Algebraic Key-Recovery Attacks on
Reduced-Round Xoofff

Tingting Cuil:2, Lorenzo Grassi?
! Hangzhou Dianzi University, Hangzhou, 310018, China
2 Digital Security Group, Radboud University, Nijmegen, The Netherlands
Tingting.Cui@ru.nl, l.grassi@science.ru.nl

Abstract. Farfalle, a permutation-based construction for building a
pseudorandom function (PRF), is really versatile. It can be used for
message authentication code, stream cipher, key derivation function, au-
thenticated encryption and so on. Farfalle construction relies on a set
of permutations and on so-called rolling functions: it can be split into a
compression layer followed by a two-step expansion layer.

As one instance of Farfalle, Xoofff is very efficient on a wide range of
platforms from low-end devices to high-end processors by combining the
narrow permutation Xoodoo and the inherent parallelism of Farfalle.
In this paper, we present key-recovery attacks on reduced-round Xoofff.
After identifying a weakness in the expanding rolling function, we first
propose practical attacks on Xoofff instantiated with 1-/2-round Xoodoo
in the expansion layer. We next extend such attack on Xoofff instanti-
ated with 3-/4-round Xoodoo in the expansion layer by making use of
Meet-in-the-Middle algebraic attacks and the linearization technique. All
attacks proposed here — which are independent of the details of the com-
pression and/or middle layer — have been practically verified (either on
the “real” Xoofff or on a toy-version Xoofff with block-size of 96 bits).
As a countermeasure, we discuss how to slightly modified the rolling
function for free to reduce the number of attackable rounds.

Keywords: Farfalle, Xoofff, Xoodoo, Key-Recovery Attacks

1 Introduction

Farfalle is an efficiently parallelizable permutation-based construction of a vari-
able input and output length pseudorandom function (PRF) proposed by Bertoni
et al. in [2]. It can be seen as the parallelizable counterpart for sponge-based cryp-
tography [4, 6] and duplex constructions [5], which are inherently serial. Similar
to sponges, Farfalle is built upon a (composite) primitive and modes on top of
it. This primitive is a pseudorandom function (PRF) that takes as input a key
and a string (or a sequence of strings), and produces an arbitrary-length output.
Its construction involves two basic ingredients: a set of permutations of a b-bit
state, and a family of so-called rolling functions used to derive distinct b-bit
mask values from a b-bit secret key. The Farfalle construction consists of a com-
pression layer followed by an expansion layer. The compression layer produces a

single b-bit accumulator value from a tuple of b-bit blocks representing the input
data. The expansion layer first (non-linearly) transforms the accumulator value
into a b-bit rolling state. Then, it (non-linearly) transforms a tuple of variants
of this rolling state — produced by iterating the rolling function — into a tuple
of (truncated) b-bit output blocks. Both the compression and expansion layers
involve b-bit mask values derived from the key by the key derivation part of the
construction.

A first efficient instantiation of the Farfalle construction named Kravatte is
specified in [2,3]. The underlying components are a set of 6-round Keccak-p
permutations of a b = 1600-bit state. In general, Kravatte is very fast on a wide
range of platforms, but there are some exceptions due to the large width of
the permutation. For this reason, in [9, 8] the authors considered instantiating
Farfalle with a narrow permutation, yet larger than 256 bits. In there, they
propose Xoodoo, a 384-bit permutation with the same width and objectives as
Gimli [1].

In this paper, we focus on the deck function Xoofff [9, 8], an instance of Far-
falle instantiated with Xoodoo. Here we present key-recovery attacks on Xoofff
when it is instantiated with round-reduced Xoodoo in the expansion layer (al-
most all attacks that we are going to present are independent of the details
of the compression/middle layer). Roughly speaking, several strategies can be
exploited to set up an attack on a Farfalle scheme:

— working both on the inputs and outputs, one strategy aims to recover the
key (input and output mask) by exploiting the relation between them (as in
every classical cipher);

— working only on the inputs, one strategy aims to find a pair of inputs which
“collide” (that is, that have the same value) before the middle compression
function with a probability greater than the birthday-bound one;

— finally, working only on the outputs, one strategy aims to exploit the fact
that several outputs are generated from the same unknown input (namely,
the output of the middle part) to find the output mask (related to the key),
and hence break the scheme.

In this paper, we focus on the last attack strategy. Our results are summarized
in Table 1.

1.1 State of the Art

To the best of our knowledge, there is only one key-recovery attack [7] on a
Farfalle construction published in the literature. It is an attack on the first
version of Kravatte, which differs from the current one for the following facts:
(1) the expansion rolling function (namely, the function that maps the output
of the middle part to the inputs of the expansion part) was linear and (2) the
number of rounds in both of the compression and of the expansion part were
only 4 instead of 6.

Two out of the three attacks presented in [7] focus only on the expansion
part (they are independent of the compression and of the middle phase), and

Table 1. Key-recovery attacks against Xoofff instantiations for several (nc,nq,ne)
values. All attacks are independent of the initial rolling function. We recall that this is a
known “output-blocks” attack (namely, the attacker only knows the outputs: she cannot
choose them — it is not required to know the input). The computational complexity is
measured in number of “elementary operations”.

Type Rounds: Data Time Memory| Ref.
(nc,ng,ne) |(known outputs) (elementary op.) (bits)

MitM (any, any, 1) 15 2135 - Sect. 3

MitM (any, any, 2) 73 2185 212 Sect. 4
Linearization + MitM | (any, any, 2) 12 228.75 2192 |GQect. 5.2
Linearization + MitM | (any, any, 3) o117 254.6 2364 ISect. 5.3
Linearization + MitM | (any, any, 4) 2289 21062 2708 ISect. 5.3
Higher-order + Interp.| (any, 4, 4) 2752 2901 259 [14]
Higher-order + Interp.| (any, 6, 2) 2742 2904 268 [14]
Higher-order + Interp.|(any, 7,9 —) 21004 21063 2708 App. E

they heavily exploit both the facts that the rolling function is linear and the
degree is not high (due to the small number of rounds). Such attacks are the
Meet-in-the-Middle (MitM) algebraic attack and the linearization attack:

— in the first case, the idea is to construct a set of equations that describes
the final expansion phase. The rolling state and the output masking key are
the unknowns of an algebraic system built by forming expressions of the
same intermediate state, either by a forward computation from the rolling
state, or by a backward computation from the output. The expansion linear
mechanism makes it possible to collect enough equations to solve the system
by linearization;

— in the second case, the attack exploits the fact that the sequence generated
by the linear rolling function (assimilated to a short LFSR state) satisfies a
linear recurrence of order far smaller than what is expected from the size of
the state.

The third (and last) attack presented in [7] targets both the middle and the
expansion part: by exploiting the property of the compression layer, an adversary
can construct simple structures of 2" n-block input values whose images after
the compression layer form an affine subspace of dimension n of {0, 1}*. This fact
can be exploited to set up a higher-order differential attack [11]: since a single
round of Kravatte has algebraic degree 2, the algebraic degree after r rounds is
upper bounded by 2". Hence, given a subspace of dimension n, it is possible to
cover (with a zero-sum) at most r rounds of the middle/expansion part if 2" < n.
The final masking key is derived by inverting the last rounds of the expansion
layer, exploiting the fact that each round is a permutation.

After these attacks, the designers of Kravatte updated their designs (1) by
increasing the number of rounds of the compression and expansion phases and (2)
by replacing the rolling function for the expansion phase with a non-linear one.

In this way, both the two attacks just recalled can be prevented: e.g., in the first
case, the output states of the expanding rolling functions are not related any-
more by simple linear relations. This fact has an impact on the complexity of the
attacks (and on the number of attackable rounds), since both the degree grows
faster and since the attacker cannot collect for free enough algebraic equations
that describe the system.

For completeness, we finally mention that a zero-sum distinguisher on the full
Xoodoo permutation has been recently presented in [13]. Moreover, the higher-
order attack presented in [7] has been re-considered in [14], where the authors
apply the same strategy to several schemes including Xoofff.

1.2 Owur Contribution

In this paper, we re-consider the Meet-in-the-Middle algebraic attacks presented
on the first version of Kravatte to break Xoofff (instantiated with round-reduced
Xoodoo in the expansion part).

To prevent the attacks presented in the first version of Kravatte, the design-
ers of Xoofff defined the expanding rolling function via a non-linear function
(namely, a NLFSR). Informally, such rolling function has been chosen to guar-
antee that

1. the degree and number of monomials in this ANF grows sufficiently with the
number of iterations;

2. it must have the fewest number of fixed points (namely, cycles of length one)
and — more generally — short cycles.

In principle, this should prevent possible weaknesses as the ones exploited in the
first version of Kravatte. As shown below, this is not completely the case.

Symmetry Property of the State Rolling Function. As our first contribution, we
show that a weakness is actually present in the chosen expanding rolling function.
Each internal state of Xoofff in F32*4*3 can be represented as a cube with 32
layers, where each layer is composed of 4 columns and 3 rows. We denote by
S3 the state obtained by applying three times the (expanding) rolling function
on a state S: we found that part of the state S is equal to part of the state
S. In other words, for each layer, three columns of S have the same values of
three columns in S? (hence the existence of a linear relation between part of the
state S and part of the state S3). Since several operations in the Xoodoo round
function works at the column level, such property partially survives after one
round for “free”.

Key-Recovery Attacks on Xoofff. As our second contribution, we show how to
exploit such fact to set up Meet-in-the-Middle algebraic attacks similar to the one
presented in Kravatte [7]. In particular, the idea is to set up algebraic equations
that cover the final expansion part of Xoofff, where both the rolling state and
the output masking key are the unknowns of such algebraic system. By making

use of the linear relations at the inputs of the expansion part (equivalently, at
the outputs of the rolling function), we show how to cancel the variables that
describe the unknown rolling state S for “free” (similar to what done in the
case of a linear rolling function). In order to cover the highest possible number
of rounds, we also exploit the low-degree of the y~! function (namely, the non-
linear function) of Xoodoo: w.r.t. the Keccak x function used in Kravatte (whose
inverse has degree 3), the degree of ! function used in Xoodoo is only 2. The
system of equations is then solved via the linearization approach. As a result,
we present an attack on Xoofff in the case in which the final expansion part is
composed of 4 out of 6 rounds. All our attacks has been practically verified®.

Countermeasures. Finally, we show a possible way to modify the rolling func-
tion so as to prevent the weakness previously described: we emphasize that the
proposed modification does not influence the number of operations required to
compute Xoofff (namely, the number of XORs and ANDs are unchanged).

Outline. In Sect. 2, the specification of Farfalle construction and Xoofff is briefly
introduced. Then in Sect. 3 - 4, we propose the practical key-recovery attacks on
Xoofff with reduced 1-/2-round Xoodoo respectively, while in Sect. 5 we propose
MitM algebraic key-recover attacks on Xoofff with reduce 3-/4-round Xoodoo.
At last, we discuss a possible way to fix the weakness in the expanding rolling
function (for “free”) in Sect. 6.

2 Preliminaries

In this section, we briefly recall the description of the permutation-based mode
Farfalle and its instantiation Xoofff (based on the permutation Xoodoo). Next,
we recall the basic idea of the linearization attack, which we exploit to break
Xoofff instantiated with 3-/4-round Xoodoo in the expansion part.

2.1 Farfalle Construction

Farfalle [2] is composed of four permutations py, pe, pa, Pe of a n-bit block and
two rolling functions roll. and roll., depicted as in Figure 1.

We denote the secret key and the message as K and M, respectively. The
(4 + 1)-block output C = (C°,C*,...,C7) is produced via the following three
steps:

— Mask derivation: The secret key K is padded into a n-bit string K||10*,
which is handled by the permutation p; as input to yield the masks k for
the compression layer and k' = rolli*2(k) for the expansion layer.

3 The source codes are public available at https://github.com/Tammy-
Cui/AttackXoofff

Fig. 1. Farfalle Construction

— Compression layer: The message M is divided into a sequence of i+1 n-bit
blocks (where the last block is padded by 10*): in the following, we use the
notation M = (My, My, ..., M;) as well. By first applying the permutation
pe on each block M; & rolll(k), and then by XORing all results together, the
message is compressed into an n-bit value y. This step can be summarized
as y = @, (pe(M; © roll: (k).

— Middle layer: A permutation p; is then applied to the unknown y: we
denote the output by S = pa(y).

— Expansion layer: Finally, a sequence of n-bit data stream C7,j = 0,1,2,...
is obtained by consecutively applying the rolling function roll., the permu-
tation pg and by XORing the corresponding outputs with the mask &’. These
two last steps can be summarized as C7 = p,(rolli(S)) ® k'

2.2 Specification of Xoofff

Before presenting Xoofff, we first recall some useful notations in Table 2 — the
concepts of Lane, Plane, State, Sheet and Column are recalled in Figure 2.

Fig. 2. Toy version of the Xoodoo state (lanes reduced to 8 bits).

Table 2. Notations to describe Xoofff

Alz,y, 2] Bit at coordinate (z,y, z) of intermediate state A;

Alz,y] or Az y|Lane (z,y) of intermediate state A;

Ay Plane y of intermediate state A;

Ay < (t,v) |Cyclic shift of A, moving bit in (z, z) to position (x + ¢, z + v);

Apy K Cyclic shift of lane A;,, moving bit from x to position x + v;

Agy < Shift of lane A, , moving bit from x to position x + v;
Ay + Ay, Bitwise sum (XOR) of planes A, and A,/;
Ay - Ay Bitwise product (AND) of planes A, and A,/;

Algorithm 1: Round function of Xoodoo (A < R;(A))

1 6:for0<i<3do

2 P+ Ay ® A1 & Ag;

3 F+ P« (1,b) @ P« (1,14);

4 AZ <—A1@E,

5 pwest : A1 + A1 < (1,0) and Ay <+ A < (0,11);
6 L: Ao Aoo®Ci; // C; is a 32-bit constant.
7 x:for 0 <i<3do

8 L Ay%AyéB(ijLlEBl)'ijLz ;

9 Peast 1 A1 +— A1 « (0,1) and Az + Az K (2,8);

Xoofff [9, 8] is a doubly-extendable cryptographic keyed function by applying
the Farfalle construction on two rolling functions rollx, and rollx, and permu-
tation Xoodoo as follows:

= Db = Pe = Pd = Pe = X 00d00;
— roll, =rollx, and roll. = rollx,.

The rolling function rollx, is a Non-linear Feedback Shift Register (NLFSR),
and updates a state A in the following way:

Ago + Ap1-Ap2 @ (Ao K 5) & (Ap,1 K 13) 4 0x00000007, B + Ay < (3,0),
Ao(—Al, A1 (—AQ, A2<—B

The permutation Xoodoo has totally 6 rounds. Each round is composed of
5 steps: mixing layer 0, a west shifting pyest, the addition of round constants ¢,
non-linear layer y (where x(-) = x7!(+)) and an east shifting peqs¢. The round
function R; is specified in Algorithm 1.

2.3 Linearization Attack

Linearization [10] is a well-known technique to solve multivariate polynomial
systems of equations. Given a system of polynomial equations, the idea is to
turn it into a system of linear equations by adding new variables that replace
all the monomials of the system whose degree is strictly greater than 1. This

linear system of equations can be solved using linear algebra if there are enough
equations to make the linearized system overdetermined, typically at least on
the same order as the number of variables after linearization.

The most straightforward way to linearize algebraic expressions in n un-
knowns of degree limited by d is just by introducing a new variable for every
monomial. By a simple computation, the set of monomials considered has car-

dinality)
sty =3 (1) (1)

i=1
Given x < S§(n,d) monomials, the costs of the attack are approximately given
by:*

— computational cost of O(z*) operations (for 2 < w < 3);
— memory cost of O(z?) to store x linear equations each one in z variables.

3 Distinguisher and Attack on Xoofff (1-Round Xoodoo)

In the following, we use the notation S? to denote the state at the output of the
i-th expanding rolling function (where S corresponds to S, which is the state
after the middle layer). Moreover, we use the notation Sy and S} to denote the

state S after 6 and respectively.

3.1 Symmetry Property of the State Rolling Function

The state rolling function is defined via the following NLFSR: for all 7 > 0
4 [S9[0,2, 2] S¥[1,2,2] S%[2,2, 2] S%[3,2, 2]

S'[z] = | 80,1, 2] S°[1,1,2] S°[2,1,2] S%[3,1, 2]

115°[0,0,2] S°[1,0,2] S*[2,0,2] S*[3,0, 2]

then .))]
A Si[1,0,2] Si[2,0, 2] Si[3,0, 2] S7L[3,2, 2]
STz = 500,22 S°[1,2,2] S[2,2,2] S%[3,2,2]
157[0,1, 2] S7[1,1, 2] §7[2,1,2] S[3,1,%]

for a particular S“1[3,2, 2] (see “Specification” for more details).

This particular NLFSR produces a strong connection between S and S%+3,
namely three sheets of S° are equal to three sheets of S?*3. In particular, the
z-th sheet of S*2 is equal to the (z + 1)-th sheet of S*3 for z € {0, 1, 2}.

_ Si[1,2,2] S¥2,2,2] S¥[3,2,2] S*+3[3,2, 2]
SH3[z] = | SU[1,1,2] S¥[2,1,2] S[3,1,2] S7+3[3,1, 2]
Si[1,0, 2] S¥2,0, z] S[3,0, 2] Si3[3,0, 2]

4 Note that solving a system of & > 1 linear equations in x variables corresponds to
compute the inverse of a z x x matrix. Hence, inverting such matrix costs O(z*)
operations for 2 < w < 3 (e.g., using the fast Gaussian Elimination algorithm [12]
which costs (’)(mS), while the memory cost to store such matrix is proportional to

O(z?).

Since the steps x and 6 work at the column level, this relation can be used to set
up a distinguisher, which will be later exploited for key-recovery attacks. In the
following, we will usually omit the variable z so as to simplify the equations/text.

3.2 Secret-Key Distinguisher (1-round Xoodoo)

By a simple computation, it is possible to observe that — for each z — the property
just presented partially survives after the linear part of the round:®

, *x x Sh[2,2] S§[3,2]
Pwest © 0(51) = Sé [37 H * * Sé [2a 1]
*x % S[2,0] S§[3,0]

if and only if

‘ * S5(2,2] S3[3,2]
Pwest © G(SH_S) = |* * Sé [27 1] Sé [37 1}
X SE[2,0] S5[3,0] %

Note that the last column of pyes: 0 0(S?) is equal to the third column of
puwest © 0(STT3). In the case of ¢[2,-] = ¢[3,-], this fact can be exploited to set
up a longer distinguisher (indeed, xy maps the same input columns to the same
output columns). Since ¢[x,y, z] = 0 for each (z,y) # (0,0) and since an entire
sheet at the input of x is given, it follows that:

57[3,2) = Sit3[2,2] and S} [3,1] = S.7°[2,1] and S1[3,0] = SiF3(2,0); (2)
and
Spl2,2] = SpT3(1,2] and S§[2,0] = S;T3[1,0] and S§[0,1] = Si™[3,1). (3)

These equalities will be the starting point for our key-recovery attacks.

3.3 Attack on Xoofff Instantiated with 1-round Xoodoo in the
Expansion Part

As shown in Sect. 2, one round of Xoodoo is defined as: Rx(:) = k ® peqst ©
X © L O Puest ©0(+). Since peqst is linear, we swap it with the final mask-addition
and we remove it: in the following, the final round will be defined as R} (-) =
k/ S3) X ©LO Pyest © 0()

The idea of the attack is to partially guess the mask k' and exploit the
relations among the bits of pyest 0 (S?) and of pyest 0 (ST3) to filter wrongly
guessed key bits:

i westoB() L D=x"1(- o
(S, 573) LOpuwearod(), distinguisher X020 (C, 073,
mask-guessing
5 Here we emphasize the relation between Pwest O G(Si) and puyest © 6_‘(5”3) by high-
lighting the components of pyest 0 0(S*) that are also in pyest © 9(5”3). ‘We use the
symbol “x” to denote all other components.

Algorithm 2: Key-Recovery Attack on Xoofff (1-round Xoodoo)

Data: 6 consecutive known output blocks C°,C?, ..., C°®

Result: final mask &’ (assuming final peqs: is omitted)

// In the following, we omit the variable z to simplify the

equations.
1 for each z =0,...,31 do
for each k'[z,y] € {0,1} where z € {1,2} and y € {0,1,2} (2°
possibilities) do
for each i =0,1,2 do
if (x "(C'ek))[2,2]# (x "(C* @ k'))[1,2] then
L break; (test the next — partially — guessed mask)

if (x '(C"@K))[2,0]# (x '(C** @ k) [1,0] then
L break; (test the next — partially — guessed mask)

4o AW %)

®

Once k'[z,y] for x € {1,2} and y € {0, 1,2} are found:

9 K'[3,0] = C°[3,0] & C*[2,0] & k'[2,0];

10 K'[3,1] = C°3, 1] @ C*[2,1] @ k'[2,1];

11 K'[3,2] = C°[3,2) @ C*[2,2] @ K'[2,2];

12 for each k'[0,y] € {0,1} where y € {0,1,2} (2® possibilities) do
13 for each i =0,1,2 do

14 L if (x "(C"®k))[0,1] # (x (C"?* @ k') [3,1] then
15 L break; (test the next — partially — guessed mask)

16 return &k’

In a similar way, the attack can be mounted by exploiting the relations among
the bits of X 010 pyest 0 0(S?) and the ones of X 01 0 pyest 0 0(SH3).

In more detail, for each z, it is possible to set up 32 (independent) systems
of 12 equations in 12 variables (namely, the bits of the mask k') of the form

(—1(1’@1@) , —(—10“3@1@))[,] (4)
(HCT@K)) 2,00 = (x H(CTP @ k) [1,0] (5)
(xH(Cre k) o, —(‘10”3@16))[1] (6)

by exploiting the distinguisher presented in Eq. (3), and of the form:
vi€ {012} C'Bjlek 3,4 =C2 5] @ K2,] (7)

by exploiting the distinguisher presented in Eq. (2).
In order to speed up the attack, we propose to work as follows

1. exploiting Eq. (4) - (5) (equivalently, working on the columns involving
S4[2,0], S§[2,2]), find 6 bits of the mask (namely, k'(1,-), k(2,-));

2. given k'(2,-), note that k/(3,-) is also given by Eq. (7);

3. exploiting Eq. (6), find the last 3 bits of the mask k'(0, -).

10

Table 3. Practical results for Xoofff instantiated by 1-round Xoodoo in the expansion
part: relation between the number of blocks used for the attack and the success rate
of recovering 12 bits of the mask k&’ for a single fixed z.

#blocks[success rate“#blocks[success rate

6 13.4% 11 94.8%
7 44.1% 12 97.4%
8 70.0% 13 99%

9 80.7% 14 99.3%
10 91.5% 15 99.6%

The computational cost is so approximated by

32|20 (14 1/24+1/4+1/8+1/16 +1/32) +2% - (1 +1/2 + 1/4) |~ 2'22

find k/(-,1),k'(-,2) find k’(-,0)

elementary operations, where note that (1) we work independently on each z
(32 in total), (2) in order to filter n bits of the mask, we need to check them
against (at least) n equations and (3) when testing one candidate of the mask,
the probability that it passes the test is 0.5. The required data of the attack is
given by 6 output blocks (in order to set up the necessary equations).

3.4 Experimental Results

We practically implemented Algorithm 2 with 1000 repeated experiments. The
results between the number of blocks and success rates to recover 12-bit mask
E'lx,y,z],z=0,1,2,3,y = 0,1,2 for each z are in Table 3 (note that if we use N
output blocks, then we can build N — 3 text pairs (5%, S+3)). To recover all 384-
bit mask, we need to repeat the same recover-mask process on all 32 possible z.
In practice, by 1000 repeated experiments, the success rates to recover the whole
mask are 61.8%, 76.6% and 87.3% with 13, 14 and 15 blocks respectively. Hence,
more output blocks (than what we predicted before) are actually necessary to
find the full mask with a high probability.

Gap between Theoretical and Practical Results. To explain the previous re-
sult, note that the following: Checking if (x~!(C" @ k’)) [2,2] is equal or not

to (x 1(C*T @ k') [1,2] is equivalently to check if
(C'0,2] ® K'[0,2]) & (C'[2,2] ® K'[2,2)) & (C'[1,2] & K'[1,2]) - (C']0,2] & k[0, 2]) #
(C20,1) @ k'[0,1])) @ (C*P3[2,1] @ K'[2,1)) & (C*T?[1,1] @ K'[1,1]) - (C*F3[0,1] @ K'[0,1]).

It is not hard to check that the bits £'[2,2] and k’[2,1] appear only via their
difference (that is, k'[2,2] & k’[2,1]): as a result, it is only possible to identify
their sum, but not the exact value of £’[2,2] and of k'[2,1]. In a similar way,
when checking (x"H(C" & k') [2,0] # (x 1 (C*3 @ k') [1,0], it is only possible

11

to identify the difference £’[0,2] @ k[0, 1]. At the same time, one can identify
k'[0,2] and k'[0, 1] using the first condition and k'[2,2] and k'[2,1] using the
second one. As shown below, this allows to recover the full mask, but a bigger
number of output blocks is necessary.

About the Success Probability. In order to explain the success probabilities of
the attack found before, we first present some practical observations.

Note that according to the x operation (remember x = x~!), there are 2%
cases of (g, x1, T2, x4,), 5) s.t. x(zo, 21, T2) = (Yo, y1,y2) and x(z(, 7, xh) =
(Y6, Y1, vh) where yo = y{ and ya = yb. We therefore introduce the sets Xy and
Xll

Xy = {($0,$1,$2,$6,$,1,I/2) € Fg | [X(J?o,xl,l‘g)](()) = [X(x{),a:’l,xé)](()) &
& [X($0’$1’x2)](2) = [X($6,$/1,$/2)](2)}
X = {(:L’O,$1,:C2,$6,$/1,x/2) € Fg | [X(x()vxlax?)](l) = [X($6,:E/1,:U/2)](1)}

where [z](i) denotes the i-th bit of € F3 and where (only for our goal) the
pairs ((zo,x1,x2), (),], x5)) and ((zf,), z5), (xo, 21, 22)) are not considered
to be equivalent.

By practical tests, we found the following:

— The sets A and B are defined as follows: A = {(ag,a1,as) € (F§)3|Vi =
0,1,2 : a; € X} and set B = {(ap,a1,a2) € (F$)3| 3 ¢ = (co,c1,ca,c3,
ca,c5) € FS\{0} s.t. Vi = 0,1,2 : a; € Xy and a;®c € Xy }. The cardinalities
of A and B are

B
|A] = 4096 and |B| =2656 — ||A|| ~ 0.648. (8)

— The sets A’ and B’ are defined as follows: A’ = {(ag,a1,az2) € (F$)3|Vi =
0,1,2 : a; € X1} and set B’ = {(ag,a1,a2) € (F$)?| 3 ¢ = (0,0,0,co, c1,
c2) € F§\ {0} s.t. Vi = 0,1,2 : a; € &y and a; ® ¢ € Xy }. The cardinalities
of A’ and B’ are

Bl
1A'

|A'| =32° and |B'| =22016 — ~ 0.672. (9)

These two results allow us to explain what happens in practice. In the first
step of the attack, the goal is to recover the 6-bit mask k'[z,y] (where z =
1,2 and y = 0,1,2) for each 2. Note that all x' = (zf, 2}, 2%, z{, 2/, 25) must
belong to A under right mask, where z, = C*[2,y] ® ¥’[2,y] and where z] =
C*H3[1,y] ® K'[1,y] for i € {0,1,2}. If there still exists a wrong mask such that
x' € X, for each i € {0, 1,2} holds under the same blocks, then {z°, z*, 2%} € B.
Hence, according to Eq. (8), the success rate to recover the right 6-bit mask is
1—-64.8% = 35.2% (in theory). In practice, the success rate is about 35.8% with
1000 experiments.

In the third step, the goal is to recover the last 3-bit mask £'[0,y], y = 0,1,2
for each z. Until now, the 3-bit mask k'3, y] is known. Similar to what happens

12

in the first step and according to Eq. (9), all wrong masks are filtered with
probability 1 —67.2% = 32.8% (in theory). In practice, the success rate is about
37.5% with 1000 experiments.

It follows that the success probabilities for each step of the attack are:

— for each z: using 6 + m output blocks, the probability of success is 1 — (1 —
0.352)™*+1 in the first step; once the 6 bits of the key are found in step 1
(hence, also the 3 bits of the key are found in step 2 as well with prob. 1),
the probability of success of the last step is equal to 1 — (1 — 0.328)™*1L,
This means that the overall probability to find the full key for each z fixed
is [1— (1 —0.352)"*1] . [1 — (1 —0.328)" "] ~ 1 — 0.648™+1 — 0.672m+! +
0.4352m2 =~ 1 —2-.0.66™1;

— since all layers z are independent, the overall probability of the attack using
6 + m output blocks is [1 — 2 - 0.66™1]32.

Thus, using m + 6 outputs blocks, the probability of success is greater than prob

1 7p'rob1/32
2

if m > logg g6 () — 1 output blocks. E.g., for a theoretical probability

of success of 85%, then 19 output blocks are necessary. By practical tests, it
turned out that less data (namely, 15 output blocks) is sufficient since — as we
saw before — the practical probabilities are a bit greater than the corresponding
theoretical values.

Assuming 15 output blocks are sufficient (that is, &~ 2.5x more data that the
theoretical value given in the previous section), it follows that also the compu-
tational cost is greater than what we expected by a factor of 2.5.

4 Distinguisher and Attack on Xoofff Instantiated with
2-round Xoodoo in the Expansion Part

4.1 First Secret-key Distinguisher

As we have seen in Eq. (2), both due to the weakness in the NLFSR and due to
the choice of the round constants, after one complete round (that is, including
Peast), the following relation between R(S?) and R(S**3) occurs

_ *Sy[3,2] x * _ Sy[3,2l %+ x
R(S) =[x * *Si31]] <« RE™)=| x «5i[3,1]«
*x x *S.[3,0] * % SL[3,0] %

After applying 6, we get the following situation:

* % * * * * * *
0o R(S") = [x**xSL[3,1]®@A| < oR(S™) = |[xxSi[3,1]@® A *
*Hx S[3,0] @ A * % SL[3,0] @ A" *

for certain unknowns A, A’ € F32. Indeed, # adds to each bit on the z-th sheet
a given value that depends only on bits in the (x — 1)-th sheet. Based on this, a
distinguisher can be easily set up:

60 R(S")[3.1] @ 6 0 R(S")[3,0] = 6.0 R(S™)[2,1] @ 0 o R(S™%)[2,0],

13

which modifies as follows when applying the rotation over the west:
Pwest © 0 0 R(Si)[(), 1] & puest 00 0 R(Si)[?’» 0]
=puwest ©0 0 R(S™?)[3,1] ® puest © 6 0 R(S7)[2,0].
4.2 Second Secret-Key Distinguisher

Our second distinguisher is based on the “parity”. Hence, we first introduce the
notion of “parity” and then analyze how it passes through the several operations.

Definition 1 (Parity). Let X € F4*3%32 pe q state of Xoodoo. For each 0 <
x < 3 and for each 0 < y < 2, we define the parity of X — denoted by p(X|[z,y])

or simply plx,y| — as
9] = P X[z, y, 2]

Lemma 1. Given t = 0(s):

t[0,2, 2] t[1,2, 2] £[2,2, 2] [3, 2, 2] s]0,2, 2] s[1,2, 2] s[2,2, 2] s[3,2, 2]

t[0,1, 2] ¢t[1,1, 2] £[2,1,2] ¢[3,1,2]| =6 | |s[0,1,2] s[1,1,2] s[2,1, 2] s[3,1, 2]

t[0,0, 2] t[1,0, 2] £[2,0, 2] £[3,0, 2] s[0,0, 2] s[1,0, 2] s[2,0, 2] 53,0, 2]
for each z, then the parity of t[x,y] is equal to the parity of s[x,y]:
Vo€ {0,1,2,3},y €{0,1,2} : p(s[z,y]) = p(tfz,y]).

Proof. Let ss[x,z] :==s[x —1,2,2] ® s[x — 1,1, 2] @ s[x — 1,0, 2], then
tlz,y, 2] = s[z,y, 2] ® ss[x,z — 5] @ ss[x, z — 14].

Since P, ss[x,z — 5] = @, ss[z, z — 14], then the parity of t[z,y] is equal to the
parity of slz,yl: p(slz,y]) = p(t[z,y]). O

In the following, we analyse how it evolves through a round of Xoodoo.
Lemma 2. Given z = x(s) and 2’ = x(s') where s,s' € F3*32 s.¢.

— there exist i,j € {0,1,2} where i # j s.t. for each z: s[i,z] = §'[i, 2] and
slj, 2] = §'[J, 2] (that is, the bits in two sheets of s and s’ are equal);
— parity is equal: p(s[x]) = p(s'[x]) for each x;

then p(z[l]) = p(2'[l]) where 1 € {0,1,2}\ {4,5}.

Proof. Since for each z, the i-th and the j-th bits are equal for s and s’, then
the x function is “linear” in the [-th bit. The result follows immediately. ad

14

Distinguisher. Given these properties, we can set up another distinguisher, by
re-considering the output of the first round. By applying 6 and p,.st, for each z
we get:

. S L § R
Pwest © 0o R(S’L) = pz[o’ 1] * * pl[3a 1]
* * *p¥[3,0]

if and only if
‘ pi1,2] %« % *
Pwest © 0o R(SZJFS) = * * pz[37 1] pl[ov 1]
* *xpi3,0] *

Hence, the following distinguisher holds:

31 31
@pwest 0fo R(Si)[la 2, Z] = @ Pwest © 0 0 R(Si-"—g)[o’ 2, Z] (11)
z2=0 z2=0

4.3 Attack on Xoofff Instantiated with 2-round Xoodoo in the
Expansion Part

As before, we use the distinguisher as the starting point for a mask-recovery
attack:

N—y 1. . .
distinguisher Qs SO (C*,C™3)

mask-guessing

LopwestBoR(+)
_—

(Si, Si+3)

In order to minimize the overall cost of the attack, we propose to set up it in
the way described in detail as follows:

Step 1. In the first step, the attacker finds 9 - 32 = 288 bits of the mask (that
is, k'[x,y, 2] for each z,y and for x = 0,2,3) by exploiting the distinguisher
presented in Eq. (10). This corresponds to set up a system of equations of the
form

(x MCr e k) [0,1] @ (x H(C'BE)) [3,0]
=(x"(C"*Pa k) B, Ue (x (CTP e k) [2,0].
Hence, for each z, it is sufficient to guess 9 bits of the mask, and filter
all wrongly guessed mask using the previous equality. The cost of this step is

approximated by 32-2% . (1 +1/2+ ... +27%) ~ 215 elementary operations, and
18 known output blocks.

15

Algorithm 3: Key-Recovery Attack on Xoofff (2-round Xoodoo)

Data: 73 consecutive known output blocks C°,C*,...,C™?
Result: final mask &’ (assuming final peqs: is omitted)

1 STEP 1: find 288 bits of £'[z,y, 2]:

2 for each z =0,1,...,31 do

3 for each K'[z,y, 2] for each y = 0,2 and = = 0,2,3 (2'? possibilities for
each z) do
4 for each i =0,1,...,17 do
5 if (x"'(C' @ k) [0,1]@ (7 (CF @) 3,0] #
(x "CPak))[B,1]e (x "(CTP @ k) [2,0] then
6 L break; (test the next — partially — guessed mask)

7 STEP 2: once k'[z,y, 2] for each 2,y and = = 0,2, 3 are found, find 64 bits of
the mask k'[1,y, 2] for each z =0, ...,31 and for y = 0, 1:

8 for eachi=0,1,...,68 do

9 Set up the following system of linear equations:

31

Do) 2o (T ok)) 1,22 =

z=0

é [(X—l(c“?’ ® k’)) 0,2, 2] & (x—l(ci“ ® k/)> 0,2, z]]

z=

(12)

and solve it (via e.g. Gaussian Elimination);

10 STEP 3: to find the last 32 bits of the mask k'[2, 1, z] where z =0, ..., 31,
decrypt a complete round and set up a system of linear equations of the form
R™YC' @ k)1,2,2] = RHC™ @ k')[0,2, 2] (remember that x is linear
given > 2 bits of the mask for each column).

11 return £’

Step 2. In order to find 64 more bits of the mask (namely, k'[1,y, 2] for each z
and for each y = 0, 2), one possibility is to exploit the distinguisher presented in
Eq. (11). This allows to set up a system of equations of the form

PI(C[1,0,2] @ K'[1,0,2]) & (C'[1,1, 2] @ K'[1,1,2]) - (C[1,0,2] © k'[1,0, 2])&
@ (C'[1,2,2] @ K'[1,2,2])] = P [(C™[0,2,2] @ ¥'[0,2, 2]) & (C"*°[0,0, 2] & K[0,0, 2])&

z

& (C™3[0,1,2] @ K'[0, 1, 2]) - (C**3[0,0, 2] & K'[0,0, 2])]

where the r.h.s. is given.

Each one of these quadratic equations involves 96 bits of the mask. Instead
of brute forcing all 29 possible combinations of k’, the idea is to set up a system
of linear equations starting from these quadratic equations. To achieve this, note
that the coefficients of all quadratic monomials (in the masks) are always equal
to 1. Hence, it is sufficient to sum over two different output blocks to eliminate

16

all quadratic monomials, getting equations of degree 1 of the form in Eq. (12).
This means that n 4+ 4 output (consecutive) blocks are necessary to construct n
equations.

Since the coefficients of the monomials that define the linear equations are
not independent, it is possible that more than a single solution exists (equiv-
alently, that the matrix corresponding to the linear system of equations is not
invertible). As we show in detail in Appendix A, the probability that such 64
equations (which corresponds to 68 output blocks) are linearly independent is
approximately 0.29, and at least 61 of them are linearly independent with prob-
ability (greater than) 0.89. Hence, by slightly increasing the number of output
blocks, it seems possible to find 3 more linearly independent equations with
a high probability. By practical tests we found that using 68, 70, 73 output
(consecutive) blocks, the probability of success (to find 64 linearly independent
equations) is resp. 29.7%, 75.9% and 96.6%.

Step 3. The final step consists of finding the 32 bits of the mask k[1,1, z]. In
order to do this, the idea to set up a system of linear equations is based on the
fact that
R Y C'"®k)[1,2,2] = RY (O™ @ k)[0,2, 2]

which corresponds to the distinguisher given in Eq. (3).

Note that, since the attacker knows at least two bits of each column of the
mask, x ' reduces to a linear operation. The cost of this step would be approx-
imately O(323) = O(2'°) elementary operations.

Summary. The attack requires &~ 73 known output blocks, and the cost is ap-
proximately given by 21° 4 218 4 215 = 5. 216 ~ 2183 clementary operations.

4.4 Experimental Results

We practically implement our 2-round attack. Totally, 73 output blocks are
needed to get a success probability of finding the correct key greater than 85%.
The practical verification works as expected, with the only exception of the first
step.

Step 1 (in Theory). As for the case of the attack on 1-round, note that checking if
(xHC'a k) [0,1]®(x H(C* @ k) [3,0] is equal or not to (x ~H(C @ k') [3, 1)@
(x"H(C*3 @ k') [2,0] corresponds of checking

(C'l0,2] @ K'[0,2]) @ (C*[0,1] @ K'[0,1]) @ (C*[0,2] @ K'[0,2]) - (C*[0,0] @ K'[0, 0))@
@©(C'[3,0] @ K'[3,0)) ® C*[3,1] @ (C°[3,2] @ k'[3,2]) - (C*[3, 1] @ k'3, 1))@

@ (C3,2] @ K'[3,2]) ® C*T2[3,1] @ (C"T[3,2] @ k[0, 2]) - (C*T[3,0] @ k'[3, 0])@®

@® (C?[2,0] @ k'[2,0)) @ (C*F3[2,1] @ K'[2,1]) @ (C**[2,2] @ K'[0,2]) - (C*F3[2,1] @ K'[2,1]).

As before, it is possible to note that the bits £’[0, 1] and £’[2, 0] appear only via
their difference: k'[0,1] & k'[2,0]. Hence, it is never possible to find all the 288

17

bits as expected, but only 288 — 32 = 256. The probability of finding such 256
bits is obviously related to the number of output blocks: by practical tests, such
probability is approximately 81% given 17 output blocks, which becomes resp.
94% and 98% using 18 and 19 output blocks.

Step 1 (in Practice): Parity. How to find the last 32 bits before moving to the
next step? The idea is to use the parity, that is the fact that

31 31
@pwest ofo R(Si)[E}’ 1,z2] = @ Pwest © 0 0 R(Si+3)[2’ 1, z].
z=0 z2=0

Due to the argument presented before, we expect that 40 output blocks are
largely sufficient to find the 32 remaining bits of the key. This is what we also
found in practice, where the probabilities of success is 28%, 96% and 100% using
35, 40 and 45 output blocks, respectively. As a result, the computational cost
(including this step) increases to 2183 + 323 = 2185 operations.

5 Linearization MitM Attack on Xoofff (Instantiated
with 3-/4-round Xoodoo in the Expansion Part)

As the final main result, we present a competitive linearization attack on Xoofff
when Xoodoo is reduced to 3-/4-round in the expansion part. This attack is
similar to the one already proposed on Kravatte in [7]. Roughly speaking, the goal
of the attack is to set up a system of linear equations that describe the analyzed
scheme (by adding new variables that replace all the monomials of the system
whose degree is strictly greater than 1): by solving such system of equations,
the attacker is able to recover the mask &’. The cost of the attack is obviously
related to the number of equations and the number of monomials/variables that
composed such equations. For more details, we refer to the detailed description
of the attack presented in Sect. 2.3.

Our linearization attack exploits both the low-degree of x~" and the sym-
metry of the rolling function presented before. Compared to the linearization
attack on Kravatte presented in [7], we point out some important differences:

1

— since the rolling function of Xoodoo is non-linear, it is not possible to set
up a linearization attack from the output of the middle part in the forward
direction as in the first version Kravatte: at the same time, we can cover one
round for free by exploiting the weakness in the NLFSR;

— one more round in the decryption direction can be covered exploiting the
lower degree of x~! of Xoodoo w.r.t. the one of Keccak.

5.1 Idea of the MitM Linearization Attack

The attack proceeds as the ones already presented:

(57, 57+3) B gistinguisher +— 2% 0 (i o)

mask-recovery

18

for r > 1, where:

— the exploited distinguisher is the one given in Eq. (2) which provides 96 bits
of information for each pair of known output blocks (C? C**3) (1 more bit
of information can be derived by exploiting the parity);

— the mask-recovery part is performed via linearization.

Hence, in the following we limit ourselves to estimate the cost of the attacks by
estimating the number of variables.

5.2 Attacks on Xoofff Instantiated with 2-round Xoodoo in the
Expansion Part

For simplicity, we start with the case in which the expansion part is instantiated
by 2-round Xoodoo. In this case, the key-recovery part covers only 1 round. Since
one backward round has degree 2 and using Eq. (1), it follows that the number of
mask-bits monomials (hence, variables) of degree at most 2 is at most S(384,2) =
Z?:l (32.34) ~ 216-2_ This number is actually only an upper bound of the actual
number of variables. Indeed, it would assume that all combinations of degree 2
of the mask-bits are possible. However, this is actually not the case due to the
definition of the y function. Indeed, through the backward computation, new
monomials are only created in x ~! layers through the multiplicative combination
of input sum of monomials. Since xy~! operates on three input bits only (i.e.,
one column), the actual number of monomials that one has to face is given by

3
384 + 128 - <2> = 768.

monomials of degree 1
monomials of degree 2

Since N known output blocks provides 96- (N —3) = 96N —288 bits of information
(namely, equations), it follows that one needs approximately {M =11
known output blocks, a computational cost of approximately O(7683) = 22875
elementary operations and a memory cost of O(768%) = 2192 bits.

5.3 Attacks on Xoofff Instantiated with 3-/4-round Xoodoo in the
Expansion Part

Considering attacks on more rounds Xoodoo, note that the trick just exploited in
the attack on 2-round Xoodoo does not apply anymore, since the input bits of the
internal y~! layers have undergone linear diffusion. As a result, the number of
monomials cannot be restricted in the same manner. At the same time, the degree
limitation still applies: if 91 monomials can be used to describe the polynomial
expressions of all bits before the x~! layer, the number of monomials that appear
in the output bits of this layer is upper-bounded by S(0,r) for » — 1 rounds.

19

3-round. By using the previous considerations, it follows that the number of
mask-bits monomials (hence, variables) is given by

2
5(768,2) = (7?8) ~ 2182,

i=1
Using the previous argumentation, it follows that
218-2.1 088
96
— the computational cost is approximately given by O ((2'82)3) ~ 2546 ele-

mentary operations;
— the memory cost is approximately given by O ((2'8:2)?) & 2364 bits.

— the data cost is approximately of [= 217 known output blocks;

4-round. By using the previous considerations, it follows that the number of
mask-bits monomials (hence, variables) is given by

2
8(218.2 9) = Z 2182 A 9354
) Z .

i=1
Using the previous argumentation, it follows that

— the data cost is approximately of [%—‘ = 2289 known output blocks;

— the computational cost is approximately given by O ((2%54)3) ~ 21962 ¢le-
mentary operations;
— the memory cost is approximately given by O ((23%4)?) ~ 2708 bits.

5.4 Experiment Results

We implemented the practical attack on 2-/3-round toy-version Xoofff, in which
the state lane is reduced to 8 bits (instead of 32 bits) and the rolling function is
slight modified accordingly. The full specification is given in Appendix B.

Practical Attack — 2-round Xoodoo. According to Eq. (1), there are 96496 = 192
different monomials in the attack so that N = 11 output blocks (8 x3x (N —3) =
192) are needed in theory. The theoretical number of monomials matches with
the practical one, while we found that 12 (instead of 11) output blocks are
necessary to recover the right mask. Hence, the theoretical and practical results
are almost consistent.

Practical Attack — 3-round Xoodoo. In theory, according to Eq. (1), there are
S(192,2) = 32 (M%) = 18080 ~ 2'*? mask-bits monomials (variables) so that
N = 757 output blocks are needed (since 8 x 3 x (N — 3) > 18080). As for the
case of 2-round, this theoretical result matches the practical one, where we used
757 output blocks (resulting in (757 — 3) x 3 x 8 = 18096 equations and 17952

different monomials) to successfully recover the right mask.

20

6 Summary and Possible Countermeasures

In this paper, we presented new key-recovery attacks on Xoofff instantiated with
a round-reduced Xoodoo permutation in the expansion part (up to 4 rounds).
The Meet-in-the-Middle and the linearization attacks that we presented are in-
dependent of the details of the compression and middle layers.

As we have seen, the starting point of our attacks is a new symmetry property
of the rolling function presented in Sect. 3. In this final section we discuss possible
countermeasures to reduce the number of attackable rounds.

Countermeasures. Several ways may be (in principle) possible to achieve the
goal of reducing the number of attackable rounds for the attacks presented in
this paper, including e.g. changing the layout of the expanding rolling function,
changing the round constants, adding a final mask-schedule and so on.

As we show in App. D, the second strategy is useless (for completeness, in
App. C we present an attack on Xoofff instantiated by a Xoodoo permutation
in the expansion part in which no round constant is added: such attack is inde-
pendent of the number of rounds of Xoodoo). The third one can be based either
on a permutation of the key bits (this would increase the number of variables
in the first step of the linearization attack) or it could involve a more complex
linear /non-linear function. Since the goal is to set up an efficient scheme, we do
not take in consideration this option.

Modification of the State Rolling Function. Probably, the simplest way to “pre-
vent” the attack is by changing the state Rolling function. Among several pos-
sibilities, we propose the following: given S* as in Eq. (3.1), then S**! is defined
as:
Si1,2,2] S¥2,2,2] S¥[3,2,2] S**1[3,2, 2]
Sz = 1 5700,2, 2] S¥[0,1, 2] SU[1,1,2] Si[2,1,2]
Si[1,0, 2] S¥2,0, 2] SU[3,0,2] Si[3,1,2]

where Si1[3,2,2] = S[1,0, 2] - S[2,0,2] & (50,0, 2] << 5) @ (S[1,0, 2] «
13) @ 0x00000007 is defined as before.

The crucial point is that the elements are shifted inside the plane in two
different directions (left for the first and the third planes, right for the second
one). This prevents the fact that certain columns in S¢[z] appears with prob. 1
in S"[z] for any j > 1. As a result, the attacks presented here work on 1 round
less.

Acknowledgment. The symmetry property of the state rolling function pre-
sented in Sect. 3.1 has been found by Joan Daemen. Authors thank him for
his suggestion to exploit such symmetry property as a possible starting point
for key-recovery attacks on the expansion part of Xoofff. Authors also thank
Reviewers for their valuable comments, and Kalikinkar Mandal for shepherding
this final version of the paper. Lorenzo Grassi and Tingting Cui are supported
by the European Research Council under the ERC advanced grant agreement

21

under grant ERC-2017-ADG Nr. 788980 ESCADA. Besides that, Tingting Cui
is also supported by NSFC Projects (No. 61902100).

References

10.

11.

12.

13.

14.

Bernstein, D.J., Kolbl, S., Lucks, S., Massolino, P.M.C., Mendel, F., Nawaz, K.,
Schneider, T., Schwabe, P., Standaert, F., Todo, Y., Viguier, B.: Gimli : A Cross-
Platform Permutation. In: Cryptographic Hardware and Embedded Systems -
CHES 2017. LNCS, vol. 10529, pp. 299-320 (2017)

Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Far-
falle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryptol.
2017(4), 1-38 (2017)

Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: The au-
thenticated encryption schemes Kravatte-SANE and Kravatte-SANSE. Cryptology
ePrint Archive, Report 2018/1012 (2018), https://eprint.iacr.org/2018/1012
Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the Indifferentiability of the
Sponge Construction. In: Advances in Cryptology - EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181-197 (2008)

Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the Sponge: Single-
Pass Authenticated Encryption and Other Applications. In: Selected Areas in
Cryptography - SAC 2011. LNCS, vol. 7118, pp. 320-337. Springer (2011)
Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak. In: Advances in Cryp-
tology - EUROCRYPT 2013. LNCS, vol. 7881, pp. 313-314 (2013)

Chaigneau, C., Fuhr, T., Gilbert, H., Guo, J., Jean, J., Reinhard, J.R., Song,
L.: Key-Recovery Attacks on Full Kravatte. IACR Transactions on Symmetric
Cryptology 2018(1), 5-28 (2018)

Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and
Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1-38 (2018)

. Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Xoodoo cookbook.

Cryptology ePrint Archive, Report 2018/767

Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization. In: Wiener, M.J. (ed.) Advances in Cryptology - CRYPTO 1999.
LNCS, vol. 1666, pp. 19-30. Springer (1999)

Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.)
Fast Software Encryption: Second International Workshop. Leuven, Belgium, 14-
16 December 1994, Proceedings. LNCS, vol. 1008, pp. 196-211. Springer (1994)
Kog, C.K., Arachchige, S.N.: A Fast Algorithm for Gaussian Elimination over
GF(2) and Its Implementation on the GAPP. J. Parallel Distributed Comput.
13(1), 118-122 (1991)

Liu, F., Isobe, T., Meier, W., Yang, Z.: Algebraic Attacks on Round-
Reduced Keccak/Xoodoo. Cryptology ePrint Archive, Report 2020/346 (2020),
https://eprint.iacr.org/2020/346

Zhou, H., Zong, R., Dong, X., Jia, K., Meier, W.: Interpolation Attacks on
Round-Reduced Elephant, Kravatte and Xoofff. Cryptology ePrint Archive, Re-
port 2020/781 (2020), https://eprint.iacr.org/2020/781

22

A Attack on Xoofff (2-round Xoodoo): Details for Step 2

Here we provide more details regarding the second step of the attack presented
in Sect. 4.3.

In such a step, the attacker sets up a system of linear equations in 64 variables.
Since the coefficients of the corresponding matrix are (in general) not indepen-
dent, it is possible that the matrix is not invertible. Hence, more equations are
in general necessary so as to have a good probability to find 64 independent
linear equations. By practical tests we found that using 68, 70 and 73 output
(consecutive) blocks, the probability of success (to find 64 linearly independent
equations) is resp. 29.7%, 75.9% and 96.6%.

Here we analyze these probabilities from a theoretical point of view.

Lemma 3. If n-bit vectors ag,ay,...,as,_1 are linearly independent (s < n),
then the probability that another random n-bit vector a, is linearly independent
with such s vectors is % ~1—25"7,

Proof. The space S spanned by ag, ay,...,as_1 involves 2°—1 (non-null) vectors.
As long as as does not belong to S, ag, ay,...,as are linear independent. Thus,
as has 2™ — 2° + 1 possible values, which means the probability is % a

In order to compute Prob(ag,ai,...,ags linearly independent), we can use
the law of total probability. Let { B, }, be a finite or countably infinite partition
of a sample space. By the law of total probability: Prob(A) = 5 Prob(A|By)-
Prob(B,,). For each x > 1, it follows that:

Prob(ap,ay,...,a, linearly independent) =
=Prob(ag,ai,...,a, linearly independent | ag, a1, ...,a,_1 linearly independent) x
x Prob(ag,ay,...,a,_1 linearly independent)

where note that

Prob(ag,ay,...,a, linearly independent | ag, a;,...,a,_1 linearly dependent) = 0.
Working iteratively, it follows that Prob(ag,ay, ..., ags linearly independent) is
equal to
204 1 2643 2%4+1 1.3 7 15 264—1~029
204 264 T84 T2 4 8 16 T 264 T

This result matches the practical probability we found in our experiments.

It follows that, given 64 equations (which corresponds to 68 output blocks),
at least 61 of them are linearly independent with probability (greater than)
% R 2246}1 ~ 88.5%. Also this theoretical result matches the one found in our
practical tests.

23

B Specification of Toy-Version Xoofff

In this section, we specify the toy-version Xoofff, which is used to verify the lin-
earization MitM attacks on Xoofff with reduced 3-/4-round Xoodoo. The round
function of such toy-version Xoodoo is given in Algorithm 4, while the rolling
function rollx, of the toy-version Xoofff updates a state A in the following way:

Ap o+ Ao1-Ap2 ® (Agp K 3) @ (Ap,1 << 5) ® 0x00000007, B + Ay < (3,0),
Ao(—Al, Al (—AQ, A2<—B

Algorithm 4: Round function of toy-version Xoodoo (A <+ R;(A))

0:for 0<i<3do
L A~ A D [(Ao @ A1 D A2) « (1,3)] @ [(Ao @ A1 @ A2) <« (1,6)];
Pwest + A1 +— A1 < (1,0) and Az + Az <« (0,5);
t: Ao < Aoo®Ci; // C; is an 8-bit constant as same as the 1lsb
8-bit constant used in original Xoodoo.
x:for0<i<3do
| Ay Ay @ (Ay1©1) - Ay ;

Peast : A1 +— A1 <« (0,1) and Az + Ar & (2,4);

B W N

o ot

;N

C Attack on Full-Round Xoofff without Constants

In this section, we propose an attack on the expansion part of Xoofff where
no round constant is present in the round function. Such attack — that can
potentially cover any number of rounds — is based on the following property:

Lemma 4. Consider two states S' and S? that satisfy the property S'[z,y, 2] =
S2[x — 1,y,2] for all 0 < 2 < 4,0 <y < 3 and 0 < z < 32. After one-
round Xoodoo without v operation, the output C' and C? still satisfy the property
Cllz,y, 2] = C?z — 1,4, 2].

Proof. By working as in the previous sections, note that:

C'[0,2] C[1,2] C[2,2] C[3,2] S'[0,2] S[1,2] S[2,2] S[3,2]
C'0,1] C[1,1] C[2,1] C[3,1]| = peast © X © pwest © 0 | |S'[0,1] S[1,1] S[2,1] S[3,1]
C'[0,0] C[1,0] C[2,0] C[3,0] ([Sl[o,o] S[1,0] S[2,0] 5[3,0]})
C[1,2] C[2,2] C[3,2] C*[3,2] S[1,2] 5[2,2] 5[3,2] 5°[3,2]
C[1,1] C[2,1] C[3,1] C?[3,1]| = peast © X © pwest 00 | |S[1,1] S[2,1] S[3,1] S?[3,1]]| | .
C[1,0] C[2,0] C[3,0] C2[3,0] S[1,0] S[2,0] S[3,0] S2[3,0]
The result follows immediately. O

24

Due to the relation between the output of the rolling functions S and S%+3:
4 2,2
S8 = | §°[1,1] S7[2,1] S'[3,1] S™3[3,1]
. 0 .

the probability of the event S“3[3,y,2] = S%[0,y,2] for y = 0,1,2 and for
each z is equal to 2796, Hence, given approximately 3 - 2% output blocks, the
probability that there exists S* and S**3 that satisfy the previous property is
1-(1- 2*96)3'296 ~ 1—e 3 ~ 95%: as a result, it is possible to break the
scheme.

D Different Constant Addition (equivalently, ¢)
Operation

One of the weakness exploited to set up the attack is the fact that for each z

. * % K S;wm [3,2] ' * * Sfjwst [3,2] *
Puwest ©0(S") = |Hx %St [2,1]| i pyest 0 O(ST?) =[x+ S [2,1] *
* %% Sh[3,0]] *% S [3,0]
implies
_ * %% S1[3,2]] _ * % S[3,2] *
X010 puest ©0(S*) = [x* % SL[3,1]| iff x0L0pyest 00(SF3) = %% Si[3,1] %
* % % S1[3,0]] * % 52[3,0]

since ¢[z,y, z] = 0 for each (z,y) # (0,0).

What happens if t[z,y,z] # 02 Could this change (by itself) prevent the
attack? As shown below, this is not the case.

Indeed, note that

X otLo Pwest o O(Sl)[& 2] = (S;wcst [3’ 2] @ Sti?west [37 0] @ S;wcst [37 1] : S;wcst [37 O]) EB
® (43, 2] @ ¢[3,0] @ ¢[3,1] - ¢[3, 0]) & (S,ﬁwest 3,0]-¢[3,1] @ S}, [3,1] - ¢[3, 0])

Pwest

X 010 puest ©0(S)[3,1] = (S,iwest BU®S,,.. [32eS8,,..,[325;..[3, 0]) ®

Pwest

o <L[3, 13,2 @3,2]- 43,0])@(51' 3,2 -4[3,0] @ S, [3,0] - 43,2])

X O L O Pwest © 0(5’)[37 0] = (S;west 3,1 Sri?west [3,0] S;west [3,2] - Sf?west (3, 1]) @
Pwest

® (43, 1] @ [3,0] @ ¢[3,2] - [3, 2])69(Si 3,2]-¢[3,1] @ S, .. [3,1] - 43,2])

25

if and only if

[3 2] & S;'we st [3’ 0] @ S;west[Pwest)G9

Pwest

X 040 puest 0 0(S3)[2,2] = (SZ
® (1226 02,000 1211 12,0)0t 3.0 12,118 S} 1] 12.0])

X000 pucat 00 2] = (S5 B0 5L, (32 ® 3.2 8L, 30
@ (L[Q, 1)@ e[2,2]) @ o[2, 2] 'L[270]>@(S;west 3,2]-[2,0] ® .., [3,0] - 2,2])

X 010 puest ©0(S)[2,0] = (SZ 3,1 S

Pwest

Pwest[370] D S;west[Pu}e‘st)69

@ (L[Q, 1] @ ¢[2,0] @ ¢[2,2] - ¢[2, 2])@(S;west 3,2]-¢2,1]® S, [3,1] - ¢[2, 2]>

Hence, since ¢ is public and known, these 6 output bits depend only on 3 bits.
It follows that a distinguisher can still be set up. E.g., by considering

X O LO Pwest © G(Sl)[ga 2] @ X 0L O Pwest © Q(SH_?))[Z’ 2]
1] @ X 010 puest © H(Si+3)[2’ 1]
0

X 010 puest ©0(SH)[3
X O LO Pwest © G(SZ)B’] @ X L0 Puest © 0(5i+3)[2’ O]
one can get a system of three linear equationsin S}~ [3,2],5% [3,1], 5% [3,0].

Once these 3 values are given, it is sufficient to check them against e.g. the 3
equalities that define y o ¢ 0 pyest © 0(S")[3,2], X © ¢ © pwest © 0(SH)[3,1],x 0 Lo
Pwest © H(SZ)[37 0]

In conclusion, changing the round constants cannot prevent the attacks de-
scribed before.

E Higher-Order Differential on Xoofff

Given a function f : Fy — F3 of algebraic degree d, consider a subspace V C [y
of dimension greater than d (that is, dim()) > d + 1). For each affine subspace
YV @ v, it is possible to show that

D r=

TzeVHv

This is the property used in a higher-order differential attack [11].

The attack that we are going to present resembles the one already presented
n [7]. Since deg(x) = 2, the degree after r rounds of Xoodoo is upper bounded
by 27: since the complexity of the attack cannot be greater than 2'2%, we can
cover at most 6 rounds using the zero-sum property. Hence:

— we construct a subspace of dimension 2% + 1 = 65;
— we exploit the zero-sum to find the key.

26

E.1 Idea of the Attack

Constructing the Subspace V. In order to construct the subspace V, we just
re-use the same strategy proposed in [7, Sect. 4.1]. Given an n-block padded
message M = (mg,...,mp—1), let Acc(M) be the associated accumulator value
D, pe(m; & k™). Let M® = (m,...,m%_,) and M7 = (m{,...,mL_;) denote an
arbitrary pair of padded messages such that m{ # m/ for all . We define the
following structure of 2" n-block messages:

V@ = Acc(M®) & (5o, ..., 0n)

where for each : ‘ ‘
8; = pe(m? @ k™) @ p.(m} @ k™).

As showed in [7, Sect. 4.1], §; are linearly independent with overwhelming prob-
ability if n < b = 384 (independently of p.(+)).

Finding the Key. Given V, the strategy of the attack is to construct a system of
equations that describe the last r rounds (where the final mask £’ is the variable)
and solve it:

E'®R™"(:)

RS(- i
Ve J) zero-sum +————— corresponding output blocks {C"};
mask-recovery

Note that the same output mask k' is used in each output block: hence, the
number of variables is independent of the number of considered output blocks. In
order to solve the system, the idea is to use the linearization technique described
before.

E.2 Cost of the Attack

In order to set up the attack, we just re-use the results presented in Sect. 5. In a
linearization attack on 3-round Xoodoo, the number of variables in the system
is upper bounded by 234, Hence:

— at least, 2354 . 265 pairs of input/output blocks are necessary to construct
the system of equations to solve, for a total cost of 234 .265 .2 — 21004
input/output blocks;

— the cost to construct the system of equations is given by 204 XORs;

— the cost to solve the system of equations is given by O ((235'4)3) = 21062
operations and a memory cost of O ((23%4)?) = 270% bits.

Hence, the overall cost of the attack is approximately given by 2100-4 4 2106:2 ~
21063 operations.

27

