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Abstract. We introduce an efficient post-quantum signature scheme
that relies on the one-wayness of the Legendre PRF. This “LEGendRe
One-wAyness SignaTure” (LegRoast) builds upon the MPC-in-the-head
technique to construct an efficient zero-knowledge proof, which is then
turned into a signature scheme with the Fiat-Shamir transform. Un-
like many other Fiat-Shamir signatures, the security of LegRoast can
be proven without using the forking lemma, and this leads to a tight
(classical) ROM proof. We also introduce a generalization that relies on
the one-wayness of higher-power residue characters; the “POwer Residue
ChaRacter One-wAyness SignaTure” (PorcRoast).
LegRoast outperforms existing MPC-in-the-head-based signatures (most
notably Picnic/Picnic2) in terms of signature size and speed. Moreover,
PorcRoast outperforms LegRoast by a factor of 2 in both signature size
and signing time. For example, one of our parameter sets targeting NIST
security level I results in a signature size of 7.2 KB and a signing time of
2.8ms. This makes PorcRoast the most efficient signature scheme based
on symmetric primitives in terms of signature size and signing time.

Keywords: Post-Quantum signatures · Legendre PRF · MPC-in-the-head

1 Intoduction

In 1994, Shor discovered a quantum algorithm for factoring integers and solv-
ing discrete logarithms in polynomial time [26]. This implies that an adversary
with access to a sufficiently powerful quantum computer can break nearly all
public-key cryptography that is deployed today. Therefore, it is important to
look for alternative public-key cryptography algorithms that can resist attacks
from quantum adversaries. Recently, the US National Institute of Standards and
Technology (NIST) has initiated a process to solicit, evaluate, and standardize
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one or more quantum-resistant public-key cryptographic algorithms [22]. One of
the 9 signature schemes that advanced to the second round of the NIST project is
Picnic [7,19,27], a signature scheme whose security only relies on symmetric-key
primitives.

Indeed, a key pair for Picnic consists of a random secret key sk and the cor-
responding public key pk = F (sk), where F is a one-way function which can be
computed with a low number of non-linear binary gates [7]. To sign a message
m the signer then produces a non-interactive zero-knowledge proof of knowledge
of sk such that F (sk) = pk in a way that binds the message m to the proof.
These zero-knowledge proofs (whose security relies additionally only on a secure
commitment scheme) are constructed using the MPC-in-the-head paradigm [17].
This results in a signature scheme whose signatures are 33 KB large for 128 bits
of security. Later, Katz et al. developed Picnic2 [19], which reduces the signa-
ture size to only 14 KB by moving from a 3-party MPC protocol in the honest
majority setting to an n-party protocol with preprocessing secure in the dishon-
est majority setting. However, this increased number of parties slows down the
signing and verification algorithms. Picnic and Picnic2 are round 2 candidates
in the NIST project [27]. To study the effect of selecting a different function
F , Delpech de Saint Guilhem et al. constructed the BBQ scheme using MPC
protocols for arithmetic secret sharing to base the signatures on the security of
the AES algorithm instead of the less scrutinized block cipher LowMC [24].

Contributions. In this work we propose to use the Legendre PRF [9], denoted
by LK(·), as one-way function, instead of LowMC or AES. The Legendre PRF
is a promising alternative since it can be computed very efficiently in the MPC
setting [15]. However, a major limitation of the Legendre PRF is that it only
produces one bit of output, which means that the public key should consist
of many PRF evaluations LK(i1), . . . ,LK(iL), at some fixed arbitrary list I =
(i1, · · · , iL) of L elements of Fp, to uniquely determine the secret key K. Hence,
the zero-knowledge proof needs to prove knowledge of a value K ′ such that
LK′(i) = LK(i) for all i ∈ I simultaneously, which results in prohibitively large
signatures. Luckily, we can relax the relation to overcome this problem. Instead
of proving that the signer knows a K ′ such that LK′(i) = LK(i) for all i ∈ I, we
let a prover prove knowledge of a K ′ such that this holds for a large fraction of
the i in I. We show that the relaxed statement allows for a much more efficient
zero-knowledge proof. This allows us to establish LegRoast, an MPC-in-the-head
based scheme with a signature size of 12.2 KB and with much faster signing and
verification algorithms than the Picnic2 and BBQ schemes. To further improve
the efficiency of LegRoast, we propose to use higher-power residuosity symbols
instead of just the quadratic one (i.e. the Legendre symbol) in a second scheme
called PorcRoast. This results in signatures that are only 6.3 KB large and in
signing and verification times that are twice faster than LegRoast.

A comparison between the signature size and signing time of LegRoast and
PorcRoast versus existing signatures based on symmetric primitives (Picnic [27]
and SPHINCS+ [16]) is shown in Figure 1. Even though LegRoast and PorcRoast
do not have an AVX optimized implementation yet, we see that LegRoast has
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faster signing times than both Picnic and SPHINCS+, and that PorcRoast is
even faster than LegRoast. We conclude that PorcRoast is the most efficient post-
quantum signature scheme based on symmetric primitives in terms of signature
size and signing time.

However, note that there are several other branches of post-quantum sig-
natures, such as lattice-based (e.g. Dilithium and Falcon [12,21,23]), Multivari-
ate signatures (e.g., Rainbow, LUOV, MQDSS, MUDFISH [11,10,5,6,25,2]) and
isogeny-based signatures (e.g. CSI-FISH [4]), some of which result in more effi-
cient signature schemes.
Roadmap. After some preliminaries in Section 2, we introduce a relaxed PRF
relation in Section 3. We then sketch an identification scheme in Section 4 which
we formalize as a signature scheme in Section 5. We finally discuss parameter
choices and implementation results in Section 6.
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Fig. 1. Signature sizes and timings of post-quantum signature schemes based only on
symmetric primitives.

2 Preliminaries - the Legendre and power residue PRFs

For an odd prime p the Legendre PRF is conjectured to be a pseudorandom
function family, indexed by a key K ∈ Zp, such that LK takes as input an
element a ∈ Fp and outputs the bit

LK(a) =

⌊
1

2

(
1−

(
K + a

p

))⌋
∈ Z2,

where (ap ) ∈ {−1, 0, 1} denotes the quadratic residuosity symbol of a mod p. We

note that the function LK above is defined such that L0(a · b) = L0(a) + L0(b)
for all a, b ∈ F×p . (Note also that LK(a) = L0(K + a).)

The seemingly random properties of quadratic residues have been the subject
of study for number theorists at least since the early twentieth century, which is
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why Damg̊ard proposed to use this construction in cryptography [9]. Since then,
the security of the Legendre PRF has been studied in several attack models.
In the very strong model where a quantum adversary is allowed to query the
PRF in superposition, a key can be recovered in quantum polynomial time [8].
If the adversary is only allowed to query the PRF classically, there is a mem-
oryless classical attack that requires computing O(p1/2 log p) Legendre symbols
and making O(p1/2 log p) queries to the PRF [20]. Finally, if the adversary is
restricted to querying only L Legendre symbols, the best known attack requires
computing O(p log2 p/L2) Legendre symbols [3].

Damg̊ard also considers a generalisation of the Legendre PRF, where instead

of using the quadratic residue symbol (ap ) = a
p−1
2 mod p, the PRF uses the k-th

power residue symbol defined as (ap )k = a
p−1
k mod p, for some k that divides

p− 1. We define the power residue PRF, analogous to the Legendre PRF, as the
keyed function LkK : Fp → Zk, where for an odd prime p ≡ 1 mod k, LkK(a) is
defined as

LkK(a) =

{
i if (a+K)/gi ≡ hk mod p for some h ∈ F×p
0 if (a+K) ≡ 0 mod p

,

where g is a fixed generator of F×p . We see that the function Lk0 is a homomor-
phism of groups from F×p to Zk.

Note that for k = 2, this notation coincides with the original Legendre PRF.
In this paper, we use the generic notation and we separate the k = 2 and k > 2
cases only in the experimental sections to highlight the advantages gained by
using k > 2. One advantage of the power residue PRF is that it yields log k
bits of output, instead of a single bit. The best known attack against the power
residue PRF in the setting where an attacker is allowed to query the PRF L
times requires computing O(p log2 p/(kL log2 k)) power residue symbols [3].

3 The (relaxed) power residue PRF relation

In this section, we define the Legendre and power residue PRF NP-languagesRLk ,
for k ≥ 2, which consist of the symbol strings of outputs of the Lk PRF for a
given set of inputs. We also define a relaxed version of these languages RβLk ,
which consist of the strings that are very close (up to addition by a scalar in Zk)
to a word in RLk , where the Hamming distance dH is used and β parameterizes
the slack.

For properly chosen parameters, it follows from the Weil bound that the
relaxed version is as hard as the exact relation, but the relaxed relation will
lead to much more efficient signature schemes. To simplify notation, for a list
I = (i1, · · · , iL) of L arbitrary elements of Zp, we denote a length-L Legendre /
k-th power residue PRF as:

F kI : Fp → ZLk
K 7→ (LkK(i1), . . . ,LkK(iL)).
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Definition 1 (Legendre / k-th power residue PRF relation). For an odd
prime p, a positive integer k | p − 1 and a list I of L elements of Zp we define
the Legendre / k-th power residue PRF relation RLk with output length L as

RLk = {(F kI (K),K) ∈ ZLk × Fp | K ∈ Fp} .

Definition 2 (β-approximate PRF relation). For β ∈ [0, 1], an odd prime
p, a positive integer k | p − 1 and a list I of L elements of Zp we define the
β-approximate PRF relation RβLk with output length L as

RβLk = {(s,K) ∈ ZLk × Fp | ∃a ∈ Zk : dH(s+ (a, . . . , a), F kI (K)) ≤ βL}

where dH(·, ·) denotes the Hamming distance.

It follows from the Weil bound for character sums that if β is sufficiently small
and L is sufficiently large, then the β-relaxed power residue relation is equally
hard as the exact power residue relation, simply because with overwhelming
probability over the choice of I = (i1, · · · , iL) every witness for the relaxed
relation is also a witness for the exact relation. The proof is given in Appendix A.

Theorem 1. Let B(n, q) denote the binomial distribution with n samples each
with success probability q. Take K ∈ Fp, and take s = F kI (K). Then with prob-
ability at least 1 − kp · Pr

[
B(L, 1/k + 1/

√
p+ 2/p) ≥ (1− β)L

]
over the choice

of I, there exist only one witness for s ∈ RβLk , namely K, which is also a
witness for the exact relation RLk .

4 Identification scheme

In this section, we establish a Picnic-style identification scheme from the Legen-
dre / k-th power residue PRF. We first sketch a scheme very close to the original
Picnic construction [7] and gradually add more optimizations, presenting each in
turn. Even though the final goal is to construct a signature scheme, we use the
language of identification schemes in this section to relate the scheme to existing
constructions. We delay the security proof to the next section, where we first ap-
ply the Fiat-Shamir transform [13] before we prove that the resulting signature
scheme is tightly secure in the ROM. The proof of security of the interactive
identification scheme presented here can be derived from the one provided in
the next section.

Starting point. To begin, we take the Picnic2 identification scheme and replace
the LowMC block-cipher by the PRF F kI . The key pair is then sk = K and
pk = F kI (K) ∈ ZLk . From a high-level view, the protocol can be sketched as
in Figure 2 where the prover runs an MPC-in-the-head proof with N parties
on a secret sharing of K, to prove to the verifier that he knows K such that
((K+i1

p ), . . . , (K+iL
p )) is equal to the public key. We also use the more efficient

method recently proposed by Baum and Nof [1] based on sacrificing rather than
the cut-and-choose technique.
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Secret Public

P : K

(
LkK(ij)

)
j∈[L]

MPC-
in-the-
head

Fig. 2. Picnic-stye identification scheme

Secret Public

P : K
V : {I(j)}Bj=1

(
LkK(I(j))

)
j∈[B]

MPC-
in-the-
head

Fig. 3. Checking only B symbols

Relaxing the PRF relation. As a first optimization, rather than computing
all of the L residue symbols with the MPC protocol, we only check a fixed
number B of them. To do so, the verifier chooses random inputs I(1), . . . , I(B)

in I at which the Lk PRF is evaluated to check the witness. It is crucial that the
verifier sends his choice of I(j)s after the prover has committed to his sharing
of K, because if a malicious prover knows beforehand which symbols are going

to be checked, he can use a fake key K ′ such that (K
′+I(j)

p ) = pkI(j) only for

j ∈ [B]. This probabilistic method of selecting which circuit will be executed
with the MPC-in-the-head technique is similar to the “sampling circuits on the
fly” technique of Baum and Nof [1].

This is now an identification scheme for the β-approximate Legendre PRF
relation; a prover that convinces the verifier with probability greater than (1−
β)B+(1−(1−β)B)/N could be used to extract a β-approximate witness following
the formalism presented in [1, Section 4]. This protocol is sketched in Figure 3.

Computing residue symbols in the clear. Since computing residue symbols
is relatively expensive, we avoid doing it within the MPC protocol. We use an
idea similar to that of Grassi et al. to make this possible [15]. First, we let the
prover create sharings of B uniformly random values r(1), . . . , r(B) ∈ F×p and

commit to their residue symbols by sending s(j) = Lk0(r(j)) to the verifier. Then,
the MPC protocol only outputs o(j) = (K + I(j))r(j). Since K + I(j) is masked
with a uniformly random value with known residue symbol, o(j) does not leak
information about K (except for the residue symbol of K+I(j)). The verifier then
computes Lk0(o(j)) himself in the clear, and verifies whether it equals pkI(j) +s(j).
The correctness of this check follows from the facts that Lk0 : F×p → Zk is a group
homomorphism.

Note that the prover can lie about the values of s(j) = Lk0(r(j)) that he sends
to the prover. This is not an issue because he has to commit to these values
before the choice of I(j) is revealed. This is the reason why we defined K ′ to be
an β-approximate witness for pk if F kI (K ′) is close to pk = F kI (K) up to addition
by a scalar. This identification protocol is sketched in Figure 4.
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Secret Public

P : K, {r(j)}Bj=1

V : {I(j)}Bj=1

(
(K + I(j))r(j)

)
j∈[B]

MPC-
in-the-
head

Fig. 4. Computations in the clear.

Secret Public

P : K, {r(j)}Bj=1

V : {I(j)}Bj=1

P : {o(j)}Bj=1

V : {λ(j)}Bj=1

E

MPC-
in-the-
head

Fig. 5. The final scheme.

Verifying instead of computing multiplications. Instead of using the MPC
protocol to compute the products o(j), the prover can just send these products
directly to verifier. We then use the MPC-in-the-head protocol to instead verify
that o(j) = (K + I(j)) · r(j) for all j ∈ [B]. A big optimization here is that rather
than verifying these B equations separately, it is possible to just check a random
linear combination of these equations:

After the prover sends the o(j) values, the verifier chooses random coefficients
λ(1), . . . , λ(B) for the linear combination. Then, the MPC protocol is used to
compute the error term E defined as

E =

B∑
j=1

λ(j)
(

(K + I(j))r(j) − o(j)
)

= K ·
B∑
j=1

λ(j)r(j) +

B∑
j=1

λ(j)(I(j)r(j) − o(j)).

Clearly, if all the o(j) are correct, then E = 0. Otherwise, if one or more of the
o(j) are wrong, then E will be a uniformly random value. Therefore, checking
if E = 0 proves to the verifier that all the o(j) are correct, with a soundness
error of 1/p. Moreover, since the λ(j), o(j) and I(j) are public values, we see that
E can be computed with only a single nonlinear operation! This means we can
compute E extremely efficiently in MPC. The identification scheme with this
final optimization is sketched in Figure 5.

We note that a single execution of the interactive identification scheme is
not enough to achieve negligible soundness error (e.g. the prover has probability
1/N to cheat in the MPC verification protocol). To resolve this, M executions
must be run in parallel.

5 LegRoast and PorcRoast signature schemes

We now formalize the signature schemes LegRoast (with k = 2) and PorcRoast
(with k > 2) which are constructed from the identification scheme of Section 4
with the Fiat-Shamir transform [13], by generating the challenges using three
random oracles H1,H2 and H3. The message is combined with a 2λ-bit salt and
bound to the proof by hashing it together with the messages of the prover.
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Parameters. Our new signature schemes are parametrized by the following val-
ues. Let p be a prime number and let k ≥ 2 be an integer such that k | p−1. Let L
be an integer determining the length of the public key, I a pseudo-randomly cho-
sen list of L elements of Zp and let B ≤ L denote the number of k-th power
residue symbols in the public key that will be checked at random. Let N de-
note the number of parties in the MPC verification protocol and let M denote
the number of parallel executions of the identification scheme. These values are
grouped under the term params.

Key generation, signing and verifying. The KGen(1λ, params) algorithm samples

sk = K
$←− Fp uniformly at random and computes the public key pk = F kI (K).

The Sign(params, sk,m) algorithm, for message m ∈ {0, 1}∗ is presented in Fig-
ure 6. The Vf(params, pk,m, σ) algorithm is presented in Figure 7.

Security. The EUF-CMA security [14] of the LegRoast and PorcRoast signature
schemes follows from a tight reduction from the problem of finding a witness for
the RβLk -relation, which is equally hard as a key recovery on the power residue
PRF for our parameters. The proof of Theorem 2 is included in Appendix B.

Theorem 2. In the classical random oracle model, the LegRoast and PorcRoast
signature schemes defined as above are EUF-CMA-secure under the assumption
that computing β-approximate witnesses for a given public key is hard.

6 Parameter choices and implementation

This section shows how to choose secure parameters for the LegRoast and
PorcRoast signature schemes, and what the resulting key and signature sizes
are. We also go over some of the implementation details and the performance of
our implementation.

6.1 Parameter choices

Choosing p, L and I. We choose p and L such that the problem of finding a
β-approximate witness for the PRF relation has the required security level. To
do this, we first choose p and L such that the problem of recovering the exact
key from L symbols of output is hard. For our proposed parameters we choose L
such that the public key size is 4KB, (i.e. L = 32768/ log(k)). Different trade-offs
are possible (see remark 1). Then, we set β such that

k · p · Pr[B(L, 1/k + 1/
√

(p) + 2/p) > (1− β)l] ≤ 2−λ .

With this choice, Theorem 1 says that with overwhelming probability, finding a
β-approximate key is equivalent to finding the exact key. Section 2 gives a short
overview of attacks on the Legendre PRF for various attack models. However,
in the setting of attacking LegRoast and PorcRoast, the adversary is restricted
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Sign(params, sk,m) :
Phase 1: Commitment to sharings of K, randomness and triples

1: Pick a random salt: salt← {0, 1}2λ.
2: for e from 1 to M do
3: Sample a root seed: sde

$←− {0, 1}λ.
4: Build binary tree from sde with leaves sde,1, . . . , sde,N .
5: for i from 1 to N do
6: Sample shares: Ke,i, r

(1)
e,i , . . . , r

(B)
e,i , ae,i, be,i, ce,i ← Expand(sde,i).

7: Commit to seed: Ce,i ← Hsd(salt, e, i, sde,i).

8: Compute witness offset: ∆Ke ← K −
∑N
i=1 Ke,i.

9: Adjust first share: Ke,1 ← Ke,1 +∆Ke.
10: Compute triple: ae ←

∑N
i=1 ae,i, be ←

∑N
i=1 be,i and ce ← ae · be.

11: Compute triple offset: ∆ce ← ce −
∑N
i=1 ce,i.

12: Adjust first share: ce,1 ← ce,1 +∆ce.
13: for j from 1 to B do
14: Compute residuosity symbol: s

(j)
e ← Lk0(r

(j)
e ) where r

(j)
e ←

∑N
i=1 r

(j)
e,i .

15: Set σ1 ← ((Ce,i)i∈[N ], (s
(j)
e )j∈[B],∆Ke,∆ce)e∈[M ].

Phase 2: Challenge on public key symbols

1: Compute challenge hash: h1 ← H1 (m, salt, σ1).

2: Expand hash: (I
(j)
e )e∈[M ],j∈[B] ← Expand(h1), where I

(j)
e ∈ I.

Phase 3: Computation of output values

1: for e from 1 to M and for j from 1 to B do
2: Compute output value: o

(j)
e ← (K + I

(j)
e ) · r(j)

e .

3: Set σ2 ← (o
(1)
e , . . . , o

(B)
e )e∈[M ].

Phase 4: Challenge for sacrificing-based verification

1: Compute challenge hash: h2 ← H2 (h1, σ2).

2: Expand hash (εe, λ
(1)
e , . . . , λ

(B)
e )e∈[M ] ← Expand(h2), where εe, λ

(j)
e ∈ Zp.

Phase 5: Commitment to views of sacrificing protocol

1: for e from 1 to M do
2: for i from 1 to N do
3: Compute shares: αe,i ← ae,i + εeKe,i and βe,i ← be,i +

∑B
j=1 λ

(j)
e r

(j)
e,i .

4: Compute values: αe ←
∑N
i=1 αe,i and βe ←

∑N
i=1 βe,i.

5: for i from 1 to N do
6: Compute product shares: ze,i ←

∑B
j=1−λ

(j)
e r

(j)
e,i I

(j)
e .

7: if i
?
= 1 then ze,i ← ze,i +

∑B
j=1 λ

(j)
e o

(j)
e .

8: Compute check value shares: γe,i ← αebe,i + βeae,i − ce,i + εeze,i.

9: Set σ3 ← (αe, βe, (αe,i, βe,i, γe,i)i∈[N ])e∈[M ].

Phase 6: Challenge on sacrificing protocol

1: Compute challenge hash h3 ← H3 (h2, σ3).
2: Expand hash (̄ie)e∈[M ] ← Expand(h3), where īe ∈ [N ].

Phase 7: Opening the views of sacrificing protocol

1: for e from 1 to M do
2: seedse ← {log2(N) nodes in tree needed to compute sde,i for i ∈ [N ] \ ī}.
3: Output: σ = (salt, h1, h3, (∆Ke,∆ce, o

(1)
e , . . . , o

(B)
e , αe, βe, seedse,Ce,̄ie)e∈[M ]).

Fig. 6. Signature scheme from proof of knowledge of k-th power residue PRF pre-image.
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Vf(params, pk,m, σ):

1: Parse σ = (salt, h1, h3, (∆Ke,∆ce, o
(1)
e , . . . , o

(B)
e , αe, βe, seedse,Ce,̄ie)e∈[M ]).

2: Compute h2 ← H2(h1, (o
(j)
e )e∈[M ],j∈[B]).

3: Expand challenge hash 1: (I
(1)
e , . . . , I

(B)
e )e∈[M ] ← Expand(h1), where I

(j)
e ∈ I.

4: Expand challenge hash 2: (εe, λ
(1)
e , . . . , λ

(B)
e )e∈[M ] ← Expand(h2).

5: Expand challenge hash 3: (̄ie)e∈[M ] ← Expand(h3).
6: for e from 1 to M do
7: Use seedse to compute sde,i for i ∈ [N ] \ īe.
8: for i from 1 to īe − 1 and from īe + 1 to N do
9: Sample shares: Ke,i, r

(1)
e,i , . . . , r

(B)
e,i , ae,i, be,i, ce,i ← Expand(sde,i).

10: if i
?
= 1 then

11: Adjust shares: Ke,i ← Ke,i +∆Ke and ce,i ← ce,i +∆ce.

12: Recompute commitments: C∗e,i ← H(salt, e, i, sde,i)

13: Recompute shares: α∗e,i ← ae,i + εeKe,i and β∗e,i ← be,i +
∑B
j=1 λ

(j)
e r

(j)
e,i .

14: Recompute product shares: ze,i ←
∑B
j=1−λ

(j)
e r

(j)
e,i I

(j)
e .

15: if i
?
= 1 then

16: ze,i ← ze,i +
∑B
j=1 λ

(j)
e o

(j)
e .

17: Recompute check value shares: γ∗e,i ← αebe,i + βeae,i − ce,i + εeze,i.

18: Compute missing shares: α∗e,̄ie ← αe−
∑
i6=ī α

∗
e,i and β∗e,̄ie ← βe−

∑
i 6=ī β

∗
e,i.

19: Compute missing check value share: γ∗e,̄ie = αeβe −
∑
i 6=ī γ

∗
e,i.

20: for j from 1 to B do
21: Recompute residuosity symbols: s

(j)∗
e ← Lk0(o

(j)
e )− pk

I
(j)
e

.

22: Check 1: h1
?
= H1(m, salt, ((C∗e,i)i∈[N ], (s

(j)∗
e )j∈[B],∆Ke,∆ce)e∈[M ])

23: Check 2: h3
?
= H3(h2, (αe, βe, (α

∗
e,i, β

∗
e,i, γ

∗
e,i)i∈[N ])e∈[M ])

24: Output accept if both checks pass.

Fig. 7. Verifying algorithm for LegRoast and PorcRoast.

even more than in the weakest attacker model considered in the literature: an
attacker learns only a few evaluations of the Legendre PRF on pseudorandom
inputs over which the attacker has no control. If the L inputs are chosen at
random, the best known attack is a brute force search which requires computing
O(p/k) power residue symbols, and the attack complexity becomes independent
of L. For Legroast, we propose to use a prime p of size roughly 2λ, where λ is the
required security level. We choose the Mersenne prime p = 2127 − 1 to speed up
the arithmetic. For PorcRoast, we use the same prime and k = 254 such that a
power residue symbol can efficiently be represented by a single byte. For k > 2,
computing a power residue symbol corresponds to a modular exponentiation,
which is much more expensive than an AES operation, so even though an attacker
has on average only to compute 2127/k ≈ 2119 power residue symbols, we claim
that this still provides approximately 128-bits of security. We stress that the
quantum polynomial-time key recovery attack on the Legendre PRF does not
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apply on our scheme, because the adversary can not make queries to the instance
of the Legendre PRF (and certainly no quantum queries) [8].

Choosing B, N and M . Our security proof shows that, unless an attacker
can produce a β-approximate witness, his best strategy is to query H1 on many
inputs and then choose the query for which

Lk0((Ke + I(j)
e )r(j)

e ) = s(j)
e + pk

I
(j)
e

for all j ∈ [B]

holds for the most executions. Say this is the case for M ′ out of M executions.
He then makes one of the parties cheat in the MPC protocol in each of the
M −M ′ remaining executions and queries H3 in the hope of getting an output
{̄ie}e∈[M ] that asks him to open all the other non-cheating parties; i.e. the at-

tacker attempts to guess īe for each e. This succeeds with probability N−M+M ′ .
Therefore, to achive λ bits of security, we take parameters B,N = 2n and M

such that

min
M ′∈{0,...,M}

(
Pr[B(M, (1− β)B) ≥M1]−1 +NM−M ′

)
≥ 2λ , (1)

which says that for each value of M ′, the adversary is expected to do at least
2λ hash function evalutations for the attack to succeed. To choose parameters,
we fix N to a certain value and compute which values of B and M minimize the
signature size while satisfying Equation (1). The choice of N controls a trade-
off between signing time and signature size. If N is large, the soundness error
will be small, which results in a smaller signature size, but the signer and the
verifier need to simulate an MPC protocol with a large number of parties, which
is slow. On the other hand, if N is small, then the signature size will be larger,
but signing and verifying will be faster. Some trade-offs achieving 128-bits of
security for LegRoast and PorcRoast are displayed in Table 1.

Remark 1. The parameter L controls a trade-off between public key size and
signature size. For example, we can decrease the public key size by a factor 8
(to 0.5KB), at the cost of an increase in signature size by 21% (to 7.6 KB).
(L = 512, k = 254, β = 0.871, n = 256, B = 10,M = 20).

6.2 Implementation

In our implementation, which is publicly available at

https://github.com/WardBeullens/LegRoast.

we replace the random oracles and the Expand function by SHA-3 and SHAKE128.
The signing algorithm is inherently constant time, except for computing Legen-
dre symbols, which when implemented with the usual GCD strategy, leaks tim-
ing information on its argument. Therefore, in our implementation, we chose to
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Parameters Signature Size Signing time
N M B (KB) (ms)

LegRoast 16 54 9 16.0 2.8
k = 2 64 37 12 13.9 6.0

β = 0.449 256 26 16 12.2 15.7

PorcRoast 16 39 4 8.6 1.2
k = 254 64 27 5 7.2 2.8
β = 0.967 256 19 6 6.3 7.9

Table 1. Parameter sets for LegRoast and PorcRoast for NIST security level I. For
all parameter sets we have p = 2127 − 1, a secret key size of 16 Bytes and a public
key size of 4 KB (L = 32768 and 4096 for LegRoast and PorcRoast respectively). The
verification time is similar to the signing time.

adopt the slower approach of computing Legendre symbols as an exponentiation
with fixed exponent (p − 1)/2, which is an inherently constant time operation.
Higher-power residue symbols are also calculated as an exponentiation with fixed
exponent (p − 1)/k. The signing-time of our implementation, measured on an
Intel i5-8400H CPU, running at 2.50GHz, is displayed in Table 1.
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Stehlé, D.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of Stan-
dards and Technology (2019), available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-2-submissions

22. National Institute of Standards and Technology: Post-quantum cryptography
project (2016), https://csrc.nist.gov/projects/post-quantum-cryptography

23. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2019), available at https://csrc.nist.

gov/projects/post-quantum-cryptography/round-2-submissions

13

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2019/862
https://eprint.iacr.org/2019/862
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions


24. Delpech de Saint Guilhem, C., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: Using
AES in picnic signatures. Cryptology ePrint Archive, Report 2019/781 (2019),
https://eprint.iacr.org/2019/781

25. Samardjiska, S., Chen, M.S., Hulsing, A., Rijneveld, J., Schwabe, P.: MQDSS. Tech.
rep., National Institute of Standards and Technology (2019), available at https://
csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

26. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: Proceedings 35th annual symposium on foundations of computer science.
pp. 124–134. Ieee (1994)

27. The Picnic team: The picnic signature algorithm specification (2019),
https://github.com/microsoft/Picnic/blob/master/spec/spec-v2.1.pdf

A Proof of theorem 1

We will use the following version of the Weil bound for character sums [18].

Theorem 3. Let p be a prime and χ a non-trivial multiplicative character of F×p
of order d > 1. If f ∈ Fp[X] has m distinct roots and is not a d-th power, then∣∣∣∣∣∣

∑
x∈Fp

χ (f(x))

∣∣∣∣∣∣ ≤ (m− 1)
√
p .

The following lemma immediately follows:

Lemma 1. Let p be a prime and k | p − 1. For any K 6= K ′ ∈ Fp and a ∈ Zk,
let IK,K′,a be the set of indices i such that Lk(K+ i) = Lk(K ′+ i) +a. Then we
have

p

k
−√p− 1 ≤ #IK,K′,a ≤

p

k
+
√
p+ 2 .

Proof. Let χ : F×p → Zp be the restriction of Lk to F×. Note that (unlike Lk) χ

is a group homomorphism. Define f(i) = (i+K)(i+K ′)k−1 and let φ(a) be the
number of i such that i + K and i + K ′ are non-zero and χ(f(i)) = a. Clearly

we have φ(a) ≤ #IK,K′,a ≤ φ(a) + 2. Let φ̂ : Ẑk → C be the fourier transform
of φ. Then we have

φ̂(ρ) =
∑
a∈Zk

ρ(a)φ(a) =
∑
a∈Zk

ρ(a)
∑

i∈Fp,i6=K,i6=K′

{
1 if χ(f(i)) = a

0 otherwise

=
∑

i∈Fp,i6=K,i6=K′
ρ ◦ χ(f(i))

Observe that ρ◦χ is a multiplicative character of F×p , and that ρ◦χ is trivial if

and only if ρ is trivial. Clearly φ̂(1) = p−2, and for non-trivial ρ, the Weil bound
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says that |φ̂(ρ)| ≤ √p. Therefore, if follows from the inverse Fourier trasnform
formula that

φ(a) =
1

|Zk|
∑
ρ∈Ẑk

ρ(a)φ̂(ρ) ≤ p− 2

k
+
k − 1

k

√
p ≤ p

k
+
√
p .

and similarly that p
k −
√
p− 1 ≤ φ(a). ut

Now we can prove Theorem 1.

Proof. Accurding to lemma 1, For any K ′ 6= K and a ∈ Zk, for a uniformly
random set of inputs I, the distance dH(F kI (K ′) + (a, . . . , a), s) is distributed as
B(L, 1−α), for some α ∈ [1/k− 1√

p−
1
p , 1/k+ 1√

p + 2
p ]. Therefore, the probability

that for a tuple (K ′, a) we have dH(F kI (K ′) + (a, . . . , a), s) ≤ βL is at most

Pr[B(L, 1/k +
1

√
p+ 2/p

) > (1− β)L] .

Since there exists only (p − 1)k possibile values for (K ′, a), the probability
that there exists a non-trivial witness for the β-relaxed relation is at most
Pr[B(L, 1/k + 1√

p+2/p ) > (1− β)L](p− 1)k. ut

B Security proof

To prove Theorem 2, we first reduce the EUF-KO security to the β-approximate
PRF relation (Lemma 2); we then reduce the EUF-CMA security to the EUF-
KO security (Lemma 3). For two real random variables A,B, we write A ≺ B if
for all x ∈ (−∞,+∞) we have Pr[A > x] ≤ Pr[B > x].

Lemma 2 (EUF-KO security). Let Hsd,H1,H2 and H3 be modeled as ran-
dom oracles and fix a constant β ∈ [0, 1]. If there exists a PPT adversary A
that makes qsd, q1, q2 and q3 queries to the respective oracles, then there exists a
PPT B which, given pk = F kL(K) for a random K ∈ Fp outputs a β-approximate

witness for pk with probability at least AdvEUF-KO
A (1λ)− e(qsd, q1, q2, q3), with

e(qsd, q1, q2, q3) =
MN(qsd + q1 + q2 + q3)2

22λ
+ Pr[X + Y + Z = M ] ,

where X = max(X1, . . . , Xq1), Y = max(Y1, . . . , Yq2) and Z = max(Z1, . . . , Zq3),
the Xi are i.i.d as B(M, (1− β)B), the Yi are i.i.d. as B(M −X, 2

p ) and the Zi

are i.i.d. as B(M −X − Y, 1
N ).

Proof. The algoritm B receives a statement s = F kL(K) and forwards it to A as
pk. Then, B simulates the random oracles Hsd,H1,H2 and H3 by maintaining
initially empty lists of querriesQsd,Q1,Q2,Q3. Moreover, B keeps initially empty
tables Ts, Ti and To for shares, inputs, and openings. If A queries one of the
random oracles on an input that it has queried before, B responds as before;
otherwise B does the following:
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– Hsd: On new input (salt, sd), B samples x
$←− {0, 1}2λ. If x ∈ BadH, then B

aborts. Otherwise, B adds x to BadH , ((salt, sd), x) to Qsd and returns x.

– H1: On new input Q = (m, salt, σ1), with σ1 = ((Ce,i)i∈[N ], (s
(j)
e )j∈[B], ∆Ke,

∆ce)e∈[M ]), then B adds Ce,i to BadH for all e ∈ [M ] and i ∈ [N ]. For any
(e, i) ∈ [M ]×[N ] for which there exist sde,i such that ((salt, sde,i),Ce,i) ∈ Qsd

define

ke,i, ae,i, be,i, ce,i, r
(1)
e,i , · · · , r

(B)
e,i ← Expand(sde,i) for all j ∈ [N ]

and add Ts[Q, e, i] = (ke,i, ae,i, be,i, ce,i, r
(1)
e,i , . . . , r

(B)
e,i )j∈[N ]. If Ts[Q, e, i] is

defined for all i ∈ [N ] for some e ∈ [M ], then we define

(ke, ae, be, ce, r
(1)
e , . . . , r(B)

e )←
∑
i∈[N ]

(ke,i, aei , be,i, ce,i, r
(1)
e,i , . . . , r

(B)
e,i )

(ke, ce)← (ke +∆ke, ce +∆ce)

and add Ti[Q, e] = (ke,i, aei , be,i, ce,i, r
(1)
e,i , . . . , r

(B)
e,i ). Finally, B samples x

$←−
{0, 1}2λ. If x ∈ BadH then abort. Otherwise, B adds (Q, x) to Q1 and x to
BadH and returns x.

– H2: On new input Q = (h1, σ2), where σ2 = (o
(j)
e )e∈[M ],j∈[B], B adds h1 to

BadH and samples x
$←− {0, 1}2λ. If x ∈ BadH then abort. Otherwise, B adds

(Q, x) to Q2 and x to BadH. If there exists (Q1, h1) ∈ Q1, then B does the

following: let (εe, λ
(1)
e , . . . , λ

(B)
e )e∈[M ] ← Expand(x). For each e ∈ [M ] such

that Ti(Q1, e) is defined, compute

αe = ae + εeke, βe = be +
∑
j∈[B]

λ
(j)r(j)e
e and

γe = −ce + αebe + βeae + εi
∑
k∈[B]

λ
(k)
i (o(j)

e − I(j)
e r(j)

e )

and add To[Q2, e] = (αe, βe, γe). Finally B returns x.

– H3: On new inputQ = (h2, σ3), B adds h2 to BadH and samples x
$←− {0, 1}2λ.

If x ∈ BadH then B aborts. Otherwise, B adds (Q, x) to Q3, x to BadH and
returns x.

When A terminates, B goes through Ti and for each (Ke, . . . ) ∈ Ti, B checks
if Ke is a β-approximate witness. If it is, then B outputs Ke. If no entry in Ti
contains a witness, B outputs ⊥. Clearly, if A runs in time T , then B runs in
time T +O(qsd + q1 + q2 + q3).

In the rest of the proof, we show that if A wins the EUF-KO game with
probability ε, then B outputs a β-approximate witness with probability at least
ε− e(qsd, q1, q2, q3) as defined in the statement of Lemma 2.
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Cheating in the first phase. Let (Qbest1 , hbest1) ∈ Q1 be the “best” query-response
pair that A received from H1, by which we mean the pair that maximizes

#G1((Q, h)) over all (Q, h) ∈ Q1, where G1(Q, h = {I(j)
e }e∈[M ],j∈[B]) is defined

as the set of “good executions” e ∈ [M ] such that Ti(Q, e) is defined and

Lk((Ke + I(j)
e )r(j)

e ) = s(j)
e + pk

I
(j)
e

for all j ∈ [B]. (2)

We show that, if B outputs ⊥, then the number of good indices is bounded. More
precicely, we prove that #G1(σbest1 , hbest1)|⊥ ≺ X, where X is as defined in the
statement of Lemma 2.

Indeed, for each distinct query to H1 of the form Q = (m, salt, σ1), with

σ1 = ((Ce,i)i∈[N ], (s
(j)
e )j∈[B], ∆Ke, ∆ce)e∈[M ]) and for all e ∈ [M ], let β

(j)
e (Q) =

dH(F kL(Ke)+(Lk(r
(j)
e ), . . . ,Lk(r

(j)
e )), s

(j)
i +pk) if Ti(Q, e) is defined and β

(j)
e (Q) =

1 otherwise. The event ⊥ implies that none of the Ke in Ti is a β-approximate

witness, which means that β
(j)
e (Q) > β for all Q ∈ Q1, e ∈ [M ] and j ∈ [B].

Since the response h = {I(j)
e }e∈[M ],j∈[B] is uniform, the probability that

for a certain e, Equation (2) holds is
∏
k∈[B](1 − β

(k)
i ) ≤ (1 − β)B . Therefore,

we have that #G1(Q, h)|⊥ ≺ XQ, where XQ ∼ B(M, (1 − β)B). Finally, since
G1(Qbest1 , hbest1) is the maximum over at most q1 values of G1(Q, h), it follows
that #G1(Qbest1 , hbest1)|⊥ ≺ X, with X as in the statement of Lemma 2.

Cheating in the second round. We now look at the best query-response pair
(Qbest2 , hbest2) that A received from H2. This is the pair for which #G2(Q2, h2)

is maximum, where G2(Q2 = (h1, (o
(j)
e )e∈[M ],j∈[B]), h2) is the set of “good” exe-

cutions defined as follows: if there exists no Q1, such that (Q1, h1) ∈ Q1, then
all indices are bad (because this query can not lead to a valid signature). Oth-

erwise, let Q1 = (m, salt, ((Ce,i)i∈[N ], (s
(j)
e )j∈[B], ∆Ke, ∆ce)e∈[M ])). If there exist

(e, j) ∈ [M ]× [B] such that

Lk(o(j)
e ) 6= s(j)

s + pk
I
(j)
e
, (3)

then this query can also not result in a valid signature, so we define G2(Q2, h2) =
{}. Otherwise, we say G2(Q2, h2) is the set of executions e ∈ [M ] for which
To[Q2, e] = (αe, βe, γe) is defined and such that αeβe = γe.

Again, we prove that in the case that B outputs ⊥, the number of good
indices is bounded: #G2(Qbest2 , hbest2)|⊥ ≺ X + Y, where Y is defined as in the
statement of Lemma 2.

Note that for fixed ae, be, ce,Ke, r
(1)
e , . . . , r

(B)
e and o

(1)
e , . . . , o

(B)
e the function

αe(εe)βe(λ
(j)
e )−γe(εe, λ(j)

e ) is a quadratic polynomial in εe, λ
(1)
e , . . . , λ

(B)
e . More-

over, this is the zero-polynomial if and only if ce = aebe and o
(j)
e = (Ke+I

(j)
e )r

(j)
e

for all j ∈ [B].

Let Q = (h1, {o(j)
e }e∈[M ],j∈[B]) be a query to H2. If there exists no (Q1, h1) ∈

Q1 then G2(Q, h2) = {} with probability 1. Otherwise, either e 6∈ G1(σ1, h1), then

either o
(j)
e = (Ke + I

(j)
e )r

(j)
e for all (e, j) ∈ [M ]× [B], in which case Equation (3)
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does not hold, so G2(Q, h2) = {} with probability 1, or o
(j)
e 6= (Ke + I

(j)
e )r

(j)
e for

some j ∈ [B] in which case αeβe − γe is a non-zero quadratic polynomial in εe
and λ

(j)
e , so the Schwartz-Zippel lemma says that for a uniformly random choice

of h2 = {εe, λ(j)
e }e∈[M ],j∈[B] ∈ FM(1+B)

p the probability that e ∈ G2(Q2, h2) is at
most 2/p. Therefore, we have that #G2(σ2, h2)|#G1(σ1,h1)=M ′1

≺M1 +Y ′Q, where
Y ′q ∼ B(M −M ′1, 2/p). Since for integers a ≤ b and p ∈ [0, 1] we have B(b, p) ≺
a+B(b−a, p), this implies that #G2(σ2, h2)|#G1(statebest,1)=M1

≺M1 +YQ, where
YQ ∼ B(M −M1, 2/p). Since #G2(statebest,2) is the maximum over at most q2

values of #G2(state) it follows that #G2(statebest,2)|M1=#G1(statebest,1) ≺ M1 + Y.
Finally, by conditioning on ⊥ and summing over all M1, we get

#G2(statebest,2)|⊥ ≺ #G1(statebest,1)|⊥ + Y ≺ X + Y.

Cheating in the third round. Finally, we can bound the probability that A wins
the EUF-KO game, conditioned on B outputting ⊥. Without loss of generality,
we can assume that A outputs a signature σ such that, if Q1, Q2 and Q3 are
the queries that the verifier makes to H1,H2 and H3 to verify σ, then A has
made these queries as well. (If this is not the case, then we can define A′ that
only outputs a signature after running the verification algorithm on A’s output.)
Now, for each query Q = (h2, ({αe, βe}e∈M , {αe,i, βe,i, γe,i}e∈[M ],i∈[N ])) that A
makes to H3, we study the probability that this leads A to win the EUF-KO

game. If there does not exist Q′ = (o
(j)
e )e∈[M ],j∈[B] such that (Q′, h2) ∈ Q2 then

this query cannot result in a win for A, because A would need to find such a Q′ at
a later point, and B would abort if this happens. Take e ∈ [M ]\G2(Q′, h2), then

either e 6∈ G2(Q′, h2) because there exists (e′, j) ∈ [M ]× [B] such that `ko
(j)
e′ 6=

s
(j)
e′ + pk

I
(j)

e′
, in which case, independent of h3, σ4, we have that Vf(σ) = 0. Or

otherwise e 6∈ G2(Q′, h2) because αe, βe and γe are not defined or αeβe 6= γe.
In this case, the query can only result in a win if exactly N − 1 of the parties
“behave honestly” in the MPC protocol. By this we mean that for exactly N −1
values of i ∈ [N ] we have that there exists sde,i such that (sde,i,Ce,i) ∈ Qsd and,

if we put Ke,i, ae,i, be,i, ce,i, {r(j)
e,i }j∈[B] = Expand(sde,i), then

αe,i = ae,i + εeKe,i, βe,i = be,i +
∑
k

λ(j)
e r

(j)
e,i ,

γe,i = −ce,i + αebe,i + βeae,i + εe
∑
j∈[B]

λ(j)
e (o(j)

e − I(j)
e r

(j)
e,i ).

Indeed, if there are less than N−1 honest parties, σ4 cannot reveal N−1 honest
views. In contrast if all the N parties act honestly, then we have γe 6= αeβe, so the
signature verification will also fail. The state (σ1, h1, σ2, h2, σ3) can only result
in a win if h3 = {ie}e∈N is such that ie is the index of the dishonest party. Since
h3 ∈ [N ]M is chosen uniformly at random, the probability that this happens for
all the e 6∈ G2(Q, h3) is(

1

N

)M−#G2(Q′,h2)

≤
(

1

N

)M−#G2(Qbest,2,hbest,2)

.
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The probability that this happens for at least one of the at most q3 queries is

Pr[AWins|#G2(statebest,2) = M2] ≤ 1−

(
1−

(
1

N

)M−M2
)q3

.

Conditioning on B outputting ⊥ and summing over all values of M2 yields

Pr[AWins | ⊥] ≤ Pr[X + Y + Z = M ] .

To conclude. We now show that ifA wins the EUF-KO game with probability ε,
then B outputs a β-approximate witness with probability ε − e(qsd, q1, q2, q3).
Indeed, B either aborts outputs ⊥ or outputs a β-approximate witness. The
reduction B only aborts if one of the random oracles outputs one of the at most
qsd +MNq1 + q2 + q3 bad values. Therefore, we have

Pr[ E aborts ] ≤ MN(qsd + q1 + q2 + q3)2

22λ
.

By the law of total probability we have

Pr[A wins] = Pr[A wins ∧ B aborts] + Pr[A wins ∧ ⊥]

+ Pr[A wins ∧ B outputs witness]

≤ Pr[B aborts] + Pr[A wins |⊥] + Pr[B outputs witness]

≤ e(qsd, q1, q2, q3) + Pr[B outputs witness].

Lemma 3. Modeling the commitment scheme as a random oracle, if there is
an adversary A that wins the EUF-CMA security game against LegRoast with
advantage ε, then there exists an adversary B that, given oracle access to A,
and with a constant overhead factor, wins the EUF-KO security game agains

LegRoast with probability at least ε− qs(qs+q3)
22λ − qsd

2λ
, where qs, qsd and q3 are the

number of queries that A makes to the signing oracle, Hsd and H3 respectively.

Proof. Let A be an adversary against the EUF-CMA security of LegRoast, we
construct an adversary B against its EUF-KO security. When B is run on input
pk, it starts A also on input pk. We first describe how B deals with random
oracle queries and signature queries, then argue that its signature simulations
are indistinguishable from real ones, and finally show that EUF-KO security
implies EUF-CMA security.

Simulating random oracles. For each random oracle B maintains a table of input
output pairs. When A queries one of the random oracles, B first checks if that
query has been made before. If this is the case, B responds to A with the cor-
responding recorded output. If not, B returns a uniformly random output and
records the new input-output pair in the table.
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Signing oracle simulation. When A queries the signing oracle, B simulates a
signature σ by sampling a random witness and cheating in the MPC verification
phase to hide the fact it has sampled the witness as random. It then programs the
last random oracle to always hide the party for which it has cheated. Formally,
B simulates the signing oracle as follows:

1. To simulate σ1, B follows Phase 1 as in the scheme with one difference: For
each e ∈ [M ], it samples ∆Ke uniformly, effectively sampling Ke at random.
B aborts if it picked a salt that was used in one of the earlier simulated
signatures.

2. B simulates the random oracle to obtain h1 ← H1(m, salt, σ1).

3. To simulate σ2, B samples o
(j)
e ∈ F∗p for each j ∈ [B] and e ∈ [M ] in such a

way that Lk(o
(j)
e )− s(j)

e = pk
I
(j)
e

.

4. B simulates the random oracle to obtain h2 ← H2(h1, σ2).
5. To simulate σ3, B must cheat during the sacrificing protocol to ensure that
γe = αeβe for all executions. To do so, for each e ∈ [M ], B first samples
īe ∈ [N ] at random. Then it computes Phase 5 honestly except for γe,̄ie ; for
that value, it instead sets γe,̄ie ← αeβe −

∑
i 6=īe γe,i. Finally it sets σ3 as in

the scheme using the alternative γe,̄ie value.
6. If (h2, σ3) has already been queried to H3, then B aborts. If not, B sets
h3 = (̄i1, . . . , īM ) with the values it sampled previously and then programs
its own random oracle H3 such that h3 ← H3(h2, σ3).

7. B follows the scheme to simulate σ4 and the final signature σ.

Finally, when A outputs a forgery for its EUF-CMA game, B forwards it as its
forgery for the EUF-KO game.

Simulation indistinguishability. If B doesn’t abort, the simulation of the random
oracles is perfect. Moreover, if B doesn’t abort we show that A’s can only dis-
tinguish a real signing oracle from the simulated oracle with advantage qsd/2

λ,
where qsd is the number of queries to Hsd.

The simulated signatures follow the exact same distribution as genuine sig-
natures, with the only exception that in a genuine signature the (Ce,ie)e∈[m] are

equal toHsd(salt, e, ie, sde,ie) for a value of sde,ie that expands to a consistent view
of a party in the MPC protocol, whereas in the simulated case, sde,ie expands to
the view of a cheating party. Since Hsd is modelled as a random oracle, each of
the qs ·M values of Ce,ie that A gets to see is just a random value, uncorrelated

with the rest of the view of A, unless A has querried Hsd on (salt, e, ie, sde,ie).

Since the (salt, e, ie) is unique per commitment (B aborts if a salt is repeated)
and each seed has λ bits of min-entropy each query that A makes to Hsd has a
probability of at most 2−λ of distinguishing the simulated signature oracle form
a genuine signing oracle. Therefore, an adversary that makes qsd queries to Hsd

has a distinguishing advantage bounded by qsd/2
λ.

EUF-KO security implies EUF-CMA security. Finally, we establish B’s advan-
tage against the EUF-KO security game. There are two moments at which
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B could abort: In phase 1 if a salt is repeated which happens with probabil-
ity bounded by q2

s/2
2λ (recall that a salt consists of 2λ random bits) and in

phase 6, if B fails to program the oracle H3, which happens with probability
bounded by qsq3/2

2λ, since h2 has 2λ bits of min entropy. Therefore, we have

Pr [B aborts] ≤ qs(qs+q3)
22λ , where qs and q3 denotes the number of signing queries

and queries to H3 made by A respectively. Conditional on B not aborting, re-
placing the genuine oracles for the simulated oracles decreases the winning prob-
ability of A by at most qsd/2

λ. Therefore, given that the winning conditions for
the EUF-KO and EUF-CMA games are identical, we have:

AdvEUF-KO
B (1λ) ≥ AdvEUF-CMA

A (1λ)− qs(qs + q3)

22λ
− qsd

2λ
.
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