
Correlated Randomness Teleportation via
Semi-trusted Hardware

— Enabling Silent Multi-party Computation

Yibiao Lu
1
, Bingsheng Zhang

1
, Hong-Sheng Zhou

2
, Weiran Liu

3
, Lei Zhang

3
, and

Kui Ren
1,4

1
Zhejiang University, {luyibiao,bingsheng,kuiren}@zju.edu.cn
2

Virginia Commonwealth University, hszhou@vcu.edu
3

Alibaba Group, weiran.lwr@alibaba-inc.com,zongchao.zl@taobao.com
4

Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province

Abstract. With the advancement of the trusted execution environment (TEE)

technologies, hardware-supported secure computing becomes increasingly pop-

ular due to its e�ciency. During the protocol execution, typically, the players

need to contact a third-party server for remote a�estation, ensuring the validity

of the involved trusted hardware component, such as Intel SGX, as well as the in-

tegrity of the computation result. When the hardware manufacturer is not fully

trusted, sensitive information may be leaked to the third-party server through

backdoors, steganography, and kleptography, etc. In this work, we introduce a

new security notion called semi-trusted hardware model, where the adversary

is allowed to passively or maliciously corrupt the hardware. �erefore, she can

learn the input of the hardware component and might also tamper its output.

We then show how to utilize such semi-trusted hardwares for correlated ran-
domness teleportation. When the semi-trusted hardware is instantiated by Intel

SGX, to generate 10k random OT’s, our protocol is 24X and 450X faster than

the EMP-IKNP-ROT in the LAN and WAN se�ing, respectively. When SGX is

used to teleport garbled circuits, the resulting two-party computation protocol

is 5.3-5.7X and 43-47X faster than the EMP-SH2PC in the LAN and WAN se�ing,

respectively, for the AES-128, SHA-256, and SHA-512 evaluation. We also show

how to achieve malicious security with li�le overhead.

Keywords: MPC · semi-trusted hardware model · garbled circuit.

1 Introduction

In secure multi-party computation (MPC), two or more players want to collectively

compute a function and receive its output without revealing their inputs to the other

players. In the past decades, MPC has gradually transitioned from theory to prac-

tice, and it has been widely used in many security critical real-world applications,

such as private set intersection and secure auction. In spite of its success, MPC is

still not e�cient for complicated real-time tasks due to its computational overhead

and high communication cost. Meanwhile, recent development of trusted execution

environment (TEE) technologies, such as Intel SGX and ARM TrustZone, enables a

2 Y. Lu et al.

new approach for privacy-preserving computation. Hardware-supported secure com-

puting can greatly accelerate an MPC process by avoiding expensive cryptographic

operations. However, this kind of construction introduces additional hardware setup

assumptions that require new trust roots, e.g., Intel. Recent exposure of Intel source

code [5] raises a security concern on possible backdoors contained in its design. When

the hardware manufacturer is not fully trusted, sensitive information may be leaked

through backdoors, steganography and kleptography, etc. For instance, Intel SGX uses

the remote a�estation mechanism to ensure the validity of the enclave execution envi-

ronment and the integrity of the computation result. More speci�cally, Intel’s (anony-

mous) a�estation is based on an anonymous group signature scheme called Intel En-

hanced Privacy ID (EPID) [11]. To verify that an outcome is computed by a pre-agreed

program in a genuine SGX, �oting Enclave (QE) will produce a quote by signing the

report with the group signature. �e users then need to contact the remote Intel At-

testation Service (IAS) (or some other alternative servers) for veri�cation. If Intel is

malicious, sensitive information may be leaked from the SGX component to the IAS

through the signatures, using for example kleptography techniques. (Currently, Intel

SGX uses 4096-bit RSA signatures.) �at means the input of SGX might be revealed to

the adversary.

When the hardware provider is not allied with the MPC participants, is it possible

to still use potentially malicious leaky hardware components to accelerate MPC exe-

cutions with privacy assurance? In this work, we answer this question a�rmatively.

Newmodel. We introduce a new semi-trusted hardware model, where the adversary

A is allowed to passively or maliciously corrupt the hardware ideal functionalityFHW.

FHW is parameterized with a probabilistic polynomial time (PPT) interactive Turing

machine (ITM) M, which speci�es its functionality. When the hardware functional-

ity FHW is passively corrupted, the adversary A can learn all the incoming messages

received by FHW; when FHW is maliciously corrupted, in addition to leaning the in-

coming messages, the adversary A can replace the original M with an arbitrary ITM

M∗; namely, A can fully control the execution of FHW.

We note that the existing remote a�estation model [18], tamper-proof hardware

token models [9, 12], and server-aided model [15] are di�erent from our model. When

hardware is fully trusted, unlike the remote a�estation model, our FHW does not sign

its output. Moreover, the existing model does not address hardware leakage as well as

malicious corruptions.

Our constructions. We show semi-trusted hardware can still be used to signi�cantly

improve the e�ciency of an MPC protocol by reducing the communication. �e main

idea is to use semi-trusted hardware for those MPC computation that does not depend

on the actual protocol inputs; thus no sensitive information is leaked to the hard-

ware components. We propose a new notion called correlated randomness teleportation,

where the sender can teleport a large amount of correlated randomness to the receiver

with li�le communication. Take random OT (ROT) generation as an example, assume

theReceiver uses an SGX-enabled machine, while there is no special hardware require-

ment to the Sender. During the ROT protocol, the Sender only needs to send a random

seed k1 to the Receiver’s SGX enclave via a secure channel, and the Receiver also sends

a random seed k2 to the enclave locally. Both parties can then generate polynomially

Correlated Randomness Teleportation via Semi-trusted Hardware 3

many ROT copies without any further communication. Namely, for a ROT copy, the

Sender locally computes R0
ctr ← PRFk1(ctr, 0) and R1

ctr ← PRFk1(ctr, 1) from the

seed k1 using some pseudo-random function PRF, where ctr is the counter; mean-

while, the SGX generates the ROT choice bit bctr from the seed k2 using some pseudo-

random number generator PRG, and then it computes Rbctrctr ← PRFk1(ctr, bctr). �e

SGX locally outputs {Rbctrctr }ctr to the Receiver.

Garbled circuit (GC) can also be viewed as a type of correlated randomness. With

our technique, the communication between the 2PC players can also be dramatically

reduced. We assume the GC Evaluator uses an SGX-enabled machine, while there is

no special hardware requirement to the GC Garbler. Note that, the main cost of a GC-

based 2PC protocol is the transmission of the garbled tables of the entire circuit. Anal-

ogously, during the GC protocol, theGarbler sends a random seed k1 to the Evaluator’s
SGX enclave via a secure channel. �e SGX can then internally generate the garbled

tables and locally outputs them to the Evaluator without network communication. �e

only communication needed is for transmi�ing the input labels from the Garbler to the

Evaluator. �e overall communication is linear to the input size and independent of

the circuit size.

Remark. We would like to emphasize that naively using the secure hardware compo-

nents, such as SGX, and a simulatable private garbling scheme in a blackbox fashion to

prepare GC in an o�ine phase won’t result in a simulatable 2PC protocol. �is is be-

cause the simulator cannot extract the malicious Evaluator’s input in the o�ine phase,

yet it needs to learn the MPC output (from the ideal functionality) to invoke the GC

simulator (cf. Def. 2) to produce the (fake) GC tables in the real/hybrid world. �e pro-

tocol should invoke the secure hardware component at the right moment along with

the 2PC protocol execution.

E�ciency.We mainly compare the performance of our protocols with the well-known

EMP-toolkit maintained by Wang et al. [20]. Table. 1 shows the performance compar-

ison between the passively secure IKNP OT extension protocol [8] implemented in

EMP-toolkit [20] and our silent ROT protocol (semi-honest security). We perform the

experiments on an SGX-enabled Dell OptiPlex 7080 equipped with an Intel Core 8700

CPU @ 3.20 GHz with 32 GB RAM. In the LAN se�ing (Bandwidth: 1Gbps, Delay:

1ms), our silent ROT protocol is 22-39X faster w.r.t. the sender’s running time and 9-

14X faster w.r.t. the receiver’s running time than the EMP-IKNP-ROT [20]. In the WAN

se�ing (Bandwidth: 100Mbps, Delay: 25ms), our silent ROT protocol is 189-333X faster

w.r.t. the sender’s running time and 93-451X faster w.r.t. the receiver’s running time

than the EMP-IKNP-ROT.

Table. 2 shows the performance comparison between EMP-SH2PC [20] and our

semi-honest se�ing silent 2PC protocol. (EMP-SH2PC provides an e�cient semi-honest

2PC implementation based on Yao’s GC protocol with half-gates [22] optimization.) We

perform the experiments on this same machine as above. We test the garbling time, the

garbled tables transmission time, and the evaluation time separately, as for the Garbler
in our protocol, the garbling time is the time to generate input wire labels. We omit

the time of transmi�ing seeds and wire labels in both protocols. Since in our protocol,

the garbling process is performed in the SGX enclave at the evaluator side, we split the

evaluator running time of our protocol into two parts: (i) the SGX running time and

4 Y. Lu et al.

Table 1: Performance comparison of the ROT protocols. Result obtained from Dell OptiPlex 7080

(Intel Core 8700 CPU @ 3.20 GHz, 32 GB RAM, OS: Ubuntu 18.04 LTS). LAN: 1Gbps bandwidth,

0.1ms delay. WAN: 100Mbps bandwidth, 25ms delay.

ROT Network

Sender’s running time (in ms) Receiver’s running time (in ms)

EMP-IKNP-ROT [20] Our ROT EMP-IKNP-ROT [20] Our ROT

1× 104
LAN 2.889 0.074 3.908 0.162

WAN 26.331 0.079 76.358 0.169

1× 105
LAN 17.790 0.780 19.355 1.575

WAN 150.502 0.795 200.030 1.477

1× 106
LAN 154.373 6.182 150.621 15.910

WAN 1451.043 6.402 1495.294 16.032

1× 107
LAN 1507.961 51.616 1451.562 103.937

WAN 13859.934 51.280 13963.502 103.435

1× 108
LAN 15030.832 505.289 14470.057 995.987

WAN 138028.607 501.757 137034.187 980.795

Table 2: Performance comparison of the generation, transmission and evaluation process of the

garbled circuit in the semi-honest se�ing 2PC protocol. Result obtained from the same exper-

iment environment as in Table 1. It shows the running time (in ms) for evaluating AES-128,

SHA-256, and SHA-512 circuits 1000 times, respectively.

Circuit Network

EMP-SH2PC [20] time (in ms) Our 2PC protocol time (in ms)

Garbler Comm. Evaluator Garbler Comm. Evaluator (SGX+PC)

AES-128

LAN 246.557 1742.094 229.339 10.171 ≈ 0 243.730 + 174.916

WAN 265.919 18335.009 234.264 9.875 ≈ 0 255.275 + 177.637

SHA-256

LAN 829.398 6135.087 776.880 26.310 ≈ 0 805.893 + 583.828

WAN 839.626 64433.208 777.284 28.981 ≈ 0 804.904 + 581.166

SHA-512

LAN 2434.915 15745.170 2388.890 52.110 ≈ 0 2061.712 + 1549.076

WAN 2303.479 163362.579 2418.025 52.373 ≈ 0 2072.215 + 1551.586

Table 3: Performance comparison of the computation process of the malicious se�ing 2PC proto-

col. Result obtained from the same experiment environment as in Table 1. It shows the running

time (in ms) for evaluating AES-128, SHA-256, and SHA-512 circuits once, respectively.

Circuit Network

EMP-AG2PC [20] running time (in ms) Ours (in ms)

Garb. o�ine Garb. online Eval. o�ine Eval. online Garbler Evaluator

AES-128

LAN 94.744 5.185 92.055 5.193 3.100 6.311

WAN 1345.708 53.440 1240.956 53.385 30.124 61.457

SHA-256

LAN 210.676 6.303 201.701 6.272 10.373 15.633

WAN 2299.404 52.474 2196.297 52.440 47.756 86.059

SHA-512

LAN 435.581 9.634 423.302 9.593 25.756 34.944

WAN 4095.115 56.471 4044.428 56.426 70.139 112.336

(ii) normal mode CPU running time. �e garbler running time is the time to generate

the input wire labels. We take the AES-128, SHA-256, and SHA-512 circuit evaluation

as benchmarks. In the LAN se�ing, our silent 2PC protocol is 5.3-5.7X faster than the

Correlated Randomness Teleportation via Semi-trusted Hardware 5

EMP-SH2PC [20]. In the WAN se�ing, our silent 2PC protocol is 43-47X faster than

the EMP-SH2PC.

Table. 3 shows the performance comparison between EMP-AG2PC [20] and our

malicious se�ing silent 2PC protocol. (EMP-AG2PC implements an e�cient maliciously

secure two-party computation protocol, authenticated garbling [21].) We perform the

experiments on this same machine as above. We take the AES-128, SHA-256, and SHA-

512 circuit evaluations as benchmarks, and the results are the average of 100 tests. All

the one-time expenses are omi�ed, e.g., creating enclave in our protocol and initialize

Fpre in EMP-AG2PC. EMP-AG2PC consists of three computing phases: (i) function in-

dependent o�ine phase, (ii) function dependent o�ine phase and (iii) online phase. (i)

and (ii) are collectively called o�ine phase. In the LAN se�ing, our silent 2PC protocol

is 17-32X faster w.r.t. the garbler’s running time and 12-15X faster w.r.t. the evaluator’s

running time than the EMP-AG2PC [20]. In the WAN se�ing, our silent PC protocol is

46-59X faster w.r.t. the garbler’s running time and 21-36X faster w.r.t. the evaluator’s

running time than the EMP-AG2PC.

2 Preliminaries

Notation. �roughout this paper, we use the following notations and terminologies.

Let λ ∈ N be the security parameter. We abbreviate probabilistic polynomial time as

PPT, and interactive Turing machine as ITM. Let poly(·) and negl(·) be a polynomially-

bounded function and negligible function, respectively. We assume each party has a

unique PID. For readability, we referPi as the PID for the partyPi. Suppose f(x1, x2) =
y is a function (circuit). Denote f.n1 and f.n2 as the input size of x1 and x2, respec-

tively. Let f.n = f.n1 + f.n2. Denote f.m as the size of the output y and f.N as

the overall wire number in f . For notation simplicity, we also use n1, n2, n,m,N to

represent f.n1, f.n2, f.n, f.m, f.N when there will be no ambiguity.

Garbling Scheme. As de�ned in [3], a garbling scheme GC consists of the following

PPT algorithms (Gb,En,Ev,De).

– Gb(1λ, f) is the garbling algorithm that takes input as the security parameter

λ ∈ N and a circuit f , and it returns a garbled circuit F , encoding information e,
and decoding information d.

– En(e, x) is the encoding algorithm that takes input as the encoding information e
and an input x, and it returns a garbled input X .

– Ev(F,X) is the evaluation algorithm that takes input as the garbled circuit F and

the garbled input X , and it returns a garbled output Y .

– De(d, Y) is the decoding algorithm that takes input as the decoding information

d and the garbled output Y , and it returns the output y.

A garbling scheme GC := (Gb,En,Ev,De) is called projective if e consists of 2f.n
wire labels. For the i-th input bit, we denote the corresponding wire labels as (X0

i , X
1
i).

Let e := {(X0
i , X

1
i)}i∈[n]; the encoding algorithm En(e, x) simply outputs X

x[i]
i , i ∈

[n], where x[i] is the i-th bit of x.

Analogously, a garbling scheme is called output-projective if d consists of 2 labels

for each output bits, which can be denoted as (Z0
i , Z

1
i). Let d := {(Z0

i , Z
1
i)}i∈[m]; the

6 Y. Lu et al.

decoding algorithm De(d, Y) outputs y[i], i ∈ [m], where y[i] is the i-th bit of y s.t.

Z
y[i]
i = Yi.

In this work, we assume the garbling scheme GC is both projective and output-

projective.

De�nition 1 (Correctness [3]).We say a garbling scheme (Gb,En,Ev,De) is correct
if for all functions f and input x:

Pr[(F, e, d)← Gb(1λ, f) : De(d,Ev(F,En(e, x))) = f(x)] = 1 .

De�nition 2 (Simulatable Privacy [3]).We say a garbling scheme (Gb,En,Ev,De)
is simulatable private if for all functions f and input x, there exists a PPT simulator Sim
such that for all PPT adversary A the following holds:

Pr

 (F0, e0, d0)← Gb(1λ, f);X0 ← En(e, x);
(F1, X1, d1)← Sim(1λ, f(x), Φ(f));
b← {0, 1}; b∗ ← A(Fb, Xb, db) : b = b∗

 = negl(λ) .

where Φ is the side-information function.

Yao’s GC Optimizations and Our Choice. �roughout the past decades, several

optimization techniques have been proposed to improve the e�ciency of Yao’s garbled

circuit (GC). In this section, we examine a few Yao’s GC optimizations and analyze their

suitability for our work to achieve the best performance, the concrete performance

analysis is taken from the work of Zahur et al. [22].

In the classical garbling scheme, the GC generator needs to invoke the hash func-

tion H 4 times for each gate to create a garbled table consists of 4 ciphertexts. �e

GC evaluator also needs to invoke H up to 4 times for each gate to decrypt all these

ciphertexts and obtains an output wire label.

Beaver et al. [2] introduced a technique called point-and-permute. By appending a

select bit to each wire label, one can easily determine the places of the corresponding

ciphertexts. �erefore, for a garbled table, the GC evaluator can decide which cipher-

text to decrypt according to the select bit and only invoke H once. Nevertheless, each

garbled table still contains 4 ciphertexts, and it takes 4 H invocations to generate. We

adopt this technique in our design, as it greatly reduces the GC evaluator’s computa-

tional cost, and it is compatible with other optimizations.

Naor et al. [17] introduced a garbled row-reduction technique known as GRR3 to

reduce the garbled table size. �e main idea is to �x 1 of the 4 ciphertexts, e.g., the top

one, in each garbled table to be 0, and thus can be eliminated. In our construction, the

memory of the enclave is limited, and this technique can reduce memory usage of GC

generation.

Kolesnikov et al. [14] introduced the free-XOR technique. �is technique allows us

to garble and evaluate XOR gates for free. To do this, the o�set between each wire’s

0-label and 1-label in the entire circuit is �xed to ∆. �erefore, one can generate or

evaluate an XOR gate via a simple XOR operation. �is technique can greatly improve

the performance of our scheme.

Correlated Randomness Teleportation via Semi-trusted Hardware 7

It interacts with players P := {P1, P2} and the adversary S . Let Pc be the set of corrupted parties.

Initially, set Pc = ∅.
Compute:

– Upon receiving (Compute, sid, xi) from party Pi ∈ P :

• If Pi ∈ Pc , send a noti�cation (ComputeNotify, sid, xi, Pi) to S ;

Otherwise, send a noti�cation (ComputeNotify, sid, |xi|, Pi) to S ;

• If it has received x1 from P1 and x2 from P2 :

∗ Compute y ← f(x1, x2);

• Send (Output, sid, P2) to adversary S :

∗ Upon receiving (Deliver, sid, P2) from S , it sends (Compute, sid, y) to P2 ;

Corruption handling:

– Upon receiving (Corrupt, sid, Pi) from the adversary S , if Pi ∈ P :

• Set Pc := Pc ∪ {Pi};
• Send (Input, sid, xi, Pi) to S if xi is already de�ned;

Functionality Ff
2pc

Fig. 1: Functionality Ff
2pc

We note that, in a conventional 2PC se�ing, the other optimization techniques,

such as GRR2 [19] and half-gates [22], may be helpful to further improve scheme per-

formance. However, GRR2 is not compatible with free-XOR. Although half-gates is

compatible with the aforementioned three optimizations, it is not ideal for our con-

struction. �e reason is that the main bene�t of half-gates is to reduce the non-XOR

gate garbled table size to 2, but it needs 2 H invocations to evaluate. Whereas, in our

design, the GC size is not the bo�leneck of our overall performance, because the GC

table is transmi�ed between the SGX enclave and the host locally. While, without

half-gates, each non-XOR gate garbled table only needs 1 H invocation to evaluate.

3 Security Model

Simulation-based Security. Our security model follows the simulation paradigm,

which lays down a solid foundation for designing and analyzing protocols secure

against a�acks in an arbitrary network execution environment (therefore it is also

known as network aware security model). Roughly speaking, in a simulation-based

security model, protocols are carried out over multiple interconnected machines; to

capture a�acks, a network adversary A is introduced, which is allowed to corrupt

some machines (i.e., have the full control of all physical parts of some machines); in

addition,A is allowed to partially control the communication tapes of all uncorrupted

machines, that is, it sees all the messages sent from and to the uncorrupted machines

and controls the sequence in which they are delivered. �en, a protocol ρ is a secure

implementation of a functionality F , if it satis�es that for every network adversaryA
a�acking an execution of ρ, there is another adversary S—known as the simulator—

a�acking the ideal process that uses F (by corrupting the same set of machines), such

that, the executions of ρ with A and that of F with S makes no di�erence to any

network execution environment.

8 Y. Lu et al.

It interacts with players P := {P1, P2} and the adversary A. It is parameterized with a PPT ITM M and

a Boolean �ag corrupted.

Initially, set corrupted := false.

– Upon receiving (Corrupt, sid,M∗) from A:

• Set corrupted := true;

• If M∗ 6= ∅, replace M := M∗ ;

– Upon receiving (Run, sid, xi) from party Pi ∈ P :

• If corrupted = true:

∗ Send leakage message (RunNotify, sid, xi, Pi) to A;

• If corrupted = false:

∗ Send noti�cation message (RunNotify, sid, Pi) to A;

• When (Run, sid, x1) and (Run, sid, x2) are both received:

∗ Run (y1, y2)← M(x1, x2);

∗ For i ∈ {1, 2}, send (Run, sid, yi) to Pi ;

Semi-trusted Hardware Functionality FHW[M]

Fig. 2: �e semi-trusted hardware functionality FHW[M]

�e ideal world execution. In the ideal world, P1 and P2 only communicate with

an ideal functionality Ff2pc during the execution. As depicted in Fig. 1, party Pi ∈
P sends (Compute, sid, xi) to the functionality Ff2pc, and Ff2pc sends a noti�cation

(ComputeNotify, sid, xi, Pi) to the adversary S if Pi is corrupted; Otherwise, Ff2pc
leaks the input size (ComputeNotify, sid, |xi|, Pi) to S . When both parties’ inputs

are received, Ff2pc computes y ← f(x1, x2). It then sends (Compute, sid, y) to P2 if

the adversary S allows. For corruption handling, if the adversary S corrupts party

Pi ∈ P , Ff2pc adds Pi to the set of corrupted parties, Pc, and leaks Pi’s input xi to S
if it is already de�ned.

�e real world execution. �e real/hybrid world protocol Π uses a semi-trusted

hardware components, which are modeled as the ideal functionality FHW. Later, we

will discuss how FHW is instantiated by Intel SGX in practice. For notation simplicity,

we de�neFHW as a template, and specify the required functionalities in the description

of a PPT Turing machine M. We use FHW[MGC] in our semi-honest/malicious se�ing

protocol ΠGC
2pc.

3.1 Semi-trusted Hardware Model

We introduce a new notion, called semi-trusted hardware model. Unlike the conven-

tional trusted hardware model, the semi-trusted hardware functionalityFHW[M] shown

in Fig. 2 can be corrupted by the adversary A. �e functionality FHW[M] is parame-

terized with a PPT ITM M and a Boolean �ag corrupted to indicate whether the hard-

ware is corrupted. �e parties P1 and P2 can invoke FHW[M] to compute (y1, y2) ←
M(x1, x2) by sending the input x1 and x2 respectively to FHW.

However, the adversary A is allowed to corrupt FHW via the (Corrupt, sid,M∗)
command. WhenA is a semi-honest adversary, it sets M∗ = ∅. In execution, if FHW is

corrupted, it will leak each party’s input to A. When A is a malicious adversary, M∗

can be arbitrarily de�ned by A (not necessarily PPT), and FHW computes (y1, y2) ←

Correlated Randomness Teleportation via Semi-trusted Hardware 9

MROT(x1, x2) :

– Parse x1 = 〈`1, k1〉 and x2 = 〈`2, k2〉;
– Assert `1 = `2 ;

– Generate (b1, . . . , b`1)← PRG(k2);

– For i ∈ [`1]:

• Generate R
bi
i ← PRFk1 (i, bi);

• [M] Generate R
bi⊕1

i ← PRFk1 (i, bi ⊕ 1);

• [M] Set σ
bi⊕1

i := H(R
bi⊕1

i);

– [S] Return y1 := ∅ and y2 := {Rbii }i∈[`1] ;

– [M] Return y1 := ∅ and y2 := ({Rbii }i∈[`1], {σ
bi⊕1

i }i∈[`1]);

Description of MROT

Fig. 3: Description of MROT

M∗(x1, x2) instead. A�er the computation, FHW sends the output y1 to the party P1

and y2 to the party P2.

4 Correlated Randomness Teleportation

Correlated randomness is widely used in the MPC o�ine protocols to achieve be�er

online e�ciency. In practice, correlated randomness can be generated and distributed

by a trusted server. However, this approach still needs huge communication between

the trusted server and the players to deliver those correlated random copies. In this

section, we show it is possible to utilize a semi-trusted hardware to teleport correlated

randomness with li�le (O(λ)) communication. Take two-party computation as an ex-

ample. Without loss of generality, suppose FHW is located at P2’s side with fast local

connections, e.g., FHW is instantiated with P2’s SGX. In the following, we provide

Random OT teleportation and GC teleportation protocols to illustrate our idea.

4.1 Random OT Teleportation

Description of MROT. We now de�ne the Turing machine MROT
for FHW in Fig. 3.

We use [S] (or [M]) labels to indicate instructions only included in the machine used in

the semi-honest (or malicious) se�ing protocol. Unlabeled instructions are performed

in both se�ings.

When P1 sends 〈`1, k1〉 and P2 sends 〈`2, k2〉, MROT
parses their inputs to obtain

the ROT seeds k1, k2 and the number of ROT to be generated `1, `2, and it asserts P1

andP2 send the same number `1 = `2. Subsequently,MROT
use k2 to generate the ROT

select bits by (b1, . . . , b`1) ← PRG(k2). �en, MROT
computes Rbii ← PRFk1(i, bi),

for i ∈ [`1]. In the semi-honest se�ing, MROT
can simply returns the ROT copies

{Rbii }i∈[`1] to P2.

In the malicious se�ing, in addition to generate the ROT copies, MROT
needs to

produce some veri�cation messages. More speci�cally, a�er generating a ROT copy

Rbii , MROT
also generates Rbi⊕1i ← PRFk1(i, bi ⊕ 1), and it sets σbi⊕1i := H(Rbi⊕1i)

10 Y. Lu et al.

Protocol description:

– Upon receiving (Compute, sid, x2 := `) from the environment Z , the party P2 :

• Pick random k2 ← {0, 1}λ ;

• Generate (b1, . . . , b`)← PRG(k2);

• Send (Run, sid, 〈`, k2〉) to FHW[MROT];
– Upon receiving (Compute, sid, x1 := `) from the environment Z , the party P1 :

• Pick random k1 ← {0, 1}λ ;

• For i ∈ [`]:
∗ Generate R0

i ← PRFk1 (i, 0) and R1
i ← PRFk1 (i, 1);

∗ [M] Set σ0
i := H(R0

i) and σ1
i := H(R1

i);

• [M] Set τ := H({σ0
i , σ

1
i }i∈[`]);

• [S] Send (Run, sid, 〈`, k1〉) to FHW[MROT];

• [M] Send (Run, sid, 〈`, k1〉) to FHW[MROT] and send τ to P2 ;

• Return (Compute, sid, {R0
i , R

1
i }i∈[`]) to the environment Z ;

– [S] Upon receiving (Run, sid, {Rbii }i∈[`]), the party P2 :

• Return (Compute, sid, {Rbii }i∈[`]) to the environment Z ;

– [M] Upon receiving (Run, sid, ({Rbii }i∈[`], {σ̂
bi⊕1

i }i∈[`])) from FHW[MROT] and receiving τ
from P1 , the party P2 :

• For i ∈ [`], set σ̂
bi
i := H(R

bi
i);

• Set τ̂ := H({σ̂0
i , σ̂

1
i }i∈[`]);

• Assert τ̂ = τ ;

• Return (Compute, sid, {Rbii }i∈[`]) to the environment Z ;

Protocol ΠROT

Fig. 4: �e semi-honest/malicious se�ing ΠROT in the FHW[M
ROT]-hybrid model

as the veri�cation message. In the end, MROT
returns the ROT messages {Rbii }i∈[`1]

and the veri�cation messages {σbi⊕1i }i∈[`1] to P2.

Description ofΠROT. We depict our semi-honest/malicious se�ing protocol in Fig. 4,

where ` is the number of ROT copies P1 and P2 want to generate. We use [S] (or [M])

labels to indicate instructions only included in the semi-honest (or malicious) se�ing

protocol. Other instructions not labeled should be included in both se�ings.

�e semi-honest setting. In the semi-honest se�ing protocol, the party P2 �rst picks

a random k2 ← {0, 1}λ as its ROT seed, and it uses this seed to generate (b1, . . . , b`)←
PRG(k2) as the ROT select bits. �en, P2 sends (Run, sid, 〈`, k2〉) to FHW[MROT]. �e

party P1 also picks a random k1 ← {0, 1}λ as its ROT seed, and it uses this seed to

generateR0
i ← PRFk1(i, 0) andR1

i ← PRFk1(i, 1), for i ∈ [`]. Subsequently,P1 sends

(Run, sid, 〈`, k1〉) to FHW[MROT], and it returns (Compute, sid, {R0
i , R

1
i }i∈[`]) to the

environment Z . A�er that, P2 receives the ROT copies {Rbii }i∈[`] from FHW[MROT].

�e malicious setting. In the malicious se�ing protocol, the party P2 �rst picks a

random k2 ← {0, 1}λ as its ROT seed, and it uses this seed to generate (b1, . . . , b`)←
PRG(k2) as the ROT select bits. �en, P2 sends (Run, sid, 〈`, k2〉) to FHW[MROT]. �e

party P1 also picks a random k1 ← {0, 1}λ as its ROT seed. For i ∈ [`], P1 generates

R0
i ← PRFk1(i, 0) andR1

i ← PRFk1(i, 1), and it setsσ0
i := H(R0

i) andσ1
i := H(R1

i).
Subsequently, it sets a hash value of all these hash values τ := H({σ0

i , σ
1
i }i∈[`]).

P1 then sends (Run, sid, 〈`, k1〉) to FHW[MROT] and sends τ to P2, and it returns

(Compute, sid, {R0
i , R

1
i }i∈[`]) to the environment Z . A�er that, P2 receives the ROT

Correlated Randomness Teleportation via Semi-trusted Hardware 11

MGC(x1, x2) :

– Parse x1 = 〈k, f1〉 and x2 = 〈f2, {x0
2,i}i∈[f2.n2]〉;

– Assert f1 = f2 ;

– Set f∗(x1, (x
0
2, x

1
2)) = f1(x1, x

0
2 ⊕ x

1
2);

– Generate (F, e, d)← Gb(1λ, f∗; k);

– Parse e = {(X0
i , X

1
i)}i∈[f∗.n] ;

– [M] For i ∈ [f∗.n2], set σ0
i := H(X0

i+f∗.n1
) and σ1

i := H(X1
i+f∗.n1

);

– [S] Return y1 := ∅ and y2 := (F, d, {X
x02,i
i+f∗.n1

}i∈[f2.n2]);

– [M] Return y1 := ∅ and y2 := (F, d, {X
x02,i
i+f∗.n1

}i∈[f2.n2], {σ0
i , σ

1
i }i∈[f∗.n2]);

Description of MGC

Fig. 5: Description of MGC

copies {Rbii }i∈[`] and hash values {σ̂bi⊕1i }i∈[`] from FHW[MROT] and τ from P2. For

i ∈ [`], P2 sets σ̂bii := H(Rbii). At last, P2 sets τ̂ := H({σ̂0
i , σ̂

1
i }i∈[`]) and asserts

τ̂ = τ to check these hash values.

Security. When SGX is malicious, it may produce incorrectRbii . To check the correct-

ness of Rbii at a low communication cost while preventing P1 from learning bi, we

let P1 and SGX collaboratively generate veri�cation messages. More speci�cally, SGX

will send hash values ofR0
i andR1

i to P2 (since P2 can generateH(Rbii) by itself, only

H(Rbi⊕1i) is needed). Meanwhile,P1 computes and sends τ = H({H(Rbii), H(Rbi⊕1i)}i∈[`])
to P2. �is hash value τ can be used to verify the validity of SGX’s outputs later. Due

to space limitation, the full proof can be found in the full version.

4.2 GC Teleportation with applications to silent 2PC

Description of MGC. We now de�ne the Turing machine MGC
for FHW that will be

used for our 2PC protocol in the semi-honest/malicious adversarial se�ing (cf. Fig. 5).

We use [S] (or [M]) labels to indicate instructions only included in the machine used in

the semi-honest (or malicious) se�ing protocol. Unlabeled instructions are performed

in both se�ings.

When P1 sends 〈k, f1〉 and P2 sends 〈f2, {x02,i}i∈[f2.n2]〉, MGC
parses their in-

puts to obtain the GC seed k, the circuit to be computed and P2’s secret-shared in-

put x02. MGC
asserts P1 and P2 send the same circuit f1 = f2, and use f1 to gen-

erate a function f∗(x1, (x
0
2, x

1
2)) = f1(x1, x

0
2 ⊕ x12). M

GC
then generates the gar-

bled circuit by (F, e, d) ← Gb(1λ, f∗; k), and it parses the encoding information

e = {(X0
i , X

1
i)}i∈[f∗.n] to get the input wire labels. In the semi-honest se�ing, MGC

can simply returns (F, d) and the wire label of x02 to P2.

In the malicious se�ing, in addition to generate the GC copy, MGC
needs to pro-

duce some veri�cation messages. More speci�cally, a�er parsing the encoding infor-

mation, MGC
sets σ0

i := H(X0
i+f∗.n1

) and σ1
i := H(X1

i+f∗.n1
), for i ∈ [f∗.n2].

�ese hash values {σ0
i , σ

1
i }i∈[f∗.n2] can help P2 to verify that it receives the cor-

12 Y. Lu et al.

We de�ne f∗(x1, (x
0
2, x

1
2)) = f(x1, x

0
2 ⊕ x

1
2), both x0

2 and x1
2 are P2’s inputs, so n∗1 = n1, n

∗
2 =

2n2, n
∗ = n∗1 + n∗2 .

– Upon receiving (Compute, sid, x2 := (x2,1, . . . , x2,n2)) from Z , the party P2 :

• For i ∈ [n2], pick random x0
2,i ← {0, 1}, and set x1

2,i = x2,i ⊕ x0
2,i ;

• Send (Run, sid, 〈f, {x0
2,i}i∈[n2]〉) to FHW[MGC] and {x1

2,i}i∈[n2] to P1 ;

– Upon receiving (Compute, sid, x1 := (x1,1, . . . , x1,n1
)) from the environment Z and

{x1
2,i}i∈[n2] from P2 , P1 :

• Pick random k ← {0, 1}λ ;

• Generate (F, e, d)← Gb(1λ, f∗; k);

• Parse e = {(X0
i , X

1
i)}i∈[n∗] ;

• [M] For i ∈ [n∗2], set σ0
i := H(X0

i+n1
) and σ1

i := H(X1
i+n1

);

• [M] Send τ := H(F, d, {σ0
i , σ

1
i }i∈[n∗2]) to P2 ;

• Send (Run, sid, 〈k, f〉) to FHW[MGC], and send

{Zi = X
x1,i
i }i∈[n1], {Zi+n1+n2

= X
x12,i
i+n1+n2

}i∈[n2] to P2 ;

– Upon receiving (Run, sid, (F̂ , d̂, {Zi+n1
= X

x02,i
i+n1

}i∈[n2])) (and [M] {σ̂0
i , σ̂

1
i }i∈[n∗2]) from

FHW[MGC], and receiving {Zi}i∈[n1], {Zi+n1+n2}i∈[n2] (and [M] τ) from P1 , party P2 :

• [M] Set τ̂ := H(F̂ , d̂, {σ̂0
0,i, σ̂

1
0,i}i∈[n∗2]);

• [M] Assert τ̂ = τ ;

• [M] For i ∈ [n2], assert σ̂
x02,i
i = H(Zi+n1

) and σ̂
x12,i
i+n2

= H(Zi+n1+n2
);

• Evaluate Y ← GC.Ev(F̂ , (Z1, . . . , Zn∗));

• Decode y ← GC.De(d̂, Y);

• Return (Compute, sid, y) to the environment Z ;

Protocol ΠGC
2pc

Fig. 6: �e semi-honest/malicious se�ing protocol ΠGC
2pc in the FHW[M

GC]-hybrid model

rect input wire labels from P1 in the subsequent execution. In the end, MGC
returns

(F, d, {Xx0
2,i

i+f∗.n1
}i∈[f2.n2], {σ0

i , σ
1
i }i∈[f∗.n2]) to P2.

Instantiation of MGC. In practice, MGC
can be instantiated by just running an SGX

enclave on the P2 side. P1 will remotely interact with P2’s SGX enclave via a secure

channel established by remote a�estation.As introduced in Sec. 2, we adopt three GC

optimizations, respectively are point-and-permute, GRR3 and free-XOR. For the point-

and-permute, we set the least signi�cant bits of the wire labels as the select bits, and

arrange the garbled table according to these bits. For the GRR3 optimization, we set

the 0-label of the output wire as the �rst row of the garbled table, and XOR each row

with this 0-label, then the �rst row becomes an all 0 string and thus can be eliminated.

And the free-XOR optimization is implemented as described.

Description ofΠGC
2pc. We depict our semi-honest/malicious se�ing protocol in Fig. 6,

where f is the function that P1 and P2 want to jointly compute, as described in Sec. 2,

n1, n2 and n are the input size of P1, the input size of P2 and the overall input size,

respectively. In addition, we de�ne a modi�ed function f∗(x1, (x
0
2, x

1
2)) = f(x1, x

0
2⊕

x12), in which x02 and x12 are the additive secret shares of P2’s original input x2. �is

idea of spli�ing P2’s inputs is from the work of Mohassel et al. [16], in their se�ing,

there are two garblers and one evaluator, and the evaluator secret-shares its inputs

and sends shares to the garblers. We use [S] (or [M]) labels to indicate instructions

Correlated Randomness Teleportation via Semi-trusted Hardware 13

only included in the semi-honest (or malicious) se�ing protocol. Other instruction not

labeled should be included in both the semi-honest se�ing protocol and the malicious

se�ing protocol.

�e semi-honest setting. In the semi-honest se�ing protocol, the party P2 �rst se-

cret shares its input x2,i as x2,i = x02,i⊕ x12,i, and it sends (Run, sid, 〈f, {x02,i}i∈[n2]〉)
to FHW[MGC] and {x12,i}i∈[n2] to P1. A�er receiving the secret shares of P2’s inputs

{x12,i}i∈[n2], P1 picks a random k ← {0, 1}λ as the seed of GC, it generates a GC

with this seed by (F, e, d) ← Gb(1λ, f∗; k) and it parses the input wire labels by

e = {(X0
i , X

1
i)}i∈[n∗]. �en, P1 sends (Run, sid, 〈k, f〉) to FHW[MGC], and it sends

the input wire labels of its own inputs {Zi = X
x1,i

i }i∈[n1] and P2’s input shares

{Zi+n1+n2
= X

x1
2,i

i+n1+n2
}i∈[n2] to P2. Subsequently, P2 receives the garbled tables F ,

the decoding information d and the input wire labels of {x02,i}i∈[n2] from FHW[MGC],

and it receives P1’s input wire labels and the input wire labels of {x12,i}i∈[n2], it evalu-

ates the garbled circuit by Y ← GC.Ev(F, (Z1, . . . , Zn1+2n2
)), and decodes the output

value by y ← GC.De(d, Y).

�e malicious setting. In the malicious se�ing protocol, the party P2 �rst secret

shares its input x2,i as x2,i = x02,i ⊕ x12,i, and it sends (Run, sid, 〈f, {x02,i}i∈[n2]〉)
to FHW[MGC] and {x12,i}i∈[n2] to P1. A�er receiving the secret shares of P2’s in-

puts {x12,i}i∈[n2], P1 picks a random k ← {0, 1}λ as the seed of GC, it generates

a GC with this seed by (F, e, d) ← Gb(1λ, f∗; k) and it parses the input wire la-

bels by e = {(X0
i , X

1
i)}i∈[n∗]. �en, P1 computes the hash values of all P2’s in-

put wire labels, σ0
i := H(X0

i+n1
) and σ1

i := H(X1
i+n1

), for i ∈ [n∗2], in addition,

it computes another hash value of these all hash values and the garbled circuit by

τ = H(F, d, {σ0
i , σ

1
i }i∈[n∗2]). A�er that, P1 sends (Run, sid, 〈k, f〉) to FHW[MGC], and

it sends the hash value τ , the input wire labels of its own inputs {Zi = X
x1,i

i }i∈[n1]

and P2’s input shares {Zi+n1+n2 = X
x1
2,i

i+n1+n2
}i∈[n2] to P2. Subsequently, P2 receives

the garbled tables F , the decoding information d, the input wire labels of {x02,i}i∈[n2]

and the hash valuse of all its input wire labels {σ̂0
i , σ̂

1
i }i∈[n∗2] from FHW[MGC], and

it receives τ , P1’s input wire labels and the input wire labels of {x12,i}i∈[n2]. �en,

P2 checks the message sent by FHW[MGC] with the hash value τ , and it veri�es that

FHW[MGC] and P1 sends the correct input wire labels using the hash values from

FHW[MGC]. At last,P2 evaluates the garbled circuit byY ← GC.Ev(F, (Z1, . . . , Zn1+2n2
)),

and decodes the output value by y ← GC.De(d, Y).

5 Security

In this section, we �rst examine why our schemes are secure at the high level, and

then formally state the security of our semi-honest/malicious se�ing protocol ΠGC
2pc in

�m. 1/�m. 2, respectively, where we restrict the adversary A to only corrupt one

of the following entities (i) the semi-trusted hardware functionality, (ii) player P1 and

(iii) player P2.

14 Y. Lu et al.

In our protocols, P2’s input x2 is secretly shared as x2 = x02⊕x12, and P2 sends x02
to FHW[MGC] and x12 to P1. FHW[MGC] and P1 will not be corrupted simultaneously,

so the adversary can not learn P2’s input value.

In the semi-honest se�ing, the view of FHW[MGC] is the MPC function f , a ran-

dom input share of x2 and the seed of the garbled circuit, f is already known to the

environment Z and the adversary A; therefore, no additional information would be

leaked to the adversary A. Since FHW[MGC] could only be passively corrupted, the

correctness of the garbled circuit and the wire labels of P2’s secret shared input are

preserved. �e input privacy of protocolΠGC
2pc is guaranteed by the simulatable privacy

property of the underlying garbling scheme GC. In the malicious se�ing, FHW[MGC],
P1, and P2 may be maliciously corrupted. �e main design principle is as follows. In

P2’s point of view, either FHW[MGC] or P1 could be corrupted. Note that our protocol

does not provide accountability, i.e., when the protocol abort, we are not required to

identify which party is guilty. �us, P2 can use messages generated byFHW[MGC] and

messages sent by P1 to carry out a mutual veri�cation, and it aborts if any inconsis-

tency is detected. More speci�cally, the wire labels of P2’s secret shared input x02 and

x12 are checked using hash values σ0
i := H(X0

i+n1
) and σ1

i := H(X1
i+n1

) generated

by FHW[MGC]. �e correctness of the garbled circuit and the hash values are ensured

by another hash value τ = H(F, d, {σ0
i , σ

1
i }i∈[n∗2]).

�eorem 1. If GC := (Gb,En,Ev,De) is a secure simulatable private garbling scheme,
protocolΠGC

2pc (semi-honest se�ing) described in Fig. 6 securely realizes Ff2pc as described
in Fig. 1 in the FHW[MGC]-hybrid model against any PPT semi-honest adversaries who
can corrupt one of the following entities: (i) FHW[MGC], (ii) P1, or (iii) P2 with static
corruption.

�eorem 2. IfH : {0, 1}∗ 7→ {0, 1}λ is a collision resistant hash function, and GC :=
(Gb,En,Ev,De) is a secure simulatable private garbling scheme, protocol ΠGC

2pc (ma-
licious se�ing) described in Fig. 6 securely realizes Ff2pc as described in Fig. 1 in the
FHW[MGC]-hybrid model against any PPT malicious adversaries who can corrupt one
of the following entities: (i) FHW[MGC], (ii) P1, or (iii) P2 with static corruption.

�e proofs are provided in Appendix A.1.

6 Implementation and Benchmarks

Our protocol is implemented in C++ using Intel SGX SDK on Linux. We use AES-NI

for the PRF algorithm. We perform the experiments on an SGX-enabled Dell OptiPlex

7080 equipped with an Intel Core 8700 CPU @ 3.20 GHz with 32.0 GB RAM, running

Ubuntu 18.04 LTS. We evaluate all protocols in two simulated network se�ings: (i)

a LAN se�ing with 1Gbps bandwidth and 0.1ms delay and (ii) a WAN se�ing with

100Mbps bandwidth and 25ms delay.

To test the performance of our semi-honest ROT generation protocol, we compared

our protocol with the implementation of the IKNP OT extension protocol [8] in EMP-

OT [20]. Table. 1 shows the performance comparison for generating 104 to 108 copies

of ROT, where the result is the average of 10 tests.

Correlated Randomness Teleportation via Semi-trusted Hardware 15

Table 4: Details of the benchmark Bristol Fashion circuit

Circuit # wire # gate # AND gate # P1’s input # P2’s input # output

AES-128 36919 36663 6400 128 128 128

SHA-256 135841 135073 22573 256 256 256

SHA-512 351153 349617 57947 512 512 512

To test the performance of the 2PC protocols, our benchmarks use three Bristol

Fashion format circuits [1], and the details are provided in Table. 4. For the semi-honest

se�ing protocol, we compared our protocol with EMP-SH2PC [20] (EMP-SH2PC pro-

vides an e�cient semi-honest 2PC implementation based on Yao’s GC protocol with

half-gates [22] optimization); for the malicious se�ing protocol, we compared our pro-

tocol with EMP-AG2PC [20] (EMP-AG2PC implements an e�cient maliciously secure

two-party computation protocol, authenticated garbling [21]). Table. 2 shows the per-

formance comparison for evaluating the aforementioned benchmark circuits for 1000

times using the semi-honest se�ing protocols, and the results are the average of 10

tests. Table. 3 shows the performance comparison for evaluating the benchmark cir-

cuits once using the malicious version, and the results are the average of 100 tests.

7 Related Work

As mentioned above, there are several hardware models proposed in the literature,

such as the remote a�estation model [18] and the tamper-proof hardware token mod-

els [9, 12]. However, the existing model does not address hardware leakage as well as

malicious corruptions. Mohassel et al. [15] proposed a scheme that enables e�cient

secure computation on mobile phones. �eir protocol is constructed in a Server-Aided
se�ing, where a semi-honest (covert) server who does not collude with protocol play-

ers is used to accelerate computation. However, their objective is to save computation,

while our goal is to reduce communication. Moreover, in our model, the hardware can

be maliciously corrupted. Järvinen et al. [10] used hardware token to reduce the cost

of the OT process in standard GC protocols. In their protocol, a sender generates a

garbled circuit and it uses hardware tokens, e.g. One-Time Memory (OTM) tokens, to

store the GC encoding information, the garbled circuit and the hardware tokens are

collectively called One-Time Program (OTP), which is a non-interactive version of GC

protocol. In our work, we also remove the OT process, but to keep sensitive informa-

tion away from the enclave, we secret-share P2’s input and sends the shares to P1

and SGX. A similar idea can be found in Mohassel et al. [16]. Kolesnikov [13] used

hardware tokens to construct an e�cient OT protocol. �is work considers the client-

server se�ing where the server is the sender and the client is the receiver. �e server

can deploy a hardware token in the client side, and the client can obtain messages

by querying the token. Our work provides a more e�cient malicious se�ing protocol,

instead of the cut-and-choose technique.

�ere have been some Intel SGX-based MPC solutions. Gupta et al. [7] proposed

protocols using Intel SGX for SFE problem which is secure in the semi-honest model,

16 Y. Lu et al.

and show how to improve their protocol’s security.. �e naive solution is to let the

players enter their inputs to the enclave, and they reduce the data leakage problem by

using SGX to convert plaintexts to ciphertexts (e.g. wire labels) and vice versa, but the

enclave still knows the input values. �ey notice the problem that the players need to

trust hardware supplier when using Intel SGX, but don’t give a feasible solution. Felsen

et al. [6] proposed an Intel SGX-based secure function evaluation (SFE) approach in

which private inputs are sent to enclave. In their protocol, only the inputs and the

outputs need to be transferred, the communication complexity of their protocol is op-

timal up to an additive constant. �ey evaluate the Boolean circuit representation of

the function in enclave to provide security with regards to so�ware side-channel at-

tacks. Choi et al. [4] consider the possibility of SGX being compromised and want to

protect the most sensitive data in any case. �ey propose a hybrid SFE-SGX protocol

which consists of calculation in SGX enclave and standard cryptographic techniques.

�e function to be evaluated is partitioned into several round functions, in the odd

rounds, the computation is executed in the enclave and the player Bob (the remote

party) only provide less sensitive inputs, in the even rounds, a scheme based on gar-

bled circuit is used and Bob provides more sensitive data. �ese works focus on the

e�ciency of the Intel SGX-based solutions, and the main security concern is the side-

channel a�ack problem. Providing private information to enclave is an inevitable step

of their protocols; therefore, private information may be leaked in our se�ing.

8 Conclusion

In this work, we investigate the problem where the trusted hardware manufacturer

is not fully trusted, and the hardware components may leak sensitive information to

the remote servers. In our model, the adversary is allowed to passively or maliciously

corrupt the hardware component. We present several correlated randomness telepor-

tation protocols, such as ROT and GC generation with applications to silent MPC,

where the communication only depends on the input size regardless the circuit size.

�e resulting protocols are signi�cantly faster than the EMP-IKNP-ROT, EMP-SH2PC

and EMP-AG2PC.

Correlated Randomness Teleportation via Semi-trusted Hardware 17

References

1. Archer, D., Abril, V.A., Lu, S., Maene, P., Mertens, N., Sijacic, D., Smart, N.: ’Bristol Fashion’

MPC Circuits (2020), h�ps://homes.esat.kuleuven.be/∼nsmart/MPC/ Accessed January 5th,

2021

2. Beaver, D., Micali, S., Rogaway, P.: �e round complexity of secure protocols. In: Proceedings

of the twenty-second annual ACM symposium on �eory of computing. pp. 503–513 (1990)

3. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Proceedings of the

2012 ACM conference on Computer and communications security. pp. 784–796 (2012)

4. Choi, J.I., Tian, D., Hernandez, G., Pa�on, C., Mood, B., Shrimpton, T., Butler, K.R., Traynor,

P.: A hybrid approach to secure function evaluation using sgx. In: Proceedings of the 2019

ACM Asia Conference on Computer and Communications Security. pp. 100–113 (2019)

5. Dan, G., Jim, S.: More than 20gb of intel source code and proprietary data

dumped online. [EB/OL], h�ps://arstechnica.com/information-technology/2020/08/

intel-is-investigating-the-leak-of-20gb-of-its-source-code-and-private-data/ Accessed

August 30, 2020

6. Felsen, S., Kiss, Á., Schneider, T., Weinert, C.: Secure and private function evaluation with

intel sgx. In: Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Secu-

rity Workshop. pp. 165–181 (2019)

7. Gupta, D., Mood, B., Feigenbaum, J., Butler, K., Traynor, P.: Using intel so�ware guard ex-

tensions for e�cient two-party secure function evaluation. In: International Conference on

Financial Cryptography and Data Security. pp. 302–318. Springer (2016)

8. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers e�ciently. In: An-

nual International Cryptology Conference. pp. 145–161. Springer (2003)

9. Järvinen, K., Kolesnikov, V., Sadeghi, A.R., Schneider, T.: Embedded sfe: O�oading server

and network using hardware tokens. In: International Conference on Financial Cryptogra-

phy and Data Security. pp. 207–221. Springer (2010)

10. Järvinen, K., Kolesnikov, V., Sadeghi, A.R., Schneider, T.: Garbled circuits for leakage-

resilience: Hardware implementation and evaluation of one-time programs. In: Inter-

national Workshop on Cryptographic Hardware and Embedded Systems. pp. 383–397.

Springer (2010)

11. Johnson, S., Scarlata, V., Rozas, C., Brickell, E., Mckeen, F.: Intel® so�ware guard extensions:

Epid provisioning and a�estation services. White Paper 1(1-10), 119 (2016)

12. Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In:

Naor, M. (ed.) Advances in Cryptology - EUROCRYPT 2007, 26th Annual International Con-

ference on the �eory and Applications of Cryptographic Techniques, Barcelona, Spain,

May 20-24, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4515, pp. 115–

128. Springer (2007). h�ps://doi.org/10.1007/978-3-540-72540-4 7, h�ps://doi.org/10.1007/

978-3-540-72540-4 7

13. Kolesnikov, V.: Truly e�cient string oblivious transfer using rese�able tamper-proof tokens.

In: �eory of Cryptography Conference. pp. 327–342. Springer (2010)

14. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free xor gates and applications.

In: International Colloquium on Automata, Languages, and Programming. pp. 486–498.

Springer (2008)

15. Mohassel, P., Orobets, O., Riva, B.: E�cient server-aided 2pc for mobile phones. Proceedings

on Privacy Enhancing Technologies 2016(2), 82–99 (2016)

16. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: �e garbled

circuit approach. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security. pp. 591–602 (2015)

https://homes.esat.kuleuven.be/~nsmart/MPC/
https://arstechnica.com/information-technology/2020/08/intel-is-investigating-the-leak-of-20gb-of-its-source-code-and-private-data/
https://arstechnica.com/information-technology/2020/08/intel-is-investigating-the-leak-of-20gb-of-its-source-code-and-private-data/
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-540-72540-4_7

18 Y. Lu et al.

17. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In:

Proceedings of the 1st ACM conference on Electronic commerce. pp. 129–139 (1999)

18. Pass, R., Shi, E., Tramer, F.: Formal abstractions for a�ested execution secure processors. In:

Annual International Conference on the �eory and Applications of Cryptographic Tech-

niques. pp. 260–289. Springer (2017)

19. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is prac-

tical. In: International conference on the theory and application of cryptology and informa-

tion security. pp. 250–267. Springer (2009)

20. Wang, X., Malozemo�, A.J., Katz, J.: EMP-toolkit: E�cient MultiParty computation toolkit

(2016), h�ps://github.com/emp-toolkit/ Accessed January 5th, 2021

21. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and e�cient maliciously secure

two-party computation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security. pp. 21–37 (2017)

22. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Annual International Con-

ference on the �eory and Applications of Cryptographic Techniques. pp. 220–250. Springer

(2015)

A Appendix

A.1 Security Proof of Our Main�eorems

Due to space limitation, we only provide the security proof for malicious se�ing.

Proof. To prove �m. 2, we construct a simulator S such that no non-uniform PPT

environmentZ can distinguish between (i) the real execution exec
FHW[MGC]

ΠGC
2pc,A,Z

where the

parties P := {P1, P2} run protocol ΠGC
2pc in the FHW[MGC]-hybrid model and the cor-

rupted parties are controlled by a dummy adversaryAwho simply forwards messages

from/toZ , and (ii) the ideal execution execFf2pc,S,Z
where the parties P1 and P2 inter-

act with functionality Ff2pc in the ideal world, and corrupted parties are controlled by

the simulator S . We consider following cases.

Case 1: FHW[MGC] is corrupted; P1 and P2 are honest.

Simulator. �e simulator S internally runs A, forwarding messages to/from the en-

vironment Z . S simulates the interface of FHW[MGC] as well as honest parties P1 and

P2. In addition, the simulator S simulates the following interactions with A.

– Upon receiving (ComputeNotify, sid, |x2|, P2) for an honest party P2 from the

external Ff2pc, the simulator S picks random x02,i ← {0, 1}, for i ∈ [n2], and it

sends (Run, sid, 〈f, {x02,i}i∈[n2]〉) to FHW[MGC] on behave of P2.

– Upon receiving (ComputeNotify, sid, |x1|, P1) for an honest party P1 from the

externalFf2pc, the simulatorS picks random k ← {0, 1}λ, and it sends (Run, sid, 〈k, f〉)
to FHW[MGC] on behave of P1. S then generate (F, e, d) ← Gb(1λ, f∗; k) and

parse e = {(X0
i , X

1
i)}i∈[n∗]. Subsequently, for i ∈ [n∗2], S sets σ0

i := H(X0
i+n1

)
and σ1

i := H(X1
i+n1

), and it sets τ = H(F, d, {σ0
i , σ

1
i }i∈[n∗2]). S then sends τ to

the simulated party P2 on behave of P1.

https://github.com/emp-toolkit/

Correlated Randomness Teleportation via Semi-trusted Hardware 19

– Upon receiving (Run, sid, Qi) from the partyPi ∈ P via the interface ofFHW[MGC],
S acts as FHW[MGC] to send (RunNotify, sid, Qi, Pi) to A. S then simulates the

FHW[MGC] functionality as de�ned.

– When the simulated party P2 receives (F̂ , d̂, {Xx0
2,i

i+n1
}i∈[n2], {σ̂0

i , σ̂
1
i }i∈[n∗2]) from

FHW[MGC] and receives τ from the simulatedP1,P2 computes τ̂ = H(F̂ , d̂, {σ̂0
0,i, σ̂

1
0,i}i∈[n∗2])

and asserts τ̂ = τ . �erea�er, S fetches the internal GC label information (F, e, d)

from the simulated P1. For i ∈ [n2], S acts as P2 to assert Zi+n1
= X

x0
2,i

i+n1
.

– Upon receiving (Output, sid, P2) from the external Ff2pc, the simulator S returns

(Deliver, sid, P2) if and only if all the checks are valid.

Indistinguishability. Assume the communication between P1 and P2 is via the se-

cure channel functionalityFSC, the views ofA andZ in exec
FHW[MGC]

ΠGC
2pc,A,Z

and execFf2pc,S,Z
are identical except the scenario where the real-world output y is di�erent from the

ideal-world output y′. �is happens when the malicious FHW[MGC] provides incon-

sistent information, yet she manages to pass all the hash validations. It means that

the adversary provides at least one di�erent hash preimage that would hashes to the

same value as the original preimage. �erefore, the simulator and the adversary can

jointly outputs two messages m1 6= m2 such that H(m1) = H(m2). Assume H is a

collision resistant cryptographic hash function, the views ofA and Z in exec
FHW[MGC]

ΠGC
2pc,A,Z

and execFf2pc,S,Z
are indistinguishable.

Case 2: P1 is corrupted; P2 and FHW[MGC] are honest.

Simulator. �e simulator S internally runs A, forwarding messages to/from the en-

vironmentZ . S simulates the interface ofFHW[MGC] as well as honest P2. In addition,

the simulator S simulates the following interactions with A.

– Upon receiving (ComputeNotify, sid, |x2|, P2) from the external Ff2pc, the simu-

latorS picks randomx02,i ← {0, 1}, for i ∈ [n2], and it sends (Run, sid, 〈f, {x02,i}i∈[n2]〉)
to FHW[MGC] on behave of P2. For i ∈ [n2], S sends random x̂12,i ← {0, 1} to P1

on behave of P2.

– Upon receiving (Run, sid, 〈k, f〉) from P1 and (Run, sid, 〈f, {x02,i}i∈[n2]〉) from

P2, S acts asFHW[MGC] to set f∗(x1, (x
0
2, x

1
2)) = f1(x1, x

0
2⊕x12) and generate the

garbled circuit by (F, e, d)← Gb(1λ, f∗; k).S then parse e = {(X0
i , X

1
i)}i∈[n1+2n2]

and sends (F, d, {Xx0
2,i

i+n1
}i∈[n2], {σ0

i , σ
1
i }i∈[n∗2]) to the simulated party P2 on be-

have of FHW[MGC].
– When the simulated party P2 receives {Zi}i∈[n1], {Zi+n1+n2}i∈[n2] and τ from

P1, S acts as P2 to compute τ̂ = H(F, d, {σ0
i , σ

1
i }i∈[n∗2]) and assert τ̂ = τ . �ere-

a�er, S fetches the internal GC label information (F, e, d) from the simulated

FHW[MGC]. For i ∈ [n2], S acts as P2 to assert Zi+n1+n2
= X

x1
2,i

i+n1+n2
. In ad-

dition, S uses the internal GC label information (F, e, d) and {Zi}i∈[n1] to extract

P1’s input x∗1, and it sends (Compute, sid, x∗1) to the external Ff2pc on behave of

P1.

20 Y. Lu et al.

– Upon receiving (Output, sid, P2) from the external Ff2pc, the simulator S returns

(Deliver, sid, P2) if and only if all the checks are valid and A allows P2 to �nish

the protocol execution and obtains y.

Indistinguishability. �e indistinguishability is proven through a series of hybrid

worldsH0, . . . ,H2.

HybridH0: It is the real protocol execution exec
FHW[MGC]

ΠGC
2pc,A,Z

.

HybridH1:H1 is the same asH0 except that inH1, P2 sends random {x̂12,i}i∈[n2] to

P1, instead of {x12,i := x02,i ⊕ x2,i}i∈[n2].

Claim. H1 andH0 are perfectly indistinguishable.

Proof. Since {x02,i}i∈[n2] are random bits picked by P2, the distribution of {x̂12,i}i∈[n2]

and {x12,i}i∈[n2] are identical. �erefore,H1 andH0 are perfectly indistinguishable.

Hybrid H2: H2 is the same as H1 except that in H2, P2 fetches the internal GC la-

bel information (F, e, d) from the simulated FHW[MGC], and it checks if Zi+n1+n2 =

X
x1
2,i

i+n1+n2
; otherwise, S aborts.

Claim. If H is a collision resistant cryptographic hash function,H2 andH1 are indis-

tinguishable.

Proof. �e di�erence betweenH1 andH2 is that inH1, P2 only checksH(Zi+n1+n2
);

whereas, inH2, P2 directly checks if Zi+n1+n2
= X

x1
2,i

i+n1+n2
. It is easy to see whenH

is a collision resistant cryptographic hash function,H2 andH1 are indistinguishable.

�e adversary’s view ofH2 is identical to the simulated view execFf2pc,S,Z
. �ere-

fore, it is perfectly indistinguishable.

Case 3: P2 is corrupted; P1 and FHW[MGC] are honest.

Simulator. �e simulator S internally runs A, forwarding messages to/from the en-

vironmentZ . S simulates the interface ofFHW[MGC] as well as honest P1. In addition,

the simulator S simulates the following interactions with A.

– Upon receiving (ComputeNotify, sid, |x1|, P1) from the externalFf2pc and receiv-

ing {x12,i}i∈[n2] from P2, the simulator S picks random k ← {0, 1}λ, and it sends

(Run, sid, 〈k, f〉) to FHW[MGC] on behave of P1.

– Upon receiving (Run, sid, 〈k, f〉) from P1 and (Run, sid, 〈f, {x02,i}i∈[n2]〉) from

P2, S computes P2’s input x∗2,i := x02,i ⊕ x12,i, for i ∈ [n2]. A�er that, it sends

(Compute, sid, x∗2) to the external Ff2pc on behave of P2.

– Upon receiving (Compute, sid, y) from the external Ff2pc for P2, the simulator S
sets f∗(x1, (x

0
2, x

1
2)) = f1(x1, x

0
2 ⊕ x12) and uses the GC simulator to generate

(F ′, X ′, d′) ← Sim(1λ, y, Φ(f∗)). S then uses X ′ as the wire labels to generate

{Zi}i∈[n1+2n2] as Zi := X ′i . S picks 2n2 random numbers Ẑi ← {0, 1}λ. For

Correlated Randomness Teleportation via Semi-trusted Hardware 21

i ∈ [n2], S sets σ
x0
2,i

i := H(Zi+n1
), σ

x0
2,i⊕1
i := H(Ẑi), σ

x1
2,i

i+n2
:= H(Zi+n1+n2

and σ
x1
2,i⊕1
i+n2

:= H(Ẑi+n2
). Subsequently, S sets τ = H(F ′, d′, {σ0

i , σ
1
i }i∈[n∗2]). At

last, S sends {Zi+n1}i∈[n2] as the wire label of x02, (F ′, d′) as the GC tables and

decode information and {σ0
i , σ

1
i }i∈[n∗2] as the hash values of P2’s wire labels to P2

on behave of FHW[MGC], and it sends {Zi}i∈[n1], {Zi+n1+n2
}i∈[n2] and τ to P2

on behave of P1.

Indistinguishability. �e indistinguishability is proven through a series of hybrid

worldsH0, . . . ,H2.

HybridH0: It is the real protocol execution exec
FHW[MGC]

ΠGC
2pc,A,Z

.

Hybrid H1: H1 is the same as H0 except that H1 generates di�erent hash values by

σ
x0
2,i⊕1
i := H(Ẑi) and σ

x1
2,i⊕1
i+n2

:= H(Ẑi+n2
), for i ∈ [n2], where {Ẑi}i∈[2n2] are

random values.

Claim. If H is a collision resistant cryptographic hash function,H1 andH0 are indis-

tinguishable.

Proof. �e di�erence between H0 and H1 is that in H0, σ
x0
2,i⊕1
i := H(X

x0
2,i⊕1

i+n1
)

and σ
x1
2,i⊕1
i+n2

:= H(X
x1
2,i⊕1

i+n1+n2
); whereas, in H1, σ

x0
2,i⊕1
i := H(Ẑi) and σ

x1
2,i⊕1
i+n2

:=

H(Ẑi+n2
). It is easy to see when H is a collision resistant cryptographic hash func-

tion,H1 andH0 are indistinguishable.

HybridH2:H2 is the same asH1 except thatH2 generates (F ′, X ′, d′)← Sim(1λ, y, Φ(f∗)),
and then it usesX ′ as the wire labels to generate {Zi}i∈[n1+2n2].FHW[MGC] also sends

(F ′, d′) as the GC tables and decoding information to P2.

Claim. IfGC is simulatable private with adversarial distinguishing advantageAdvprv.sim,Φ,SimGC (A, λ),
thenH1 andH0 are indistinguishable with distinguishing advantageAdvprv.sim,Φ,SimGC (A, λ).

Proof. By the requirement of simulatable privacy in Def. 2, (F ′, X ′, d′)← Sim(1λ, y, Φ(f∗))
should be indistinguishable from the real one except for the adversarial distinguishing

advantage Advprv.sim,Φ,SimGC (A, λ).

�e adversary’s view ofH2 is identical to the simulated view execFf2pc,S,Z
. �ere-

fore, ifGC is simulatable private, the views ofA andZ in exec
FHW[MGC]

ΠGC
2pc,A,Z

and execFf2pc,S,Z
are indistinguishable with distinguishing advantage

Advprv.sim,Φ,SimGC (A, λ) = negl(λ) .

	Correlated Randomness Teleportation via Semi-trusted Hardware — Enabling Silent Multi-party Computation

