
Polynomial Multiplication in NTRU Prime
Comparison of Optimization Strategies on Cortex-M4

Erdem Alkim1,2, Dean Yun-Li Cheng3,4, Chi-Ming Marvin Chung3, Hülya
Evkan2, Leo Wei-Lun Huang3, Vincent Hwang3,4, Ching-Lin Trista Li3,4,

Ruben Niederhagen5, Cheng-Jhih Shih3, Julian Wälde2 and Bo-Yin Yang3

1 Ondokuz Mayıs University, Samsun, Turkey, erdemalkim@gmail.com
2 Fraunhofer SIT, Darmstadt, Germany, {hevkan,julianwaelde}@gmail.com

3 Academia Sinica, Taipei, Taiwan, {dean3154,marvin852316497,271828182euler}@gmail.com,
{vincentvbh7,trista5658321,cs861324}@gmail.com, by@crypto.tw

4 National Taiwan University, Taipei, Taiwan
5 University of Southern Denmark, Odense, Denmark, ruben@polycephaly.org

Abstract. This paper proposes two different methods to perform NTT-based polyno-
mial multiplication in polynomial rings that do not naturally support such a multi-
plication. We demonstrate these methods on the NTRU Prime key-encapsulation
mechanism (KEM) proposed by Bernstein, Chuengsatiansup, Lange, and Vredendaal,
which uses a polynomial ring that is, by design, not amenable to use with NTT. One
of our approaches is using Good’s trick and focuses on speed and supporting more
than one parameter set with a single implementation. The other approach is using
a mixed radix NTT and focuses on the use of smaller multipliers and less memory.
On a ARM Cortex-M4 microcontroller, we show that our three NTT-based imple-
mentations, one based on Good’s trick and two mixed radix NTTs, provide between
32% and 17% faster polynomial multiplication. For the parameter-set ntrulpr761,
this results in between 16% and 9% faster total operations (sum of key generation,
encapsulation, and decapsulation) and requires between 15% and 39% less memory
than the current state-of-the-art NTRU Prime implementation on this platform,
which is using Toom-Cook-based polynomial multiplication.
Keywords: NTT · polynomial multiplication · Cortex-M4 · NTRU Prime · PQC

1 Introduction
Due to the ongoing advances in quantum computing, the threat by quantum computers
to IT-security becomes more and more imminent: Experts predict that sufficiently large
and stable quantum computers running Shor’s algorithm for factorization and solving
discrete logarithms may be able to break currently wide-spread asymmetric cryptographic
primitives in the next ten to fifteen years. Therefore, in the research field Post-Quantum
Cryptography (PQC), researchers haven been investigating alternative cryptographic
schemes that are believed to be secure against attacks aided by quantum computers.

PQC-primitives based on lattice problems have attracted significant attention due to
their efficient implementations that often are on par with or even better than current
cryptographic schemes. This attention is reflected in the NIST post-quantum cryptography
standardization process, as nearly half of the candidates are using hard lattice problems as
their building blocks. Among the other lattice-based NIST candidates, the key encapsula-
tion mechanism (KEM) NTRU Prime [BCLvV17], which has advanced to the third round
as alternate candidate, differentiates itself by its choice of the polynomial ring using an

mailto:erdemalkim@gmail.com
mailto:hevkan@gmail.com,julianwaelde@gmail.com
mailto:{dean3154,marvin852316497,271828182euler}@gmail.com
mailto:{vincentvbh7,trista5658321,cs861324}@gmail.com
mailto:by@crypto.tw
mailto:ruben@polycephaly.org

2 Polynomial Multiplication in NTRU Prime

irreducible polynomial as quotient and a prime field for its coefficients, which makes it
harder to provide efficient implementations compared to other lattice-based schemes.

One crucial aspect for the performance of NTRU Prime is the basic operation of
polynomial multiplication, which is used frequently in the key generation, encapsulation,
and decapsulation operations. Therefore, an efficient multiplication algorithm is required
to achieve peak-performance for this scheme.

There are several approaches for multiplying polynomials that have different asymptotic
complexities, e.g., basic-schoolbook multiplication (Θ(n2)), Karatsuba (Θ(nlog2 3)), Toom-
Cook (e.g., Θ(nlog3 5) for Toom-3), and the Number Theoretic Transform (NTT, Θ(n·logn·
log logn)). Due to the constant factors in the asymptotic complexities, for specific problem
sizes, the best choice for the multiplication algorithm depends on the size of the operands
and the target processor architecture for the implementation. Except for corner-cases
of very small or very large operand sizes, it is hard to predict the best multiplication
algorithm in advance; typically different approaches need to be implemented, optimized
for the specific target platform, and compared in regard to their computational efficiency
and memory consumption.

In contrast to other lattice-based schemes, which commonly use either cyclotomic
polynomials to enable the use of an NTT or power-of-two moduli for efficient coefficient-
wise operations, it is a challenging task to implement NTRU Prime efficiently due to
its specific design. This challenge becomes even bigger on embedded devices with low
resources in regard to computational power and memory.

In this work, we implement two approaches of polynomial multiplication for NTRU
Prime based on NTT on the Cortex-M4 architecture and show that our approaches are
faster and more memory efficient than the current state-of-the-art.

Related Work. There has been work conducted before to improve the efficiency of
polynomial multiplication in lattice-based schemes in general and for NTRU and NTRU-
related schemes like NTRU Prime specifically. Also, there has been some work on
implementing NTRU Prime for embedded devices.

For example, in [MKV20] Mera et al. investigate the use of Toom-Cook multiplication to
speed up lattice-based cryptography, specifically the KEM scheme Saber with polynomials
of degree 256. They report performance numbers for AVX and for ARM Cortex-M4 with
assembler optimizations.

Hülsing et al. provided an efficient implementation of a variant of NTRU for the AVX2
vector instruction set [HRSS17]. They are using several recursive levels of Karatsuba for
polynomial multiplication. The work by Lyubashevsky and Seiler [LS19] is using an NTT
to achieve a fast implementation of an NTRU variant.

NTRUEncrypt has been optimized, for example, for the AVX2 vector instruction set by
Dai et al. in [DWZ18] using a combination of Karatsuba and Toom-Cook for polynomial
multiplication with sparse index-based multiplication for the final polynomials of degree
smaller than 32. An implementation of NTRUEncrypt for embedded systems on an
8-bit AVR microcontroller is provided by Cheng et al. in [CGRR19] using optimization
techniques for sparse polynomial multiplication.

There is an implementation of NTRU Prime for the Haswell x86 architecture using
AVX2 vector instructions by Bernstein1 using Good’s trick and the Chinese Remainder
Theorem (CRT) to enable the use of the NTT for the design and the parameters of NTRU
Prime. We will take a closer look at this approach in Section 3. Cheng et al. provide
an efficient implementation of NTRU Prime on an ATmega1284 8-bit AVR microcon-
troller [CDG+19] using Karatsuba-based polynomial multiplication and efficient modular
reduction. Kannwischer et al. performed measurements of the C reference implementations

1https://groups.google.com/a/list.nist.gov/forum/#!msg/pqc-forum/XZomSSgV6g8/Eqvn1VdrAgAJ

https://groups.google.com/a/list.nist.gov/forum/#!msg/pqc-forum/XZomSSgV6g8/Eqvn1VdrAgAJ

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 3

of several PQC schemes on a Cortex-M4 platform (without any optimizations) [KRSS19].
They report performance numbers for NTRU Prime as well.

However, the current state-of-the-art implementation of NTRU Prime on Cortex-M4 is
the work by Yang et al.2 that was included as optimized implementation for NTRU Prime in
the pqm4 project in April 20203. It is using Toom-Cook for polynomial multiplication, fast
modular inversion from [BY19], and platform-specific, hand-written assembly optimization.
It is up to two orders of magnitude faster than the C-reference code reported in [KRSS19].
This work is the basis of our optimizations for polynomial multiplication. Performance
values are listed in Table 6 for comparison to our improvements.

Our Contributions. We present, evaluate, and compare two methods to implement
NTT-based polynomial multiplication in Z4591/(X761 −X − 1) accompanied with three
implementations. We use the following two methods, one being more generic and the other
more parameter specific:

• Good’s Trick –We implemented an NTT for Zq′/(XN1−1), whereN1 = p′·2k ≥ 2·p,
p′ is a small prime, and q′ is selected to ensure that there will be no modular reduction
in the coefficients of the resulting polynomial.

• Mixed Radix NTT – We implemented an NTT for Zq/(XN2 − 1), where N2 =
t · 2k · 3l · 5m · 7n ≥ 2 · p, t is a small integer, and q ≡ 1 mod N2

t as well as an NTT for
Zq/(X1530 − 1), where 1530 is the smallest divisor of q − 1 which is bigger than 2p.

The NTRU Prime submission has two additional parameter sets which use q = 4621 and
q = 5167, and q−1 can be factored as 22 ·3 ·5 ·7 ·11 and 2 ·32 ·7 ·41, respectively. Thus the
techniques described in this paper can be applied to all parameter sets in the submission.
Although the techniques are not new, we present their first implementation in lattice-
based cryptography. Thus, we focus on implementation issues instead of implementing
all parameter sets of NTRU Prime. Our implementations are publicly available under an
open source license at https://github.com/vincentvbh/NTRUPrime-PolyMul.

Structure of this Paper. Section 2 provides some background information on NTRU
Prime and on using NTT for polynomial multiplication. In Section 3 we introduce our
approaches for the implementation of polynomial multiplication using NTT for odd sizes
including Good’s trick. Section 4 describes the implementation of our two approaches for
improving polynomial multiplication. Section 5 provides an evaluation of our work and a
comparison of our improvements with prior art. Finally, Section 6 concludes our work.

2 Preliminaries
In this section, we recall the NTRU Prime key encapsulation scheme and we provide an
overview of the number theoretic transform when used for polynomial multiplication.

2.1 NTRU Prime
The authors of NTRU Prime [BCLvV17] propose “an efficient implementation of high-
security prime-degree large-Galois-group inert-modulus ideal-lattice-based cryptography.”
NTRU Prime tweaks the classic NTRU scheme to use rings without exploiting special
structures of the rings. The NTRU Prime submission to the NIST standardization
process [BCLvV19] provides two KEM schemes: Streamlined NTRU Prime and NTRU
LPRime.

2https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/FHAMYa-m2hY
3https://github.com/mupq/pqm4/ commit e1c6949eafbf7d93

https://github.com/vincentvbh/NTRUPrime-PolyMul
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/FHAMYa-m2hY
https://github.com/mupq/pqm4/

4 Polynomial Multiplication in NTRU Prime

Table 1: Parameter sets of Streamlined NTRU Prime.

Scheme security level p q w

sntrup653 2 653 4621 288
sntrup761 3 761 4591 286
sntrup857 4 857 5167 322

Both schemes share common notations and definitions for the parameters and theorems.
The parameters are a prime number p ≥ 17, a prime number q and a positive integer
w ≤ p, where xp − x− 1 is irreducible in the polynomial ring (Z/q)[x]. An element of the
ring Z[x]/(xp − x− 1) is small if all coefficients are in {−1, 0, 1}. If there are exactly w
coefficients that are nonzero, then the weight of the element is w. We define the set of
the elements of the ring Z[x]/(xp − x− 1) that have a small weight-w as Short. The set
Rounded is defined as the set of polynomials r0 + r1x+ · · ·+ rp−1x

p−1 ∈ Z[x]/(xp − x− 1)
where each coefficient ri is in {−(q − 1)/2, . . . ,−6,−3, 0, 3, 6, . . . (q − 1)/2} for q ∈ 1 + 3Z
or in {−(q+ 1)/2, . . . ,−6,−3, 0, 3, 6, . . . (q+ 1)/2} for q ∈ 2 + 3Z. Please note that we will
abbreviate the rings Z[x]/(xp − x− 1), (Z/3)[x]/(xp − x− 1), and (Z/q)[x]/(xp − x− 1)
as R, R/3, and R/q, respectively.

NTRU Prime defines two deterministic algorithms called HashConfirm and HashSession
that are using a function Hash. Hash(z) returns the first 32 bytes of SHA-512(z) and
Hashb(z) is defined as Hash(b, z) prefixing the input z with a one-byte value b ∈ {0, . . . , 255}.
HashConfirm(r, h) is defined as Hash2(Hash3(r), Hash4(h)) for r ∈ Short in Streamlined
NTRU Prime and r ∈ {0, 1}I in NTRU LPRime where h is the public key and I ∈ 8Z+.
The algorithm HashSession(b, r, C) is defined as Hashb(Hash3(r), C) for b ∈ {0, 1}, r same
as above, and z is the ciphertext of the respective scheme.

Theorem 1 ([BCLvV17, Theorem 1]). Let p ≥ 3 and w ≥ 1 be fixed integers. Let g ∈ Z[x]
be a polynomial of degree at most p − 1 with each coefficient in {−1, 0, 1}. Let i be an
integer with 0 ≤ i < p. Then xig mod xp − x− 1 has each coefficient in {−2,−1, 0, 1, 2}.

Theorem 2 ([BCLvV17, Theorem 2]). Let p ≥ 3 and w ≥ 1 be fixed integers. Let
r, g ∈ Z[x] be polynomials of degree at most p − 1 with each coefficient in {−1, 0, 1}.
Assume that r has at most w nonzero coefficients. Then gr mod xp − x − 1 has each
coefficient in the interval [−2w, 2w].

Theorem 3 ([BCLvV17, Theorem 3]). Let p ≥ 3 and w ≥ 1 be fixed integers. Let
m, r, f, g,∈ Z[x] be polynomials of degree at most p− 1 with each coefficient in {−1, 0, 1}.
Assume that f and r each have at most w nonzero coefficients. Then 3fm+gr mod xp−x−1
has each coefficient in the interval [−8w, 8w].

2.1.1 Streamlined NTRU Prime

Streamlined NTRU Prime (sntrup) has two layers:

• a perfectly correct deterministic PKE as inner layer and

• a perfectly correct KEM as outer layer.

The inner layer, Streamlined NTRU Prime Core, has parameters (p, q, w) where p and
q are prime numbers, w is a positive integer such that 2p ≥ 3w, q ≥ 16w + 1, and
xp−x−1 is irreducible in the polynomial ring (Z/q)[x]. The parameter sets of Streamlined
NTRU Prime are listed in Table 1. The algorithms for key generation, encapsulation, and
decapsulation of Streamlined NTRU Prime are shown in Algorithms 1, 2, and 3.

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 5

Algorithm 1 Streamlined NTRU Prime Key Generation: SKeyGen()
Output: (pk, sk) = (h, (f, g−1, h, ρ)).
1: repeat
2: g

$← small,
3: until g−1 ∈ R/3
4: g−1 ← 1/g ∈ R/3

5: f
$← Short

6: h← g/(3f) ∈ R/q
7: ρ← Short
8: return (h, (f, g−1, h, ρ))

Algorithm 2 Streamlined NTRU Prime Encapsulation: SEncap(h)
Input: pk = h
Output: C = (C, HashSession(1, r, C))
1: r

$← Short
2: hr ← h · r ∈ R/q
3: c← Round(hr)

4: C ← HashConfirm(r, h)
5: return (c, C, HashSession(1, r, C))

Algorithm 3 Streamlined NTRU Prime Decapsulation: SDecap(C, (f , g−1, h, ρ))
Input: C = (c, γ), sk = (f, g−1, h, ρ)
Output: HashSession(1, r, C) if C ′ == C, otherwise HashSession(0, ρ, C).
1: 3fc← 3 · f · c ∈ R/q
2: e← MaptoR/3(3fc)
3: ev ← e · g−1 ∈ R/3
4: r′ ← MaptoR/q(ev)
5: hr′ ← h · r′ ∈ R/q

6: c′ ← Round(hr′)
7: C ′ ← (c′, HashConfirm(r′, h))
8: return (C ′ == C)

? HashSession(1, r′, C)
: HashSession(0, ρ, C)

Switching the ring of an element. Decapsulation in Streamlined NTRU Prime needs to
map polynomials between R/q and R/3 as shown in line 2 and 4 of Algorithm 3. While
MaptoR/3 performs

cj = (aj mod ±q) mod ±3

for each coefficient, MaptoR/q performs

cj = (aj mod ±3) mod ±q,

which simply changes the ring of the arithmetic operations without changing the signed
representation of the coefficients.

Streamlined NTRU Prime utilizes the Fujisaki-Okamoto (FO) transformation [FO13] to
construct a CCA secure KEM. This transformation involves re-encryption of the decrypted
message to check if the ciphertext was correctly generated using the encryption algorithm.
This re-encryption can be seen in lines 5− 7 of Algorithm 3. The comparison with the
original ciphertext is performed in line 8 in Algorithm 3.

2.1.2 NTRU LPRime

NTRU LPRime (ntrulpr) has three layers:

• a perfectly correct randomized PKE as inner layer,

• a perfectly correct deterministic PKE as middle layer, and

• a perfectly correct KEM as outer layer.

6 Polynomial Multiplication in NTRU Prime

Table 2: Parameter sets of NTRU LPRime.
Scheme security level p q w δ τ0 τ1 τ2 τ3

ntrulpr653 2 653 4621 252 289 2175 113 2031 290
ntrulpr761 3 761 4591 250 292 2156 144 2007 287
ntrulpr857 4 857 5167 281 329 2433 101 2265 324

Algorithm 4 NTRU LPRime Key Generation: LPRKeyGen()
Output: (pk, sk) = ((S,A), (a, S,A, ρ)).
1: S

$← Seeds
2: G← Generator(S)
3: a

$← Short
4: aG← a ·G ∈ R/q

5: A← Round(aG)
6: ρ← Short
7: return (S,A, (a, S,A, ρ))

Algorithm 5 NTRU LPRime Encapsulation: LPREncap(S, A)
Input: pk = (S,A)
Output: C = (C, HashSession(1, r, C))
1: r

$← {0, 1}l
2: G← Generator(S)
3: b← HashShort(r)
4: bG← b ·G ∈ R/q
5: bA← b ·A ∈ R/q

6: c← Round(bG)
7: T ← Encode(bA, r)
8: C ← (c, T, HashConfirm(S,A))
9: return (C, HashSession(1, r, C))

Algorithm 6 NTRU LPRime Decapsulation: LPRDecap(C, (a, S, A, ρ))
Input: C = (c, T, γ), sk = (a, S,A, ρ)
Output: HashSession(1, r, C) if C ′ == C, otherwise HashSession(0, ρ, C).
1: aB ← a · c ∈ R/q
2: r′ ← Decode(aB, T)
3: G← Generator(S)
4: b′ ← HashShort(r′)
5: bG′ ← b′ ·G ∈ R/q
6: bA′ ← b′ ·A ∈ R/q

7: c′ ← Round(bG′)
8: T ′ ← Encode(bA′, r′)
9: C ′ ← (c′, T ′, HashConfirm(S,A))
10: return (C ′ == C)

? HashSession(1, r′, C)
: HashSession(0, ρ, C)

NTRU LPRime Core, the inner layer, has parameters (p, q, w, δ, I), where p and q
are prime numbers, w, δ, I are positive integers such that 2p ≥ 3w, I is a multiple
of 8, p ≥ 1, q ≤ 16w + 2δ + 3, and xp − x − 1 is irreducible in the polynomial ring
(Z/q)[x]/(xp−x−1). Additionally, NTRU LPRime uses a positive integer τ , a deterministic
algorithm Top : Z/q −→ Z/τ , and a deterministic algorithm Right : Z/τ −→ Z/q such
that the difference Right(Top(C))− C ∈ Z/q is in {0, 1, · · · , δ} for each C ∈ Z/q. Seeds
is a nonempty set. The parameter sets for NTRU LPRime are listed in Table 2. The
algorithms for key generation, encapsulation, and decapsulation of NTRU LPRime are
listed in Algorithms 4, 5, and 6.

Encoding and decoding bit strings to polynomials. Encapsulation and decapsulation of
NTRU LPRime need to encode bit strings to polynomials. The operation Encode is called
in the line 7 of Algorithm 5 and line 8 of Algorithm 6, while Decode is used only in line 2
of Algorithm 6. The Encode function encodes an I-size bit string r = (r0, r1, . . . , rI−1) to

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 7

a polynomial bA by performing the computation

Tj = Top(bAj + rj(q − 1)/2).

The Decode function generates a bit string from aB and T by computing

rj = Right(Tj)− aBj + 4ω + 1.

The NTRU LPRime scheme also uses an FO transformation for CCA security. The
re-encryption stage of this transformation can be seen in lines 3− 9 in Algorithm 6.

2.2 Number Theoretic Transform
As mentioned before, one popular method for implementing polynomial multiplication is to
apply a number theoretic transform (NTT) and point-wise multiplication. This approach
is very attractive, because it has quasi-linear complexity. The NTT x̂ of a vector x ∈ ZNq
is defined as

x̂k =
N−1∑
i=0

xiψ
ik, k ∈ {0, . . . , N − 1}

for an nth-root of unity ψ in Zq. Since this requires that an nth root of unity exists in Zq,
q is called an “NTT-friendly prime”, if Zq has an nth root of unity. This means that a
size-N NTT operation is equivalent to a matrix multiplication with an N × N matrix
A that consists of the coefficients ai,j = ψ(i−1)(j−1). A naive implementation, however,
will result in O(N2) complexity for the operation and result in no advantage over other
multiplication routines. A well known divide-and-conquer strategy exists for cases in which
N is not prime [CT65].

In such cases, the NTT operation can be realized by combining the results of N/p
smaller NTT operations on vectors of size p. These smallest NTT operations over vectors of
prime size are referred to as butterflies in the literature. This is due to the “butterfly-shape”
of diagrams mapping the signal flow in such operations. Because of this structure, the
immediate output x̂k of the algorithm appears in an order different from that of the input.
In the popular case of a transforms that only comprises radix-2 stages, the output is in
bit-reversed order compared to the input order (see Figure 1 for an example).

For the general case, one can define an index calculation function Rp1,...,pn for an NTT
using n layers with radix-pi on layer 1 ≤ i ≤ n in a recursive manner as Rp(k) = k for an
index k and

Rp1,...,pn−1,pn(k) =
(
k −

⌊
k

pn

⌋
pn

)
·
n∏
i=1

pi +Rp1,...,pn−1

(⌊
k

pn

⌋)
.

This can be used to express the output order of an NTT. For example, the “digit re-
versed” index permutation dr270 of a 270-NTT that applies one radix-2, three radix-3, and
finally one radix-5 stage can thus be expressed as

dr270 = [R2,3,3,3,5(0), R2,3,3,3,5(1), . . . , R2,3,3,3,5(269)].

For the application of the NTT, it is practical to reorder to the inputs of the trans-
formation in order to attain an output in normal order. If the transformation is used
for polynomial multiplication, the order of the output is irrelevant and the normal input
order can be used. In this case, the index permutation can be incorporated into the
inverse transform instead. For arithmetic in Zq, the possible input sizes are determined by
the prime factors of q − 1, as only nth roots of unity exist if n divides q − 1. This also
determines the radix-p stages that are applied when performing a given transform, but
not the order in which they are applied.

8 Polynomial Multiplication in NTRU Prime

x0=000b x̂0=000b

x1=001b x̂4=100b

x2=010b x̂2=010b

x3=011b x̂6=110b

x4=100b x̂1=001b

x5=101b x̂5=101b

x6=110b x̂3=011b

x7=111b x̂7=111b

Figure 1: Bit-reversed output order in a radix-2 NTT.

Although the NTT algorithm can work for any size, it can use recursive structures
when the size is a highly composite number, i.e., a power of a small prime. Below, we
describe two tricks to implement an NTT more efficiently when the size has a special form
that is not a power of a prime.

2.2.1 Rader’s Trick

In [Rad68], Rader proposed a method to compute a prime-size NTT for a prime p.
The method transforms the multiplication with the twiddle factors to a polynomial
multiplication of size p− 1. For a polynomial a =

∑p−1
i=0 aix

i, the coefficient aj in NTT
domain can be computed with x̂j =

∑p−1
i=0 aiψ

ij mod q, where ψ is a p-th root of unity
in Zq.

The first observation of [Rad68] is that the first coefficient x̂0 of the NTT can be
computed as the sum of the coefficients x̂0 =

∑p−1
i=0 xi. The second observation of the

paper is that x0 is always multiplied with 1 during the calculation of the other indices.
Thus, the calculation of the other indices takes the form

x̂j = x0 +
p−1∑
i=1

xiψ
ij . (1)

After moving x0 to the left hand side, the sum in Equation (1) becomes a multiplication
of p− 1 pairs of coefficients in Zq, but the order of the coefficients used would not form
a polynomial multiplication as desired. Rader proposed a permutation to transform the
sum into a polynomial multiplication modulo xp−1 − 1. The permutation uses the fact
that there is a number g in [0, p− 1] that can form a bijection from [1, p− 1] to [1, p− 1].
Using this, the index calculation function can be expressed as k = gi mod p. This changes
Equation (1) to

x̂gj mod p − x0 =
p−1∑
i=1

xgi mod pψ
gi+j mod p.

This technique is useful, especially for the implementation of mixed radix NTT, because
the butterfly operations are basically small prime-size NTTs — with the exception of the
radix-2 butterfly, where p − 1 = 1 and the required operation becomes simple integer
multiplication. Table 3 shows an example of this index permutation for p = 17 and g = 3.

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 9

Table 3: Rader’s permutation for p = 17 and g = 3.
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j 6 2 12 4 7 8 14 16 11 15 5 13 10 9 3 1

Table 4: Good’s permutation for size 12.
i 0 1 2 3 4 5 6 7 8 9 10 11
i0 0 1 2 0 1 2 0 1 2 0 1 2
i1 0 1 2 3 0 1 2 3 0 1 2 3

2.2.2 Good’s Trick

In [Goo51], Good proposed a method to perform a size-(p0 ·pk1) NTT as a combination of p0
size-pk1 NTTs where p0 and p1 are small prime numbers. This technique maps polynomial
multiplication in Zq[x]/(xp0·pk1 − 1) into its isomorphic ring Zq[y]/(yp0 − 1)[z]/(zpk1 − 1)
where x = yz. This also requires a permutation of the coefficients of the input polynomial.
Using the fact that p0 and pk1 are relatively prime, the index calculation

i = ((pk1)−1 mod p0) · pk1 · i0 + ((p0)−1 mod pk1) · p0 · i1

applies the CRT to obtain xi = yi0zi1 . As an example, the permutation of the indices for
an input of size 12 is given in Table 4.

We will use this trick for polynomials that have a degree less than half of the size
of the polynomial multiplication. Using the above permutation after zero-padding of a
polynomial of degree 5, the two-dimensional polynomial representation is

a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 = (a2z
2 + a5z)y2 + (a1z + a4)y + (a3z

3 + a0).

We explain the internals of this method for selected parameters in Section 3.1.

3 Approaches
In NIST’s post-quantum cryptography mailing list4, Bernstein shared cycle counts of an
NTRU Prime implementation on the Haswell architecture5. The software uses Good’s trick
with an additional CRT map as suggested in [Pol71]. The CRT map allows us to use a
modulus for coefficient-wise operations that is a product of two or more smaller, more NTT-
friendly primes. The implementation utilizes three multiplications in Z7681/(X512− 1) and
three multiplications in Z10753/(X512−1) together with Good’s trick to perform multiplica-
tion in Z7681/(X1536−1) and Z10753/(X1536−1), respectively. Finally, the implementation
computes coefficient-wise CRT to perform the multiplication in Z82593793/(X1536 − 1),
which is similar to the polynomial ring used in our implementation.

Bernstein’s method requires us to perform two NTT-based polynomial multiplications,
which is very suitable for the AVX2 vector extensions: The AVX2 extension has special
instructions for performing 16 multiplications of 16-bit inputs, i.e., VPMULLW and VPMULHW,
and Montgomery multiplication can be implemented very efficiently for 16 coefficients
in parallel. However, AVX2 does not have similar instructions for 32-bit integers. This
makes performing two polynomial multiplications with 16-bit base more efficient than one
polynomial multiplication with 32-bit base.

Although the Cortex-M4 architecture also has some special instructions for 16-bit
integers, most instructions operate on 32-bit integers. Hence, performing two polynomial

4https://groups.google.com/a/list.nist.gov/forum/#!msg/pqc-forum/XZomSSgV6g8/Eqvn1VdrAgAJ
5The code can be found at https://ntruprime.cr.yp.to/ntruprime-haswell-20190712.tar.gz.

https://groups.google.com/a/list.nist.gov/forum/#!msg/pqc-forum/XZomSSgV6g8/Eqvn1VdrAgAJ
https://ntruprime.cr.yp.to/ntruprime-haswell-20190712.tar.gz

10 Polynomial Multiplication in NTRU Prime

multiplications with smaller moduli is not an efficient choice on a Cortex-M4 processor.
Instead, we decided to use size 1536 NTTs, size 1620 NTTs, and size 1530 NTTs as
described in the following.

3.1 Products in Zq[x]/(x761 − x − 1) using Size 1536 NTT
For the NTRU Prime parameter sets sntrup761 and ntrulpr761, we have p = 761 and
q = 4591. On a first glance, it seems intuitive to use size 1536 = 29 · 3 NTTs for p = 761,
because that is the nearest “nice” number suitable for the NTT. But q = 4591 does not
have roots of order 1536. We can choose between the following options:

1. Interpose rings with roots of unity e.g. of order 64 (Schönhage/Nussbaumer), or

2. Switch to a NTT-friendly ring Zq′ , where 1536|(q′ − 1), q′ > 2 · 2295 · 1521, so that
the products in Z[x]/(x761 − x− 1) and in Zq′ [x]/(x761 − x− 1) coincide6 — we find
q′ = 6984193 = 4547 · 1536 + 1, or

3. Use two or more NTT-friendly moduli (e.g. 7681 and 10753) whose product is larger
than 2 · 2295 · (2 · 761− 1) as above, then assemble the results using the CRT (i.e.,
Bernstein’s approach).

Option 1 replaces multiplications with moves and additions/subtractions, which is
beneficial for platforms such as FPGAs, but not the Cortex-M4 with relatively cheap
multiplications. Option 3 would require to run the same size-1536 NTT multiple times,
while Option 2 runs it only once but with larger operands. In general on the Cortex-
M4 using the larger operand is better as long as it is feasible. The reason is that while
loads and additions/subtractions are up to twice as fast for the smaller operand size, the
multiplications are not. Therefore, an NTT modulo 7681 or 10753 (16-bit operands) does
not cost less than half of an NTT modulo 6984193 (32-bit operands).

Good’s trick. When using Option 2, we are performing multiplication in Zq′ [x]/(x1536−1).
There are three approaches to do an FFT multiplication of size 3 · 2k:

1. Standard Cooley-Tukey FFTs, including one radix-3 stage,

2. Incomplete NTTs, splitting down to degree-2 polynomials, followed by a point
multiplication stage modulo x3 − ψi for various powers of ψ, 2kth root of unity, and
then a matching incomplete inverse NTT, or

3. Good’s FFT trick [Goo51, Ber], where we set x = yw with y2k−1 = −1 = w2 + w.

When applying Good’s trick, each multiplicand f(x) ∈ Zq′ [x]/(x3·2k − 1) with deg f <
3 · 2k becomes a polynomial in Zq′ [y, w] with xi = yi mod 2kwi mod 3, with y-degree less
than 2k and w-degree less than 3. We may split it as f0(y) + wf1(y) + w2f2(y) with
fi(y) ∈ Zq′ [y]/(y2k − 1). The mapping from the array a[] representing

∑
0≤i<3·2k aix

i to
b[][] representing

∑2
i=0
∑2k−1
j=0 bi,jw

iyj may be referred to as Good’s permutation.
We follow with a size-2k FFT with respect to the variable y on each multiplicand, rep-

resented by three parallel size-2k NTTs. Then we do “point” multiplication by multiplying
together degree-2 polynomials in w modulo w3− 1, do an inverse size-2k FFT (represented
by three inverse NTTs), and then finally undo Good’s permutation.

The main implementation differences between Approaches 2 and 3 are:
6During NTRU Prime encapsulation and decapsulation, one multiplicand f is ternary and the other c has

input size between ±2295, and the largest possible magnitude of coefficients for a = fc ∈ Z[x]/(x761−x−1)
is a1 = (f0c1 + f1c0) + (f1c760 + f2c759 + · · ·+ f760c1) + (f2c760 + f3c759 + · · ·+ f760c2).

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 11

• In Good’s trick, the size-2k NTTs have operands continuous in memory (which may
allow to use multi-word memory access instructions); in an incomplete NTT, the
size-2k NTTs have their coefficients spaced three indices apart.

• In Good’s trick, point multiplications work with coefficients spaced 2k slots apart in
memory, but are modulo w3 − 1. In an incomplete NTT, point multiplications have
operands contiguous in memory, but are modulo x3 − ψi for different powers of ψ.

After applying Good’s trick, we may also perform a two-dimensional FFT on both
y and w, which would be three-fold parallel size-2k NTTs followed by 2k parallel size-3
NTTs. Then “point” multiplication would be just simple modular products, to be followed
by an inverse 2-dimensional FFT. This is better than Approach 1 in that in a complete
Cooley-Tukey FFT, after the initial radix-3 stage one would have to transform (“twist”)
two of the three degree < 2k polynomials from modulo x2k − ω3 and x2k − ω2

3 to modulo
x2k − 1 by multiplying each coefficient with a different root of unity for the same effect.

Note: Good’s trick is a general statement about a product of coprime groups giving
a tensor product of group rings. Given a root of unity of order 3 · 2k, multiplication of
degree-2 polynomials may be done using size-3 NTTs, but mostly we just need a root of
order 2k. A significant advantage is that Good’s permutation can usually be achieved “for
free” by careful rearrangement of loops and index variables.

3.2 Products in Zq[x]/(x761 − x − 1) using Size 1620 NTT
The multiplication of two elements in Zq[x]/(x761 − x− 1) will result in polynomials of
degree at most 1520 if it is performed in Zq[x]. One can facilitate this multiplication using
an incomplete size 1620 NTT in a manner similar to the polynomial multiplication of
Kyber v2 [ABD+19] as described in [BKS19]. Instead of applying the NTT to all of the
coefficients fi of a polynomial f , effectively six transforms are used on 270 coefficients at a
time. The transformed 1620 coefficients are viewed in 270 groups of 6 (or polynomials of
degree 5) as

NTT (f)(k) = f̂ (k) = (f̂6k, f̂6k+1, f̂6k+2, f̂6k+3, f̂6k+4, f̂6k+5).

Polynomial multiplication using this incomplete NTT requires that the point-wise
multiplication of these polynomials f̂ (k) is performed in a different ring Zq[x]/(x6+ψdr270(k)

270)
for each coefficient. After applying the six inverse transforms on the product, the resulting
polynomial can be projected from Zq[x] to Zq[x]/(x761−x−1). The choice for an incomplete
NTT in Kyber v2 was motivated by a change of the underlying field that did no longer
include 512th roots of unity. We implemented this approach because it is more generic
allowing code generation for an NTT without hand-optimized large-radix butterflies.

3.3 Products in Zq[x]/(x761 − x − 1) using Size 1530 NTT
One can also implement a size-1530 NTT for q = 4591, since 4591 ≡ 1 mod 1530. Al-
though this would be also a mixed-radix implementation, it would require bigger butterfly
operations, e.g., radix-17 butterfly. The components of a size-1530 NTT multiplication are
radix-17 butterfly, radix-5 butterfly, radix-3 butterfly and radix-2 butterfly. Note that each
butterfly should be performed twice forward and once backward, so there is less and less
benefit to perform butterflies in the last several stages than just performing multiplication
of small degree polynomials. Hence we decided to perform multiplications of degree-9
polynomials rather than performing radix-2 and radix-5 butterflies. As a result, we chose
to use another incomplete NTT for the size-1530 NTT, and perform a radix-17 butterfly
followed by two radix-3 butterflies for each of the two input polynomials. Then, the
multiplication requires to perform 153 point-wise multiplications of degree-9 polynomials
in different rings.

12 Polynomial Multiplication in NTRU Prime

Algorithm 7 Signed Barrett reduction us-
ing β = 232.
Input: a
Output: reduced a
1: smmulr t, a, q−1 . t←

⌊ ((a·q−1)+231)
232

⌋
2: mls a, t, q, a . a← a− t · q

Algorithm 8 32-bit Montgomery multiplier
using R = 232, q · q−1 ≡ 1 mod R.
Input: a, b
Output: chigh ← a · b mod q
1: smull clow, chigh, a, b . c← a · b
2: mul t, clow, q−1 . t← c · q−1 mod R
3: smlal clow, chigh, t, q . c← t · q

4 Implementation
In this section, we discuss the implementation of our approaches for polynomial multipli-
cation in NTRU Prime. We integrated our optimizations into the existing state-of-the-art
Cortex-M4 implementation of NTRU Prime in the pqm4 project to be able to directly
compare our improvements to this implementation. We avoided to use secret dependent
branches, and use Barrett and Montgomery modular reductions to ensure the running
time is independent from secrets.

Two-cycle Barrett reduction. When implementing Barrett reduction for signed integers,
the output of the procedure often has some bias in its sign. For example, for any q, 32-bit
Barrett reduction can be implemented as

a mod q ≡ a−
(⌊

(a · β)
232

⌋
· q
)

where β = b 232

q c. Thus, this algorithm cannot reduce numbers between q and t = 232

β .
Actually it can be seen that for t′ = t− q the output of the Barrett reduction would be in
(−k · t′, q + (k · t′)). The factor k is determined by the input size of the reduction. t′ can
be decreased by rounding the result of the division by β to the nearest integer. Computing
β with ceiling changes the sign of the output range, thus the reduction outputs are more
likely going to be negative numbers. Usually these are the only two options to tune the
output of the Barrett reduction when integers are used.

However, the ARM Cortex-M4 architecture has an extension for rounding the high bits
of the multiplication results, which can be used to reduce the output size. This instruction
adds 231 to the result of the multiplication of two 32-bit integers and returns the most
significant 32-bits of the result. Thus, the output of the Barrett reduction is similarly
distributed over positive and negative numbers, i.e., its output range is (− q+kt′

2 , q+kt′
2).

Our two-cycle implementation7 of Barrett reduction can be seen in Algorithm 7.

32-bit Montgomery multiplier. While the 32-bit Barrett reduction would be enough for
a 16-bit modulus, the output range of the reduction would be bigger than the modulus
when it is also 32-bit. Thus, the two-cycle Barrett reduction is not an efficient choice
for implementing Good’s trick. However, the Cortex-M4 architecture has also extended
multiplication instructions for 32-bit full multiplication preferably accompanied with 64-bit
addition. Hence, one can implement a three-cycle Montgomery multiplication for 32-bit
integers as in Algorithm 8.

The first split in the polynomial. The CRT map starts with Zq/(XN − 1) and splits it
into two small polynomials as Zq/(X

N
2 − 1)× Zq/(X

N
2 + 1). The operations during the

7We can easily substitute −q−1 and mla (multiply-add) for q−1 and mls (multiply-subtract).

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 13

first layer of the NTT can be simply interpreted as reducing the input polynomial modulo
(X N

2 − 1) and (X N
2 + 1).

The mixed-radix NTT starts with the original order of the input polynomial and the
size of the NTT defined as bigger than twice the degree of the input polynomial. Therefore,
we do not need to perform any polynomial reduction during the first layer of the NTT.

Good’s trick needs a reordering of the input polynomial to perform three small NTTs.
Although the size of the multiplication is bigger than twice the degree of the input
polynomial, one needs to consider the inputs of the small NTTs. The reordering process
simply distributes the low degree coefficients of the input polynomials to the low degree
coefficients of each input of the NTTs. Thus, the first layers of all three NTTs can also be
omitted.

Using NTT-based multiplication in NTRU Prime. The most obvious optimization for
NTT-based multiplications is to keep polynomials in NTT domain whenever this is possible.
Although the secret and public keys can be also kept in NTT domain, our implementation
needs at least double-sized arrays to represent polynomials in NTT domain. Therefore, we
only used this optimization inside of the low-level operations. NTRU Prime has such a
case only in the encryption process: The polynomial b used in bG (line 4) and bA (line 5)
in Algorithm 5. Thus, we transform b only once and use the result in NTT domain for the
two multiplications.

Floating point registers. Microcontrollers of the ARM Cortex-M4 family have only 14
available general purpose registers, which might cause some additional memory operations
during NTT computations for register spills. Although our implementation does not make
use of floating-point operations, there are 32 single-precision floating-point registers. Those
registers can be used to store commonly used variables to avoid memory-load and -store
operations. Instead, a vmov instruction is used to transfer data to and from a floating-point
register, which only takes one cycle in each direction. Another use of those registers is to
temporarily store the content of the stack pointer and the link pointer in order to make all
integer registers available for calculations.

4.1 Implementation of Good’s Trick for Size 1536 = 3 · 29

Conceptually, using Good’s trick to multiply is first to copy each multiplicand to a
temporary array and perform Good’s permutation followed by three simultaneous NTTs.
Then we do “point multiplication” as the small convolutions modulo x3 − 1. Finally,
we do three inverse NTTs, the inverse of Good’s permutation, and reductions modulo
q′ = 6984193, q = 4591 and then x761 − x− 1. In detail, the implementation is as follows:

• We first apply Good’s permutation combined with the initial three NTT levels: If
input and temporary arrays are in[] and out[] respectively, we can write Good’s
permutation as in[1024i+ 513j mod 1536] 7→ out[i][j] via the CRT.
We take the 8 positions out[i][j], out[i][j+64], . . . , out[i][j+448], load corresponding
entries from the input array, and compute the initial levels 0, 1, 2 of the NTT. Since
out[i][j] and out[i][j+256] correspond to entries that are 768 indices apart in the in[]
array, at least one starts the NTT as zero. Therefore, for the NTT at level 0 we only
need at most four loads of entries (spaced 192 apart) and some negations. However,
negations cost nothing, because, as shown in Algorithm 9 and Algorithm 10, the
radix-2 butterfly and negated radix-2 butterfly cost exactly same number of cycles.
We trace the signs and the numbers as in Figure 2 to handle negations and such
that for a small input, when multiplied to a root, we use mul and not Montgomery’s
multiplication, which saves two instructions each time.

14 Polynomial Multiplication in NTRU Prime

Algorithm 9 Radix-2 butterfly.
Input: a, b
Output: a+ b, a− b
1: add a, a, b . a← a+ b
2: sub b, a, b, LSL#1 . b← a− 2b

Algorithm 10 Negative radix-2 butterfly.
Input: a, b
Output: −a+ b,−a− b
1: rsb a, a, b . a← b− a
2: sub b, a, b, LSL#1 . b← a− 2b

c3

c579

x

c195

x

x

c387

x

c3

c579

c387

c195

(c3)

(c579)

(−c387)

(c195)

◦

◦

◦

◦

◦

◦

◦

◦

◦ c3 + c387 + c579 + c195

◦ c3 + c387 − (c579 + c195)

◦ c3 − c387 + (c579 − c195)ψ4

◦ c3 − c387 − (c579 − c195)ψ4

◦ c3 − c387ψ4 + (c579 + c195ψ4)ψ8

◦ c3 − c387ψ4 − (c579 + c195ψ4)ψ8

◦ c3 + c387ψ4 + (c579 − c195ψ4)ψ3
8

◦ c3 + c387ψ4 − (c579 − c195ψ4)ψ3
8

(a) Case with 4 zeros (I).

x

c123

c699

x

c312

x

x

c507

c312

c123

c699

c507

(−c312)

(c123)

(c699)

(−c507)

◦

◦

◦

◦

◦

◦

◦

◦

◦ c312 + c699 + c123 + c507

◦ c312 + c699 − (c123 + c507)

◦ c312 − c699 + (c123 − c507)ψ4

◦ c312 − c699 − (c123 − c507)ψ4

◦ −c312 + c699ψ4 + (c123 − c507ψ4)ψ8

◦ −c312 + c699ψ4 − (c123 − c507ψ4)ψ8

◦ −c312 − c699ψ4 + (c123 + c507ψ4)ψ3
8

◦ −c312 − c699ψ4 − (c123 + c507ψ4)ψ3
8

(b) Case with 4 zeros (II).

c512

x

c129

c705

x

c321

x

x

c512

c321

c129

c705

(c512)

(−c321)

(c129)

(c705)

◦

◦

◦

◦

◦

◦

◦

◦

◦ c512 + c129 + c321 + c705

◦ c512 + c129 − (c321 + c705)

◦ c512 − c129 + (c321 − c705)ψ4

◦ c512 − c129 − (c321 − c705)ψ4

◦ c512 + c129ψ4 + (c321 + c705ψ4)ψ8

◦ c512 + c129ψ4 − (c321 + c705ψ4)ψ8

◦ c512 − c129ψ4 + (c321 − c705ψ4)ψ3
8

◦ c512 − c129ψ4 − (c321 − c705ψ4)ψ3
8

(c) Case with 4 zeros (III).

c570

x

c186

x

x

c378

x

x

c570

c378

c186

x

(c570)

(−c378)

(c186)

x

◦

◦

◦

(c378)

◦

(−c378)

◦

(−c378)

◦ c570 + c186 + c378

◦ c570 + c186 − c378

◦ c570 − c186 + c378ψ4

◦ c570 − c186 − c378ψ4

◦ c570 + c186ψ4 + c378ψ8

◦ c570 + c186ψ4 − c378ψ8

◦ c570 − c186ψ4 + c378ψ3
8

◦ c570 − c186ψ4 − c378ψ3
8

(d) Case with 5 zeros.

Figure 2: Goods permutation plus the initial rounds.

• For the next three rounds (3, 4, 5) of the NTT, we note that the first eighth (the
modulo x64 − 1 component) uses the same three roots as the previous three layers
and we can handle this separately. For the other seven eighths, we do an outer
loop, vldm (floating point register load multiple) seven roots, do inner the loop for
eight sets of entries (spaced 8 apart) and unroll the code in the out[0], out[1], out[2]
direction, so that we never need to re-vldm the roots.

• For the last three rounds (6, 7, 8) of the NTT, we vldm seven roots 64 times and
unroll again in the direction of out[0], out[1], out[2]. The vldm costs 8 cycles for
seven loads, and we vmov (floating point register move) in those seven values three
times each for a total of 29 cycles. Loading each root separately would be 42 cycles.

• We do Cooley-Tukey butterflies, computing (a, b) 7→ (a+wb, a−wb) by first computing
wb via Montgomery multiplication with w′ = 232w mod q′ as in Algorithm 8 and
then add-subtract (a, ωb). This can be done in place in only two instructions. The
convolution modulo x3−1 is shown in Algorithm 12 using the preparation of registers
for Montgomery multiplication from Algorithm 11.

• The inverse NTT also uses Cooley-Tukey butterflies and proceeds almost exactly as
above in three rounds of three levels each, except that the indices are permuted, a
different roots table is required, and of course level 0 is nontrivial.

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 15

Algorithm 11 Preparation of registers for Montgomery multiplication.
Input: two register names (R, R′)
Output: setMM(R, R′), or: R = 926273535 := −1/q′ mod 232, R′ = q′ = 6984193

Algorithm 12 Convolution modulo x3 − 1 with Montgomery reduction.
Input: {A, B}, where A and B are both 3 × 512 matrices
Output: (Y0, Y1, Y2) = (A0·B0+A1·B2+A2·B1, A0·B1+A1·B0+A2·B2, A0·B2+A1·B1+A2·B0)
1: setMM(r2, r3) . prepare r2, r3 for Montgomery multiplication
2: smull lower, temp2, A0, B0
3: smlal lower, temp2, A1, B2
4: smlal lower, temp2, A2, B1
5: mul temp1, lower, r2
6: smlal lower, temp2, temp1, r3 . temp2 = A0B0 + A1B2 + A2B1
7: smull lower, upper, A1, B0
8: smlal lower, upper, A0, B1
9: smlal lower, upper, A2, B2
10: mul temp1, lower, r2
11: smlal lower, upper, temp1, r3 . upper = A1B0 + A0B1 + A2B2
12: smull lower, A1, A1, B1
13: smlal lower, A1, A0, B2
14: smlal lower, A1, A2, B0
15: mul temp1, lower, r2
16: smlal lower, A1, temp1, r3 . A1 = A1B1 + A0B2 + A2B0
17: store temp2, upper, A1 and repeat 512 times (unrolling by 8)
18: . rearranged for reducing code size

Algorithms 15 and 16 in Appendix A show assembler code for Cooley-Tukey NTT with
three layers and the central loop for reduction to Z4591[x]/〈x761 − x− 1〉.

4.2 Implementation of Mixed-Radix NTT Multiplication
The size N of a complete NTT has to divide q − 1 = 4590 = 2 · 33 · 5 · 17 such that an
N -th root of unity exists in Zq. Since the implementation should avoid any polynomial
reduction, a natural N would be 2 · 32 · 5 · 17 = 1530 > 2p. One visible drawback is the
need to implement a radix-17 NTT or butterfly. Another is that every other parameter
set would need to be implemented separately, potentially with butterflies with even larger
radixes and even more complex implementations. Alternatively, a smaller N can be chosen,
with fewer or no large butterflies, if an incomplete mixed-radix NTT is implemented.

Choices. We provide two mixed-radix implementations in our work:

1. We implemented size N = 270 = 2 · 33 · 5 FFTs involving one radix-2 stage, three
radix-3 stages, and one radix-5 stage. To use this for multiplication, we need
270k ≥ 2p − 1 = 1521, and we see that the smallest k = 6. So the length of
our incomplete NTT is 1620. After such an incomplete NTT, component-wise
multiplication is not in Zq but in Zq[X]/(X6 − ψi270).

2. We implemented a length-1530 incomplete mixed-radix NTT (Appendix B).

16 Polynomial Multiplication in NTRU Prime

a+ b+ c

(a+ bψ1
3 + cψ2

3)ψin

(a+ bψ2
3 + cψ1

3)ψ2i
nc

b

a a+ bψjn + cψ2j
n

a+ bψ
n
3 +j
n + cψ

2(n3 +j)
n

a+ bψ
2n
3 +j
n + cψ

n
3 +2j
n

c

b

a

Figure 3: Radix-3 butterfly diagrams for Gentleman-Sande (left) and Cooley-Tukey (right).

a+ b

(a− b)ψinb

a

a+ b+ c+ d+ e

(a+ bψ1
5 + cψ2

5 + dψ3
5 + eψ4

5)ψiN

(a+ bψ2
5 + cψ4

5 + dψ3
5 + eψ1

5)ψ2i
N

(a+ bψ3
5 + cψ1

5 + dψ4
5 + eψ2

5)ψ3i
N

(a+ bψ4
5 + cψ3

5 + dψ2
5 + eψ1

5)ψ4i
Ne

d

c

b

a

Figure 4: Radix-2 and radix-5 Gentleman-Sande butterfly diagrams.

For a mixed-radix NTT implementation, Cooley-Tukey and Gentlemen-Sande butterfly
operations can be used as demonstrated in Figure 3. On the one hand, the Gentlemen-
Sande butterfly needs to transform all polynomials to (Xd − 1) after each CRT layer, i.e.,
we need to evaluate the polynomial (X N

2 + 1) with N
2 -th root of −1 after the first CRT

split. On the other hand, the Cooley-Tukey butterflies needs different powers of the n-th
root of unity to compute each output of the butterfly operations.

The Cooley-Tukey butterfly can be optimized with the observation that ψ
n
3
n = ψ3.

Thus, multiplication with ψjn and ψ2j
n can be moved to the beginning of the butterfly

computations to have the same type of multiplication as the Gentlemen-Sande butterfly.
However, we would still need to perform modular reduction for the first output more often
than with the Gentlemen-Sande butterfly. Hence, we decided to implement Gentlemen-
Sande butterflies to optimize register usage and performance of each butterfly operation
for the incomplete mixed-radix NTT Option 1, e.g. the implementation which comprises
only small radixes. But the radix-17 implementation requires a sum of 17 variables for
the first output, thus Gentlemen-Sande butterfly also requires modular reduction for all
of its output. Therefore, we decided to implement Cooley-Tukey butterflies to combine
all multiplications with Rader’s trick for the incomplete mixed-radix Option 2. The
ARM Cortex-M4 architecture has special instructions (smlad(x), smuad(x), smlsd(x),
smusd(x)) that can perform two 16-bit signed multiplications plus one or two 32-bit
addition/subtractions in one cycle. Thus the Cooley-Tukey type butterfly can compute
each output in one cycle for radix-3 as in Gentlemen-Sande type butterfly before the
modular reductions. In our implementation Option 1, in addition to radix-3 butterflies
(see Figure 3), we also needed radix-2 and radix-5 butterflies as shown in Figure 4. On
the other hand, in the implementation Option 2, we need Cooley-Tukey version of radix-3
from Figure 3 together with the radix-17 implementation described in Appendix B.

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 17

Algorithm 13 Radix-3 butterfly w = ψ2
3 ||ψ3.

Input: a0, a1,2 = a2||a1 where ψ3 3rd root of unity, t0 = 0x00010001
Output: reduced a0 = a0 + a1 + a2, a1,2 = a0 + ψ2

3 · a1 + ψ3 · a2||a0 + ψ3 · a1 + ψ2
3 · a2

1: smlad t0, a1,2, t0, a0 . t0 ← a0 + a1 + a2
2: smlad t1, a1,2, w, a0 . t1 ← a0 + ψ3 · a1 + ψ2

3 · a2
3: smladx t2, a1,2, w, a0 . t2 ← a0 + ψ2

3 · a1 + ψ3 · a2
4: smmulr t, t0, q−1 . reduce t0
5: mls a0, t, q, t0
6: smmulr t, t1, q−1 . reduce t1
7: mls t1, t, q, t1
8: smmulr t, t2, q−1 . reduce t2
9: mls t2, t, q, t2
10: pkhbt a1,2, t1, t2, LSL#16 . a1,2 ← t2||t1

Implementation of radix-3 and radix-5 butterflies. Since the smlad/smladx instructions
perform very similar computations as required for the radix-3 and radix-5 butterflies, we
packed the inputs of the butterflies to be able to use these instructions. Algorithm 13
shows that the radix-3 butterfly operation takes only three cycles when it is possible to
omit modular reductions. Note that t1 and t2 must be multiplied with some powers of ψn
to compute the actual output of the butterfly.

Radix-5 butterflies involve more computation, but still benefit from the smlad instruc-
tion. Even without any reduction operations, the butterfly operation in Algorithm 14
involves ten smlad instructions to compute intermediate results. Another optimization
would be to pack odd and even powers of ψ5 into separated registers, but the low number
of available registers prevents this optimization on the Cortex-M4. Hence, we opted for
packing these values during the butterfly operation.

Implementation of radix-17 butterfly. The radix-17 butterfly can be seen as a size-17
NTT. Thus, Rader’s trick can be applied to transform it into a polynomial multiplication
in Zq/(X16−1). Since 2−1 exists modulo q, CRT can be used to split the ring as Zq/(X8−
1)×Zq/(X8 + 1). One can also use CRT for the Zq/(X8−1) = Zq/(X4−1)×Zq/(X4 + 1)
to reduce the size of the multiplication even further. Note that using CRT for Zq/(X8 + 1)
requires

√
−1 modulo q, which does not exist for q = 4591. After the above CRT map, we

perform two 4-by-4 and an 8-by-8 polynomial multiplications to apply Rader’s trick. We
describe the implementation of the radix-17 butterfly in more detail in Appendix B.

Base multiplication for degree-5 polynomials. The final component-wise multiplication
becomes a multiplication in Zq/(X6−ψi270). We implemented this using a O(n2) schoolbook
multiplication routine. Similar to the radix-5 butterfly operation, multiplications for even
and odd indices of the output are combined together. The even indices require an even
number of multiplications with ψi270. Thus, they can be packed together to use the smladx
instruction. We compute the odd indexed coefficients of a · b where a = a0 + a1x+ a2x

2 +
a3x

3 + a4x
4 + a5x

5 and b = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5, then compute the even
indexed coefficients by transforming a to a′ = a5ψ

i
270 + a0x+ a1x

2 + a2x
3 + a3x

4 + a4x
5

and then compute the odd indices of a′ · b.

Merging layers in mixed-radix NTT. Merging the radix-p1 and radix-p2 butterfly layers
involves p1 · p2 coefficients. Although we can use 32-bit registers, our butterfly implemen-
tations above make use of 16-bit multiplications. In addition to this, we can only allow
the coefficients to grow to 12 times the input size before performing a modular reduction.
Considering the number of available registers, we can therefore not merge a radix-3 and

18 Polynomial Multiplication in NTRU Prime

Algorithm 14 Radix-5 butterfly w0 = ψ2
5 ||ψ5 and w1 = ψ4

5 ||ψ3
5 .

Input: a0, a1,2 = a2||a1, a3,4 = a4||a3 where ψ5 = fifth root of unity
Output: reduced

a0 = t1 = a0+ a1+ a2+ a3+ a4

a1 = t2 = a0+ ψ5 · a1+ ψ2
5 · a2+ ψ3

5 · a3+ ψ4
5 · a4

a4 = t3 = a0+ ψ4
5 · a1+ ψ3

5 · a2+ ψ2
5 · a3+ ψ5 · a4

a2 = t4 = a0+ ψ2
5 · a1+ ψ4

5 · a2+ ψ5 · a3+ ψ3
5 · a4

a3 = t5 = a0+ ψ3
5 · a1+ ψ5 · a2+ ψ4

5 · a3+ ψ2
5 · a4

1: mov t0,#65537
2: smlad t1, a1,2, t0, a0 . t1 ← a0 + a1 + a2
3: smlad t1, a3,4, t0, t1 . t1 ← t1 + a3 + a4
4: smlad t2, a1,2, w0, a0 . t2 ← a0 + ψ5 · a1 + ψ2

5 · a2
5: smlad t2, a3,4, w1, t2 . t2 ← t2 + ψ3

5 · a3 + ψ4
5 · a4

6: smladx t3, a1,2, w1, a0 . t3 ← a0 + ψ4
5 · a1 + ψ3

5 · a2
7: smladx t3, a3,4, w0, t3 . t3 ← t3 + ψ2

3 · a3 + ψ3 · a4
8: pkhbt w2, w0, w1, LSL#16 . w2 ← ψ3

5 ||ψ5
9: pkhtb w3, w1, w0, ASR#16 . w3 ← ψ4

5 ||ψ2
5

10: smlad t4, a1,2, w3, a0 . t4 ← a0 + ψ2
5 · a1 + ψ4

5 · a2
11: smlad t4, a3,4, w2, t4 . t4 ← t4 + ψ5 · a3 + ψ3

5 · a4
12: smladx t5, a1,2, w2, a0 . t5 ← a0 + ψ3

5 · a1 + ψ5 · a2
13: smladx t5, a3,4, w3, t5 . t5 ← t5 + ψ4

3 · a3 + ψ2
3 · a4

14: Plus reduction and packing as in Algorithm 13.

a radix-5 butterfly. In our implementation, we have one radix-2, three radix-3, and one
radix-5 layer. Hence, the only way to merge layers is merging the radix-2 and one radix-3
layer, as well as merging the other two radix-3 layers together.

5 Evaluation
The pqm4 framework provides an infrastructure for measuring the execution time of
cryptographic primitives on a Cortex-M4 microprocessor. The framework measures the
number of cycles required for key generation, key encapsulation, and key decapsulation.
Furthermore, the framework also provides an infrastructure to measure the stack memory
used by different implementations.

We compare our results with implementations provided by the pqm4 project. The
current state-of-the-art implementation of NTRU Prime for Cortex-M4 by Yang et al.8
(referred to as “Toom-Cook”) is using Toom-Cook multiplication and has been part of the
pqm4 library since April 20209 as mentioned in Section 1.

The cycle counts of the different optimized implementations of polynomial multipli-
cation are shown in Table 5. When compared to the Toom-Cook implementation, our
implementation using Good’s trick and the first mixed-radix implementation are 30% faster.
The second and more generic mixed-radix implementation is 17% faster. All implementa-
tions provide a special NTT version for polynomials with coefficients in [−1, 0, 1]. Thus,
the cycle counts provided for the NTT are an average of an NTT with input coefficients
modulo q and with sparse inputs where non-zero coefficients can be only ±1.

8https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/FHAMYa-m2hY
9https://github.com/mupq/pqm4/ commit e1c6949eafbf7d93

https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/FHAMYa-m2hY
https://github.com/mupq/pqm4/

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 19

Table 5: Cycle counts for operations during polynomial multiplication.
Mult. Toom-Cooka Good’s Trickb Mixed Radix (1)b Mixed Radix (2)b"
NTT — 42 937 c 37 810 c 50 992 c

Basemul — 13 583 25 641 18 717
invNTT — 59 850 51 045 64 450
Polymul 223 871 159 176 152 177 185 010

a
https://github.com/mupq/pqm4/, commit e1c6949eafbf7d93. b Our work. c Averaging 2 NTTs.

Table 6: Cycle count and memory use comparison. G: Keygen, E: Encaps, D: Decaps.
Toom-Cooka Good’s Trickb Mixed Radix (1)b Mixed Radix (2)b

ntrulpr761 Speed (cycles)
G: 823 655 G: 735 168 G: 731 301 G: 760 947
E: 1 309 214 E: 1 110 628 E: 1 101 938 E: 1 153 722
D: 1 491 900 D: 1 214 546 D: 1 199 460 D: 1 284 253

ntrulpr761 Memory (byte)
G: 28 468 G: 19 356 G: 13 392 G: 13 752
E: 34 740 E: 32 288 E: 23 000 E: 23 536
D: 39 700 D: 35 048 D: 31 880 D: 32 776

sntrup761 Speed (cycles)
G: 10 901 785 G: 10 787 337 G: 10 777 811 G: 10 808 526
E: 789 442 E: 701 612 E: 694 000 E: 726 930
D: 742 182 D: 586 244 D: 571 895 D: 637 286

sntrup761 Memory (byte)
G: 66 100 G: 61 460 G: 66 156 G: 66 428
E: 28 612 E: 19 516 E: 13 560 E: 13 912
D: 31 452 D: 23 148 D: 18 504 D: 18 872

a
https://github.com/mupq/pqm4/, commit e1c6949eafbf7d93. b Our work.

In Table 6, we provide high-level cycle counts for the main operations of NTRU
Prime as well as the stack usage of our implementations compared to the Toom-Cook
implementation, which contains assembly-optimized implementations of selected functions
in the NTRU-Prime scheme. It provides Toom-Cook based polynomial multiplication in
both R/q and R/3. In our implementation, we only optimized the multiplication operation
for polynomials in R/q. Although multiplication in R/3 can also use our implementations
with a similar approach as described in Section 3.1, it has small coefficients as inputs. The
implementation in the Toom-Cook version is optimized in a way that reduces computational
overhead based on this property, while NTT based multiplication brings additional modular
reductions in selected moduli. Hence we used the existing polynomial multiplication in R/3
from the Toom-Cook version.

Unlike other lattice-based schemes such as Kyber [BKS19], NTRU Prime is computa-
tionally intensive and the time spent in the generation of random bit strings (measured
as “hashing” in the pqm4 library) takes only around 20% of the total running time for
ntrulpr761 and only 1% for sntrup761 instead of more than 54% for Kyber. Although the
generation of random bit strings takes a small fraction of the running time of the scheme,
the most computing intensive operations are integer sorting and polynomial inversion,
but not basic arithmetic operations. The effect of this can be seen in the key-generation
operation of sntrup761, which computes two polynomial inversions in addition to integer
sorting used to randomly shuffle indices of polynomials that are part of the secret key.

Although the Toom-Cook implementation uses an efficient inversion algorithm proposed

https://github.com/mupq/pqm4/
https://github.com/mupq/pqm4/

20 Polynomial Multiplication in NTRU Prime

by Bernstein and Yang in [BY19], the key generation still is dominated by the time spent
on the generation of polynomials instead arithmetic operations on them. As a result, our
implementations show less than 1% speed-up during key generation (G) of sntrup761, while
our implementations show improvements for encapsulation (E) and decapsulation (D)
respectively of E: 10% and D: 22% using Good’s trick or mixed radix implementation of
size 1530 NTT as well as E: 5% and D: 10% using the size 1620 mixed radix version.

The ntrulpr761 key generation requires no polynomial inversion. Thus, we are able to
see the effect of our implementations better in this scheme. Our versions using Good’s
trick and mixed radix (1) have G: 10%, E: 15%, and D: 20% speed improvements in key
generation, encapsulation, and decapsulation respectively compared to the Toom-Cook
based implementation. Furthermore, the mixed radix (2) implementation has a speed-up
of G: 5%, E: 10%, and D: 11% for the same operations.

Since, except for polynomial multiplication, we mostly used existing code from the
Toom-Cook implementation, the differences in the cycle counts of the key generation
in ntrulpr761 are exactly the difference of the polynomial multiplication between our
implementations and the Toom-Cook version. The encapsulation primitive in ntrulpr761
requires two multiplications with a common multiplier and thus the difference is as big
as the difference of two polynomial multiplications plus the time spent for one NTT.
Because decapsulation uses encapsulation as a part of the Fujisaki-Okamoto transform,
the difference can be calculated in a similar fashion.

6 Conclusion
In this paper, we present three efficient and constant-time implementations of the two
NTRU Prime schemes Streamlined NTRU Prime and NTRU LPRime. Considering the
parameter sets of NTRU Prime with p = 761 and q = 4591, our implementation using
Good’s trick overall has slightly better performance when comparing with the mixed-radix
version but requires 32-bit multipliers and noticeably more memory, which might be an
issue on constrained devices or platforms like Cortex-M3-based platforms that have no
constant-time 32-bit multiplier. The mixed-radix version has very close performance and
it requires less memory as well as it can be implemented with smaller multipliers.

Another difference of our three implementation approaches is their applicability. Our
fast mixed-radix implementation is mostly parameter-set specific and it requires a new
design for other parameters of NTRU Prime. The version using Good’s trick can be used
for more than one parameter set of NTRU Prime when the selected q′ and N1 cover the
full multiplication for the target polynomial. For example, NTRU Prime has another
parameter set with p = 653 and q = 4621. Using a similar calculation as described in
Section 3.1 with q′ = 6984193, which is larger than 4 ·2310 ·653 = 6033720, and N1 = 1536,
which is larger than 2 · 653, one can see that almost the same implementation can be
used for this parameter set by only changing the last polynomial reduction. However, the
mixed-radix version for the same polynomial with q−1 = 4620 = 22 ·3 ·5 ·7 ·11 will require
more adjustments since the q is different. Although Good’s trick has more flexibility, the
third parameter set of NTRU Prime needs different choices for q′ and N1 and therefore a
new implementation is required to apply this approach.

As a result, we recommend to use Good’s trick for larger systems, e.g., CPU’s with vector
extensions, or for supporting more than one parameter set to reduce engineering effort.
Furthermore, we recommend to use the mixed-radix version for smaller microcontrollers,
FPGA implementations, and hardware accelerators, where only small multipliers are
available, and for finite-field instruction-set extensions using small multipliers as discussed
in [AEL+20]. Both approaches presented in this paper are suitable for other NTRU Prime
parameter sets. Since Good’s trick would also work for mixed-radix NTT, it would be
interesting to combine the two techniques in the mixed-radix approach.

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 21

Acknowledgements
This research work has been partly funded by the German Federal Ministry of Education
and Research and the Hessen State Ministry for Higher Education, Research and the
Arts within their joint support of the National Research Center for Applied Cybersecurity
ATHENE and by the German Federal Ministry of Education and Research under the
project “QuantumRISC” (ID 16KIS1033K) [Qua20]. The work of Erdem Alkim was
partially carried out during his tenure of the ERCIM ‘Alain Bensoussan’ Fellowship
Programme. Taiwanese authors were supported by Taiwan Ministry of Science and
Technology Grants 108-2221-E-001-008 and 109-2221-E-001-009-MY3, Sinica Investigator
Award AS-IA-109-M01, Executive Yuan Data Safety and Talent Cultivation Project (AS-
KPQ-109-DSTCP).

References
[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehle. CRYSTALS-Kyber–algorithm specifications and supporting documen-
tation. NIST Technical Report, 2019.

[AEL+20] Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen, and Richard
Petri. ISA extensions for finite field arithmetic: Accelerating Kyber and
NewHope on RISC-V. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020(3):219–242, 2020.

[ARM14] ARM. ARM v7-M architecture reference manual. https://documentation-
service.arm.com/static/5f2820003951795e690a8114, 2014.

[BCLvV17] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine
van Vredendaal. NTRU prime: Reducing attack surface at low cost. In Carlisle
Adams and Jan Camenisch, editors, Selected Areas in Cryptography – SAC
2017, volume 10719 of LNCS, pages 235–260. Springer, 2017.

[BCLvV19] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine
van Vredendaal. NTRU Prime: round 2. Submission to the NIST PQC
standardization process, url: https://ntruprime.cr.yp.to/, 2019.

[Ber] Daniel J. Bernstein. Multidigit multiplication for mathematicians. http:
//cr.yp.to/papers.html#m3.

[BKS19] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-efficient
high-speed implementation of Kyber on Cortex-M4. In Johannes Buchmann,
Abderrahmane Nitaj, and Tajje-eddine Rachidi, editors, Progress in Cryptology
– AFRICACRYPT 2019, volume 11627 of LNCS, pages 209–228. Springer,
2019.

[BY19] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation
and modular inversion. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(3):340–398, 2019.

[CDG+19] Hao Cheng, Daniel Dinu, Johann Großschädl, Peter B. Rønne, and Peter Y. A.
Ryan. A lightweight implementation of NTRU Prime for the post-quantum
internet of things. In Maryline Laurent and Thanassis Giannetsos, editors,
Information Security Theory and Practice – WISTP 2019, volume 12024 of
LNCS, pages 103–119. Springer, 2019.

https://documentation-service.arm.com/static/5f2820003951795e690a8114
https://documentation-service.arm.com/static/5f2820003951795e690a8114
https://ntruprime.cr.yp.to/
http://cr.yp.to/papers.html#m3
http://cr.yp.to/papers.html#m3

22 Polynomial Multiplication in NTRU Prime

[CGRR19] Hao Cheng, Johann Großschädl, Peter B. Rønne, and Peter Y. A. Ryan. A
lightweight implementation of NTRUEncrypt for 8-bit AVR microcontrollers.
In Second PQC Standardization Conference, University of California, Santa
Barbara, USA, 2019.

[CT65] James W. Cooley and JohnW. Tukey. An algorithm for the machine calculation
of complex Fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[DWZ18] Wei Dai, William Whyte, and Zhenfei Zhang. Optimizing polynomial convo-
lution for NTRUEncrypt. IEEE Trans. Computers, 67(11):1572–1583, 2018.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. Journal of Cryptology, 26(1):80–101, 2013.

[Goo51] Irving J. Good. Random motion on a finite abelian group. Proceedings of the
Cambridge Philosophical Society, 47:756–762, 1951. MR 13,363e.

[HRSS17] Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe.
High-speed key encapsulation from NTRU. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems – CHES
2017, volume 10529 of LNCS, pages 232–252. Springer, 2017.

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and benchmarking NIST PQC on ARM Cortex-M4. Cryptology
ePrint Archive, Report 2019/844, 2019.

[LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: truly fast NTRU using
NTT. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2019(3):180–201, 2019.

[MKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.
Time-memory trade-off in Toom-Cook multiplication: an application to
module-lattice based cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(2):222–244, 2020.

[Pol71] John M. Pollard. The fast Fourier transform in a finite field. Mathematics of
computation, 25(114):365–374, 1971.

[Qua20] QuantumRISC. QuantumRISC — Next Generation Cryptography for Embed-
ded Systems. https://www.quantumrisc.org/, 2020.

[Rad68] Charles M. Rader. Discrete fourier transforms when the number of data
samples is prime. Proceedings of the IEEE, 56(6):1107–1108, 1968.

https://www.quantumrisc.org/

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 23

Appendix

A Algorithms

Algorithm 15 Cooley-Tukey NTT with three layers. Note: The code for small inputs
has no Montgomery in Layer 1 and in some part of Layer 2.
Input: {a0, . . . , a7}, {ω′0, . . . , ω′6} where ω′i =

(
232ωi mod q′

)
each in a float register

Output: {a′′′0 , . . . , a
′′′
7 } where

a′′′0 = a′′0 + ω3a
′′
1

a′′′1 = a′′0 − ω3a
′′
1

a′′′2 = a′′2 + ω4a
′′
3

a′′′3 = a′′2 − ω4a
′′
3

a′′′4 = a′′4 + ω5a
′′
5

a′′′5 = a′′4 − ω5a
′′
5

a′′′6 = a′′6 + ω6a
′′
7

a′′′7 = a′′6 − ω6a
′′
7

←−

a′′0 = a′0 + ω1a
′
2

a′′2 = a′0 − ω1a
′
2

a′′1 = a′1 + ω1a
′
3

a′′3 = a′1 − ω1a
′
3

a′′4 = a′4 + ω2a
′
6

a′′6 = a′4 − ω2a
′
6

a′′5 = a′5 + ω2a
′
7

a′′7 = a′5 − ω2a
′
7

←−

a′0 = a0 + ω0a4

a′4 = a0 − ω0a4

a′1 = a1 + ω0a5

a′5 = a1 − ω0a5

a′2 = a2 + ω0a6

a′6 = a2 − ω0a6

a′3 = a3 + ω0a7

a′7 = a3 − ω0a7

1: (r4, . . . , r11) = (a0, . . . , a7)
2: setMM(r3, r2) . prepare r3, r2 for Montgomery multiplication
3: vmov r1 = ω′0 . butterflies (r4↔ r8), (r5↔ r9), (r6↔ r10), (r7↔ r11) below
4: smull r12, r8, r8, r1
5: mul r14, r12, r3
6: smlal r12, r8, r14, r2 . r8 = ω0a4
7: smull r12, r9, r9, r1
8: mul r14, r12, r3
9: smlal r12, r9, r14, r2 . r9 = ω0a5

10: smull r12, r10, r10, r1
11: mul r14, r12, r3
12: smlal r12, r10, r14, r2 . r10 = ω0a6
13: smull r12, r11, r11, r1
14: mul r14, r12, r3
15: smlal r12, r11, r14, r2 . r11 = ω0a7
16: add r4, r8 . r4 = a0 + ω0a4
17: add r5, r9 . r5 = a1 + ω0a5
18: add r6, r10 . r6 = a2 + ω0a6
19: add r7, r11 . r7 = a3 + ω0a7
20: sub r8, r4, r8, lsl #1 . r8 = a0 − ω0a4
21: sub r9, r5, r9, lsl #1 . r9 = a1 − ω0a5
22: sub r10, r6, r10, lsl #1 . r10 = a2 − ω0a6
23: sub r11, r7, r11, lsl #1 . r11 = a3 − ω0a7
24: vmov r1 = ω′1 then repeat for butterflies (r4↔ r6), (r5↔ r7)
25: vmov r1 = ω′2 then repeat for butterflies (r8↔ r10), (r9↔ r11)
26: vmov r1 = ω′3 then repeat for butterfly (r4↔ r5)
27: vmov r1 = ω′4 then repeat for butterfly (r6↔ r7)
28: vmov r1 = ω′5 then repeat for butterfly (r8↔ r9)
29: vmov r1 = ω′6 then repeat for butterfly (r10↔ r11)
30: . rearranged for reducing code size,
31: . if ω = ±1 then no multiplications

24 Polynomial Multiplication in NTRU Prime

Algorithm 16 Central Loop to reduce to F4591[x]/〈x761 − x− 1〉 and to pack the result.
Input: {ai, . . . , ai+5} ∪ {ai+760, . . . , ai+766}
Output: {a′i+1||a′i, a′i+3||a′i+2, a

′
i+5||a′i+4} where

a′i = (ai + ai+760 + ai+761)/512 mod 4591,
a′i+1 = (ai+1 + ai+761 + ai+762)/512 mod 4591
a′i+2 = (ai+2 + ai+762 + ai+763)/512 mod 4591,
a′i+3 = (ai+3 + ai+763 + ai+764)/512 mod 4591
a′i+4 = (ai+4 + ai+764 + ai+765)/512 mod 4591,
a′i+5 = (ai+5 + ai+765 + ai+766)/512 mod 4591

1: r1 = (232)2/512 mod 4591
2: . Calculate r4 = a′i+1||a′i using (r4, r5, r10, r7, r8) while doing setMM(r6, r7)
3: (r4, r5, r10, r7, r8) = (ai, ai+1, ai+760, ai+761, ai+762)
4: add, r4, r10
5: add, r4, r7 . r4 = ai + ai+760 + ai+761
6: add, r5, r7
7: add, r5, r8 . r5 = ai+1 + ai+761 + ai+762
8: setMM(r6, r7)
9: smull r10, r4, r4, r1
10: mul r14, r10, r6
11: smlal r10, r4, r14, r7 . r4 = [(ai + ai+760 + ai+761)/512]mod6984193
12: smull r10, r5, r5, r1
13: mul r14, r10, r6
14: smlal r10, r5, r14, r7 . r5 = [(ai+1 + ai+761 + ai+762)/512]mod6984193
15: vmov r14, s13 . r14 = q′

2 , s13 containing q′

2
16: cmp r4, r14
17: it gt
18: subgt r4, r11 . if r4 > q′

2 then r4− =q′
19: cmn r4, r14
20: it lt
21: addlt r4, r11 . if r4 < − q

′

2 then r4+ =q′
22: cmp r5, r14
23: it gt
24: subgt r5, r11 . if r5 > q′

2 then r5− =q′
25: cmn r5, r14
26: it lt
27: addlt r5, r11 . if r5 < − q

′

2 then r5+ =q′
28: smmulr r14, r4, r12
29: mls r4, r14, r11, r4 . r4 = a′i
30: smmulr r14, r5, r12
31: mls r5, r14, r11, r5 . r5 = a′i+1
32: pkhbt r4, r4, r5, lsl #16 . r4 = a′i+1||a′i
33: Repeat to calculate r5 = a′i+3||a′i+2 using (r5, r6, r8, r7, r9), doing setMM(r7, r8)
34: Repeat to calculate r6 = a′i+5||a′i+4 using (r6, r7, r9, r8, r10), doing setMM(r8, r9)
35: . head and tail cases are handled separately

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 25

B Radix-17 Butterfly and Size-1530 Incomplete NTT
By Rader’s trick, we can rearrange the coefficients fi of a polynomial f and the indices
of the 17th-root of unity ψk to compute the discrete Fourier transform (DFT) Fj with a
cyclic convolution and some additions. The order of fi and ψk is

f̂ = (f11, f15, f5, f13, f10, f9, f3, f1, f6, f2, f12, f4, f7, f8, f14, f16)

ψ̂ = (ψ1, ψ3, ψ9, ψ10, ψ13, ψ5, ψ15, ψ11, ψ16, ψ14, ψ8, ψ7, ψ4, ψ12, ψ2, ψ6).
The cyclic convolution can be viewed as performing a polynomial multiplication f̂ ∗ ψ̂

in Zq[x]/(x16 − 1). By using the FFT trick, we implement the efficient polynomial
multiplication and get F̂j , which are the points of DFT minus f0 as

F̂j = Fj − f0 =
16∑
i=1

fiψ
ij , j ∈ {1, ..., 16}

with order (F̂14, F̂8, F̂7, F̂4, F̂12, F̂2, F̂6, F̂1, F̂3, F̂9, F̂10, F̂13, F̂5, F̂15, F̂11, F̂16).
We can obtain Fj by adding a 16-dimensional vector x̄ to the result above with

x̄ = (xi), where xi = f0 for i ∈ {1, ..., 16}.

Finally, we calculate F0 =
∑16
i=0 fi and we get all the points of a DFT. That is how we

do a radix-17 FFT. During the forward radix-17 NTT, also, we only need to load the first
8 or 9 coefficients into registers just as in Section 4.

We can further apply CRT to reduce the multiplications needed (cf. Section 2.2.1). After
we apply the CR map of (x16 − 1) to (x8 − 1) ∗ (x8 + 1) and (x8 − 1) to (x4 − 1) ∗ (x4 + 1),
we just need to do 96 multiplication operations for two 4-by-4 and one 8-by-8 polynomial
convolutions.

In using the CRT to compute convolutions (P0(x) mod (x8 − 1), P1(x) mod (x8 + 1))
and converting back to mod(x16 − 1) to a result g, we have to multiply by 2−1 twice since

g = 2−1(P0(x) + P1(x)) + [2−1(P0(x)− P1(x))]x8,

P0(x) = (f̂0(x) + f̂1(x)) ∗ (ψ̂0(x) + ψ̂1(x))
P1(x) = (f̂0(x)− f̂1(x)) ∗ (ψ̂0(x)− ψ̂1(x)).

Since ψ̂’s are known, we can multiply by 2−1 in advance, store the intermediate result
and get the same final result without those multiplications as

g = P̂0(x) + P̂1(x) + (P̂0(x)− P̂1(x))x8,

P̂0(x) = 2−1P0(x) = (f̂0(x) + f̂1(x)) ∗
(

2−1(ψ̂0(x) + ψ̂1(x))
)

P̂1(x) = 2−1P1(x) = (f̂0(x)− f̂1(x)) ∗
(

2−1(ψ̂0(x)− ψ̂1(x)))
)
.

The same technique is also applied in mapping (x4 − 1) ∗ (x4 + 1) to (x8 − 1).
Since the smlad(x) and smlsd(x) instructions perform two 16-bit multiplications

and two 32-bit additions/substractions in one cycle, we can fit the 96 multiplications
into 48 instructions plus some add/substract operations to apply the CRT-map back to
(x16 − 1). This is why we can perform a very efficient radix-17 butterfly on the Cortex-M4
architecture.

If A(x) =
∑1529
i=0 aix

j is a polynomial in a ring Zq[x]/(x1530 − 1), we may use radix-
17 butterflies and the CRT to map the A(x) to the 17 degree-89 polynomials Bi(x) =∑89

j=0 bi_jx
j , i ∈ {0, . . . , 16}, where Bi(x) = A(x) mod (x90 − ψi). We can now view∑16

i=0 a90ix
i as a degree-16 polynomial and apply radix-17 FFT to get all the constant

terms of the 17 polynomials Bi, then the same for
∑16
i=0 a90i+1x

i to get the linear term of
the Bi’s, and so on with all 1530 points in 90 radix-NTT’s.

26 Polynomial Multiplication in NTRU Prime

a0 a1 a2 a3

b0

b1

b2

b3

red: smuad(x) or smlad(x)

black: smlabb/smlatt

or smulbb/smultt

(a) 4 × 4 product

00 01 02 03 04 05 06 07 08 09 10 11

00

01

02

03

04

05

06

07

08

09

10

11

Ciphertext

Coefficients

Secret-Key

Coefficients

1 2

3

4

5

6

7

8 9

(b) Toy example of Snakelike Hybrid Multiplication

B.1 Radix-3 butterfly stages and Base Multiplication
After performing the radix-17 butterfly, we do two radix-3 butterflies (merged). Then
there are 153 point-wise multiplications of degree-9 polynomials. The 153 point-wise
multiplications are performed in different rings Zq[x]/(x10 − ψi), so we have to hold
different ψi for each point-wise multiplication. The implementation of the radix-3 butterfly
is the same as the one mentioned for length-1620 incomplete NTT. The polynomial
multiplications in different rings are simple schoolbook multiplications with Montgomery
modular multiplication to save one register compared to Barrett reduction.

C The sntrup761 Polynomial Multiplications on pqm4

The sntrup761 code on the pqm4 Github repository [KRSS19], commit e1c6949eafbf7d93,
adopts a single/two-level Toom-4 over a 4m-by-4m hybrid multiplication for its polynomial
multiplications over Z/4591Z. We describe this hybrid multiplication and the assembly-
level optimizations in this Toom-4 implementation. Each coefficient is of 16 bits unless
otherwise specified.

Hybrid Multiplication. sntrup761 uses a snakelike hybrid multiplication. The building
block is a four-by-four product. In Figure 5a, a0, a1, a2, a3 are four consecutive coefficients
(in ascending order of degree) from one input polynomial, and b0, b1, b2, b3 from the other.
(a0, a1), (a2, a3), (b0, b1), (b2, b3) together occupy four registers. This product leads to
seven (partial) products, each of which occupies one register to avoid overflow. This
building block is optimal in size since ARM Cortex-M4 has 14 general-purpose registers,
and so far 11 of them are in use.

Instructions smuad(x)/smlad(x) completes two 16-bit multiplications and one/two
32-bit additions at once [ARM14]. Therefore, we should replace as many smulbb/smultt
and smlabb/smlatt with these SIMD instructions as possible. Figure 5a shows the
optimal arrangement: six SIMD instructions and four normal multiplications/multiply-
and-accumulates. To summarize, an independent building block needs four ldr, one pkhbt,
ten multiplication instructions, seven 32-bit modular reductions, and seven str.

To facilitate the understanding of the snakelike hybrid multiplication, Figure 5b presents
a 12-by-12 toy example. It contains nine building blocks, and the labels indicate the

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 27

Figure 6: Inverse interpolation matrix.

order that the hybrid multiplication follows to visit each block. Based on this order
and the diagonal each block lies on, the toy example corresponds to a tuple of tuples
((1), (2, 3), (4, 5, 6), (7, 8), (9)). Now each building block is no longer independent: Take
(2, 3) and (4, 5, 6) as an example. Block 3 should add its output coefficients to those
of Block 2, Block 5 to those of Block 4, and Block 6 to those of Block 4 plus Block 5.
Furthermore, Block 4 should add its three lowest-order output coefficients to the three
highest-order output coefficients of Block 2 plus Block 3.

Notice also through this example, that the hybrid multiplication only stores the output
coefficients when it goes through a child tuple, and that the hybrid multiplication only
stores the three lowest-order output coefficients from that child tuple (if the first building
block is Block 9, then the three highest-order). Finally, the reason behind the snakelike
pattern is to reuse the four input coefficients on the same side and save two load operations
when switching between child tuples.

Toom-4 Optimizations. Here the discussion focuses on the Toom-specific optimization
techniques. Common techniques like instruction alignment, consecutive load/store, the
use of floating-point registers, etc. are out of scope. However, developers should still keep
both kinds of optimization techniques in mind.

Most of the optimizations are about the evaluation and interpolation arithmetics. Since
some essential sntrup761 polynomial multiplications deal with an R/4591 input and a
Short input, there are two different ways to implement fast evaluation arithmetics. In
contrast, the results from the lower-level polynomial multiplications are so general that we
consider them R/4591 elements regardless of the input coefficient types. Thus, the inter-
polation arithmetics are always the same. The sntrup761 Toom-4 evaluates its inputs at
0,±1,±2,+1/2,∞ and employs the inverse matrix multiplication for interpolation, because
on ARM Cortex-M4, most if not all arithmetic operations cost one clock cycle [ARM14].

Algorithm 17 describes the Short input evaluation. It needs no modular reductions
because Short polynomials are ternary. The evaluation could then prepare three bit masks
in registers and left-shift two input coefficients in one instruction. However, this is not
the case for the R/4591 input evaluation. It needs modular reductions whenever overflow
could occur in the worst-case scenario. Therefore, the evaluation has to keep the modular
reduction constants in registers, and there is no space for the three handy bit masks. As
shown in Algorithm 18, the R/4591 input evaluation left-shifts two input coefficients with
lsl and bfc.

The interpolation packs as many columns of the inverse matrix as possible and uses
smuad(x)/smlad(x) to reduce the cycle count. Figure 6 points out that at least one column
could not be packed due to the odd number of columns, and the interpolation should
isolate the sparsest column. A radical technique to optimize the interpolation is to identify
the identical entries in the inverse matrix and reduce the required movw during column
packing.

28 Polynomial Multiplication in NTRU Prime

Algorithm 17 The Short Input Evaluation: the 768-by-768 Toom-4
Inputs: a pointer to the Short input r2 and a pointer to the evaluation result r0
Settings: r1← 0xFFFEFFFF, r3← 0xFFFCFFFF, r4← 0xFFF8FFFF
1: ldr.w r8, [r2, #1152] . D = (D0, D1): input coefficients of degrees 576, · · · , 767
2: ldr.w r7, [r2, #384] . B = (B0, B1): input coefficients of degrees 192, · · · , 383
3: ldr.w r6, [r2, #768] . C = (C0, C1): input coefficients of degrees 384, · · · , 575
4: ldr.w r5, [r2], #4 . A = (A0, A1): input coefficients of degrees 000, · · · , 191
5: and.w r9, r1, r7, lsl #1 . B × 2
6: and.w r10, r4, r8, lsl #3 . D × 8
7: sadd16.w r9, r9, r10 . B × 2 +D × 8
8: and.w r10, r3, r6, lsl #2 . C × 4
9: sadd16.w r10, r10, r5 . A+ C × 4
10: sadd16.w r11, r10, r9 . eval @ 2: A+B × 2 + C × 4 +D × 8
11: ssub16.w r10, r10, r9 . eval @ −2: A−B × 2 + C × 4−D × 8
12: and.w r9, r4, r5, lsl #3 . A× 8
13: and.w r12, r1, r6, lsl #1 . C × 2
14: sadd16.w r9, r9, r12 . A× 8 + C × 2
15: sadd16.w r5, r5, r6 . A+ C
16: and.w r12, r3, r7, lsl #2 . B × 4
17: sadd16.w r12, r12, r8 . B × 4 +D
18: sadd16.w r7, r7, r8 . B +D
19: sadd16.w r9, r9, r12 . eval @ 1/2: A× 8 +B × 4 + C × 2 +D
20: ssub16.w r8, r5, r7 . eval @ −1: A−B + C −D
21: sadd16.w r7, r5, r7 . eval @ 1: A+B + C +D
22: Store r7, · · · , r11 to the array indicated by r0 . the five pairs of evaluation results

Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih, Wälde, Yang 29

Algorithm 18 The R/4591 Input Evaluation: the 768-by-768 Toom-4 (I/O omitted)
1: lsl.w r9, r7, #1
2: lsl.w r10, r8, #3
3: bfc.w r9, #16, #1 . B × 2
4: bfc.w r10, #16, #3 . D × 8
5: sadd16.w r9, r9, r10 . B × 2 +D × 8
6: Apply 2x16-bit Barrett reduction to r9
7: lsl.w r10, r6, #2
8: bfc.w r10, #16, #2 . C × 4
9: sadd16.w r10, r10, r5 . A+ C × 4
10: sadd16.w r11, r10, r9 . eval @ 2: A+B × 2 + C × 4 +D × 8
11: ssub16.w r10, r10, r9 . eval @ −2: A−B × 2 + C × 4−D × 8
12: Apply 2x16-bit Barrett reduction to r11
13: Apply 2x16-bit Barrett reduction to r10
14: lsl.w r9, r5, #3
15: lsl.w r12, r6, #1
16: bfc.w r9, #16, #3 . A× 8
17: bfc.w r12, #16, #1 . C × 2
18: sadd16.w r9, r9, r12 . A× 8 + C × 2
19: sadd16.w r5, r5, r6 . A+ C
20: Apply 2x16-bit Barrett reduction to r9
21: lsl.w r12, r7, #2
22: bfc.w r12, #16, #2 . B × 4
23: sadd16.w r12, r12, r8 . B × 4 +D
24: sadd16.w r7, r7, r8 . B +D
25: sadd16.w r9, r9, r12 . eval @ 1/2: A× 8 +B × 4 + C × 2 +D
26: Apply 2x16-bit Barrett reduction to r9
27: ssub16.w r8, r5, r7 . eval @ −1: A−B + C −D
28: sadd16.w r7, r5, r7 . eval @ 1: A+B + C +D
29: Apply 2x16-bit Barrett reduction to r8
30: Apply 2x16-bit Barrett reduction to r7

	Introduction
	Preliminaries
	NTRU Prime
	Number Theoretic Transform

	Approaches
	Products in Zq[x]/(x761-x-1) using Size 1536 NTT
	Products in Zq[x]/(x761-x-1) using Size 1620 NTT
	Products in Zq[x]/(x761-x-1) using Size 1530 NTT

	Implementation
	Implementation of Good's Trick for Size 1536=3 29
	Implementation of Mixed-Radix NTT Multiplication

	Evaluation
	Conclusion
	Algorithms
	Radix-17 Butterfly and Size-1530 Incomplete NTT
	Radix-3 butterfly stages and Base Multiplication

	The sntrup761 Polynomial Multiplications on pqm4

