state sft ∗. Below, we let sft ∗0 := Tr2[sft ∗].

3. If Check (sk, sft ∗0) = > and ∀x Pr[Runout(crs, P2(sk, sft ∗), x) = C(x)] ≥ β hold, where the
probability is taken over the choice of the randomness of Run , then the challenger outputs 1.
Otherwise, the challenger outputs 0.

We say that an SSL scheme (Setup, Gen, Lessor , Run , Check ) is (β,DC)-perfect finite-term lessor
secure, if for any QPT A that outputs a bipartite (possibly entangled) quantum state on the first and
second registers, the following holds.

Pr
[
Exptpft-lessor

A ,DC (λ, β) = 1
]
≤ negl(λ).

In addition to the above perfect finite-term lessor security, we also introduce a new security notion
average-case finite-term lessor security. For an SSL scheme for a family of PRF, we consider average-case
finite-term lessor security. This is because when we consider cryptographic functionalities, the winning
condition “∀x Pr[Runout(crs, P2(sk, σ∗), x) = C(x)] ≥ β” posed to the adversary in the definition of
perfect finite-term lessor security seems to be too strong. In fact, for those functionalities, adversaries who
can generate a bipartite state sft ∗ such that Runout(crs, P2(sk, sft ∗), x) = C(x) holds for some fraction of
inputs x should be regarded as successful adversaries. Average-case finite-term lessor security considers
those adversaries.

12Tri[X ] is the partial trace of X where the i-th register is traced out.
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Definition 2.23 (Average-Case Finite-Term Lessor Security). Let ε be any inverse polynomial of λ
and DC a distribution on C. We define the (ε,DC)-average-case finite-term lessor security game
Exptaft-lessor

A ,DC (λ, ε) between the challenger and adversary by replacing the third stage of Exptpft-lessor
A ,DC (λ, β)

with the following.

3. If Check (sk, sft ∗0) = > and Pr[Runout(crs, P2(sk, sft ∗), x) = C(x)] ≥ ε hold, where the probabil-
ity is taken over the choice of x ← {0, 1}n and the random coin of Run , then the challenger outputs
1. Otherwise, the challenger outputs 0.

We say that an SSL scheme (Setup, Gen, Lessor , Run , Check ) is (ε,DC)-average-case finite-term lessor
secure, if for any QPT A that outputs a bipartite (possibly entangled) quantum state on the first and
second registers, the following holds.

Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1
]
≤ negl(λ).

3 Two-Tier Quantum Lightning

In this section, we present definitions of our new tools and their instantiations.

3.1 Two-Tier Quantum Lightning

We define two-tier QL, which is a weaker variant of QL [Zha21]. A big difference from QL is that we
have two types of verification called semi-verification and full-verification. We need a secret key for
full-verification while we use a public key for semi-verification.

Definition 3.1 (Two-Tier Quantum Lightning (syntax)). A two-tier quantum lightning scheme is a tuple
of algorithms (Setup, BoltGen , SemiVrfy , FullVrfy).

• Setup(1λ): The setup algorithm takes as input the security parameter 1λ and outputs a key pair
(pk, sk).

• BoltGen(pk): The bolt generation algorithm takes as input pk and outputs a classical string snum
(called a serial number) and a quantum state bolt (called a bolt for the serial number).

• SemiVrfy(pk, snum, bolt): The semi-verification algorithm takes as input pk, snum, and bolt and
outputs (>, bolt ′) or ⊥.

• FullVrfy(sk, snum, bolt): The full-verification algorithm takes as input sk, snum, and bolt and
outputs > or ⊥.

Definition 3.2 (Correctness for Two-Tier Quantum Lightning). There are two verification processes.
We say that a two-tier quantum lightning with classical verification is correct if it satisfies the following
two properties.

Semi-verification correctness:

Pr
[
(>, bolt ′)← SemiVrfy(pk, snum, bolt)

∣∣∣∣ (pk, sk)← Setup(1λ)
(snum, bolt)← BoltGen(pk)

]
> 1− negl(λ).

Full-verification correctness:

Pr
[
> ← FullVrfy(sk, snum, bolt)

∣∣∣∣ (pk, sk)← Setup(1λ)
(snum, bolt)← BoltGen(pk)

]
> 1− negl(λ).

17



Definition 3.3 (Reusability for Two-Tier Quantum Lightning). A two-tier quantum lightning scheme
(Setup, BoltGen , SemiVrfy , FullVrfy) is reusable if for all (pk, sk) ← Setup(1λ), (snum, bolt) ←
BoltGen(pk), and (bolt ′,>)← SemiVrfy(pk, snum, bolt), it holds that∥∥bolt ′ − bolt

∥∥
tr ≤ negl(λ).

Remark 3.4. We can show that any two-tier QL scheme that satisfies semi-verification correctness can be
transformed into one that satisfies reusability by using the Almost As Good As New Lemma [Aar05]
similarly to an analogous statement for SSL shown in [AL21]. Therefore, we focus on correctness.

Definition 3.5 (Two-Tier Unclonability). We define the two-tier unclonability game between a challenger
and an adversary A as follows.

1. The challenger generate (pk, sk)← Setup(1λ) and sends pk to A .

2. A outputs possibly entangled quantum states L0 and L1 and a classical string snum∗, and sends
them to the challenger.

3. The challenger runs FullVrfy(sk, snum∗, L0 ) and SemiVrfy(pk, snum∗, L1). If both the outputs are
>, then this experiments outputs 1. Otherwise, it outputs 0.

This game is denoted by Exptt-unclone
A,Σ (1λ). A two-tier quantum lightning scheme is two-tier unclonable if

for any QPT adversary A , it holds that

Pr
[
Exptt-unclone

A ,Σ (1λ) = 1
]
≤ negl(λ).

Definition 3.6 (Secure Two-Tier Quantum Lightning). A two-tier quantum lightning scheme is secure
if it satisfies Definitions 3.1 to 3.3 and 3.5.

3.2 Two-Tier Quantum Lightning from SIS

We show how to construct a two-tier quantum lightning scheme from the SIS assumption. The construction
is based on the franchised quantum money scheme by Roberts and Zhandry [RZ21]. They (implicitly)
proved the following lemma holds by appropriately setting parameters n, m, q, β in such a way that
SISn,m,q,β is believed to be hard:

Lemma 3.7 ([RZ21]). There exist PPT algorithm TrapGen and QPT algorithms (FQMGen , FQMVrfy)
that work as follows:13

TrapGen(1λ): This algorithm generates a matrix A ∈ Zn×m
q and its trapdoor td.

FQMGen(A): Given a matrix A ∈ Zn×m
q , it outputs a vector y ∈ Zn

q along with a quantum state

|Σ〉 = ∑
x∈Zm

q :Ax=y mod q

√
p(x) |x〉 .

for a certain probability density function p over {x ∈ Zm
q : Ax = y mod q} such that if we take

x according to p, we have Pr[‖x‖ > β/2] = negl(λ). 14

FQMVrfy(td, y, |Σ〉): It outputs > or ⊥.

Moreover, the following is satisfied:

13TrapGen is by now a standard algorithm to sample a matrix with its trapdoor [GPV08, MP12].
14Specifically, p is proportional to discrete Gaussian.
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1. If we generate (A, td)← TrapGen(1λ) and (y, |Σ〉)← FQMGen(A), we have

Pr[FQMVrfy(td, y, |Σ〉) = ⊥] = negl(λ).

2. For any (A, td)← TrapGen(1λ), y ∈ Zn
q and (possibly malformed) quantum state sigma such that

Pr[FQMVrfy(td, y, sigma) = >] is non-negligible, if we measure sigma, then the outcome x satisfies
Ax = y mod q and ‖x‖ ≤ β/2 with a non-negligible probability, and no value for x ∈ Zm

q has
overwhelming probability of being measured conditioned on that the above holds.

Proof. (sketch.) FQMVrfy(td, y, sigma) first checks if the value x in the register of sigma satisfies Ax = y
and ‖x‖ ≤ β/2 in superposition by writing the result into another register and measuring it. If that is not
satisfied, it immediately outputs ⊥ and halts. Otherwise, it applies the quantum Fourier transform on
sigma and measures the state to get a vector z ∈ Zm

q . If it is an LWE instance, i.e., zT = sT A + eT for
some s ∈ Zn

q and a “small” error e ∈ Zm
q , it outputs >, and otherwise outputs ⊥. Note that it can check

that because it knows the trapfoor td for A.
Item 1 follows from the fact that the quanutm Fourier transform of the honestly generated |Σ〉 results

in a superposition of LWE instances (e.g., see [CLZ21, Proposition 20]). Item 2 holds because if sigma
(almost) collapses to a single x after the first check of FQMVrfy , the masurement outcome of its quantum
Fourier transform is (almost) uniformly distributed over Zm

q , which is an LWE instance with a negligible
probability (under an appropriate parameter setting). Therefore, if it has a non-negligible chance of being
accepted, it should not have an overwheling amplitude on a single x. This means that Item 2 holds.

Construction 3.8. Our two-tier quantum lightning scheme is described as follows.

• Setup(1λ): Run (A, td)← TrapGen(1λ) and outputs pk := A and sk := td.

• BoltGen(pk = A): Run (y, |Σ〉)← FQMGen(A) and outputs (snum, bolt) := (y, |Σ〉).

• FullVrfy(sk = td, snum = y, bolt): This is exactly the same algorithm as FQMVrfy(td, y, bolt).

• SemiVrfy(pk = A, snum = y, bolt): This algorithm checks if the value x in the register of bolt
satisfies Ax = y and ‖x‖ ≤ β/2 in superposition by writing the result into another register and
measuring it. If that is satisfied, then it outputs > along with a resulting state bolt ′ in the register
that stored bolt . Otherwise, it outputs ⊥.

Full- and semi-verification correctness directly follows from Lemma 3.7. Security is stated as follows:

Theorem 3.9. If we assume the quantum hardness of the SISn,m,q,β, then the above two-tier quantum
lightning satisfies two-tier unclonability.

Proof. We show that if two-tier unclonability of Construction 3.8 is broken, then the SIS problem is also
broken. We construct a QPT adversary B for SIS by using a QPT adversary A against two-tier QL. B is
given a matrix A and sends pk := A to A . When A outputs (snum∗, L0, L1), B measures L0 and L1. Let
the results of the measurement x0 and x1, respectively. Then B outputs x0 − x1.

Since A breaks the security of two-tier QL, L0 and L1 pass SemiVrfy and FullVrfy respectively with
non-negligible probability. Thus, by definitions of FullVrfy and SemiVrfy and Lemma 3.7, we have
Axb = snum∗ and ‖xb‖ ≤ β/2 for both b ∈ {0, 1} with non-negligible probability. Therefore, B
succeeds in solving the SIS problem as long as x0 6= x1. Again, Lemma 3.7 ensures that we have x0 6= x1
with non-negligible probability. This completes the proof.
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3.3 Two-Tier Quantum Lightning with Classical Verification

We extend two-tier QL to have an algorithm that converts a bolt into a classical certificate which certifies
that the bolt was collapsed. This bolt-to-certificate capability was introduced by Coladangelo and
Sattath [CS20] for the original QL notion. We can consider a similar notion for two-tier QL.

Definition 3.10 (Two-tier Quantum Lightning with Classical Verification (syntax)). A two-tier quan-
tum lightning scheme with classical semi-verification is a tuple of algorithms (Setup, BoltGen , BoltCert ,
SemiVrfy , CertVrfy).

• Setup(1λ): The setup algorithm takes as input the security parameter 1λ and outputs a key pair
(pk, sk).

• BoltGen(pk): The bolt generation algorithm takes as input pk and outputs a classical string snum
(called a serial number) and a quantum state bolt (called a bolt for the serial number).

• SemiVrfy(pk, snum, bolt): The semi-verification algorithm takes as input pk, snum, and bolt and
outputs (>, bolt ′) or ⊥.

• BoltCert(bolt): The bolt certification algorithm takes as input bolt and outputs a classical string
cert (called a certification for collapsing a bolt).

• CertVrfy(sk, snum, cert): The certification-verification algorithm takes as input sk and cert and
outputs > or ⊥.

Definition 3.11 (Correctness for Two-Tier Quantum Lighting with Classical Verification). There are
two verification processes. We say that a two-tier quantum lightning with classical verification is correct
if it satisfies the following two properties.

Semi-verification correctness: It holds that

Pr
[
(>, bolt ′)← SemiVrfy(pk, snum, bolt)

∣∣∣∣ (pk, sk)← Setup(1λ)
(snum, bolt)← BoltGen(pk)

]
> 1− negl(λ).

Certification-verification correctness: It holds that

Pr

> ← CertVrfy(sk, snum, cert)

∣∣∣∣∣∣
(pk, sk)← Setup(1λ)
(snum, bolt)← BoltGen(pk)
cert← BoltCert(bolt)

 > 1− negl(λ).

Definition 3.12 (Reusability for Two-Tier Quantum Lighting with Classical Verification). A two-
tier quantum lightning scheme with classical verification (Setup, BoltGen , SemiVrfy , BoltCert , CertVrfy) is
reusable if for all (pk, sk)← Setup(1λ), (snum, bolt)← BoltGen(pk), and (bolt ′,>)← SemiVrfy(pk, snum, bolt),
it holds that ∥∥bolt − bolt ′

∥∥
tr ≤ negl(λ).

Remark 3.13. Similarly to Remark 3.4, any two-tier QL scheme with classical verification that satisfies
semi-verification correctness can be transformed into one that satisfies reusability. Therefore, we focus on
correctness.

Definition 3.14 (Two-Tier Unclonability with Classical Verification).We define the two-tier unclon-
ability game between a challenger and an adversary A in the classical verification setting as follows.

1. The challenger generates (pk, sk) ← Setup(1λ) and (snum, bolt) ← BoltGen(pk) and sends pk
to A.
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2. A outputs a classical string snum, a quantum state L , and a classical string CL and sends them to
the challenger.

3. The challenger runs CertVrfy(sk, snum, CL) and SemiVrfy(pk, snum, L). If both the outputs are >,
then this experiments outputs 1. Otherwise, it outputs 0.

This game is denoted by Exptt-unclone-cv
A,Σ (1λ).

We say that Σ = (Setup, BoltGen , SemiVrfy , BoltCert , CertVrfy) is two-tier unclonable if the following
holds. For any QPT adversary A, it holds that

Pr
[
Exptt-unclone-cv

A,Σ (1λ) = 1
]
≤ negl(λ).

Definition 3.15 (Secure Two-Tier Quantum Lightning with Classical Verification). A two-tier quan-
tum lightning with classical verification is secure if it satisfies Definitions 3.10 to 3.12 and 3.14.

Note that a two-tier quantum lightning scheme with classical verification can be easily transformed
into an ordinary two-tier quantum lightning scheme. This is done by setting the latter’s full-verification
algorithm as the combination of the bolt certification algorithm and the certification-verification algorithm
of the former. Namely, we have the following theorem.

Theorem 3.16. If there exists two-tier quantum lightning with classical verification, then there also exists
ordinary two-tier quantum lightning.

3.4 Two-Tier Quantum Lightning with Classical Verification from LWE

In this section, we show how to construct a two-tier QL scheme with classical verification from the LWE
assumption. First, we define an amplified version of the adaptive hardcore bit property of an NTCF family.

Definition 3.17 (Amplified Adaptive Hardcore Property).We say that a NTCF family F (defined in
Definition 2.16) satisfies the amplified adaptive hardcore property if for any QPT A and n = ω(log λ),
it holds that

Pr

 ∀i ∈ [n] xi = xi,bi ,
di ∈ Gk,0,xi,0 ∩ Gk,1,xi,1 ,
mi = di · (J(xi,0)⊕ J(xi,1))

∣∣∣∣∣∣
(ki, tdi)← NTCF.GenF (1λ) for i ∈ [n]
({(bi, xi, yi, di, mi)}i∈[n])← A({ki}i∈[n])
xi,β ← InvF (tdi, β, yi) for (i, β) ∈ [n]× {0, 1}

 = negl(λ).

As implicitly shown in [RS19], any NTCF family satisfies the amplified adaptive hardcore property.15

Lemma 3.18 (Implicit in [RS19]). Any NTCF family satisfies the amplified adaptive hardcore property.

Proof. (sketch.) This proof sketch is a summary of the proof in [RS19]. Canetti et al. [CHS05] proved
that a parallel repetition exponentially decreases hardness of weakly verifiable puzzle, which is roughly a
computational problem whose solution can be verified by a secret verification key generated along with
the problem. Though Canetti et al. only considered hardness against classical algorithms, Radian and
Sattath [RS19] observed that a similar result holds even for quantum algorithms. Then we consider a
weakly verifiable puzzle described below:

1. A puzzle generation algorithm runs (k, td)← NTCF.GenF (1λ) and publishes k as a puzzle while
keeping td as a secret verification key.

2. We say that (b, x, y, d, m) is a valid solution to the puzzle k if it holds that x = xb, d ∈
Gk,0,x0 ∩ Gk,1,x1 , and m = d · (J(x0)⊕ J(x1)) where xβ ← InvF (td, β, y) for β ∈ {0, 1}.

15[RS19] proved essentially the same lemma through an abstraction which they call 1-of-2 puzzle.
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We can see that the adaptive hardcore property implies that a QPT algorithm can find a valid solution of
the above weakly verifiable puzzle with probability at most 1

2 + negl(λ). By applying the amplification
theorem of [CHS05, RS19] as explained above, n = ω(log(λ))-parallel repetition version of the above
protocol is hard for any QPT algorithm to solve with non-negligible probability. This is just a rephrasing
of amplified adaptive hardcore property.

Two-Tier Quantum Lightning from NTCF. We show how to construct a two-tier QL scheme with
classical verification from an NTCF family.

Construction 3.19. Let n = ω(log λ). Our two-tier QL with classical verification scheme is described as
follows.

• Setup(1λ): Generate (ki, tdi)← NTCF.GenF (1λ) for i ∈ [n] and set (pk, sk) := ({ki}i∈[n], {tdi}i∈[n]).

• BoltGen(pk): Parse pk = {ki}i∈[n]. For each i ∈ [n], generate a quantum state

∣∣ψ′i〉 = 1√
|X | ∑

x∈X ,y∈Y ,b∈{0,1}

√
( f ′ki ,b

(x))(y) |b, x〉 |y〉

by using SampF , measure the last register to obtain yi ∈ Y , and let |φ′i〉 be the post-measurement
state where the measured register is discarded. Output (snum, bolt) := ({yi}i∈[n], {|φ′i〉}i∈[n]).

• SemiVrfy(pk, snum, bolt): Parse pk = {ki}i∈[n], snum = {yi}i∈[n], bolt = {bolt i}i∈[n]. For
each i ∈ [n], check if the value (bi, xi) in the register of bolt i satisfies y ∈ Supp( f ′ki ,bi

(xi)) in
superposition by writing the result to another register and measuring it. We note that this procedure
can be done efficiently without using tdi since y ∈ Supp( f ′ki ,bi

(xi)) can be publicly checked by
using ChkF as defined in Definition 2.16. If the above verification passes for all i ∈ [n], then
output > and the post-measurement state (discarding measured registers). Otherwise, output ⊥.

• BoltCert(bolt): Parse bolt = {bolt i}i∈[n]. For each i ∈ [n], do the following: Evaluate the function
J on the second register of bolt i. That is, apply a unitary that maps |b, x〉 to |b, J(x)〉 to bolt i. (Note
that this can be done efficiently since J is injective and efficiently invertible.) Then, apply Hadamard
transform and measure both registers to obtain (mi, di). Output cert := {(di, mi)}i∈[n].

• CertVrfy(sk, snum, cert): Parse sk = {tdi}i∈[n], snum = {yi}i∈[n], and cert = {(di, mi)}i∈[n].
For each i ∈ [n] and β ∈ {0, 1}, compute xi,β ← InvF (tdi, β, yi). Output > if and only if it holds
that di ∈ Gk,0,xi,0 ∩ Gk,1,xi,1 and mi = di · (J(xi,0)⊕ J(xi,1)) for all i ∈ [n].

Theorem 3.20. If there exists an NTCF family, there exists a two-tier QL with classical verification.

Proof of Theorem 3.20. We prove correctness and two-tier unclonability below:

Correctness of certification-verification. We need to prove that if cert is generated by BoltCert(bolt)
for an honestly generated bolt corresponding a serial number snum, CertVrfy(sk, snum, cert) returns >
with overwhelming probability.

For each i ∈ [n], if we define a quantum state

|ψi〉 =
1√
|X | ∑

x∈X ,y∈Y ,b∈{0,1}

√
( fki ,b(x))(y) |b, x〉 |y〉 ,

then we have ∥∥|ψi〉 〈ψi| −
∣∣ψ′i〉 〈ψ′i ∣∣∥∥tr ≤ negl(λ),
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as observed in Definition 2.16 (where we used Lemma 2.1). Therefore, even if we replace |ψ′i〉with |ψi〉 for
each i ∈ [n] in the execution of BoltGen(pk) to generate bolt , the probability that CertVrfy(sk, snum, cert)
returns > only negligibly changes. Therefore, it suffices to prove that CertVrfy(sk, snum, cert) returns
> with overwhelming probability in a modified experiment where |ψ′i〉 is replaced with |ψi〉 for each
i ∈ [n].16 In this experiment, if we let bolt i be the i-th component of bolt , then we have

bolt i =
1√
2
(|0, xi,0〉+ |1, xi,1〉)

for each i ∈ [n] where xi,β ← InvF (tdi, β, yi) for β ∈ {0, 1} by the injective property of F . If we apply
J to the second register of bolt i and then apply Hadamard transform for both registers as in BoltCert , then
the resulting state can be written as

2−
w+2

2 ∑
d,b,m

(−1)d·J(xi,b)⊕mb |m〉 |d〉

= 2−
w
2 ∑

d∈{0,1}w

(−1)d·J(xi,0) |d · (J(xi,0)⊕ J(xi,1))〉 |d〉 .

Therefore, the measurement result is (mi, di) such that mi = di · (J(xi,0) ⊕ J(xi,1)) for a uniform
di ← {0, 1}w. By the adaptive hardcore bit property (the first item) in Definition 2.16, it holds that
di ∈ Gki ,0,xi,0 ∩ Gki ,1,xi,1 except negligible probability. Therefore, the certificate cert = {(di, mi)}i∈[n]
passes the verification by CertVrfy with overwhelming probability.

Correctness of semi-verification. Let bolt = {φ′i}i∈[n] be an honestly generated bolt. By the definition
of BoltGen , |φi〉 is a superposition of (b, x) such that y ∈ Supp( f ′ki ,b

(x)). This clearly passes the
verification by SemiVrfy .

Two-tier unclonability. As shown in Lemma 3.18, any NTCF family satisfies the amplified adaptive
hardcore property. We show that if there exists a QPT adversary A that breaks the two-tier unclonability
with classical verification of Construction 3.19 with probability ε, we can construct a QPT adversary B
that breaks the amplified adaptive hardcore property the NTCF with probability ε.

B is given {ki}i∈[n] and sends pk := {ki}i∈[n] to A this implicitly sets sk := {tdi}i∈[n]). When
A outputs (snum, L , cert), B parses snum = {yi}i∈[n], L = {Li}i∈[n], and cert = {(di, mi)}i∈[n],
measures Li to obtain (bi, xi) for each i ∈ [n], and outputs {(bi, xi, yi, di, mi)}i∈[n].

By assumption on A , it holds that SemiVrfy(pk, snum, L) = > and CertVrfy(sk, snum, cert) = >
with probability ε. If SemiVrfy(pk, snum, L) = > holds, we have yi ∈ Supp( f ′ki ,bi

(xi)) for each i ∈ [n]
by the construction of SemiVrfy . We note that yi ∈ Supp( f ′ki ,bi

(xi)) implies xi = xi,bi by the efficient
range superposition property of Definition 2.16 where xi,β ← InvF (tdi, β, yi) for β ∈ {0, 1}. If
CertVrfy(sk, snum, cert) = > we have di ∈ Gk,0,xi,0 ∩ Gk,1,xi,1 and mi = di · (J(xi,0)⊕ J(xi,1)) for all
i ∈ [n]. Clearly, B wins the amplified adaptive hardcore game when both of them happen, which happens
with probability ε by the assumption. This completes the proof.

By combining Theorems 2.17 and 3.20, the following corollary immediately follows.

Corollary 3.21. If we assume the quantum hardness of the LWE problem, there exists a secure two-tier
QL with classical verification.

16Of course, such a replacement cannot be done efficiently. We consider such an experiment only as a proof tool.
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4 Relaxed Watermarking

In this section, we introduce the notion of relaxed watermarking and concrete constructions of relaxed
watermarking.

4.1 Definition of Relaxed Watermarking

We introduce the definition of relaxed watermarking. The following definition captures publicly markable
and extractable watermarking schemes. After the definition, we state the difference between relaxed
watermarking and classical cryptographic watermarking [CHN+18].

Definition 4.1 (RelaxedWatermarking Syntax). Let C = {Cλ}λ be a circuit class such that Cλ contains
circuits of input length is n and output length m. A relaxed watermarking scheme for the circuit class C
and a message spaceM = {Mλ}λ consists of four PPT algorithms (Gen, Mark, Extract, Eval).

Key Generation: Gen(1λ) takes as input the security parameter and outputs a public parameter pp.

Mark: Mark(pp, C, m) takes as input a public parameter, an arbitrary circuit C ∈ Cλ and a message
m ∈ Mλ and outputs a marked circuit C̃.

Extract: m′ ← Extract(pp, C′) takes as input a public parameter and an arbitrary circuit C′, and
outputs a message m′, where m′ ∈ Mλ ∪ {unmarked}.

Honest Evaluation: Eval(pp, C′, x) takes as input a public parameter, an arbitrary circuit C′, and an
input x, and outputs y.

We define the required correctness and security properties of a watermarking scheme.

Definition 4.2 (Relaxed Watermarking Property). A watermarking scheme (Gen, Mark, Extract, Eval)
for circuit family {Cλ}λ and with message spaceM = {Mλ}λ is required to satisfy the following
properties.

Statistical Correctness: For any circuit C ∈ Cλ, any message m ∈ Mλ, it holds that

Pr
[
∀x Eval(pp, C̃, x) = C(x)

∣∣∣∣ pp← Gen(1λ)

C̃ ← Mark(pp, C, m)

]
≥ 1− negl(λ).

Extraction Correctness: For every C ∈ Cλ, m ∈ Mλ and pp← Gen(1λ):

Pr
[
m′ 6= m

∣∣ m′ ← Extract(pp, Mark(pp, C, m))
]
≤ negl(λ).

Relaxed (ε,DC)-Unremovability: For every QPT A , we have

Pr
[
Expr-urmv

A ,DC (λ, ε) = 1
]
≤ negl(λ)

where ε is a parameter of the scheme called the approximation factor, DC is a distribution over Cλ,
and Expr-urmv

A ,DC (λ, ε) is the game defined next.

We say a watermarking scheme is relaxed (ε,DC)-secure if it satisfies these properties.

Definition 4.3 (Relaxed (ε,DC)-UnremovabilityGame). The gameExpr-urmv
A ,DC (λ, ε) is defined as follows.

1. The challenger generates pp← Gen(1λ) and gives pp to the adversary A .
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2. At some point, A sends a message m ∈ Mλ to the challenger. The challenger samples a circuit
C ← DC and responds with C̃ ← Mark(pp, C, m).

3. Finally, the adversary outputs a circuit C∗. If it holds that

Pr
x←{0,1}n

[Eval(pp, C∗, x) = C(x)] ≥ ε

and Extract(pp, C∗) 6= m, then the challenger outputs 1, otherwise 0.

Differently from the definition by Cohen et al. [CHN+18], the above definition requires a watermarking
scheme has an honest evaluation algorithm for running programs. In the unremovability game above,
adversaries must output a circuit whose behavior is close to the original circuit when it is executed using
the honest evaluation algorithm.

Relaxed watermarking is clearly weaker than classical watermarking. However, in this work,
watermarking is just an intermediate primitive, and relaxed watermarking is sufficient for our goal
of constructing SSL schemes. Moreover, this relaxation allows us to achieve a public extractable
watermarking scheme for a PRF family under the LWE assumption, as we will see in Section 4.2. For
classical watermarking, we currently need IO to achieve such a scheme [CHN+18].

4.2 Relaxed Watermarking for PRF

We construct a relaxed watermarking scheme for PRFs from puncturable PRFs and true-simulation
extractable NIZK.

Construction 4.4 (Relaxed Watermarking for PRF). Let PPRF = (PRF.Eval, Puncture, PRF.pEval) be a
puncturable PRF whose key space, domain, and range are K, {0, 1}n, and {0, 1}m, respectively. Also, let
NIZK = (NIZK.Setup, NIZK.Prove, NIZK.Vrfy) be a NIZK system for NP. Using these building blocks,
we construct a relaxed watermarking scheme for the PRF family {FK(·) = PRF.Eval(K, ·) | K ∈ K} as
follows. Its message space is {0, 1}k for some polynomial k of λ. In the construction, 0 is some fixed
point in {0, 1}n.

Gen(1λ): Compute crs← NIZK.Setup(1λ) and Output pp := crs.

Mark(pp, FK, m): Compute y0 ← PRF.Eval(K, 0) and K{0} ← Puncture(K, {0}). Let an NP relation
RL be as follows.

RL :=
{(

(m, y0, K{0}), K
)
| y0 = PRF.Eval(K, 0), K{0} = Puncture(K, {0}), and K ∈ K

}
.

Compute π ← NIZK.Prove(crs, (m, y0, K{0}), K). Output C̃ := (m, y0, K{0}, π).

Extract(pp, C′): Parse C′ = (m′, y′, K′, π′) and output m′.

Eval(pp, C′, x): Parse C′ = (m′, y′, K′, π′) and run NIZK.Vrfy(crs, (m′, y′, K′), π). If the output is ⊥,
output ⊥. Otherwise, output PRF.pEval(K′, x) for x 6= 0 and y′ for x = 0.

Theorem 4.5. Let ε be any inverse polynomial of λ and UK the uniform distribution over K. If PPRF
is a puncturable PRF with key-injectiveness and NIZK is a true-simulation extractable NIZK system
for NP, then Construction 4.4 is a relaxed (ε,UK)-secure watermarking scheme for the PRF family
{FK(·) = PRF.Eval(K, ·) | K ∈ K}.
Proof of Theorem 4.5. The statistical correctness of Construction 4.4 follows from the completeness
of NIZK and the functionality preserving under puncturing of PPRF. Also, the extraction correctness
of Construction 4.4 immediately follows from the construction. Below, we prove the relaxed (ε,UK)-
unremovability of Construction 4.4.

Let A be a QPT adversary attacking relaxed (ε,UK)-unremovability. We prove this theorem using
hybrid games.
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Game 1: This is Expr-urmv
A ,UK (λ, ε) for Construction 4.4.

1. The challenger generates crs← NIZK.Setup(1λ) and gives pp := crs to the adversary A .
2. At some point, A queries a message m ∈ {0, 1}k to the challenger. The challenger

first samples K ← UK. Next, the challenger computes y0 ← PRF.Eval(K, 0), K{0} ←
Puncture(K, {0}), and π ← NIZK.Prove(crs, (m, y0, K{0}), K). Then, the challenger
returns C̃ := (m, y0, K{0}, π) to A .

3. Finally, A outputs a circuit C∗ = (m∗, y∗, K∗, π∗). If Prx←{0,1}n [Eval(pp, C∗, x) =
PRF.Eval(K, x)] ≥ ε and Extract(pp, C∗) = m∗ 6= m hold, then the challenger out-
puts 1 as the output of this game. Otherwise, the challenger outputs 0 as the output of this
game.

We define the following three conditions.

(a) Prx←{0,1}n [Eval(pp, C∗, x) = PRF.Eval(K, x)] ≥ ε.

(b) NIZK.Vrfy(crs, (m∗, y∗, K∗), π∗) = >.

(c) m∗ 6= m.

It is clear that if all of the above conditions are satisfied, the output of Game 1 is 1. In the
opposite direction, it is clear that the conditions (a) and (c) are satisfied whenever the output of
Game 1 is 1 from the definition of Game 1. Also, we see that if the condition (b) is not satisfied,
Prx←{0,1}n [Eval(pp, C∗, x) = PRF.Eval(K, x)] = 0 holds and thus the output of Game 1 is 0. Therefore,
the conditions (b) is satisfied whenever the output of Game 1 is 1. Overall, the output of Game 1 is 1 if
and only if the above three conditions hold in Game 1.

We define S as the event that the above conditions (b) and (c), and the following condition hold.

(a′) Let ω = λ/ε. Eval(pp, C∗, xj) = PRF.Eval(K, xj) holds for some j ∈ [ω], where xj is randomly
chosen from {0, 1}n for every j ∈ [ω].

When the condition (a) is satisfied, the probability that (a′) is not satisfied is bounded by (1− ε)λ/ε ≤
e−λ = negl(λ). Thus, we have Pr[Output of Game 1 is 1] ≤ Pr[S] + negl(λ).

We next consider the following adversary B attacking the true-simulation extractability of NIZK using
A .

1. Given crs, B gives pp := crs to A .

2. When A queries a message m ∈ {0, 1}k, B first samples K ← UK. Next, B computes
y0 ← PRF.Eval(K, 0) and K{0} ← Puncture(K, {0}). Then, B sends a statement/witness
pair ((m, y0, K{0}), K) to the challenger.

3. Given π, B sends C̃ := (m, y0, K{0}, π) to A .

4. When A outputs C∗ = (m∗, y∗, K∗, π∗), B first randomly chooses xj from {0, 1}n for every j ∈ [ω]
and checks whether Eval(pp, C∗, xj) = PRF.Eval(K, xj) holds for some j ∈ [ω]. If so, B outputs
a statement/proof pair ((m∗, y∗, K∗), π∗). Otherwise, B outputs ⊥.

When we execute Exptse-real
B,NIZK, the output of it is 1 if and only if the following conditions hold.

• Let ω = λ/ε. Eval(pp, C∗, xj) = PRF.Eval(K, xj) holds for some j ∈ [ω], where xj is randomly
chosen from {0, 1}n for every j ∈ [ω].
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• NIZK.Vrfy(crs, (m∗, y∗, K∗), π∗) = >.

• ((m, y0, K{0}), K) ∈ RL.

• (m, y0, K{0}) 6= (m∗, y∗, K∗).

B perfectly simulates Game 1 until A terminates. We see that when the event S occurs in the simulated
Game 1, the output of Exptse-real

B,NIZK is 1. Namely, we have Pr[S] ≤ Pr
[
1← Exptse-real

B,NIZK

]
.

Since NIZK satisfies true-simulation extractability, there exists Sim = (FkSetup, Sim1, Sim2) such
that we have ∣∣∣Pr

[
1← Exptse-real

B,NIZK

]
− Pr

[
1← Exptse-sim

B,Sim,NIZK
]∣∣∣ ≤ negl(λ).

We then define the following Game 2.

Game 2: This game is the same as Exptse-sim
B,Sim,NIZK except conceptual changes. Especially, this game is

obtained by transforming Exptse-sim
B,Sim,NIZK into a security game played between the challenger and A

so that the output distribution does not change.

1. The challenger generates (crs, td)← FkSetup(1λ) and gives pp := crs to A .
2. When A queries a message m ∈ {0, 1}k, the challenger first samples K ← UK. Next, the

challenger computes y0 ← PRF.Eval(K, 0) and K{0} ← Puncture(K, {0}). Then, the chal-
lenger computes (π, stSim)← Sim1(crs, td, (m, y0, K{0})) and sends C̃ := (m, y0, K{0}, π)
to A .

3. WhenA outputsC∗ = (m∗, y∗, K∗, π∗), the challenger computesK′ ← Sim2(stSim, (m∗, y∗, K∗), π∗).
The challenger then outputs 1 if all of the following conditions hold.

• For {xj}j∈[ω] randomly chosen from {0, 1}n, Eval(pp, C∗, xj) = PRF.Eval(K, xj) holds
for some j ∈ [ω].

• NIZK.Vrfy(crs, ((m∗, y∗, K∗), π∗)) = >.
• ((m, y0, K{0}), K) ∈ RL.
• ((m∗, y∗, K∗), K′) ∈ RL.
• (m, y0, K{0}) 6= (m∗, y∗, K∗).

Otherwise, the challenger outputs 0.

When the above first condition and fourth condition hold, we have PRF.Eval(K, xj) = PRF.Eval(K′, xj).
Then, from the key-injective property of PPRF, we also have K = K′. Therefore, from the security of
PPRF, we have Pr[Output of Game 2 is 1] ≤ negl(λ).

From the discussions so far, we obtain Pr[Output of Game 1 is 1] ≤ negl(λ). This completes the
proof.

From Theorem 2.9 and Theorem 2.15, we can instantiate Construction 4.4 under the LWE assumption.
Concretely, we obtain the following theorem.

Theorem 4.6. Let ε be any inverse polynomial of λ. Assuming the quantum hardness of the LWE problem,
there is a relaxed (ε,UF)-secure watermarking scheme for a family of PRF F , where UF is the uniform
distribution over F .
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4.3 Relaxed Watermarking for Compute-and-Compare Circuits

We give a construction of relaxed watermarking for circuits called (searchable) compute-and-compare
circuits. The construction is essentially the classical part of the SSL construction by Ananth and La
Placa [AL21]. Note that their construction uses a primitive called input-hiding obfuscation. However,
our construction instead uses injective one-way functions that can be seen as a concrete instantiation of
input-hiding obfuscation.

Below, we first define a family of compute-and-compare circuits and then provide the construction of
a relaxed watermarking scheme for it.

Definition 4.7 (Compute-and-Compare Circuits). A compute-and-compare circuit C{C, α} is of the
form

C{C, α}(x)
{

1 (C(x) = α)
0 (otherwise) ,

where C is a circuit and α is a string called lock value. We let Cn,m
cnc = {C{C, α}|C : {0, 1}n →

{0, 1}m, α ∈ {0, 1}m}.

Searchability: We say that a family of compute-and-compare circuits Cn,m
cnc = {C{C, α}|C : {0, 1}n →

{0, 1}m, α ∈ {0, 1}m} is searchable if there exists a PPT algorithm S such that given any
C{C, α} ∈ Cn,m

cnc , S outputs x ∈ {0, 1}n such that C{C, α}(x) = 1 (i.e., C(x) = α).

Distribution of interest. For a function γ(λ), we say that a distributionDγ-cnc over Cn,m
cnc has conditional

min-entropy γ if C{C, α} ← Dγ-cnc satisfies H∞(α|C) ≥ γ(λ).

Construction 4.8 (Relaxed Watermarking for Searchable Compute and Compare Circuits). Let n, m, ` be
polynomials of λ. Let Fow = { f : {0, 1}m → {0, 1}`} be a family of injective one-way functions and let
NIZK = (NIZK.Setup, NIZK.Prove, NIZK.Vrfy) be a NIZK system for NP. Our relaxed watermarking
scheme for searchable compute-and-compare circuits Cn,m

cnc is as follows. Its message space is {0, 1}k for
some polynomial k of λ. Below, let S be the search algorithm for Cn,m

cnc .

Gen(1λ): Generate crs← NIZK.Setup(1λ) and f ← Fow. Output pp := (crs, f ).

Mark(pp, C{C, α}, m): Compute x := S(C{C, α}). That is, x is an accepting point of C{C, α}.
Compute y← f (α). An NP relationRL is defined as follows.

RL := {((m, f , y, C), x)) | y = f (C(x))} .

Compute π ← NIZK.Prove(crs, (m, f , y, C), x). Output C̃ := (m, y, C, π).

Extract(pp, C̃′): Parse C̃′ = (m′, y′, C′, π′) and output m′.

Eval(pp, C′, x): Parse C̃′ = (m′, y′, C′, π′) and run NIZK.Vrfy(crs, (m′, f , y′, C′), π′). If the output is
⊥, output ⊥. Otherwise, output 1 if y′ = f (C′(x)) and 0 otherwise.

Theorem 4.9. Let n, m, and γ be functions of λ. Also, let Dγ-cnc be any distribution over Cn,m
cnc that

has conditional min-entropy γ. If Fow is a family of injective OWF for γ-sources and NIZK is a
true-simulation extractable NIZK system for NP secure against adversaries of running time O(2n), then
Construction 4.8 is a relaxed (1,Dγ-cnc)-secure watermarking scheme for Cn,m

cnc .

Proof of Theorem 4.9. The statistical correctness of Construction 4.8 follows from the completeness of
NIZK and the injective property of Fow. Also, the extraction correctness of Construction 4.8 immediately
follows from the construction. Below, we prove the relaxed (ε,Dγ-cnc)-unremovability of Construction 4.8.

Let A be a QPT adversary attacking relaxed (1,Dγ-cnc)-unremovability. We prove this theorem using
hybrid games.
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Game 1: This is Expr-urmv
A ,Dγ-cnc(λ, ε) for Construction 4.8.

1. The challenger generates crs← NIZK.Setup(1λ) and f ← Fow, and gives pp := (crs, f ) to
the adversary A .

2. At some point, A queries a messagem ∈ {0, 1}k to the challenger. The challenger first samples
C{C, α} ← Dγ-cnc. Next, the challenger computes x := S(C{C, α}) and y← f (α). Then,
the challenger computes π ← NIZK.Prove(crs, (m, f , y, C), x). Then, the challenger returns
C̃ := (m, y, C, π) to A .

3. Finally, A outputs C̃∗ = (m∗, y∗, C∗, π∗). If Eval(pp, C̃∗, ·) and C{C, α}(·) are functionally
equivalent, and Extract(pp, C̃∗) = m∗ 6= m, then the challenger outputs 1 as the output of
this game. Otherwise, the challenger outputs 0 as the output of this game.

We define the following three conditions.

(a) Eval(pp, C̃∗, ·) and C{C, α}(·) are functionally equivalent.

(b) NIZK.Vrfy(crs, (m∗, f , y∗, C∗), π∗) = >.

(c) m∗ 6= m.

It is clear that if all of the above conditions are satisfied, the output of Game 1 is 1. In the opposite
direction, it is clear that the conditions (a) and (c) are satisfied whenever the output of Game 1 is 1
from the definition of Game 1. Also, we see that if the condition (b) is not satisfied, Eval(pp, C̃∗, ·) and
C{C, α}(·) are not functionally equivalent and thus the output of Game 1 is 0. Therefore, the condition
(b) is satisfied whenever the output of Game 1 is 1. Overall, the output of Game 1 is 1 if and only if the
above three conditions hold in Game 1.

We next consider the following adversary B attacking the true-simulation extractability of NIZK using
A .

1. Given crs, B generates f ← Fow, and gives pp := (crs, f ) to A .

2. When A queries a message m ∈ {0, 1}k, B first samples C{C, α} ← Dγ-cnc. Next, B computes
x := S(C{C, α}) and y← f (α). Then, B sends a statement/witness pair ((m, f , y, C), x) to the
challenger.

3. Given π, B sends C̃ := (m, y, C, π) to A .

4. When A outputs C̃∗ = (m∗, y∗, C∗, π∗), B first checks whether Eval(pp, C∗, ·) and C{C, α}(·)
are functionally equivalent. (Note that this check can be done in time O(2n).) If so, B outputs a
statement/proof pair ((m∗, f , y∗, C∗), π∗). Otherwise, B outputs ⊥.

When we execute Exptse-real
B,NIZK, the output of it is 1 if and only if the following conditions hold.

• Eval(pp, C̃∗, ·) and C{C, α}(·) are functionally equivalent.

• NIZK.Vrfy(crs, (m∗, f , y∗, C∗), π∗) = >.

• ((m, f , y, C), x) ∈ RL.

• (m, f , y, C) 6= (m∗, f , y∗, C∗).
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B perfectly simulates Game 1 for A until A terminates. We see that when the output of the simulated
Game 1 is 1, the output of Exptse-real

B,NIZK is also 1. Namely, we have Pr[Output of Game 1 is 1] ≤
Pr
[
1← Exptse-real

B,NIZK

]
.

B runs in time O(2n). Since NIZK satisfies true-simulation extractability against adversaries runs in
time O(2n), there exists Sim = (FkSetup, Sim1, Sim2) such that we have∣∣∣Pr

[
1← Exptse-real

B,NIZK

]
− Pr

[
1← Exptse-sim

B,Sim,NIZK
]∣∣∣ ≤ negl(λ).

We then define the following Game 2.

Game 2: This game is the same as Exptse-sim
B,Sim,NIZK except conceptual changes. Especially, this game is

obtained by transforming Exptse-sim
B,Sim,NIZK into a security game played between the challenger and A

so that the output distribution does not change.

1. The challenger generates (crs, td)← FkSetup(1λ) and f ← Fow, and gives pp := (crs, f )
to A .

2. When A queries a message m ∈ {0, 1}k, the challenger first samples C{C, α} ← Dγ-cnc.
Next, the challenger computes x := S(C{C, α}) and y ← f (α). Then, the challenger
computes (π, stSim)← Sim1(crs, td, (m, f , y, C)) and sends C̃ := (m, y, C, π) to A .

3. WhenA outputs C̃∗ = (m∗, y∗, K∗, π∗), the challenger computes x∗ ← Sim2(stSim, (m∗, f , y∗, C∗), π∗).
The challenger then outputs 1 if all of the following conditions hold.

• Eval(pp, C∗, ·) and C{C, α} are functionally equivalent.
• NIZK.Vrfy(crs, (m∗, f , y∗, C∗), π∗) = >.
• ((m, f , y, C), x) ∈ RL.
• ((m∗, f , y∗, C∗), x∗) ∈ RL.
• (m, f , y, C) 6= (m∗, f , y∗, C∗).

Otherwise, the challenger outputs 0.

If the above first item and fourth item hold, we have

C{C, α}(x∗) = 1⇔ C(x∗) = α,

and thus f (C(x∗)) = y. Therefore, we have Pr[Output of Game 2 is 1] ≤ negl(λ) from the security of
Fow.

From the discussions so far, we obtain Pr[Output of Game 1 is 1] ≤ negl(λ). This completes the
proof.

From Theorem 2.5 and Theorem 2.15, we can instantiate Construction 4.8 under the LWE assumption.
Concretely, we obtain the following theorem.

Theorem 4.10. Let η > 0 be any constant. Assuming the hardness of the LWE problem against sub-
exponential time quantum adversaries, there exists a relaxed (1,Dλη-cnc)-secure watermarking scheme
for the class of compute-and-compare circuits Cn,m

cnc , where Dλη-cnc is any distribution over Cn,m
cnc that has

conditional min-entropy λη .
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5 Secure Software Leasing from Two-Tier Quantum Lightning

This section shows how to construct a finite-term secure SSL scheme from two-tier quantum lightning
and a relaxed watermarking. Due to a technical reason, we additionally use an OT-MAC, which can be
realized information theoretically.

Construction 5.1 (SSL from Two-Tier Quantum Lightning). Let C = {Cλ}λ be a circuit class such that Cλ

contains circuit of input length is n and output length m. Our SSL scheme (Setup, Gen, Lessor , Run , Check )
for C is based on a two-tier quantum lightning ttQL = (ttQL.Setup, BoltGen , SemiVrfy , FullVrfy), a relaxed
watermarking scheme WM = (WM.Gen, WM.Mark, WM.Extract, WM.Eval) for C, and a OT-MAC
MAC = (MAC.Gen, MAC.Tag, MAC.Vrfy).

• Setup(1λ): Compute pp← WM.Gen(1λ) and output crs := pp.

• Gen(crs): Parse pp ← crs. Compute (pk, sk) ← ttQL.Setup(1λ) and s ← MAC.Gen(1λ), and
set ssl.sk := (pp, pk, sk, s).

• Lessor (ssl.sk, C): Do the following:

1. Parse (pp, pk, sk, s)← ssl.sk.
2. Compute (snum, bolt)← BoltGen(pk).
3. Compute C̃ ← WM.Mark(pp, C, pk‖snum).
4. Compute tag← MAC.Tag(s, snum).
5. Output sft C := (bolt , C̃, tag).

• Run(crs, sft C, x): Do the following.

1. Parse pp← crs and sft C = (bolt , C̃, tag).
2. Compute pk′‖snum′ ← WM.Extract(pp, C̃).
3. Run SemiVrfy(pk′, snum′, bolt) and obtain (b, bolt ′). If b = ⊥, then output ⊥. Otherwise, do

the next step.
4. Compute y← WM.Eval(pp, C̃, x).
5. Output (bolt ′, C̃, tag) and y.

• Check (ssl.sk, sft C): Do the following.

1. Parse (pp, pk, sk, s)← ssl.sk and sft C = (bolt , C̃, tag).
2. Compute pk′‖snum′ ← WM.Extract(pp, C̃).
3. If MAC.Vrfy(s, snum′, tag) = ⊥, then output ⊥. Otherwise, do the next step.
4. Output d← FullVrfy(sk, snum′, bolt).

We have the following theorems.

Theorem 5.2. Let ε be any inverse polynomial of λ and DC a distribution over C. Assume ttQL is a
two-tier quantum lightning scheme, WM is a (ε,DC)-secure relaxed watermarking scheme for C, and
MAC is an OT-MAC. Then, Construction 5.1 is a (ε,DC)-average-case finite-term lessor secure SSL
scheme for C.

Theorem 5.3. Let β be any inverse polynomial of λ and DC a distribution over C. Assume ttQL is a
two-tier quantum lightning scheme, WM is a (1,DC)-secure relaxed watermarking scheme for C, and
MAC is an OT-MAC. Then, Construction 5.1 is a (β,DC)-perfect finite-term lessor secure SSL scheme
for C.
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Since the proofs for the above two theorems are almost the same, we only provide the proof of
Theorem 5.2 and omit the proof for Theorem 5.3.

Proof of Theorem 5.2. The correctness of Run of Construction 5.1 follows from the statistical correctness
and extraction correctness of WM, and the semi-verification correctness of ttQL. Also, the correctness of
Check of Construction 5.1 follows from the extraction correctness of WM, the correctness of MAC, and
the full-verification correctness of ttQL. Below, we prove the (ε,DC)-average-case finite-term lessor
security of Construction 5.1.

Let A be a QPT adversary attacking (ε,DC)-average-case finite-term lessor security. The detailed
description of Exptaft-lessor

A ,DC (λ, ε) is as follows.

1. The challenger generatespp← WM.Gen(1λ), (pk, sk)← ttQL.Setup(1λ), and s← MAC.Gen(1λ).
The challenger then generate C ← DC and (snum, bolt) ← BoltGen(pk). The challenger also
computes C̃ ← WM.Mark(pp, C, pk‖snum) and tag ← MAC.Tag(s, snum). The challenger
finally sends crs := pp and sft C := (bolt , C̃, tag) to A . Below, let ssl.sk := (pp, pk, sk, s).

2. A outputs (C̃(1), tag(1), C̃(2), tag(2), b∗). (C̃(1), tag(1)) is the classical part of the first copy, and
(C̃(2), tag(2)) is that of the second copy. Moreover, b∗ is a density matrix associated with two
registers R1 and R2, where the states in R1 and R2 are associated with the first and second copy,
respectively. Below, let sft (1) = (Tr2[b∗], C̃(1), tag(1)) and sft (2) = (P2(ssl.sk, b∗), C̃(2), tag(2)).
Recall that P2(ssl.sk, b∗) denotes the resulting post-measurement state on R2 after the check on R1.

3. If it holds that Check (ssl.sk, sft (1)) = > and Pr
[

Runout(crs, sft (2), x) = C(x)
]
≥ ε, where the

probability is taken over the choice of x ← {0, 1}n and the random coin of Run , then the challenger
outputs 1 as the output of this game. Otherwise, the challenger outputs 0 as the output of this game.

Below, we letpk(1)‖snum(1) ← WM.Extract(pp, C̃(1)) andpk(2)‖snum(2) ← WM.Extract(pp, C̃(2)).
The output of Exptaft-lessor

A ,DC (λ, ε) is 1 if and only if the following conditions hold.

(a) MAC.Vrfy(s, snum(1), tag(1)) = >.

(b) FullVrfy(sk, snum(1), Tr2[b∗]) = >.

(c) SemiVrfy(pk(2), snum(2), P2(ssl.sk, b∗)) = >.

(d) Prx←{0,1}n [WM.Eval(crs, C̃(2), x) = C(x)] ≥ ε.

We can estimate the advantage of A as

Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1
]
= Pr

[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ snum(1) = snum∧ pk(2)‖snum(2) = pk‖snum
]

+ Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ (snum(1) 6= snum∨ pk(2)‖snum(2) 6= pk‖snum)
]

≤ Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ snum(1) = snum∧ pk(2)‖snum(2) = pk‖snum
]

+ Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ snum(1) 6= snum
]

+ Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ pk(2)‖snum(2) 6= pk‖snum
]

We then have the following lemmas.

Lemma 5.4. Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ snum(1) = snum∧ pk(2)‖snum(2) = pk‖snum
]
= negl(λ)

by the two-tier unclonability of ttQL.
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Lemma 5.5. Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ snum(1) 6= snum
]
= negl(λ) by the security of MAC.

Lemma5.6. Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ pk(2)‖snum(2) 6= pk‖snum
]
= negl(λ) by the (ε,DC)-removability

of WM.

For Lemma 5.4, if the condition (b) and (c) above and snum(1) = snum∧ pk(2)‖snum(2) = pk‖snum
hold at the same time with non-negligible probability, by using A , we can construct an adversary breaking
the two-tier unclonability of ttQL. Thus, we have Lemma 5.4. Next, for Lemma 5.5, if the condition (a)
and snum(1) 6= snum hold with non-negligible probability, also by using A , we can construct an adversary
breaking the security of MAC. Thus, we have Lemma 5.5. Finally, for Lemma 5.6, if the condition (d)
and pk(2)‖snum(2) 6= pk‖snum hold with non-negligible probability, by using A , we can construct an
adversary breaking (ε,DC)-unremovability of WM. Thus, we have Lemma 5.6.

From the discussions so far, we obtain Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1
]
≤ negl(λ). This completes the

proof.

6 Secure Software Leasing with Classical Communication

In this section, we extend our finite-term secure SSL scheme to one with classical communication by
using two-tier quantum lightning with classical verification.

6.1 Definition

First, we formalize the notion of SSL with classical communication.

Definition 6.1 (SSL with Setup and classical communication). Let C = {Cλ}λ be a circuit class such
that Cλ contains circuit of input length is n and output length m. A secure software lease scheme with setup
and classical communication forC is a tuple of algorithms (Setup, Gen, Lessor, Lessee1, Lessee2, Run , SSLCert ,
CertVrfy).

• Setup(1λ), Gen(crs), Run(crs, sft C, x): These are the same as the SSL in Definition 2.18.

• Gen(crs) : The key generation algorithm takes as input crs and outputs a public key pk and secret
key sk.

• Lessee1(pk) : The first stage lessee algorithm takes as input crs and outputs a classical string
obligation and a quantum state st Lessee .

• Lessor(sk, obligation, C) : The lessor algorithm takes as input sk, obligation, and a circuit C ∈ C,
and outputs a classical string answer.

• Lessee2(pk, st Lessee , answer) : The second stage lessee algorithm takes as input crs, st Lessee , and
answer, and outputs a quantum state sft .

• SSLCert(crs, sft ∗) : The certification algorithm takes as input crs and sft ∗ and outputs a classical
string cert.

• CertVrfy(sk, cert) : The certification-verification algorithm takes as input sk and cert and outputs
> or ⊥.

Definition 6.2 (Correctness for SSL with classical verification). An SSL scheme with classical commu-
nication (Setup, Gen, Lessor, Lessee1, Lessee2, Run , Check ) for C = {Cλ}λ is correct if for all C ∈ Cλ, the
following two properties hold:
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• Correctness of Run:

Pr

∀x, Pr
[
Runout(crs, sft C, x) = C(x)

]
≥ 1− negl(λ)

∣∣∣∣∣∣∣∣∣∣
crs← Setup(1λ)
(pk, sk)← Gen(crs)
(obligation, st Lessee)← Lessee1(pk)
answer← Lessor(sk, obligation, C)
sft C ← Lessee2(pk, st Lessee , answer)


≥ 1− negl(λ).

• Correctness of CertVrfy:

Pr

CertVrfy(sk, cert) = >

∣∣∣∣∣∣∣∣∣∣∣∣

crs← Setup(1λ)
(pk, sk)← Gen(crs)
(obligation, st Lessee)← Lessee1(pk)
answer← Lessor(sk, obligation, C)
sft C ← Lessee2(pk, st Lessee , answer)
cert← SSLCert(crs, sft C)

 ≥ 1− negl(λ).

Similarly to the ordinary SSL, we consider the following two security notions perfect finite-term
lessor security and average-case finite-term lessor security.

Definition 6.3 (Perfect Finite-Term Lessor Security). Let β be any inverse polynomial of λ and DC a
distribution on C. We define the (β,DC)-perfect finite-term lessor security game Exptpft-lessor-cc

A ,DC (λ, β)
between the challenger and adversary A as follows.

1. The challenger generates crs← Setup(1λ) and (pk, sk)← Gen(crs), and sends crs and pk to A .

2. A outputsobligation. The challenger generatesC ← DC , computes answer← Lessor(sk, obligation, C),
and sends answer to A .

3. A outputs a classical string cert∗ and a quantum state sft ∗.

4. If CertVrfy(sk, cert∗) = > and ∀x Pr[Runout(crs, sft ∗, x) = C(x)] ≥ β hold, where the proba-
bility is taken over the choice of the random coin of Run , then the challenger outputs 1. Otherwise,
the challenger outputs 0.

We say that an SSL scheme with classical communication (Setup, Gen, Lessor, Lessee1, Lessee2, Run ,
SSLCert , CertVrfy) is (β,DC)-perfect finite-term lessor secure, if for any QPT A , the following holds.

Pr
[
Exptpft-lessor-cc

A ,DC (λ, β) = 1
]
≤ negl(λ).

Definition 6.4 (Average-Case Finite-Term Lessor Security). Let ε be any inverse polynomial of λ
and DC a distribution on C. We define the (ε,DC)-average-case finite-term lessor security game
Exptaft-lessor-cc

A ,DC (λ, ε) by replacing the fourth stage of Exptpft-lessor-cc
A ,DC (λ, β) with the following.

4. If CertVrfy(sk, cert∗) = > and Pr[Runout(crs, sft ∗, x) = C(x)] ≥ ε hold, where the probability
is taken over the choice of x ← {0, 1}n and the random coin of Run , then the challenger outputs 1.
Otherwise, the challenger outputs 0.

We say that an SSL scheme with classical communication (Setup, Gen, Lessor, Lessee1, Lessee2, Run ,
SSLCert , CertVrfy) is (ε,DC)-average-case finite-term lessor secure, if for any QPT A , the following
holds.

Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1
]
≤ negl(λ).
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6.2 Construction

We show how to construct a finite-term secure SSL scheme with classical communication from two-tier
quantum lightning with classical verification, relaxed watermarking, and OT-MAC.

Construction 6.5 (SSL from Two-Tier QL with classical verification). Let C = {Cλ}λ be a circuit class
such that Cλ contains circuit of input length is n and output length m. Our SSL scheme with classical
communication (Setup, Gen, Lessor, Lessee1, Lessee2, Run , SSLCert , CertVrfy) for C is based on a two-tier
QL with semi-classical verification ttQL = (ttQL.Setup, BoltGen , BoltCert , SemiVrfy , ttQL.CertVrfy),
relaxed watermarking scheme WM = (WM.Setup, WM.Mark, WM.Extract, WM.Eval) for C, and OT-
MAC MAC = (MAC.Gen, MAC.Tag, MAC.Vrfy).

• Setup(1λ): Compute pp← WM.Gen(1λ) and output crs := pp.

• Gen(crs): Compute (pk, sk)← ttQL.Setup(1λ) and s← MAC.Gen(1λ), and output ssl.pk := pk
and ssl.sk := (pp, pk, sk, s).

• Lessee1(ssl.pk): Parsepk← ssl.pk, generate (snum, bolt)← BoltGen(pk), and outputs obligation :=
snum and st Lessee := bolt .

• Lessor(sk, obligation, C):

1. Parse (pp, pk, sk, s)← ssl.sk and snum← obligation.
2. Compute C̃ ← WM.Mark(pp, C, pk‖snum).
3. Compute tag← MAC.Tag(s, snum).
4. Output answer := (C̃, tag).

• Lessee2(ssl.pk, st Lessee , answer): Parse bolt ← st Lessee and (C̃, tag) ← answer, and output sft :=
(bolt , C̃, tag).

• Run(crs, sftC, x): Do the following.

1. Parse pp← crs and (bolt , C̃, tag)← sft .

2. Compute pk′‖snum′ ← WM.Extract(pp, C̃).
3. Run (b, bolt ′) ← SemiVrfy(pk′, snum′, bolt). If b = ⊥, then output ⊥. Otherwise, do the

next step.
4. Compute y← WM.Eval(pp, C̃, x).
5. Output (bolt ′, C̃, tag) and y.

• SSLCert(crs, sft): Parse (bolt , C̃, tag)← sft , runs ttQL.cert← BoltCert(bolt), and output cert :=
(ttQL.cert, C̃, tag).

• CertVrfy(ssl.sk, cert): Do the following.

1. Parse (pp, pk, sk, s)← ssl.sk and (ttQL.cert, C̃, tag)← cert.
2. Compute pk′‖snum′ ← WM.Extract(pp, C̃).
3. If MAC.Vrfy(s, snum′, tag) = ⊥, then output ⊥. Otherwise, do the next step.
4. Output d← ttQL.CertVrfy(sk, snum′, cert).

We have the following theorems.
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Theorem 6.6. Let ε be any inverse polynomial of λ and DC a distribution over C. Assume ttQL is a two-
tier quantum lightning scheme with classical verification, WM is a (ε,DC)-secure relaxed watermarking
scheme for C, and MAC is an OT-MAC. Then, Construction 6.5 is a (ε,DC)-average-case finite-term
lessor secure SSL scheme with classical communication for C.
Theorem 6.7. Let β be any inverse polynomial of λ and DC a distribution over C. Assume ttQL is a two-
tier quantum lightning scheme with classical verification, WM is a (1,DC)-secure relaxed watermarking
scheme for C, and MAC is an OT-MAC. Then, Construction 6.5 is a (β,DC)-perfect finite-term lessor
secure SSL scheme with classical communication for C.

Since the proofs for the above two theorems are almost the same, we provide the proof of only
Theorem 6.6 and omit the proof of Theorem 6.7.

Proof of Theorem 6.6. The correctness of Run of Construction 6.5 follows from the statistical correctness
and extraction correctness of WM, and the semi-verification correctness of ttQL. Also, the correctness of
CertVrfy of Construction 6.5 follows from the extraction correctness of WM, the correctness of MAC, and
the certification-verification correctness of ttQL. Below, we prove the (ε,DC)-average-case finite-term
lessor security of Construction 6.5.

Let A be a QPT adversary attacking (ε,DC)-average-case finite-term lessor security. The detailed
description of Exptaft-lessor-cc

A ,DC (λ, ε) is as follows.

1. The challenger generatespp← WM.Gen(1λ), (pk, sk)← ttQL.Setup(1λ), and s← MAC.Gen(1λ).
The challenger sends crs := pp and ssl.pk := pk to A . Below, let ssl.sk := (pp, pk, sk, s).

2. A sends obligation := snum∗ to the challenger. The challenger generates C ← DC . The
challenger also computes C̃ ← WM.Mark(pp, C, pk‖snum∗) and tag ← MAC.Tag(s, snum∗).
The challenger finally sends answer := (C̃, tag) to A .

3. A outputs cert∗ = (ttQL.cert∗, C̃(1), tag(1)) and sft ∗ = (b∗, C̃(2), tag(2)), where b∗ is a single
quantum state and others are classical strings.

4. If it holds that CertVrfy(ssl.sk, cert) = > and Pr[Runout(crs, sft ∗, x) = C(x)] ≥ ε, where the
probability is taken over the choice of x ← {0, 1}n and the random coin of Run , then the challenger
outputs 1 as the output of this game. Otherwise, the challenger outputs 0 as the output of this game.

Below, we letpk(1)‖snum(1) ← WM.Extract(pp, C̃(1)) andpk(2)‖snum(2) ← WM.Extract(pp, C̃(2)).
The output of Exptaft-lessor

A ,DC (λ, ε) is 1 if and only if the following conditions hold.

(a) MAC.Vrfy(s, snum(1), tag(1)) = >.

(b) ttQL.CertVrfy(sk, snum(1), ttQL.cert∗) = >.

(c) SemiVrfy(pk(2), snum(2), b∗) = >.

(d) Prx←{0,1}n [WM.Eval(pp, C̃(2), x) = C(x)] ≥ ε.

We can estimate the advantage of A as

Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1
]
= Pr

[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ snum(1) = snum∗ ∧ pk(2)‖snum(2) = pk‖snum∗
]

+ Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ (snum(1) 6= snum∗ ∨ pk(2)‖snum(2) 6= pk‖snum∗)
]

≤ Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ snum(1) = snum∗ ∧ pk(2)‖snum(2) = pk‖snum∗
]

+ Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ snum(1) 6= snum∗
]

+ Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ pk(2)‖snum(2) 6= pk‖snum∗
]
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We then have the following lemmas.

Lemma6.8. Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ snum(1) = snum∗ ∧ pk(2)‖snum(2) = pk‖snum∗
]
= negl(λ)

by the two-tier unclonability with classical verification of ttQL.

Lemma 6.9. Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ snum(1) 6= snum∗
]
= negl(λ) by the security of MAC.

Lemma 6.10. Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1∧ pk(2)‖snum(2) 6= pk‖snum∗
]
= negl(λ) by the (ε,DC)-

unremovability of WM.

For Lemma 6.8, if the condition (b) and (c) above and snum(1) = snum∗ ∧ pk(2)‖snum(2) =
pk‖snum∗ hold at the same time with non-negligible probability, by using A , we can construct an
adversary breaking the two-tier unclonability of ttQL. Thus, we have Lemma 6.8. Next, for Lemma 6.9,
if the condition (a) and snum(1) 6= snum∗ hold with non-negligible probability, also by using A , we can
construct an adversary breaking the security of MAC. Thus, we have Lemma 6.9. Finally, for Lemma 6.10,
if the condition (d) and pk(2)‖snum(2) 6= pk‖snum∗ hold with non-negligible probability, by using A ,
we can construct an adversary breaking (ε,DC)-unremovability of WM. Thus, we have Lemma 6.10.

From the discussions so far, we obtain Pr
[
Exptaft-lessor

A ,DC (λ, ε) = 1
]
≤ negl(λ). This completes the

proof.

7 Putting It Altogether: SSL from LWE

In this section, we summarize our results.

SSL for a family of PRF. By combining Theorem 5.2 with Theorem 3.16, Corollary 3.21, Theorem 4.6,
and Theorem 2.11, we obtain the following theorem.

Theorem 7.1. Let ε be any inverse polynomial of λ. Assuming the quantum hardness of the LWE problem,
there exists a (ε,UF)-average-case finite-term lessor secure SSL scheme for a family of PRF F , where UF
is the uniform distribution over F .

Also, by combing Theorem 6.6 with Corollary 3.21, Theorem 4.6, and Theorem 2.11, we obtain the
following theorem.

Theorem 7.2. Let ε be any inverse polynomial of λ. Assuming the quantum hardness of the LWE problem,
there exists a (ε,UF)-average-case finite-term lessor secure SSL scheme with classical communication
for a family of PRF F , where UF is the uniform distribution over F .

SSL for compute-and-compare circuits. By combining Theorem 5.3 with Theorem 3.16, Corol-
lary 3.21, Theorem 4.10, and Theorem 2.11, we obtain the following theorem.

Theorem 7.3. Let β be any inverse polynomial of λ and η > 0 any constant. Assuming the hardness of
the LWE problem against sub-exponential time quantum adversaries, there exists a (β,Dλη-cnc)-perfect
finite-term lessor secure SSL scheme for the class of compute-and-compare circuits Cn,m

cnc , where Dλη-cnc
is any distribution over Cn,m

cnc that has conditional min-entropy λη .

Also, by combing Theorem 6.7 with Corollary 3.21, Theorem 4.10, and Theorem 2.11, we obtain the
following theorem.

Theorem 7.4. Let β be any inverse polynomial of λ and η > 0 any constant. Assuming the hardness of
the LWE problem against sub-exponential time quantum adversaries, there exists a (β,Dλη-cnc)-perfect
finite-term lessor secure SSL scheme with classical communication for the class of compute-and-compare
circuits Cn,m

cnc , where Dλη-cnc is any distribution over Cn,m
cnc that has conditional min-entropy λη .
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