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Abstract. We give a sieving algorithm for finding pairs of consecutive smooth numbers that
utilizes solutions to the Prouhet-Tarry-Escott (PTE) problem. Any such solution induces
two degree-n polynomials, a(x) and b(x), that differ by a constant integer C and completely
split into linear factors in Z[x]. It follows that for any ` ∈ Z such that a(`) ≡ b(`) ≡ 0 mod C,
the two integers a(`)/C and b(`)/C differ by 1 and necessarily contain n factors of roughly
the same size. For a fixed smoothness bound B, restricting the search to pairs of integers
that are parameterized in this way increases the probability that they are B-smooth. Our
algorithm combines a simple sieve with parametrizations given by a collection of solutions
to the PTE problem.
The motivation for finding large twin smooth integers lies in their application to compact
isogeny-based post-quantum protocols. The recent key exchange scheme B-SIDH and the
recent digital signature scheme SQISign both require large primes that lie between two
smooth integers; finding such a prime can be seen as a special case of finding twin smooth
integers under the additional stipulation that their sum is a prime p.
When searching for cryptographic parameters with 2240 ≤ p < 2256, an implementation
of our sieve found primes p where p + 1 and p − 1 are 215-smooth; the smoothest prior
parameters had a similar sized prime for which p−1 and p+1 were 219-smooth. In targeting
higher security levels, our sieve found a 376-bit prime lying between two 221-smooth integers,
a 384-bit prime lying between two 222-smooth integers, and a 512-bit prime lying between
two 228-smooth integers. Our analysis shows that using previously known methods to find
high-security instances subject to these smoothness bounds is computationally infeasible.

Keywords: Post-quantum cryptography, isogeny-based cryptography, Prouhet-Tarry-Escott
problem, twin smooth integers, B-SIDH, SQISign.

1 Introduction

We study the problem of finding twin smooth integers, i.e. finding two consecutive large integers,
m and m + 1, whose product is as smooth as possible. Though the literature on the role of
smooth numbers in computational number theory and cryptography is vast (see for example the
surveys by Pomerance [20] and Granville [12]), the problem of finding consecutive smooth integers
of cryptographic size has only been motivated very recently: optimal instantiations of the key
exchange scheme B-SIDH [8] and the digital signature scheme SQISign [10] require a large prime
that lies between two smooth integers, and this is a special case of the twin smooth problem in
which 2m+ 1 is prime.

This paper presents a sieving algorithm for finding twin smooth integers that improves on the
methods used in [8] and [10]. The high-level idea is to use two monic polynomials of degree n that
split in Z[x] and that differ by a constant, i.e.

a(x) =

n∏
i=1

(x− ai) and b(x) =

n∏
i=1

(x− bi), where a(x)− b(x) = C (1)



for C ∈ Z. Whenever ` ∈ Z such that a(`) ≡ b(`) ≡ 0 mod C, it follows that the integers a(`)/C
and b(`)/C differ by 1.

Assume that |`| � |ai| and |`| � |bi| for 1 ≤ i ≤ n, and fix a smoothness bound B. Rather
than directly searching for two consecutive B-smooth integers m and m + 1, roughly of size N ,
the search instead becomes one of finding a value of ` such that the 2n (not necessarily distinct)
integers

`− a1, . . . , `− an, `− b1, . . . , `− bn, (2)

each of size roughly N1/n, are B-smooth. For n > 1, and under rather mild heuristics, the proba-
bility of finding twin smooth integers in this fashion is significantly greater than the searches used
in [8] and [10]. Put another way, the same computational resources are likely to succeed in finding
twin smooth integers subject to an appreciably smaller smoothness bound.

To search for ` ≈ N1/n such that the 2n integers in (2) are B-smooth, we adopt the simple
sieve of Eratosthenes as described by Crandall and Pomerance [9, §3.2.5]; this identifies all of the
B-smooth numbers in an arbitrary interval. If w is the largest difference among the 2n integers in
{ai}∪{bi}, then a sliding window of size |w| can be used to scan the given interval for simultaneous
smoothness among the integers in (2). This approach has a number of benefits. Firstly, smooth
numbers in a given interval can be recognized once-and-for-all, meaning we can combine arbitrarily
many solutions to (1) into one scan of the interval. Secondly, different processors can scan disjoint
intervals in parallel, and each of the interval sizes can be tailored to the available memory of the
processor. Finally, the simple sieve we use to identify the smooth numbers in an interval (which
is the bottleneck of the overall procedure) is open to a range of modifications and improvements
– see Section 7.

The approach in this paper hinges on being able to find solutions to (1). Such solutions are
related to a classic problem in Diophantine Analysis.

1.1 The Prouhet-Tarry-Escott problem

The Prouhet-Tarry-Escott (PTE) problem of size n and degree k asks to find two distinct multisets
of integers {a1, . . . , an} and {b1, . . . , bn} for which

a1 + · · ·+ an = b1 + · · ·+ bn,

a21 + · · ·+ a2n = b21 + · · ·+ b2n,

...
...

...

ak1 + · · ·+ akn = bk1 + · · ·+ bkn.

The most interesting case is k = n− 1, which is maximal (see Section 3), and such ideal solutions
immediately satisfy (1). For example, when n = 4, the sets {0, 4, 7, 11} and {1, 2, 9, 10} are such
that

0 + 4 + 7 + 11 = 1 + 2 + 9 + 10 = 22,

02 + 42 + 72 + 112 = 12 + 22 + 92 + 102 = 186,

03 + 43 + 73 + 113 = 13 + 23 + 93 + 103 = 1738,

from which it follows (see Proposition 1) that

a(x) = x(x− 4)(x− 7)(x− 11) and b(x) = (x− 1)(x− 2)(x− 9)(x− 10)

differ by a constant C ∈ Z. Indeed, a(x)− b(x) = −180.
Origins of the PTE problem are found in the 18th century works of Euler and Goldbach, and it

remains an active area of investigation [6,5,7]. In 1935, Wright [28] conjectured that ideal solutions
to the PTE problem should exist for all n, but at present this conjecture is open: for n = 11 and
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for n ≥ 13, no ideal solutions to the PTE problem have been found, see [5, p. 94] and [7, p. 73].
However, Borwein states that “heuristic arguments suggest that Wright’s conjecture should be
false. [...] It is intriguing, however, that ideal solutions exist for as many n as they do” [5, p. 87].

The PTE solutions that are known for n ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 12} are a nice fit for our pur-
poses. If we were to fix a smoothness bound, B, and then search for the largest pair of consecutive
B-smooth integers we could find, having PTE solutions for n as large as possible would be helpful.
But for our cryptographic applications (see §1.3), we will instead fix a target range for our twin
smooth integers to match a given security level, and then aim to find the smoothest twins within
that range. In this case, the degree n of a(x) and b(x) cannot be too large, since a larger n means
fewer ` ∈ Z to search over. Ideally, n needs to be large enough such that the splitting of a(x) and
b(x) into n linear factors helps with the smoothness probability, but small enough so that we still
have ample ` ∈ Z to find a(`) and b(`) such that

(i) a(`) ≡ b(`) ≡ 0 mod C,
(ii) (m,m+ 1) = (b(`)/C, a(`)/C) are B-smooth, and (if desired)

(iii) 2m+ 1 is prime.

It turns out that those n ≤ 12 for which PTE solutions are known are the sweet spot for our target
applications, where 2240 ≤ m ≤ 2512.

1.2 Prior methods of finding twin smooth integers

After defining twin smooth integers for concreteness, we recall previous methods used to find large
twin smooth integers.

Definition 1 (Twin smooth integers). For a given B > 1, we call (m,m + 1) with m ∈ Z a
pair of twin B-smooth integers or B-smooth twins if m · (m+ 1) contains no prime factor larger
than B.

As Lehmer notes in [18], consecutive pairs of smooth integers have occurred in 18th century
works and have been mentioned by Gauss in the context of computing logarithms of integers.

Hildebrand [13, Corollary 2] has shown that there are infinitely many pairs of consecutive
smooth integers (m,m+1), however this result notably holds for a smoothness bound that depends
on m. More precisely, there are infinitely many such pairs of mε-smooth integers for any fixed ε > 0.
An analogous result holds for tuples of k consecutive smooth integers (for any k), as shown by
Balog and Wooley [1].

For a fixed, constant smoothness bound B, the picture is different. A theorem by Størmer [25]
states that there are only a finite number of such pairs. We begin with some historical results
which show that deterministically computing the largest pair of consecutive B-smooth integers
requires a number of operations that is exponential in the number of primes up to B.

Solving Pell equations. Fix B, let {2, 3, . . . q} be the set of primes up to B with cardinality
π(B), and suppose that m and m + 1 are both B-smooth. Let x = 2m + 1, so that x − 1 and
x+ 1 are also B-smooth, and let D be the squarefree part of the product (x− 1)(x+ 1), so that
x2 − 1 = Dy2 for some y ∈ Z. Since the product (x− 1)(x+ 1) is B-smooth, it follows that Dy2

is B-smooth, which (since D is squarefree) means that

D = 2α2 · 3α3 · · · · · qαq

with αi ∈ {0, 1} for i = 2, 3, . . . , q. For each of the 2π(B) squarefree possibilities for D, an effective
theorem of Størmer [25] (and further work by Lehmer [18]) reverses the above argument and
proposes to solve the 2π(B) Pell equations

x2 −Dy2 = 1,
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finding all of the solutions for which y is B-smooth, and in doing so finding the complete set of
B-smooth consecutive integers m and m+ 1.

Ideally, this process could be used to deterministically find optimally smooth consecutive in-
tegers at any size, by increasing B until the largest pair of twin smooths is large enough. For
example, the largest pair of twin smooth integers with B = 3 is (8, 9), the largest pair of twin
smooth integers with B = 5 is (80, 81), and the largest pair of twin smooth integers with B = 7
is (4374, 4375). Unfortunately, solving 2π(B) Pell equations becomes infeasible before the size of
m grows large enough to meet our requirements. For B = 113, [8] reports that the largest twins
(m,m+ 1) found upon solving all 230 Pell equations have m = 19316158377073923834000 ≈ 274,
and the largest twins found among the set when adding the requirement that 2m+1 is prime have
m = 75954150056060186624 ≈ 266.

The extended Euclidean algorithm. One näıve way of searching for twin smooth integers is to
compute B-smooth numbers m until either m−1 or m+1 also turns out to be B-smooth. A much
better method, which was used in [8,4,10], is to instead choose two coprime B-smooth numbers α
and β that are both of size roughly the square root of the targets m and m + 1. Since α and β
are coprime, Euclid’s extended GCD algorithm outputs two integers (s, t) such that αs + βt = 1
with |s| < |β/2| and |t| < |α/2|. We can then take {m,m+ 1} = {|αs|, |βt|}, and the probability
of m and m+ 1 being B-smooth is now the probability that s · t is B-smooth. The key observation
here is that the product s · t with s ≈ t is much more likely to be B-smooth than a random
integer of similar size. In Section 2 we will develop methods and heuristics that allow us to closely
approximate these probabilities.

Searching with m = xn − 1. The method from [8] that proved most effective in finding
twin smooth integers with 2240 ≤ m ≤ 2256 is by searching with (m,m + 1) = (xn − 1, xn) for
various n, where the best instances were found with n = 4 and n = 6. Our approach can be
seen as an extension of this method, where the crucial difference is that for n > 2 the polynomial
xn − 1 does not split in Z[x], and the presence of higher degree terms significantly hampers
the probability that values of `n − 1 ∈ Z are smooth. For example, with n = 6 we have m =
(x2− x+ 1)(x2 + x+ 1)(x− 1)(x+ 1) and, assuming B � `, the probability that integer values of
this product are B-smooth is far less than if it was instead a product of six monic, linear terms.
On the other hand, the probability that m + 1 is B-smooth for a given ` is the probability that
` itself is B-smooth, which works in favor of the non-split method. However, as we shall see in
the sections that follow, this is not enough to counteract the presence of the higher degree terms.
Furthermore, several of the PTE solutions we will be using also benefit from repeated factors.

1.3 Cryptographic applications of twin smooth integers

The field of supersingular isogeny-based cryptography continues to gain increased popularity in
large part due to the conjectured quantum-hardness of variants of the supersingular isogeny prob-
lem. In its most general form, this problem asks to find a secret isogeny φ : E → E′ between two
given supersingular elliptic curves E/Fp2 and E′/Fp2 .

The most famous isogeny-based cryptosystems are Jao and De Feo’s SIDH key exchange proto-
col [15] and its actively secure incarnation SIKE [14], which recently advanced to the third round
of the NIST post-quantum standardization effort [26]. On the one hand, SIKE offers the advantage
of having the smallest public key and ciphertext sizes of all of the key encapsulation schemes under
consideration, but on the other, its performance is currently around an order of magnitude slower
than its code- and lattice-based counterparts.

Two supersingular isogeny-based schemes have recently emerged that require a new type of
instantiation. Rather than defining primes p for which either p − 1 or p + 1 is smooth (as in
SIDH/SIKE), the key exchange scheme B-SIDH [8] and the digital signature scheme SQISign [10]
instead require primes for which (large factors of) both p − 1 and p + 1 are smooth. As both of
those papers discuss, finding primes that lie between two smooth integers is not an easy task, but
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the practical incentive to do this is again related to the compactness of these schemes: B-SIDH’s
public keys are even smaller than the analogous SIDH/SIKE compressed public keys, and the
sum of the SQISign public key and signature sizes is significantly smaller than those of all of the
remaining NIST signature candidates.

In both B-SIDH and SQISign, the overall efficiency of the protocol is closely tied to the smooth-
ness of p − 1 and p + 1. Roughly speaking, any prime ` appearing in the factorizations of these
two integers implies that an `-isogeny needs to be computed somewhere in the protocol. Such
`-isogenies have traditionally been computed in O(`) field operations using Vélu’s formulas [27],
but recent work by Bernstein, De Feo, Leroux, and Smith [4] improved the asymptotic complexity

to Õ(
√
`) by clever use of a baby-step giant-step algorithm. Nevertheless, the large `-isogenies that

are required in these protocols dominate the runtime, and the best instantiations of both schemes
will use large primes p lying between two integers that are as smooth as possible.

In this paper we will view the search for such primes as one that imposes an additional stip-
ulation on the more general problem of finding twin smooth integers: cryptographically useful
instances of the twin smooth integers (m,m+ 1) are those where the sum 2m+ 1 is a prime, p.

Security analyses of B-SIDH and SQISign suggest that it is possible to relax the requirements
and to tolerate cofactors that divide either or both of p − 1 and p + 1 and have prime factors
somewhat larger than the target smoothness bound, such that (the size of) any primes dividing
these cofactors have no impact on the efficiency. For simplicity and concreteness, we will focus
our analysis on the pure problem of finding twin smooth integers that disallows any primes larger
than our smoothness bound, but we will oftentimes point out the modifications and relaxations
that account for cofactors; this is discussed in Section 7.

The heuristic analysis summarized in Table 3 predicts that sieving with PTE solutions finds
twin smooth integers (m,m + 1) that are smoother than one expects to find using the same
computational resources and the prior methods described in §1.2. Indeed, in Section 6 we present
a number of examples we found with our sieve whose largest prime divisors are several bits smaller
than the largest prime divisors in instantiations found in the literature. In reference to Table 3, we
briefly sketch some intuition on how these smoother examples translate into practical speedups.
For example, the best prior instantiation of a prime p with 2240 ≤ p < 2256 found that (p− 1) and
(p + 1) are simultaneously 219-smooth, whereas our sieve found a similarly sized p subject to a
smoothness bound of 215. Given the current (square root) complexity of state-of-the-art `-isogeny
computations, this suggests that the most expensive isogeny computed in our example will be
roughly 4 times faster than that of the prior example.

The source code for our sieving algorithm is publicly available at

https://github.com/microsoft/twin-smooth-integers.

This code can be used by implementers to find their own instantiations; in particular, the code
is intended to be general and users should be able to tailor it to their own requirements, e.g., to
allow for different requirements, cofactors, or to target other security levels.

Roadmap. First time readers may benefit from jumping straight to Section 5, where all the
theory developed in Sections 2–4 is put into action by way of a full worked example. Section 2
gathers some results that allow us to approximate the smoothness probabilities of both integers
and integer-valued polynomials. Section 3 starts by making the connection between our method
of finding twin smooth integers and the PTE problem, before going into the theory of the PTE
problem and showing how to generate infinitely many solutions for certain degrees. Section 4
describes our sieving algorithm. Section 6 presents some of the best examples found with our sieve
and compares them with the previous examples in the literature. Section 7 discusses a number of
possible modifications and improvements to the sieve.

2 Smoothness probabilities

In this section we recall some well-known results concerning smoothness probabilities that will
be used to analyse various approaches throughout the paper: §2.1 shows how to approximate the
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probability that m � B is B-smooth using the Dickman–de Bruijn function; §2.2 shows how to
approximate the probability that integer values of a polynomial f(x) ∈ Z[x] are B-smooth.

2.1 Smoothness probabilities for large N

Recall that an integer is said to be B-smooth if it does not have any prime factor exceeding B.
Let

Ψ(N,B) = #{1 ≤ m ≤ N : m is B-smooth}

be the number of positive B-smooth integers. For each real number u > 0, Dickman’s theorem [9,
Theorem 1.4.9] states that there is a real number ρ(u) > 0 such that

Ψ(N,N1/u)

N
∼ ρ(u) as N →∞. (3)

Dickman described ρ(u) as the unique continuous function on [0,∞) that satisfies ρ(u) = 1 for

0 ≤ u ≤ 1, and ρ′(u) = −ρ(u−1)u for u > 1. For 1 ≤ u ≤ 2, ρ(u) = 1 − ln(u), but for u > 2 there
is no known closed form for ρ(u). Nevertheless, it is easy to evaluate ρ(u) (up to any specified
precision) for a given value of u, and popular computer algebra packages (like Magma and Sage)
have this function built in.

In this paper we will be using (3) to approximate the probability that certain large numbers
are smooth. For example, with N = 2128 and u = 8, the value ρ(8) ≈ 2−25 approximates the
probability that a 128-bit number is 216-smooth. With u fixed, this approximation becomes better
as N tends towards infinity. Using ρ(u) as the smoothness probability assumes the heuristic that
N1/u-smooth numbers are uniformly distributed in [1, N ].

While there are methods to more precisely estimate Ψ(N,B), see e.g. [24] and [2], we are
content with the simple approximation given by ρ. Using a basic sieve to identify smooth integers,
we have counted all B-smooth integers up to N = 243 for B up to 216 and compared their numbers
with those predicted by the Dickman–de Bruijn function. Except for the lower end of the studied
interval and for very small smoothness bounds, we have found the approximation by ρ to be
sufficiently close to the actual values.

2.2 Smoothness heuristics for polynomials

For a polynomial f(x) ∈ Z[x], define

Ψf (N,B) = #{1 ≤ m ≤ N : f(m) is B-smooth}.

Throughout the paper we will use the following conjecture (see [19, Eq. 1.4] and [12, Eq. 1.20]) as
a heuristic to estimate the probability that f(N) is N1/u-smooth.

Heuristic 1 Suppose that the polynomial f(x) ∈ Z[x] has distinct irreducible factors over Z[x] of
degrees d1, d2, . . . dk ≥ 1, respectively, and fix u > 0. Then

Ψf (N,N1/u)

N
∼ ρ(d1u) . . . ρ(dku) (4)

as N →∞.

With B = N1/u, Heuristic 1 says that for m ≤ N , the probability of f(m) being B-smooth
is the product of the probabilities of each of its factors being B-smooth (these are computed
via (3)). Martin proved this conjecture for a certain range of u [19, Theorem 1.1] that does not
apply in our case. Heuristic 1 inherently assumes that the smoothness probabilities of each of
the factors are independent of one another; here, the roots of our split polynomials all lie in
relatively short intervals, and thus are not uniformly distributed in, say, [1, N ]. For example, with
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f(m) =
∏

1≤i≤d(m − fi) ∈ Z, any prime q that divides m − f1 only divides m − fi for some
1 < i ≤ d if q | fi− f1, which in particular means that any prime which is larger than the interval
size can divide at most one of the (unique) m − fi. Nevertheless, our experiments have shown
Heuristic 1 to be a very accurate approximation for our purposes; we simply use it as a means to
approximate how many values of m ∈ Z need to be searched before we can expect to start finding
twin smooth integers, and to draw comparisons between approaches for various target sizes.

3 Split polynomials that differ by a constant

Henceforth we will use a(x) and b(x) to denote two polynomials of degree n > 1 in Z[x] that differ
by an integer constant C ∈ Z, i.e. a(x)− b(x) = C. Moreover, unless otherwise stated, both a and
b are assumed to split into linear factors over Z, i.e.

a(x) =
∏

1≤i≤n

(x− ai) and b(x) =
∏

1≤i≤n

(x− bi),

where the ai and bi (which are not necessarily distinct) are all in Z.
The core idea of this paper is to search for twin smooth integers by searching over ` ∈ Z such

that
a(`) ≡ b(`) ≡ 0 mod C.

Then, the two polynomials aC(x) := a(x)/C and bC(x) := b(x)/C ∈ Q[x] evaluate to integer
values aC(`) and bC(`) at `, and moreover

aC(`) = bC(`) + 1.

Since a and b split into n linear factors over Z, aC(`) and bC(`) necessarily contain n integer
factors of approximately the same size. In §4.4 we approximate the probability that aC(`) and
bC(`) are B-smooth, and show that these probabilities are favorable (in the ranges of practical
interest) compared to the previously known methods of searching for large twin smooths.

3.1 The Prouhet-Tarry-Escott problem

For degrees n ≤ 3, infinite families of split polynomials a(x) and b(x) with a(x)−b(x) = C ∈ Z can
be constructed by solving the system that arises from equating all but the constant coefficients.
Although there are n equations in 2n unknowns, for n > 3 this process becomes unwieldy; the
equations are nonlinear and we are seeking solutions that assume values in Z. Moreover, relaxing
the monic requirement (which permits 4n unknowns) and allowing for solutions in Q does not
seem to help beyond n > 3. Fortunately, finding these pairs of polynomials is closely connected to
the computational hardness of solving the PTE problem of size n.

Definition 2 (The Prouhet-Tarry-Escott problem). The Prouhet-Tarry-Escott (PTE) prob-
lem of size n and degree k asks to find distinct multisets of integers A = {a1, . . . , an} and
B = {b1, . . . , bn}, such that

n∑
i=1

aji =

n∑
i=1

bji

for j = 1 . . . k. We abbreviate solutions to this problem by writing [a1, . . . , an] =k [b1, . . . , bn] or
A =k B.

A classic result that links PTE solutions to polynomials is the following [6, Proposition 1].

Proposition 1. The following are equivalent:

n∑
i=1

aji =

n∑
i=1

bji for j = 1, . . . , k. (5)

deg

(
n∏
i=1

(x− ai)−
n∏
i=1

(x− bi)

)
≤ n− (k + 1). (6)
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Table 1: Divisibility results for the PTE problem

n Lower bound for Cn Upper bound for Cn

2 1 1

3 22 22

4 22 · 32 22 · 32

5 24 · 32 · 5 · 7 24 · 32 · 5 · 7
6 25 · 32 · 52 25 · 32 · 52

7 26 · 33 · 52 · 7 · 11 26 · 33 · 52 · 7 · 11

8 24 · 33 · 52 · 72 · 11 · 13 28 · 33 · 52 · 72 · 11 · 13

9 27 · 33 · 52 · 72 · 11 · 13 29 · 34 · 52 · 72 · 11 · 13 · 17 · 23 · 29

10 27 · 34 · 52 · 72 · 13 · 17 211 · 36 · 52 · 72 · 11 · 13 · 17 · 23 · 37

11 28 · 34 · 53 · 72 · 11 · 13 · 17 · 19 none known

12 28 · 34 · 53 · 72 · 112 · 17 · 19 212 · 38 · 53 · 72 · 112 · 132 · 17 · 19 · 23 · 29 · 31

Proposition 1 implies that for any PTE solution of size n and degree k = n−1, the polynomials
a(x) =

∏n
i=1(x − ai) and b(x) =

∏n
i=1(x − bi) differ by a constant. For a given n, this choice for

k is the maximal possible choice [6, Proposition 2], hence the respective solutions are called ideal
solutions. Ideal solutions are known for n ≤ 10 and n = 12, but it remains unclear if there are
ideal solutions for other sizes [7]. Unless stated otherwise, henceforth we will only speak of PTE
solutions that are ideal solutions.

As we will see later, the most useful PTE solutions for our purposes are those for which the
constant C is as small as possible. We now recall some useful results from the literature concerning
the constants that can arise from PTE solutions.

Definition 3 (Fundamental constant Cn). Let n be a positive integer, and write Cn,A,B for
the associated constant of an ideal PTE solution A =n−1 B of size n. Then we define

Cn = gcd{Cn,A,B | A =n−1 B}

as the fundamental constant associated to ideal PTE solutions of size n.

A result by Kleiman [17] gives a lower bound on the fundamental constant.

Proposition 2. Let n be a positive integer. Then (n− 1)! | Cn.

For concrete choices of n, more divisibility results are presented by Rees and Smyth [21], and
Caley [7]. These results form sharper bounds for Cn, and thus for constants arising from any given
PTE solution. Upper bounds for Cn can be directly computed by taking the GCD of all known
solutions of size n. This is detailed in [7], where for example it is known that for n = 9 we have

27 · 33 · 52 · 72 · 11 · 13 | C9 and C9 | 29 · 34 · 52 · 72 · 11 · 13 · 17 · 23 · 29.

Table 1 is an updated version of [7, Table 3.2], and gives an overview of the bounds for the
fundamental constants Cn. These results give estimates for the optimal choices of solutions for our
searches. In particular, choosing solutions with associated constants close to the upper bound for
Cn yields the best preconditions for finding twin smooth integers.

For our application of finding twin smooth integers, it may seem unnecessarily restrictive to
only make use of PTE solutions, yielding monic polynomials a and b with integer roots. However,
it can be proven that all polynomials that are split over Q and that differ by a constant arise
from PTE solutions. In order to prove this, we make use of the following result ([6, Lemma 1], [7,
Proposition 2.1.2]).

8



Proposition 3. Let [a1, . . . , an] =k [b1, . . . , bn] with associated constant C and M,K arbitrary
integers with M 6= 0. Define a linear transform h(x) = Mx+K and let a′i = h(ai) and b′i = h(bi)
for i = 1, . . . , n. Then [a′1, . . . , a

′
n] =k [b′1, . . . , b

′
n], and the associated constant is C ′ = C ·Mn.

Two such solutions that are connected through a linear transform are called equivalent. Note
that Proposition 3 also holds for the PTE problem over rational numbers instead of integers, i.e.
for ai, bi ∈ Q for 1 ≤ i ≤ n.

Corollary 1. Let a(x) and b(x) be polynomials of degree n with rational roots A = {a1, . . . , an}
and B = {b1, . . . , bn}, such that a(x)− b(x) = C ∈ Q. Then A =n−1 B for the PTE problem over
Q, and there is an equivalent solution A′ =n−1 B′ to the PTE problem over Z.

Proof. Since deg(a(x)− b(x)) = 0, Proposition 1 implies that A =n−1 B. Let M ∈ Z be a common
denominator of a1, . . . , an, b1, . . . , bn and define the linear transform h(x) = Mx. Let a′i = h(ai)
and b′i = h(bi) for i = 1, . . . , n. Then A′ = {a′1, . . . , a′n} and B′ = {b′1, . . . , b′n} consist of integers,
and by Proposition 3, A′ =n−1 B′ is a solution for the PTE problem over Z. ut

Corollary 1 allows us to focus entirely on integer PTE solutions without imposing any further
restrictions. For our search for smooth values of the polynomials, Proposition 3 further implies
that we only have to search with one polynomial per equivalence class.

Corollary 2. Let A = {a1, . . . , an}, B = {b1, . . . , bn}, and A′ = {a′1, . . . , a′n}, B′ = {b′1, . . . , b′n}
be equivalent ideal PTE solutions. Let a(x), b(x), and a′(x), b′(x) be the respective polynomials
such that a(x) − b(x) = C ∈ Z resp. a′(x) − b′(x) = C ′ ∈ Z, and h(x) be the associated linear
transform. Then for given xmin and xmax, aC(x) and bC(x) take on the same integer values for
x ∈ I = [xmin, xmax] as a′C′(x) and b′C′(x) for x ∈ h(I).

In order to efficiently identify equivalent solutions, we make use of Proposition 3 to define a
representation of equivalence classes, which we call the normalized form of a class of solutions.

Definition 4 (Normalized form of PTE solutions). A normalized form of a given PTE
solution is a solution such that a1 ≤ a2 ≤ · · · ≤ an, b1 ≤ b2 ≤ · · · ≤ bn, 0 = a1 < b1, and
gcd(a1, . . . , an, b1, . . . , bn) = 1.

Another classification of solutions, which is of importance for our searches, is the distinction
between symmetric and non-symmetric solutions [5].

Definition 5 (Symmetric PTE solutions). For n even, an even ideal symmetric solution to
the PTE problem is of the form

[±a1,±a2, . . . ,±an/2] =n−1 [±b1,±b2, . . . ,±bn/2].

For n odd, an odd ideal symmetric solution to the PTE problem is of the form

[a1, a2, . . . , an] =n−1 [−a1,−a2, . . . ,−an].

It can immediately be seen that the normalized form of a symmetric solution is unique, but
no longer has the form satisfying Definition 5. However, we will still be calling these solutions
symmetric, since they are symmetric with respect to the integer K (instead of symmetric with
respect to 0, as in the classic formulation of Definition 5), where h(x) = Mx + K is the linear
transform connecting these solutions. Thus, we define solutions as non-symmetric if and only if
their equivalence class does not contain a symmetric solution according to Definition 5.

Note that in the special case of non-symmetric solutions, the normalized form is not unique. In
particular, if [a1, . . . , an] =n−1 [b1, . . . , bn] is a non-symmetric normalized solution, then so is the
solution arising from the linear transform h(x) = Mx+K, where M = −1 and K = max{an, bn}.
In this case, we take the solution with minimal b1 to represent the normalized solution, and refer
to the second normalized solution as the flipped solution.

Finally, in §4.4 we will see that PTE solutions with repeated factors have higher probabilities
(than those without repeated factors) of finding twin smooth integers. The following result [7,
Theorem 2.1.3] shows that repeated factors can only occur with multiplicity at most 2.
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Proposition 4 (Interlacing). Let A = {a1, . . . , an} and B = {b1, . . . , bn} be an ideal PTE
solution, where a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn, and w.l.o.g., we assume that a1 < b1.
Then, a1 6= bj for all j. If n is odd, we have

a1 < b1 ≤ b2 < a2 ≤ a3 < · · · < an−1 ≤ an < bn,

and if n is even, then

a1 < b1 ≤ b2 < a2 ≤ a3 < · · · < an−2 ≤ an−1 < bn−1 ≤ bn < an.

3.2 PTE solutions

An important prerequisite for searching for twin smooth integers is a large number of normalized
ideal PTE solutions with relatively small associated constants. To this end, we briefly review
solutions from the literature as well as methods to construct ideal solutions. Henceforth, we will
refer to normalized ideal PTE solutions only as PTE solutions.

A database of Shuwen collects several PTE solutions, both symmetric and non-symmetric [22].
In particular, special solutions, such as the smallest solutions with respect to the associated con-
stants, and the first solutions found for each size, are presented there.

Apart from this, several methods for generating PTE solutions have been found. Parametric
solutions are known for n ∈ {2, 3, 4, 5, 6, 7, 8, 10, 12}, and these can be used to generate infinitely
many symmetric solutions [7]. However, the number of solutions with small associated constants
is limited. For n = 9, only two non-equivalent solutions are known.

For n ∈ {5, 6, 7, 8}, we implemented the methods from [5] to generate as many symmetric
solutions with small associated constants as possible. For n = 10 and n = 12, there are parametric
symmetric solutions due to Smyth [23] and Choudhry and Wróblewski [29], resp., both following
an earlier method from Letac [11]. In both methods, the two parameters that form solutions come
from a quadratic equation in two variables. This equation can be transformed into an elliptic
curve equation, and thus finding suitable parameters is equivalent to finding rational points on
this elliptic curve. In [7, Section 6], Caley implements these methods by adding multiples of a non-
torsion point, P , to the eight known torsion points.4 However, it is evident from the underlying
transforms that PTE solutions with small constants can only arise from rational elliptic curve
points with small denominators in their coordinates. Caley’s approach thus proves to be non-
optimal for our aims, as the denominators in the coordinates of [i]P become too large already
for very small i, resulting in PTE solutions with huge constants. We implemented these methods
with the curves and transforms from [7], but deviated from Caley’s approach by first searching for
non-torsion points with integer coordinates, resp. coordinates with very small denominators. We
then followed Caley’s algorithm and computed small multiples of these points and their sums with
torsion points. Despite finding many PTE solutions, none of them proved to have an associated
constant close to the upper bound for C10 resp. C12. Further, taking the GCD of all found solutions,
we did not succeed in reducing the known upper bounds for C10 resp. C12.

For each size n, we identified an upper bound for constants that permit acceptable success
probabilities for our searches, and collected as many solutions as possible up to this value. Table 2
reports on the numbers of solutions we found, including solutions from [22].

4 Sieving with PTE solutions

Our sieving algorithm consists of two phases. The first phase identifies the B-smooth numbers in a
given interval (§4.1). The second phase then scans the interval using either a single PTE solution
(§4.2) or the combination of many PTE solutions (§4.3).

4 The elliptic curves that arise for n = 10 and n = 12 have Mordell-Weil-groups Z/4Z× Z/2Z× Z resp.
Z/4Z× Z/2Z× Z× Z. Thus there are eight torsion points in each case, and the non-torsion groups are
generated by one resp. two non-torsion points.
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Table 2: Number of PTE solutions up to an upper bound for the constants. Cmin,n denotes the
smallest constant known for each degree.

n dlog2(Cmin,n)e Bitlength of upper bound # of solutions

5 13 50 49

6 14 50 2438

7 33 60 8

8 31 60 51

9 52 60 2

10 73 100 1

12 76 100 1

4.1 Identifying smooth numbers in an interval

We follow the exposition of Crandall and Pomerance [9, §3.2.5] and adopt the simple sieve of
Eratosthenes to identify the B-smooth integers in an interval [L,R). We set up an array of R−L
integers corresponding to the integers L,L + 1, . . . , R − 1, and initialize each entry with 1. For
all primes with p < B, we identify the smallest non-negative i ∈ Z, for which L + i ≡ 0 mod p,
and multiply the array elements at positions i + jp by p for all j ∈ Z such that L ≤ i + jp < R.
Additionally, for all primes with p <

√
R, we have to identify the maximal exponent e such

that pe < R, and analogously perform sieving steps with the relevant prime powers, where further
multiplications by p take place. After this process is finished, the B-smooth integers in the interval
are precisely those for which the number at position i is L + i. Subsequently, we transform this
array of integers into a bitstring, where a ‘1’ indicates a B-smooth number, while a ‘0’ represents
a non-smooth number.

This simple approach allows for several optimizations and modifications, some of which are
discussed further in Section 7.

4.2 Searching with a single PTE solution

Assume that we are searching with a normalized ideal PTE solution of size n, writing a(x) =∏n
i=1(x − ai) and b(x) =

∏n
i=1(x − bi), together with C ∈ Z such that a(x) − b(x) = C. We will

assume C > 0, since a(x) and b(x) can otherwise swap roles accordingly, and as usual we write
aC(x) = a(x)/C and bC(x) = b(x)/C as the two polynomials in Q[x].

We are searching for ` such that m + 1 = aC(`) and m = bC(`) are both B-smooth and of
a given size, and thus the size of the constant C affects the size of the ` we should search over.
Moreover, we only wish to search over the values of ` for which aC(`) and bC(`) are integers, and
we determine this set of residues (modulo C) as follows. If C =

∏
peii is the prime factorization

of the constant, then for each prime-power factor we determine all residues ri mod peii for which
a(ri) ≡ b(ri) ≡ 0 mod peii (note that it is sufficient to check that one of a(ri) or b(ri) is a multiple
of peii ). We then use the Chinese Remainder Theorem (CRT) to reconstruct the full set of residues
{r mod C} for which a(r) ≡ b(r) ≡ 0 mod C. Depending on the size of the constant, the full list
of suitable residues may be rather large; if not, they can be stored in a lookup table, but if so,
only the smaller sets (i.e. the {ri} corresponding to peii ) need to be stored. We can then either
loop over the suitable residues by constructing them on the fly using the CRT, or we can check
whether a candidate ` is a suitable residue by reducing it modulo each of the peii .

It is worth pointing out that when searching for cryptographic parameters with a single PTE
solution, the condition that 2m + 1 is prime can be used to discard the residues {r̃ mod C} for
which 2bC(r)+1 can never be prime if r ≡ r̃ mod C. In a very rare number of cases, the polynomial
2bC(x)+1 = 2/C · (b(x)+C/2) in Q[x] is such that (b(x)+C/2) is reducible in Z[x], in which case
the PTE solution can be completely discarded. For example, this happens for both of the PTE
solutions with n = 9.
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Recall from Section 3 that the constants of the PTE solutions are (for our purposes) always
B-smooth. When processing an interval [L,R), the problem therefore reduces to finding ` ∈ [L,R)
such that all of the factors of a(`) and b(`) are marked as B-smooth. For the PTE solution in use,
these factors are given by `i = ` − i, where i ∈ {a1, . . . , an, b1, . . . , bn}. Note that since a1 = 0
for our normalized representation, we have ` = `0. Starting with ` at the left end of the interval
requires some care since for a given `, we need to be able to check for the smoothness of all `i.
Hence, to be able to cover the full space when processing consecutive intervals, we have to run the
first phase of the sieve for a slightly larger interval, namely [L−w,R) (overlapping to the left with
the previous interval), where w = max{an, bn}. This allows us to process ` ∈ [L,R) such that `w
will cover [L− w,R− w).

In the second phase of the sieve we advance ` through all of the elements in the bitstring marked
‘1’, each time checking the bits corresponding to the remaining `i, i.e. i ∈ {a2, . . . , an, b1, . . . , bn}.
If, at any time, we see that any of the `i corresponds to a ‘0’, we advance ` such that it is aligned
with the next ‘1’ and repeat the process until all of the `i correspond to a ‘1’. At this point, we can
then check whether ` is a suitable residue modulo C as above; if not, ` is again advanced to the
next set bit, but if so, we have found twin smooth integers, and it is here that we can optionally
check whether their sum is prime.

We note that when using a single PTE solution, the algorithm could be modified to sieve
in arithmetic progressions given by the suitable residues modulo C. We leave the exploration of
whether this can be more efficient than the above approach for future work.

In the case of a large interval [L,R), the memory requirements can be significantly reduced by
dividing [L,R) into several subintervals, which can be processed separately. The only downside is
that a näıve implementation of the first phase processes certain intervals twice due to the overlap
of length w. This can be easily mitigated by copying the last w entries of the previous interval
at each step. However, due to both the large (sub)intervals used in our implementation and the
relatively small w’s that arise in PTE solutions, the impact of this overlap is negligible in practice,
so the näıve approach can be taken without a noticeable performance penalty.

Parallelization. Our implementation parallelizes the sieve in a straightforward way by assign-
ing processors distinct subintervals of [L,R), e.g. according to their own memory/performance
capabilities. However, if many processors have rapid access to the same memory, then it may be
faster for some resources being devoted to identifing smooth numbers in the next interval while
the remaining resources sieve the current interval.

Negative input values. Until now we have only considered positive input values ` ∈ [L,R),
but our approach also permits negative inputs to the polynomials a(x) and b(x). For example,
for even n, this gives another pair of integers that could potentially be smooth. At first glance,
this seems to imply that each time ` is advanced, we must also check the values `′i = ` + i with
i ∈ {a1, . . . , an, b1, . . . , bn} for smoothness. Moreover, it seems that the overlap of size w for each
search interval must also be added to both sides. We note, however, that if the PTE solution in
use is symmetric (see Definition 5), then the values `′i are the same as the values (` + w)i, and
thus are naturally checked by our previous algorithm at position ` + w. This is not the case for
general non-symmetric solutions, but for those non-symmetric solutions that are normalized (see
Definition 4), we can instead search with positive inputs to the flipped solution arising from the
linear transform h(x) = −x+w, which is especially beneficial when searching with many solutions
simultaneously.

4.3 Searching with many PTE solutions

One of the main benefits of our sieve is that it can combine many PTE solutions into the same
search and rapidly process them together. Many PTE solutions tend to share at least one non-zero
element in common, and if checking this element returns a ‘0’, all such solutions can be discarded
at once. In what follows we describe a method to arrange the set of PTE solutions in a tree, such
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that (on average) a minimal number of checks is used to check the full set of solutions. Note that
computing this tree is a one-time precomputation that is performed at initialization.

Suppose we have t solutions, written as [ai,1, . . . , ai,n] =n−1 [bi,1, . . . , bi,n] for 1 ≤ i ≤ t. Noting
that ai,1 = 0 for all i, write Si = {ai,2, . . . , ai,n, bi,1, . . . , bi,n}, i.e. Si is the set of distinct non-zero
integers in the i-th PTE solution. Now, as in the single solution sieve above, suppose we have
advanced ` to a set bit at some stage of our sieving algorithm. Rather than checking each of
the PTE solutions individually, we would like to share any checks that are common to multiple
PTE solutions. The key observation is that we are highly unlikely5 to have a PTE solution whose
elements all correspond to ‘1’, so in combining many PTE solutions we would ultimately like to
minimize the number of checks required before we can rule all of them out and move ` to the next
set bit.

In looking for the minimum number of checks whose failures rule out all PTE solutions, we
are looking for a set H of minimal cardinality such that H ∩ Si 6= {∅} for 1 ≤ i ≤ t, i.e. the
smallest-sized set that shares at least one element with each of the PTE solutions. Finding this
set is an instance of the hitting set problem; this problem is NP-complete in general, but for the
sizes of the problem in this paper, a good approximation is given by the greedy algorithm [16].
We start by looking for the element that occurs most among all of the Si, call this g1; we then
look for the element that occurs most among the Si that do not contain g1, call this g2; we then
look for the element that occurs most among those Si that do not contain g1 or g2, and continue
in this way until we have H = {g1, g2, . . . , gh} such that every Si contains at least one of the gj ,
for 1 ≤ i ≤ t and 1 ≤ j ≤ h. This process naturally partitions the PTE solutions to fall under
h different branches. For each PTE solution in a given branch, the corresponding element of the
hitting set is removed and the process is repeated recursively until there is no common element
between the remaining solutions, at which point they become leaves. In §5.2 we give a toy example
with 20 PTE solutions that produces the tree in Figure 2. In this example the first hitting set is
{1, 2}; if a search was to use these 20 solutions, then most of the time only two checks will be
required before ` can be advanced to the next set bit.

At a high level, our multi-solution sieve then runs the same way as the single solution sieve
in §4.2, except that we must traverse our tree each time ` is advanced. We do this by checking
all of the elements of a the hitting set, and we only enter the branch corresponding to a given
element if the associated check finds a ‘1’ (an example sequence of checks is included in §5.2).
This is repeated recursively until we either encounter a leaf, where we simply check the remaining
elements sequentially, or until all of the elements in the hitting set at the current level of the tree
return a ‘0’, at which point we can move up to the branch above and continue. As mentioned
above, in practice the most common scenario is that all of the elements in the highest hitting set
correspond to a ‘0’, and the number of checks performed in order to rule out the full set of PTE
solutions is minimal. Note that checking the divisibility of a(`) and b(`) by the constant C is, in
practice, best left until the point where a match is found. Since solutions have different constants
and different sets of suitable relations, it is not useful to incorporate modular relations into the
sieving step of the multi-solution algorithm.

The efficiency of checking all PTE solutions simultaneously is therefore heavily dependent on
the size of the first hitting set. In cases where we have many PTE solutions (see §3.2), the first
hitting set can be used to decide which PTE solutions to search with. If a pre-existing set of
PTE solutions has a hitting set H, then including any additional solutions that share at least one
element with H incurs nearly no performance cost.

4.4 Success probabilities

In Table 3 we use Heuristic 1 to draw comparisons between our method of finding twin smooth
integers and the prior methods discussed in §1.2. The entries in the table are the approximate
smoothness bounds that should be used to give success probabilities of 2−20, 2−30, 2−40 and 2−50.
The term success probability is used to estimate how large a search space needs to be covered before

5 We assume that the smoothness bound is aggressive enough to make the smooth integers sparse.
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Table 3: Table of smoothness bounds and success probabilities for known methods and our method.
All numbers are given as base-2 logarithms. Further explanation in text.

N

256 384 512

method
n

probability
n

probability
n

probability

−50 −40 −30 −20 −50 −40 −30 −20 −50 −40 −30 −20

näıve – 20.2 23.4 28.4 36.7 – 30.2 35.2 42.6 55.1 – 40.3 46.9 56.7 73.4

XGCD – 15.9 18.4 21.9 27.7 – 23.9 27.5 32.8 41.5 – 31.9 36.7 43.7 55.3

2xn − 1

4 15.6 17.8 20.8 25.8 6 19.9 22.6 26.4 32.3 6 26.6 30.1 35.2 43.1

6 13.3 15.1 17.6 21.6 8 20.4 23.2 27.2 33.8 12 22.0 24.9 28.9 35.2

8 13.6 15.5 18.2 22.5 10 20.3 23.1 27.2 33.8 16 25.8 29.3 34.6 43.5

9 15.4 17.7 21.0 26.4 12 16.5 18.7 21.7 26.4 18 23.3 26.3 30.9 38.4

10 13.5 15.4 18.2 22.5 16 19.3 22.0 25.9 32.7 20 23.2 26.3 31.0 38.5

12 11.0 12.4 14.5 17.6 18 17.4 19.8 23.1 28.8 24 20.2 22.9 26.7 32.8

PTE

3 20.4 23.0 26.6 32.2 3 30.6 34.5 39.9 48.4 4* 30.6 34.5 39.9 48.4

3* 16.2 18.4 21.6 26.6 3* 24.3 27.7 32.4 39.9 5 31.9 25.6 40.6 48.2

4 17.8 20.0 22.9 27.5 4 26.7 29.9 34.4 41.2 6 29.1 32.2 36.6 43.0

4* 15.3 17.2 20.0 24.2 4* 22.9 25.8 29.9 36.3 6* 25.2 28.2 32.2 38.5

5 16.0 17.8 20.3 24.1 5 24.0 26.7 30.4 36.1 7 26.8 29.6 33.5 39.0

6 14.5 16.1 18.3 21.5 6 21.8 24.2 27.5 32.3 8 24.9 27.5 30.9 35.8

6* 12.6 14.1 16.1 19.3 6* 18.9 21.1 24.2 28.9 9 23.3 25.7 28.7 33.2

7 13.4 14.8 16.7 19.5 7 20.1 22.2 25.1 29.3 10 22.0 24.1 26.8 31.1

8 12.5 13.7 15.4 17.9 8 18.7 20.6 23.2 26.9 12 19.8 21.5 23.9 27.5

we can expect to find twin smooth integers; these probabilities are computed directly via (1.2).
For example (refer to the bold element in the last row of the table), using one PTE solution with
n = 8 and a smoothness bound of B ≈ 226.9, we can expect to find a pair of twin smooth numbers
in [1, N ] = [1, 2384] after searching roughly 220 inputs ` ∈ [1, N1/n] = [1, 248], for which aC(`) and
bC(`) are integers.6 To find similarly sized twin smooth integers using the XGCD approach, we
would have to search roughly 220 elements with a smoothness bound of B ≈ 241.5, or 230 elements
with a smoothness bound of B ≈ 232.8; on the other hand, if we were using XGCD with the same
B ≈ 226.9 as the PTE solution, we should expect to have to search a space larger han 240 before
finding twin smooths.

We stress that Table 3 is merely intended as a rough guide to the size of the smoothness
bounds we should use in a given search, and similarly to provide an approximate comparison
between the methods. As mentioned in Section 2, Heuristic 1 makes the rather strong assumption
that the elements in our PTE solutions are uniform in [1, N1/n], and using the Dickman–de Bruijn
function is a rather crude blanket treatment of the concrete combinations of B, N and n of interest
to us. Moreover, the best version of our sieve (like the one used in Section 6) combines hundreds
of PTE solutions into one search, and extending a theoretical analysis to cover such a collection of
solutions is unnecessary. We point out that the application of Heuristic 1 to our scenario further
assumes that the denominator C gets absorbed by the different factors uniformly. In other words,

6 The total number of inputs required for this (including the ones which lead to non-integer polynomial
values) depends on the PTE solution and associated constant in use, and can easily be computed via
the CRT approach described before.
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we assume that after canceling the denominator, all factors of aC(`) and bC(`) roughly have the
same size. Although this is not true in general, our experiments and the smoothness of C (see §3.1)
suggest this to be a good approximation for the average case.

The elements of the table that are faded out correspond to instances where the size of the
possible search space is not large enough to expect to find solutions with the given probability.
Moreover, Table 3 does not incoporate the additional probabilities associated with the twin smooth
integers having a prime sum. Searches for cryptographic parameters typically need to find several
twin smooth integers before finding a pair with a prime sum, so our search spaces tend to be a
little larger than Table 3 suggests.7 We chose 2−20 as the largest success probability in the table
under the assumption that any search for twin smooth integers will cover a space of size at least
220.

A number of rows in the lower section of the table are marked (*) to indicate that these are
PTE solutions with repeated factors. Viewing Heuristic 1, we see that these solutions find twin
smooth integers with a higher probability than those PTE solutions without repeated factors,
which is why they show a lower smoothness bound (for a fixed probability). PTE solutions with
repeated factors are only known for n ∈ {3, 4, 6}.

5 A worked example

We now give concrete examples found with the sieve described in Section 4, referring back to the
theory developed in Section 3 where applicable. We first illustrate a simple search that uses a
single PTE solution, and then move to combining many PTE solutions into the same sieve.

5.1 Searching with a single PTE solution

Suppose we are searching for twin smooth integers (m,m + 1) with 2240 ≤ m < 2256. Table 3
suggests that the best chances of success are with n ∈ {6, 7, 8}, and in particular with the n = 6
solutions that have repeated factors. Since the search spaces using polynomials of degree n = 7
and n = 8 are rather confined when targeting m < 2256 (see Table 3), for this example we use a
PTE solution of size n = 6 containing repeated factors, namely

[1, 1, 8, 8, 15, 15] =5 [0, 3, 5, 11, 13, 16], (7)

which corresponds to the polynomials

a(x) = (x− 1)2(x− 8)2(x− 15)2, b(x) = x(x− 3)(x− 5)(x− 11)(x− 13)(x− 16).

Proposition 1 induces that a(x) and b(x) differ by an integer constant, which in this case is

C = a(x)− b(x) = 14400 = 263252.

Observe that Proposition 2 guaranteed that C was a multiple of (n− 1)! = 5!.
Given that 213 < C < 214, searching for m with 2240 ≤ m < 2256 means searching for values

` such that a(`) and b(`) lie between 2254 and 2269, so that aC(`) and bC(`) are then of the right
size. Since a(x) and b(x) have degree 6, this means searching with 242 ≤ ` < 245.

Recall from Section 4 that our sieving algorithm alternates between two main phases. The
first is independent of the PTE solution(s) we are searching with, and simply involves identifying
all smooth numbers in a given interval (see §4.1). In this example, we chose interval sizes of
220 = 1048576, so at the conclusion of this first phase, we have a bitstring of length 1048576 to
search over: a ‘1’ in this string means the number associated with its index is B-smooth, while a
‘0’ indicates that it is not.

7 It is beyond the scope of this work to make any statements about the probability of a prime sum, except
to say that in practice we observe that twin smooth sums have a much higher probability of being prime
than a random number of the same size.
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Fig. 1: Sieving with the PTE solution [1, 1, 8, 8, 15, 15] =5 [0, 3, 5, 11, 13, 16] across the subinterval
` = 5170314186700 + t for t ∈ {30, 31, . . . 59}. Further explanation in text.

t 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
smooth? 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0

...

7 `16 `15 `13 `11 `8 `5 `3 `1 `0

7 `16 `15 `13 `11 `8 `5 `3 `1 `0

7 `16 `15 `13 `11 `8 `5 `3 `1 `0

7 `16 `15 `13 `11 `8 `5 `3 `1 `0

3 `16 `15 `13 `11 `8 `5 `3 `1 `0

With B ≈ 216.1, Table 3 suggests that searching with the PTE solution in (7) will find twin
smooth integers for roughly 1 in every 230 values of ` that are tried. Thus, we set B = 216 and
started the search at ` = 242. With this ` and B, the Dickman–de Bruijn function tells us that we
can expect the proportion of B-smooth numbers to be close to ρ(42/16) ≈ 0.103.

At the top of Figure 1, we give 30 bits of an interval (found after sieving for some time) that
correspond to ` = 5170314186700 + t, for t ∈ {30, 31, . . . 59}. Here 11 of the 30 bits are 1, so the
proportion of B-smooth numbers in this small interval is exceptionally high; indeed, these are the
kinds of substrings we are sieving for, in hope that our PTE solution aligns favorably to find 1’s
in all of the required places. Viewing (7), we write `i = ` − i for i ∈ {0, 1, 3, 5, 8, 11, 13, 15, 16}.
As depicted in Figure 1, each step in the second phase starts by finding the next smooth number
(i.e. the next ‘1’ in the string), advancing ` = `0 to align there before sequentially checking from
`1 through to `16. If, at any stage, one of the `i is aligned with a ‘0’, we advance ` to the next ‘1’
in the string and repeat the procedure. Once we have finished processing a full interval (of size
220 in this case), we advance to the next interval by first computing the string that identifies all
B-smooth numbers, then processing the interval by aligning `0 with the next set bit, and checking
the remaining `i.

In Figure 1 we see that when `0 = 5170314186747, the next bit checked reveals that `1 cor-
responds to a ‘0’, so this position is immediately discarded and we advance to the next set bit
taking `0 = 5170314186750. Again, `1 discovers a ‘0’, so `0 advances to 5170314186752, and then
to 5170314186754 (both of these also have `1 aligned with ‘0’). Advancing to `0 = 5170314186755,
we see that the remaining `i correspond to set bits and are thus all smooth, namely

`0 = 5 · 29 · 31 · 211 · 557 · 9787, `1 = 2 · 71 · 919 · 1237 · 32029,

`3 = 212 · 112 · 13 · 277 · 2897, `5 = 2 · 3 · 53 · 181 · 4783 · 7963,

`8 = 32 · 23 · 41 · 83 · 1117 · 6571, `11 = 23 · 3 · 72 · 17 · 43 · 191 · 31489,

`13 = 2 · 103 · 1093 · 2663 · 8623, `15 = 22 · 5 · 1163 · 11927 · 18637,

`16 = 13 · 53 · 113 · 3347 · 19841.

The PTE solution (7) translates into the twin-smooth numbers

(m,m+ 1) =

(
`0`3`5`11`13`16

C
,

(`1`8`15)2

C

)
.
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In this case their sum is a prime p, which lies between the B-smooth numbers 2m and 2(m+ 1),
namely

p = 2m+1 = 2653194648913198538763028808847267222102564753030025033104122760223436801.

Remark 1. When searching with a single solution, in practice we only want to search over the
` ∈ Z for which a(`) ≡ b(`) = 0 mod C. As described in Section 3, we use the CRT to find these `
by first working modulo each of the prime power factors of C. In this case we find

– 40 residues r1 ∈ [0, 26) such that a(`) ≡ b(`) ≡ 0 mod 26 iff ` ≡ r1 mod 26;
– 9 residues r2 ∈ [0, 32) such that a(`) ≡ b(`) ≡ 0 mod 32 iff ` ≡ r2 mod 32;
– 15 residues r3 ∈ [0, 52) such that a(`) ≡ b(`) ≡ 0 mod 52 iff ` ≡ r3 mod 52.

Here we see that a(`) ≡ b(`) ≡ 0 mod 32 for all ` ∈ Z (this can be seen immediately by looking
at the expression for a(x) above), so we can ignore the factor of 32 and work with the effective
denominator C ′ = 2652 = 1600. Of the 1600 possible residues in [0, 2635), we only search over the
40 · 15 = 600 values of ` that will produce a(`) ≡ b(`) ≡ 0 mod C ′. In this case the list of residues
is small enough that we can simply store them once and for all and avoid recomputing them on
the fly with the CRT at runtime. However, many of the PTE solutions we use have much larger
denominators and a much smaller proportion of residues to be searched over, and in these cases
storing residues modulo each prime power and then using the CRT on the fly is much faster than
looking up the full set of residues (modulo C) in one huge table.

For ease of exposition, we ignored this in the above example. Returning to Figure 1, we
point out that none of the four values that were checked prior to finding the solution (i.e.
` = 5170314186700+ t with t ∈ {47, 50, 52, 54}) are such that a(`) ≡ b(`) ≡ 0 mod C. In fact, none
of the other smooth `’s depicted in Figure 1 have this property; the previous smooth ` that does
is ` = 5170314186728, so in practice we would have advanced straight from this ` to the successful
one.

Remark 2. Since the degree of a and b is even, negative values for ` will lead to valid positive
twin smooth integers and possibly a corresponding prime sum. Negative values can be taken into
account by considering the flipped solution (as defined at the end of §3.1). Because the solution
considered here is symmetric, any pattern corresponding to a negative value also occurs for a
positive value.

5.2 Sieving with many PTE solutions

We now turn to illustrating the full sieving algorithm that combines many PTE solutions into
one search. The degree 6 sieves we used in practice combined hundreds of PTE solutions into one
search (see Table 2), but for ease of exposition we will illustrate using the first 20 solutions (ordered
by the size of the constant). These range from the solution S1, which has C = 14400 = 26 · 32 · 52,
to S20, which has C = 13305600 = 28 · 33 · 52 · 7 · 11. These solutions are listed below.

S1 : [0, 3, 5, 11, 13, 16] =5 [1, 1, 8, 8, 15, 15]; S2 : [0, 5, 6, 16, 17, 22] =5 [1, 2, 10, 12, 20, 21],

S3 : [0, 4, 9, 17, 22, 26] =5 [1, 2, 12, 14, 24, 25], S4 : [0, 7, 7, 21, 21, 28] =5 [1, 3, 12, 16, 25, 27],

S5 : [0, 7, 8, 22, 23, 30] =5 [2, 2, 15, 15, 28, 28], S6 : [0, 5, 13, 23, 31, 36] =5 [1, 3, 16, 20, 33, 35],

S7 : [0, 8, 9, 25, 26, 34] =5 [1, 4, 14, 20, 30, 33], S8 : [0, 7, 11, 25, 29, 36] =5 [1, 4, 15, 21, 32, 35],

S9 : [0, 9, 11, 29, 31, 40] =5 [1, 5, 16, 24, 35, 39], S10 : [0, 8, 11, 27, 30, 38] =5 [2, 3, 18, 20, 35, 36],

S11 : [0, 5, 16, 26, 37, 42] =5 [2, 2, 21, 21, 40, 40], S12 : [0, 6, 17, 29, 40, 46] =5 [1, 4, 20, 26, 42, 45],

S13 : [0, 7, 14, 28, 35, 42] =5 [2, 3, 20, 22, 39, 40], S14 : [0, 10, 13, 33, 36, 46] =5 [1, 6, 18, 28, 40, 45],

S15 : [0, 9, 17, 34, 36, 46] =5 [1, 6, 24, 25, 42, 44], S16 : [0, 9, 14, 32, 37, 46] =5 [2, 4, 21, 25, 42, 44],

S17 : [0, 9, 16, 34, 41, 50] =5 [1, 6, 20, 30, 44, 49], S18 : [0, 11, 15, 37, 41, 52] =5 [1, 7, 20, 32, 45, 51],

S19 : [0, 7, 21, 35, 49, 56] =5 [1, 5, 24, 32, 51, 55], S20 : [0, 12, 13, 37, 38, 50] =5 [2, 5, 22, 28, 45, 48].
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In regards to Remark 1, recall from Section 4 that each PTE solution has a different constant
C and thus a different set of residues. In general these residues are incompatible with one another,
so we choose to ignore them until the sieve identifies candidate pairs (`, Si), at which point we
only mark the pair as a solution if the corresponding polynomials have a(`) ≡ b(`) ≡ 0 mod C.

Now, recall from Section 4 that our sieving tree is built by recursively identifying hitting sets
among the set of solutions, and then removing the corresponding element in the hitting set from
each solution. The first hitting set is (always) {0}, which is the root of our tree. After removing
0 from all of the solutions, we see that the next hitting set is {1, 2}; some PTE solutions contain
both 1 and 2, but 1 appears in more solutions than 2 does, so the solutions S2 and S3 occur in
the branches that fall beneath 1 in the tree. Repeating this process produces the tree in Figure 2.
Note that this is a precomputation that is done once-and-for-all before the sieve begins.

0

2

3

S10

21

37

42

S16S11

22

28

5

S20

7

S13S5

1

7

32

51

S19S18

6

36

46

S15S14

4

6

S12

25

7

S8

9

14

26

S7S3

16

6

S17

3

S4

5

9

S9

2

S2

3

13

S6S1

Fig. 2: A sieving tree for 20 example PTE solutions. Further explanation in text.

Again we target 2240 ≤ m < 2256 by searching with 242 ≤ ` < 245, set our smoothness
bound as B = 216, and alternate between identifying the B-smooth numbers in intervals of size
220 = 1048576, processing each interval by advancing through all of the set bits (smooth numbers)
within it. Write `i = ` − i as before. Here the hitting set has only two elements, so given that
the probability of smoothness is roughly ρ(42/16) ≈ 0.103, most of the time we will only need to
check two neighboring bits (`1 and `2) before discarding each candidate `.

Viewing Figure 2, we traverse the tree by moving down the levels and processing each subse-
quent hitting set from left to right. If, at any stage, we find a smooth number, we immediately
move down a level and process the numbers branching beneath it. We are only permitted to move
up a level and continue to the right once the entire hitting set at a given level has been checked.
Finally, if at any stage we arrive at a leaf and find that all of the remaining numbers are smooth, we
then identify this solution as a candidate. At this stage we check whether a(`) ≡ b(`) ≡ 0 mod C,
in which case we have found twin smooth integers, and then optionally check whether their sum
is a prime, in which case we have found cryptographically suitable parameters.

After some time, our sieve advances to the B-smooth number

`0 = 5435932476400 = 24 · 52 · 199 · 4817 · 14177.
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In this case the subsequent set of ordered checks made in traversing the tree in Figure 2
are given below (we use 3 to indicate that `i is B-smooth, 7 otherwise). Checking the entire
leaf marked S17 is combined into Check 5 for brevity; the remaining values here are `i with
i ∈ {9, 20, 30, 34, 41, 44, 49, 50}.

Check 1. `1 3 Check 2. `16 3 Check 3. `5 7 Check 4. `3 7

Check 5. S17 3 Check 6. `4 7 Check 7. `6 3 Check 8. `36 7

Check 9. `7 7 Check 10. `2 7

At the conclusion of Check 5, we now know that all of the elements in S17 : [0, 9, 16, 34, 41, 50] =5

[1, 6, 20, 30, 44, 49] are smooth, and thus we have found a candidate solution. Checks 6–10 are
included to show how the sieve continues. It remains to check whether ` = 5435932476400 gives
a(`) ≡ b(`) ≡ 0 mod C, when

a(x) = x(x− 9)(x− 16)(x− 34)(x− 41)(x− 50)

and

b(x) = (x− 1)(x− 6)(x− 20)(x− 30)(x− 44)(x− 49).

are such that C = 7761600. In this case we do find that a(`) ≡ 0 mod C (which is sufficient), so
we know that

m = `0`9`16`34`41`50/C and m+ 1 = `1`6`20`30`44`49/C

are both B-smooth integers. Indeed, factoring reveals that

m = 25 · 34 · 52 · 109 · 173 · 199 · 233 · 571 · 677 · 743 · 1303 · 2351 · 2729

· 3191 · 4817 · 12071 · 12119 · 14177 · 16979 · 30389 · 37159 · 39979, and

m+ 1 = 13 · 17 · 23 · 31 · 61 · 103 · 263 · 643 · 1153 · 1429 · 1889 · 2213 · 3359

· 5869 · 7951 · 9281 · 18307 · 28163 · 34807 · 41077 · 41851 · 64231.

In this case 2m + 1 is the product of two large primes, so a sieve for cryptographic parameters
would continue by advancing to the next smooth `0 in the interval.

6 Cryptographic examples of twin smooth integers

We implemented the sieve including the tree structure for searching with multiple PTE solutions
in Python 3 and used it to run our experiments. The first phase of the algorithm, i.e. the sieve
that identifies smooth numbers was written in C and called from the python code, which resulted
in a significant speedup. The code takes as input the left and right bounds of a desired interval
to be searched, a size for the sub-intervals that are processed by the sieve at a time, as well as a
smoothness bound and a list of PTE solutions. It then computes the PTE solution search tree and
starts the sieve as described in Sections 4 and 5. Another input is a desired number of threads,
between which the interval is divided and then run on the available processors in a multi-processing
fashion.

After examining the PTE solution counts in Table 2 and the smoothness probabilities in
Table 3, we chose to launch a sieve with 520 PTE solutions of size n = 6 that searched ` ∈ [240, 245]
with a smoothness bound of B = 216 and intervals of size 220. The 520 solutions are all the ones
we found that have a constant of at most 38 bits. The first hitting set of the PTE solutions had
cardinality 13, and the Dickman–de Bruijn function estimates that the proportion of B-smooth
numbers in our interval is ρ(45/16) ≈ 0.0715. The search ran on 128 logical processors (Intel Xeon
CPU E5-2450L @1.8GHz) for just over a week before the entire interval was scanned.
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Table 4 reports one of the cryptographic primes that was found with our sieve for each bitlength
between 240 and 257 (excluding 253, 254 and 256, for which no primes were found), and compares
it to the primes found with prior methods in the literature. For the primes found using PTE
solutions, we give the search parameter ` together with the corresponding PTE solution, which is
one of

S6
1 : [0, 3, 5, 11, 13, 16] =5 [1, 1, 8, 8, 15, 15],

S6
2 : [0, 7, 8, 22, 23, 30] =5 [2, 2, 15, 15, 28, 28],

S6
3 : [0, 7, 33, 47, 73, 80] =5 [3, 3, 40, 40, 77, 77],

S6
4 : [0, 5, 16, 26, 37, 42] =5 [2, 2, 21, 21, 40, 40].

For each prime we report the smoothness bound B, which is the largest prime divisor of (p−1)(p+
1), together with its bitlength. In the case of the 241- and 250-bit primes, we see that B < 215. The
smallest prior B corresponding to primes of around this size was the 19-bit B = 486839 from [8].
Referring back to Table 3, we see that a search through an interval of this size should find a few
twin smooth integers with B < 215, but finding enough twin smooths with B < 214 to hope for a
prime sum among them may have been out of the question.

To check whether n = 6 produces the smoothest twins of this size (as Table 3 predicts), we
ran similar sieves using the 8 PTE solutions with n = 7 and the 51 PTE solutions with n = 8
with B = 218, and in both cases we covered the full range of possible inputs that would produce a
p < 2256. Despite finding a handful of twin smooth integers with B < 217, the search spaces were
not large enough to find any primes among them.

Table 4 also reports three cryptographic primes that target higher security levels. When search-
ing for p ≈ 2384, the PTE solutions with n = 6 again proved to produce the smoothest twins;
the 376- and 384-bit primes reported correspond to twin smooths with B = 221 and B = 222,
respectively. When searching for p ≈ 2512, the PTE solution

S12
1 : [0, 11, 24, 65, 90, 129, 173, 212, 237, 278, 291, 302]

=11 [3, 5, 30, 57, 104, 116, 186, 198, 245, 272, 297, 299]

with n = 12 found the reported 512-bit prime, which lies between two integers that are both
229-smooth. The primes corresponding to Table 4 are written in full in Appendix A.

7 Relaxations and modifications

There are numerous ways to modify our sieving approach for performance reasons, or to relax the
search conditions in order to precisely match the security requirements imposed by B-SIDH or
SQISign.

Approximate sieves. There are several sieving optimizations discussed in [9, §3.2.5–3.3] that
can be applied to the sieving phase of our algorithm. For large scale searches, it could be preferred
to sacrifice the exactness of the sieve we implemented for more performant approximate sieves.
For example, the smallest primes are the most expensive to sieve with due to the large number
of multiplications. Thus, an approximate sieve can choose to skip these small primes (but still
include the larger prime powers) and choose to tag numbers as being B-smooth as soon as the
result is close enough to the expected number. This requires to choose an error bound, which also
determines if and how many false positive and false negative results are going to occur.

A standard approach for sieving algorithms is discussed by Crandall and Pomerance [9, §3.2.5].
This approach replaces multiplications by additions in Eratosthenes-like sieves, by choosing to rep-
resent numbers as their (base-2) logarithms. Moreover, sieves can use approximate logarithms, i.e.
round these logarithms to nearby integers and tolerate errors in the logarithms; for example, if we
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Table 4: A comparison between some of the best instances found with our sieve and the best
instances from the literature. Further explanation in text.

method where p (bits) B dlog2 Be

XGCD [4, App. A] 256 6548911 23

p = 2xn − 1

[8, Ex. 5] 247 652357 20

[8, Ex. 6] 237 709153 20

[8, Ex. 7] 247 745309897 30

[8, Ex. 8] 250 486839 19

PTE sieve

19798693013832 S6
3 240 54503 16

5170314186755 S6
1 241 32039 15

11434786499430 S6
2 242 62653 16

6387061913711 S6
1 243 56711 16

32519458118257 S6
3 244 64591 16

16232865719280 S6
2 245 49711 16

8812545447095 S6
1 246 40151 16

20173246926702 S6
2 247 40289 16

22687888853658 S6
2 248 59497 16

13061439823095 S6
2 249 38119 16

36144284257450 S6
4 250 32191 15

16189037375263 S6
2 251 65029 16

17545941442175 S6
1 252 35291 16

27071078665441 S6
1 255 52069 16

32554839816383 S6
1 257 42979 16

74939989736653381520 S6
4 376 1604719 21

74939982689644756283 S6
1 384 3726773 22

510796126391672 S12
1 512 238733063 28

choose to tolerate errors up to logB, then we are guaranteed that factors that are unaccounted for
in the approximation are also less than the smoothness bound [9, p. 124]. Rather than accumulat-
ing products, we are then accumulating sums of relatively small integers. This approach is used
in our C implementation and for the ranges targeted here, allows the accumulated approximate
logarithms to be stored in a single byte.

Recall from §4.2 that when a single PTE solution is used we are only interested to sieve the
subset of integers for which a(`) ≡ b(`) ≡ 0 mod C. In this case it may be preferable to employ
Bernstein’s batch smoothness algorithm [3]; this can be used to gain a better overall complexity
(per element) when sieving through an arbitrary set.

Lastly, we point out that the set of primes used in the factor base can be tailored to our needs.
For example, if future research reveals that certain types of prime isogeny degrees are favored over
others (i.e. when invoking the Õ(

√
`) algorithm from [4]), then it may be preferable to increase

the bound B and only include those primes in our sieve.

Non-smooth cofactors vs. fully smooth numbers. The security analyses of B-SIDH or
SQISign suggest that both systems can tolerate a non-smooth cofactor in either or both of p− 1
and p+ 1. In these cases, relaxing conditions in the second part of our sieve to allow non-smooth
cofactors is straightforward. When searching with PTE solutions of size n, we could e.g. only
require n−1 of the factors on each side to be B-smooth. The näıve way to do this when traversing
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the tree would be to incorporate a counter that only allows branches to be discarded when two non-
smooth numbers have been discovered, but this approach makes things unnecessarily complicated
and significantly slower, e.g. it no longer suffices to start the sieving procedure at each ‘1’ in the
interval, since `0 is now allowed to be non-smooth.

A much better approach can be taken by simply creating many relaxed PTE solutions from
the original solution A =n−1 B, and including them in the solution tree. For example, if the
security analysis corresponding to a search with n = 6 suggests we only need 5 smooth factors
from each side of the PTE solution, then the solution [0, 7, 11, 25, 29, 36] =5 [1, 4, 15, 21, 32, 35] can
be modified into 36 relaxed solutions, each of which corresponds from wiping out one number from
A and one number from B; these new solutions only include 10 distinct elements. By building a tree
from these solutions and running the same algorithm as in Section 4, we are effectively allowing
for one of the factors of the original solution to be non-smooth. The only minor modification
required appears when 0 is wiped out from a solution, in which case we have to shift all elements
such that the new solution contains 0, by the means of Proposition 3. We reiterate that all of
these modifications are a one-time precomputation before the sieve begins. In the case of the PTE
solutions with repeated factors, e.g. [0, 3, 5, 11, 13, 16] =5 [1, 1, 8, 8, 15, 15], we may not be able to
tolerate a non-smooth cofactor that would arise from removing any of 1, 8 or 15 from the PTE
solution. On the other hand, if the security analysis does permit such a cofactor (which appears
to be the case for SQISign), then our relaxed solutions would either remove one of the repeated
numbers from B, or two of the numbers from A; the latter would have a better success probability,
but (assuming the hitting set remains unchanged) our tree approach would not pay any noticeable
overhead by including all such relaxations.
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A Cryptographic instances

Here we write each of the k-bit primes pk reported in Table 4 in hexadecimal form, together with
(b−, b+), where b− and b+ are the bitlengths of the largest prime divisors of p − 1 and p + 1,
respectively.

p240 = 0xCC6E44A51DB3CC1FB31485B391D6F94F051241282C838792289735BB7F1F (16, 12)

p241 = 0x1806C75880CA052121E8E7CDE27A1A96609888684875552D29904DFAAB001 (15, 15)

p242 = 0x396149F81FEBA0C68F83343A97F9291C1C791276069183BA9109C0E1BD691 (16, 15)

p243 = 0x55633FE3F792D48335FC012D3F97124E875DFA6557A42DCE84095D872747F (16, 15)

p244 = 0xFAE1675B4E4863D3233E99D8BCB340A7AF109D4E8BE9DAA0ED70E2A48E551 (16, 13)

p245 = 0x1D5A36FDD8D3D597C6593A533D024A7114E507366E08F1C82F413D7B4E16F1 (16, 15)

p246 = 0x24D1C48184B1363802C01018663D5CBF42C71AB522864021BF5F593639C887 (15, 16)

p247 = 0x6C201318D968DD3D9A3CE99CD19FC85CF38B32624583D7C157ACA843500E31 (16, 15)

p248 = 0xDACB77793E7F8FD6E4F23013ECE9BACD3E8CBFFB7059B2D1CD19B15D047487 (16, 15)

p249 = 0x186508DCB2D590E2DD8A0F1ADE15AC5664777CEA1E5E88574CF0B8CE68C1307 (16, 14)

p250 = 0x37E3B69D167331893E3FC9D49A7CA351269D6DED9781B2337A15A5376FC5641 (15, 15)

p251 = 0x5871FE99852EACA71CCA3BA8D7E3D65F39D6E5DAEFCC0A91C65F72A36D43E1F (16, 15)

p252 = 0x8F5A85C728163268C7D2D7C1CB7A71F03C67C34FA7BC67F841F3DFA22C02C1F (16, 15)

p255 = 0x78DAB06E306CA0903EF6085B501DF876D5BE579C27CE65FD5564603FBF88487F (16, 16)

p257 = 0x16D877302C42F1A89467FCE215BB4BF148ACC725A621FDB0F3C798E5D9EA8651F (16, 15)

p376 = 0xD0C37C1D0F691A89B4B2ED0774EC29CCFB1BE68140175F474865B435FB6E473A

7201811B93DC41B8B7B85F0D6CAFC1 (21, 20)

p384 = 0x9FD5A51D44F8C9DFFAD8EBA5177DB40AC0D8E4D931955E7EE85A422907AEC75B

813C9856F12C93BF8DF769E60A0BA491 (22, 19)

p512 = 0xB2A246D87905CBB6415B6DAF96E21E6B2F094BA8FBEE8D0FADC492889C398B59

F29BC2C05DD27600661B9BD8674612FF7FFC94814846FF3883ABA06C3D010B3D (27, 28)
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