
A New Code Based Signature Scheme without Trapdoors

Zhe Li ∗ Chaoping Xing† Sze Ling Yeo‡

October 9, 2020

Abstract

We present a signature scheme for Hamming metric random linear codes via the Schnorr-
Lyubashevsky framework that employs the rejection sampling on appropriate probability dis-
tributions instead of using trapdoors. Such an approach has been widely believed to be more
challenging for linear codes as compared to lattices with Gaussian distributions. We prove that
our signature scheme achieves EUF-CMA security under the assumption of the decoding one out
of many problem or achieves strong EUF-CMA security under the assumption of the codeword
finding problem under relaxed parameters. We provide an instantiation of the signature scheme
based on Ring-LPN instances as well as quasi-cyclic codes and present some concrete param-
eters. In addition, a proof of concept implementation of the scheme is provided. We compare
our scheme with previous unsuccessful similar attempts and provide a rigorous security analysis
of our scheme.

Our construction primarily relies on an efficient rejection sampling lemma for binary linear
codes with respect to suitably defined variants of the binomial distribution. Essentially, the
rejection sampling lemma indicates that adding a small weight vector to a large weight vector
has no significant effect on the distribution of the large weight vector. Concretely, we prove that
if the large weight is at least the square of the small weight and the large weight vector admits
binomial distribution, the sum distribution of the two vectors can be efficiently adjusted to a
binomial distribution via the rejection step and independent from the small weight vector. As
a result, our scheme outputs a signature distribution that is independent of the secret key.

Compared to two existing code based signature schemes, namely Durandal and Wave, the
security of our scheme is reduced to full-fledged hard coding problems i.e., codeword finding
problem and syndrome decoding problem for random linear codes. By contrast, the security
of the Durandal and Wave schemes is reduced to newly introduced product spaces subspaces
indistinguishability problem and the indistinguishability of generalized (U,U+V) codes problem,
respectively. We believe that building our scheme upon the more mature hard coding problems
provides stronger confidence to the security of our signature scheme.

1 Introduction

In the recent Round 3 results of NIST post-quantum cryptosystems [NIS20], the Classic McEliece
[BCL+17] code based cryptosystem is selected as one of the finalists, and BIKE [ABB+18] and
HQC [MAB+19] are selected as two of the alternate candidates. In contrast, no code based
signature scheme appears in the NIST Round 3 lists. In terms of encryption schemes, code

∗School of Physical and Mathematical Sciences, Nanyang Technological University. Email: lzonline01@gmail.com
†School of Physical and Mathematical Sciences, Nanyang Technological University. Email: xingcp@ntu.edu.sg
‡School of Physical and Mathematical Sciences, Nanyang Technological University. Email: yeoszeling@gmail.com

1

based cryptography has provided acceptable options, whose security are reduced to syndrome
decoding problems for quasi-cyclic Hamming codes or ideal rank-metric codes. However, with
regards to signature schemes, the situation is completely different and designing secure code-
based signature schemes from hard problems on random linear codes is always a goal in the
coding community.

In general, there are two main methods to design signature schemes, including the hash-
and-sign framework and the Fiat-Shamir transformation for identification protocols. The hash-
and-sign framework was proposed in Diffie and Hellman’s revolutionary paper [DH76]. The
framework works as follows. Let f be a one-way trapdoor function, namely, it is hard to invert
f without the trapdoor, and with the trapdoor, the preimage of f can be computed in polynomial
time. To sign a given message, the signing algorithm hashes the message to an element in the
range of f , inverts f using its trapdoor, and finally outputs the preimage of the hash value of the
message as the signature of the message. For lattice and code based cryptography, the signing
procedure involves running a decoding algorithm to find a closest vector for a given syndrome.
Several schemes have been proposed in the literature, for instance, CFS [CFS01], RankSign
[GRSZ14], Wave [DST19] in code based cryptography, and GGH [GGH97], NTRUSign [HPS01],
GPV [GPV08] in lattice based cryptography. For CFS, RankSign, and Wave, the security of the
scheme is built on the assumption that the underlying structural codes used are indistinguishable
from random linear codes.

An alternative method to build signature scheme is to construct a three-move identification
protocol and then convert the identification scheme to signature scheme via the Fiat-Shamir
transformation [FS86, AABN02]. A well-known scheme following this approach is the Schnorr
[Sch91] signature based on the hardness of discrete logarithm problems. The identification
protocol consists of three steps. In the first step, the prover commits to a secret value and
sends the commitment to the verifier. In the second step, the verifier binds the commitment
and the message to a challenge, and sends the challenge to the prover. In the third step, the
prover uses the secret value and challenge to hide the secret key to produce a response, and
sends the response to the verifier. In the last step, the verifier checks that the response is
consistent with the public key, commitment and the challenge. The Fiat-Shamir transformation
replaces the second step by a cryptographic hash function, i.e, the challenge is binded to the
public key and commitment via a hash function. Thus the prover is able to locally perform
each step of the protocol and the protocol is converted to non-interactive. For number theoretic
assumptions, the prover readily picks a random value to hide the secret key. In lattice and
code based cryptography, it is easy to forge a random vector in the commitment and response
for lattice and coding problems, and thus the secret vector to commit needs to be restricted
to a subset of vectors, typically vectors which are small under the given metric. The challenge
lies in efficiently hiding the secret key without leakage. Lyubashevsky [Lyu12, DDLL13] solves
this problem for lattice problems in a sequence of papers via the rejection sampling technique.
Different from traditional identification protocol, Lyubashevsky uses rejection sampling to alter
the response distribution to decouple the dependence of response on the secret key. In what
follows, we refer to the identification protocol with rejection sampling as Schnorr-Lyubashevsky
framework. There are several attempts to adapt the Schnorr-Lyubashevsky framework to coding
problems, for instance RaCoSS [FRX+17], RaCoSS-R [RMF+18], Persichetti’s proposal [Per18],
Durandal [ABG+19]. So far, none of the code based schemes proves that the achieved signature
distribution is independent from the secret key and reveals nothing on the secret key as achieved
by the lattice-based signature counterparts.

1.1 Related Work

For provable secure signature schemes in the random oracle model, the goal is to prove that the
output signature distribution is independent of the secret key. Once this goal is achieved, the

2

challenger can output valid signatures on requesting via programming the random oracle in the
security game and the forger’s ability to forge a valid signature is converted to the ability to
output a solution to the underlying hard problem.

In code based cryptography, there are two famous hard problems, namely the syndrome
decoding problem and the codeword finding problem. For parameters (n, k, w, q), given a parity-

check matrix H ∈ F(n−k)×n
q and a syndrome s ∈ Fn−kq , the syndrome decoding problem asks to

find a vector e ∈ Fnq such that wt(e) ≤ w and He = s. Taking s = 0, the problem becomes the
codeword finding problem. Both these two problems are proven to be NP-hard [BMvT78, Var97].
Code based cryptography is based on the conjecture that the two problems are hard for random
linear codes. For instance, the intractability assumption for random linear codes is used in two
of the NIST Round 3 alternate candidates, namely, BIKE and HQC. In general, the easy range

for the weight w of the two problems is [q−1
q (n − k), (q−1)n

q + k
q]. Throughout this paper, we

only consider the case q = 2, namely, binary linear codes.
The first proposed code based signature scheme is the CFS scheme [CFS01]. The scheme

relies on the decoding capability of high rate Goppa codes. Via choosing high rate Goppa codes,
a non-negligible fraction of the syndromes can be decoded to the nearest codeword. The secu-
rity of the scheme builds on the assumption that the chosen Goppa codes are indistinguishable
from random linear codes. However, for high rate Goppa codes, a distinguisher was proposed
[FGO+13]. In 2014, a signature scheme with the name RankSign in the rank metric setting was
proposed [GRSZ14]. The security of RankSign also builds on the assumption that the special
codes are indistinguishable from random linear rank metric codes. Later, a structural key-
recovery attack was reported in [DT18]. Via adapting the identification protocol to code based
cryptography, the Random Code-based Signature Scheme(RaCoSS) scheme was submitted to
NIST [FRX+17]. The RaCoSS scheme builds upon random linear codes. However, the scheme
was attacked [BHLP17] two days after the submission. Subsequently, the scheme was patched
[RMF+18] and attacked [Xag18] again. The main problem of RaCoSS and the patched version
is that the weight of valid signatures is large. In particular, the weight range of valid signatures
intersects with the easy range of the syndrome decoding problem. Thus, an adversary can di-
rectly forge a valid signature for any message without the secret key. In 2018, Persichetti [Per18]
adapted the Lyubashevsky scheme to random quasi-cyclic Hamming metric codes. Persichetti’s
proposal claimed the security of one-time signature. In Persichetti’s scheme, the weight of a
valid signature is below the GV bound of the code. Thus, it does not suffer from the weakness
of RaCoSS. Two subsequent independent works [SBC19, DG20] attacked the scheme. The first
attack [DG20] employs the LDPC(MDPC) decoding algorithm to recover the secret key via
viewing the challenge vector as a LDPC code and the signature vector as a syndrome of LDPC
code. As the weight of the signature is below the GV bound, thus the weight of the secret vector
in the commitment phase is below the GV bound as well. Concretely, because the challenge
vector is sparse, thus the weights of the secret key and the secret vector in the commitment are
in the decoding capability of the corresponding LDPC code. In an independent work, [SBC19]
recovered the secret key from one signature via a statistical attack. The statistical attack makes
full use of the sparsity of the secret commit vector. Thus, different cyclic rotations on the secret
key and secret commit vector have no intersection with non-negligible probability. Both of the
two attacks owe the insecurity of Persichetti’s scheme to the sparsity of the challenge vector.
However, in order to achieve a sufficiently small vector, the challenge vector must necessarily
be sparse. Such constraints seem to suggest that it is infeasible to construct a signature scheme
via the Schnorr-Lyubashevsky framework in the linear codes setting. In 2018, following the
Schnorr-Lyubashevsky framework, Anguil et al. [ABG+19] proposed a signature scheme with
the name Durandal in the rank metric context. However, the security of Durandal builds on a
complicated new problem PSSI+. It is not proven that the signature distribution is independent
from the secret key. In Durandal, the signature is rerandomized by an extra vector to hide the
secret key. It is pointed out that the rerandomizing strategy is not easy to be employed on

3

codes with respect to the Hamming metric and it is difficult to appropriately hide the secret key
for Hamming metric codes. In 2019, the Wave [DST19] signature scheme was proposed, which
follows the hash-and-sign framework. The security of Wave builds on the new assumption that
generalized (U,U + V) codes are independent from random linear codes. However, the hard-
ness of distinguishing generalized (U,U + V) codes from random linear codes is still unclear.
Interestingly, the output signature is proven to be independent from the secret key. Different
from traditional code based cryptography, the Wave signature chooses the desired weight of the
underlying syndrome decoding problem to lie at the large end.

In summary, the existing secure code based signature schemes build the security on immature
intractability assumptions. Thus the problem to construct a signature scheme, whose security
relies on mature assumption like the syndrome decoding problem or the codeword finding prob-
lem, is a highly nontrivial task.

1.2 Our Results and Techniques

In this paper, the main contribution is to construct a code based signature scheme via adapting
the Schnorr-Lyubashevsky framework to Hamming metric linear codes in the random oracle
model. The EUF-CMA security of the signature scheme is reduced to the Decoding One Out of
Many (DOOM) problem, which is a multi-syndrome variant of the syndrome decoding problem.
For relaxed parameters, the strong EUF-CMA security of the scheme is reduced to the codeword
finding problem. Via a rejection sampling lemma, the signature distribution is proven to be
independent of the secret key. To establish the rejection sampling lemma for binary linear
codes, we define the truncated binomial distribution and the shifted binomial distribution. With
these variants of the binomial distribution, we establish an efficient rejection sampling lemma.
Concretely, we prove that adding a small weight vector to a large weight vector has no significant
impact on the distribution of the large weight vector. With the rejection sampling lemma, we
construct the signature scheme. To obtain a practical signature scheme, we instantiate the
signature scheme via quasi-cyclic codes and provide parameters for classical 80 and 128 bit
security. To provide a proof of concept of the instantiation, an implementation of the scheme
is given. We show that all possible known attacks on previous unsuccessful attempts pose no
threat to our scheme.

We briefly sketch our results and techniques. We first describe the probability distribution
involved in the rejection sampling lemma. Let Bnp be the binomial distribution over Fn2 with
each entry sampled from a Bernoulli distribution parameterized by a constant p. The density
function of Bnp is defined as Bnp (t) :=

(
n
t

)
pt(1−p)n−t. It follows from the Hoeffding bound that the

Hamming weight of random vectors equipped with a binomial distribution is around np. Given

0 ≤ a < b ≤ n, the truncated binomial distribution B̃na,b,p is defined as B̃na,b,p(t) :=
Bnp (t)∑b
j=a Bnp (j)

for

t ∈ [a, b]. The density function of the truncated binomial distribution is proportional to Bnp . The

sum
∑b
j=a Bnp (j) is the normalization factor. If the parameters (a, b) are defined to be symmetric

around np, we use B̃nξ,p to denote the truncated binomial distribution where ξ = np−a = b−np.
Given a truncated binomial distribution B̃na,b,p, one is only interested in the vector of weight
lying in the range [a, b]. Given a vector v ∈ Fn2 , the shifted binomial distribution is defined
as Bnv,p(x) := Bnp (x − v), i.e., x − v admits the binomial distribution Bnp . More precisely, the
shifted binomial distribution is obtained by adding a given vector v to a binomial distribution
random variable. Let wt(v) = s, wt(x) = t. For s ≤ t, we prove that

Bnv,p(t) :=

s∑
j=0

(
s

j

)(
n− s
t− j

)
ps+t−2j(1− p)n−s−t+2j .

Note that in the above binomial distribution variations, the density function is only associated
to the Hamming weight of the involved vectors rather than the vector itself. The main result

4

of the binomial distribution is the ratio of the density functions of binomial distribution and
shifted binomial distribution. For ξ = o(np(1−p)) and s = o(np(1−p)) with p being a constant,
we prove

B̃nξ,p(t)
Bnv,p(t)

≈ e
s2

n
(1−2p)2

p(1−p)
− (t−pn)s

n
ξ

(ns2p(1− p))1/4
.

Thus, if we take s2 < n and sξ < n, the ratio is close to ξ
(ns2p(1−p))1/4 . The proof of the distri-

bution result is provided in Section 3 via a series of approximations to the binomial coefficients.
Intuitively, the result implies that if the weight of the shifted vector is small enough compared
to the expected weight of a random vector of variables, then adding the vector to the random
vector has no significant impact on the distribution of the resulting vector. From the view of the
curve of the density function, the result indicates that under the condition s2 < n and sξ < n,
the truncated binomial distribution and shifted binomial distribution have a large overlapped
part. Using the above ratio result of the density function of the binomial distribution variants,
we are able to prove a rejection sampling lemma, which is essential to our signature scheme.

Rejection sampling is a general method to tune a real probability distribution g to a desired
probability distribution f , which was first introduced by von Neumann [vN51]. The algorithmic
procedure works as follows. For a random variable v admitting the distribution g, a procedure

outputs v with probability f(v)
g(v)M , where M := maxu

f(u)
g(u) is the normalization factor of the

output probability. The procedure is repeated until a sample is output. The output variable of
the rejection sampling method admits the probability distribution f follows from the conditional
probability formula. In addition, the expected repetition number of the rejection procedure is M .
To make the rejection sampling more efficient, we expect the value ofM to be as small as possible.
The rejection sampling method was used in Lyubashevsky’s sequel of work [Lyu12, DDLL13] and
the Wave [DST19] scheme to decouple the dependence of the output signatures on secret key.
Concretely, the signature is proven to admit a predefined probability distribution characterized
by the parameters of the distribution itself and independent from the secret key.

We state our rejection sampling lemma for binary linear codes. Given a subset V ⊆ Fn2 , let

h : V → R be a probability distribution. Let M := maxt∈[np−ξ,np+ξ]
B̃nξ,p(t)

Bnv,p(t) . Then the output

distribution of the following two algorithms are identical.

• Sample v from h, z from Bnv,p, output (z,v) with probability
B̃nξ,p(z)

MBnv,p(z) .

• Sample v from h, z from B̃nξ,p, output (z,v) with probability 1
M .

With the rejection sampling lemma, we successfully design a signature scheme for binary
linear codes. The signature scheme is presented in Algorithm 1, Algorithm 2 and Algorithm 3.
The secret key is a binary matrix S ∈ Fn×`2 , where each entry of S is sampled from a Bernoulli
distribution parameterized by σ, where σ is a very small parameter related to the security level

of the scheme. A uniformly random sampled matrix H ∈ F(n−k)×n
2 and T = HS ∈ F(n−k)×`

2

form the public key pair (H,T). Let H be a cryptographic hash function, whose output is a
vector of weight w. To sign a message µ, the signing algorithm first samples a vector e according
to the binomial distribution Bnτ with τ being a constant and computes y = He ∈ Fn−k2 . The
signing algorithm uses the hash function H to compute c = H(y, µ). The weight of the output
of the hash function is fixed to a number w. The cryptographic hash function is provided in
Section 6.4. Next, the signing algorithm computes z = Sc+e. Note that the value z admits the
distribution BnSc,τ according to the definition of z. Then the signing algorithm outputs (z, c) as a

signature of µ with probability
B̃nξ,τ (z)

MBnSc,τ (z) . Using the rejection sampling lemma, the distribution

of the signature vector z is adjusted to the truncated distribution B̃nξ,τ , which is characterized
by the distribution parameter tuple (n, τ, ξ). Note that before the rejection sampling step,
the signing algorithm checks whether the weight of z lies in the range [nτ − ξ, nτ + ξ]. If

5

wt(z) /∈ [nτ − ξ, nτ + ξ], the signing algorithm restarts by drawing another vector e. Here the
rejection happens before applying the rejection sampling lemma. According to the piling-up
lemma, the vector Sc admits the distribution Bnη , where η = 1

2 (1 − (1 − 2σ)w) ≈ σw for very
small σw. From the Hoeffding bound, the weight of Sc is around nη. To minimize the value M
in the rejection sampling lemma, n is set at least (nη)2.

The verifying algorithm checks that wt(z) ∈ [nτ − ξ, nτ + ξ] and c = H(Hz − Tc, µ). The
two conditions hold according to the signing algorithm.

Note that if we instantiate the scheme with random linear codes, the public key size is huge.
According to the rejection sampling lemma, the weight of Sc is at most

√
n. Thus, each column

of S is much smaller. For sublinear error weight v, the information set decoding has complexity
2v log n

n−k . To achieve λ bit security, we have n ≥ λ2. To keep the code rate a constant, then
the public key size is of O(n2) = O(λ4). For instance λ = 128, the public key size is at least
1284 = 228 bits. Thus, we instantiate the signature scheme with quasi-cyclic random codes or
Ring-LPN instances. In quasi-cyclic codes, the parity-check matrix is represented by a constant
number of vectors and thus the public key size is tremendously reduced. The quasi-cyclic codes
have been used for many years in code based cryptography to reduce the public key size without
compromising the security level significantly. In particular, quasi-cyclic codes are both employed
in BIKE and HQC, two of the NIST Round 3 alternate candidates.

In the security proof, the challenger answers the signing queries via programming the random
oracle. By replacing the hash queries with the syndromes of a given DOOM instance, the forger
is forced to solve one of the syndrome decoding problem of DOOM. For relaxed parameters, the
challenger forces the forger to solve the codeword finding problem for the code parity checked by
the matrix H via the general forking lemma. The security proof also works for the quasi-cyclic
instantiation.

Assume we use the ring R := F2[x]/(xn − 1) to instantiate the signature scheme. For
simplicity, we consider the case for code rate being 1/2. Then the key generation step becomes
hs1 + s2 = t, where h, s1, s2, t ∈ R, and s1 and s2 are of very small Hamming weight. The
secret key pair is (s1, s2) and the public key pair is (h, t). To make it easy to estimate the
secret key security, we fix the weight of (s1, s2) to be 2u for some u. Although the quasi-cyclic
code structure does not endanger the security level too much, we need to take it into account

as the value n is large. For the syndrome decoding problem (h,1)

(
s1

s2

)
= t, any solution to

the syndrome txj corresponds to the desired solution of the quasi-cyclic syndrome decoding
problem, where txj denotes the result of applying j cyclic rotations to t. Thus the quasi-cyclic
code syndrome decoding problem is converted to a DOOM instance with n syndromes. From the
result of [Sen11], one has a speedup factor of

√
n. Thus, we will set 2u ≥ log

√
n+λ. To further

reduce the public key size, we employ the codeword finding problem in key generation. Taking
t = 0, the key generation procedure becomes h = s2

s1
and the public key becomes h. Thus

the security of key generation is associated to the codeword finding problem. This assumption
is also employed in the key generation procedure of NIST Round 3 alternate candidate BIKE
[ABB+18]. For codeword finding problem, the DOOM instance provides a speedup factor of n.
So we choose 2u ≥ λ + log(n). In the commitment step, the signing algorithm draws a vector
e = (e1, e2) from the distribution B2n

τ and computes y = he1 + e2. Note that in our given
parameters, the ring degree is large. Thus computing he1 over R is performed at great expense.
The multiplication can be optimized by two methods. Readers refer to Section 6.3.2 for details.

Then the signing algorithm computes c = H(y, µ). Next, the signing algorithm computes
z := (s1, s2)c + (e1, e2). As c and (s1, s2) are both sparse vectors, computing the sum of wt(c)
cyclic rotations of (s1, s2) can finish the costly ring elements multiplication task. Since the s and
c are both sparse vectors, the weight of (s1, s2)c will be wt(s1, s2)wt(c) with high probability.
The rejection sampling vector can be precomputed as the rejection sampling lemma is only
sensitive to the Hamming weight of involved vectors. There are two rejections in the signing

6

algorithm. One is the rejection sampling step and the other one is to ensure that wt(z) lies in
the range [nτ − ξ, nτ + ξ]. The vector c in the signature can be compressed since it is sparse.
The verifying algorithm checks that wt(z) ∈ [nτ − ξ, nτ + ξ] and c = H(hz1 + z2 − tc, µ).

Remark 1.1. • If we choose s2 < n and sξ < n, the rejection rate will be very small. But
the signature size and public key size are of very large. So we reduce the public key size
and signature size at the cost of increasing the rejection rate. We expect future work to
provide a better rejection sampling lemma to improve the square condition in the rejection
sampling lemma to achieve a smaller rejection rate and code length.

• One can choose a smaller code rate to allow a large parameter τ , even though the param-
eter τ is viewed as a constant in the rejection sampling lemma. However, for practical
parameters, larger τ allows a smaller rejection rate. Thus, one can choose a larger τ to
reduce the code length to keep an acceptably small rejection rate. But for smaller code rate,
the security for secret key is compromised and thus one needs to increase the weight of
secret key to keep the desired security level. A rough inspection indicates that choosing a
smaller code rate has no significant effect to the code length. But a smaller code rate leads
to a small degree of the ring R and thus makes the multiplication operation over the ring
R more efficient.

In our instantiation of the signature scheme, we will choose an appropriate range parameter
ξ to minimize the whole rejection rate for the signature scheme. Concrete parameters are given
in Section 6.7. A proof of concept implementation of the instantiation is provided.

1.3 Comparison with Existing Secure Code based Signature Schemes

Compared to secure code based signature schemes Durandal and Wave, the security of our
signature scheme is reduced to well-known decoding problems DOOM for random linear codes
or codeword finding problem for random linear codes, whereas the security of Durandal relies
on rank support learning problem, the Advanced Product Spaces Subspaces Indistinguishability
(PSSI+) problem, and the security of Wave relies on the indistinguishability of generalized
(U,U + V) codes from random linear codes and the DOOM problem. The PSSI+ problem
and the distinguishing problem for generalized (U,U +V) codes are both new introduced by the
Durandal scheme and the Wave scheme, respectively. The hardness of the two problems remains
untested and further studies on the hardness of the two problems are needed. We believe that
our scheme which builds its security on the well-known codeword finding problem for random
linear codes or DOOM problem for random linear codes ensures a more convincing security. In
contrast to Durandal, the signature distributions of Wave and our scheme are both proven to
be independent from the secret key and thus lead to no leakage on the secret key.

In the computation part, the Durandal scheme has filter space operation, which is expensive.
In the Wave, the signing algorithm runs two information set decoding algorithms. Our scheme
involves only vector or ring multiplication and addition operations. Even though, the ring
element multiplication is costly for our large parameters, the operation can still be optimized.

The disadvantage of our scheme is that the key size and signature size are still large compared
to the Durandal and Wave scheme. The large key size and signature size stem from the exponent
2 in the relation s2 < n in the rejection sampling lemma. Employing a large code length makes
the rejection sampling step more efficient. We believe that there is potential for further research
to design other probability distributions to improve the rejection sampling results, and thereby
reducing the key sizes.

1.4 Rejection Rate

In our construction, we introduce the truncated binomial distribution. If a value wt(z) leads
to a very large rejection rate, then the vector z is directly rejected via the weight checking

7

condition wt(z) ∈ [nτ − ξ, nτ + ξ]. This is different from the rejection sampling lemma used
in Lyubashevsky’s signature scheme. Via choosing appropriate ξ, the value M is bounded by
a smaller value. In our instantiation of the signature scheme, we will choose ξ to achieve the
smallest whole rejection rate for the signature scheme.

As we need to check wt(z) to decide whether to reject or admit it into the rejection sampling
step, we need to compute the probability that wt(z) ∈ [nτ−ξ, nτ+ξ]. If the range [nτ−ξ, nτ+ξ]
is large enough, we can use the Hoeffding bound to estimate the probability of wt(z) ∈ [nτ −
ξ, nτ + ξ]. From the rejection sampling lemma, we need to choose ξ such that sξ < n. Thus
we employ a counting formula to compute the probability. In practice, we will use the counting
formula to compute the probability that wt(z) ∈ [nτ−ξ, nτ+ξ] and the exact rejection sampling
probability. For well-chosen parameters, the global rejection rate becomes controllably small.

1.5 Comparison with Unsuccessful Attempts

Compared to RaCoSS and RaCoSS-R, the weight of the signature vector in our scheme belongs
to the small end of the hard range of the syndrome decoding problem. Thus, our scheme thwarts
the attacks to RaCoSS and RaCoSS-R. Compared to Persichetti’s proposal, our instantiation
employs a large weight vector in commitment to hide the secret key part in the signature and thus
leads to the weight of the signature also being large. Concretely, in Persichetti’s proposal, the
weight of signature is required to be below the GV bound and thus the weights of secret key and
the vector to commit are both below the GV bound. Therefore, for Persichetti’s proposal, the
secret vector in commitment cannot properly hide the secret key in the signature. It seems the
main difference in parameter setting between Persichetti’s proposal and our signature scheme is
that we choose a large weight vector to commit and produce a large weight signature. Essentially,
choosing a large weight vector to commit, using the large weight vector to randomized the secret
key and outputting a large weight signature completely change the nature of the signature
scheme. First according to the rejection sampling lemma, choosing a large weight vector to
commit makes it possible to efficiently tune the output distribution to completely remove the
dependence of signature distribution on the secret key. If an adversary is able to run the
LDPC decoding attack or the statistical attack, then the adversary is able to obtain the same
information from the truncated binomial distribution. Thus, any information the adversary
obtains from the signatures is fully independent from the secret key. Note that even one does
not care about huge key size and huge rejection rate, choosing the weight of the response vector
to be below the GV bound of the code is insecure. This is because for the weight less than
GV bound, with high probability the syndrome decoding problem has a unique solution, so
that no distribution is involved in the output of the signature scheme. Thus the rejection
sampling cannot be leveraged to adjust the distribution of the output signature as the response
is inherently decided by the public key, commitment and challenge. On the other hand, the
existing attack on the one-time signature exactly verifies this point that an output signature
fully reveals the secret key.

Second, large weights of the signature vector and the vector to commit thwart the existing
attacks on our scheme. The LDPC decoding attack does not work for our large weight signature
scheme. In our signature scheme, the weights of the vector to commit and signature are just a
little smaller than the singleton bound of the code. Thus it is far beyond the decoding capability
of LDPC. Our scheme is also resistant to the statistical attack. In general, the statistical attack
works as follows. Given a signature (z, c), then z = sc+e and it is (z1, z2) = (s1c+e1, s2c+e2).

Consider the first element z1 = cs1 + e1 = (c, 1)

(
s1

e1

)
=
∑
i∈Supp(c) x

is1 + e1. Multiplying z1

by x−j for j ∈ Supp(c), one has

zj1 := z1x
−j = s1 +

∑
i∈Supp(c),i6=j

s1x
i−j + e1x

−j .

8

Here s1x
i−j and e1x

−j are cyclic rotations of s1 and e1 respectively. Because wt(s1) and wt(c)
are both below the GV bound, the support of s1 has no intersection with the supports of s1x

i−j

and e1x
−j with high probability and the expectation of the support intersection number is very

small. The attack lifts the polynomial zj1 from F2[x] to Z[x] and computes the sum of lifted
polynomials. Most of the coefficients of s1 pile up in the sum of the lifted polynomials as s1

appears in every lifted polynomials and the expectation the support intersection is very small.
With non-negligible probability, this step can directly recover the secret key s1. Even if this
step does not fully recover s1, the recovered secret key s∗1 is close to s1. Namely, s1 − s∗1 is of
very small weight. Then running the information set decoding algorithm to fully recover the
secret key from public key and s∗1 takes a very small work factor. In our scheme, for the case
of large weight e1, the support of s1 has overlap with the support of e1 with non-negligible
probability. For distinct zj1, e1x

−j intersects with s1 and previous e1x
−` with non-negligible

probability. Thus, the sum of lifted polynomials contains many coefficients that pile up from
part of supports of s1 and e1x

−j . One is unable to tell apart which is from the secret key and
which is from e1x

−j . For our instantiation of the signature scheme, the complexity to directly
recover s1 from the signature z1 is beyond the security level. Subtracting recovered e∗1 from the
signature also has no help to recover the secret key as the unknown part of e1 − e∗1 is still of
large weight.

In general, the security of our scheme hinges on the proof that the signature distribution is
identical to a predefined truncated binomial distribution. Thus, the output signature reveals
nothing about the secret key. An adversary is unable to infer the secret key from one signature
as in the attacks on Persichetti’s proposal. Even given a polynomial number of signatures, an
adversary is still unable to learn any information on the secret key from the signatures because
the signatures can be viewed as being directly sampled from the truncated binomial distribution.
The security of our signature scheme is reduced to the well-known codeword finding problem
for random linear codes or DOOM problem for random linear codes.

1.6 Organization

We recall coding problems, some probability bounds, approximations for binomial coefficients in
Section 2. In Section 3, variants of binomial distribution are introduced and the main rejection
sampling lemma is proved. Section 4 presents the our signature scheme according to the rejection
sampling lemma. The security proof of the signature scheme is provided in Section 5. To make
the scheme practical, we instantiate the signature scheme on quasi-cyclic code or Ring-LPN
instances in Section 6 and concrete parameters are also provided. We compare our scheme with
some unsuccessful attempts in Section 7. Finally, we conclude the paper with some possible
methods to improve the rejection sampling lemma.

2 Preliminaries

Notations. We use log(·) to denote the base 2 logarithm function and ln(·) the natural logarithm
function. We use Snw ⊆ Fn2 to denote the set of all binary vectors of weight w and length n.

2.1 Coding Theory

We review some basic definition on coding theory. For a comprehensive introduction on coding
theory and coding problems, we refer the reader to [MS77].

Definition 2.1 (Linear Codes). Given integers n and k, a binary linear [n, k] code C is a
k-dimensional subspace of Fn2 . Each element of C is denoted as codeword.

9

Definition 2.2 (Generator Matrices and Parity Check Matrices). Given integers n and k, a
matrix G ∈ Fk×n2 is a generator matrix of a linear code C if C := {mTG ∈ Fn2 : m ∈ Fn2}. A
matrix H is a parity check matrix of C if C := {c ∈ Fn2 : Hc = 0}.

Definition 2.3 (Syndrome). Given integers n, k, a parity check matrix H ∈ F(n−k)×n
2 of a

linear code C, and a vector e ∈ Fn2 , the syndrome of e under H is defined as s := He.

For any linear code C, the matrix representation has the drawback of large key size. Thus,
researchers propose to use quasi-cyclic codes to reduce the public key size without compromising
the security level too much.

Before giving the definition of quasi-cyclic codes, we define the ring of polynomials and the
circulant matrix. Given integers n, define the ring R := F2[x]/(xn − 1). Then there is an
isomorphism from Fn2 to R. Namely, every vector of Fn2 is mapped to a polynomial in R via
the coefficient embedding. We use the isomorphism between Fn2 and R to define the circulant
matrix.

Definition 2.4 (Circulant Matrix). Given a vector h = (h0, . . . , hn−1) ∈ Fn2 , the circulant
matrix of h is defined as

rot(h) :=


h0 h1 . . . hn−1

hn−1 h0 . . . hn−2

...
...

. . .
...

h1 h2 . . . h0

 .

Each row of rot(h) is the cyclic rotation of the previous row when h is viewed as row vector.
From the perspective of R, the i-th row of rot(h) is xih(x).

For any two elements a(x), b(x) of R, the product of ring elements is the product of the poly-
nomials modulo the polynomial xn− 1. From the point of view of matrix vector multiplication,
a(x)b(x) = rot(a)b = rot(b)a.

The quasi-cyclic codes was proposed to noticeably reduce the public key size of Stern’s
protocol and MDPC code based cryptosystem [GG07, MTSB13].

Definition 2.5 (Quasi-cyclic Codes). Given integers s, n and a vector v := (v0, v1, . . . , vns−1) ∈
Fns2 , it can be viewed as s blocks and each block is of length n. An [sn, k] linear code C is quasi-
cyclic of index s if for any codeword c = (c0, . . . , cns−1) ∈ C, applying a cyclic rotation to each
length n block, the resulting vector is also contained in C.

Definition 2.6 (Systematic Quasi-cyclic Codes). Given integers s, n and a set of s− 1 vectors
{h0, . . . ,hs−2}, a systematic quasi-cyclic code [sn, n] of index s is a quasi-cyclic code parity
checked by the following matrix

H :=


In 0 . . . 0 rot(h0)
0 In . . . 0 rot(h1)
...

...
. . .

...
...

0 0 . . . In rot(hs−2)

 .

In particular, the quasi-cyclic code with index s and rate 1/s is denoted s-quasi-cyclic codes.

In our instantiations of the signature schemes, we only consider the case s = 2, i.e., 2-quasi-
cyclic codes. Then the parity check matrix becomes H := (In, rot(h)) for some vector h. For
convenience, we will write the parity check matrix as H := (1,h). Then the matrix vector
multiplication is performed over the ring R.

Next we present an extremely important bound for linear codes.

10

Definition 2.7 (Gilbert-Varshamov(GV) bound). Given a binary linear code C := [n, k], the
Gilbert-Varshamov bound is the largest integer w satisfying

w−1∑
i=0

(
n

i

)
≤ 2n−k.

2.2 Hard Problems in Coding Theory

In this section, we present some hard problems in coding theory. The worst cases of the problems
are proven to be NP complete. The average cases of the problems are conjectured to be hard.

Definition 2.8 (Syndrome Decoding Problem(SDP)). Let n, k, w be integers. Given a parity

check matrix H ∈ F(n−k)×n
2 and a syndrome s ∈ Fn−k2 , the syndrome decoding problem asks to

find a vector e ∈ Fn2 such that He = s and wt(e) ≤ w.

Remark 2.9. If the weight w is below the GV bound of the code, then the solution to the
syndrome decoding problem is unique.

Definition 2.10 (Codeword Finding Problem(CFP)). Let n, k, w be integers. Given a parity

check matrix H ∈ F(n−k)×n
2 , the codeword finding problem asks to find a vector c ∈ Fn2 such that

Hc = 0 and wt(c) ≤ w.

The codeword finding problem can be viewed as an homogeneous version of the syndrome
decoding problem. The syndrome decoding problem is proven to be NP-complete [BMvT78]
and the codeword finding problem is proven to be NP-complete [Var97].

Remark 2.11. • The average case of the syndrome decoding problem can be regarded as the
learning parity with noise(LPN) problem with limited number of LPN instances [AIK07].

• Assuming the hardness of the codeword finding problem for weight w, the corresponding
syndrome function is collision resistant for weight w/2.

• For a uniform random H, if w is less than GV bound, the syndrome decoding problem has
a unique solution with overwhelming probability. If w is greater than the GV bound, the
syndrome function is many-to-one.

We introduce a hard coding problem that is associated to our security proof. The Decoding
One Out of Many(DOOM) problem was initially proposed by [JJ02]. Later, we will point out
that the DOOM problem provides a speedup for the quasi-cyclic code problems compared to
the matrix version of the coding problems.

Definition 2.12 (Decoding One Out of Many(DOOM)). Let n, k, w, t be integers. Given a

parity check matrix H ∈ F(n−k)×n
2 and a set of t syndromes {s1, s2 . . . st}, the decoding one out

of many problem asks to find a vector ei ∈ Fn2 such that Hei = si and wt(ei) ≤ w for some i.

Next we consider the 2-quasi-cyclic version of the above problems when the parity check
matrix H is generated by the 2-quasi-cyclic parity check matrix H = (In, rot(h)).

Definition 2.13 (2-Quasi-Cyclic Syndrome Decoding Problem(2-QCSDP)). Let n, k, w be inte-
gers. Given a vector h ∈ Fn2 and a syndrome vector s ∈ Fn2 , the 2-quasi-cyclic syndrome decoding
problem asks to find a pair of vectors (e0, e1) such that he0+e1 = s and wt(e0) = w,wt(e1) = w.

Definition 2.14 (2-Quasi-Cyclic Codeword Finding Problem(2-QCCFP)). Let n, k, w be inte-
gers. Given a vector h ∈ Fn2 , the 2-quasi-cyclic codeword finding problem asks to find a nonzero
codeword c = (c0, c1) ∈ F2n

2 such that hc0 + c1 = 0 and wt(c0) = w,wt(c1) = w.

The decisional version of the 2-QCCFP is of interest. We will assume the decisional 2-QCCFP
is hard, i.e., the produced vector h is pseudorandom. The decisional 2-QCCFP assumption will
reduce the public key size by half. It is also used in the NIST submission BIKE [ABB+18].

11

Definition 2.15 (Decisional 2-QCCFP). Let n, k, w be integers. Given a vector h = c1/c0 ∈ Fn2
with wt(c0) = w,wt(c1) = w, the decisional 2-QCCFP asks to distinguish h from the uniform
random variable sampled from Fn2 .

Remark 2.16. (i) The average quasi-cyclic syndrome decoding problem can be viewed as the
Ring-LPN problem with fixed number of instances.

(ii) To make the quasi-cyclic coding problem hard, we choose a prime n such that (xn−1)/(x−
1) ∈ Fn2 [x] is irreducible to avoid the squaring attack [LJS+16] and the reducible polynomial
attack [GJL15].

Till now, there are no complexity results on the hardness of the above quasi-cyclic problems.
We have no idea whether the problem is NP-complete or not. The average cases of the problems
are conjectured to be hard. Generally speaking, the algorithms to solve the quasi-cyclic problems
have no significant advantages compared to the algorithms to solve the matrix version of the
coding problems. The best algorithm to solve it remains the the algorithm to solve the matrix
version of the problems. As each instance of the 2-QCSDP can be transformed to a DOOM
problem with t = n, Sendrier [Sen11] provided an analysis to adapt the algorithm to solve
syndrome decoding problem to DOOM. The DOOM problem provides a polynomial factor
speedup to the quasi-cyclic problems. The result indicates that it provides a

√
n factor speedup

to the 2-QCSDP and a n factor speedup to the 2-QCCFP.
For the decisional 2-QCCFP, the state of the art algorithms to solve it remains the algorithm

to solve the search version of 2-QCCFP.

2.3 Information Set Decoding

In this section, we present the algorithms to solve the syndrome problem and the latest results
on the complexity of the algorithms. Up to now, the best algorithm to solve the syndrome
decoding problem is descendant of the information set decoding(ISD) algorithm proposed by
Prange [Pra62]. The state of art results [MMT11, BJMM12, MO15] indicate a complexity of
2cw(1+o(1)), where w is the error weight and c is a constant related to the code rate, error rate
and the algorithm. For sublinear w = o(n), Torres and Sendrier [TS16] proved that the constant
c is c = − log(1 − r) all variants of the ISD algorithms, where r is the code rate. The result
of Torres and Sendrier provides an extremely good estimation to the complexity of the ISD
algorithms.

We remark that for a binary linear code [n, k], the easy weight range of the syndrome
decoding problem is [n−k2 , n+k

2]. In the instantiation of this paper, we use the small weight

range [0, n−k2) as the hard range for signature and secret key.

2.4 Signature Schemes

In this section, we recall the definitions of signature schemes and the security model of the
signature schemes.

Definition 2.17 (Signature Schemes). [GMR88] A signature scheme consists of three PPT
algorithms (KeyGen, Sign, V erify),

• KeyGen produces a public key, secret key pair upon a security level λ.

• Sign produces a valid signature upon a message µ and the secret key.

• V erify produces accept or reject upon the public key, a message µ and a signature σ of
µ.

(KeyGen, Sign, V erify) is signature scheme if

Pr[V erify(µ, pk, σ) = accept] ≥ 1− negl(λ).

12

The probability is over the randomness of KeyGen, Sign and V erify.

Definition 2.18 (Existential Unforgeability under an adaptive Chosen Message Attack(EUF-CMA)).
A signature scheme achieves the existential unforgeability under an adaptive chosen message at-
tack if for any PPT forger F , the probability, that F is able to forge a valid signature for a fresh
message µ whose signature is never queried after requesting polynomial number of signatures of
its choice, is negligible. The probability is over the randomness of KeyGen, Sign, V erify and
F itself.

In the EUF-CMA security model, the forger is limited to be unable to forge a valid signature
for a fresh message. A stronger security model strong EUF-CMA(SUF-CMA) requires that the
forger is unable to produce a different valid signature for any queried message. In the main body
part, we prove that our signature scheme achieves EUF-CMA security. When choosing relaxed
parameters, our signature scheme is proven to be strong EUF-CMA secure in Appendix.

Note that during the security proof in the random oracle model, a sign query implies a hash
query. When we say a forger makes h hash queries and s sign queries, the implied hash queries
from sign queries are excluded. Thus the total number of hash queries is h+ s.

2.5 Rejection Sampling

To argue that the signature does not leak any information on the private key, we use a general
rejection sampling lemma [Lyu12]. Here the lemma is defined over Fn2 .

Lemma 2.19 (Rejection Sampling). Given a subset V ⊆ Fn2 , let f : Fn2 → R and h : V → R
be two probability distributions. Let gv : Fn2 → R be a probability distribution indexed by v ∈ V
such that there exists a number M ∈ R such that

Pr

[
f(z)

gv(z)
≤M : z← f

]
≥ 1− ε.

Then the statistical distance of the following two distributions is ε/M and the first distribution
outputs something with probability 1−ε

M .

1. v← h, z← gv, output (v, z) with probability f(z)
Mgv(z) .

2. v← h, z← f , output (v, z) with probability 1/M .

In particular, if ε = 0, the two output distributions are identical and the first distribution outputs
something with probability 1/M .

The proof of the rejection sampling lemma follows a standard method. We omit it here.

Remark 2.20. Notice that the rejection sampling lemma efficiently tailors any real distribution

g to a desired distribution f if M := maxz
f(z)
gv(z) is in an acceptable range.

2.6 Bounds and Approximations

The piling-up lemma is used to compute the sum distribution of Bernoulli distributions.

Lemma 2.21 (Piling-up Lemma). Given n identical independent Bernoulli random variables
X1, X2 . . . Xn with Bernoulli parameter p, the sum of the random variables yields a fresh Bernoulli
random variable with parameter τ = 1

2 −
1
2 (1− 2p)n.

The proof of the piling-up lemma follows a mathematical induction.

Lemma 2.22 (Hoeffding Bound). [MU05, Theorem 4.12] Given n independent random variables
X1, X2 . . . Xn satisfying E[Xi] = µ and Xi ∈ [a, b], then

Pr

∣∣∣∣∣∣
∑
i∈[n]

Xi − nµ

∣∣∣∣∣∣ ≥ ∆

 ≤ 2e
− ∆2

n(b−a)2 .

13

From the Hoeffding bound, given a binomial distributed binary vector v→ Bnp , where Bnp is
the binomial distribution defined over Fn2 with parameter p, the weight of v is around np.

We present a result on binomial coefficients without proof. The proof of this result can be
found in [MU05].

Lemma 2.23. For integers k and n with k < n, 2nH(k/n)
√
n

≤
(
n
k

)
≤ 2nH(k/n) where H(x) =

−x log x− (1− x) log(1− x) is the binary entropy function.

For linear k = O(n), the lower bound 2nH(k/n)
√
n

provides a good estimation for
(
n
k

)
. For

sublinear k = o(n), the geometric mean value of the lower bound and the upper bound is a good
estimation for

(
n
k

)
i.e., log

(
n
k

)
≈ nH(kn)− logn

4 .
We provide a reasonable lower bound and upper bound for the binary entropy function H(·).

Lemma 2.24. For very small x, −x log x ≤ H(x) ≤ −x log x+ (1− x)x log e.

Proof. The lower bound is taking from the maximal part of the sum of the entropy function.
The upper bound is from the inequality 1− x ≤ e−x for very small x.

For very small x, the upper bound provides a good estimation for H(x).
With the estimation for H(x), we straightforwardly obtain the following estimation for

(
n
k

)
.

The estimation will be used when we prove the rejection sampling result.

Lemma 2.25. For k = o(n), log
(
n
k

)
≈ k log n

k + k(1− k
n) log e− logn

4 .

The proof is straightforward.

Proof. log
(
n
k

)
≈ nH(kn)− logn

4 ≈ k log n
k + k(1− k

n) log e− logn
4 .

3 Rejection Sampling and Binomial Distribution

In this section, we provide some results on rejection sampling to obtain an aligned binomial
distribution from shifted binomial distribution.

Definition 3.1 (Binomial Distribution). The binomial distribution over Fn2 with parameter p

is defined as Bnp (x) :=
(

n
wt(x)

)
pwt(x) (1− p)n−wt(x)

.

Throughout this paper, the parameter p is a constant. Given a vector v ∈ Fn2 , we define the
shifted binomial distribution with the vector v.

Definition 3.2 (Shifted Binomial Distribution). Given v ∈ Fn2 , the shifted binomial distribution
with parameter p is defined as Bnv,p(x) := Bnp (x−v), i.e., x−v admits the binomial distribution
Bnp .

In the definition, the density function of shifted binomial distribution relies on the Hamming
weight of x − v, which is not easy to determine. We provide the density function of shifted
binomial distribution only depending on the Hamming weight of x and the Hamming weight of
v.

Lemma 3.3. Given v ∈ Fn2 and the parameter p, assume wt(v) = s and wt(x) = t. For s ≤ t,
we have

Bnv,p(x) =

s∑
j=0

(
s

j

)(
n− s
t− j

)
ps+t−2j(1− p)n−s−t+2j .

The proof follows a directly counting argument.

14

Proof. Let y = x−v admit a binomial distribution Bnp . Suppose the intersection of the supports
of x and v is of size j. Then y is of weight s+ t− 2j. Thus the support of v contributes exactly
s − j ones to y, which happens with probability

(
s
s−j
)
ps−j(1 − p)j . Thus, the support of x

contributes exactly t − j ones to y, which happens with probability
(
n−s
t−j
)
pt−j(1 − p)n−s−t+j .

Thus, for a fixed value j, the probability to get x of weight t is(
s

s− j

)
ps−j(1− p)j

(
n− s
t− j

)
pt−j(1− p)n−s−t+j =

(
s

j

)(
n− s
t− j

)
ps+t−2j(1− p)n−s−t+2j .

Therefore, Bnv,p(x) =
∑s
j=0

(
s
j

)(
n−s
t−j
)
ps+t−2j(1− p)n−s−t+2j .

Next we define the truncated binomial distribution which is polynomially sampled.

Definition 3.4 (Truncated Binomial Distribution). The truncated binomial distribution over
Fn2 with parameters p, a, b for a ≤ wt(x) ≤ b is defined as

B̃na,b,p(x) :=
Bnp (x)∑

a≤wt(x)≤b Bnp (x)
.

From the definition of truncated binomial distribution, the density function is proportional
to the binomial distribution density function and the domain of truncated binomial distribution
is limited to a given range [a, b].

Remark 3.5. For the case that a and b are symmetrically centered around np, we denote the
density function of truncated binomial distribution as B̃nκ,p(x), where κ = b− np = np− a.

We notice that in the binomial distribution, shifted binomial distribution, and truncated
binomial distribution, the probability density function are only sensitive to the Hamming weight
of involved vectors as opponent to the vector itself. In what follows, we use Bnp (v) to denote
Bnp (v) with wt(v) = v.

In the following, we employ a series of lemmas to establish a rejection sampling lemma to tune
a shifted binomial distribution to a truncated binomial distribution for well-chosen parameters.

We first compute the ratio of the density function of binomial distribution over shifted
binomial distribution.

Lemma 3.6. For v ∈ Fn2 , assume wt(v) = s and s < t,

Bnp (t)

Bnv,p(t)
=

(
n
s

)∑s
j=0

(
t
j

)(
n−t
s−j
)
ps−2j(1− p)2j−s

.

Proof. We have

Bnp (t)

Bnv,p(t)
=

(
n
t

)
pt(1− p)n−t∑s

j=0

(
s
j

)(
n−s
t−j
)
ps+t−2j(1− p)n−s−t+2j

=
1∑s

j=0
(sj)(

n−s
t−j)

(nt)
ps−2j(1− p)2j−s

=
1∑s

j=0
(tj)(

n−t
s−j)

(ns)
ps−2j(1− p)2j−s

=

(
n
s

)∑s
j=0

(
t
j

)(
n−t
s−j
)
ps−2j(1− p)2j−s

,

where the first equality follows the density function of binomial distribution and shifted
binomial distribution, the third equality follows(
s
j

)(
n−s
t−j
)(

n
t

) =

s!
j!(s−j)!

(n−s)!
(t−j)!(n−s−t+j)!

n!
t!(n−t)!

=
s!(n− s)!

n!

t!

j!(t− j)!
(n− t)!

(s− j)!(n− s− t+ j)!
=

(
t
j

)(
n−t
s−j
)(

n
s

) ,

or the symmetry property of hypergeometric distribution if
(sj)(

n−s
t−j)

(nt)
is viewed as the density

function of hypergeometric distribution.

15

Remark 3.7. Writing the density function in this form is also beneficial for us to compute the
ratio of probabilities for concrete parameters in Section 6 as s is extremely small compared to n
and t.

Define f(n, t, s, p, j) :=
(
t
j

)(
n−t
s−j
)
ps−2j(1−p)2j−s. Assume f(n, t, s, p, j) achieves its maximum

value at some ` ∈ {0 . . . s}, i.e., maxsj=0 f(n, t, s, p, j) =
(
t
`

)(
n−t
s−`
)
ps−2`(1 − p)2`−s. Next we try

to find ` and present a good estimation for f(n, t, s, p, `). With the estimation for f(n, t, s, p, `),
we will prove a good estimation for

∑s
j=0 f(n, t, s, p, j).

Lemma 3.8. For t = pn + ∆ with ∆ = o(pn), s = o(n), f(n, t, s, p, j) achieves its maximum
value around s(1− p).

In particular,

f(n, t, s, p, ds(1− p)c) ≈ s log
t

ps
+ (s− s2(1− p)2

t
− s2p2

nt
− (t− pn)s

(1− p)n
) log e− log (t(n− t))

4
.

In the proof of the lemma, we first prove that the point ` is close to s(1−p) and then use the
approximation for binomial coefficient to obtain a close approximation for the maximum value.

Proof. A rough inspection indicates that the function f reaches its maximum value at some
midst value of {0 . . . s}. Next we try to find the value `. Consider

f(n, t, s, p, j + 1)

f(n, t, s, p, j)
=

(
t

j+1

)(
n−t
s−j−1

)
ps−2j−2(1− p)2j−s+2(

t
j

)(
n−t
s−j
)
ps−2j(1− p)2j−s

= (
1− p
p

)2 (t− j)(s− j)
(n− t− s+ j + 1)(j + 1)

.

Then the above expression can be simplified as

f(n, t, s, p, j + 1)

f(n, t, s, p, j)
=(

1− p
p

)2 (pn+ ∆− j)(s− j)
(n− pn−∆− s+ j + 1)(j + 1)

=
1 + ∆−j

pn

1− ∆+s−j−1
(1−p)n

(1− p)(s− j)
p(j + 1)

≈ e
∆−j
pn

e−
∆+s−j−1

(1−p)n

(1− p)(s− j)
p(j + 1)

= e
∆+ps−j−p
p(1−p)n

(1− p)(s− j)
p(j + 1)

≈ (1− p)(s− j)
p(j + 1)

(1)

where the first approximation follows as ∆−j is sublinear of pn, ∆+s−j−1 sublinear of (1−p)n
and 1±x ≈ e±x for very small x, and the second approximation follows the same reason. To find

the j that reaches the largest value of f(n, t, s, p, j), we let f(n,t,s,p,j+1)
f(n,t,s,p,j) ≈

(1−p)(s−j)
p(j+1) ≥ 1. Then

we obtain j < s(1− p)− p. It means for 0 ≤ j ≤ s(1− p)− p, f(n, t, s, p, j) is a monotonically
increasing function and for s(1− p) ≤ j ≤ s, f(n, t, s, p, j) a monotonically decreasing function.
Then f(n, t, s, p, j) achieves its maximum value around the point ` = ds(1− p)c. Next we use
the value for ` to estimate f(n, t, s, p, `).

16

Then

log f(n, t, s, p, `) ≈ log

(
t

s− ps

)(
n− t
ps

)
p2ps−s(1− p)s−2ps

≈(s− ps) log
t

s− ps
+ (s− ps)(1− s− ps

t
) log e− log t

4

+ ps log
n− t
ps

+ ps(1− ps

n− t
) log e− log (n− t)

4

+ (2ps− s) log p+ (s− 2ps) log(1− p) (2)

= log(
t

ps
)s(

p

1− p
)ps(

n− t
t

)ps + (s− s2(1− p)2

t
− s2p2

n− t
) log e− log (t(n− t))

4

= log(
t

ps
)s(

1− ∆
n−pn

1 + ∆
pn

)ps + (s− s2(1− p)2

t
− s2p2

n− t
) log e− log (t(n− t))

4

≈ log(
t

ps
)se(− ∆

(1−p)n
− ∆
pn)ps + (s− s2(1− p)2

t
− s2p2

n− t
) log e− log (t(n− t))

4
(3)

= log(
t

ps
)se−

∆s
(1−p)n + (s− s2(1− p)2

t
− s2p2

n− t
) log e− log (t(n− t))

4

=s log
t

ps
(s− s2(1− p)2

t
− s2p2

nt
− (t− pn)s

(1− p)n
) log e− log (t(n− t))

4
,

where Equation 2 follows Lemma 2.25 for the approximation of binomial coefficients and Equa-
tion 3 follows that ∆ is sublinear of np(1− p) and 1± x ≈ e±x for very small x.

Remark 3.9. In the proof of the above lemma, we use ∆ + s is sublinear of p(1− p)n.

In the process of searching for the value `, we find out that the value of the function
f(n, t, s, p, j) variates smoothly when j is extremely close to `. Combining with the above
estimation for f(n, t, s, p, ds(1− p)c), we explicitly approximate the value

∑s
j=0 f(n, t, s, p, j) in

the following lemma.

Lemma 3.10. Let t = pn+ ∆ with ∆ = o(pn) and s = o(n). For δ = o(p(1− p)s),
s∑
j=0

f(n, t, s, p, j) ≈ 2δf(n, t, s, p, ds(1− p)c).

In particular, taking δ =
√
p(1− p)s, then

s∑
j=0

f(n, t, s, p, j) ≈ 2
√
p(1− p)sf(n, t, s, p, ds(1− p)c).

We find the boundary point that the value of the f(n, t, s, p, j) sharply variates around
s(1− p) and use the smoothly variating function values to approximate

∑s
j=0 f(n, t, s, p, j).

Proof. Assume j = s− ps− δ. From the proof of Lemma 3.8, we have

f(j + 1)

f(j)
≈ s− j
j + 1

1− p
p

=
1 + δ

ps

1− δ
s−ps

≈ e
δ
ps+ δ−1

(1−p)s = e
δ−p

p(1−p)s ≈ 1,

where the approximation is from the assumption δ = o(p(1− p)s).
In particular, taking δ =

√
p(1− p)s, we can use 2δ number of f(n, t, s, p, d(1− p)sc) to

estimate
∑s
j=0 f(j). Thus,

∑s
j=0 f(j) ≈ 2

√
p(1− p)sf(n, t, s, p, d(1− p)sc).

17

With the estimation for
∑s
j=0 f(n, t, s, p, j) in hand, we present the ratio of density function

of binomial distribution over shifted binomial distribution.

Lemma 3.11. For t = pn+ ∆ with ∆ = o(pn), s = o(n), assume wt(v) = s. Then we have

log
Bnp (t)

Bnv,p(t)
≈ log

(
n

s

)
− log f((1− p)s)− log(2

√
p(1− p)s)

≈ log(e
s2

n
(1−2p)2

p(1−p)
−∆s

n
1

p(1−p)) + log(
n

s2p(1− p)
)1/4)− 1.

The proof follows the results of Lemma 3.8 and Lemma 3.10.

Proof.

log
Bnp (t)

Bnv,p(t)
≈ log

(
n

s

)
− log f((1− p)s)− log(2

√
p(1− p)s) (4)

≈ log (
n

s
)s + s(1− s

n
) log e− log n

4
− log(2

√
p(1− p)s)

− s log
t

ps
− (s− s2(1− p)2

t
− s2p2

n− t
− (t− pn)s

(1− p)n
) log e +

log (t(n− t))
4

(5)

= log(
np

t
)s +

(t− pn)s

(1− p)n
log e + (

s2(1− p)2

t
− s2

n
+
s2p2

n− t
) log e +

log(t(n− t)/n)

4
− log(2

√
p(1− p)s)

≈ − ∆s

p(1− p)n
log e +

s2

n
(
(1− 2p)2 + (2p−1)(2p2−2p+1)

p(1−p)
∆
n

p(1− p)
) log e + log(

n

p(1− p)s2
)1/4e

∆
4np(1−p) − 1

≈ − ∆s

p(1− p)n
log e +

s2

n

(1− 2p)2

p(1− p)
log e + log(

n

p(1− p)s2
)1/4 − 1

= log(e
s2

n
(1−2p)2

p(1−p)
−∆s

n
1

p(1−p)) + log(
n

s2p(1− p)
)1/4)− 1,

where Equation 4 follows Lemma 3.10 and Equation 5 follows Lemma 3.8.

Remark 3.12. • The result of the above lemma indicates that if s2 > n or s∆ > n, the
exponential part becomes the main term of the ratio. If s2 < n and s∆ < n, the polynomial
term O((ns2)1/4) becomes the main term of the ratio. To make the ratio being polynomial
on the input parameters, we will choose s and ∆ such that s2 < n and s∆ < n.

• Intuitively, the lemma shows that altering a vector of large expectation weight by a small
weight vector has no significant impact on the distribution of the large weight vector.

• From the view of the figure of probability density function, the above lemma demonstrates
that for s2 < n and s∆ < n, the binomial distribution and the shifted binomial distribution
have adequate overlap.

In our signature scheme, we employ the truncated binomial distribution. Thus we would like

to give an estimation for
B̃nκ,p(t)

Bnv,p(t) =
Bnp (t)

Bnv,p(t)
∑np+κ
j=np−κ (nj)pj(1−p)n−j . Before giving an approximation

to the ratio of the truncated binomial distribution over shifted binomial distribution, we provide
an estimation to the denominator of truncated binomial distribution i.e.,

∑np+κ
j=np−κ

(
n
j

)
pj(1 −

p)n−j for B̃nκ,p.

Lemma 3.13. For κ = o(np(1− p)),
∑pn+κ
j=pn−κ

(
n
j

)
pj(1− p)n−j ≈ 2κ√

n
.

Define gn,p(j) :=
(
n
j

)
pj(1− p)n−j . Similar to the proof of Lemma 3.8, we find the maximal

point of gn,p(j) and the boundary point that the value of the function gn,p(j) sharply variates
to provide an estimation to

∑
j gn,p(j).

18

Proof. Consider

gn,p(j + 1)

gn,p(j)
=

(
n
j+1

)
pj+1(1− p)n−j−1(
n
j

)
pj(1− p)

=
n− j
j + 1

p

1− p
.

Let
gn,p(j+1)
gn,p(j) > 1. Then we obtain j < np − 1 + p. It means for np − κ < j < np − 1 + p,

gn,p(j) is monotonically increasing whereas for np−1 +p < j < np+κ, gn,p(j) is monotonically
decreasing. Thus, gn,p(j) achieves its maximum value around the point np. We approximate
the value for gn,p(np). Then

gn,p(np) =

(
n

np

)
pnp(1− p)n−np ≈ 2nH(p)

√
n

2−nH(p) =
1√
n
.

Next we find the boundary point that gn,p(j) sharply varies. Assume j = np − ζ for ζ =
o(np(1− p)). Then

gn,p(j + 1)

gn,p(j)
=
n− pn+ ζ

np− ζ + 1

p

1− p
=

1 + ζ
n(1−p)

1− ζ−1
np

≈ e
ζ

n(1−p)
+ ζ−1

np ≈ 1,

where the approximation follows ζ = o(np(1 − p)). The result indicates that the value of the
function gn,p(j) smoothly varies in the range [np−κ, np+κ]. Thus, we use the value 2κgn,p(np)

to estimate
∑pn+κ
j=pn−κ

(
n
j

)
pj(1− p)n−j . Then, we obtain

pn+κ∑
j=pn−κ

(
n

j

)
pj(1− p)n−j ≈ 2κgn,p(np) ≈

2κ√
n
.

Combining Lemma 3.11 and Lemma 3.13 yields the main lemma for the ratio of probability
distributions of this section.

Lemma 3.14. For t ∈ [np − κ, np + κ], s = o(np(1 − p)), where κ = o(np(1 − p)), assume
wt(v) = s. Then we have

B̃nκ,p(t)
Bnv,p(t)

≈ e
s2

n
(1−2p)2

p(1−p)
− (t−pn)s

n
κ

(ns2p(1− p))1/4
.

The proof of the lemma is straightforward.

Proof. From the definition of truncated binomial distribution and Lemma 3.11, we have

B̃nκ,p(t)
Bnv,p(t)

=
Bnp (t)

Bnp (t)
∑pn+κ
j=pn−κ

(
n
j

)
pj(1− p)n−j

≈ e
s2

n
(1−2p)2

p(1−p)
− (t−pn)s

n
κ

(ns2p(1− p))1/4
.

In our signature scheme, the ratio of the density function of truncated binomial distribution
over shifted binomial distribution is referred as rejection rate. Roughly speaking, the conclusion
is that larger n and larger p lead to a smaller rejection rate.

Remark 3.15. From the result of the above lemma, to make the rejection rate in an acceptable
range, the value of n cannot be too small. Theoretically speaking, choosing s2 < n and κs < n
leads to a reasonably small rejection rate. However, in our signature scheme, the public key
size and the signature size are decided directly by the magnitude of n, hence we prefer to choose

19

a smaller n. In practice, to achieve some claimed security level, the size of s is almost lower
bounded by a fixed value and setting n > s2 makes n too large. Thus, we have only the freedom
to alter the magnitude of n. In our instantiation of signature scheme, we choose to decrease the
magnitude of n to reduce the public key size and the signature size at the cost of amplifying the
rejection rate. As a matter of fact, we choose n = sβ for some β ∈ [1.6, 2] to obtain a smaller
public key size and an acceptable rejection rate. Furthermore, the value of κ is limited to a small
value.

In order to tune a real shifted binomial distribution to the desired truncated binomial dis-
tribution, the rejection sampling algorithm employs a rejection vector r to finish the task.

Lemma 3.16 (Rejection Sampling Lemma for Binary Linear Codes). Let V be a subset of Fn2
and h : V → R be a probability distribution. Let p be a constant as the binomial distribution
parameter and κ be range parameter for the truncated binomial distribution. Define the rejection
vector r as

r(t) :=
1

M

B̃nκ,p(t)
Bnv,p(t)

for t ∈ [np− κ, np+ κ] where M = max
t∈[np−κ,np+κ]

B̃nκ,p(t)
Bnv,p(t)

.

Then the following two output distributions are identical.

1. Sample v from the distribution h, sample z from the distribution Bnv,p, and output (z,v)
with probability r(wt(z)).

2. Sample v from the distribution h, sample z from the distribution B̃nκ,p, and output (z,v)

with probability 1
M .

The correctness of the rejection sampling lemma follows the general rejection sampling re-
sult of Lemma 2.19. The efficiency of the rejection sampling lemma for binary linear codes
follows Lemma 3.16. In particular, for wt(v)2 < n and wt(v)κ < n, the value M is about
O(κ

(ns2p(1−p))1/4).

In our signature scheme, we use the above rejection sampling lemma for binary linear codes
to decouple the dependence of the signature on the secret key part to prove the signature leaks
nothing on the secret key.

We hope the variants of binomial distribution introduced in this section have other applica-
tion to coding theory for instance the complexity of coding problems as the Gaussian distribution
for lattices [AR05].

4 Signature Scheme

In this section, we show our signature scheme from hard coding problems. The security of the
signature scheme is from the hardness of the syndrome decoding problem. Let λ be the security
parameter.

The signature scheme is presented in Algorithm 1, Algorithm 2 and Algorithm 3.

Algorithm 1 KeyGen

Require: Parameters k, n, `, σ.

Ensure: (H,T) ∈ F(n−k)×n
2 × Fn×`2 , S ∈ Fn×`2

1: Uniformly sample H from F(n−k)×n
2 .

2: Sample the matrix S ∈ Fn×`2 such that every entry of S is sampled from
the distribution Bσ.

3: Let T = HS ∈ F(n−k)×`
2 .

4: Output (H,T) as the public key pair and S as the secret key.

20

Algorithm 2 Signing

Require: The public key pair (H,T), the secret key S, the message µ, the
parameter τ < 1/2, the hash function H and the range parameter ξ.

Ensure: A signature (z, c) of the message µ.
1: Sample e from Bnτ . Let y = He.
2: c = H(y, µ).
3: z = Sc + e.
4: If wt(z) /∈ [nτ − ξ, nτ + ξ], then restart.

5: Output (z, c) with probability
B̃ξ,τ (z)

MBSc,τ (z) , where M =

maxj∈[nτ−ξ,nτ+ξ]
B̃ξ,τ (j)

MBSc,τ (j) .

Algorithm 3 Verifying

Require: Public key pair (H,T), the message µ, the signature (z, c) and the
range parameter ξ.

Ensure: Accept or Reject
1: If wt(z) /∈ [nτ − ξ, nτ + ξ], then output Reject.
2: Output Accept if H(Hz− Tc, µ) = c, otherwise Reject.

The KeyGen algorithm mainly relies on the distribution Bσ. We will choose parameters
(n, k, σ) such that given (H,T), finding S is 2λ-hard. More conditions on the parameter σ and
n will be given later. Each entry of the secret key S is independently sampled from Bσ. Then
each column of S is viewed as independently drawn from Bnσ and each row of S is viewed as
independently drawn from Blσ as well. Via appropriately choosing the parameter σ, both rows
and columns of S are of small weight.

According to the assumption of syndrome decoding problem, the public key pair (H,T) is
computational indistinguishable from uniform distribution.

The hash function H in the signing algorithm plays the role of random oracle. The output
of H is limited to S`w such that

(
`
w

)
≥ 2λ. We provide an implementation of the hash function

H in Section 6.4.
The signing algorithm first samples a vector e from the binomial distribution Bnτ . Here the

parameter τ is a constant and far greater than the secret key distribution parameter σ for two
reasons. First larger τ makes that e aptly hides Sc. Second larger τ makes the rejection rate for
a predefined weight range in the rejection sampling step in an acceptable range. We always take
τ as a constant such that given (H,He), recovering e remains hard. From the complexity of
information set decoding algorithm, if the work factor for recovering one column of S from (H,T)
is beyond the security level, the work factor for recovering e from (H,He) is beyond the security
level since σ < τ . From the Hoeffding bound, we have nτ − γ ≤ wt(e) ≤ nτ + γ except with

negligible probability 2−λ, where γ =
√

λn
2 log e . Thus, we choose τ such that nτ +γ ≤ (n−k)/2.

Additionally, we choose τ such that h(τ) + k > n. According to the leftover hash lemma, the
statistical distance between (H,He) and the corresponding uniform distribution is 1

2(nH(τ)+k−n)/2 .
This choice of τ results in that the weight of e and the signature vector is above the GV bound,
which turns the rejection sampling operation to be meaningful.

There are two rejections in the signing algorithm. The first rejection happens when wt(z) is
outside the range [nτ − ξ, nτ + ξ]. To bound the rejection probability, we need to compute the
probability that wt(z) /∈ [nτ−ξ, nτ+ξ]. The second rejection happens in the rejection sampling
procedure. From the rejection sampling lemma, we know it outputs something with probability

21

1
M .

The signing algorithm responses with the vector z = Sc+e. Then z is distributed according
to the distribution BnSc,τ . Next, the signing algorithm uses rejection sampling to adjust output

distribution such that the output distribution is identical to B̃nξ,τ . The desired distribution B̃nξ,τ
enables the signature decoupled from Sc. Thus, the output signature will not reveal information
on the secret key S.

If the signing algorithm does not output the signature, then the signing algorithm repeats
until it outputs a valid signature. Next we estimate the probability that the signing algorithm
outputs a signature of each run. We first bound the probability that wt(z) belongs to the range
[nτ − ξ, nτ + ξ]. From the distribution of the secret key S, the challenge vector c and the
pilling-up lemma, the vector Sc admits the distribution Bnη , where η = 1

2 (1− (1− 2σ)w) ≈ σw
for very small σ ·w. Then Sc+e admits the distribution Bnρ with ρ = η(1− τ) + (1−η)τ . Thus,

Pr [wt(z) > nτ + ξ] = Pr [wt(z)− nρ ≥ nτ + ξ − nρ] ≤ e−2(nτ+ξ−nρ)2/n

and
Pr [wt(z) < nτ − ξ] = Pr [wt(z)− nρ ≤ nτ − ξ − nρ] ≤ e−2(nτ−ξ−nρ)2/n.

Then Pr [wt(z) > nτ + ξ or wt(z) < nτ − ξ] ≤ e−2(nτ+ξ−nρ)2/n+e−2(nτ−ξ−nρ)2/n ≤ 2e−2(nτ+ξ−nρ)2/n

as ρ > τ . Next, from the rejection sampling lemma, the last step outputs something with
probability 1

M . Thus, the signing algorithm outputs something with probability at least (1 −
2e−2(nτ+ξ−nρ)2/n)/M .

The parameter ξ for the signature is chosen such that the whole rejection rate of the signing
algorithm as small as possible. Besides, the [nτ−ξ, nτ+ξ] lies in the hard range of the syndrome
decoding problem. According to the rejection sampling lemma, to make the rejection rate in
an acceptable range, we choose n such that the magnitude of n is greater than the square of
wt(Sc) and greater than wt(Sc) · ξ.

We now explain how to compute the rejection vector. Note that in the rejection sampling
lemma, the rejection vector is only related to wt(Sc),wt(z) and the parameter τ . Thus, the
rejection vector is independent from the secret key, the challenge vector and the signature vector,
and can be precomputed. Given (n, τ,wt(Sc), ξ), we follow Lemma to compute the rejection
vector 3.6.

The output signature for a given message µ is the vector pair (z, c). As the signature is
transformed from the sigma protocol via Fiat-Shamir transformation, thus we refer to the vector
y, c, z as the commitment vector, the challenge vector and the response vector, respectively.
Sometimes, we refer to the vector z as the signature vector. We remark that the vector c can
be compressed as c is a sparse vector.

The verifying algorithm verifies that the weight of the response vector z belongs to the range
[nτ − ξ, nτ + ξ] and c = H(Hz − Tc, µ) holds as Hz = H(Sc + e) = Tc + He. Here the
verifier is unable to straightforwardly verify that the signature admits the truncated binomial
distribution. The fact that the signature admits truncated binomial distribution is used to argue
the signature is decoupled from the secret key part.

Remark 4.1. Our signature scheme is transformed from a zero-knowledge proof. We expect
the underlying zero-knowledge protocol of our signature scheme has other applications to LPN
or code based cryptography.

5 Security Proof

In this section, we provide a security proof to our signature scheme in the random oracle model.
We prove that if there exists an adversary breaks the existenial unforgeability game, then the
forger can be used to solve the DOOM problem.

22

If we set the parameter τ small enough, then the corresponding syndrome function is collision
resistant. For example, if He1 = He2 with e1 ≤ nτ + ξ and e2 ≤ nτ + ξ, then H(e1 − e2) = 0
and wt(e1 − e2) ≤ 2nτ + 2ξ. If we choose the parameter such that 2nτ + 2ξ < (n − k)/2, the
syndrome function is collision resistant. In our parameter setting, to take the smallest possible
parameters for code length and the rejection rate, we will not choose τ such that the syndrome
function is collision resistant. Here we provide a security proof of the scheme based on the
DOOM problem. The DOOM problem has been studied many years, which was proposed by
Johansson and Jönsson in [JJ02]. Moreover, the security proof of the WAVE [DST19] signature
scheme builds on the DOOM problem as well. For completeness, we provide a security proof
that the strong EUF-CMA security of the signature scheme is reduced to the codeword finding
problem for relaxed parameters in Appendix A.

Theorem 5.1. Assume that there is a forger that breaks the EUF-CMA game. Then there
exists an algorithm that solves the DOOM problem.

In particular, if the forger F succeeds with probability δ, assuming the forger F makes at
most s signature query and h hash query, there exists an algorithm A that solves the DOOM
instance with h syndromes with probability at least δ

n1/4 − 2−O(n).

We prove the security via a series of hybrid games. For the forger F , there are two kinds of
queries, including the signing query and the hash query. Via programming the random oracle,
the forger is forced to produce a signature corresponding to one of the syndromes of DOOM
instance and thus solve the DOOM problem.

Proof. Given an instance (H, s1, . . . , sh) of DOOM, one samples a secret key S first and then
publish (H,T = HS) as the public key.

Game 1 is the real signature scheme. Assume H is the real random oracle function and Hash
is an encapsulation of H. We explicitly show the Game 1 here.

Sign(sk, µ, τ, ξ)

1. Sample e from Bnτ .

2. c = Hash(He, µ).

3. Let z = Sc + e.

4. If wt(z) /∈ [nτ − ξ, nτ + ξ], then
restart.

5. With probability
B̃ξ,τ (z)

MBSc,τ (z)

6. Output (z, c).

Hash(y, µ)

1. return H(y, µ).

Figure 1: Game 1

In Game 2, we use a table to store all the queries. The table is a global variable such that
both Sign and Hash have access to it. The views between Game 1 and Game 2 for the forger F
keep unchanged. Thus, the Game 2 will not alter the forging advantage of F .

In Game 3, the Sign procedure is changed to program the random oracle and the Hash
procedure is unchanged. In Game 3, the Sign procedure directly program the random oracle
without checking whether the value (He, µ) is set or not. From the assumption of F , we know
there are at most h + s queries to the random oracle H. We claim that for a programming
the oracle query, it collides with one previous query with probability 2−O(n). As there are at
most (h + s) values of the random oracle been set, by union bound, the programming oracle

23

Sign(sk, µ, τ, ξ)

1. Sample e from Bnτ .

2. c = Hash(He, µ).

3. Let z = Sc + e.

4. If wt(z) 6∈ [nτ − ξ, nτ + ξ], then
restart.

5. Store (He, µ, c) to the table.

6. With probability
B̃ξ,τ (z)

MBSc,τ (z)

7. Output (z, c).

Hash(y, µ)

1. If table contains (y, µ, c) then

2. return c

3. c = H(y, µ) and store (y, µ, c) to
the table.

4. return c.

Figure 2: Game 2

Sign(sk, µ, τ, ξ)

1. Sample e from Bnτ .

2. Sample c ∈ Snω .

3. Let z = Sc + e.

4. If wt(z) /∈ [nτ − ξ, nτ + ξ], then
restart.

5. With probability
B̃ξ,τ (z)

MBSc,τ (z)

6. Output (z, c).

7. Program H(He, µ) = c.

8. Store (He, µ, c) to the table.

Hash(y, µ)

1. If table contains (y, µ, c) then

2. return c

3. c = H(y, µ) and store (y, µ, c) to
the table.

4. return c.

Figure 3: Game 3

24

query collides with one of the previous queries with probability at most (h + s)2−O(n). Thus,
one of the signing programming oracle collides with previous queries with probability at most
s(h + s)2−O(n). If there are no collisions, Game 3 provides the same view as Game 2 to the
forger F . Thus, the statistical distance between the views of Game 2 and Game 3 is at most
s(h+ s)2−O(n).

Now we prove the claim. If the programming oracle query collides with one previous query,
then He equals to the previous query value. According to our parameter setting that H(τ) +
k/n−1 is a positive constant, He is statistical close to the uniform distribution. Concretely, from
the leftover hash lemma, the statistical distance is 2−n(H(τ)+k−n)/2 = 2−O(n). For a uniformly
sampled vector y ∈ Fn−k2 , the probability that y equals to a given value is 2−(n−k) = 2−O(n) as
k is linear of n. Thus, the programming random oracle query collides with a given query with
probability at most 2−n(H(τ)+k−n)/2 + 2−(n−k) = 2−O(n).

Sign(sk, µ, τ, ξ)

1. Sample c ∈ Snω .

2. Sample z from Bnτ .

3. If wt(z) /∈ [nτ − ξ, nτ + ξ], then
restart.

4. With probability 1
M

5. Output (z, c).

6. Program H(Hz− Tc, µ) = c.

7. Store (Hz−Tc, µ, c) to the ta-
ble.

Hash(y, µ)

1. If table contains (y, µ, c) then

2. return c

3. c = H(y, µ) and store (y, µ, c) to
the table.

4. return c.

Figure 4: Game 4

In Game 4, sk is not employed in the Sign procedure. The views to the forger F between
Game 3 and Game 4 are identical by the rejection sampling lemma for binary linear codes, i.e.,
Lemma 3.16.

In Game 5, the hash query is replaced by the DOOM instance. According to the output
distribution of H, the distribution for H(y, µ) and H(si, µ) are same. Thus, the forger is unable
to tell apart Game 4 from Game 5. The replacing in Game 5 forces the forger to provide a clue
to a solution of the DOOM problem.

Assume the forger F forges a signature (z, c) for a message µ. Then we haveH(Hz−Tc, µ) =
c. If the Hash function is never queried, then F can forge such a signature with probability
1/|Snw|. According to the parameter setting, then the probability is 2−O(λ).

Note that in the EUF-CMA model, if the forged signature for a message µ is output, then the
Sign query is never requested for µ. Thus, with probability 1−1/|Snw|, the vector c must be one of
the query result from Hash. It means there exists si and µ′ such that H(Hz−Tc, µ) = H(si, µ

′).
If µ 6= µ′ or Hz− Tc 6= si, then the forger outputs a preimage of c. It happens with negligible
probability. Thus with overwhelming probability µ = µ′ and Hz−Tc = si. It is H(z−Sc) = si.
Thus, z − Sc is a preimage of si. Next we provide of bound to the weight of z − Sc. From
the distribution of S and pilling-up lemma, we have the vector Sc admits the distribution Bnη ,

where η = 1
2 (1− (1− 2σ)w) ≈ σw for very small σw. The probability that adding Sc to z does

25

Sign(sk, µ, τ, ξ)

1. Sample c ∈ Snω .

2. Sample z from Bnτ .

3. If wt(z) /∈ [nτ − ξ, nτ + ξ], then
restart.

4. With probability 1
M

5. Output (z, c).

6. Program H(Hz− Tc, µ) = c.

7. Store (Hz−Tc, µ, c) to the ta-
ble.

Hash(y, µ)

1. If table contains (y, µ, c) then

2. return c

3. Choose the first unused si and com-
pute c = H(si, µ).

4. Store (y, µ, c) to the table.

5. Return c.

Figure 5: Game 5

not increase the weight of z is∑
wt(Sc)/2≤j≤wt(Sc)

(
wt(z)

j

)(
n− wt(z)

wt(Sc)− j

)
ηwt(Sc)(1−η)n−wt(Sc) ≤

(
n

wt(Sc)

)
ηwt(Sc)(1−η)n−wt(Sc).

From the Hoeffding bound, we have that wt(Sc) is around nη. Thus, the probability for weight
value nη becomes

(
n

wt(Sc)

)
ηwt(Sc)(1−η)n−wt(Sc) =

(
n
nη

)
ηnη(1−η)n−nη ≈ 1

n1/4 . For the case that

wt(Sc) 6= nη, the probability is close to 1
n1/4 . Thus, we use 1

n1/4 to approximate the probability
that wt(z− Sc) is below nτ + ξ.

From the series of games, if F breaks the Game 1 with probability δ, then it breaks the
Game 6 with probability at least δ− 2−O(n). Thus, it can be used to solve the DOOM problem
with probability at least δ

n1/4 − 2−O(n).
This completes the proof.

6 Instantiation and Parameters

In this section, we instantiate the signature scheme based on the Ring-LPN problem or the
quasi-cyclic syndrome decoding problem. We first explain why we do not directly instantiate
our scheme based on the plain LPN problem or the syndrome decoding problem. The major
reason is the huge public key size. Suppose we expect to achieve λ-bit security level. From the
rejection sampling lemma, we need to set the code length at least n ≥ λ2 and the weight of z
to be the magnitude of λ2. To make the forging problem in the hard range, n − k should be
at least twice as the weight of z. Then the magnitude of the public key size is at least λ4 bits.
For instance λ = 128, the public key size is at least 228 bits. Thus, we choose the quasi-cyclic
structure to reduce the public key size without compromising the security level too much.

Notice that instantiating the signature scheme with quasi-cyclic codes only reduces the public
key size to an acceptable scale and has no significant effect on the signature size.

We first explicitly show the quasi-cyclic key generation, signing and the verifying algorithms.
Next we present the points that we considered for the quasi-cyclic instantiation. The quasi-cyclic
instantiation works over the ring R := F2[x]/(xn − 1). In what follows, we denote n as the ring
extension degree over F2 and dn as the code length for the quasi-cyclic code with index d. We

26

list two key generation algorithms for different code rate as the underlying assumptions are
different for code rate 1/2 and 1/d for d > 2.

Algorithm 4 KeyGen for Rate 1/2
Quasi-cyclic Code

Require: Parameters n, u.
Ensure: h ∈ Fn2 or R.
1: Uniformly sample s1, s2 from Snu .

2: Let h(x) = s2(x)
s1(x)

∈ R.
3: Output h as the public key and

(s1, s2) as the secret key pair.

Algorithm 5 KeyGen for Rate 1/d
Quasi-cyclic Code

Require: Parameters n, u, d.
Ensure: h ∈ Rd−1, t ∈ Rd−1
1: Uniformly sample h1, . . . ,hd−1 from
R.

2: Uniformly sample s1, . . . , sd from Snu .

3: Let tj = hjsj+sd for j ∈ {1 . . . d−1}.

4: Let h := (h1 . . .hd−1), t :=
(t1 . . . td−1) and s := (s1 . . . sd).

5: Output (h, t) as the public key pair
and s as the secret key.

Algorithm 6 Quasi-cyclic Signing

Require: The public key pair (h, t), the secret key s, the message µ, the parameter
τ < 1/2, the hash function H and the range parameter ξ.

Ensure: A signature (z, c) for the message µ.
1: Sample ej from Bnτ for j ∈ {1 . . . d}. Let e := (e1 . . . ed).
2: Compute yj = hjej + ed for j ∈ {1 . . . d− 1}. Let y := (y1 . . .yd−1).
3: Let c = H(y, µ).
4: Compute z = s · c + e.
5: If wt(z) 6∈ [dnτ − ξ, dnτ + ξ], then restart.

6: Output (z, c) with probability
B̃ξ,τ (z)

MBs·c,τ (z) , where M =

maxj∈[dnτ−ξ,dnτ+ξ]
B̃ξ,τ (j)
Bs·c,τ (j) .

Algorithm 7 Quasi-cyclic Verifying

Require: Public key pair (h, t), the message µ, the signature (z, c) and the range
parameter ξ.

Ensure: Accept or Reject
1: If wt(z) 6∈ [dnτ − ξ, dnτ + ξ], then output Reject.
2: Output Accept if H(

∑d−1
i=1 (hizi − bic + s), µ) = c, otherwise Reject.

6.1 The Key Generation Algorithm

There are two key generation procedures for code rate 1/2 and 1/d, respectively. For code rate
1/2, we use the assumption h = s1

s2
in key generation to reduce the public key size by half. The

assumption is also used in BIKE. For code rate 1/d, we use the syndrome decoding problem

27

for quasi-cyclic code to produce the public key. The quasi-cyclic syndrome decoding problem is
also used in HQC.

Suppose we want to achieve the security level λ. To make it easy to estimate the security
level of public key, we directly sample the secret key from Sdndu rather than Bdnu/n, where u is

some predefined weight. If sk is sampled from Bdnu/n, then we need to set a little larger u to keep

the target security level as the weight of sk lies in some range. If sk is sampled from Sdndu and
the code rate is fixed, we can directly estimate the attack complexity via the CaWoF library
[Tor17, TS16] as du is sublinear of dn.

As pointed out in Section 2.3, for sublinear error weight ω, the work factor of information set
decoding algorithm is 2cω(1+o(1)), where r is the code rate and c = − log(1− r). According to
Section 2.2, for codeword finding problem, the quasi-cyclic structure provides a speedup factor
of n and for syndrome decoding problem the speedup factor is

√
n. Thus, for code rate 1/2, we

choose 2u− log n > λ. For code rate 1/d, we choose du log d
d−1 − log

√
n > λ.

6.2 The Ring R
According to Remark 2.16(ii) , we choose a prime n such that (xn − 1)/(x − 1) ∈ F2[x] is
irreducible. The polynomial inversion is involved in the Algorithm 4. Drucker et al. [DGK20]
proposed an algorithm to combine the Itoh-Tsuji algorithm to perform polynomial inversion
over the ring F2[x]/((x− 1)P), where P = (xn− 1)/(x− 1) ∈ F2[x] is an irreducible polynomial.
To make the inversion algorithm more efficient, Drucker et al. recommends choosing n such
that the binary representation of n− 2 is of small Hamming weight.

6.3 Signing Algorithm

6.3.1 Parameters in Signing Algorithm

The parameter τ is a constant only associated to the code rate r. The parameter τ is chosen a
little smaller than (1− r)/2 to make the syndrome decoding problem for the commitment and
for the signature remains hard. The parameter ξ is chosen to achieve the smallest total rejection
rate and [dnτ − ξ, dnτ + ξ] lies in the hard range of the syndrome decoding problem. According
to the rejection sampling lemma, the parameter ξ is chosen such that ξwt(sc) ≤ dn.

Remark 6.1. If we choose a smaller code rate, we can obtain a larger value for τ . Thus, we
can choose a smaller n to reduce the public key size and signature size without compromising
the rejection rate. However for a smaller rate r, the security of the public key is compromised.
We need to increase the weight of the secret key to keep the security level. To maintain the
acceptable rejection rate, the code length needs to be increased. Therefore, we need to find a
tradeoff between the code rate r and the code length. A rough inspection indicates that smaller
code rate will not efficiently reduce the code length, whereas a smaller code rate r makes the ring
degree n being small, which makes the multiplication over the ring more efficient.

6.3.2 Multiplication in Signing Algorithm

There are two multiplication operations in the signing algorithm. The first multiplication is
to compute the commitment. The second multiplication is to produce the candidate signature
vector z = sc+e. Because c is sparse, the multiplication sc can be optimized to compute a small
number of sum of quasi-cyclic rotations of s since sc =

∑
i∈Supp(c) sxi. Thus the sparse vector

multiplication over R is converted to wt(c) additions over R. For the commitment, although
the weight of wt(e) is small, it is still not a sparse vector. The multiplication is the most time-
consuming operation in the signing algorithm. There are two offline methods to optimize the
multiplication operation. One method is to sample a large number e, precompute y = he and

28

store the pair (e,y) to a local table. When signing a message, the signing algorithm directly
picks an unused (e,y) from the local table and the signing algorithm takes almost constant time
to finish the expensive multiplication. The main drawback of this method is the uncontrollable
large table size. Once there is no unused pair in the table, the signing algorithm needs to run the
offline algorithm to update the local table. An alternative method is built upon the assumption
that there are at most 2λ messages to be signed by the given secret key. The method first chooses
parameter (`, ψ) such that

(
`
`/2

)
≥ 2λ and 1

2 (1 − (1 − ψ)`/2) = τ . Next the method samples `

number of e from the distribution Bdnψ , computes the corresponding syndrome y = he and store
the pair (e,y) to a local table. The signing algorithm each time randomly picks `/2 pairs (e,y)
from the local table and sums up the `/2 entries from the table to obtain a fresh (e′,y′) pair.
The fresh vector e′ admits the distribution Bdnτ from the parameter setting. The correctness
of the fresh (e′,y′) pair follows the homomorphic property of the syndrome function for linear
codes. The advantage of this method is that under a reasonable assumption, the storage cost
for the precomputation is fixed and the inefficient polynomial multiplication is converted to `/2
number of additions of entries of the local table. Additionally, in the precomputation procedure,
each vector e is sampled from Bdnψ and thus sparse. Hence the sparse offline multiplication can
be optimized to compute the sum of quasi-cyclic rotations of the public key.

6.4 Hash Function

Assume the weight of the output of the hash function is w. To make it hard to forge a preimage
for the hash function, we choose w satisfying

(
n
w

)
≥ 2λ. For large n, w is very small and thus c

is sparse. As sk is sampled from Sdndu , then the distribution of sc is not easy to describe.
There are two possible instantiations for the hash function H. One method is to map the

message µ and the vector y to a number of less than λ bits via a cryptographic hash function
like SHA-512, and then convert the number to a binary vector with length n and weight w via
a bijection. This method is very inefficient for large n. An alternative method is to use the
cryptographic hash function to map the message µ and the vector y to 2w numbers, where
each number is less than n and each number specifies a position of the support of the challenge
vector. Mapping 2w numbers to a weight w challenge vector works as follows. If the current
number is already set in the challenge vector, then it is omitted until the vector achieves the
weight w. With non-negligible probability, the 2w numbers specify at least w distinct positions
of the challenge vector. Such a method can be found in [DDLL13].

6.5 Rejection Vector and Rejection Rate

The rejection vector is used in the rejection sampling step to decide the probability of outputting
a candidate signature (z, c). Given the parameter (n, τ, ξ,wt(sc)), the rejection vector can be
precomputed as it is independent from the vectors. For concrete parameters, we follow Lemma
3.6 to compute the rejection vector as wt(sc) is sublinear of code length. From the rejection
sampling lemma for binary linear codes, i.e., Lemma 3.16, we know the rejection sampling step
outputs something with expected probability 1

M .
In fact, there are two rejections in the signing algorithm. The first rejection happens when

the weight of z does not belong to [dnτ − ξ, dnτ + ξ]. The second rejection happens in the
rejection sampling step. To compute the rejection rate, we need to compute the probability of
wt(z) ∈ [dnτ − ξ, dnτ + ξ]. Before computing the weight distribution of z, we need to estimate
wt(sc), which is also related to the rejection vector.

It is easy to obtain wt(sc) ≤ wt(s)wt(c). From the quasi-cyclic structure, the vector sc
can be viewed as the sum of wt(c) vectors, where each is of weight wt(c). Thus wt(sc) is
bounded by wt(s)wt(c). Next we argue that wt(sc) = wt(s)wt(c) holds with high probability.
From the rejection sampling lemma, we need to set wt(sc) to be sublinear of the code length.

29

Thus, s and c are both extremely sparse vector. Consider the computation sc =
∑
i∈Supp(c) sxi.

The vector sxi can be viewed as the i-th quasi-cyclic rotation of s. Because s is very sparse,
the support of sxi and sxj for distinct i, j has no intersection with high probability. Thus,
wt(sc) = wt(s)wt(c) holds with high probability. In the precomputation of the rejection vector,
we also use the result wt(sc) = wt(s)wt(c). Next we compute the probability that wt(sc+e) = t
for a given t ∈ [dnτ − ξ, dnτ + ξ]. Assume wt(sc) = β. Following the proof of Lemma 3.3, we
have

Pr[wt(z) = t] =

β∑
i=0

(
β

i

)(
dn− β
t− β + i

)
τ t−β+2i(1− τ)dn−t+β−2i.

The total probability that the signing algorithm outputs something is
∑dnτ+ξ
t=dnτ−ξ Pr[wt(z) =

t]r(t), where r is the rejection vector for the rejection sampling step.

6.6 The Verifying Algorithm

In the verifying step, the multiplication hz is performed at great expense. It looks like the great
cost is inevitable. The hash function evaluation is very efficient according to Section 6.4. We
expect future work to improve our scheme to reduce the code length to make the verifying step
more efficient.

6.7 Parameters

We propose parameters for the quasi-cyclic instantiation for classic 80-bit and 128-bit security
level. For the given parameters, the public key is generated according to Algorithm 4 and thus
the code rate is 1/2. The public key size, signature size and acceptance rate are listed as well.

λ n u w τ ξ wt(sc) pk size signature size acceptance rate
80 66467 49 6 0.23925 70 588 8.12kB 16.24 kB 0.020537
128 248579 75 8 0.24305 135 1200 30.35kB 60.71 kB 0.017391

Recall that in our instantiation the code length, secret key weight and the signature weight
range are 2n,2u and [2nτ − ξ, 2nτ + ξ] respectively.

Note that in the given parameters, the code length is not chosen strictly greater than the
square of wt(sc). To achieve a smaller public key size and signature size, we decrease the code
length at the cost of increasing the rejection rate.

A proof of concept of the scheme is implemented in [LXY20].

6.8 Security Issues

For code rate 1/2, the decisional 2-QCCFP assumption is involved in the key generation pro-
cedure. The same assumption is used in the key generation algorithm of the NIST Round 3
candidate BIKE [ABB+18]. In a different variant of the our signature scheme, the 2-QCSDP
assumption is involved in the key generation procedure. The same assumption is used in the
key generation of the NIST Round 3 candidate HQC [MAB+19].

In our instantiation, if the key generation step is secure, the commitment step and the
signature step are both secure. Because the weight of e and z are far greater than the weight
of the secret key, the work factor for forging a signature for a given syndrome is beyond the
security level.

30

7 Security Discussion

Our signature scheme is an adaption of the Schnorr-Lyubabshevsky framework for the random
linear Hamming metric codes. Adaption of the same framework in coding problem is not com-
pletely new. There exist several unsuccessful attempts in literature. We individually compare
our scheme with the existing schemes and show the essential difference between our scheme
and the unsuccessful attempts, hence strengthen the confidence to the security of our signature
scheme. We will review the unsuccessful attempts and the corresponding attacks. Next we will
consider the consequences when the attacks are applied to our scheme. We will explain the
reasons that our scheme does not suffer from existing attacks in detail.

7.1 RaCoSS Scheme

The first attempt is the scheme Random Code-based Signature Scheme(RaCoSS) [FRX+17],
which was submitted to NIST Round 1. The scheme is almost as same as the matrix version
of our scheme in Section 4. The main difference between RaCoSS and our scheme lies in the
parameter selection and the rejection sampling step. In RaCoSS, the secret key is also sampled
from a binomial distribution with small parameters and the commitment secret vector is sampled
from a binomial distribution as well. The challenger vector is the output of a cryptographic hash
function with small fixed Hamming weight. However, the Hamming weight of the output of the
hash function is too small, which makes the number of possible output vectors less than the
claimed security level. An adversary can directly try to find a preimage to the hash function to
attack the scheme. Such an attack was formally formed in [BHLP17]. One can readily increase
the Hamming weight of the output vector of the hash function to avoid the attack. In our
scheme, the number of possible challenger vectors is beyond the security level.

The main problem of the RaCoSS scheme is that the verifying condition of the weight of the
signature vector is too large. The weight range of the verifying condition intersects with the
easy range of the syndrome decoding problem. Thus, an adversary can directly forge a valid

signature for any predefined syndrome. Recall that for a parity check matrix H ∈ F(n−k)×n
2 ,

the easy range for the syndrome decoding problem is around [n−k2 , n+k
2]. An efficient attack

employing this property was first proposed by Bernstein, Hulsing, Lange and Panny [BHLP17]
after two days the scheme RaCoSS was submitted to NIST. To form an attack, an adversary
firstly samples a valid vector e and computes y = He, c = H(y, µ) as an honest signer does.
Next the adversary solves the syndrome decoding problem Hz = Tc + y to find z with the
weight of z in the acceptable easy range. Thus, (z, c) is a valid signature for the message µ. As
the acceptable weight range intersects with the easy range of the syndrome decoding problem,
the adversary can efficiently forge a valid signature vector.

Later, Roy et al. [RMF+18] presented a revised version of RaCoSS with the name RaCoSS-R.
In RaCoSS-R, the weight of the signature vector is limited to a different range. Unfortunately, in
RaCoSS-R, the acceptable range of the signature vector still has overlap with the easy range of
the syndrome decoding problem. Thus, an adversary can still efficiently forge a valid signature.
Xagawa [Xag18] described such an attack to RaCoSS-R.

In our scheme, the weight of the signature vector z is strictly less than (n − k)/2. Thus,
our scheme does not suffer from an easy range syndrome decoding attack. Moreover, given

H ∈ F(n−k)×n
2 and He = y, one can easily pick out a set of n− k linearly independent columns

of H with non-negligible probability as H is uniformly sampled. Without loss of generality,
assume the first n − k columns are linearly independent and denote the first n − k columns as
a submatrix H and the subvector of e corresponding H as e. Then one can set the entries of e
as 0 for entries outside e and computes the values of e from H and y. Because H is uniformly

sampled, then e = H
−1

y is uniformly distributed as well. As wt(e) = wt(e), the expectation
weight of e is (n − k)/2. One can use the Hoeffding bound to provide a lower bound to wt(e)

31

as the entries in e are uniformly distributed. In our scheme, the parameter is chosen such that
wt(z) is less than the possible lower bound of the syndrome decoding method for a claimed
security level.

Remark 7.1. The two security proofs of our signature scheme also work for the RaCoSS scheme.
The problem is the security of RaCoSS is reduced to codeword finding problem or syndrome
decoding problem where the weight range of the two problems intersects with the easy range of
the two problems. The result complies with the aforementioned attack.

7.2 Persichetti’s Proposal

In 2018, Persichetti [Per18] proposed an adaption of the Schnorr-Lyubashevsky framework to the
quasi-cyclic codes. The public key is an instance of the quasi-cyclic syndrome decoding problem.
The signature is another instance of the quasi-cyclic syndrome decoding problem. The scheme
is similar to our quasi-cyclic instantiation in the form sense. The weight of signature is below
the GV bound. Thus, an adversary is unable to produce a valid signature without the private
key. In Persichetti’s proposal, because the weight of the signature vector z is below the GV
bound, the weight of the secret key s and the weight of the vector e to commit are both below
the GV bound. So the vector e is unable to properly hide the secret key part in the signature.
For this reason, Persichetti claimed that the scheme only achieves the security of one-time
signature(OTS).

The main difference in parameter setting between Persichetti’s proposal and our scheme is
that Persichetti’s proposal requires the weight of the signature below the GV bound of the
public code whereas our scheme only requires the weight of the signature is constrained in
the small hard weight range of the syndrome decoding problem. In addition, our scheme uses
the rejection sampling method to decouple the dependence of signature on secret key and to
adjust the output signature distribution to a truncated binomial distribution to achieve (strong)
EUF-CMA security.

In Persichetti’s proposal, the weight of the signature vector is required to be below the GV
bound to ensure that the signature vector is uniquely determined by the message, commitment
and the challenge vector. Our scheme indicates that this is unnecessary. Even if a given
syndrome corresponds to many different valid signatures, without the secret key, a PPT forger
is still unable to efficiently produce a valid signature from the complexity of the information set
decoding algorithm.

Persichetti mentioned that given a polynomial number of honestly generated signatures, an
adversary is able to perform a general statistical attack to recover the secret key. The statistical
attack is owed to Jean-Pierre Tillich. Thus, Persichetti only claims that the scheme achieves
the security of one-time signatures. As our scheme is proven to achieve the (strong) EUF-CMA
security, thus our scheme does not suffer from the statistical attack.

Here we go into the details to explain the reason that our scheme does not suffer from the
statistical attack. Recall that the main difference in parameter setting between Persichetti’s
proposal and our scheme is the weight of the signature vector s is below the GV bound. TThus
the weight of e is also below the GV bound. Suppose a signature z = sc + e. The statistical
attack works as follows. Suppose the weight of c is w. Then the challenge polynomial can be
written as c(x) =

∑
i∈Supp(c) x

i. For j ∈ Supp(c), define

zj := x−jz = s +
∑

i∈Supp(c),i6=j

sxi−j + ex−j .

Then sxi−j and exi−j are cyclic rotations of s and e, respectively. As the weight of s and e
are both below the GV bound, the supports of s and ex−j , sxi−j have no intersection with
non-negligible probability. If the support of s exactly has no overlap with supports of all the
ex−j , sxi−j , the support of zj can be viewed as the union of the supports of s and ex−j , sxi−j .

32

Given many valid signatures, an adversary is able to perform the intersection operation
on the supports of shifted signatures to recover the secret key with non-negligible probability.
Persichetti’s paper explains that such an attack is feasible because the weight of the vector e is
too small to appropriately hide the secret key in the signature. In our scheme, the vector z and
the vector e are both not sparse. For instance, in the given parameters in Section 6, the weight
of z and e are both beyond a faction of 0.22. Because the secret key s and the vector e are
independently sampled, the supports of s and e have no intersection with negligible probability.
Putting it in another words, given a shifted signature vector, some positions of the secret key
are erased by distinct ex−j and an adversary is unable to tell apart that a set position is from
the secret key or from ex−j . Taking the intersection of the supports of honestly generated
signatures does not reveal the support of the secret key. Note that the weight of e is far beyond
the GV bound has the significant effect to prevent against the statistical attacks. Namely, the
vector e properly hides the secret key in the signature.

From another point of view, in our scheme the output signature distribution is adjusted
identical to a truncated binomial distribution, which is characterized by the parameter (n, τ, ξ),
and independent from the secret key. Collecting a polynomial number of signatures is equiv-
alent to independently sample from truncated binomial distribution, which does not leak any
information on the secret key and makes any statistical attack infeasible to our scheme.

On the other hand, even viewed as one-time signature scheme, Persichetti’s proposal is still
insecure. There are two key recovery attacks to the one-time signature scheme. Next we go into
the details of the two key recovery attacks.

7.2.1 LDPC Decoding Attack to the One-time Signature Scheme

One attack is based on the decoding capability of LDPC codes. The LDPC decoding attack was
proposed by Deneuville and Gaborit [DG20]. As Persichetti’s proposal only considered the case
for rate 1/2, we also describe the attack for code rate 1/2. It is easy to extend the attack to
the case for code rate 1/d. Specially, given a signature (z, c) of the quasi-cyclic code structure,

we have z = sc + e. It is z = (c,1)

(
s
e

)
. In particular, it is zi = sic + ei for i = 1, 2. Given

(zi, c), the problem can be viewed as syndrome decoding problem of LDPC code with parity
check matrix (c,1) as the weight of c is small. Because the weight of (ei,vi) is below the GV
bound of the parity checked code by the public key, an adversary is able to recover the secret
key ei via running the LDPC decoding algorithm for the code (c,1). In our scheme, as e is of
large weight and beyond the decoding capability of the LDPC decoding algorithm, thus it will
not suffer from such a LDPC decoding attack. For instance in our scheme the weight of c is at
least 6, and the weight of e is at least 0.22n. As 6× 0.22× 2 > 1, it is far beyond the decoding
ability of an LDPC code.

In our scheme, the challenge vector still keeps sparse. We only require the number of possible
challenge vectors achieves the desired security level. The sparse challenge vector in our scheme
does not cause any information leakage on the secret key. Recall the main difference in parameter
setting between our scheme and Persichetti’s proposal is that the weight of e is not required to
be below the GV bound. We set the weight of e to be as large as possible. Thus the vector e
can properly hide the secret key. An adversary is unable to get any information on the secret
key from the signature and the challenge vector. Additionally, in our scheme, adapting larger
weight signature will reduce the rejection rate as well.

In our scheme, if an adversary collects polynomial number of signatures for instance ` sig-
natures, then the adversary has {(zj , cj)}j∈{1...`} and each signature satisfies ejicj + eji = zji
for j ∈ {1 . . . `} and i ∈ {1, 2}. Writing the signature together, the adversary has

si(c1, . . . , c`) + (e1i, . . . , e`i) = (z1i . . . z`i).

33

The weight of (e1i, . . . , e`i) is still out of the decoding capability of the quasi-cyclic code with
(c1, . . . , c`) being the parity check matrix. Thus, the LDPC decoding does not work for our
scheme. Because s1 is of small weight, one might consider to enumerate all possible si and limit
the one that the corresponding (e1i, . . . , e`i) is of small weight. But the number of possible si
is beyond the security level of the scheme. Thus, such an attack is still infeasible.

On the other hand, the signature distribution in our scheme is proven to independent from
the secret key. Thus, an adversary is unable to learn any information on the secret key from a
polynomial number of signatures.

7.2.2 Statistical Attack to One-time Signature Scheme

Santini, Baldi and Chiaraluce [SBC19] proposed a statistical attack to the one-time signature
scheme to recover the secret key. The attack again uses the property that c(x) =

∑
i∈Supp(c) x

i.
Then

zj := zx−j = s +
∑

i∈Supp(c),i6=j

sxi−j + ex−j .

Recall that if there is no intersection between of the supports of s and sxi−j , ex−j , the support
of zj can be viewed as the union of the support of s and sxi−j , ex−j . In the attack of [SBC19],
zj is lifted to a polynomial defined over Z[x] instead of F2[x]. The attack computes the sum of
all the lifted polynomials. Because s and e are both sparse, then the support of s and e have
no intersection with non-negligible probability. For different j, ex−j and sxi−j can be viewed
as a random shift of e and s. Summing up all the lifted polynomials, the support of s will be
accumulated whereas the supports ex−j and sxi−j for different j will not be accumulated with
non-negligible probability. Thus lifting the polynomial zj to the ring Z[x] and the computing
the sum of all the lifted polynomials will lead that every not erased position of s achieves the
peak value in the sum of the lifted polynomials. Then the adversary can use the sum of lifted
polynomials to infer the the support of the secret key. Given one signature, Santini et al.
demonstrated that the attack can directly recover the secret key with non-negligible probability.
If the attack is unable to fully recover the secret key, a large portion of the secret key is recovered
and the remaining support of the secret key can be recovered by running the information set
decoding(ISD) algorithm. As the secret key s and e are both sparse, the number of positions of
secret key is erased in zj is very small. Thus, the sum of lifted polynomials is able to track most
positions of the support of the secret key s. Assume the polynomial recovered from the sum of
the lifted polynomials of zj is e′. Then the weight of e−e′ is extremely small. After subtracting
the syndrome of e′ from public key, the target vector to be recovered by the ISD algorithm is
e− e′. So the resulting complexity of ISD after subtracting recovered e′ from public key is far
less than directly running the ISD algorithm on public key to recover the secret key.

This is not the case for our scheme. In our scheme, e is not sparse, and it is independently
sampled from s. As a matter of fact, one can easily compute that the supports of s and e have
no intersection with negligible probability and the supports of exi−j and exi−` for distinct j and
` have no intersection with negligible probability. Thus, a subset of the support of secret key in
z−j is erased by ex−j . Besides, a subset of the support of ex−j for distinct j is accumulated in
the sum of lifted polynomials as e is not sparse. Thus, computing the sum of lifted polynomials
in our scheme will get a mixing union of supports of s and ex−j . An adversary is unable to
distinguish one element of the support is from s or from e. The statistical attack provides no
advantage for extracting the support of secret key from the signature. In addition, a computation
of the successful probability of the above statistical attack demonstrates the probability that it
can recover the secret key for our scheme is far beyond the claimed security level.

On the other hand, as pointed out in Section 7.2 and 7.2.1, in our scheme, the signature
distribution is tuned to a truncated binomial distribution. Thus a signature produced from our

34

scheme is equivalent to sample from the truncated binomial distribution. Hence, an adversary
is unable to learn any information on the secret key for our scheme.

7.3 Summary of the Attacks

From the above description, given one signature produced by our scheme, our scheme is able
to withstand existing LDPC decoding attack and the lifted statistical attacks. If an adversary
attempts to collect a polynomial number signatures produced by our scheme to attack the
scheme, the adversary is able to solve the codeword finding problem or the DOOM problem
according to the security proof. In particular, the output signature distribution is tuned to a
truncated binomial distribution independent from the secret key part. Thus, an adversary is
unable to learn any information on the secret key from polynomial number of signatures.

Both the LDPC decoding attack and the two statistical attacks owe the feasibility of the
attacks to the sparsity of the challenge vector c. In the above considerations, we can see that
the sparsity of c is not the essential reason. That the vector e is sparse is the inherent reason for
Persichetti’s proposal suffering from various attacks. On the other hand, to keep the signature
vector of small weight, the challenge vector has to be sparse in some extent.

Employing larger weight of e has significant impact in our scheme. First it can securely hide
the secret key to resist the statistical attack. Second a LDPC decoding attack is impossible as
larger weight of e makes it beyond the decoding capability of the LDPC code. Third, it can be
used together with the rejection sampling lemma to achieve a truncated binomial distribution
decoupled from the secret vector.

Remark 7.2. Even if one does not care huge code length and huge reject rate, applying our
rejection sampling lemma to Persichetti’s proposal still leads to an insecure scheme. The reason
is that for given message, commitment, and challenge vector, requiring the weight of signature
vector being below the GV bound uniquely determines the signature vector with overwhelming
probability and there is no distribution related to the signature vector. On the other hand, once
one signature is output, the above two key recovery attacks can efficiently recover the secret key
from the signature.

8 Conclusions and Future Work

We construct a signature scheme based on the Schnorr-Lyubashevsky framework for random
linear Hamming metric code. Employing variants of binomial distributions, we prove an efficient
rejection sampling lemma for binary linear codes. Via the rejection sampling strategy, the output
signature distribution is adjusted to be independent from the secret key. Thus, an adversary
is unable to learn any information on the secret key from polynomial number of signatures.
The security of our scheme is reduced on full-fledged hard coding problems. We instantiate the
signature scheme based on hard quasi-cyclic coding problems or Ring-LPN instances.

The existing rank-metric alternate of Schnorr-Lyubashevsky framework with the name Du-
randal [ABG+19] reduces the security of the scheme to a complicated problem Advanced Product
Spaces Subspaces Indistinguishability PSSI+, which is a new problem proposed in the Durandal
paper. It is not proven that the Durandal signature does not leak information on the secret key.
On the other hand, the Wave [DST19] signature scheme follows the hash-and-sign framework.
The security of Wave is reduced to the indistinguishability of average generalized (U,U + V)
code, which is a new problem proposed in an earlier version of the Wave scheme. We believe
that the security of our scheme is reduced to mature hard coding problems provides strong
confidence to the security of our signature scheme.

The major drawback of our signature scheme is the large public key size and the large signa-
ture size compared to lattice-based alternates submitted to NIST Round 3 Dilithium [DKL+19]

35

and Falcon [FHK+18]. We point out here that the large public key size is related to condition of
the rejection sampling lemma. To make the rejection rate in a practically acceptable range, we
choose the binomial distribution to be the target distribution to adjust the output signature. We
expect future work to improve the rejection sampling lemma proved in this paper. Concretely,
the exponent 2 indicating the relation of the weight of shifted vector and the target vector is
expected to improved to a smaller value.

An alternate option to reduce the code length is to use q-ary code rather than binary code
for a large q for instance q = 3, 4, 5 . . . The complexity of information set decoding algorithm
for q-ary code is qcw+O(1), where w is the weight of secret key, and c is a constant related to the
code rate and q. To achieve λ-bit security, choosing larger q leads to smaller Hamming weight of
the secret key. Even if one still chooses the code length n to be square of wt(s)wt(c) to obtain
an acceptable rejection rate, the wt(s) is reduced, hence the code length is reduced as well. So
do the public key size and the signature size. Here is a small issue to notice. If one chooses
a larger q, each element of Fq is of size log q rather than log 2 = 1. Thus, one needs to find a
tradeoff between q and the reduced code length.

For q ≥ 3, one can additionally use the syndrome decoding problem of large weight as the
underlying hard problem. As pointed out in the Wave paper, for binary linear code, the small
weight range of and the large weight range of the hard syndrome decoding problem is symmetric.
Whereas for q ≥ 3, it looks like the large weight range of the syndrome decoding problem is
harder than the small weight range of the syndrome decoding problem. Maybe one can choose
the weight of secret key lying in the large range to reduce the code length. Even for binary
linear code, allowing the weight of the signature both in the small weight range and large weight
range is possible to reduce the rejection rate. For q ≥ 3, maybe the rejection rate can be further
reduced as there are several methods to convert a small weight vector to a large weight vector.

References

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From
identification to signatures via the fiat-shamir transform: Minimizing assumptions
for security and forward-security. In EUROCRYPT, volume 2332, pages 418–433.
Springer, 2002. 2

[ABB+18] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu, Car-
los Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-
Pierre Tillich, and Gilles Zémor. BIKE: Bit Flipping Key Encapsulation, Oct 2018.
https://bikesuite.org/files/BIKE.pdf. 1, 6, 11, 30

[ABG+19] Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles
Zémor. Durandal: A rank metric based signature scheme. In EUROCRYPT, pages
728–758, 2019. 2, 3, 35

[AIK07] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant
input locality. In Alfred Menezes, editor, CRYPTO, Lecture Notes in Computer
Science, 2007. 11

[AR05] Dorit Aharonov and Oded Regev. Lattice problems in NP cap conp. J. ACM,
52(5):749–765, 2005. 20

[BCL+17] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Mis-
oczki, Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe,
Nicolas Sendrier, Jakub Szefer, and Wen Wang. Classic McEliece: conserva-
tive code-based cryptography, Nov 2017. https://classic.mceliece.org/nist/

mceliece-20171129.pdf. 1

36

https://bikesuite.org/files/BIKE.pdf
https://classic.mceliece.org/nist/mceliece-20171129.pdf
https://classic.mceliece.org/nist/mceliece-20171129.pdf

[BHLP17] Daniel J. Bernstein, Andreas Hulsing, Tanja Lange, and Lorenz Panny. Comments
on RaCoSS, a submission to NIST’s PQC competition. 2017. Available at https:

//helaas.org/racoss/. 3, 31

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding ran-
dom binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding.
In EUROCRYPT, volume 7237, pages 520–536. Springer, 2012. 12

[BMvT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the in-
herent intractability of certain coding problems (corresp.). IEEE Trans. Inf. Theory,
24(3):384–386, 1978. 3, 11

[CFS01] Nicolas T. Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to achieve a
mceliece-based digital signature scheme. In ASIACRYPT, pages 157–174, 2001. 2,
3

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal gaussians. In CRYPTO, volume 8042, pages 40–56. Springer,
2013. 2, 5, 29

[DG20] Jean-Christophe Deneuville and Philippe Gaborit. Cryptanalysis of a code-based
one-time signature. Designs, Codes and Cryptography, 88(9):1857–1866, Sep 2020.
3, 33

[DGK20] Nir Drucker, Shay Gueron, and Dusan Kostic. Fast polynomial inversion for post
quantum QC-MDPC cryptography. In Cyber Security Cryptography and Machine
Learning - Fourth International Symposium, CSCML 2020, Be’er Sheva, Israel, July
2-3, 2020, Proceedings, pages 110–127, 2020. 28

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Information Theory, 22(6):644–654, 1976. 2

[DKL+19] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS–Dilithium: Algorithm Specification
and Supporting Documentation. Round-2 submission to the NIST PQC project,
2019. 35

[DST19] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A new
family of trapdoor one-way preimage sampleable functions based on codes. In ASI-
ACRYPT, pages 21–51, 2019. 2, 4, 5, 23, 35

[DT18] Thomas Debris-Alazard and Jean-Pierre Tillich. Two attacks on rank metric code-
based schemes: Ranksign and an IBE scheme. In ASIACRYPT, pages 62–92, 2018.
3

[FGO+13] Jean-Charles Faugère, Valérie Gauthier-Umaña, Ayoub Otmani, Ludovic Perret,
and Jean-Pierre Tillich. A distinguisher for high-rate McEliece cryptosystems. IEEE
Trans. Information Theory, 59(10):6830–6844, 2013. 3

[FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte,
and Zhenfei Zhang. Falcon: Fast-fourier lattice-based compact signatures over ntru.
Submission to the NIST’s post-quantum cryptography standardization process, 2018.
36

[FRX+17] Kazuhide Fukushima, Partha Sarathi Roy, Rui Xu, Shinsaku Kiyomoto, Kir-
ill Morozov, and Tsuyoshi Takagi. RaCoSS: Random Code-based Signa-
ture Scheme. Submission to NIST post-quantum standardization process, 2017.
Available at https://csrc.nist.gov/projects/post-quantum-cryptography/

round-1-submissions. 2, 3, 31

37

https://helaas.org/racoss/
https://helaas.org/racoss/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In CRYPTO ’86, volume 263, pages 186–194. Springer,
1986. 2

[GG07] Philippe Gaborit and Marc Girault. Lightweight code-based identification and sig-
nature. In IEEE International Symposium on Information Theory, ISIT 2007, Nice,
France, June 24-29, 2007, pages 191–195, 2007. 10

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. In CRYPTO ’97, pages 112–131, 1997. 2

[GJL15] Qian Guo, Thomas Johansson, and Carl Löndahl. A new algorithm for solving ring-
lpn with a reducible polynomial. IEEE Trans. Inf. Theory, 61(11):6204–6212, 2015.
12

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988. 12

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008. 2

[GRSZ14] Philippe Gaborit, Olivier Ruatta, Julien Schrek, and Gilles Zémor. New results for
rank-based cryptography. In AFRICACRYPT, pages 1–12, 2014. RankSign. 2, 3

[HPS01] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NSS: an NTRU lattice-based
signature scheme. In EUROCRYPT, pages 211–228, 2001. 2

[JJ02] Thomas Johansson and Fredrik Jönsson. On the complexity of some crypto-
graphic problems based on the general decoding problem. IEEE Trans. Inf. Theory,
48(10):2669–2678, 2002. 11, 23

[LJS+16] Carl Löndahl, Thomas Johansson, Masoumeh Koochak Shooshtari, Mahmoud
Ahmadian-Attari, and Mohammad Reza Aref. Squaring attacks on mceliece public-
key cryptosystems using quasi-cyclic codes of even dimension. Des. Codes Cryptogr.,
80(2):359–377, 2016. 12

[LXY20] Zhe Li, Chaoping Xing, and Sze Ling Yeo. A proof of concept implementation of
A New Code Based Signature Scheme without Trapdoors, 2020. https://github.
com/zhli271828/rand_code_sign. 30

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT,
volume 7237, pages 738–755. Springer, 2012. 2, 5, 13

[MAB+19] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loic Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, and Gilles
Zémor. Hamming Quasi-Cyclic (HQC), May 2019. https://pqc-hqc.org/doc/

hqc-specification_2019-04-10.pdf. 1, 30

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear
codes in Õ(20.054n). In ASIACRYPT, volume 7073, pages 107–124. Springer, 2011.
12

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications
to decoding of binary linear codes. In EUROCRYPT (1), volume 9056, pages 203–
228. Springer, 2015. 12

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error
correcting codes, volume 16. Elsevier, 1977. 9

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto.
Mdpc-mceliece: New McEliece variants from moderate density parity-check codes.
In ISIT, pages 2069–2073. IEEE, 2013. 10

38

https://github.com/zhli271828/rand_code_sign
https://github.com/zhli271828/rand_code_sign
https://pqc-hqc.org/doc/hqc-specification_2019-04-10.pdf
https://pqc-hqc.org/doc/hqc-specification_2019-04-10.pdf

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Al-
gorithms and Probabilistic Analysis. Cambridge University Press, 2005. 13, 14

[NIS20] Round 3 Submissions, July 2020. https://csrc.nist.gov/projects/

post-quantum-cryptography/round-3-submissions. 1

[Per18] Edoardo Persichetti. Efficient one-time signatures from quasi-cyclic codes: A full
treatment. Cryptogr., 2(4):30, 2018. 2, 3, 32

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Trans.
Inf. Theory, 8(5):5–9, 1962. 12

[RMF+18] Partha Sarathi Roy, Kirill Morozov, Kazuhide Fukushima, Shinsaku Kiyomoto, , and
Tsuyoshi Takagi. Code-based signature scheme without trapdoors. 2018. RaCoSS-R.
See also https://www.ieice.org/ken/paper/20180725L1FF/eng/. 2, 3, 31

[SBC19] Paolo Santini, Marco Baldi, and Franco Chiaraluce. Cryptanalysis of a one-time
code-based digital signature scheme. In IEEE International Symposium on Infor-
mation Theory, ISIT 2019, Paris, France, July 7-12, 2019, pages 2594–2598, 2019.
3, 34

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptol.,
4(3):161–174, 1991. 2

[Sen11] Nicolas Sendrier. Decoding one out of many. In Post-Quantum Cryptography - 4th
International Workshop, PQCrypto 2011, Taipei, Taiwan, November 29 - December
2, 2011. Proceedings, pages 51–67, 2011. 6, 12

[Tor17] Rodolfo Canto Torres. CaWoF, C library for computing asymptotic exponents of
generic decoding work factors, Jan 2017. https://gforge.inria.fr/projects/

cawof/. 28

[TS16] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding
for a sub-linear error weight. In PQCrypto, volume 9606, pages 144–161. Springer,
2016. 12, 28

[Var97] Alexander Vardy. Algorithmic complexity in coding theory and the minimum dis-
tance problem. In STOC, pages 92–109, 1997. 3, 11

[vN51] John von Neumann. Various techniques used in connection with random digits.
In A. S. Householder, G. E. Forsythe, and H. H. Germond, editors, Monte Carlo
Method, volume 12 of National Bureau of Standards Applied Mathematics Series,
chapter 13, pages 36–38. US Government Printing Office, Washington, DC, 1951. 5

[Xag18] Keita Xagawa. Practical Attack on RaCoSS-R. IACR Cryptol. ePrint Arch.,
2018:831, 2018. 3, 31

A Strong Security Proof

Here we provide a strong security proof for relaxed parameters. If we allow the parameter τ
a little smaller, we can prove the security of the signature scheme upon the collision resistant
property of syndrome decoding problem and thus the codeword finding problem. Via program-
ming the random oracle, the proof employs the general forking lemma to find a small weight
codeword.

Theorem A.1. Assume that there is a forger that breaks the strong EUF-CMA game. Then
there exists an algorithm that solves the codeword finding problem.

In particular, if the forger F succeeds with probability δ, assuming the forger F makes at
most s signature query and h hash query, there exists an algorithm A that solves the codeword

39

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://www.ieice.org/ken/paper/20180725L1FF/eng/
https://gforge.inria.fr/projects/cawof/
https://gforge.inria.fr/projects/cawof/

finding problem with probability at least δ2

s+h−2−O(λ), where the parameter τ is chosen such that

2nτ + 2ξ + 2nσw +
√

λn
2 log e <

n−k
2 .

We prove that the forger F can be converted to an algorithm to find a small preimage for
0. In the proof, we simulate the random oracles for the forger.

Proof. Given the matrix H ∈ F(n−k)×n
2 , one samples a secret key S first and then publish

(H,T = HS) as the public key.
For a forger F , it can forges a signature (z, c) for µ with probability δ. By the general

forking lemma, the forger can forge a signature (z′, c′) for µ with probability δ2

s+h − 2−O(λ)

and the two forged signatures share the same message queried to the random oracle. It means
Hz− Tc = Hz′ − Tc′. Replacing T by the secret key, we obtain H(z− Sc) = H(z′ − Sc′). If
z− z′ − Sc + Sc′ is nonzero and of small weight, we have a collision for the syndrome function
and thus a small weight codeword party checked by the matrix H. First, we give a bound to
the weight of z−z′−Sc +Sc′. From the distribution of S and the pilling-up lemma, the vector
S(c′ − c) admits the distribution Bnη , where η = 1

2 (1 − (1 − 2σ)2w) ≈ 2σw for very small σw.

Then we have wt(z−z′−Sc+Sc′) ≤ 2nτ+2ξ+2nσw+γ < n−k
2 but with negligible probability,

where γ =
√

λn
2 log e . Next, we compute the probability that z−z′−Sc+Sc′ is nonzero. Given a

vector z′−z with weight t lying in [0, 2nτ + 2ξ], the probability that S(c−c′) equals to z−z′ is
ηt(1− η)n−t. From the condition of the rejection sampling lemma, we have (nη)2 < n, namely,
η < 1√

n
. For the probability, we have ηt(1 − η)n−t ≤ (1 − η)n ≈ e−ηn = e−Ω(

√
n), a negligible

function of n. Hence, we proved that z− z′−Sc +Sc′ is a nonzero vector with weight less than
n−k

2 except with negligible probability.

40

	Introduction
	Related Work
	Our Results and Techniques
	Comparison with Existing Secure Code based Signature Schemes
	Rejection Rate
	Comparison with Unsuccessful Attempts
	Organization

	Preliminaries
	Coding Theory
	Hard Problems in Coding Theory
	Information Set Decoding
	Signature Schemes
	Rejection Sampling
	Bounds and Approximations

	Rejection Sampling and Binomial Distribution
	Signature Scheme
	Security Proof
	Instantiation and Parameters
	The Key Generation Algorithm
	The Ring R
	Signing Algorithm
	Parameters in Signing Algorithm
	Multiplication in Signing Algorithm

	Hash Function
	Rejection Vector and Rejection Rate
	The Verifying Algorithm
	Parameters
	Security Issues

	Security Discussion
	RaCoSS Scheme
	Persichetti's Proposal
	LDPC Decoding Attack to the One-time Signature Scheme
	Statistical Attack to One-time Signature Scheme

	Summary of the Attacks

	Conclusions and Future Work
	Strong Security Proof

