
Boolean Ring Cryptographic Equation Solving

Sean Murphy1, Maura Paterson2 and Christine Swart3

1 Royal Holloway, University of London, U.K.
2 Birkbeck, University of London, U.K.

3 University of Cape Town, South Africa

Abstract. This paper considers multivariate polynomial equation sys-
tems over GF(2) that have a small number of solutions. This paper gives
a new method EGHAM2 for solving such systems of equations that uses the
properties of the Boolean quotient ring to potentially reduce memory and
time complexity relative to existing XL-type or Gröbner basis algorithms
applied in this setting. This paper also establishes a direct connection
between solving such a multivariate polynomial equation system over
GF(2), an MQ problem, and an instance of the LPN problem.
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1 Introduction

This paper considers the MQ problem of solving a multivariate nonlinear poly-
nomial equation system over the finite field GF(2), which is an NP-hard prob-
lem [24]. The MQ problem arises in cryptology in the algebraic cryptanlysis of
symmetric primitives [12, 17, 33] and in the analysis of asymmetric schemes based
explicitly on this problem [14, 27, 31], an area known as multivariate cryptogra-
phy. In particular, there has been much research on multivariate cryptography,
such as [1, 4–6, 8, 11, 15, 16, 18–20, 22, 23, 25, 26, 32]. More recently, a number of
multivariate cryptographic schemes have been submitted to the ongoing NIST
Post-Quantum Cryptography Standardisation process [30], and the multivariate
signature schemes Rainbow and GeMSS have been selected as a Finalist and an
Alternate in this NIST Post-Quantum process.

The contribution of this paper is to develop a method, the EGHAM2 pro-
cess, for solving multivariate nonlinear polynomial systems that is specifically
adapted for an underlying field of GF(2). For such polynomial systems over
GF(2) with small numbers of solutions, the EGHAM2 process should generally
have smaller memory and time complexity than existing XL-type and Gröbner
basis algorithms. Furthermore, in equation systems over GF(2) where existing
XL-type and Gröbner basis algorithms are used to produce multivariate poly-
nomials over GF(2) which factorise, the EGHAM2 process potentially produces
many linear expressions which hold with approximate probability 3

4 , so estab-
lishing a connection between solving such an equation system over GF(2) and
the Learning Parity with Noise or LPN problem [7].



2 Cryptographic Equation Systems and the Boolean Ring

We consider the problem of finding a solution to the equation system

f1 = · · · = fm = 0, (1)

where f1, . . . , fm are (without loss of generality) homogeneous polynomials in
the multivariate polynomial ring GF(2)[x0, . . . , xn]. We assume the homogeneous
system has a small number of solutions, and that they lie in GF(2)n+1. In general,
it is also the case that m ≥ n+1. Such assumptions might reasonably be expected
to hold true for systems of equations arising from cryptographic applications
where a unique nonzero solution corresponds (for example) to a key that has
been used for encryption.

Any element of GF(2) is fixed by the Frobenius automorphism that sends
an element x to x2. Any point (x0, . . . , xn) ∈ GF(2)n+1 that is a solution to
(1) is therefore also a solution to the (inhomogeneous) polynomial equations
x2i + xi = 0 (for i = 0, . . . , n). These are frequently referred to as the field
equations, and a standard approach is to seek a solution to the (inhomogeneous)
equation system

f1 = · · · = fm = x20 + x0 = · · · = x2n + xn = 0. (2)

We consider an alternative approach to appending the field equations to the origi-
nal equation system f1 = · · · = fm = 0 in the polynomial ring GF(2)[x0, . . . , xn].
Instead, we work in the Boolean ring of Definition 1 arising as the quotient ring
specified by the ideal generated by these field polynomials.

Definition 1. The Boolean ring is the multivariate quotient ring

B =
GF(2)[x0, . . . , xn]

〈x20 + x0, . . . , x2n + xn〉
.

The canonical ring homomorphism Γ : GF(2)[x0, . . . , xn] → B or Boolean map-
ping Γ is given by

f 7→ f + 〈x20 + x0, . . . , x
2
n + xn〉. ut

The Boolean ring B is a principal ideal domain with z2 = z for all z ∈ B [2].
For notational convenience we set zi = Γ (xi) (for i = 0, . . . , n), and we generally
write g = Γ (f) for the image of a homogeneous polynomial f and in particular
K = Γ (L) for the image of a homogeneous linear polynomial L and so on. Thus
the Boolean ring B is a vector space of dimension 2n+1 over GF(2), with the set
of all squarefree monomials in the z0, z1, . . . , zn (including 1) forming a basis.
We also let Br denote the subspace of B generated by all such basis monomials
of degree at most r. We note that any element of the Boolean ring B arising as
the Boolean image of a homogeneous polynomial has constant term 0.

The Boolean mapping Γ can be applied to each of the polynomials in the
equation system f1 = . . . = fm = 0 over GF(2) given by (1) to obtain an
equation system in the Boolean ring B given by

Γ (f1) = · · · = Γ (fm) = 0. (3)



Thus equation system (3) can be expressed as g1 = · · · = gm = 0 with gi = Γ (fi).
In any case, any element (x0, . . . , xn) ∈ GF(2)n+1 that is a solution to (1) gives
a solution (z0, . . . , zn) ∈ B to (3) and vice versa. Our approach in this paper is to
seek solutions to the GF(2) system (1) by finding solutions to the corresponding
equivalent Boolean system (3).

3 The XL and EGHAM Processes

Many of the proposed approaches for addressing the MQ problem are variants
of approaches based on computing Gröbner bases [10], and one such approach
is the XL algorithm and its variants [11, 15, 34]. In particular, a geometrically
invariant XL approach is considered by [28, 29]. We develop these geometric ideas
by giving an improved cryptographic equation solving algorithm (EGHAM2) when
the underlying field is GF(2). This improvement is obtained by considering the
equation system in the Boolean ring B rather than in the original polynomial
ring GF(2)[x0, . . . , xn].

3.1 XL-type Algorithms

For our purposes, the approach of the XL algorithm (and variants) can be de-
scribed in the following way. A homogeneous equation system of degree D is
produced from the original equation system f1 = . . . = fm = 0 by multiplying
the original polynomials f1, . . . , fm by appropriate monomials. Any such result-
ing polynomial can be represented as a (row) vector of coefficients with respect
to a specified basis of monomials of degree D. The vectors corresponding to a ba-
sis for the vector space of all such resulting polynomials give a matrix with these
vectors as rows known as the Macaulay matrix. By considering an appropriate
monomial ordering (corresponding to a Macaulay column ordering), Gaussian
elimination can be used efficiently to find (if it exists) a bivariate polynomial
in two specified variables in the span of this new system of degree D. If such a
bivariate polynomial can be found, then it can be potentially factorised into lin-
ear factors, one of which gives information about the solution. Such information
essentially allows us to remove one variable from the equation system and so on.
If no such bivariate polynomial can be found, the process can be repeated by
increasing the degree D. The XL algorithm is summarised in Figure 1. A similar
description can also be given for Gröbner basis algorithms under an appropriate
monomial ordering.

In addition to the number m of polynomials and the number n′ = n + 1
of variables of the original system, the complexity of the XL algorithm clearly
depends fundamentally on the degree D required to find a such a bivariate
polynomial. Furthermore, not all of the linear factors of the bivariate polynomial
give information about any possible solutions. Determining which linear factors
of this bivariate polynomial give information about any possible solutions to the
system is a potential further complicating issue in assessing the complexity of
the XL algorithm.



1. Consider the system of degree D ≥ 2 homogeneous polynomials obtained by mul-
tiplying each polynomial fi by the possible monomials of appropriate degree. The
resulting system can be expressed in terms of the Macaulay matrix Md,m whose
columns correspond to the degree D monomials in GF(2)[x0, . . . , xn] and whose
rows correspond to the degree D polynomials in the system. Entries in a given row
are the coefficients of the various monomials in the corresponding polynomial.

2. Seek a linear combination of these degree D polynomials that involves only two
variables. This can be done by selecting an appropriate ordering for the columns
of Md,m then performing Gaussian elimination.

3. Such a homogeneous polynomial in two variables can be factored into linear factors
using one of the standard factoring algorithms for univariate polynomials.

4. An appropriate linear factor of this two variable polynomial essentially determines
the value of one of the coordinates in the solution. By substituting this value into
the original system of equations we can reduce the number of variables by one.

5. By repeating the above steps we hope to find the value of all the coordinates, and
hence recover the full solution.

Fig. 1. The XL Algorithm

3.2 The EGHAM Process

The basic XL algorithm is not geometrically invariant as a simple linear change
of co-ordinates can greatly change the complexity. This motivated the develop-
ment of geometrically invariant forms of the XL algorithm [28, 29]. The EGHAM

(Even Geometric Heuristic Algorithmic Method) process [29] is such a geometri-
cally invariant XL-type algorithm specially designed for equation systems where
the underlying field has characteristic 2. The fundamental concept of the EGHAM

process is the geometrically invariant generalisation of the homogeneous bivari-
ate polynomial to the Rank-2 Product Polynomial, which is given in its GF(2)
formulation in Definition 2. The property of a Rank-2 Product Polynomial giving
rise to this terminology is then given in Lemma 1 (proved in [28]). The develop-
ment of such an approach then yields the LS-Criterion [29] of Definition 3.

Definition 2. A Rank-2 Product Polynomial of degree D is a homogeneous
polynomial of the form

∏D
i=1(θ′iL

′ + θ′′i L
′′) ∈ GF(2)[x0, ..., xn], where L′ and L′′

are homogeneous linear polynomials over GF(2) and θ′i and θ′′i are constants in
some extension field of GF(2). ut

Lemma 1. The matrix Cf of formal partial derivatives of a Rank-2 Product
Polynomial f has rank at most 2. ut

Definition 3. Let WD ⊂ GF(2)[x0, . . . , xn] denote the space of homogeneous
polynomials of degree D over GF(2). A homogeneous polynomial f ∈ WD (for
D > 0) satisfies the LS-Criterion if f is an element of

– either the L2S subspace
〈
xixjx

2
∣∣∣x ∈W 1

2 (D−2)

〉
when D is even

– or the L1S subspace
〈
xix

2
∣∣∣x ∈W 1

2 (D−1)

〉
when D is odd. ut



In particular, Lemma 2 (proved in [29]) shows that the LS-Criterion categorises
the Rank-2 Product Polynomials. Example 1 then illustrates Lemma 2 with a
Rank-2 Produduct polynomial that satisfies the LS-Criterion.

Lemma 2. A Rank-2 Product Polynomial satisfies the LS-Criterion. ut

Example 1. We consider the homogenous polynomial f of degree 4 in the poly-
nomial ring GF(2)[x0, x1, x2] given by

f = x40 + x0x
3
1 + x0x

2
1x2 + x31x2 + x0x1x

2
2 + x21x

2
2 + x0x

3
2 + x1x

3
2

= L′L′′(L′ + ωL′′)(L′ + ω2L′′),

where L′ = x0 + x1, L′′ = x0 + x2 and ω is a root of y2 + y + 1 = 0 over
GF(2). The product form for f shows that f is a Rank-2 Product Polynomial
and the monomials of f show that f satisfies the LS-Criterion. Furthermore, the
partial derivatives matrix Cf is given with respect to the lexicographic monomial
ordering (x30, x

2
0x1, x

2
0x2, x0x

2
1, x0x1x2, x0x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2) by

Cf =

0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 1 0 1 0 1
0 0 0 1 0 1 1 0 1 0

 .

This partial derivatives matrix Cf of f has rank 2 over GF(2). ut

Lemma 2 gives rise to the EGHAM process of [29], which we now outline.
The L2S subspace or the L1S subspace have dimension in general far smaller
than the subspace generated by the homogeneous degree D polynomials under
consideration. Thus taking the intersection of this subspace generated by these
polynomials with the L2S subspace or the L1S subspace allows us to use the
LS-Criterion as a highly efficient filter to vastly reduce the number of polyno-
mials under consideration. Suppose therefore (without loss of generality) that
f1, . . . , fm are the homogeneous polynomials of degree D in an XL-type pro-
cess obtained after filtering using the LS-Criterion and that f1, . . . , fm form a
basis for this resulting subspace. We can associate an appropriate partial deriva-
tives matrix Cfi with each polynomial fi (i = 1, . . . ,m), so any polynomial∑m

i=1 λifi in the span of f1, . . . , fm has corresponding partial derivatives matrix∑m
i=1 λiCfi . Lemma 1 shows that a Rank-2 Product Polynomial in the span of

f1, . . . , fm has corresponding partial derivatives matrix of rank 2, that is to say
we would require all 3×3 subdeterminants of

∑m
i=1 λiCfi to be 0. This gives rise

to a cubic equation system in λ1, . . . , λm whose solutions correspond to Rank-2
Product Polynomials and hence potentially to information about the solution to
the original equation system.

The EGHAM process is summarised in Figure 2, and there are polynomial
systems for which the EGHAM process works with a far lower degree of D than is
required by XL or standard Gröbner basis algorithms [29]. However, having to
solve a cubic system in λ1, . . . , λm is not ideal, and this is one of the issues that
we seek to address with the EGHAM2 process.



1. Consider the system of degree D ≥ 2 homogeneous polynomials obtained by mul-
tiplying each polynomial fi by the possible monomials of appropriate degree.

2. Apply the LS-Criterion, restricting attention to either the L2S or L1S subspace
as required, thus reducing the dimension of the problem.

3. Find a Rank-2 Product Polynomial in the L2S or L1S subspace. The approach
suggested in [29] requires the solution of a system of cubic equations.

4. The Rank-2 Product Polynomial can be factored, and the appropriate substitution
then reduces the number of variables by one.

5. This process is repeated until the desired solution is found.

Fig. 2. A Summary of the EGHAM Process

3.3 A Boolean view of the EGHAM process

We now consider how various aspects of the EGHAM process are affected when we
move to working directly in the Boolean ring B. In particular, we consider those
polynomials whose Boolean image has degree at most 2, giving the Q-Criterion
of Definition 4. Lemma 3 then shows that Rank-2 Product Polynomials satisfy
this Q-Criterion.

Definition 4. A homogeneous polynomial f ∈WD (D > 0) of degreeD satisfies
the Quadratic Criterion or Q-Criterion if g = Γ (f) ∈ B2, that is to say the image
of f under the Boolean mapping Γ is quadratic or linear or 0. ut

Lemma 3. The image of a Rank-2 Product Polynomial under the Boolean map-
ping Γ is either a linear Boolean element or is a quadratic Boolean element of the
form K ′K ′′ +K ′ +K ′′ for linear Boolean elements K ′ and K ′′. Thus a Rank-2
Product Polynomial satisfies the Q-Criterion.

Proof. Let f ∈ GF(2)[x0, . . . , xn] be a Rank-2 Product Polynomial of degree

D ≥ 2 whose factorisation over an extension of GF(2) is f =
∏D

i=1(θ′iL
′+ θ′′i L

′′)
for some homogeneous linear polynomials L′ and L′′ over GF(2), so f can be
expressed as

f = L′D +

D−1∑
i=1

ciL
′iL′′

D−i
+ L′′

D

with c1, . . . cD−1 ∈ GF(2). The Boolean image of f is therefore given by

g = Γ (f) = Γ (L′)D +

D−1∑
i=1

ciΓ (L′)iΓ (L′′)D−i + Γ (L′′)D

= K ′ + (c1 + . . .+ cD−1)K ′K ′′ +K ′′,

where K ′ = Γ (L′) and K ′′ = Γ (L′′) are linear Boolean elements. Thus g =
K ′+K ′′ if c1 + . . .+ cD−1 = 0 and g = K ′+K ′K ′′+K ′′ if c1 + . . .+ cD−1 = 1.
In either case, the image of a Rank-2 Product Polynomial f under Γ has degree
at most 2 and so f satisfies the Q-Criterion. ut



1. Given a set of homogeneous polynomials over GF(2), obtain the corresponding
image set of Boolean elements in B by using the Boolean mapping Γ .

2. From this set of Boolean elements of B, find elements in the span satisfying the
Q-Criterion. Such a reduced set of quadratic Boolean equations can be found by
taking the intersection of the original Boolean elements with B2.

3. Find elements in the span of this reduced set of quadratic Boolean elements satisfy-
ing the R2-Criterion by using the Kernel Method or otherwise. Hence find Boolean
linear expressions which hold with probability approximately 3

4
.

4. Express these probabilistic Boolean linear expressions as a Learning Parity with
Noise (LPN) Problem
(a) Attempt to solve this LPN problem using the BKW algorithm or otherwise.
(b) If there are not sufficient Boolean linear expressions to solve this LPN problem,

then the original equation system can be expanded by multiplying elements
by monomials and the process repeated.

Fig. 3. Overview of the EGHAM2 Process

Example 2. The homogeneous Rank-2 Product Polynomial of Example 1 given
by f = x40 + x0x

3
1 + x0x

2
1x2 + x31x2 + x0x1x

2
2 + x21x

2
2 + x0x

3
2 + x1x

3
2 satisfies the

LS-Criterion. The image

g = Γ (f) = z0 + z0z1 + z0z2 + z1z2

of f in the Boolean ring B consists only of linear and quadratic terms, so f
satisfies the Q-Criterion. ut

The Q-Criterion gives a further highly restrictive condition for a Rank-2
Product Polynomial in the Boolean case. For example, x30x

4
1x

5
2 satisfies the LS-

Criterion, but its image Γ (x30x
4
1x

5
2) = z0z1z2 under Γ does not satisfy the Q-

Criterion. This suggests that a development of the EGHAM process directly fo-
cussed on the Boolean ring B and the Q-Criterion offers the potential for sub-
stantial performance improvements in identifying Rank-2 Product Polynomials.

4 A Boolean EGHAM process: EGHAM2

We now give a version of the EGHAM process that is adapted to the Boolean ring B
based on the ideas of Section 3.3, and we term the resulting Boolean process the
EGHAM2 (Even Geometric Heuristic Algorithmic Method for GF(2)) process. We
give a high-level view of this EGHAM2 process in Figure 3, and we discuss issues
relating to this EGHAM2 process in this Section. However, we note as motivation
for this process that the Q-Criterion generally gives a very much smaller set of
quadratic elements than the original set of Boolean elements, which is obviously
much simpler and more efficient to handle. We also note that the EGHAM2 process
generates probabilistic linear expressions for the solution, so developing a direct
relationship between the MQ problem and the LPN problem



4.1 The Kernel of the Boolean Mapping

The ideal 〈x20 +x0, . . . , x
2
n +xn〉 generated by the field equations is by definition

the kernel of the Boolean mapping Γ , and so ker(Γ ) plays a critical role in the
development of the EGHAM2 process. In particular, this Boolean mapping ker(Γ )
allows us to extend the ideas of Section 3 to certain polynomials that are not
Rank-2 Product Polynomials.

The ideas underlying the use of this kernel can be illustrated by considering
the polynomial f0 = x2ixj +x2jxk = xj(x

2
i +xjxk). The polynomial f0 factorises,

but is not itself a Rank-2 Product Polynomial. We do observe however that
Γ (f0) = zizj + zjzk = zj(zi + zk) is a quadratic element which does factorise.
Such a quadratic element factorisation occurs as f0 differs from a Rank-2 Product
Polynomial by an element of ker(Γ ). In this case we have xjx

2
k +x2jxk ∈ ker(Γ ),

which gives

f0 + (xjx
2
k + x2jxk) = x2ixj + xjx

2
k = xj(xi + xk)2,

so f0 + (xjx
2
k + x2jxk) is a Rank-2 Product Polynomial satisfying

g0 = Γ (f0) = Γ
(
f0 + (xjx

2
k + x2jxk)

)
= zj(zi + zk).

For this example, the application of the Boolean mapping Γ has shown us that
the ideal generated by f0 and the elements of ker(Γ ) does contain a Rank-2
Product Polynomial, and has allowed us to find its image.

Applying the Boolean mapping Γ to a single polynomial gives an image
that essentially gives us information about its “most useful” preimage, and the
same notion can be extended to systems of polynomials. Adding polynomials
in the Boolean mapping kernel ker(Γ ) to the polynomials defining the set of
equations we wish to solve does not affect the solutions over GF(2). However,
adding such “kernel polynomials” can significantly lower the smallest degree
D for which the EGHAM process succeeds. All polynomials obtained in this way
have the same images under Γ , and so a process based on the resulting Boolean
equation system, such as the EGHAM2 process, works for the lowest degree D that
succeeds for any of these possible preimages of this system. This idea is illustrated
by the following Examples which consider two polynomial equation systems that
have the same image under Γ . Example 3 gives a homogeneous cubic polynomial
equation system that yields a direct factorisation, so potentially giving a solution
to the equation system, only using these cubic polynomials, whilst Example 4
gives a similar polynomial equation system that does not give such a factorisation
using cubic polynomials. However, Example 5 shows that the Boolean image of
these polynomial equation systems yields a factorisation in both cases.



Example 3. We consider twelve homogenous polynomials f1, . . . , f12 of degree 3
in the polynomial ring GF(2)[x0, x1, x2, x3, x4, x5] given by

001 003 005 011 013 014 024 034 113 122 124 133 134 144 223 234 235 255 333 335 344 345 355 445 555
002 005 011 012 013 014 022 025 033 034 044 045 112 114 115 133 144 145 222 223 224 235 244 245 255 335 345 444 445
001 002 003 004 005 011 023 034 044 045 055 111 112 113 114 115 123 125 134 145 222 223 224 233 244 245 255 335 555
003 011 012 015 025 044 111 113 114 115 124 125 133 134 145 224 233 234 235 244 245 255 333 345 455 555
000 001 003 015 024 025 045 112 122 124 134 135 233 235 255 333 334 355 455 555
000 001 002 003 005 014 022 023 024 025 044 045 055 112 114 123 144 223 224 234 245 333 334 335 344 345 355 455 555
002 003 004 013 014 022 024 025 033 034 035 044 055 113 114 115 122 124 125 133 135 145 223 224 225 345 355 445 555
001 002 003 005 012 013 023 034 035 045 055 111 114 125 135 225 233 234 244 245 255 334 335 345 355 444 445 455
001 003 005 011 012 013 014 015 022 023 034 045 112 115 124 125 133 135 145 155 222 224 225 233 234 235 333 334 355 444 455
001 004 011 012 013 015 022 023 025 033 111 115 123 134 144 145 155 225 234 235 333 334 344 355 444 445 555
000 001 003 004 005 011 013 022 023 024 033 035 045 113 115 123 145 222 223 234 244 245 333 334 335 344
000 001 002 004 005 011 013 014 015 033 044 111 112 122 123 124 125 133 134 144 224 225 233 244 245 333 334 335 344 355 555

The notation abc denotes the monomial xaxbxc and addition signs are omitted,
so for example 000 011 123 would denote the polynomial x30+x0x

2
1+x1x2x3, and

each line gives a single polynomial. The equation system f1 = . . . = f12 = 0 has
the unique nonzero solution x∗ = (1, 1, 0, 0, 1, 0). To find this solution using the
EGHAM process we apply the LS-Criterion, when we obtain the single polynomial

x30 +x20x2 +x20x3 +x0x
2
1 +x0x

2
3 +x0x

2
5 +x21x2 +x21x3 +x2x

2
3 +x2x

2
5 +x33 +x3x

2
5

in the span of the above system. This LS-Criterion polynomial factorises as

(x0 + x2 + x3)(x0 + x1 + x3 + x5)2,

which shows that this polynomial is a Rank-2 Product polynomial. At least
one of these linear factors evaluated at the solution is 0, and so an appropriate
substitution can remove one of the variables from the system to give a simpler
polynomial equation system. ut

Example 4. We consider twelve homogenous polynomials f ′1, . . . , f
′
12 of degree 3

in the polynomial ring GF(2)[x0, x1, x2, x3, x4, x5] given by

001 003 005 011 013 014 024 034 115 122 124 134 144 155 223 225 234 235 333 334 345 455 555
001 012 013 014 025 033 034 044 045 055 112 113 114 115 144 145 222 223 225 235 245 335 345 444 455
004 005 022 023 033 034 044 045 055 111 112 115 123 125 133 134 144 145 222 223 233 245 255 355 555
001 005 012 015 025 033 044 055 111 112 114 122 124 125 134 145 155 233 234 235 245 255 333 334 335 344 345 355 445 555
000 002 003 011 015 022 024 025 045 113 114 115 124 133 134 135 144 155 224 225 233 235 244 333 335 344 445 555
000 001 004 014 023 024 025 033 045 114 122 123 144 223 224 225 234 245 255 333 334 344 345 455 555
004 013 014 024 025 034 035 044 055 113 114 122 124 125 133 135 145 155 224 225 233 345 355 445 555
003 005 011 012 013 022 023 034 035 045 055 111 114 125 135 224 225 233 234 245 255 334 335 345 355 444
001 003 005 011 012 013 014 015 022 023 034 045 112 113 124 125 135 145 222 223 225 234 235 244 333 344 355 444 445
001 002 005 011 012 013 015 023 025 033 044 055 111 112 114 115 122 123 134 145 155 224 225 234 235 244 333 335 444 455 555
000 002 003 004 005 013 023 024 033 035 045 114 115 123 133 144 145 222 223 234 244 245 333 335
000 001 002 003 004 005 011 013 014 015 044 111 113 114 123 124 125 134 223 245 255 333 334 344 555

The equation system f ′1 = . . . = f ′12 = 0 has the unique nonzero solution
(1, 1, 0, 0, 1, 0), as in Example 3. Applying the LS-Criterion to this equation
system gives the single polynomial

x30 + x20x2 + x20x5 + x0x
2
1 + x21x2 + x21x3 + x21x4 + x21x5

+ x1x
2
4 + x1x

2
5 + x22x3 + x22x5 + x33 + x3x

2
5 + x24x5 + x4x

2
5.

in the span of the above system. This polynomial is absolutely irreducible over
GF(2) and so is not a Rank-2 Product polynomial. This means that there is
no degree three polynomial in the ideal generated by these polynomials that is
a Rank-2 Product polynomial. We therefore have to generate a higher degree
system from this cubic system for the EGHAM process to succeed. ut



Example 5. Both of the polynomial systems of Example 3 and 4 are homoge-
neous cubic systems of 12 polynomials in 6 variables. However, these two sys-
tems have a common image under the Boolean mapping Γ given by the following
Boolean element system

013 014 024 034 03 05 124 12 134 14 234 235 23 25 345 34 3 45 5
012 013 014 01 025 034 03 045 04 05 12 13 145 15 235 23 245 25 2 345 35 45 4
023 02 034 03 045 123 125 12 134 13 145 14 15 1 245 25 2 35 5
012 015 01 025 03 04 124 125 134 145 14 15 1 234 235 23 245 25 345 3 45 5
015 01 024 025 03 045 0 124 134 135 235 23 25 34 35 3 45 5
014 01 023 024 025 03 045 04 0 123 12 234 23 245 24 345 3 45 5
013 014 024 025 034 035 05 124 125 12 135 145 14 15 23 24 25 345 35 45 5
012 013 01 023 02 034 035 03 045 125 135 14 1 234 23 245 24 345 34 4
012 013 014 015 023 02 034 03 045 05 124 125 12 135 13 145 234 235 23 24 25 2 34 35 3 45 4
012 013 015 023 025 02 03 04 123 134 145 14 1 234 235 25 35 3 45 4 5
013 023 024 02 035 045 04 05 0 123 13 145 15 234 23 245 24 2 35 3
013 014 015 02 03 05 0 123 124 125 134 13 14 1 23 245 25 3 5

If we apply the Q-Criterion to this common image of the polynomial systems of
Example 3 and 4 we obtain the Boolean element

z0z1 + z0z2 + z0z5 + z0 + z1z2 + z1z3 + z2z3 + z2z5 + z3z5 + z3

in the span of the above Boolean elements, which factorises to give

(z0 + z2 + z3)(z0 + z1 + z3 + z5).

This Boolean factorisation is the image under the Boolean mapping Γ of the
factorisation of Example 3. ut

The fundamental point made by these Examples is that formally mapping
polynomials in the polynomial ring over GF(2) to elements of the Boolean ring
B allows us to find potentially useful “Boolean factorisations” in the span of a
polynomial system that are not generally found by an EGHAM process in the poly-
nomial ring. We can use such a Boolean factorisation to give trial substitutions
of variables for solving the original polynomial system

4.2 The R2-Criterion for a Quadratic Boolean Element

The application of the Q-Criterion leads us to find quadratic elements of the
Boolean ring. However, we can associate a quadratic element of the Boolean
ring B2 with a matrix essentially given by its partial derivatives, namely the
∂-matrix of Definition 5, a symmetric (n+ 1)× (n+ 1) matrix over GF(2). Our
analysis of Rank-2 Product Polynomials proceeds by considering such ∂-matrices
for quadratic Boolean elements arising in the span of the image of the polynomial
equation system under the Boolean mapping Γ . In particular, we consider the
R2-Criterion of Definition 6, as the subsequent Lemma 4 indicates how to use
this R2-Criterion to locate images of Rank-2 Product Polynomials.

Definition 5. A quadratic element g =

n∑
i=1

i−1∑
j=0

aijzizj +

n∑
i=1

aiizi + a ∈ B2 has

symmetric (n+ 1)× (n+ 1) ∂-matrix ∂g given by (∂g)ij = (∂g)ji = aij for j < i
with 0-diagonal (∂g)ii = 0. ut



Definition 6. A quadratic Boolean element g ∈ B2 satisfies the R2-Criterion
if the ∂-matrix ∂g of g has rank at most 2. ut

Lemma 4. A Rank-2 Product Polynomial f has an image g = Γ (f) under the
Boolean mapping Γ which satisfies the R2-Criterion. ut

Proof. If g = Γ (f) ∈ B1 then ∂g = ∂Γ (f) = 0. Lemma 3 shows that the
remaining possibility for a Rank-2 Product Polynomial f is that

g = Γ (f) = K ′K ′′ +K ′ +K ′′

for images K ′ =
∑n

i=0 b
′
izi and K ′′ =

∑n
j=0 b

′′
j zj of two homogeneous linear

polynomials. In this case we have

g = K ′K ′′ +K ′ +K ′′ =

n∑
i=1

i−1∑
j=0

(b′ib
′′
j + b′′i b

′
j)zizj +

n∑
i=0

(b′ib
′′
i + b′i + b′′i )zi.

with the corresponding ∂-matrix ∂g given by (∂g)ij = b′ib
′′
j + b′′i b

′
j for i 6= j and

(∂g)ii = 0. If we let b′ = (b′0, . . . , b
′
n)T and b′′ = (b′′0 , . . . , b

′′
n)T be the column

vectors of coefficients of K ′ and K ′′, then the ∂-matrix of g is given by

∂g = b′b′′T + b′′b′T .

The ∂-matrix ∂g of g is the sum of two matrices b′b′′T and b′′b′T of rank 1, so
has rank at most 2. Thus g satisfies the R2-Criterion. ut

Example 6. Example 2 shows that g = z0 + z0z1 + z0z2 + z1z2 is the Boolean
image of f = x40 + x0x

3
1 + x0x

2
1x2 + x31x2 + x0x1x

2
2 + x21x

2
2 + x0x

3
2 + x1x

3
2 of

Example 1. This Boolean quadratic element g has ∂-matrix

∂g =

0 1 1
1 0 1
1 1 0

 ,

a matrix of rank 2 over GF(2). Thus g = Γ (f), the Boolean image of the Rank-2
Product Polynomial f , satisfies the R2-Criterion.

4.3 Finding Quadratic Elements satisfying the R2-Criterion

Suppose that g1, . . . , gm ∈ B2 are quadratic Boolean elements, such as might
be obtained by applying the Q-Criterion to some larger original polynomial
equation system, where we assume that there are significantly more resulting
quadratic Boolean elements than variables, so m� n. We consider how to find
an element g =

∑m
i=1 λigi in their span satisfying the R2-Criterion. The Kernel

Method [13, 21] is a method to find a matrix of low rank within the span of a set of
matrices. We can use this Kernel Method to attempt to find a quadratic Boolean
element g =

∑m
i=1 λigi satisfying the R2-Criterion in the span of g1, . . . , gm by



finding a (n + 1) × (n + 1) matrix in the span of the corresponding ∂-matrices
∂g1, . . . , ∂gm such that

∂g =

m∑
i=1

λi ∂gi has rank 2.

A randomly chosen column vector v1 of dimension n + 1 lies in the kernel
ker(∂g) of a matrix ∂g of rank 2 with probability 1

4 , and so

vT1

 m∑
j=1

λj∂gj

 =

m∑
j=1

λj
(
vT1 ∂gj

)
= 0 with probability 1

4 .

Any coefficient vector (λ1, . . . , λm) satisfying
∑m

j=1 λj
(
vT1 ∂gj

)
= 0 lies in the

(left) kernel of the m× (n+ 1) matrix

Λ(v1) =

 vT1 ∂g1
...

vT1 ∂gm

 .

However, ker
(
Λ(v1)

)
is typically a subspace of large dimension as m � n, so

whilst
∑m

j=1 λj ∂gj is not generally a matrix of rank 2 or less for (λ1, . . . , λm) in

the kernel of Λ(v1), this kernel typically gives rise to many matrices
∑m

j=1 λj ∂gj
that are of rank 2 or less. We can repeat this process for l further randomly
chosen vectors v2, . . . , vl and determine ker

(
Λ(v1)

)⋂
. . .
⋂

ker
(
Λ(vl)

)
. Thus we

can determine coefficient vectors (λ1, . . . , λm) that could potentially give rise to
a matrix

∑m
j=1 λj ∂gj of rank 2 or less by determining the (left) kernel of an

m× l(n+ 1) matrix, that is to say by solving

(λ1, . . . , λm)
(
Λ(v1)

∣∣∣ . . . ∣∣∣Λ(vl)
)

= (λ1, . . . , λm)

 vT1 ∂g1 . . . vTl ∂g1
...

. . .
...

vT1 ∂gm . . . vTl ∂gm

 = 0.

In summary, the Kernel Method can be used to find (λ1, . . . , λm) such that
the matrix ∂g =

∑m
i=1 λi∂gi is a candidate to be a matrix of rank 2, correspond-

ing to quadratic Boolean element g =
∑m

i=1 λigi satisfying the R2-Criterion. We
note that we can generate the matrices ∂g1, . . . , ∂gm by an echelon-like process,
so they are themselves likely to be matrices of low rank, meaning that we are
likely to find matrices of the form

∑m
i=1 λi∂gi of rank 2. Furthermore, we choose l

such that the required kernel, corresponding to possible candidates (λ1, . . . , λm),
is not too large. Example 8 of Section 4.7 contains a brief discussion about a
process for determining l, and we note that an appropriate size for l can easily
be determined empirically. By repeating this process, the Kernel Method poten-
tially allows us to generate many such quadratic Boolean elements g =

∑m
i=1 λigi

in the span of g1, . . . , gm satisfying the R2-Criterion.



4.4 Probabilistic Linear Expressions

Lemma 4 shows that the R2-Criterion provides a useful filter for determining
whether a polynomial is a Rank-2 Product Polynomial. It is possible for the
images of other polynomials which are not Rank-2 Product Polynomials to satisfy
the R2-Criterion, for example x20 + x1x2 has image Γ (x20 + x1x2) = z0 + z1z2
with ∂-matrix of rank 2. This issue arises as the ∂-matrix depends only on the
quadratic coefficients. However, Lemma 5 gives a decomposition for quadratic
elements satisfying the R2-Criterion, which yields probabilistic Boolean linear
expressions.

Lemma 5. Suppose that a nontrivial quadratic element g ∈ B2 (with constant
term 0) satisfies the R2-Criterion, then there exist homogeneous linear elements
K,K ′,K ′′ ∈ B1 such that g = K ′K ′′ + K. If g takes the value 0 and K is not
identically 0, then K takes the value 0 with probability approximately 3

4 . ut

Proof. A nontrivial ∂-matrix cannot have rank 1 as it is symmetric. Thus suppose
that b′T and b′′T are two linearly independent rows of the ∂-matrix ∂g, so b′T

and b′′T form a basis for the rowspace of ∂g and ∂g = b′b′′T + b′′b′T as ∂g is
symmetric. If we define the linear elements K ′ =

∑n
i=0 b

′
izi and K ′′ =

∑n
i=0 b

′′
i zi,

then clearly ∂g = ∂(K ′K ′′), and so g and K ′K ′′ can differ only in their linear
terms. Thus we can write g = K ′K ′′+K for some linear Boolean elementK ∈ B1.
Furthermore, if g = K ′K ′′+K takes the value 0 and K is not identically 0, then
(K,K ′,K ′′) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)}, and in three out of the four
cases K takes the value 0. As we exclude the trivial z = 0 solution, then K takes
the value 0 with probability 3

4 − 2−n ≈ 3
4 . ut

Lemma 5 indicates how to use the ∂-matrix ∂g of a Boolean element g satis-
fying the R2-Criterion to find probabilistic linear Boolean expressions. If ∂g 6= 0,
then ∂g is a matrix of rank 2 over GF(2), so has two linearly independent rows,
corresponding to the distinct linear Boolean elements K ′ and K ′′. We note that
any third distinct nonzero row of ∂g corresponds to the linear Boolean element
K ′ +K ′′. If we then construct the three linear Boolean elements

L = g +K ′K ′′, L′ = g +K ′(K ′ +K ′′) and L′′ = g +K ′′(K ′ +K ′′),

then Lemma 5 shows that L, L′ and L′′ take the value 0 with probability 3
4 if they

are not identically 0, though we note that L, L′ and L′′ are correlated random
variables. We also note that L + L′ + L′′ takes the value 0 with approximate
probability 1

4 .

Example 7. Consider the quadratic Boolean element

g = z0+z0z1+z2+z1z2+z0z3+z1z3+z2z3+z0z4+z2z4+z3z4+z1z5+z3z5+z4z5



with six variables, which has ∂-matrix over GF(2) given by

∂g =


0 1 0 1 1 0
1 0 1 1 0 1
0 1 0 1 1 0
1 1 1 0 1 1
1 0 1 1 0 1
0 1 0 1 1 0


of rank 2, so g satisfies the R2-Criterion. The first and second rows of ∂g corre-
spond to the linear Boolean elements K ′ = z1+z3+z4 and K ′′ = z0+z2+z3+z5,
so we obtain (corresponding to fourth row) K ′ + K ′′ = z0 + z1 + z2 + z4 + z5.
Thus we can obtain the three linear Boolean elements

L = g + (z1 + z3 + z4)(z0 + z2 + z3 + z5) = z0 + z2 + z3,
L′ = g + (z1 + z3 + z4)(z0 + z1 + z2 + z4 + z5) = z0 + z1 + z2 + z4

and L′′ = g + (z0 + z2 + z3 + z5)(z0 + z1 + z2 + z4 + z5) = z5

The Boolean element g takes the value 0 on 31 of the 63 nonzero points. On
these 31 nonzero 0-points for g, the linear Boolean elements

L = z0 + z2 + z3, L′ = z0 + z1 + z2 + z4 and L′′ = z5

each take the value 0 for 23 of these 31 0-points of g, that is to say with ap-
proximate probability 3

4 as stated in Lemma 5. Furthermore, all other nontrivial
linear Boolean elements take the value 0 for 15 of the 31 nonzero 0-points of g,
apart from L+ L′ + L′′ = z1 + z3 + z4 + z5 which takes the value 0 for 7 of the
31 nonzero 0-points of g. ut

4.5 Boolean Ring Equation Solving as an LPN Problem

We now discuss how to use the Boolean image of a homogeneous polynomial
equation system to construct a Learning Parity with Noise or LPN problem [7],
a standard and fundamental cryptographic problem.

We consider a system of quadratic Boolean elements g1 = 0, . . . , gm′ = 0,
where g1, . . . , gm′ satisfy the R2-Criterion and are obtained by considering the
Boolean image under Γ of some original homogeneous polynomial equation sys-
tem f1 = . . . = fm = 0 with a single (for simplicity) nonzero solution z∗.
We note that any such derived linear Boolean elements can be used to make a
substitution to simplify the original equation system, and so we only consider
quadratic Boolean elements without loss of generality. The ideas of Section 4.3
show that we can potentially find m0 linear Boolean elements L1, . . . , Lm0

each
taking the value 0 at z∗ with approximate probability 3

4 . If we regard L1, . . . , Lm0

as (column) vectors of coefficients, then we can write such probabilistic linear
expressions as

0 = LT
j z
∗ + εj , where P(εj = 0) ≈ 3

4 and P(εj = 1) ≈ 1
4 [j = 1, . . . ,m0],



where ε1, . . . , εm0
are independent and identically distributed random variables

on GF(2). For the m0×n matrix C =
(
KT

1 | . . . |KT
m0

)T
over GF(2) and error vec-

tor ε = (ε1, . . . , εm0
)T , we can write the probabilistic linear Boolean expressions

in matrix form as the statistical linear model

0 = Cz∗ + ε.

The problem of determining z∗ in the above probabilistic expression is an
instance of the LPN problem, and so we can potentially use the BKW algorithm to
address this LPN problem [7]. The BKW algorithm is essentially a form of Gaussian
elimination in which the number of row additions is minimised is order to con-
strain the growth of the error rate, and we examine its use in this case. Without
loss of generality, we assume that n = ab and that m0 > 2b and partition the
matrix C as

C = (C1| C2| . . . |Ca) ,

that is to say into (m0 × b) submatrices C1, . . . , Ca. We then find distinct pairs
j′, j′′ such the corresponding rows CT

1j′ and CT
1j′′ of rows of C1 are identical, so

CT
1j′ = CT

1j′′ . We can therefore construct a row vector

CT
j′ + CT

j′′ =
(
0
∣∣CT

2j′ + CT
2j′′

∣∣ . . . ∣∣CT
aj′ + CT

aj′′
)

in which the first b components are all 0. By constructing m1 such vectors, we
can obtain an m1 × n matrix

C(1) =
(

0
∣∣∣C(1)

2

∣∣∣ . . .∣∣∣C(1)
a

)
,

in which the left-most b columns are 0, giving the statistical linear model

0 = C(1)z∗ + ε(1),

in which a component ε
(1)
j of the new error ε(1) is the sum of two of the com-

ponents of the previous error vector ε. Thus P(ε
(1)
j = 0) ≈ 3

4
3
4 + 1

4
1
4 = 5

8 and

P(ε
(1)
j = 1) ≈ 3

8 . By iterating the process, we can obtain an ma−1 × n matrix

C(a−1) =
(

0
∣∣∣ . . . ∣∣∣ 0

∣∣∣ C(a−1)
a

)
,

in which the left (a− 1)b columns are 0, giving the statistical linear model

0 = C(a−1)z∗ + ε(a−1) = C(a−1)
a z∗(a) + ε(a−1)

where z∗(a) = (z∗(a−1)b+1, . . . , z
∗
ab)

T is a vector of the final b components of z∗. In

this case, a component ε
(a−1)
j of this new error is the sum of 2a−1 components

of the original error, so these components are usually pairwise independent with

P
(
ε
(a−1)
j = 0

)
≈ 1

2 (1 + 2−a) and P
(
ε
(a−1)
j = 1

)
≈ 1

2 (1 − 2−a). If this distri-

bution is sufficently non-uniform, then we can accurately determine z∗(a) and so

reduce the problem to an (n− b)-dimensional problem and so on.



4.6 Required Degree for the EGHAM2 Process to Succeed

A major determination of the complexity of the EGHAM2 process is the degree
D of the underlying polynomial system, and in particular the minimal degree D
required for the EGHAM2 process to complete without generating new polynomials
of higher degree.

The degree D to which the original equation systems need to be extended for
the comparable XL or Gröbner Basis algorithms to give a solution is considered
by [1, 3]. Loosely speaking, these papers taken together argue that for most sets
of m homogeneous polynomials of degree d, the minimal value of D′ for which
the coefficient of yD

′
is negative in the expansions of the expressions

(1 + y)n
′

(1 + yd)m
for Gröbner Basis F5 and

(1 + y)n
′

(1 + yd)m
− 1 + y

1− y
for XL,

where n′ = n + 1 is the number of variables, gives the required degree D. The
EGHAM2 process though requires a degree for which a Rank-2 Product Polynomial
can be found. We observe that the set of Rank-2 Product Polynomials contains
subspaces of B of dimension n+1, for example 〈x0xi|i = 0, . . . , n〉. This suggests
that the degree D required for the EGHAM2 process would in general be bounded
by the degree D required for the XL algorithm for the same system.

4.7 An Example of the EGHAM2 Process

We illustrate the EGHAM2 process in Example 8, where we discuss a multivariate
quadratic system over GF(2). Whilst this system is relatively small (it could
easily be solved by exhaustive search), it does demonstrate the advantages of the
EGHAM2 process in comparison with an XL or Gröbner basis approach for such
a multivariate GF(2)-system. Furthermore, we discuss we can use the Boolean
image of the system to generate an LPN instance and how to use the BKW algorithm
to solve this LPN instance.

Example 8. We consider as example with m = 63 randomly generated homoge-
neous quadratic equations in n′ = 20 variables over GF(2). There are 210 homo-
geneous monomials of degree 2, so each such polynomial consists of about 105
homogeneous quadratic terms. In this case, the “XL-polynomial” of Section 4.6
expands as

(1 + y)20

(1 + y2)63
− 1 + y

1− y
= 19y + 145y2 − 120y3 + . . . ,

so indicating that it should be possible to obtain cancellation with by generat-
ing cubic homogeneous polynomials from these 63 polynomial equations in 20
variables. However, there is generally no bivariate polynomial in the span of the
resulting 1323 (1260 cubic and 63 quadratic) generated cubic polynomials, so an
XL or a Gröbner basis approach would typically require the generation of quartic
polynomials.



The EGHAM2 process by contrast can solve this quadratic equation system
with 63 quadratic polynomial equation systems in 20 variables whilst only gen-
erating cubic polynomials and not using any quartic polynomials. In a typical
instance, the 1323 generated cubic polynomials contained 183 polynomials satis-
fying the Q-Criterion, that is to say polynomials whose image under the Boolean
mapping Γ is a quadratic Boolean element.

Given such cubic polynomials with quadratic Boolean images, the EGHAM2

approach uses the Kernel Method to find ∂-matrices of rank 2 in the span of
the ∂-matrices arising from the 183 polynomials satisfying the Q-Criterion. This
approach proceeds by determining the (left) kernel of the m × l(n + 1) matrix(
Λ(v1)

∣∣ . . . ∣∣Λ(vl)
)
, and the usual dimension of this kernel is given for various

values of l below.

l 1 2 3 4 5 6 7 8 9 10 11 12 13
Kernel Dimension 164 146 129 113 98 84 71 59 48 38 29 21 14

We make in passing the following observation for the dimension of this kernel as
l increases. We originally considered 183 polynomials, we can technically regard
the kernel dimension for l = 0 corresponding to a “183×0” matrix with kernel of
dimension 183. The kernel dimension for l = 1 is 164, which is n = 19 less than
183. The kernel dimension for l = 2 is 146, which is 18 less than 146 and so on.
For this example, we use the above values to choose l = 13 generally giving rise
to a 14-dimensional kernel for the 183×260 matrix

(
Λ(v1)

∣∣ . . . ∣∣Λ(v13)
)
.

We used 500 iterations of Kernel Method with l = 13, that is to say we
generated 500 matrices of the above form

(
Λ(v1)

∣∣ . . . ∣∣Λ(v13)
)
, to find ∂-matrices

of rank 2, that is to say quadratic Boolean elements satisfying the R2-Criterion.
No linear Boolean elements were found, and each quadratic Boolean element
found satisfying the R2-Criterion can in practice be used to give three proba-
bilistic linear expressions for the solution. These iterations of the Kernel method
gave m0 = 1905 linear Boolean expressions each taking the value 0 (with the
true z∗) with probability approximately 3

4 . Thus we can obtain the statistical
linear model 0 = Cz∗ + ε over GF(2) with m0 × n′ or 1905×20 matrix C and
P(εi = 0) ≈ 3

4 , so giving an instance of the LPN Problem.
This instance of the LPN problem can be solved by implementing the BKW

algorithm by taking a = 2 and b = 10, that is to say by dividing C = (C1|C2)
into two m0 × b or 1905×10 submatrices C1 and C2. As m0 > 2b, the BKW

algorithm reduces the left half of the columns to 0 to give a m1×b matrix C
(a−1)
(2) ,

where m1 = 1037 in this case. Thus the BKW algorithm gives a 10-dimensional

statistical linear model 0 = C
(1)
2 z∗(2) + ε(1) over GF(2), where z∗(2) is the “right

half” of solution z∗ and P
(
ε(1) = 0

)
≈ 5

8 .
The true value of z∗(a) can then be identified by evaluating the 2b−1 = 210−1

counters
Sz′ = m1 −Wt

(
C

(1)
(2)z

′
)

= 1037−Wt
(
C

(1)
(2)z

′
)

for z′ 6= 0 giving the number of 0-components of the vector C
(1)
2 z of dimension

m1 = 1037. The distribution of these counts when z′ = z∗(a) takes the correct



value and z′ 6= z∗(a) takes an incorrect value are given by

Sz ∼ Bin(1037, 58 ) ≈ N(648.1, 15.62) [z = z∗(a)]

and Sz ∼ Bin(1037, 12 ) ≈ N(518.5, 16.12) [z 6= z∗(a)].

In essence, we can identify the true value of z∗(a) if a realisation of N(648.1, 15.62)

distribution exceeds the maximum of 1023 realisations of a N(518.5, 16.12) dis-
tribution. More generally, an accurate probability for identifying the partial true
solution can be determined by techniques using order statistics, as discussed in
a cryptographic context by [9]. In this case, the partial true solution immedi-
ately identifies itself with an Sz′ -count of 652 compared with the next highest
Sz′ -count of 567. Making the appropriate substitutions then gives a polynomial
equation system with 63 quadratic polynomial equations in 10 variables. which
is a fully linearised system that can be solved directly. Thus the system of 63
quadratic polynomial equations in 20 variables can be solved by the EGHAM2 pro-
cess using only cubic monomials and basic linear algebra. ut

5 Conclusions

We have outlined a new method, the EGHAM2 process, specifically designed for
analysing polynomial systems over GF(2) that have a small number of solutions.
This method is expected to be more efficient that the comparable XL or Gröbner
Basis methods for the following reasons.

– The EGHAM2 process is geometrically invariant, whereas the comparable XL

or Gröbner basis algorithms are in general not geometrically invariant.
– The degree D required by the EGHAM2 process for the extended polynomial

system should be bounded by the degree required by the XL or Gröbner
Basis algorithms.

– The processing required by the EGHAM2 algorithm should be more straight-
forward as it is focussed on a much smaller quadratic system. The EGHAM2

algorithm also avoids the possible complexities involved in testing trial roots
of high degree polynomials generated by XL or Gröbner Basis algorithms.

Furthermore, the EGHAM2 process establishes a direct natural connection be-
tween solving a multivariate polynomial equation system over GF(2), an instance
of an MQ problem, and solving an instance of an LPN problem.
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