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Abstract. The security proofs of post-quantum cryptographic schemes
often consider only classical adversaries. Therefore, whether such schemes
are really post-quantum secure remains unknown until the proofs take
quantum adversaries into account. Switching to a quantum adversary
might require to adapt the security notion. In particular, post-quantum
security proofs for schemes which use random oracles have to be in the
quantum random oracle model (QROM), while classical security proofs
are in the random oracle model (ROM). We remedy this state of affairs
by introducing a framework to obtain post-quantum security of public
key encryption schemes which use random oracles. We define a class of
encryption schemes, called oracle-simple, and identify game hops which
are used to prove such schemes secure in the ROM. For these game hops,
we state both simple and sufficient conditions to validate that a proof also
holds in the QROM. The strength of our framework lies in its simplicity,
its generality, and its applicability. We demonstrate this by applying it to
the code-based encryption scheme ROLLO-II (Round 2 NIST candidate)
and the lattice-based encryption scheme LARA (FC 2019). Thereby we
prove that both schemes are post-quantum secure, which had not been
shown before.
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1 Introduction

Relying on quantum-hard mathematical assumptions is not sufficient to develop
cryptographic schemes that withstand attackers with quantum computing power.
To truly provide security against quantum adversaries, their quantum computing
power has to be considered in the security proof as well. At least three models re-
garding the quantum computing power of the adversary and the schemes’ users
are distinguished [13]: classical security, post-quantum security, and quantum
security. In classical security proofs no one has quantum computing power. In
post-quantum security proofs, by contrast, the adversary has quantum comput-
ing power and can thereby deploy quantum computation in its attacks, e.g.,
by evaluating hash functions in superposition. The users of the cryptographic
scheme, however, remain classical. In a world where every party has quantum



computing power, quantum security is needed. In this model, for instance, a
quantum adversary is able to query a decryption oracle in superposition.

Post-quantum security of schemes is mandatory to be deployed in a world
with large quantum computers. Hence, if only classical proofs exist, it has to be
evaluated if these translate to a quantum adversary, i.e., whether the classical
security can be lifted to post-quantum security. This is not always the case [9,25].
For cryptographic schemes which are proven secure in the random oracle model
(ROM), this entails that they have to be proven secure in the quantum random
oracle model (QROM) [9]. In this model, the adversary can query the random
oracle in superposition. This requires different proof techniques to cope with the
additional power of the adversary.

A popular technique to prove security of a cryptographic scheme is to organise
the proof as a sequence of games [7,24]. In a game-based proof, the advantage of
an adversary A in a game Gy can be bound by its advantage to distinguish the
real game Gy from an ideal game G in which the adversary has no advantage.
To this end, several intermediate games Gq,...,Gg_1 are constructed between
Gop and Gg so that the change between successive games is small. This makes
the advantage to distinguish each pair of consecutive games, i.e., each game hop,
easier to analyse and allows to upper bound the overall advantage of A by the
sum of these advantages. To lift a classical game-based proof to post-quantum
security, an adversary with quantum computing power has to be considered and
the classical games have to be replaced by their corresponding post-quantum
versions.

In this work, we study under which conditions security proofs of public key
encryption (PKE) schemes can be lifted from the ROM in the QROM. The
security notion we are considering is indistinguishability under chosen-plaintext
attacks (IND-CPA), a basic security notion for PKE schemes. Intuitively, an en-
cryption scheme is IND-CPA-secure if an adversary can not distinguish between
the encryption of two adversarial chosen messages. More precisely, we study how
classical IND-CPA security proofs in the ROM can be lifted to post-quantum
IND-CPA (pg-IND-CPA), where the adversary can query the random oracle in
superposition (QROM) [13].

1.1 Owur Contribution

The contribution of this work is a method to prove IND-CPA-secure encryption
schemes pg-IND-CPA-secure. We define a class of public key encryption schemes,
called oracle-simple, and develop a framework to lift the security of such schemes
from the ROM to the QROM. To this end, we define two different types of
game hops and state simple, easily checkable conditions such that the classical
proof can be lifted against quantum adversaries. Each PKE scheme which can
be proven IND-CPA-secure in this framework thereby is automatically post-
quantum secure. Due to its simplicity we expect the framework to be helpful
when designing post-quantum secure encryption schemes. Another important
aspect is that our framework is generic and not restricted to a certain family of
post-quantum cryptography, e.g., lattice-based cryptography.



We demonstrate the value of our framework by applying it to two public key
encryption schemes, which until this work were not known to be post-quantum
secure: 1) the code-based encryption scheme ROLLO-II [21] and 2) the lattice-
based encryption scheme LARA [4].

Two more schemes which can be proven post-quantum secure using our
framework are the code-based encryption scheme BigQuake [5] and the lattice-
based encryption scheme LIMA [1]}, both Round 1 NIST candidates. Apply-
ing our framework to these schemes is very much akin to the application to
ROLLO-II and LARA, which is why we omit it. To the best of our knowledge,
our framework covers all random-oracle-based encryption schemes submitted to
NIST [1,4,5,21] and, in particular, we are not aware of any random-oracle-based
encryption scheme which is not covered by it.

To obtain classical security against chosen-ciphertext attacks (CCA), all these
schemes rely on generic transformations like the FO-transformation [12]. The
pa-IND-CPA security of the schemes is the final requirement for applying the
post-quantum variants of this transformation [15,26], i.e., to gain CCA security
against quantum adversaries. More recent results of post-quantum secure FO-
transformations [16,18,23] achieve tighter bounds for CCA security at the cost of
an additional property called disjoint simulatability. Intuitively, this means that
there exists a simulator, knowing merely the public key, that can generate fake
ciphertexts that are indistinguishable from real ciphertexts of random messages.
Showing this property for the concrete schemes ROLLO-II and LARA is beyond
the scope of this work.

1.2 Related Work

Song [25] provides a general framework to lift security reductions. However, the
main limitation is that the applicability is restricted to the scenario in which
the classical security notion holds true even for quantum adversaries, e.g., in
the standard model. This restrains the usage of the framework for any proofs in
the ROM, since post-quantum security proofs have to be in the QROM. If the
security notion changes towards a quantum adversary, applying the framework
requires to come up with a quantum proof. That is, one has to transform a
quantum adversary in the QROM into a quantum adversary in the ROM.

For signature schemes, there exist results to obtain post-quantum security in
the QROM. Along with the introduction of the QROM, Boneh et al. [9] present
the concept of history-free reductions for signature schemes proven secure in the
ROM. They show that history-free reductions provide post-quantum security for
signature schemes in the QROM. Since the known ROM proofs for Fiat-Shamir
signatures are not history-free, several works study their post-quantum security
and identify specific properties of Fiat-Shamir signatures such that schemes with
these properties are post-quantum secure in the QROM, e.g., [10, 11,19, 20, 28].

! We note that the IND-CPA security of LIMA can also be proven in the standard
model. This makes its pq-IND-CPA security somewhat trivial, as it avoids the main
challenge, that is, the switch from the ROM to the QROM.



Others, for instance Alkim et al. [2] for the signature scheme qTESLA, prove
post-quantum security directly. Hence, the question whether or not classical
security proofs for signature schemes can be lifted to post-quantum security is
discussed both with and without random oracles.

For encryption schemes, however, no broad analysis of liftable security proofs
in the QROM exists. Zhandry [29] shows that quantum random oracles can be
simulated using ¢g-wise independent functions, thereby removing the additional
assumption required in the proofs by Boneh et al. [9]. In addition, Zhandry
shows how the classical random oracle technique of challenge injection can be
restored in the quantum setting using so-called semi-constant distributions. With
these results several cryptographic schemes, including identity-based encryption
schemes, are proven secure against quantum adversaries. Unruh [27] develops the
one-way to hiding (O2H) lemma, another proof technique in the QROM. The
O2H lemma is used, for instance, by Targhi and Unruh [26] to prove a slight
modification of the FO transformation [12] indistinguishable against chosen-
ciphertext attacks in the QROM. Tighter bounds for the O2H lemma have been
proposed by Ambainis et al. [3] and Bindel et al. [8] at the cost of a more
restricted applicability.

1.3 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we provide the
notation and the necessary background on both the quantum random oracle
model and security proofs. In Section 3, we present our framework and show
under which conditions a classical security proof in the ROM can be lifted to the
QROM. Finally, we apply our framework to the code-based scheme ROLLO-II
and the lattice-based scheme LARA in Section 4 and thereby reveal that their
IND-CPA security proofs remain valid towards a quantum adversary.

2 Preliminaries

2.1 Notation

For a non-negative integer n we denote the set {1,...,n} by [n]. The domain and
co-domain of a function f are denoted by Dom(f) and CoDom(f), respectively.
A function f is called negligible if f(n) < 1/n¢ for any ¢ > 0 and sufficiently
large n. For a set S, we write s «<—s S to denote that a value which is sampled
uniformly at random from § is assigned to s. By |S| we describe the number
of elements in S. We write A, = (M., D,) to denote an IND-CPA adversary
A, which consists of two algorithms M, the message generator which outputs
two messages, and D,, the distinguisher, which outputs a bit. The subscript z
indicates whether the adversary is classical (z = ¢) or quantum (z = ¢). We omit
it in the case it is not relevant. It is assumed that M, and D, share state.

We suppose the reader to be familiar with the fundamental basics of quantum
computation, e.g., the ket notation |-) and measurements. For a more thorough
discussion of the topic, we refer to [22].



2.2 The Quantum Random Oracle Model

The random oracle model (ROM), formalized by Bellare and Rogaway [6], is a
commonly used model to prove cryptographic schemes secure. In the ROM, all
parties have access to a random oracle H which, upon being queried on a value =z,
returns a random value y. Every further query of z, for instance by another
party, is answered using the same y as before. When a scheme is proven secure
in the ROM, one idealises components like hash functions by a random oracle.
Given that the code of a hash function is publicly available, one has to assume
that a quantum adversary implements hash functions on its quantum computer,
thereby being able to evaluate it in superposition. This assumption gives rise
to the quantum random oracle model (QROM), which has been advocated by
Boneh et al. [9]. In the QROM, parties which have quantum computing power
are allowed to query the random oracle in superposition. In more detail, for a
random oracle H, the QROM allows these parties access to the quantum random
oracle |H), where [H) : |z, y) — |z,y ® H(z)). To prove a scheme post-quantum
secure, the proof should always be in the QROM, as a proof in the ROM would
imply the unrealistic expectation that the adversary refrains from implementing
a hash function on its quantum computer. We use superscripts to denote oracle
access, e.g., A™ and A" for the ROM and QROM, respectively.

In our proofs we also consider reprogrammed random oracles. For a random
oracle H, we denote the random oracle which is reprogrammed on input z to y
by Hz—y, ie.,

Y yJifa=z
H. = .
-v(@) {H(a) , else

Below we recall the one-way to hiding (O2H) lemma by Unruh [27], albeit using
the reformulation by Ambainis et al. [3] adapted to our case.

Lemma 1 (One-way to hiding (O2H) [3]). Let G, H: X — Y be random
functions, let z be a random bitstring, and let S C X be a random set such
that Vo ¢ S, G(z) = H(x). (G,H,S,2) may have arbitrary joint distribution.
Furthermore, let .A!ZH) be a quantum oracle algorithm which queries |H) at most

q times. Define an oracle algorithm Byﬂ as follows: Pick i <s[q]. Run A!IH>(Z)
until just before its i-th query to |H). Measure the query in the computational
basis, and output the measurement outcome. Let

Pige = PrfAM (2) = 1
Pright = Pr[AlIQ(z) = 1]
Pyyess = Prlz € S| BJZH>(Z) = z].
Then it holds that

‘-Pleft - Pr’ight| < 2q V Pguess .

The same result holds with B|qG> (2) instead of B|qH> (2) in the definition of Pyyess-



We will use the O2H lemma in the following way. Suppose we have two games
Gp and G; which are identical except for the random oracles that the adversary
has access to. Namely, in Gg it has access to |H) while in G; it has access to
|[H"). The advantage of the adversary in distinguishing the games is bound by
its advantage in distinguishing the random oracles |H) and |H’), which, in turn,
can be bound by the O2H lemma.

2.3 Security Proofs

We use game-based proofs following [7,24], where an adversary plays a game
which eventually outputs a bit indicating whether the adversary has won the
game or not. Let Go, G; be games and A be an adversary. We write Gt = v
to indicate that the game Gy outputs v when interacting with A. The game
advantage between the games Gy and Gy is defined as:

Adv (G§, G{') = Pr[Gf' = true] — Pr[G{' = true].

Whether a game G is in the ROM or the QROM is implicitly defined by the
adversary playing the game. That is, G is in the ROM while G4« is in the
QROM.

A public key encryption (PKE) scheme E = (KGen, Enc,Dec) is a triple of
algorithms KGen, Enc, and Dec. KGen outputs a key pair (pk, sk). The input to Enc
is a public key pk and a message m, the output is a ciphertext c. The algorithm
Dec, on input a secret key sk and a ciphertext ¢, outputs a message m. We are
interested in PKE schemes which use random oracles. Thus we write Enc” and
DecH to denote that both Enc and Dec have oracle access to H.?

A basic security notion for encryption schemes is indistinguishability under
chosen plaintext attacks (IND-CPA) which asks an adversary to distinguish be-
tween the encryption of two adversarial chosen messages. Below we formally
define the corresponding post-quantum security notion pg-IND-CPA for public
key encryption schemes which use random oracles. Note that only the random
oracle access changes towards the post-quantum security. Both the inputs and
outputs of the adversary (i.e., public key, messages, ciphertexts, and output bit)
remain classical in both cases.

Definition 2. Let E = (KGen,Enc",Dec") be a PKE scheme and let the game

pq-IND-CPA be defined as in Fig. 1. Then for any adversary A its pq-IND-CPA
advantages is defined as:

AdvPaNDCPA( 1) oy [pq—IND—CPAA = true} 1.

We say that E = (KGen, Enct, Dect) is pq-IND-CPA-secure if Adv%q_lND_CPA(.A)
1s negligible. Classical security is defined analogously using game IND-CPA.

2 We do not allow the key generation algorithm access to the random oracle as we are
not aware of any scheme which requires it. Besides, proving the resulting game hop
would be trivial as in case KGen has access to the random oracle, the adversary gets
access to the random oracle only after receiving the public key. Hence, the reduction
can trivially reprogram the random oracle unnoticeable for the adversary.



IND-CPA pg-IND-CPA
b<«s{0,1} b «s{0,1}
(pk, sk) <—s KGen() (pk, sk) <—s KGen/()
mo, my s ME(pk) | mo, mu s MUY (pK)
¢ < Enc" (pk, my) ¢ +s Enc" (pk, mp)
b «s D (pk, c) b s DI (pk, ¢)
return (b’ = b) return (b’ = b)

Fig. 1: Classical (IND-CPA) and post-quantum (pg-IND-CPA) security games for
a public key encryption scheme E = (KGen,EncH,Dec!) against a classical ad-
versary A, = (M., D.) and a quantum adversary A, = (M, D), respectively,
where M (message generator) and D (distinguisher) implicitly share state.

The hardness of a problem P is defined by a game between a challenger and
an adversary. In a decisional problem, an adversary obtains a problem instance
depending on some secret bit b € {0, 1} chosen by the challenger, and is asked
to determine b. In a search problem, an adversary obtains a problem instance
depending on some secret s chosen by the challenger, and is asked to find s.
Against quantum adversaries, the games remain the same, i.e., the challenge and
the solution remain classical, but the adversary can use local quantum computing
power. Similar to the definition above, we write Adv’ (A) for the advantage of
an adversary A in solving problem P. For a decisional problem, it is understood
to be the advantage in solving the problem over guessing. There are also works
which analyse problems in the fully quantum setting, where the challenge is
quantum (cf. [14]).

3 The pqg-IND-CPA Framework

Within this section we develop our framework to lift classical security proofs
in the post-quantum setting. To this end, we first define a class of encryption
schemes in Section 3.1 and identify two types of game hops for this class of en-
cryption schemes in Section 3.2. In Section 3.3, we show under which conditions
the classical proofs for these game hops hold true against quantum adversaries
in the QROM.

3.1 Requirements for PKE Schemes

We start by defining so-called oracle-simple public key encryption schemes.
These are encryption schemes where the encryption algorithm invokes the ran-



dom oracle exactly once on an input independent of the message and the public
key.? Below we formally define such schemes.

Definition 3. Let E = (KGen, Enc",Dect) be a public key encryption scheme.
If there exists an algorithm Enc-Sub and a deterministic function £ which maps
from some set R to Dom(H) such that Enc? can be written as in Fig. 2, i.e.,
it first invokes the random oracle on £(r) for a random r € R to obtain y
and then computes the ciphertext using Enc-Sub(pk, m,r,y), then we call E an
oracle-simple (public key) encryption scheme with function f.

Enc"(pk, m)

r+sR

x + £(r)

y < H(z)

¢ <—s Enc-Sub(pk, m, 7, y)

return c

Fig. 2: Algorithm Enc of an oracle-simple encryption scheme using £ and Enc-Sub.

Based on this definition, we can rewrite the IND-CPA and pg-IND-CPA security
games for oracle-simple encryption schemes yielding the security games displayed
in Fig. 3.

Since our framework is based on oracle-simple encryption schemes, its gener-
ality depends on the generality of this class of encryption schemes. Analysing all
encryption schemes submitted as Round 1 NIST candidates which use random
oracles [1,4,5,21], reveals that all of them are indeed oracle-simple schemes.
Note that this analysis is based on the underlying encryption scheme as all can-
didates use random oracles when applying generic transformations to achieve
CCA security. Thus, we see this as a style of notation which greatly simplifies
the presentation of our proofs, rather than a restriction of its generality.

3.2 Identification of Game Hops

Within this section we define two different types of game hops which are used
to prove security of oracle-simple encryption schemes. Due to the structure of
oracle-simple encryption schemes, we can distinguish between game hops for
which lifting is rather trivial since they are independent of the random oracle,
and game hops which are not independent of the random oracle. We start by
defining a Type-I game hop which is independent of the random oracle.

3 This property is required to get a meaningful bound from applying the one-way to
hiding lemma. Since we are not aware of any PKE scheme which does not satisfy
this requirement, we do not consider it a restriction.



IND-CPA pg-IND-CPA
b<+s{0,1} b<+s{0,1}
(pk, sk) <3 KGen() (pk, sk) <—s KGen/()

Mo, M1 < M(‘]H>(pk)

| !

| |

| | | |
| TesR | P TSR }
oz £(r) 1 oz £(r) |
|y« H(a) 3 |y« H(z) :
! !

! ¢ <s Enc-Sub(pk, mp, 7, y) | ! ¢ <3 Enc-Sub(pk, mp, 7, y) |
} return c } : return c :
S E L e e e e e e e e — - - - -

b s DI (pk, ¢)

return (b’ = b)

return (b’ = b)

Fig. 3: Security games IND-CPA and pg-IND-CPA for an oracle-simple public key
encryption scheme E = (KGen, Enc", Dec™) with function f.

Definition 4. Let G; and G;y1 be two IND-CPA games (cf. Fig. 3) for an
oracle-simple public key encryption scheme E = (KGen,EncH DecH). We call
the game hop between G; and G;+1 a Type-1 game hop if the games only differ
in using different algorithms KGen to generate the key pair or different algorithms
Enc-Sub to generate the ciphertext.

Next, we define a Type-II game hop which affects the usage of the random oracle
while encrypting one of the challenge messages by the adversary.

Definition 5. Let G; and G;y1 be two IND-CPA games (cf. Fig. 3) for an
oracle-simple public key encryption scheme E = (KGen,EncH DecH). We call
the game hop between G; and G; 1 a Type-1I game hop if their only difference is
that game G; obtains y by invoking H on © while game G;11 samples y uniformly
at random from CoDom(H).

Having discussed the generality of the class of encryption schemes, the next
natural question asks for the generality of the defined game hops. A Type-II game
hop is a standard game hop to make the challenge independent of the random
oracle, thereby rendering it obsolete for the adversary. As for Type-I game hops,
we observe the following. To bound the game advantage, one transforms an
adversary that distinguishes the games into an adversary (the reduction) that
solves some problem. To achieve this, the game hop has to be connected with the
problem instance. Thus the reduction has to feed the problem instance to the
adversary. Considering IND-CPA security, its options are fairly limited. Either it
feeds it via the inputs to the adversary, that is the public key pk or the ciphertext
¢, or as a response from the random oracle. The former case is the one we cover



with a Type-I game hop. The latter case is not covered, as none of the schemes,
that we are aware of, requires such a game hop. Nevertheless, we emphasise
that our framework can be easily extended by another type of game hop, if
needed. The post-quantum analogue of such a challenge injection in a random
oracle response can be achieved using Zhandry’s semi-constant distributions [29],
where a challenge is injected in a subset of inputs which gives a significant chance
that the adversary uses the injected challenge while the probability of detecting
the challenge injection remains small enough.

3.3 Lifting Security

Within this section we state the conditions under which a classical security proof
holds true in the post-quantum setting.

The lemma below states that classical reductions from a decisional problem
to the game advantage of a Type-I game hop hold true in the post-quantum
setting.

Lemma 6. Let G; and G;11 be games such that the game hop between these is a
Type-I game hop. Suppose there exists a decisional problem P which is reduced
to the game advantage between the games. Then, for any quantum adversary Ag,
there exists a quantum adversary B, against P such that

Adv (G;‘q, G;“gl) < AdvP(B,).

Proof. The difference between the games is independent from the random oracle.
Hence the same proof holds against quantum adversaries, albeit the adversary
B, has to simulate a quantum random oracle for the adversary A,. This can be
done using a 2¢gy-wise independent function, where gy is the number of random
oracle queries by A, [29]. O

Alternatively, Lemma 6 can be formally proven using the framework by Song [25].
Due to the complex notation used in [25], however, this leads to a rather long
and tedious proof.

The following lemma states conditions under which the classical proof for a
Type-II game hop holds true against quantum adversaries.

Lemma 7. Let G; and G;41 be games such that the game hop between these is
a Type-II game hop. Suppose there exists a search problem P which is reduced
to the probability that an adversary queries the random oracle on x. Then, for
any quantum adversary Aq, making gy queries to |H), there exists a quantum
adversary C, against P such that

Adv (GG ) < 2a4\/Adv7(Cy).

Proof. We observe that the games G; and G, are perfectly indistinguishable
given that A has no knowledge about the random oracle output on z, that is,

10



H(z). Hence the game advantage can be bound by the knowledge of A about
H(z). For the classical proof in the ROM, this is fairly easy as the only way
for the adversary to obtain knowledge about H(z) is to query z. For the post-
quantum proof in the QROM, the issue is that, for example, superposition access
allows the adversary to trivially get (some) knowledge about H(z) by making an
equal superposition query over all possible inputs.

We tackle this issue as follows. First, we show that the game advantage is
bound by the distinguishing advantage between two random oracles, see Equa-
tion (1). This enables us to apply the O2H lemma as the second step, see Equa-
tion (2). In the final step, we bound the resulting term from the O2H lemma
using the hardness of P, see Equation (3).

Recall that the games differ in how the value y (input to Enc-Sub) is gener-
ated. In G; it is the output of the random oracle on input z while it is sampled
uniformly at random from CoDom(H) in G;4;. By the random oracle paradigm,
the value y is distributed identically in both games, as is the ciphertext c. Based
on this, we conclude that the only inconsistency lies in the random oracle.
Namely, querying the random oracle on z yields the same y which is fed as
input to Enc-Sub in G;, while it yields a random value independent of the inputs
to Enc-Sub in G;y;. This allows us to see G;11 as G;, that is y < H(z), with
the exception that the random oracle H, which A has access to, is replaced with
H._,s. Based on this thought, it is easy to see that the game advantage is bound
by the chance that A can distinguish between the two random oracles H and
H,_¢. The same argument holds for a quantum adversary 4, except that access
to the corresponding quantum random oracles |H) and |H,_,g) is granted. For
ease of notation, we henceforth assume that the random oracle is reprogrammed
to L instead of a random value. Then it holds that

Adv (6,61 < ‘Pr[AgW = 1] = PrjAlfe—s) = 1]‘ . (1)

Applying the O2H lemma (cf. Lemma 1) yields that there exists a quantum
algorithm B, such that

’Pr[ALH> = 1] — Pr[Alf—t) = 1]‘ < 2gu\/Pr[BfY = 1]. (2)

It remains to bound the probability that B, outputs z. At this point we use the
classical security proof, that is, the problem P is reduced to the probability of
querying x. It holds that the solution for P is = or can be derived from it, thus
B, can be transformed into an adversary C, against P. The mere difference is
that this adversary C, is quantum, as B, is quantum. Hence, we conclude with

2qx/Pr[B(|1H> = 1] < 2qn\/ AdVT(C,) . (3)

This proves the claim. a

Now we are ready to state our main result, namely the conditions under which
our framework lifts the classical security proof of an oracle-simple public key
encryption scheme in the post-quantum setting.

11



Theorem 8. Let E = (KGen, Enct, Dec™) be an oracle-simple PKE scheme with
function £ according to Definition 3. Suppose there exists a classical security
proof using a sequence of games Go,...,Gg, where Gg is the IND-CPA game
instantiated with B and Gy is constructed such that Adv®*(A,) = 0. Let i be
such that the game hop between G;,_1 and G; is a Type-II game hop. If

1. for any j € [k]\{i}, the game hop between G;_1 and G; is a Type-I game
hop such that a quantum hard (decisional) problem P; is reduced to the game
advantage between G;_; and G; and

2. there is some quantum hard (search) problem P; that is reduced to the prob-
ability of querying the random oracle H on x,

then E is pq-IND-CPA -secure.

Proof. The proof follows pretty much from the previous lemmas. For the Type-I
game hops, i.e., between G,;_; and G, for j € [k]\{¢}, we can apply Lemma 6
and conclude that the game advantage is bound by the post-quantum hardness
of P;. Since P; is a quantum hard problem, this is negligible. For the Type-II
game hop, i.e., between G;,_; and G;, we can apply Lemma 7, using again that
P; is hard for quantum adversaries. As the game advantage of all game hops
is negligible, we conclude that the advantage of any quantum adversary 4, in
game pg-IND-CPA against E = (KGen, Enct, Dec!) is also negligible. Hence, the
oracle-simple public key encryption scheme E is pq-IND-CPA-secure. a

4 Post-Quantum Security of PKE Schemes

We use our framework to lift the classical security of two public key encryption
schemes to post-quantum security. In Section 4.1 we lift the security for the
code-based public key encryption scheme ROLLO-II [21]. The post-quantum
security of the lattice-based public key encryption scheme LARA [4] is proven
in Section 4.2.

4.1 Code-based Public Key Encryption Scheme ROLLO-II

We start by introducing the notation used in the public key encryption scheme
ROLLO-II [21]. The scheme can be written as an oracle-simple encryption scheme
with function £, where £ maps vectors to their support. The pseudocode is given
in Fig. 4.

Throughout, p is a prime and ¢ is some power of p. For an integer k, the
finite field that contains ¢ elements is F,~ and the corresponding vector space
of dimension n is given by ng. The set of vectors of length n with rank weight w
over the set F» is denoted by S;;(F ), where the rank weight of a vector is the
rank of a specific matrix associated with that vector (see [21] for more details).
Below we define the support of a word.

Definition 9. Letx = (21,...,2,) € ng. The support E of x, denoted Supp(x),
is the Fy-subspace of F . generated by the X, i.e., E = (w1,...,2,)F, .
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ROLLO-II-KGen() ROLLO-II-Enc! (pk, m)

X,y <% Si"(Fqk) er, e s STZ"(IFqk)

h xfly mod P E < Supp(ei, ez2)

sk + (x,y) y < H(E)

pk < h | Ene-Sub(ok m . — (e eo) ) K

c<s! Enc-Sub(pk, m,r = (e1,e2), y)

return (pk, sk)

|
: c1 < e +eshmodP
L+ mdy

|

|

return c < (ci1, c2)

return c

Fig.4: Encryption scheme ROLLO-II written as oracle-simple encryption
scheme. Decryption is omitted as it is irrelevant for the IND-CPA security of
the scheme.

Multiplications are considered to be polynomial multiplications, where vectors
and polynomials are transformed into one another by taking the vector entries
as coefficients and vice versa. In the scheme, d and r are integers while P is an
irreducible polynomial over F .

The Ideal-LRPC codes indistinguishability problem, where LRPC stands for
low rank parity check, asks to distinguish whether a vector h is sampled uniformly
at random or computed as x 'y mod P, for vectors x, y of small dimension. In
the ideal rank support recovery (Ideal-RSR) problem, one is given a vector h,
a polynomial P, and a syndrome o, and asked to find a support E containing
vectors e, ey such that e; + esh = 0 mod P.

The theorem below shows that the code-based encryption scheme ROLLO-II
is pg-IND-CPA-secure.

Theorem 10. Assuming the post-quantum hardness of the Ideal-LRPC prob-
lem and the Ideal-RSR problem, the code-based encryption scheme ROLLO-II,
described in Fig. 4, is pq-IND-CPA-secure.

Proof. The classical IND-CPA security proof of ROLLO-II, given in [21], uses
games Go, ..., G3. Except for the first game Gy, we only state the change to its
predecessor.

Game Gp: This is the IND-CPA game instantiated with ROLLO-II.
Game Gj: In this game the vector h is sampled randomly.

Game Gy: The value y is sampled randomly, independent of H.
Game Gj3: The value ¢, is sampled randomly.

The game hop between G; and Gy is a Type-II game hop, while all other game
hops are Type-I game hops. The classical proof reduces the Ideal-LRPC problem
to the game advantage between Gg and G; (Type-I) and the Ideal-RSR problem

13



to the probability of querying the random oracle on E = Supp(ey, e2) and thereby
also to the game advantage between G; and Gy (Type-1I). The game hop between
Go and G3 (Type-I) is bound by the problem of distinguishing between a one-time
pad encryption and a random ciphertext. Since all these problems are assumed
to be hard even for quantum adversaries, Theorem 8 proves the claim. a

4.2 Lattice-based Public Key Encryption Scheme LARA

We start by introducing the notation used in the public key encryption scheme
LARA [4]. The scheme, written as an oracle-simple encryption scheme, is given
in Fig. 5. Throughout this section, ¢ is an integer and n is a power of 2. The
polynomial ring Z,[X]/(X™ + 1) is denoted by R,. The decisional learning with
errors (DLWE) problem asks to distinguish whether a polynomial z is sampled
uniformly at random or generated as z <— as + e, where a is given and s and e
are small polynomials which are kept secret.

We refer to [4] for the parameters s, w, p, and 7., as applying our framework
is independent of those. LARA uses the discrete Gaussian distribution which is
denoted by D, , where x and o are the support and standard deviation, respec-
tively. Multiplications are considered to be polynomial multiplications. Vectors
and polynomials are transformed into one another by setting the coefficients to
the vector entries and vice versa. The scheme uses an encoding function Encode
which maps messages to polynomials.

LARA-KGen() LARA-Enc! (pk, m = (mq1, ma, m3))
aj,az +s Ry c<sZ,
ri,r2 < Dzn .. vi,va,vs,d + H(c)

k—1 r---~-"~"~>""~"~"~" "~ °" " " °"T " T" =" T=T°-"=°=-°=°=-°7-°7 il
az < p - (a1r1 + 32r2) c (_$: Enc-Sub(pk7 m,r=c,y = (th27v37d))
sk < (ry,r

(1, r2) s+ c+pd

pk < (31,32733)

return (pk, sk
(p ) e; < Dti+wZ”,s for ¢ S [3]

b; + a;s +e; for i € [3]

!
!
l
!
t; + Encode(m;) + v; mod w for i € [3] |
|
|
|
l
return c < (b1, ba, bs) |

Fig. 5: Encryption scheme LARA written as an oracle-simple encryption scheme.
Decryption is omitted as it is irrelevant for the IND-CPA security of the scheme.

The following theorem states that the lattice-based encryption scheme LARA
is pq-IND-CPA-secure.
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Theorem 11. Assuming the post-quantum hardness of the DLWE problem, the
lattice-based encryption scheme LARA, described in Fig. 5, is pq-IND-CPA-
secure.

Proof. The classical IND-CPA security proof of LARA, given in [4], uses games
Go, ..., Gy. Except for game Gg, we only state the change to its predecessor.

Game Gp: This is the IND-CPA game instantiated with LARA.

Game G;: In this game the polynomial agz is sampled randomly.

Game Gy: The vectors vy, va, v3,d are sampled randomly, independent of H.
Game Gz: The polynomials e; are sampled according to the distribution Dzn .
Game G4: The polynomials b; are sampled randomly.

The game hop between G; and G is a Type-II game hop, while all other game
hops are Type-I game hops. The classical proof reduces the DLWE problem (with
a different number of samples) to the game advantage between the Type-I game
hops. The Type-II is bound by a variant of the LWE problem which, in turn,
is bound by the hardness of the LWE problem. Thus, we can apply Theorem 8
which proves the claim. a
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