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Abstract

There has been recent exciting progress on building non-interactive non-malleable com-
mitments from judicious assumptions. All proposed approaches proceed in two steps. First,
obtain simple “base” commitment schemes for very small tag/identity spaces based on a var-
ious sub-exponential hardness assumptions. Next, assuming sub-exponential non-interactive
witness indistinguishable proofs (NIWIs), and variants of keyless collision resistant hash func-
tions, construct non-interactive compilers that convert tag-based non-malleable commitments
for a small tag space into tag-based non-malleable commitments for a larger tag space.

We propose the first black-box construction of non-interactive non-malleable commitments.
Our key technical contribution is a novel way of implementing the non-interactive proof of
consistency required by the tag amplification process. Prior to our work, the only known ap-
proach to tag amplification without setup and with black-box use of the base scheme (Goyal,
Lee, Ostrovsky and Visconti, FOCS 2012) added multiple rounds of interaction.

Our construction satisfies the strongest known definition of non-malleability, i.e., CCA (cho-
sen commitment attack) security. In addition to being black-box, our approach dispenses with
the need for sub-exponential NIWIs, that was common to all prior work. Instead of NIWIs, we
rely on sub-exponential hinting PRGs which can be obtained based on a broad set of assump-
tions such as sub-exponential CDH or LWE.
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1 Introduction

Non-malleable commitments have been a well studied primitive in cryptography since their in-
troduction by Dolev, Dwork and Naor [DDN91]. They are an important component of nearly
all multi-party protocols including multi-party computation, coin flipping and secure auctions.
These commitments ensure security in the presence of “man in the middle” attacks. A man-in-the-
middle adversary participates in two or more instantiations of a protocol, trying to use informa-
tion obtained in one execution to breach security in the other protocol execution. A non-malleable
protocol should ensure that such an adversary gains no advantage from such behavior.

Non-Interactive Non-Malleable Commitments. For several years, provably secure construc-
tions of non-malleable commitments required several rounds of interaction. On the other hand,
practical constructions need to be highly efficient and often non-interactive. For these reasons, in
practice, we often heuristically assume that a family of (keyless) SHA-like hash functions is non-
malleable. Our technique gives the first provably secure black-box construction of non-interactive
non-malleable commitments, taking us a step closer to efficient realizations.

We will focus on computationally hiding and binding non-interactive commitments. For these
commitments, the binding requirement will assert that it is computationally hard to produce a
commitment that can be opened to two different messages m 6= m′. Specifically, no adversary
can generate with non-negligible probability a malicious commitment string c, for which there
exist two openings to messages m and m′ such that m 6= m′. The (computational) hiding property
asserts that for any two messages,m andm′ (of the same length), the distributions of commitments
com(m) and com(m′) are computationally indistinguishable.

Loosely speaking, a commitment scheme is said to be non-malleable if no adversary, given a
commitment com(m), can efficiently generate a commitment com(m′), such that the message m′ is
related to the original messagem. This is equivalent (assuming the existence of one-way functions)
to a tag-based notion where the commit algorithm obtains an additional input, a tag ∈ {0, 1}κ, and
where the adversary is restricted to using a tag, or identity, that is different from the tag used to
generate its input commitment. We will rely on tag-based definitions throughout this paper. We
will also model man-in-the-middle security as a CCA (chosen commitment attack) game between
the adversary and a challenger.

Specifically, we will modify the hiding game to give the adversary oracle access to an inefficient
value function CCA.Val where on input a string c, CCA.Val(tag, c) will returnm if CCA.Com(tag,m; r)→
c for some r. If the commitment is not well-formed, CCA.Val will return the unique message that
the commitment can be opened to (and if no unique message exists, CCA.Val can behave arbitrarily
– but by the binding condition, this event only occurs with negligible probability).

The game is as follows: the adversary must first specify a challenge tag tag∗, along with mes-
sages m∗0,m

∗
1. He is then allowed oracle access to CCA.Val(tag, ·) for every tag 6= tag∗, and can

make an arbitrary (polynomial) number of queries before and after obtaining the challenge com-
mitment. 1

This CCA-based definition is the strongest known definition of non-malleability. In the non-
interactive setting, the often-used definition of (concurrent) non-malleability with respect to com-

1The assumption that the commitment takes input a tag is without loss of generality when the tag space is expo-
nential. As is standard with non-malleable commitments, tags can be generically removed from this construction by
setting the tag as the verification key of a signature scheme, and signing the commitment string using the signining key.
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mitment is a special case of this definition where the adversay is only allowed to make parallel
oracle queries once it obtains the challenge commitment.

Our Results, in a Nutshell. In this work, we give the first black-box construction of CCA se-
cure commitments, under weaker assumptions than prior work. In terms of assumptions, we
substitute NIWIs with hinting PRGs [KW19] which can be instantiated under several standard
assumptions like CDH and LWE. Additionally, while all prior work recursively applied NIWIs
to prove cryptographic statements, making heavy non-black-box use of cryptography, our con-
structions are black-box. Combining this with base schemes due to [KK19], we obtain CCA
secure commitments from black box use of the following assumptions: subexponential hinting
PRGs, subexponential keyless collision-resistant hash functions, subexponential (injective) one-
way functions/non-interactive commitments against quantum adversaries, and subexponential
(injective) one-way functions/non-interactive commitments in BQP with hardness against classi-
cal adversaries. We note that subexponential hinting PRGs can be obtained based on black-box
use of any group where CDH is subexponentially hard.

We believe this takes us one step closer to the goal of building provably secure and efficient
non-interactive non-malleable commitments.

Prior Work on Non-Malleable Commitments. There has been a long line of work constructing
non-malleable commitments in the plain model, without trusted setup. This research has been
driven by two often competing goals: the first is to reduce the round complexity of commitment,
which is important because it directly impacts the round complexity of applications like MPC. The
second goal is to achieve non-malleable commitments under the weakest possible assumptions.

This research [DDN91, Bar02, PR05, PR08, LPV, PPV08, LP09, Wee10, PW10, LP, Goy11,
GLOV12, GRRV14, GPR16, COSV17] culminated in three round stand-alone secure non-malleable
commitments based on injective one-way functions [GR19] and concurrenct secure non-malleable
commitments based on DDH/LWE [Khu17], or subexponential injective one-way functions [COSV16].
In the two round setting, we now have constructions based on sub-exponential time-lock puz-
zles [LPS17] and sub-exponential DDH/LWE/QR/NR [KS17].

Very recently, research in non-malleable commitments moved to a final frontier of achieving
non-interactive non-malleable commitments from well-studied assumptions without leveraging
trusted setup. In this non-interactive setting, Pandey, Pass and Vaikuntanathan [PPV08] first gave
constructions of non-malleable commitments based on a strong non-falsifiable assumption. The
primary research challenge has been to improve assumptions while realizing non-malleability in
very resource constrained environments, which do not allow the use of tools like zero knowledge
proof systems.

Nevertheless, the recent works of Bitansky and Lin [BL18] and Kalai and Khurana [KK19]
made progress on improving these assumptions. All of these works [KS17, LPS17, BL18, KK19]
proceed in two steps. First, they construct “base” commitment schemes that only support a
constant-sized space of tags. Second, they give amplification techniques to convert commitments
supporting a small space of tags into commitments that support a much larger tag space. Apply-
ing these amplification techniques to the base scheme helps generically increase the space of tags
to {0, 1}κ.

We summarize known results in the non-interactive setting by splitting up contributions into
base constructions and tag amplification results.

2



Base Constructions. Three recent works [LPS17, BL18, KK19] build non-interactive base schemes:
non-malleable commitments for a tag space of size c log log κ for a specific constant c > 0, based on
various hardness assumptions. These are typically only secure in a setting where the adversary is
restricted to using the same tag in all its queries to the CCA.Val oracle.

This is primarily achieved by using families of assumptions, each of which is harder than the
other along some axis of hardness. We list these assumptions below.

1. Lin, Pass and Soni [LPS17] assume a sub-exponential variant of the hardness of time-lock
puzzles. Specifically, they define a two-dimensional variant of the Rivest, Shamir and Wag-
ner (RSW) repeated squaring assumption there is a security parameter n and another pa-

rameter t, and it is required that computing h = g22t

cannot be done by circuits of overall
size 2n

ε
and depth 2t

δ
, for constants ε and δ.

2. Bitansky and Lin [BL18] rely on sub-exponentially hard injective one-way functions that ad-
mit a strong form of hardness amplification. Roughly speaking, they say that a one-way
function f is amplifiable, if there is a way to combine (e.g. XOR), say ` hardcore bits corre-
sponding to ` independent images f(x1), . . . , f(x`) that are each hard against T -time adver-
saries, so that the combined bit is 2`

ε
-unpredicatable against T ′-time adversaries; that is, the

level of unpredictability increases at least subexponentially as more hardcore bits are com-
bined (their assumption on unpredictability goes beyond the limit poly( TT ′ ) that is commonly
imposed by known provable results on hardness amplification).

3. Kalai and Khurana [KK19] assume classically sub-exponentially hard but quantum easy in-
jective one-way functions (which can be based, e.g., on sub-exponential hardness of DDH),
and sub-exponentially quantum hard non-interactive commitments (which can be based,
e.g., on sub-exponential hardness of LWE).

Tag Amplification. Starting with non-malleable commitments for a tag space of size c log log κ
for a specific constant c > 0 (or sometimes even smaller), several works develop techniques to
achieve non-malleable commitments for a tag space of {0, 1}κ. This is achieved by several appli-
cations of a tag-amplification compiler, that increases the tag space exponentially in each appli-
cation. We also point out that these compilers often obtain as input base schemes that are secure
against a restricted adversary; one that uses the same tag in all its queries to the CCA.Val oracle.
The end goal, however, is to obtain security against a general adversary, that uses arbitrary tags in
its oracle queries – as long as all tags in oracle queries are different from the challenge tag.

Such compilers were developed in [LPS17, BL18, KK19] based various assumptions, and we
summarize these results below.

• Lin, Pass and Soni [LPS17] assume sub-exponential non-interactive witness indistinguish-
able (NIWI) proofs and keyless collision resistant hash functions against uniform adver-
saries. The resulting non-malleable commitments for larger tag space are also secure only
against uniform adversaries.

• Bitansky and Lin [BL18] assume sub-exponential non-interactive witness indistinguishable
(NIWI) proofs and keyless collision resistant hash functions with limited security against
non-uniform adversaries. Such a hash function H : {0, 1}3κ → {0, 1}κ guarantees that
no superpolynomial adversary with non-uniform description of polynomial size S can find
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more than K(S) collisions in the underlying function. Here, K is a fixed polynomial (e.g.,
quadratic). The resulting non-malleable commitments for larger tag space are secure against
non-uniform adversaries.

• Kalai and Khurana [KK19] assume sub-exponential non-interactive witness indistinguish-
able (NIWI) proofs and obtain security against non-uniform adversaries. However their
compiler, on input commitments that satisfy a weaker notion of non-malleability w.r.t. re-
placement generates commitments that are non-malleable w.r.t replacement for a larger tag
space.

In [LPS17, BL18], NIWIs are combined with a hard-to-invert trapdoor statement to enable weak
forms of NIZKs without setup. In contrast, [KK19] use NIWIs without associated trapdoors, but
then only achieve weaker forms of non-malleability (that is, w.r.t. replacement).

But a common thread among the amplification techniques is that they all require the use of
sub-exponential NIWI proofs. We remind that reader that NIWIs are one round proof systems
with statistical soundness, for which no computationally bounded verifier can distinguish which
witness in a relation was used to create the proof.

Reliance on NIWIs results in the following less than ideal consequences:

• Subexponential NIWIs are only known based on the hardness of the decisional linear prob-
lem over bilinear maps [GOS12], or based on derandomization assumptions, together with
subexponential trapdoor permutations [BOV07].

• All these compilers use NIWIs to prove complex cryptographic statements, and therefore
make non-black box use of the underlying non-malleable commitment for a smaller tag
space. On the other hand, from the point of view of efficiency, it is desirable to have con-
structions that make black-box use of cryptography.

Our Results. In this work, we provide a new approach to non-interactive tag amplification
for non-malleable commitments. This approach only makes black-box use of cryptography, and
achieves provable security under a more diverse set of assumptions. Specifically, this compiler
replaces the NIWI assumption with hinting PRGs, that were introduced by Koppula and Wa-
ters [KW19], and can be obtained based on CDH, LWE [KW19] and also φ-hiding and DBDHI
assumptions [GVW19]. (One can also alternatively execute the paradigm from any projective key-
dependent secure symmetric key encryption scheme [KMT19] which is realizable from the LPN
assumption).

We summarize (a simplification of) our results via the following informal theorems. Recall that
base schemes are typically only secure in a setting where the adversary is restricted to using the
same tag in all its queries to the oracle. In what follows, we refer to such a commitment scheme
that is only secure against this limited class of adversaries as a same-tag CCA secure commitment.
We also refer to CCA commitments where the adversary is only allowed to make parallel oracle
queries after obtaining the challenge commitment, as non-malleable commitments.

Informal Theorem 1.1. (Removing the Same-Tag Restriction) Assuming the existence of sub-
exponentially secure hinting PRGs and keyless hash functions that are collision-resistant against
sub-exponential uniform adversaries, there exists a compiler that on input any same-tag CCA
(respectively, non-malleable) non-interactive commitment for N tags secure against non-uniform

4



adversaries where N ≤ poly(κ), outputs a CCA (respectively, non-malleable) non-interactive com-
mitment for N tags secure against uniform adversaries.

Informal Theorem 1.2. (Tag-Amplification for CCA commitments) Assuming the existence of
sub-exponentially hinting PRGs and keyless hash functions that are collision-resistant against sub-
exponential uniform adversaries, there exists a compiler that on input any CCA (respectively, non-
malleable) non-interactive commitment for N tags secure against non-uniform adversaries where
N ≤ poly(κ), outputs a CCA (respectively, non-malleable) non-interactive commitment for 2N/2

tags secure against uniform adversaries.

Unfortunately, using these informal theorems to amplify tag space from c log log n for a small
constant c > 0 immediately encounters the following issue: the input scheme to the compiler is
required to be non-uniform secure, whereas the output scheme is only uniform secure.

To enable recursion, we strengthen our CCA abstraction. Specifically, we modify the CCA
security game to allow an adversary to submit a Turing Machine P to the challenger, and obtain
the evaluation of P on an input of the adversary’s choice. We say that a scheme is e-“computation
enabled” if it is secure against all adversaries that submit programs that run in time polynomial
in 2κ

e
for constant e. As such, we will substitute the non-uniform security requirement for the base

CCA scheme and instead require it to be e-“computation enabled” for an appropriate constant e.
The output of the compiler will be an e′-“computation enabled” commitment for an appropriate
constant e′. We describe this abstraction, and our techniques, in additional detail in Section 1.1.

1.1 Our Techniques

We now provide our technical overview. Recall that the core technical goal of our work is to
provide a method for amplifying from a commitment scheme for O(N) sized tag space to a 2N

sized space. If the computational overhead associated with the amplification step is polynomial
in N and the security parameter κ, then the process can be applied iteratively c+ 1 times to a base
NM commitment scheme that handles tags of size lg lg · · · lg︸ ︷︷ ︸

c times

(κ) for some constant c and results in a

scheme that handles tags of size 2κ. Here, we note that subexponential quantum hardness of LWE
and subexponential hardness of DDH [KK19], or subexponential hardness amplifiable one-way
functions [BL18], or appropriate subexponential variants of time-lock puzzles [LPS17] imply base
schemes for tags in (c lg lg κ) for a small constant c > 0, which means they imply schemes for tags
in (lg lg lg κ).

Now the traditional way to amplify such a tag space can be traced back to [DDN91]2 They
suggested a method of breaking a large tag T j (say, in [2N ]) into N small tags tj1, t

j
2, . . . t

j
N , each

in 2N , such that for two different large tags T 1 6= T 2, there exists at least one index i such that
t2i 6∈ {t11, t12, . . . t1N}. This is achieved by setting tji = i||T j [i], where T j [i] denotes the ith bit of T j .

A scheme for tags in 2N will have an algorithm CCA.Com that commits to a message m as
CCA.Com(1κ, tag,m; r) → com. To commit to m under tag one first creates N tags t1, . . . tN by
applying the DDN encoding to tag. Next, these (smaller) tags are used to generate commitments
of m in the smaller tag scheme as ci = Small.Com(1κ, (ti),msg = m; ri) for i ∈ [N ]. Next, the
committer attaches a zero knowledge (ZK) proof that all commitments are to the same message
m using the random coins as a witness. Since we are interested in non-interactive amplification,

2This was recently further optimized by [KS17] but in this paper, we use the [DDN91] technique for simplicity.
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the ZK proof will need to be non-interactive. Additionally, we will require it to be ZK against
adversaries running in time T , where T is the time required to brute-force break the underlying
CCA scheme for small tags.

CCA security of the scheme with larger tag space can be argued in two basic steps. Suppose
the challenger commits to either m∗0 or m∗1 under tag T ∗ (we denote the DDN encoding of T ∗

by t∗1, . . . t
∗
N ). The adversary wins if it gets which out of m∗0 and m∗1 was committed. Recall that

the adversary can request the CCA oracle to provide openings of commitment string with tags
tag 6= tag∗ ∈ {0, 1}N . This oracle generates a response as follows:

1. Verify the ZK proof in the commitment string. Return ⊥ if verification does not accept.

2. Open the underlying commitment scheme with small tags at position 1 with tag t1.

We will assume, for simplicity, that the adversary makes a single oracle query in the CCA
game, with tag T , whose DDN encoding is denoted by t1, . . . tN . We will focus on the index i in
the adversary’s oracle query, such that the tag ti 6∈ {t∗1, . . . t∗N}.

As a first step towards proving CCA security, one can modify the oracle to open the commit-
ment string c with small tag ti, in Step 2. Because of the soundness of the ZK proof system, this
change cannot be detected by the adversary, except with negligible probability.

At this point, the challenge commitment is modified so that the ZK proof is simulated and does
not need the random coins used in the small tag commitments anymore. To argue indistinguisha-
bility, we will need to answer the adversary’s oracle queries. This will be done by extracting, via
brute-force, the value committed in the adversary’s oracle query. As such, we will need to rely
on ZK proofs where the ZK property holds even against machines that can (brute-force) break the
small tag commitnents. Once this is done, we will change each of the small tag commitments in
the challenge commitment from committing to the message m∗b to committing to the all 0’s string,
one by one. At the same time, the oracle will continue to open the commitment string c with small
tag ti, in Step 2. Since ti 6∈ {t∗1, . . . t∗N}, we can rely on CCA security of the underlying small tag
scheme and argue that the adversary will not be able to detect these changes. By the end of this
process, all information about the bit b will be erased.

Since non-interactive zero-knowledge proofs without setup are impossible, existing non-interactive
tag amplification techniques [LPS17, KS17, BL18] rely on weaker variants of zero-knowledge
proofs, such as ZK with super-polynomial simulation and weak soundness, to perform tag ampli-
fication via the afore-mentioned outline. These required variants of non-interactive ZK proofs are
obtained by including a trapdoor statement td. To prove that a statement x is in an NP language L,
one typically provides a NIWI to establish that (x ∈ L)∨(td is true). The trapdoor statement helps
perform simulation, whereas for soundness it is required that the adversary cannot prove the trap-
door statement. One exception is [KK19], which only relies on NIWIs and does not make use of on
any trapdoor statements, but is limited to the weaker notion of replacement security. However, in
addition to relying on NIWIs, the outline above makes non-black-box use of the underlying base
commitment scheme.

Eliminating NIWIs. Our primary goal in this paper is to perform tag amplification without NI-
WIs, and while making black-box use of the underlying base commitments. Taking a step back, the
reason ZK is required in the tag amplification argument discussed above, is that we can change
the oracle to one that opens different underlying tags, without the adversary noticing. In other
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words, we would like to establish a system where the adversary cannot submit a commitment
such that its opening will be different under the original and new oracle functions.

Here, inspired by recent work in chosen ciphertext secure public key encryption [KW19], our
construction will allow the oracle to recover a PRG seed s that gives (a good part of) the random-
ness used to create the underlying commitments. Specifically, the oracle will use the commitment
with a specific small tag to first recover a candidate PRG seed s′ and then check for consistency by
re-evaluating the underlying commitment pieces, and checking them against the original.

These checks will intuitively serve as a substitution for ZK proofs. Interestingly, our checking
algorithm will allow some partially malformed commitments to go through – allowing this is
essential to our security argument. This is in contrast to a ZK proof which enforces that all must
be commitments to the same message. While creating such partially malformed commitments is
actually easy for the adversary, the adversary will still not be able to differentiate between different
forms of decryption. (We note that in non-malleable encryption some systems [PSV06, CDSMW09]
allow for somewhat malformed ciphertexts to be let through.) Importantly, unlike [KW19] that
looked at two possible decryption strategies, we will need to ensure that up to polynomially many
such strategies decrypt the same way. Furthermore, we will not be able rely on trusted setup
to generate verification keys for a signature scheme. Instead, we will develop a new technique
leveraging hinting PRGs, which we outline below.

We now describe our new tag amplification technique that converts CCA commitments with
4N tags to CCA commitments with 2N tags. We point out that our technique also applies as
is to converting non-malleable (i.e. parallel CCA) commitments with 4N tags to non-malleable
commitments with 2N tags. First, we summarize some of the tools we will use.

• Hinting PRGs. A hinting PRG, introduced in [KW19], satisfies the following property: for
a uniformly random short seed s, the matrix M obtained by first expanding PRG(s) =
z0z1z2 . . . zn, sampling uniformly random v1v2 . . . vn, and setting for all i ∈ [n],Msi,i = zi and
M1−si,i = vi, should be indistinguishable from a uniformly random matrix. Hinting PRGs
are known based on CDH, LWE [KW19] and more generally, any circular secure symmetric
key encryption scheme [KMT19].

• Statistically Equivocal Commitments without Setup. We will rely on statistically hiding bit
commitments without setup, that satisfy binding against uniform adversaries. Additionally,
these commitments will be statistically equivocal, that is, with overwhelming probability,
a randomly chosen commitment string can be opened to both a 0 and a 1. These can be
obtained from keyless collision resistant hash functions against uniform adversaries, based
on the blueprint of [DPP93] and [HM96], and more recently [BKP18], in the keyless hash
setting.

Outline of Our Tag Amplification Technique. Let (Small.Com,Small.Val, Small.Recover) be a non
malleable commitment for 4N tags. We will assume tags take identities of the form (i, β, γ) ∈
[N ]× {0, 1} × {0, 1} and that the Small.Com algorithm requires randomness of length `(κ).

Our transformation will produce three algorithms, (CCA.Com,CCA.Val,CCA.Recover). The
CCA.Com algorithm on input a tag tag from the large tag space, an input message, and uniform
randomness, first samples a seed s of size n for a hinting PRG. It uses the first co-ordinate z0 of
the output of the hinting PRG on input s, as a one-time pad to mask the message m, resulting in
string c. Next, it generates n equivocal commitments {σi}i∈[n], one to each bit of s. We will let yi

7



denote the opening of the ith equivocal commitment (this includes the ith bit si of s). Finally, it
‘signals’ each of the bits of s by generating commitments {cx,i,b}x∈[N ],i∈[n],b∈{0,1} using the small
tag scheme. For every i ∈ [n], the commitments {cx,i,0}x∈[N ] and {cx,i,1}x∈[N ] are generated as
follows:

1. If si = 0

(a) cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; rx,i)

(b) cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; r̃x,i)

2. If si = 1

(a) cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; r̃x,i)

(b) cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; rx,i)

where all the r̃x,i values are uniformly random, whereas rx,i values correspond to the output of
the hinting PRG on seed s. The output of CCA.Com is tag, c, {σi}i∈[n], {cx,i,b}x∈[N ],i∈[n],b∈{0,1}.

On an oracle query of the form CCA.Val(tag, com), we must return the message committed in
the string com, if one exists. To do this, we parse com = tag, c, {σi}i∈[n], {cx,i,b}x∈[N ],i∈[n],b∈{0,1},
and then recover the values committed under small tags (1, tag1, 0) and (1, tag1, 1), which also
helps recover the seed s of the hinting PRG. Next, we check that for every i ∈ [n], the recovered
values correspond to openings of the respective σi. We also compute hinting PRG(s), and use the
resulting randomness to check that for all x ∈ [N ], the commitments that were supposed to use
the outcome of the PRG were correctly constructed. If any of these checks fail, we know that the
commitment string com cannot be a well-formed commitment to any message. Therefore, if any of
the checks fail, the oracle outputs ⊥. These checks are inspired by [KW19], and intuitively, ensure
that it is computationally infeasible for an adversary to query the oracle on commitment strings
that lead to different outcomes differently depending on which small tag was used. If all these
checks pass, the CCA.Val algorithm uses c to recover and output m.

Proving Security. We will prove that the resulting scheme is CCA secure against uniform ad-
versaries. To begin, we note that the set {(x, tagx)}x∈[N ] is nothing but the DDN encoding of the
tag tag. Recall that this encoding has the property that for every tag, tag∗ ∈ 2N , there exists an
index x ∈ [N ] such that (x, tagx) 6∈ {(x∗, tag∗x∗)}x∗∈[N ]. In the scheme described above, the tag
used for each set {cx,i,b}i∈[n] is (x, tagx, b). This means that for our particular method of generating
the commitments cx,i,b described above, for each of the adversary’s oracle queries, there will be an
index x′ ∈ [N ] such that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1) used to generate {cx′,i,b}i∈[n],b∈{0,1}
in that query will differ from all small tags used to generate the challenge commitment.

Our first step towards proving security of the resulting commitment with large tags, will be to
define an alternative CCA.ValAlt algorithm, that instead of recovering the values committed under
tags (1, tag1, 0) and (1, tag1, 1), recovers values committed under (x′, tagx′ , 0) and (x′, tagx′ , 1). As
already alluded to earlier, this scheme is designed so that it is computationally infeasible for a
uniform adversary to query the oracle on commitment strings for which CCA.Val and CCA.ValAlt
lead to different outcomes. Formally, we will first switch to a hybrid that uses the CCA.ValAlt
algorithm instead of CCA.Val to answer the adversary’s oracle queries.

When making this change, because of the checks performed by the valuation algorithms, we
can formally argue that any adversary that distinguishes these hybrids must query the oracle with
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a commitment string that has following property: For some i ∈ [n], x ∈ [N ], cx,i,0 and cx,i,1 are
small tag commitments to openings of the equivocal commitment to some bit b and 1 − b respec-
tively. Assuming that the equivocal commitment satisfies binding against uniform adversaries
that run in subexponential time, one can brute-force extract these openings from cx,i,0 and cx,i,1 to
contradict the binding property.

The next hybrid is an exponential time hybrid that samples equivocal commitments {σi}i∈[n],
for the challenge commitment, together with randomness {y0,i}i∈[n] and {y1,i}i∈[n] that can be used
to equivocally open these commitments to 0 and 1 respectively.

In the next hybrid, inspired by [KW19] we modify the components {c∗x,i,b}x∈[N ],i∈[n],b∈{0,1} in
the challenge commitment to “drown” out information about s via noise. In particular, while in
the real game, the values c∗x,i,1 are always commitments to ysi,i, in the challenge commitment these
values are modified to become commitments to y∗i,1, irrespective of what si is. In the next step, the
values c∗x,i,0 are modified to become commitments to y∗i,0, irrespective of what si is. We rely on
CCA security of the underlying small tag scheme so that we can continue to run the CCA.ValAlt
function to recover values committed under (x′, tagx′ , 0) and (x′, tagx′ , 1) while changing all the
components {c∗x,i,b}x∈[N ],i∈[n],b∈{0,1} in the challenge commitment. This step crucially makes use
of the fact that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1) differ from all small tags used to generate the
challenge commitment. Moreover, in spite of the fact that generating equivocal openings of {σi}i∈[n]

takes exponential time, the proof of indistinguishability between this hybrid and the previous one
does not need to rely on an exponential time reduction. Instead, we observe that the equivocal
commitment strings {σi}i∈[n] together with their openings can be fixed non-uniformly and inde-
pendently of the strings c∗x,i,b, and therefore these hybrids can be proven indistinguishable based
on non-malleability of the small tag commitment against non-uniform adversaries. Since we must
carefully manipulate the randomness used for c∗x,i,b in both games, this hybrid requires a delicate
argument.

At this point, we have eliminated all information about the PRG seed s, except from the ran-
domness rx,i and r̃x,i. In the final hybrid, we rely on the security of the hinting PRG to switch to
using uniform randomness everywhere. Note that we still need to answer the adversary’s oracle
queries, but this can be done by ensuring that the time required to run the CCA.ValAlt algorithm is
much smaller than that needed to break hinting PRG security. At this point, we have eliminated
all information about s, and therefore about the message being committed to in the challenge
commitment.

Issues with Recursion. At this point, it may seem like we are done, but the careful reader may
have noticed a problem. To prove security, we assumed an input scheme that was secure against
non-uniform adversaries, but due to the use of equivocal commitments against uniform adver-
saries, the transformation yields a scheme that is only secure against uniform adversaries. This
would be no problem if we say were only amplifying once from κ to 2κ tags. But unfortunately,
the recursion will not work if our base scheme starts with lg lg lg(κ) size tags (which is the number
of tags allowable by most existing base schemes), as we will need to recursively amplify multiple
times.

It might seem that we are fundamentally stuck. The first hybrid in our argument requires
the equivocal commitment scheme to be more secure than the underlying small tag commitment.
Later hybrids require that the small tag commitment to satisfy CCA security even when equivocal
commitments with openings to both ones and zeros are generated. If the small tag CCA scheme
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is only uniformly secure, it seems impossible to satisfy this requirement without violating the
previous one.

However, if we peel the recursion back further, there appears to be a glimmer of hope. Sup-
pose we are applying our transformation to an underlying CCA commitment, which is itself the
result of applying the transformation one or more times. When our proof arrives at the security of
the underlying scheme, the underlying scheme’s security will rely both on an equivocal commit-
ment itself, and at the deepest level the non-uniform security of the base scheme. If the equivocal
commitments in the underlying scheme use a larger security parameter than the current one, then
the lower level scheme may still be secure (and lower level equivocal commitments may still be
binding) even when equivocal openings are found at the current level.

e-Computation Enabled Security. We capture this intuition by expanding our abstraction to in-
clude what we call e-computation enabled CCA commitments. Here, we modify the security game
to allow an adversary to submit a Turing Machine P to the challenger. The adversary will receive
the evaluation of P on an input of its choice. We say that a scheme is e-computation enabled if it is
secure against all adversaries that submit programs that run in time polynomial in 2κ

e
for constant

e. (The program output size itself is required to be polynomially bounded.)
With this abstraction in place, when proving security, our reduction can pass the task of gener-

ating equivocal openings as an appropriate program P to the enhanced CCA security game itself.
Implicitly, this allows the equivocal opening requests to be satisfied in different ways depending
on what stage the security proof of the lower scheme is at.

While this new property provides a useful tool for recursion, we also need to work a bit harder
to prove e-computation enabled CCA security. Specifically, we prove in Section 4 that given a
hinting PRG and an equivocal commitment scheme that are uniformly secure against 2κ

δ
time

adversaries for δ ∈ (0, 1), we can transform an e-computation enabled CCA scheme for small tags
into one that is e′-computation enabled CCA secure for large tags, where e′ = e · δ.

In our proof, at the stages where we use a reduction to find equivocal openings, the reduction
will run in time 2κ

e′
to satisfy the adversary’s program request. When contradicting the hinting

PRG, the reduction will run in time 2κ
e

to to find equivocal openings, and 2κ
e′

to satisfy the ad-
versary’s program request. To ensure that this gives us a contradiction, we will set the security
parameter of the hinting PRG to be large enough. Finally, when the reduction is to the underlying
small tag CCA commitment, the program request of the large tag adversary will be passed by
the reduction to the interface of the underlying small tag scheme, which is allowed since e′ < e.
In the base case, we note that we start with schemes secure against non-uniform adversaries (for
lg lg lg κ tags). By definition, any scheme that is secure against non-uniform adversaries is trivially
e-computation enabled secure for arbitrary e.

Issues due to Same-Tag Restrictions. The techniques described above capture our main ideas
for tag amplification. Unfortunately, the base schemes that we start with may only be same-tag
secure. On the other hand, we would like to end up with CCA schemes for 2κ tags that do not have
this restriction. This is because CCA commitments without such a restriction can be generically
transformed, assuming signatures into schemes that do not use tags at all. We remedy the same-
tag issue by applying a transformation that takes a scheme supporting a tag space of N tags with
same-tag only queries to one that supports N tags without the same-tag restriction, for any N ≤
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poly(κ). We highlight the technical ideas involved in this transformation below.

Removing the Same-Tag Requirement. We start with an underlying scheme that has the same-
tag requirement, and modify it to remove this requirement as follows. To commit to a message
with tag tag in the new scheme, commit to it with respect to all N − 1 tags except tag in the under-
lying same-tag scheme. Similar to the previous construction, we use hinting PRGs and attach a
bunch of checks to ensure that recovering the committed value from the adversary’s queries using
any one tag is computationally indistinguishable from recovering it using a different tag.

The overall mechanics and guarantees are similar to our prior transformation. Suppose an
adversary were given a challenge commitment tag∗ in the transformed scheme, and got to make
queries to several different tags tag 6= tag∗. By our construction, the adversary’s challenge does not
contain an underlying commitment with tag tag∗ whereas all of the adversary’s oracle queries will
contain an underlying commitment with tag tag∗. We can therefore answer all of these queries by
changing the oracle valuation function to one that uses only tag tag∗ in underlying scheme.

We note that since the same-tag transformation incurs a blowup proportional to N , it is imper-
ative to apply it early on in the sequence of transformations. If we first amplified the tag space to
be of size 2κ and then attempted to remove the same-tag restriction, the resulting scheme would
have exponential sized commitments. Therefore, the order in which these transformations are
applied is important. If we start with a base scheme that is same-tag secure and supports tags of
size lg lg · · · lg︸ ︷︷ ︸

c times

(κ) for some constant c, we will first apply the same-tag to many-tag transformation.

Next, we apply the tag amplification transformation c+ 1 times. We end up with a scheme that is
polynomial sized and supports a tag space of size 2κ with no same-tag restrictions.

This concludes our technical overview. We refer the reader to Section 3 for a formal definition
of computation enabled CCA commitments, Section 4 for our tag amplifying transformation, and
Section 5 for details on removing the same-tag requirement. We put things together and state our
final results in Section 6.

Non-uniform Security. Our techniques, as described above, give a CCA commitment scheme
secure against uniform adversaries. One might ask whether we could use similar techniques, per-
haps combined with new assumptions such as non-uniformly secure keyless hash functions [BKP18,
BL18] to obtain security against non-uniform adversaries. We address this in two parts.

First, taking a step back, a primary motivation for obtaining non-uniform security is that it is
useful for protocol composition. For example, if we were using a cryptographic primitive like pub-
lic key encryption as an end application say for encrypting email, then obtaining uniform security
would arguably be just fine. As the uniform model captures attackers in the real world. How-
ever, the extra power of non-uniform security might be helpful if our commitment scheme were
a component used in building a larger cryptosystem. Here, we observe that our transformation
actually outputs a CCA scheme with properties that are stronger than (plain) uniform security.
Specifically, the output scheme satisfies e-computation enabled CCA security.

While the initial motivation for this abstraction was that it helps with recursion; we note that
it can actually be a useful property for a CCA scheme to have as well. In particular, it can actually
be viewed as a more fine-grained or nuanced view of non-uniform computation. This abstraction
essentially gives any adversary non-uniform advice so long as it can be computed in time of 2κ

e
.

If e is set appropriately, then we expect this would suffice in many circumstances, including for
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protocol composition. Indeed, this was true for the type of protocol composition that we needed
to recursively amplify the tag space. Thus our amplification techniques and our abstraction can
arguably deliver something that is the “best of both worlds”: the outcome is as good as non-
uniform security for many applications, but does not make any new non-uniform assumptions
about the hash function.

Second, our techniques are also meaningful for constructing black-box two-message non-malleable
commitments with (regular) non-uniform security. In our transformation, the primitive that re-
quires uniform security is the keyless hash-based equivocal commitment scheme. In the two-
message setting, it seems possible to slightly modify our scheme to have the receiver generate
the key for a keyed (non-uniform secure) collision-resistant hash function. All of our other tech-
niques appear to carry over to this setting, and it appears that one would be able to prove that the
resulting scheme is a (regular) non-uniform secure non-malleable commitment that only makes
black-box use of cryptography.

The Subtle Issue of Over-Extraction. In the discussion above, we implicitly assumed that the
CCA decommitment oracle for small-tag/same-tag commitments behaves perfectly correctly on
well-formed as well as malformed commitments: 1) whenever an adversary queries the oracle
on a commitment that is valid, in the sense that there exists a value and randomness that would
lead to an accepting decommitment, the oracle outputs exactly the committed value, otherwise,
2) when the commitment is invalid, and there is no value and randomness that would lead to an
accepting decommitment, it outputs ⊥.

However, the base scheme from time-lock puzzles in [LPS17] achieves a weaker notion of
same-tag CCA security. In particular, the CCA decommitment oracle for this scheme will not
satisfy property 2) above. When the commitment is invalid, the oracle may output arbitrary values
- this is known as over-extraction. In a nutshell, as described in [LPS17] the time-lock puzzle based
same-tag CCA commitments suffer from over-extraction because only honestly generated time-
lock puzzles (i.e., in the domain of the puzzle generation algorithm) are guaranteed to be solvable
by circuits of sufficient depth. There is no guarantee for ill-generated puzzles, and no depth-
efficient procedure for deciding whether a puzzle is honestly generated or not. Eg., in the time-

lock puzzles of Rivest, Shamir, and Wagner [RSW96], given a puzzle (s + g22t

modN,N) one can
extract s using 2t squaring modular N , but cannot obtain a proof that N is a valid RSA-modulus.
As a result, the CCA decommitment oracle that extracts committed values via solving time-lock
puzzles, provides no guarantees when commitments are invalid.

Nevertheless, our compiler removing the same-tag restriction boosts security so that even if
the base CCA scheme suffers from over-extraction (i.e. satisfies property 1) only), the resulting
scheme satisfies both properties 1) and 2). In a nutshell, the CCA check algorithm built into our
construction prevents over-extraction by ensuring that whenever the oracle returns a value that is
not ⊥, there exists a decommitment to a valid value that would cause the decommitter to accept.

2 Preliminaries

In this section we will provide notions and security definitions for some of the building blocks that
we will use in our constructions. We will use κ to denote the security parameter. For our compu-
tational definitions, we will use T (·) security to indicate security against any attacker that runs in
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time that is polynomial in T (·). In our constructions we will often utilize subexponential assump-
tions where T (κ) = 2κ

δ
for some constant δ ∈ (0, 1). Finally, we will be explicit to whether we are

describing security against uniform or non-uniform adversaries as our results will be sensitive to
this nuance.

We will denote by negl(κ) a function that is asymptotically smaller than the inverse of every
polynomial in κ.

Hinting PRGs

We now provide the definition of hinting PRGs taken from [KW19]. Let n(·, ·) be a polynomial. A
n-hinting PRG scheme consists of two PPT algorithms Setup,Eval with the following syntax.

Setup(1κ, 1`): The setup algorithm takes as input the security parameter κ, and length parameter
`, and outputs public parameters pp and input length n = n(κ, `).

Eval (pp, s ∈ {0, 1}n, i ∈ [n] ∪ {0}): The evaluation algorithm takes as input the public parameters
pp, an n bit string s, an index i ∈ [n] ∪ {0} and outputs an ` bit string y.

Definition 2.1. A hinting PRG scheme (Setup,Eval) is said to be T (·) secure if for any polynomial
`(·) and any adversary A running in time p(T (κ)) for some polynomial p, there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds:∣∣∣∣∣∣∣∣Pr

β ← A

(
pp,

(
rβ0 ,
{
rβi,b

}
i∈[n],b∈{0,1}

))
:

(pp, n)← Setup(1κ, 1`(κ)), s← {0, 1}n,
β ← {0, 1}, r00 ← {0, 1}`, r10 = Eval(pp, s, 0),

r0i,b ← {0, 1}` ∀ i ∈ [n], b ∈ {0, 1},
r1i,si = Eval(pp, s, i), r1i,si ← {0, 1}

` ∀ i ∈ [n]

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(·)

Equivocal Commitments without Setup

Equivocal commitments were proposed by DiCrescenzo, Ishai and Ostrovsky [CIO98] as a bit
commitment scheme with a trusted setup algorithm. During normal setup, the bit commitment
scheme is statistically binding. However, there exists an alternative setup which produces public
parameters along with a trapdoor, that produces commitments which can be opened to either 0
or 1. Moreover, the public parameters of the normal and alternative setup are computationally
indistinguishable.

Here we will define a similar primitive, but without utilizing a trusted setup algorithm. In
order for such a notion to be meaningful, we will require the commitment scheme to be computa-
tionally binding for any uniform T -time attacker, but there will exist an algorithm running in time
poly(2κ) that can be opened to 0 or 1. Moreover, such a commitment with one of the openings
should be statistically indistinguishable from a commitment created in the standard manner.

In Appendix A, we prove that any statistically hiding, computationally binding commitment
also satisfies equivocality according to this definition. We can then instantiate commitments satis-
fying our definition using constructions of statistically hiding and computationally binding com-
mitments due to [DPP93, HM96] and more recently [BKP18]. These constructions combine a pair-
wise independent hash (or more generally a strong extractor) with a keyless collision resistant
hash function to obtain such a commitment scheme.
An equivocal commitment scheme without setup consists of three algorithms:
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Equiv.Com(1κ, b)→ (c, d) is a randomized PPT algorithm that takes in a bit and security parame-
ter and outputs a commitment c, decommitment string d.

Equiv.Decom(c, d)→ {0, 1,⊥} is a deterministic polytime algorithm that takes in part of the com-
mitment and it’s opening and reveals the bit that it was committed to or⊥ to indicate failure.

Equiv.Equivocate(1κ) → (c, d0, d1) is an (inefficient) randomized algorithm that takes in the secu-
rity parameter, and outputs decommitment strings to both 0 and 1.

Definition 2.2. We say an equivocal commitment scheme is perfectly correct if for all b ∈ {0, 1}

Pr

(c, d)← Equiv.Com(1κ, b)
b′ ← Equiv.Decom(c, d)

b′ = b

 = 1

Definition 2.3. We say an equivocal commitment scheme is efficient if Equiv.Com and Equiv.Decom
run in poly(κ) time, and Equiv.Equivocate runs in time 2κ.

We now define the binding and equivocal properties.

Definition 2.4. An equivocal commitment without setup scheme (Equiv.Com,Equiv.Decom,
Equiv.Equivocate) is said to be T (·) binding secure if for any uniform adversary A running in time
p(T (κ)) for some polynomial p, there exists a negligible function negl(·),

Pr
[
(c, d0, d1)← A(1κ) : Equiv.Decom(c, d0) = 0 ∧ Equiv.Decom(c, d1) = 1

]
≤ negl(κ).

Definition 2.5. We sat that a scheme is equivocal if for all b ∈ {0, 1} the statistical difference
between the following two distributions is negligible in κ.

• D0 = (c, d) where Equiv.Com(1κ, b)→ (c, d).

• D1 = (c, db) where Equiv.Equivocate(1κ)→ (c, d0, d1).

We observe that our security definitions do not include an explicit hiding property of a com-
mitted bit. This property is actually implied by our equivocal hiding and will not be needed in
explicit form in our proofs of security for non malleable commitments.

3 Computation Enabled CCA Commitments

We now define what we describe as “computation enabled” CCA secure commitments. Intu-
itively, these will be tagged commitments where a commitment to message m under tag tag and
randomness r is created as CCA.Com(tag,m; r) → com. The scheme will be statistically binding if
for all tag0, tag1, r0, r1 and m0 6= m1 we have that CCA.Com(tag0,m0; r0) 6= CCA.Com(tag1,m1; r1).

Our hiding property follows along the lines of chosen commitment security definitions [CLP10]
where an attacker gives a challenge tag tag∗ along with messages m0,m1 and receives a challenge
commitment com∗ to either m0 or m1 from the experiment. The attacker’s job is to guess the mes-
sage that was committed to with the aid of oracle access to an (inefficient) value function CCA.Val
where CCA.Val(com) will return m if CCA.Com(tag,m; r) → com for some r. The attacker is al-
lowed oracle access to CCA.Val(·) for any tag 6= tag∗. The traditional notion of non-malleability (as
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seen in [KK19], etc.) is simply a restriction of the CCA game where the adversary is only allowed
to simultaneously submit a single set of decommitment queries. The proof of this is immediate
and can be found in [BFMR18].

The primary difference in our definition is that we also allow the attacker to submit a random-
ized turing machine program P at the beginning of the game. The challenger will run the program
P and output the result for the attacker at the beginning of the game. This added property will
allow us to successfully apply recursion for tag amplification later in our scheme.

In addition, we require a recover from randomness property, which allows one to open the
commitment given all the randomness used to generate said commitment.

3.1 Definition

A computation enabled CCA secure commitment is parameterized by a tag space of size N =
N(κ) where tags are in [1,N]. It consists of three algorithms:

CCA.Com(1κ, tag,m; r)→ com is a randomized PPT algorithm that takes as input the security pa-
rameter κ, a tag tag ∈ [N ], a message m ∈ {0, 1}∗ and outputs a commitment com, including
the tag com.tag. We denote the random coins explicitly as r.

CCA.Val(com) → m ∪ ⊥ is a deterministic inefficient algorithm that takes in a commitment com
and outputs either a message m ∈ {0, 1}∗ or a reject symbol ⊥.

CCA.Recover(com, r)→ m∪⊥ is a deterministic algorithm which takes a commitment com and the
randomness r used to generate com and outputs the underlying message m (or ⊥ indicating
no message was recovered).

We now define the correctness, efficiency properties, as well as the security properties of com-
putational binding and CCA hiding.

Correctness

Definition 3.1. We say that our computation enabled CCA secure commitment scheme is perfectly
correct if the following holds. ∀m ∈ {0, 1}∗, tag ∈ [N ] and r we have that

CCA.Val(CCA.Com(1κ, tag,m; r)) = m.

Efficiency

Definition 3.2. We say that our computation enabled CCA secure commitment scheme is efficient
if CCA.Com,CCA.Recover run in time poly(|m|, κ), while CCA.Val runs in time poly(|m|, 2κ).

Recovery From Randomness

Definition 3.3. We say that our CCA secure commitment scheme can be recovered from random-
ness if the following holds. For all m ∈ {0, 1}∗, tag ∈ [N ], and r we have that

CCA.Recover(CCA.Com(1κ, tag,m; r), r) = m.
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Security

Binding Game. We first define a binding game between a challenger and an attacker. The game
is parameterized by a security parameter κ.

1. The attacker sends a randomized and inputless Turing Machine algorithm P . The challenger
runs the program on random coins and sends the output to the attacker. If the program takes
more than 22κ time to halt, the challenger halts the evaluation and outputs the empty string.3

2. The attacker outputs a commitment string c. Let v = CCA.Val(c).

3. We define the attacker’s advantage in this game to be

Pr [∃r s.t. (CCA.Recover(c, r) 6= ⊥) ∧ (CCA.Recover(c, r) 6= v)]+Pr [6 ∃r s.t. CCA.Recover(c, r) = v]

Weak Binding Game. We now define a weak binding game between a challenger and an at-
tacker. The game is identical to the binding game above, except the way the adversary’s advantage
is defined. The game is parameterized by a security parameter κ.

1. The attacker sends a randomized and inputless Turing Machine algorithm P . The challenger
runs the program on random coins and sends the output to the attacker. If the program takes
more than 22κ time to halt, the challenger halts the evaluation and outputs the empty string.4

2. The attacker outputs a commitment string c. Let v = CCA.Val(c).

3. We define the attacker’s advantage in this game to be

Pr [∃r s.t. (CCA.Recover(c, r) 6= ⊥) ∧ (CCA.Recover(c, r) 6= v)]

CCA Hiding Game. We also define a CCA hiding game between a challenger and an attacker.
The game is parameterized by a security parameter κ.

1. The attacker sends a randomized and inputless Turing Machine algorithm P . The challenger
runs the program on random coins and sends the output to the attacker. If the program takes
more than 22κ time to halt, the challenger halts the evaluation and outputs the empty string.5

2. The attacker sends a “challenge tag” tag∗ ∈ [N ].

3. The attacker makes repeated commitment queries com. If com.tag = tag∗ the challenger
responds with ⊥. Otherwise it responds as

CCA.Val(com).

4. For some w, the attacker sends two messages m0,m1 ∈ {0, 1}w.

3The choice of 22κ is somewhat arbitrary as the condition is in place so that the game is well defined on all P .
4The choice of 22κ is somewhat arbitrary as the condition is in place so that the game is well defined on all P .
5The choice of 22κ is somewhat arbitrary as the condition is in place so that the game is well defined on all P .
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5. The challenger flips a coin b ∈ {0, 1} and sends com∗ = CCA.Com(tag∗,mb; r) for randomly
chosen r.

6. The attacker again makes repeated queries of commitment com. If com.tag = tag∗ the chal-
lenger responds with ⊥. Otherwise it responds as

CCA.Val(com).

7. The attacker finally outputs a guess b′.

We define the attacker’s advantage in the game to be Pr[b′ = b] − 1
2 where the probability is over

all the attacker and challenger’s coins.

Definition 3.4. An attack algorithm A is said to be e-conforming for some real value e > 0 if:

1. A is a (randomized) uniform algorithm.

2. A runs in polynomial time.

3. The program P output byA in Step 1 of the binding or the CCA game will always terminate
in time p(2κ

e
) time and output at most q(κ) bits for some polynomial functions p, q (For all

possible random tapes given to the program P ).

Definition 3.5. A computation enabled CCA secure commitment scheme scheme given by algo-
rithms (CCA.Com,CCA.Val,CCA.Recover) is said to be e-computation enabled CCA secure w.r.t.
over-extraction if for any e-conforming adversary A there exists a negligible function negl(·) such
that A’s advantage in the weak binding and the CCA hiding game is negl(κ).

Definition 3.6. A computation enabled CCA secure commitment scheme scheme given by algo-
rithms (CCA.Com,CCA.Val,CCA.Recover) is said to be e-computation enabled CCA secure if for
any e-conforming adversaryA there exists a negligible function negl(·) such thatA’s advantage in
the binding and the CCA hiding game is negl(κ).

We also define another notion of security which we call “same tag" computation enabled secure
for a weaker class of adversaries who only submit challenge queries that all have the same tag.

Definition 3.7. A computation enabled CCA secure commitment scheme scheme given by al-
gorithms (CCA.Com,CCA.Val,CCA.Recover) is said to be “same tag" e-computation enabled CCA
secure w.r.t. over-extraction if for any e-conforming adversary A which generates queries such
that all commitment queries submitted byA are on the same tag, there exists a negligible function
negl(·) such that the attacker’s advantage in the weak binding game and the CCA game is negl(κ).

Definition 3.8. A computation enabled CCA secure commitment scheme scheme given by al-
gorithms (CCA.Com,CCA.Val,CCA.Recover) is said to be “same tag" e-computation enabled CCA
secure if for any e-conforming adversary A which generates queries such that all commitment
queries submitted by A are on the same tag, there exists a negligible function negl(·) such that the
attacker’s advantage in the binding game and the CCA game is negl(κ).
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3.2 Connecting to Standard Security

We now connect our computation enabled definition of security to the standard notion of chosen
commitment security. In particular, the standard notion of chosen commitment security is sim-
ply the computation enabled above, but removing the first step of submitting a program P . We
prove two straightforward lemmas. The first showing that any computation enabled CCA secure
commitment scheme is a standard secure one against uniform attackers. The second is that any
non-uniformly secure standard scheme satisfies e-computation enabled security for any constant
e ≥ 0.

Definition 3.9. A commitment scheme (CCA.Com,CCA.Val,CCA.Recover) is said to be CCA secure
against uniform/non-uniform attackers if for any poly-time uniform/non-uniform adversary A
there exists a negligible function negl(·) such that A’s advantage in the binding game, as well as
the CCA hiding game with Step 1 removed is negl(κ).

Definition 3.10. A commitment scheme (CCA.Com,CCA.Val,CCA.Recover) is said to be “same tag"
CCA secure (resp. w.r.t. over-extraction) against uniform/non-uniform attackers if for any poly-
time uniform/non-uniform adversary A such that all commitment queries submitted by A are on
the same tag, there exists a negligible function negl(·) such thatA’s advantage in the binding game
(resp. weak binding game) and the CCA hiding game with Step 1 removed is negl(κ).

Claim 3.1. If (CCA.Com,CCA.Val,CCA.Recover) is an e-computation enabled CCA secure commit-
ment scheme for some e as per Definition 3.6, then it is also a scheme that achieves standard CCA
security against uniform poly-time attackers as per Definition 3.9.

Proof. This follows from the fact that any uniform attacker A in the standard security game with
advantage ε(κ) = ε immediately implies an e-conforming attacker A′ with the same advantage
where A′ outputs a program P that immediately halts and then runs A.

Claim 3.2. If (CCA.Com,CCA.Val,CCA.Recover) achieves standard CCA security against non-uniform
poly-time attackers as per Definition 3.9, then it is an e-computation enabled CCA secure commit-
ment scheme for any e as per Definition 3.6.

Proof. Suppose A is an e-conforming attacker for some e with some advantage ε = ε(κ). Then
our non-uniform attacker A′ can fix the random coins of A and to maximize its probability of
success. Since now A is deterministic save for randomness produced by the challenger in step 5,
this deterministically fixes the P A sends, so A′ can fix the coins of P to maximize success. Thus,
A′ can simulateA given the above aforementioned random coins ofA and the output of P , both of
which are poly-bounded by the fact that A is e-conforming. Since all non-challenger randomness
was non-uniformly fixed to maximize success,A′ has at least advantage ε as well. By our definition
of standard security hiding, the advantage of A′ must be negligible, so A’s advantage must be as
well.

We remark that the above statements are also true for “same tag" conforming adversaries and
for security w.r.t. over-extraction.
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4 Tag Amplification

In this section we show a process from amplifying a computation enabled CCA commitment
scheme for N ′ = 4N tags to a scheme with 2N tags. The amplification process imposes an over-
head that is polynomial in N and the size/time of the original commitment scheme. Thus it is
important that N be polynomially bounded in the security parameter.

Let (Small.Com,Small.Val,Small.Recover) be an e-computation enabled CCA commitment scheme
for N ′(κ) = N ′ = 4N tags. We will assume tags take identities of the form (i, β,Γ) ∈ [N ] ×
{0, 1} × {0, 1} and that the Small.Com algorithm take in random coins of length `(κ). In addi-
tion, for some constant δ ∈ (0, 1)6 we assume a equivocal commitment without setup scheme
(Equiv.Com,Equiv.Decom,Equiv.Equivocate) that is T = 2κ

δ
binding secure and statistically hiding.

We assume a hinting PRG scheme (Setup,Eval) that is T = 2κ
γ

secure for some constant
γ ∈ (0, 1) and has seed length n(κ, |m|) (represented by n for ease) and block output length of
max(|m|, ` × N). For ease of notation we assume that HPRG.Eval(HPRG.pp, s, 0) ∈ {0, 1}|m| and
∀i ∈ [n], HPRG.Eval(HPRG.pp, s, i) ∈ {0, 1}`·N .

Our transformation will produce three algorithms, (CCA.Com,CCA.Val,CCA.Recover) which
we prove e′-computation enabled where we require e′ = e · δ ≥ 1. We will also present a fourth
algorithm CCA.ValAlt, which is only used in the proof. The algorithms will make use of the aux-
iliary subroutines CCA.Find and CCA.Check described below. CCA.ValAlt(tag∗, com) → m ∪ ⊥ is a
deterministic inefficient algorithm that takes in a tag tag∗ and a commitment com and outputs ei-
ther a message m ∈ {0, 1}∗ or a reject symbol ⊥. It will be used solely as an instrument in proving
the scheme secure and not exported as part of the interface.

CCA.Find(x′, com)

Inputs: Index x′ ∈ [N ]

Commitment com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])
)

Output: s̃ ∈ {0, 1}n

• For each i ∈ [n]

1. Let ỹi = Small.Val(cx′,i,0)

2. Set z̃i = Equiv.Decom(σi, ỹi). If z̃i = ⊥, set s̃i = 1. Else, set s̃i = z̃i.

• Output s̃ = s̃1, s̃2, . . . , s̃n.

Figure 1: Routine CCA.Find

We now describe our transformation.

Transformation Amplify(Small = (Small.Com, Small.Val,Small.Recover),HPRG,Equiv, e′)→
NM = (CCA.Com,CCA.Val,CCA.Recover) :

CCA.Com(1κ, tag,m ∈ {0, 1}∗; r)→ com

6The constant δ must be less than 1 in order to meet the requirement that the Equiv.Equivocate algorithm runs in
time polynomial in 2κ.
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CCA.Check(s̃, com)

Inputs: Seed candidate s̃ = s̃1, s̃2, . . . , s̃n

Commitment com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])
)

Output: {0, 1}

• For i ∈ [n]

1. Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s̃, i)

2. For x ∈ [N ]

(a) Let ỹi = Small.Recover(cx,i,s̃i , rx,i). If ỹi = ⊥, output 0

(b) If cx,i,s̃i 6= Small.Com(1κ, (x, tagx, s̃i), ỹi; rx,i), output 0.
(c) If s̃i 6= Equiv.Decom(σi, ỹi), output 0.

• If all the above checks have passed, output 1.

Figure 2: Routine CCA.Check

1. Compute κ′ = κ
e′
δ = κe. Compute κ′′ = κ

′ 1
γ .7

2. Sample (HPRG.pp, 1n)← HPRG.Setup(κ′′, 1max(|m|,N ·`)).

3. Sample s = s1 . . . sn
R←− {0, 1}n as the seed of the hinting PRG.

4. For all i ∈ [n] run Equiv.Com(1κ
′
, si)→ (σi, yi).

5. Let rx,i, r̃x,i ∈ {0, 1}` be defined as follows:

6. For i ∈ [n]

(a) Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s, i)

(b) Sample (r̃1,i, r̃2,i, . . . , r̃N,i)
R←− {0, 1}N ·`

7. Compute c = m⊕ HPRG.Eval(HPRG.pp, s, 0)

8. For i ∈ [n], x ∈ [N ]

(a) If si = 0

i. cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; rx,i)

ii. cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; r̃x,i)

(b) If si = 1

i. cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; r̃x,i)

ii. cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; rx,i)

9. Output com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])
)

as the commitment. All of
the randomness is used as the decommitment string.

CCA.Val(com)→ m ∪ ⊥

1. Set s̃ = CCA.Find(1, com).

7δ and γ are known from the security guarantees of Equiv,HPRG respectively.
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2. If CCA.Check(s̃, com) = 0 output ⊥.

3. Output c⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.ValAlt(tag∗, com)→ m ∪ ⊥

1. If com.tag = tag∗, output ⊥.

2. Let x∗ be the smallest index where the bits of tag∗, tag differ.

3. Set s̃ = CCA.Find(x∗, com).

4. If CCA.Check(s̃, com) = 0 output ⊥.

5. Output c⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.Recover(com, r)→ m ∪ ⊥

1. Parse com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])
)

.

2. Parse r = (s, {(rx,i,b)}x∈[N ],i∈[n],b∈{0,1}).

3. For each i ∈ [n]:

(a) Let ỹi = Small.Recover(c1,i,0, r1,i,0).
(b) Set z̃i = Equiv.Decom(σi, ỹi). If ỹi = ⊥ or z̃i = ⊥, set s̃i = 1. Else, set s̃i = z̃i.

4. If CCA.Check(s̃, com) = 0, output ⊥.

5. Output c⊕ HPRG.Eval(HPRG.pp, s, 0)

Efficiency

Claim 4.1. If (Small.Com,Small.Val, Small.Recover) is an efficient and correct e-computation en-
abled commitment w.r.t. over-extraction with recovery from randomness that satisfies the CCA
hiding game with tag space N(κ) ∈ poly(κ), (Equiv.Com,Equiv.Decom, Equiv.Equivocate) is an ef-
ficient equivocal commitment scheme as per Definition 2.3, e, e′ are constants, then we have that
(CCA.Com,CCA.Val,CCA.Recover) is an efficient and correct e′-computation enabled CCA commit-
ment scheme with recovery from randomness, and CCA.ValAlt runs in time poly(|m|, 2κ).

Proof. CCA.Com calls Small.Com 2·n·N times on the output of Equiv.Com(1κ
e
, ·) in addition to some

other poly-time computation. By Definition 3.2, Small.Com is poly(|m|, κ). Since Equiv.Com runs in
time poly(κ′) by Definition 2.3, this bounds the |m| from the input scheme with poly(κe) ∈ poly(κ)
as e is a constant. Along with the fact that n is bounded by the security parameter, and N is
bounded by the tag space which we assume is poly(κ), this is overall polynomial bounded in κ.
CCA.Val and CCA.ValAlt both call Small.Val exactly once, in addition to some efficient computation,
so must also be poly(|m|, 2κ) as well. CCA.Recover does a single ⊕, and since com and r are both
bounded by poly(κ) by the runtime of CCA.Com, CCA.Recover runs in poly(|m|, κ) as well.

Correctness

Claim 4.2. If (Small.Com,Small.Val,Small.Recover) is a correct computation enabled CCA commit-
ment scheme as per Definition 3.1 and (Equiv.Com,Equiv.Decom) is a correct equivocal commit-
ment scheme as per Definition 2.2, then (CCA.Com,CCA.Decom,CCA.Val) is a correct computation
enabled CCA commitment scheme.
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Proof. Note that if base scheme is correct, then ∀i ∈ [n], x ∈ [N ], b ∈ {0, 1},

Small.Val(Small.Com(1κ, (x, tagx, b), yi; r)) = yi.

Also from correctness of equivocal scheme, ∀i ∈ [n],

Equiv.Decom(Equiv.Com(1κ
′
, si)) = si.

Finally, the hinting PRG on input s, ∀i ∈ [n], x ∈ [N ], correctly sets the randomness along cx,i,si
and c⊕ HPRG.Eval(HPRG.pp, s, 0) = m. We therefore observe that the scheme is correct.

Recovery from Randomness The recovery from randomness property follows from the correct-
ness of CCA.Check, which follows because by randomness recovery of the base scheme, for all
i ∈ [n], x ∈ [N ], b ∈ {0, 1},

Small.Recover(Small.Com(1κ, (x, tagx, b), yi; r), r) = yi.

Moreover, by correctness of the equivocal scheme, ∀i ∈ [n],

Equiv.Decom(Equiv.Com(1κ
′
, si)) = si.

4.1 Proof of Security

We now prove security by showing that our transformation leads to an e′ = e · δ-computation
enabled CCA commitment scheme, assuming the base scheme is an e-computation enabled CCA
commitment w.r.t. over-extraction. The rest of this section is devoted to proving the following
theorem.

Theorem 4.1. Let (Small.Com,Small.Val) be an e-computation enabled CCA commitment scheme
w.r.t. over-extraction satisfying Definition 3.5, forN ′(κ) = N ′ = 4N ∈ poly(κ) tags, (Setup,Eval) be
a hinting PRG that is T = 2κ

γ
secure where γ ∈ (0, 1), and (Equiv.Com,Equiv.Decom,Equiv.Equivocate)

be an equivocal commitment without setup scheme that is T = 2κ
δ

binding secure and statistically
hiding for some constant δ ∈ (0, 1). Then the above commitment scheme (CCA.Com,CCA.Val) is
an e′ = e · δ-computation enabled CCA commitment scheme for 2N tags satisfying Definition 3.6,
if e′ ≥ 1.

Proof of Binding. First, we will prove that no e′-confirming adversary A will have advantage
better than negl(κ) in the binding game, by relying on security of the equivocal commitment.
Here, the attacker will be allowed to ask for a program P that runs in time polynomial in 2κ

e′

where e′ = e · δ. The equivocal commitment will use security parameter κ′ = κe, i.e., it will be
secure against attackers that run in time poly(2(κ′)δ) = poly(2κ

eδ
) = poly(2κ

e′
). Thus our reduction

will be able to run P by itself and still be a legitimate 2(κ′)δ -time attacker.
Now suppose there is an adversary A with non-negligible advantage in the binding game.

Then, there is a polynomial p(·) such that for com output by A,

Pr [∃r s.t. (CCA.Recover(com, r) 6= ⊥) ∧ (CCA.Recover(com, r) 6= CCA.Val(com))] ≥ 1

p(κ)
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or
Pr [6 ∃r s.t. CCA.Recover(com, r) = CCA.Val(com)] ≥ 1

p(κ)

We have the following claims that rule out this possibility.

Claim 4.3. Consider commitment com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])
)

output by
A such that

∃r s.t. (CCA.Recover(com, r) 6= ⊥) ∧ (CCA.Recover(com, r) 6= CCA.Val(com)) .

Then

• Either there exists i ∈ [n], r′ ∈ {0, 1}∗ such that

y0
i = Small.Val(c1,i,0)∧y1

i = Small.Recover(c1,i,1, r
′)∧Equiv.Decom(σi, y

0
i ) = 0∧Equiv.Decom(σi, y

1
i ) = 1.

• Or ∃r′ such that Small.Recover(c1,i,0, r
′) 6= ⊥ and Small.Val(c1,i,0) 6= Small.Recover(c1,i,0, r

′).

Proof. CCA.Val and CCA.Recover differ only in their recovery of a candidate seed. Thus if they
output different values, it implies that they recover two different seeds, s̃0 and s̃1 respectively,
where s̃0 6= s̃1.

Since CCA.Recover(com, r) 6= ⊥, we have that CCA.Check(s̃1, com) cannot output 0.
Let i be any index where s̃0

i 6= s̃1
i .

Let z̃0
i = Equiv.Decom(σi,Small.Val(c1,i,0)), z̃1

i = Equiv.Decom(σi, Small.Recover(c1,i,0, r
′)), where

r′ = r1,i,0 for r parsed as (·, {(rx,i,b)}x∈[N ],i∈[n],b∈{0,1}).

• Case 1: s̃0
i = 0 ∧ s̃1

i = 1.
Note that s̃0

i is computed as a result of running CCA.Find(1, com). Thus,

z̃0
i = Equiv.Decom(σi,Small.Val(c1,i,0)) = 0

(since if it was ⊥ then s̃0
i would be set to 1).

Moreover, since CCA.Recover(com, r) 6= ⊥, we have that CCA.Check(s̃1, com) = 1. Thus,

Equiv.Decom(σi, Small.Recover(c1,i,1, r1,i)) = s̃1
i = 1.

where (r1,i, . . .) = HPRG.Eval(HPRG.pp, s̃1, i).

• Case 2: s̃0
i = 1 ∧ s̃1

i = 0.
Note that s̃1

i is computed as a result of running Equiv.Decom(σi,Small.Recover(c1,i,0, r
′)),

where r′ = r1,i,0 for r parsed as (·, {(rx,i,b)}x∈[N ],i∈[n],b∈{0,1}). Thus, we get that

(Small.Recover(c1,i,0, r
′) 6= ⊥) ∧ (z̃1

i = Equiv.Decom(σi, Small.Recover(c1,i,0, r
′)) = 0)

(if it was ⊥ then s̃1
i would be set to 1).

Moreover, if Small.Val(c1,i,0) = Small.Recover(c1,i,0, r
′), z̃0

i = Equiv.Decom(σi, Small.Val(c1,i,0)) =
Equiv.Decom(σi,Small.Recover(c1,i,0, r

′)) = 0. But this is impossible since s̃0
i = 1. This implies

that Small.Val(c1,i,0) 6= Small.Recover(c1,i,0, r
′). Thus, ∃r′ such that Small.Recover(c1,i,0, r

′) 6=
⊥ and Small.Val(c1,i,0) 6= Small.Recover(c1,i,0, r

′).
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This proves the claim.

Now, if there is a polynomial p(·) such that for com output by A,

Pr [∃r s.t. (CCA.Recover(com, r) 6= ⊥) ∧ (CCA.Recover(com, r) 6= CCA.Val(com))] ≥ 1

p(κ)

then by the above claim, either

Pr[∃i, r′ s.t. Equiv.Decom(σi, Small.Val(c1,i,0)) = 0∧Equiv.Decom(σi,Small.Recover(c1,i,1, r
′)) = 1] ≥ 1

2p(κ)

or

Pr[∃r′ s.t. Small.Recover(c1,i,0, r
′) 6= ⊥, Small.Val(c1,i,0) 6= Small.Recover(c1,i,0, r

′)] ≥ 1

2p(κ)

Since the equivocal commitment is 2κ
′δ

= 2κ
e′
> 2κ-secure, the former equation contradicts bind-

ing of the equivocal commitment (by finding r′ and running Small.Val in time at most 2κ). On the
other hand the latter equation contradicts weak binding of the base commitment. Therefore, it
only remains to prove that for com output by A,

Pr [6 ∃r s.t. CCA.Recover(com, r) = CCA.Val(com)] = negl(κ)

We will in fact prove the following stronger claim.

Claim 4.4. For every com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])
)

, there exists r such that

CCA.Recover(com, r) = CCA.Val(com).

Proof. First, we note that if CCA.Val(com) = ⊥, the claim trivially follows. This is because for
r = ⊥, CCA.Recover(com, r) = ⊥, proving the claim.

For the rest of this proof, we restrict ourselves to the case of CCA.Val(com) = v 6= ⊥. This
implies that there exists s̃ (output by CCA.Find(1, com)) such that CCA.Check(s̃, com) = 1. This
implies that for i ∈ [n], x ∈ [N ], Equiv.Decom(σi, Small.Recover(cx,i,s̃i , rx,i)) = s̃i and cx,i,s̃i =
Small.Com(1κ, (x, tagx, s̃i), Small.Recover(cx,i,s̃i , rx,i); rx,i), where (r1,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s̃, i).

Set {r′x,i,b}i∈[n],x∈[N ],b∈{0,1} arbitrarily such that for i ∈ [n], x ∈ [N ], r′x,i,s̃i = HPRG.Eval(HPRG.pp, s̃, i),
and for i ∈ [n], x ∈ [N ], r′x,i,1−s̃i is set such that CCA.Recover(cx,i,1−si , r

′
x,i,1−si) = ⊥. Set r′ =

(s′, {r′x,i,b}i∈[n],x∈[N ],b∈{0,1}). Now, CCA.Recover(com, r′) computes ỹi = Small.Recover(c1,i,0, r1,i,0), z̃i =
Equiv.Decom(σi,Small.Recover(c1,i,0, r1,i,0)). For every i where s̃i = 0, by construction, we have
that z̃i = 0. Moreover, for every i where s̃i = 1, by construction ỹi = ⊥, which implies that
z̃i = ⊥. This implies that the seed recovered by CCA.Recover matches s̃, which proves that
CCA.Recover(com, r′) = CCA.Val(com).

This completes the proof of binding.
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Proof of CCA Hiding. To prove security according to the CCA hiding game, we consider the
following sequence of steps. In each proof step we will need to keep in mind that the attacker
will be allowed to ask for a program P that runs in time polynomial in 2κ

e′
where e′ = e · δ. This

will be satisfied in one of two ways. In the proof steps that rely on the hinting PRG security or the
equivocal commitment without setup scheme we leverage the that that these are subexponentially
secure primitives. For relying on security of the equivocal commitment without setup we use
security parameter κ′ = κe, it is secure against attackers that run in time polynomial in 2(κ′)δ =

2κ
eδ

= 2κ
e′

time. Thus our reduction algorithm in these steps can satisfy the requirement by
running P itself and still be a legitimate 2(κ′)δ time attacker. For relying on security of the hinting
PRG scheme, we use security parameter κ′′ = κ

′ 1
γ , it is secure against attackers that run in time

polynomial in 2κ
′
. Thus our reduction algorithm can run P and the equivocate algorithm.

The second situation is when we rely on the security of the smaller tag space e-computation
enabled scheme. In this case the reduction will need to be polynomial time so there is no way for it
to directly run a program P that takes 2κ

e′
time. However, in this case it can satisfy the requirement

by creating a program P̃ and passing this onto the security game of the e-computation enabled
challenger. The program P̃ will run P as well as n invocations of the Equiv.Equivocate algorithm.

We begin our formal analysis by defining a sequence of games. Then for each adjacent set of
games we prove that the advantage of any e′ = e · δ conforming attackerA in the two games must
be negligibly close.

Game 0. This is the original message hiding game between a challenger and an attacker for
e′ = e · δ conforming attackers. The game is parameterized by a security parameter κ.

1. The attacker sends a randomized and inputless Turing Machine algorithm P . The challenger
runs the program on random coins and sends the output to the attacker. If the program takes
more than 22κ time to halt, the outputs halts the evaluation and outputs the empty string.

2. The attacker sends a “challenge tag” tag∗ ∈ {0, 1}N .

3. Pre Challenge Phase: The attacker makes repeated queries commitments

com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n]

)
.

If tag = tag∗ the challenger responds with ⊥. Otherwise it responds as

CCA.Val(com).

4. Challenge Phase

(a) The attacker sends two messages m∗0,m
∗
1 ∈ {0, 1}w

(b) Part 1:
• Compute κ′ = κe.

• Compute κ′′ = κ
′ 1
γ .

• Sample (HPRG.pp∗, 1n)← HPRG.Setup(κ′′, 1max(w,N ·`)).

• Sample s∗ = s∗1 . . . s
∗
n

R←− {0, 1}n as the seed of the hinting PRG.
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• Let r∗x,i, r̃
∗
x,i ∈ {0, 1}` be defined as follows:

• For i ∈ [n]

i. Compute (r∗1,i, r
∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

ii. Sample (r̃∗1,i, r̃
∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·`

• For all i ∈ [n] run Equiv.Com(1κ
′
, s∗i )→ (σ∗i , y

∗
i ).

(c) Part 2:
• It chooses a bit b ∈ {0, 1} and sets c∗ = HPRG.Eval(HPRG.pp∗, s∗, 0)⊕m∗b .
• For i ∈ [n], x ∈ [N ]

i. If s∗i = 0

A. c∗x,i,0 = Small.Com(1κ, (x, tag∗x, 0), y∗i ; r
∗
x,i)

B. c∗x,i,1 = Small.Com(1κ, (x, tag∗x, 1), y∗i ; r̃
∗
x,i)

ii. If s∗i = 1

A. c∗x,i,0 = Small.Com(1κ, (x, tag∗x, 0), y∗i ; r̃
∗
x,i)

B. c∗x,i,1 = Small.Com(1κ, (x, tag∗x, 1), y∗i ; r
∗
x,i)

• Finally, it sends com∗ =

(
tag∗,HPRG.pp∗, c∗, (σ∗i ,

(
c∗x,i,0, c

∗
x,i,1

)
x∈[N ]

)i∈[n])

)
as the

commitment. All of the randomness is used as the decommitment string.

5. Post Challenge Phase: The attacker again makes commitment queries com. If tag = tag∗ the
challenger responds with ⊥. Otherwise it responds as

CCA.Val(com).

6. The attacker finally outputs a guess b′.

Game 1. This is same as Game 0, except that during the Pre Challenge Phase and Post Challenge
Phase, challenger uses CCA.ValAlt(tag∗, com) to answer queries.

Game 2. In this game in Part 1 the (σ∗i , y
∗
i ) are now generated from the Equiv.Equivocate algo-

rithm instead of the Equiv.Com algorithm.

• Compute κ′ = κe.
• Compute κ′′ = κ

′ 1
γ .

• Sample (HPRG.pp∗, 1n)← HPRG.Setup(κ′′, 1max(w,N ·`)).

• Sample s∗ = s∗1 . . . s
∗
n

R←− {0, 1}n as the seed of the hinting PRG.
• Let r∗x,i, r̃

∗
x,i ∈ {0, 1}` be defined as follows:

• For i ∈ [n]

1. Compute (r∗1,i, r
∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

2. Sample (r̃∗1,i, r̃
∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·`

• For all i ∈ [n] run Equiv.Equivocate(1κ
′
)→ (σ∗i , y

∗
i,0, y

∗
i,1).

• For all i ∈ [n], set y∗i = y∗i,s∗i
.
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Game 3 In this game in Part 2 we move to c∗x,i,0 committing to y∗i,0 and c∗x,i,1 committing to y∗i,1
for all x ∈ [N ], i ∈ [n] independently of the value of s∗i .

• It chooses a bit b ∈ {0, 1} and sets c∗ = HPRG.Eval(HPRG.pp∗, s∗, 0)⊕m∗b .
• For i ∈ [n], x ∈ [N ]

1. If s∗i = 0

(a) c∗x,i,0 = Small.Com(1κ, (x, tag∗x, 0), y∗i,0; r∗x,i)

(b) c∗x,i,1 = Small.Com(1κ, (x, tag∗x, 1), y∗i,1; r̃∗x,i)

2. If s∗i = 1

(a) c∗x,i,0 = Small.Com(1κ, (x, tag∗x, 0), y∗i,0; r̃∗x,i)

(b) c∗x,i,1 = Small.Com(1κ, (x, tag∗x, 1), y∗i,1; r∗x,i)

• Finally, it sends com∗ =

(
tag∗,HPRG.pp∗, c∗, (σ∗i ,

(
c∗x,i,0, c

∗
x,i,1

)
x∈[N ]

)i∈[n])

)
as the commit-

ment. All of the randomness is used as the decommitment string.

Game 4. In all r∗x,i values are chosen uniformly at random (insted of choosing from HPRG.Eval(
HPRG.pp∗, s∗, i)) and c∗ is also chosen uniformly at random (instead of choosing HPRG.Eval(
HPRG.pp∗, s∗, 0)⊕m∗b ).

4.2 Analysis.

Next, we show by a sequence of lemmas that no e′ = e · δ adversary can distinguish between any
two adjacent games with non-negligible advantage. In the last game, we show that the advantage
of any such adversary is negligible. We will let advxA denote the quantity Pr[b′ = b]− 1

2 in Game x.

Lemma 4.1. Assuming that the equivocal commitment is subexponentially binding secure for
T = 2κ

δ
for δ ∈ (0, 1) from Definition 2.4. For any e′-computation enabled adversary A where

e′ ≥ 1, there exists a negligible function negl(·) such that for all κ ∈ N, |adv0
A − adv1

A| ≤ negl(κ)
where equivocal commitment is run on security parameter κ′ = κe.

Proof. Note that the two games differ in how we are answering pre and post challenge queries. In
Game 0, we use CCA.Val and call the CCA.Find algorithm on tag (1, tag1, 0). In Game 1, we use
CCA.ValAlt and call the CCA.Find algorithm on a tag differing in the challenge tag.

Let A be an adversary that has non-negligible advantage given by the polynomial p(·) in dis-
tingushing between the two games, i.e. for infinitely many κ ∈ N,

|adv0
A − adv1

A| ≥
1

p(κ)
.

We describe a uniform adversary B that runs in time poly(2(κ′)δ) = poly(2κ
e′

) and outputs
c, d0, d1 such that both Equiv.Decom(c, d0) = 0∧Equiv.Decom(c, d1) = 1 and hence breaks the bind-
ing security of the equivocal commitment.

Reduction B(1κ
′
) :
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1. A sends a randomized and inputless Turing Machine algorithm P . B runs the program on
random coins and sends the output to the attacker.

2. A sends a “challenge tag” tag∗ ∈ {0, 1}N .

3. Pre Challenge Phase: Amakes repeated queries on commitments

com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n]

)
.

If tag = tag∗, B responds with ⊥. Otherwise it brute force opens the commitment scheme by
running both CCA.Val,CCA.ValAlt.
Let x∗ ∈ [N ] be the smallest index where tagx∗ 6= tag∗x∗ , s̃

0 = CCA.Find(1, com), s̃1 =
CCA.Find(x∗, com) be the seeds computed when running CCA.Val and CCA.ValAlt respec-
tively.

• If CCA.Val(com) = CCA.ValAlt(com), return CCA.Val(com) to A
• Else, let i∗ ∈ [n] be the smallest index where s̃0

i∗ 6= s̃1
i∗ , output (⊥,⊥,⊥) if no such i∗

exists,

– If s̃0
i∗ = 0, output (σi∗ ,Small.Val(c1,i∗,0),Small.Val(cx∗,i∗,1)).

– If s̃0
i∗ = 1, output (σi∗ ,Small.Val(cx∗,i∗,0),Small.Val(c1,i∗,1)).

4. Simulates Challenge Phase same as Game 0.

5. Post Challenge Phase: Exactly same as Pre Challenge Phase.

6. Output (⊥,⊥,⊥).

Consider any commitment sent by A and denoted by

com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n]

)
.

We will define a set BADCOM of “bad” commitments queries as follows:

com ∈ BADCOM ⇐⇒ CCA.Val(com) 6= CCA.ValAlt(tag∗, com).

Claim 4.5. Let x∗ ∈ [N ] be the smallest index where tagx∗ 6= tag∗x∗ , s̃
0 = CCA.Find(1, com), s̃1 =

CCA.Find(x∗, com) be the seeds computed when running CCA.Val and CCA.ValAlt respectively.

CCA.Val(com) 6= CCA.ValAlt(tag∗, com) =⇒ ∃i ∈ [n], x0 ∈ [N ], x1 ∈ [N ],

s̃0
i 6= s̃1

i∧
y0
i = Small.Val(cx0,i,0) ∧ y1

i = Small.Val(cx1,i,1) ∧
Equiv.Decom(σi, y

0
i ) = 0 ∧ Equiv.Decom(σi, y

1
i ) = 1

Proof. CCA.Val and CCA.ValAlt oracles differ only in their calls to CCA.Find. Thus if they output
different values, it implies that s̃0 6= s̃1. Clearly both CCA.Check(s̃0, com) and CCA.Check(s̃1, com)
cannot output 0 (as then both CCA.Val and CCA.ValAlt output ⊥).
Let i be any index where s̃0

i 6= s̃1
i , z̃

0
i = Equiv.Decom(σi, Small.Val(c1,i,0)), z̃1

i = Equiv.Decom(
σi, Small.Val(cx∗,i,0)).
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• Case 1: s̃0
i = 0 ∧ s̃1

i = 1.
When running CCA.Find(1, com), we get that z̃0

i = Equiv.Decom(σi, Small.Val(c1,i,0)) = 0 (if it
was ⊥ the seed at this position would be set to 1).

– Since s̃1
i = 1, we have that z̃1

i = Equiv.Decom(σi, Small.Val(cx∗,i,0)) = 1 or ⊥. By weak
binding of the base scheme, CCA.Check(s̃0, com) outputs 0 as the check 2(c) in Figure 2
fails when checking cx∗,i,0 as the output of Equiv.Decom(σi,CCA.Recover(cx∗,i,0, r̃)) can-
not be 0 for any r̃. Thus CCA.Check(s̃1, com) must output 1 (both cannot be zero). Thus,

∀x ∈ [N ],Equiv.Decom(σi,Small.Val(cx,i,1)) = 1.

Picking x0 = 1, x1 ∈ [N ], the above claim is satisfied.

• Case 2: s̃0
i = 1 ∧ s̃1

i = 0.
When running CCA.Find(x∗, com), we get that z̃1

i = Equiv.Decom(σi,Small.Val(cx∗,i,0)) = 0 (if
it was ⊥ the seed at this position would be set to 1).

– Since s̃0
i = 1, we have that z̃0

i = Equiv.Decom(σi, Small.Val(c1,i,0)) = 1 or ⊥. By weak
binding of the base scheme, CCA.Check(s̃1, com) outputs 0 as the check 2(c) in Figure 2
fails when checking c1,i,0 as the output of Equiv.Decom(σi,CCA.Recover(c1,i,0, r̃)) cannot
be 0 for any r̃. Thus CCA.Check(s̃0, com) must output 1 (both cannot be zero). Thus,

∀x ∈ [N ],Equiv.Decom(σi,Small.Val(cx,i,1)) = 1.

Picking x0 = x∗, x1 ∈ [N ], the above claim is satisfied.

Claim 4.6. Let S denote the commitment queries made by A. Then for infinitely many κ ∈ N,

Pr[(S ∩ BADCOM) 6= ∅] ≥ 1

p(κ)
.

Proof. The two games differ only in the way the commitment queries are made by A. If A doesn’t
output bad commitment queries, a distinction between the two games cannot be made. Thus with
probability greater than equal to the distinguishing probability between the two games, they must
have output a bad commitment.

Claim 4.7. B runs in time poly(2(κ′)δ) = poly(2κ
e′

) and for infinitely many κ ∈ N,

Pr
[
(c, d0, d1)← B(1κ

′
) : Equiv.Decom(c, d0) = 0 ∧ Equiv.Decom(c, d1) = 1

]
≥ 1

p(κ)
.

Proof. Runtime of B is bounded by running the Turing Machine Algorithm P . Since A is an e′-
computation enabled adversary. Runtime of B in step 1 is polynomially bounded in 2κ

e′
. Running

CCA.Val,CCA.ValAlt takes time 2κ during the pre challenge and post challenge query phases. As-
suming we set out parameters such that e′ ≥ 1. We satisfy the claim.

Since A outputs a bad commitment from Claim 4.6, this implies from Claim 4.5 that ∃i ∈
[n], x0 ∈ [N ], x1 ∈ [N ] such that we can break the equivocal commitment scheme. Focusing on the
analysis of Claim 4.5, we can observe that B picks the smallest index such that s̃0

i 6= s̃1
i and x0, x1

correctly depending on the value of s̃0
i .
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The proof of the lemma follows immediately by contradiction from the above claims.

Lemma 4.2. Assuming that the equivocal commitment is statistically equivocal from Definition 2.5.
For any adversary A, there exists a negligible function negl(·) such that for all κ ∈ N, |adv1

A −
adv2
A| ≤ negl(κ) where equivocal commitment is run on security parameter κ′ = κe.

Proof. From Definition 2.5, we know that the statistical distance between (σ∗i , y
∗
i ) in Games 1 and

2 is negligible. Since the rest of the inputs to the games are the same, this bounds the statistical
distance of the output by negl(κ) as well.

Lemma 4.3. Assuming that the base commitment scheme is e-computation enabled from Defini-
tion 3.6. For any e′-computation enabled adversary A, there exists a negligible function negl(·)
such that for all κ ∈ N, |adv2

A − adv3
A| ≤ negl(κ).

Proof. Let A be an adversary that has non-negligible advantage given by the polynomial p(·) in
distingushing between the two games, i.e. for infinitely many κ ∈ N,

|adv2
A − adv3

A| ≥
1

p(κ)
.

Define Game 20 as Game 2. For all j ∈ [N ·n], we define Game 2j same as Game 2j−1, with the
following additional changes:
We can write j = (i′ − 1) · N + (x′ − 1) where x′ ∈ [N ], i′ ∈ [n] from Euclidean division, and we
change the way c∗

x′,i′,s̄∗i
is generated from

c∗x′,i′,s̄∗
i′

= Small.Com(1κ, (x′, tagx′ , s̄
∗
i′), y

∗
i′,s∗

i′
; r̃∗x′,i′)

to
c∗x′,i′,s̄∗

i′
= Small.Com(1κ, (x′, tagx′ , s̄

∗
i′), y

∗
i′,s̄∗

i′
; r̃∗x′,i′)

Observe that Game 2N ·n is exactly Game 3.
Thus ∃j = j(κ) ∈ [N · n], for infinitely many κ ∈ N,

|adv
2j−1

A − adv
2j
A | ≥

1

p(κ)(N · n)
.

We will show a reduction Bj that achieves a non negligible advantage to the security of Small.Com.

Reduction Bj(1κ) :

1. Begin Running A(1κ).

• A sends Bj a randomized inputless TM P

2. Construct TM P̃ as follows and send to challenger:

(a) Code for Part 1 of Challenge Phase

• Compute κ′ = κe.
• Compute κ′′ = κ

′ 1
γ .

• Sample (HPRG.pp∗, 1n)← HPRG.Setup(κ′′, 1max(w,N ·`)).
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• Sample s∗ = s∗1 . . . s
∗
n

R←− {0, 1}n as the seed of the hinting PRG.
• Let r∗x,i, r̃

∗
x,i ∈ {0, 1}` be defined as follows:

• For i ∈ [n]

i. Compute (r∗1,i, r
∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

ii. Sample (r̃∗1,i, r̃
∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·n·`

• For all i ∈ [n] run Equiv.Equivocate(1κ
′
)→ (σ∗i , y

∗
i,0, y

∗
i,1).

• For all i ∈ [n], set y∗i = y∗i,s∗i
.

• Set output1 =
(
s∗,HPRG.pp∗, {r∗x,i, r̃∗x,i}x∈[N ],i∈[n], {σ∗i , y∗i,0, y∗i,1}i∈[n]

)
(b) Run Programme P on a random tape and let its output be output2.

(c) Output (output1, output2).

• Return output2 to A

3. A sends a challenge tag∗ ∈ {0, 1}N to Bj
4. Let c∗

x′,i′,s̄∗
i′

be the commitment changed in Game 2j as described above.

5. Send challenge tag (x′, tag∗x′ , s̄
∗
i′) to challenger.

6. Pre Challenge Phase:

• Amakes CCA.ValAlt(tag∗, ·) queries

com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])
)

to Bj .
• Bj answers by running CCA.ValAlt. This can be done efficiently using Bj ’s own Pre

Challenge oracle access to Small.Val and runs CCA.Find manually. Since CCA.Find is
only run on an index x∗ such that tag∗x∗ 6= tagx∗ , it will never call Small.Val on (x′, tag∗x′ , s̄

∗
i′).

7. Challenge Phase:

• Select a random bit β

• A sends two messages m0,m1

(a) Submit m∗0 = y∗i,s∗
i′
,m∗1 = y∗i′,s̄∗

i′
to challenger

(b) Receive com∗ = Small.Com((x′, tag∗x′ , s̄
∗
i′),m

∗
b ; r) from challenger

(c) Set c∗
x′,i′,s̄∗

i′
= com∗

(d) Run Phase 2 of Challenge Phase using the messagemβ and output2, with the exception
that c∗

x′,i′,s̄∗
i′

is computed as noted above and submit output to A.

8. Post Challenge Phase: Proceeds exactly as Pre Challenge Phase.

• Receive bit guess β′ from A
9. If β = β′, output 0. Otherwise, output 1.

Claim 4.8. Bj is an e-conforming adversary
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Proof. We need to verify two main properties, that Bj is PPT, and P̃ runs in poly(2κ
e
) time and

outputs poly(κ) bits. The former is to verify, as A only makes use of a polynomial number of effi-
cient functions and oracle queries. To gauge the runtime of P̃ , we can see the only inefficient steps
it does is n calls to Equiv.Equivocate(1κ

′
) and the running of P . We can see the former takes time

n · poly(2κ
′
), and the latter is run in time poly(2κ

e′
) � poly(2κ

e
) by e′ conformity of A. Finally, we

can see the output of P̃ is poly(κ) length as output1 is the result of all polynomial time algorithms
and the poly(κ) bound on the output of P .

Claim 4.9. The advantage of Bj in winning the e-computation enabled game for the base commit-
ment scheme Small.Com from Definition 3.6 is ≥ 1

2p(κ)(N ·n) for infinitely many κ ∈ N.

Proof. First note observe that if β = 0, then

c∗x′,i′,s̄∗
i′

= Small.Com((x′, tag∗x′ , s̄
∗
i′), y

∗
i′,s∗

i′
; r)

which is exactly what it is in Game 2j−1, and similarly, if β = 1

c∗x′,i′,s̄∗
i′

= Small.Com((x′, tag∗x′ , s̄
∗
i′), y

∗
i′,s̄∗

i′
; r)

which is what it is in Game 2j .
Let q be the probability A wins Game 2j and A wins Game 2j−1 with probability q ± 1

p(κ)·N ·n .
Bj wins if β = β′ and b = 0 - i.e. A wins Game 2j−1 or if β 6= β′ and b = 1 - i.e. A loses Game 2j .
Thus for infinitely many κ ∈ N, the probability of Bj winning is given by,

1

2

(
q ± 1

p(κ) ·N · n

)
+

1

2
(1− q) =

1

2
± 1

2 · p(κ) ·N · n
.

Since Bj is an e-conforming adversary with non-negligible advantage. The proof of the lemma
follows immediately by contradiction from the above claims.

Lemma 4.4. Assuming that the hinting PRG is subexponentially secure with T = 2κ
γ

where γ ∈
(0, 1) from Definition 2.1. For any e′-computation enabled adversary A, there exists a negligible
function negl(·) such that for all κ ∈ N, |adv3

A − adv4
A| ≤ negl(κ) where hinting PRG is run on

security parameter κ′′ = κ
′ 1
γ = κ

e
γ .

Proof. Let A be an adversary that has non-negligible advantage given by the polynomial p(·) in
distingushing between the two games, i.e. for infinitely many κ ∈ N,

|adv3
A − adv4

A| ≥
1

p(κ)
.

We will construct a poly(2κ
e
) time algorithm A′ which has advantage 1

2p(κ) in the hinting PRG
Game as per Definition 2.1 where inputs were called on security parameter κ′′.

Reduction A′
(

HPRG.pp,

(
rβ0 ,
{
rβi,b

}
i∈[n],b∈{0,1}

))
:
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1. Choose a random bit a ∈ {0, 1}

2. Run A

(a) When A sends their TM P , run it and return the result.

(b) Receive challenge tag tag∗ from A
(c) Pre Challenge Phase: Receive challenge commitments com from A and respond with

CCA.ValAlt(tag∗, com).

(d) Challenge Phase:

• Compute κ′ = κe.
• Let r∗x,i,b ∈ {0, 1}` be defined as follows:
• For i ∈ [n], b ∈ {0, 1}

i. Split up (r∗1,i,b, r
∗
2,i,b, . . . , r

∗
N,i,b) = rβi,b

• For all i ∈ [n] run Equiv.Equivocate(1κ
′
)→ (σ∗i , y

∗
i,0, y

∗
i,1).

• For all i ∈ [n], set y∗i = y∗i,s∗i
.

(e) Part 2:

• Set c∗ = rβ0 ⊕m∗a.
• For i ∈ [n], x ∈ [N ], b ∈ {0, 1}

i. c∗x,i,b = Small.Com(1κ, (x, tagx, b), y
∗
i,b; r

∗
x,i,b)

• Finally, it sends com∗ =

(
tag∗,HPRG.pp∗, c∗, (σ∗i ,

(
c∗x,i,0, c

∗
x,i,1

)
x∈[N ]

)i∈[n])

)
as the

commitment. All of the randomness is used as the decommitment string.

(f) Post Challenge Phase: Receive challenge commitments com from A and respond with
CCA.ValAlt(tag∗, com).

(g) Receive a′ from A.

3. If a′ = a, then output β′ = 1. Otherwise output β′ = 0.

Claim 4.10. A′ runs in time poly(2κ
e
)

Proof. The majority of A′ involves simulating running A. Since A is e′-computation enabled we
can run P in time poly(2κ

e′
). The Pre and Post Challenge queries will invoke a polynomial number

of calls to CCA.ValAlt, which require time poly(2κ) ≤ poly(2κ
e
). Finally, the challenge phase is

invokes n calls to Equiv.Equivocate, which has runtime poly(2κ
′
) by Definition 2.3. Since N is poly

bounded, the rest of the computation in the challenge phase is efficient, which bounds the total
runtime with poly(2κ

′
) = poly(2κ

e
)

Claim 4.11. If A has advantage |adv3
A − adv4

A| ≥ 1
p(κ) , A′ has advantage in the HPRG game in

Definition 2.1 ≥ 1
2p(κ)

Proof. We observe that when β = 1 in the HPRG Game - when A′ receives(
r1

0 = HPRG.Eval(HPRG.pp, s, 0),
{
r1
i,si = HPRG.Eval(HPRG.pp, s, i), ri,s̄i

R←− {0, 1}`
}
i∈[n]

)
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A is run on exactly Game 3, and when β = 0 - i.e. when A′ receives(
r0

0
R←− {0, 1}`,

{
r0
i,b

R←− {0, 1}`
}
i∈[n],b∈{0,1}

)
A is run is identical to Game 4 (barring the fact that we are replacing c∗ with m∗β ⊕ r0

0 rather than

just c∗ R←− {0, 1}`, but these are identically distributed). So supposeA has probability p of winning
Game 4. Then we can see that A′ wins the HPRG (β′ = β) game either when A is run on Game 3
and wins, or when A is run on Game 4 and loses. These events happen with probabilities

1

2

(
p± 1

p(κ)

)
+

1

2
(1− p) =

1

2
± 1

2 · p(κ)

for infinitely many κ ∈ N.

Since A′ runs in time poly(2κ
e
), its advantage must be negligible by Definition 2.1, a contradic-

tion, which concludes our proof.

Lemma 4.5. For any adversary A, adv4
A = 0.

Proof. The challenge commitment is independent of the message. Thus the probability of any
adversary guessing an independent random bit is 1

2 .

From the above lemmas we can conclude that adv0
A = negl(κ). This completes the proof of the

theorem.

5 Removing the Same Tag Restriction

In this section we show a process from transforming from a “same-tag” computation enabled
commitment scheme for N ′ = 2N tags to a scheme with N tags, but allows the attacker to make
a query on any number of different tags not equal to the challenge tag∗. The actual construc-
tion and proof is similar to the that of Section 4. Intuitively, to commit to message with tag
tag ∈ [N ] in the new scheme, one uses all tags in [N ] \ {tag} in the underlying same tag scheme
(Same.Com,Same.Val, Same.Recover). Due to our redundancy checks we can open using any of
these underlying tags with the exception of tag. In particular, if we think of our security game
with tag∗ as the challenge tag in the new scheme, then any commitment with tag tag 6= tag∗ can
be opened using tag∗ in the underlying scheme.

Since our transformation produces 2(N−1) commitments from the underlying same-tag scheme,
it is important that N be polynomially bounded in the security parameter. Looking ahead, this
means that when starting with a same-tag scheme of say lg lg lg(κ) tag size one should first ap-
ply the same tag to many tag transformation. And then apply a sequence of transformations to
amplify the tag size.

Let (Same.Com, Same.Val,Same.Recover) be an same-tag e-computation enabled CCA commit-
ment scheme for N ′(κ) = N ′ = 2N tags. We will assume tags take identities of the form (i,Γ) ∈
[N ] × {0, 1} and that the Same.Com algorithm take in random coins of length `(κ). In addi-
tion, for some constant δ ∈ (0, 1) we assume a equivocal commitment without setup scheme
(Equiv.Com,Equiv.Decom,Equiv.Equivocate) that is T = 2κ

δ
binding secure and statistically hiding.
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We assume a hinting PRG scheme (Setup,Eval) that is T = 2κ
γ

secure for some constant
γ ∈ (0, 1) and has seed length n(κ, |m|) (represented by n for ease) and block output length of
max(|m|, ` × N). For ease of notation we assume that HPRG.Eval(HPRG.pp, s, 0) ∈ {0, 1}|m| and
∀i ∈ [n], HPRG.Eval(HPRG.pp, s, i) ∈ {0, 1}`·N .

As in the previous section our description will consist of three algorithms which consist of
the defined (CCA.Com,CCA.Val,CCA.Recover) which we prove e′-computation enabled where we
require e′ = e · δ ≥ 1. We will also present a fourth algorithm CCA.ValAlt, which is only used
in the proof. The algorithms will make use of the auxiliary subroutines CCA.Find and CCA.Check
described below.

CCA.ValAlt(tag∗, com)→ m∪⊥. A special feature of this algorithm is that its valuation process
will depend only on tag∗ and actually be independent of com.tag other than checking com.tag 6=
tag∗. Moreover, it will only call valuation on a single tag underneath.

CCA.Find(x′, com)

Inputs: Index x′ ∈ [N ]

Commitment com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ]\{tag})i∈[n])
)

Output: s̃ ∈ {0, 1}n

• If x′ = tag, output ⊥

• For each i ∈ [n]

1. Let ỹi = Same.Val(cx′,i,0)

2. Set z̃i = Equiv.Decom(σi, ỹi). If z̃i = ⊥, set s̃i = 1. Else, set s̃i = z̃i.

• Output s̃ = s̃1, s̃2, . . . , s̃n.

Figure 3: Routine CCA.Find

CCA.Check(s̃, com)

Inputs: Seed candidate s̃ = s̃1, s̃2, . . . , s̃n

Commitment com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ]\{tag})i∈[n])
)

Output: {0, 1}

• For i ∈ [n]

1. Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s̃, i)

2. For x ∈ [N ] \ {tag}
(a) Let ỹi = Same.Recover(cx,i,s̃i , rx,i). If ỹi = ⊥, output 0

(b) If cx,i,s̃i 6= Same.Com(1κ, (x, s̃i), ỹi; rx,i), output 0.
(c) If s̃i 6= Equiv.Decom(σi, ỹi), output 0.

• If all the above checks have passed, output 1.

Figure 4: Routine CCA.Check
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Transformation OneToMany(Same = (Same.Com,Same.Val, Same.Recover),HPRG,Equiv, e′)→
NM = (CCA.Com,CCA.Val,CCA.Recover) :

CCA.Com(1κ, tag ∈ [N ],m ∈ {0, 1}∗; r)→ com

1. Compute κ′ = κ
e′
δ = κe. Compute κ′′ = κ

′ 1
γ .

2. Sample (HPRG.pp, 1n)← HPRG.Setup(κ′′, 1max(|m|,N ·`)).

3. Sample s = s1 . . . sn
R←− {0, 1}n as the seed of the hinting PRG.

4. For all i ∈ [n] run Equiv.Com(1κ
′
, si)→ (σi, yi).

5. Let rx,i, r̃x,i ∈ {0, 1}` be defined as follows:

6. For i ∈ [n]

(a) Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s, i)

(b) Sample (r̃1,i, r̃2,i, . . . , r̃N,i)
R←− {0, 1}N ·`

7. Compute c = m⊕ HPRG.Eval(HPRG.pp, s, 0)

8. For i ∈ [n], x ∈ [N ] \ {tag}
(a) If si = 0

i. cx,i,0 = Same.Com(1κ, (x, 0),msg = yi; rx,i)

ii. cx,i,1 = Same.Com(1κ, (x, 1),msg = yi; r̃x,i)

(b) If si = 1

i. cx,i,0 = Same.Com(1κ, (x, 0),msg = yi; r̃x,i)

ii. cx,i,1 = Same.Com(1κ, (x, 1),msg = yi; rx,i)

Output com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ]\{tag})i∈[n])
)

as the commitment. All of the
randomness is used as the decommitment string.

CCA.Val(com)→ m ∪ ⊥

1. Set s̃ = CCA.Find((com.tag mod N) + 1, com).

2. If CCA.Check(s̃, com) = 0 output ⊥.

3. Output c⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.ValAlt(tag∗, com)→ m ∪ ⊥

1. Set s̃ = CCA.Find(tag∗, com). If s̃ = ⊥, output ⊥.

2. If CCA.Check(s̃, com) = 0 output ⊥.

3. Output c⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.Recover(com, r)→ m ∪ ⊥

1. Parse com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])
)

.

2. Parse r = (s, {(rx,i,b)}x∈[N ],i∈[n],b∈{0,1}).
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3. Set x′ = (com.tag mod N).

4. For each i ∈ [n]:

(a) Let ỹi = Small.Recover(cx′,i,0, rx′,i,0).
(b) Set z̃i = Equiv.Decom(σi, ỹi). If ỹi = ⊥ or z̃i = ⊥, set s̃i = 1. Else, set s̃i = z̃i.

5. If CCA.Check(s̃, com) = 0, output ⊥.

6. Output c⊕ HPRG.Eval(HPRG.pp, s, 0)

Remark 5.1. The randomness rtag,i and r̃tag,i are not used for all i, but we generate it this way for
notational simplicity.

Remark 5.2. The choice of (com.tag mod N) + 1 is somewhat arbitrary. We simply use the fact
that this quantity is both always in [1, N ] and never equal to com.tag.

Correctness and Efficiency.

Efficiency

Claim 5.1. If (Same.Com,Same.Val, Same.Recover) is an efficient e-computation enabled CCA com-
mitment scheme as per Definition 3.2 with tag space N(κ) ∈ poly(κ), (Equiv.Com,Equiv.Decom,
Equiv.Equivocate) is an efficient equivocal commitment scheme as per Definition 2.3, e, e′ are con-
stants then (CCA.Com,CCA.Val,CCA.Recover) is an efficient e′-computation enabled CCA commit-
ment scheme, and CCA.ValAlt runs in time poly(|m|, 2κ)

Proof. CCA.Com calls Same.Com 2 ·n · (N−1) times on the output of Equiv.Com in addition to some
other poly-time computation. By Definition 3.2, Same.Com is poly(|m|, κ). Since Equiv.Com runs in
time poly(κ′) by Definition 2.3, this bounds |m| from the input schemewith poly(κe) ∈ poly(κ) as
e a constant. Along with the fact that n is bounded by the security parameter, and N is bounded
by the tag space which we assume is poly(κ), this is overall polynomial bounded in κ. CCA.Val
and CCA.ValAlt both call Same.Val exactly once, in addition to some efficient computation, so must
also be poly(|m|, 2κ) as well. CCA.Recover does a single ⊕, and since com and r are both bounded
by poly(κ) by the runtime of CCA.Com, CCA.Recover runs in poly(|m|, κ) as well.

Correctness.

Claim 5.2. If (Same.Com,Same.Val,Same.Recover) is a correct computation enabled CCA commit-
ment scheme as per Definition 3.1 and (Equiv.Com,Equiv.Decom) is a correct equivocal commit-
ment scheme as per Definition 2.2, then (CCA.Com,CCA.Decom,CCA.Val) is a correct computation
enabled CCA commitment scheme.

Proof. Note that if base scheme is correct, then ∀i ∈ [n], x ∈ [N ] \ {tag}, b ∈ {0, 1},

Same.Val(Same.Com(1κ, (x, b), yi; r)) = yi.

Notably, this is true for x ∈ [N ] = (com.tag mod N) + 1 6= com.tag, which means, along with the
correctness of equivocal scheme, ∀i ∈ [n],

Equiv.Decom(Equiv.Com(1κ
′
, si)) = si,
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the CCA.Find will return the correct seed candidate. Using this and the fact that the hinting PRG
on input s, ∀i ∈ [n], x ∈ [N ] \ {tag} tells us it correctly sets the randomness along cx,i,si and
c⊕ HPRG.Eval(HPRG.pp, s, 0) = m, meaning the scheme is correct.

Below is an additional claim on the correctness of CCA.ValAlt.

Claim 5.3. CCA.ValAlt alternate decryption oracle only uses one tag in its oracle calls to Same.Val
that is dependent on the challenge tag tag∗.

Proof. We can see CCA.ValAlt only ever calls Same.Val with on commitments with tag (tag∗, 0).
Since com.tag contains commitments under every tag except (tag, 0) and (tag, 1), CCA.ValAlt will
only return ⊥when tag∗ = tag, in which case the oracle should return ⊥ anyway.

Recovery from Randomness. The recovery from randomness property follows from the correct-
ness of CCA.Check, which follows because by randomness recovery of the base scheme, for all
i ∈ [n], x ∈ [N ], b ∈ {0, 1},

Small.Recover(Small.Com(1κ, (x, tagx, b), yi; r), r) = yi.

Moreover, by correctness of the equivocal scheme, ∀i ∈ [n],

Equiv.Decom(Equiv.Com(1κ
′
, si)) = si.

5.1 Proof of Security

We now prove security by showing that our transformation leads to an e′ = e · δ-computation
enabled CCA commitment scheme. We do so in a sequence of security games.

Theorem 5.1. Let (Same.Com, Same.Val, Same.Recover) be a same-tag e-computation enabled CCA
commitment w.r.t. over-extraction for N ′(κ) = N ′ = 2N tags, (Setup,Eval) be a hinting PRG
scheme that is T = 2κ

γ
secure for γ ∈ (0, 1), and (Equiv.Com,Equiv.Decom,Equiv.Equivocate) be

an equivocal commitment without setup scheme that is T = 2κ
δ

binding secure and statistically
hiding for some constant δ ∈ (0, 1). Then the above commitment scheme (CCA.Com,CCA.Val) is
an e′ = e ·δ-computation enabled CCA commitment scheme (without any same tag restriction) for
N tags if e′ ≥ 1.

Proof of Binding. First, we will prove that no e′-confirming adversary A will have advantage
better than negl(κ) in the binding game, by relying on security of the equivocal commitment.
Here, the attacker will be allowed to ask for a program P that runs in time polynomial in 2κ

e′

where e′ = e · δ. The equivocal commitment will use security parameter κ′ = κe, i.e., it will be
secure against attackers that run in time poly(2(κ′)δ) = poly(2κ

eδ
) = poly(2κ

e′
). Thus our reduction

will be able to run P by itself and still be a legitimate 2(κ′)δ -time attacker.
Now suppose there is an adversary A with non-negligible advantage in the binding game.

Then, there is a polynomial p(·) such that for com output by A,

Pr [∃r s.t. (CCA.Recover(com, r) 6= ⊥) ∧ (CCA.Recover(com, r) 6= CCA.Val(com))] ≥ 1

p(κ)
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or
Pr [6 ∃r s.t. CCA.Recover(com, r) = CCA.Val(com)] ≥ 1

p(κ)

We have the following claims that rule out this possibility.

Claim 5.4. Consider commitment com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])
)

output by
A such that

∃r s.t. (CCA.Recover(com, r) 6= ⊥) ∧ (CCA.Recover(com, r) 6= CCA.Val(com)) .

Then

• Either there exists x′ ∈ [N ], i ∈ [n], r′ ∈ {0, 1}∗ such that

y0
i = Small.Val(cx′,i,0)∧y1

i = Small.Recover(cx′,i,1, r
′)∧Equiv.Decom(σi, y

0
i ) = 0∧Equiv.Decom(σi, y

1
i ) = 1.

• Or ∃r′ such that Small.Recover(cx′,i,0, r
′) 6= ⊥ and Small.Val(cx′,i,0) 6= Small.Recover(cx′,i,0, r

′).

Proof. CCA.Val and CCA.Recover differ only in their recovery of a candidate seed. Thus if they
output different values, it implies that they recover two different seeds, s̃0 and s̃1 respectively,
where s̃0 6= s̃1.

Since CCA.Recover(com, r) 6= ⊥, we have that CCA.Check(s̃1, com) cannot output 0.
Let i be any index where s̃0

i 6= s̃1
i .

Let x′ = (com.tag mod N), z̃0
i = Equiv.Decom(σi,Small.Val(cx′,i,0)), z̃1

i = Equiv.Decom(σi,Small.Recover(cx′,i,0, r
′)),

where r′ = rx′,i,0 for r parsed as (·, {(rx,i,b)}x∈[N ],i∈[n],b∈{0,1}).

• Case 1: s̃0
i = 0 ∧ s̃1

i = 1.
Note that s̃0

i is computed as a result of running CCA.Find(x′, com). Thus,

z̃0
i = Equiv.Decom(σi,Small.Val(cx′,i,0)) = 0

(since if it was ⊥ then s̃0
i would be set to 1).

Moreover, since CCA.Recover(com, r) 6= ⊥, we have that CCA.Check(s̃1, com) = 1. Thus,

Equiv.Decom(σi,Small.Recover(cx′,i,1, r1,i)) = s̃1
i = 1.

where (r1,i, . . .) = HPRG.Eval(HPRG.pp, s̃1, i).

• Case 2: s̃0
i = 1 ∧ s̃1

i = 0.
Note that s̃1

i is computed as a result of running Equiv.Decom(σi,Small.Recover(cx′,i,0, r
′)),

where r′ = rx′,i,0 for r parsed as (·, {(rx,i,b)}x∈[N ],i∈[n],b∈{0,1}). Thus, we get that

(Small.Recover(cx′,i,0, r
′) 6= ⊥) ∧ (z̃1

i = Equiv.Decom(σi,Small.Recover(cx′,i,0, r
′)) = 0)

(if it was ⊥ then s̃1
i would be set to 1).

Moreover, if Small.Val(cx′,i,0) = Small.Recover(cx′,i,0, r
′), z̃0

i = Equiv.Decom(σi, Small.Val(cx′,i,0)) =
Equiv.Decom(σi, Small.Recover(cx′,i,0, r

′)) = 0. But this is impossible since s̃0
i = 1. This im-

plies that Small.Val(cx′,i,0) 6= Small.Recover(cx′,i,0, r
′). Thus, ∃r′ such that Small.Recover(cx′,i,0, r

′) 6=
⊥ and Small.Val(cx′,i,0) 6= Small.Recover(cx′,i,0, r

′).
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This proves the claim.

Now, if there is a polynomial p(·) such that for com output by A,

Pr [∃r s.t. (CCA.Recover(com, r) 6= ⊥) ∧ (CCA.Recover(com, r) 6= CCA.Val(com))] ≥ 1

p(κ)

then by the above claim, either

Pr[∃i, r′ s.t. Equiv.Decom(σi, Small.Val(cx′,i,0)) = 0∧Equiv.Decom(σi,Small.Recover(cx′,i,1, r
′)) = 1] ≥ 1

2p(κ)

or

Pr[∃r′ s.t. Small.Recover(cx′,i,0, r
′) 6= ⊥,Small.Val(cx′,i,0) 6= Small.Recover(cx′,i,0, r

′)] ≥ 1

2p(κ)

Since the equivocal commitment is 2κ
′δ

= 2κ
e′
> 2κ-secure, the former equation contradicts bind-

ing of the equivocal commitment (by finding r′ and running Small.Val in time at most 2κ). On the
other hand the latter equation contradicts weak binding of the base commitment. Therefore, it
only remains to prove that for com output by A,

Pr [6 ∃r s.t. CCA.Recover(com, r) = CCA.Val(com)] = negl(κ)

We will in fact prove the following stronger claim.

Claim 5.5. For every com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])
)

, there exists r such that

CCA.Recover(com, r) = CCA.Val(com).

Proof. First, we note that if CCA.Val(com) = ⊥, the claim trivially follows. This is because for
r = ⊥, CCA.Recover(com, r) = ⊥, proving the claim.

For the rest of this proof, we restrict ourselves to the case of CCA.Val(com) = v 6= ⊥. This
implies that there exists s̃ (output by CCA.Find(1, com)) such that CCA.Check(s̃, com) = 1. This
implies that for i ∈ [n], x ∈ [N ], Equiv.Decom(σi,Small.Recover(cx,i,s̃i , rx,i)) = s̃i and cx,i,s̃i =
Small.Com(1κ, (x, tagx, s̃i), Small.Recover(cx,i,s̃i , rx,i); rx,i), where (r1,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s̃, i).

Set {r′x,i,b}i∈[n],x∈[N ],b∈{0,1} arbitrarily such that for i ∈ [n], x ∈ [N ], r′x,i,s̃i = HPRG.Eval(HPRG.pp, s̃, i),
and for i ∈ [n], x ∈ [N ], r′x,i,1−s̃i is set such that CCA.Recover(cx,i,1−si , r

′
x,i,1−si) = ⊥. Set r′ =

(s′, {r′x,i,b}i∈[n],x∈[N ],b∈{0,1}). Now, CCA.Recover(com, r′) computes ỹi = Small.Recover(cx′,i,0, rx′,i,0), z̃i =
Equiv.Decom(σi,Small.Recover(cx′,i,0, rx′,i,0)). For every i where s̃i = 0, by construction, we have
that z̃i = 0. Moreover, for every i where s̃i = 1, by construction ỹi = ⊥, which implies that
z̃i = ⊥. This implies that the seed recovered by CCA.Recover matches s̃, which proves that
CCA.Recover(com, r′) = CCA.Val(com).

This completes the proof of binding.
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Proof of CCA Hiding. The proof will proceed in a similar direction as in Section 4 where we
again need to be mindful of the reduction algorithm fulfilling the request to run program P . The
other aspect is that when the algorithm reduces to the underlying scheme that is secure only for
“same-tag” requests, we must argue that all requests are indeed to the same tag. Otherwise, the
proof proceeds largely as before.

We now begin our formal analysis by defining a sequence of games. Then for each adjacent set
of games we prove that the advantage of any e′ = e · δ conforming attacker A in the two games
must be negligibly close.

Game 0. This is the original message hiding game between a challenger and an attacker for
e′ = e · δ conforming attackers. The game is parameterized by a security parameter κ.

1. The attacker sends a randomized and inputless Turing Machine algorithm P . The challenger
runs the program on random coins and sends the output to the attacker. If the program takes
more than 22κ time to halt, the outputs halts the evaluation and outputs the empty string.

2. The attacker sends a “challenge tag” tag∗ ∈ [N ].

3. Pre Challenge Phase: The attacker makes repeated queries commitments

com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ]\{tag})i∈[n]

)
.

If tag = tag∗ the challenger responds with ⊥. Otherwise it responds as

CCA.Val(com).

4. Challenge Phase

(a) The attacker sends two messages m∗0,m
∗
1 ∈ {0, 1}w

(b) Part 1:
• Compute κ′ = κe.

• Compute κ′′ = κ
′ 1
γ .

• Sample (HPRG.pp∗, 1n)← HPRG.Setup(κ′′, 1max(w,N ·`)).

• Sample s∗ = s∗1 . . . s
∗
n

R←− {0, 1}n as the seed of the hinting PRG.
• Let r∗x,i, r̃

∗
x,i ∈ {0, 1}` be defined as follows:

• For i ∈ [n]

i. Compute (r∗1,i, r
∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

ii. Sample (r̃∗1,i, r̃
∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·`

• For all i ∈ [n] run Equiv.Com(1κ
′
, s∗i )→ (σ∗i , y

∗
i ).

(c) Part 2:
• It chooses a bit b ∈ {0, 1} and sets c∗ = HPRG.Eval(HPRG.pp∗, s∗, 0)⊕m∗b .
• For i ∈ [n], x ∈ [N ] \ {tag}

i. If si = 0

A. cx,i,0 = Same.Com(1κ, (x, 0),msg = yi; rx,i)
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B. cx,i,1 = Same.Com(1κ, (x, 1),msg = yi; r̃x,i)

ii. If si = 1

A. cx,i,0 = Same.Com(1κ, (x, 0),msg = yi; r̃x,i)

B. cx,i,1 = Same.Com(1κ, (x, 1),msg = yi; rx,i)

• Output com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ]\{tag})i∈[n])
)

as the commit-
ment. All of the randomness is used as the decommitment string.

5. Post Challenge Phase: The attacker again makes commitment queries com. If tag = tag∗ the
challenger responds with ⊥. Otherwise it responds as

CCA.Val(com).

6. The attacker finally outputs a guess b′.

Game 1. This is same as Game 0, except that during the Pre Challenge Phase and Post Challenge
Phase, challenger uses CCA.ValAlt(tag∗, com) to answer queries.

Game 2. In this game in Part 1 the (σ∗i , y
∗
i ) are now generated from the Equiv.Equivocate algo-

rithm instead of the Equiv.Com algorithm.

• Compute κ′ = κe.
• Compute κ′′ = κ

′ 1
γ .

• Sample (HPRG.pp∗, 1n)← HPRG.Setup(κ′′, 1max(w,N ·`)).

• Sample s∗ = s∗1 . . . s
∗
n

R←− {0, 1}n as the seed of the hinting PRG.
• Let r∗x,i, r̃

∗
x,i ∈ {0, 1}` be defined as follows:

• For i ∈ [n]

1. Compute (r∗1,i, r
∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

2. Sample (r̃∗1,i, r̃
∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·`

• For all i ∈ [n] run Equiv.Equivocate(1κ
′
)→ (σ∗i , y

∗
i,0, y

∗
i,1).

• For all i ∈ [n], set y∗i = y∗i,s∗i
.

Game 3 In this game in Part 2 we move to c∗x,i,0 committing to y∗i,0 and c∗x,i,1 committing to y∗i,1
for all x ∈ [N ] \ {tag∗}, i ∈ [n] independently of the value of s∗i .

• It chooses a bit b ∈ {0, 1} and sets c∗ = HPRG.Eval(HPRG.pp∗, s∗, 0)⊕m∗b .
• For i ∈ [n], x ∈ [N ] \ {tag∗}

1. If s∗i = 0

(a) c∗x,i,0 = Same.Com(1κ, (x, 0), y∗i,0; r∗x,i)

(b) c∗x,i,1 = Same.Com(1κ, (x, 1), y∗i,1; r̃∗x,i)

2. If s∗i = 1

(a) c∗x,i,0 = Same.Com(1κ, (x, 0), y∗i,0; r̃∗x,i)
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(b) c∗x,i,1 = Same.Com(1κ, (x, 1), y∗i,1; r∗x,i)

• Finally, it sends com∗ =

(
tag∗,HPRG.pp∗, c∗, (σ∗i ,

(
c∗x,i,0, c

∗
x,i,1

)
x∈[N ]\{tag∗}

)i∈[n])

)
as the com-

mitment. All of the randomness is used as the decommitment string.

Game 4. In all r∗x,i values are chosen uniformly at random (insted of choosing from HPRG.Eval(
HPRG.pp∗, s∗, i)) and c∗ is also chosen uniformly at random (instead of choosing HPRG.Eval(
HPRG.pp∗, s∗, 0)⊕m∗b ).

5.2 Analysis.

Next, we show by a sequence of lemmas that no e′ = e · δ adversary can distinguish between any
two adjacent games with non-negligible advantage. In the last game, we show that the advantage
of any such adversary is negligible. We will let advxA denote the quantity Pr[b′ = b]− 1

2 in Game x.

Lemma 5.1. Assuming that the equivocal commitment is subexponentially binding secure for
T = 2κ

δ
for δ ∈ (0, 1) from Definition 2.4. For any e′-computation enabled adversary A where

e′ ≥ 1, there exists a negligible function negl(·) such that for all κ ∈ N, |adv0
A − adv1

A| ≤ negl(κ)
where equivocal commitment is run on security parameter κ′ = κe.

Proof. Note that the two games differ in how we are answering pre and post challenge queries. In
Game 0, we use CCA.Val and call the CCA.Find algorithm on tag (1, tag1, 0). In Game 1, we use
CCA.ValAlt and call the CCA.Find algorithm on a tag differing in the challenge tag.

Let A be an adversary that has non-negligible advantage given by the polynomial p(·) in dis-
tingushing between the two games, i.e. for infinitely many κ ∈ N,

|adv0
A − adv1

A| ≥
1

p(κ)
.

We describe a uniform adversary B that runs in time poly(2(κ′)δ) = poly(2κ
e′

) and outputs
c, d0, d1 such that both Equiv.Decom(c, d0) = 0∧Equiv.Decom(c, d1) = 1 and hence breaks the bind-
ing security of the equivocal commitment.

Reduction B(1κ
′
) :

1. A sends a randomized and inputless Turing Machine algorithm P . B runs the program on
random coins and sends the output to the attacker.

2. A sends a “challenge tag” tag∗ ∈ [N ].

3. Pre Challenge Phase: Amakes repeated queries on commitments

com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n]

)
.

If tag = tag∗, B responds with ⊥. Otherwise it brute force opens the commitment scheme by
running both CCA.Val,CCA.ValAlt.

• Let s̃0 = CCA.Find((tag mod N) + 1, com)
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• Let s̃1 = CCA.Find(tag∗, com)

• If CCA.Val(com) = CCA.ValAlt(com), return CCA.Val(com) to A
• Else, let i∗ ∈ [n] be the smallest index where s̃0

i∗ 6= s̃1
i∗ , output (⊥,⊥,⊥) if no such i∗

exists,

– If s̃0
i∗ = 0, output (σi∗ ,Same.Val(c1,i∗,0),Same.Val(ctag∗,i∗,1)).

– If s̃0
i∗ = 1, output (σi∗ ,Same.Val(ctag∗,i∗,0),Same.Val(c1,i∗,1)).

4. Simulates Challenge Phase same as Game 0.

5. Post Challenge Phase: Exactly same as Pre Challenge Phase.

6. Output (⊥,⊥,⊥).

Consider any commitment sent by A and denoted by

com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ]\{tag})i∈[n]

)
. We will define a set BADCOM of “bad” commitments queries as follows:

com ∈ BADCOM ⇐⇒ CCA.Val(com) 6= CCA.ValAlt(tag∗, com).

Claim 5.6. Let s̃0 = CCA.Find((tag mod N) + 1, com), s̃1 = CCA.Find(tag∗, com) be the seeds
computed when running CCA.Val and CCA.ValAlt respectively.

CCA.Val(com) 6= CCA.ValAlt(tag∗, com) =⇒ ∃i ∈ [n], x0 ∈ [N ], x1 ∈ [N ],

s̃0
i 6= s̃1

i∧
y0
i = Same.Val(cx0,i,0) ∧ y1

i = Same.Val(cx1,i,1) ∧
Equiv.Decom(σi, y

0
i ) = 0 ∧ Equiv.Decom(σi, y

1
i ) = 1

Proof. CCA.Val and CCA.ValAlt oracles differ only in their calls to CCA.Find. Thus if they output
different values, it implies that s̃0 6= s̃1. Clearly both CCA.Check(s̃0, com) and CCA.Check(s̃1, com)
cannot output 0 (as then both CCA.Val and CCA.ValAlt output ⊥).
Let i be any index where s̃0

i 6= s̃1
i ,

z̃0
i = Equiv.Decom(σi, Same.Val(c(tag mod N)+1,i,0)),

z̃1
i = Equiv.Decom(σi, Same.Val(ctag∗,i,0)).

• Case 1: s̃0
i = 0 ∧ s̃1

i = 1.
When running CCA.Find((tag mod N) + 1, com), we get that z̃0

i = 0 (if it was ⊥ the seed at
this position would be set to 1).

– If z̃1
i = 1 or ⊥. CCA.Check(s̃0, com) outputs 0 as the check 2(c) in figure (4) fails when

checking ctag∗,i,0 as the output is either 1 or ⊥. Thus CCA.Check(s̃1, com) must output 1
(both cannot be zero). Thus,

∀x ∈ [N ] \ {tag},Equiv.Decom(σi,Same.Val(cx,i,1)) = 1.

Picking x0 = (tag mod N + 1), x1 ∈ [N ] \ {tag}, the above claim is satisfied.
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• Case 2: s̃0
i = 1 ∧ s̃1

i = 0.
When running CCA.Find(tag∗, com), we get that z̃1

i = 0 (if it was ⊥ the seed at this position
would be set to 1).

– If z̃0
i = 1 or ⊥. CCA.Check(s̃1, com) outputs 0 as the check 2(c) in figure (4) fails when

checking c(tag mod N)+1,i,0 as the output is either 1 or ⊥. Thus CCA.Check(s̃0, com) must
output 1 (both cannot be zero). Thus,

∀x ∈ [N ] \ {tag},Equiv.Decom(σi,Same.Val(cx,i,1)) = 1.

Picking x0 ∈ tag∗, x1 ∈ [N ] \ {tag}, the above claim is satisfied.

Claim 5.7. Let S denote the commitment queries made by A. Then for infinitely many κ ∈ N,

Pr[(S ∩ BADCOM) 6= ∅] ≥ 1

p(κ)
.

Proof. The two games differ only in the way the commitment queries are made by A. If A doesn’t
output bad commitment queries, a distinction between the two games cannot be made. Thus with
probability greater than equal to the distinguishing probability between the two games, they must
have output a bad commitment.

Claim 5.8. B runs in time poly(2(κ′)δ) = poly(2κ
e′

) and for infinitely many κ ∈ N,

Pr
[
(c, d0, d1)← B(1κ

′
) : Equiv.Decom(c, d0) = 0 ∧ Equiv.Decom(c, d1) = 1

]
≥ 1

p(κ)
.

Proof. Runtime of B is bounded by running the Turing Machine Algorithm P . Since A is an e′-
computation enabled adversary. Runtime of B in step 1 is polynomially bounded in 2κ

e′
. Running

CCA.Val,CCA.ValAlt takes time 2κ during the pre challenge and post challenge query phases. As-
suming we set out parameters such that e′ ≥ 1. We satisfy the claim.

Since A outputs a bad commitment from Claim 5.7, this implies from Claim 5.6 that ∃i ∈
[n], x0 ∈ [N ], x1 ∈ [N ] such that we can break the equivocal commitment scheme. Focusing on the
analysis of Claim 5.6, we can observe that B picks the smallest index such that s̃0

i 6= s̃1
i and x0, x1

correctly depending on the value of s̃0
i .

The proof of the lemma follows immediately by contradiction from the above claims.

Lemma 5.2. Assuming that the equivocal commitment is statistically equivocal from Definition 2.5.
For any adversary A, there exists a negligible function negl(·) such that for all κ ∈ N, |adv1

A −
adv2
A| ≤ negl(κ) where equivocal commitment is run on security parameter κ′ = κe.

Proof. From Definition 2.5, we know that the statistical distance between (σ∗i , y
∗
i ) in Games 1 and

2 is negligible. Since the rest of the inputs to the games are the same, this bounds the statistical
distance of the output by negl(κ) as well.

Lemma 5.3. Assuming that the base commitment scheme is e-computation enabled from Defini-
tion 3.6. For any e′-computation enabled adversary A, there exists a negligible function negl(·)
such that for all κ ∈ N, |adv2

A − adv3
A| ≤ negl(κ).

45



Proof. Let A be an adversary that has non-negligible advantage given by the polynomial p(·) in
distingushing between the two games, i.e. for infinitely many κ ∈ N,

|adv2
A − adv3

A| ≥
1

p(κ)
.

Define Game 20 as Game 2. For all j ∈ [N ·n], we define Game 2j same as Game 2j−1, with the
following additional changes:
We can write j = (i′ − 1) · N + (x′ − 1) where x′ ∈ [N ], i′ ∈ [n] from Euclidean division, and we
change the way c∗

x′,i′,s̄∗i

8 is generated from

c∗x′,i′,s̄∗
i′

= Same.Com(1κ, (x′, s̄∗i′), y
∗
i′,s∗

i′
; r̃∗x′,i′)

to
c∗x′,i′,s̄∗

i′
= Same.Com(1κ, (x′, s̄∗i′), y

∗
i′,s̄∗

i′
; r̃∗x′,i′)

Observe that Game 2N ·n is exactly Game 3.
Thus ∃j = j(κ) ∈ [N · n], for infinitely many κ ∈ N,

|adv
2j−1

A − adv
2j
A | ≥

1

p(κ)(N · n)
.

We will show a reduction Bj that achieves a non negligible advantage to the security of Same.Com.

Reduction Bj(1κ) :

1. Begin Running A(1κ).

• A sends Bj a randomized inputless TM P

2. Construct TM P̃ as follows and send to challenger:

(a) Code for Part 1 of Challenge Phase

• Compute κ′ = κe.
• Compute κ′′ = κ

′ 1
γ .

• Sample (HPRG.pp∗, 1n)← HPRG.Setup(κ′′, 1max(w,N ·`)).

• Sample s∗ = s∗1 . . . s
∗
n

R←− {0, 1}n as the seed of the hinting PRG.
• Let r∗x,i, r̃

∗
x,i ∈ {0, 1}` be defined as follows:

• For i ∈ [n]

i. Compute (r∗1,i, r
∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

ii. Sample (r̃∗1,i, r̃
∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·`

• For all i ∈ [n] run Equiv.Equivocate(1κ
′
)→ (σ∗i , y

∗
i,0, y

∗
i,1).

• For all i ∈ [n], set y∗i = y∗i,s∗i
.

• Set output1 =
(
s∗,HPRG.pp∗, {r∗x,i, r̃∗x,i}x∈[N ],i∈[n], {σ∗i , y∗i,0, y∗i,1}i∈[n]

)
(b) Run Programme P on a random tape and let its output be output2.

8There are n games where x′ = tag∗ for which c∗x′,i′,s̄∗
i′

don’t exist. We will treat these as identical to previous games,

but leave them in to avoid cluttering notation.
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(c) Output (output1, output2).

• Return output2 to A

3. A sends a challenge tag∗ ∈ [N ] to Bj
4. Let c∗

x′,i′,s̄∗
i′

be the commitment changed in Game 2j as described above.

5. Send challenge tag (x′, s̄∗i′) to challenger.
6. Pre Challenge Phase:

• Amakes CCA.ValAlt(tag∗, ·) queries

com =
(

tag,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N ]\{tag})i∈[n])
)

to Bj .
• Bj answers by running CCA.ValAlt. This can be done efficiently using Bj ’s own Pre

Challenge oracle access to Same.Val and runs CCA.Find manually. By Claim 5.3, these
will all be to the same tag.

7. Challenge Phase:

• Select a random bit β

• A sends two messages m0,m1

(a) Submit m∗0 = y∗i,s∗
i′
,m∗1 = y∗i′,s̄∗

i′
to challenger

(b) Receive com∗ = Same.Com((x′, s̄∗i′),m
∗
b ; r) from challenger

(c) Set c∗
x′,i′,s̄∗

i′
= com∗

(d) Run Phase 2 of Challenge Phase using the messagemβ and output2, with the exception
that c∗

x′,i′,s̄∗
i′

is computed as noted above and submit output to A.

8. Post Challenge Phase: Proceeds exactly as Pre Challenge Phase.

• Receive bit guess β′ from A
9. If β = β′, output 0. Otherwise, output 1.

Claim 5.9. Bj is an e-conforming “same tag” adversary

Proof. The same tag property of Bj follows directly from Claim 5.3, as the only oracle queries it
makes are through CCA.ValAlt on a fixed tag tag∗. We need to verify two main properties, that Bj is
PPT, and P̃ runs in poly(2κ

e
) time and outputs poly(κ) bits. The former is to verify, asA only makes

use of a polynomial number of efficient functions and oracle queries. To gauge the runtime of P̃ ,
we can see the only inefficient steps it does is n calls to Equiv.Equivocate(1κ

′
) and the running of P .

We can see the former takes time n · poly(2κ
′
), and the latter is run in time poly(2κ

e′
) � poly(2κ

e
)

by e′ conformity of A. Finally, we can see the output of P̃ is poly(κ) length as output1 is the result
of all polynomial time algorithms and the poly(κ) bound on the output of P .

Claim 5.10. The advantage of Bj in winning the e-computation enabled game for the base com-
mitment scheme Same.Com from Definition 3.6 is ≥ 1

2p(κ)(N ·n) for infinitely many κ ∈ N.
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Proof. First note observe that if β = 0, then

c∗x′,i′,s̄∗
i′

= Same.Com((x′, s̄∗i′), y
∗
i′,s∗

i′
; r)

which is exactly what it is in Game 2j−1, and similarly, if β = 1

c∗x′,i′,s̄∗
i′

= Same.Com((x′, s̄∗i′), y
∗
i′,s̄∗

i′
; r)

which is what it is in Game 2j .
Let q be the probability A wins Game 2j and A wins Game 2j−1 with probability q ± 1

p(κ)·N ·n .
Bj wins if β = β′ and b = 0 - i.e. A wins Game 2j−1 or if β 6= β′ and b = 1 - i.e. A loses Game 2j .
Thus for infinitely many κ ∈ N, the probability of Bj winning is given by,

1

2

(
q ± 1

p(κ) ·N · n

)
+

1

2
(1− q) =

1

2
± 1

2 · p(κ) ·N · n
.

Since Bj is an e-conforming adversary with non-negligible advantage. The proof of the lemma
follows immediately by contradiction from the above claims.

Lemma 5.4. Assuming that the hinting PRG is exponentially secure with T = 2κ
γ

where γ ∈ (0, 1)
from Definition 2.1. For any e′-computation enabled adversaryA, there exists a negligible function
negl(·) such that for all κ ∈ N, |adv3

A − adv4
A| ≤ negl(κ) where hinting PRG is run on security

parameter κ′′ = κ
′ 1
γ = κ

e
γ .

Proof. Let A be an adversary that has non-negligible advantage given by the polynomial p(·) in
distingushing between the two games, i.e. for infinitely many κ ∈ N,

|adv3
A − adv4

A| ≥
1

p(κ)
.

We will construct a poly(2κ
e
) time algorithm A′ which has advantage 1

2p(κ) in the hinting PRG
Game as per Definition 2.1 where inputs were called on security parameter κ′′.

Reduction A′
(

HPRG.pp,

(
rβ0 ,
{
rβi,b

}
i∈[n],b∈{0,1}

))
:

1. Choose a random bit a ∈ {0, 1}

2. Run A

(a) When A sends their TM P , run it and return the result.

(b) Receive challenge tag tag∗ from A
(c) Pre Challenge Phase: Receive challenge commitments com from A and respond with

CCA.ValAlt(tag∗, com).

(d) Challenge Phase:

48



• Compute κ′ = κe.
• Let r∗x,i,b ∈ {0, 1}` be defined as follows:
• For i ∈ [n], b ∈ {0, 1}

i. Split up (r∗1,i,b, r
∗
2,i,b, . . . , r

∗
N,i,b) = rβi,b

• For all i ∈ [n] run Equiv.Equivocate(1κ
′
)→ (σ∗i , y

∗
i,0, y

∗
i,1).

• For all i ∈ [n], set y∗i = y∗i,s∗i
.

(e) Part 2:

• Set c∗ = rβ0 ⊕m∗a.
• For i ∈ [n], x ∈ [N ] \ {tag∗}, b ∈ {0, 1}

i. c∗x,i,b = Same.Com(1κ, (x, b), y∗i,b; r
∗
x,i,b)

• Finally, it sends com∗ =

(
tag∗,HPRG.pp∗, c∗, (σ∗i ,

(
c∗x,i,0, c

∗
x,i,1

)
x∈[N ]\{tag∗}

)i∈[n])

)
as

the commitment. All of the randomness is used as the decommitment string.

(f) Post Challenge Phase: Receive challenge commitments com from A and respond with
CCA.ValAlt(tag∗, com).

(g) Receive a′ from A.

3. If a′ = a, then output β′ = 1. Otherwise output β′ = 0.

Claim 5.11. A′ runs in time poly(2κ
e
)

Proof. The majority of A′ involves simulating running A. Since A is e′-computation enabled we
can run P in time poly(2κ

e′
). The Pre and Post Challenge queries will invoke a polynomial number

of calls to CCA.ValAlt, which require time poly(2κ) ≤ poly(2κ
e
). Finally, the challenge phase is

invokes n calls to Equiv.Equivocate, which has runtime poly(2κ
′
) by Definition 2.3. Since N is poly

bounded, the rest of the computation in the challenge phase is efficient, which bounds the total
runtime with poly(2κ

′
) = poly(2κ

e
)

Claim 5.12. If A has advantage |adv3
A − adv4

A| ≥ 1
p(κ) , A′ has advantage in the HPRG game in

Definition 2.1 ≥ 1
2p(κ)

Proof. We observe that when β = 1 in the HPRG Game - when A′ receives(
r1

0 = HPRG.Eval(HPRG.pp, s, 0),
{
r1
i,si = HPRG.Eval(HPRG.pp, s, i), ri,s̄i

R←− {0, 1}`
}
i∈[n]

)
A is run on exactly Game 3, and when β = 0 - i.e. when A′ receives(

r0
0

R←− {0, 1}`,
{
r0
i,b

R←− {0, 1}`
}
i∈[n],b∈{0,1}

)
A is run is identical to Game 4 (barring the fact that we are replacing c∗ with m∗β ⊕ r0

0 rather than

just c∗ R←− {0, 1}`, but these are identically distributed). So supposeA has probability p of winning
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Game 4. Then we can see that A′ wins the HPRG (β′ = β) game either when A is run on Game 3
and wins, or when A is run on Game 4 and loses. These events happen with probabilities

1

2

(
p± 1

p(κ)

)
+

1

2
(1− p) =

1

2
± 1

2 · p(κ)

for infinitely many κ ∈ N.

Since A′ runs in time poly(2κ
e
), its advantage must be negligible by Definition 2.1, a contradic-

tion, which concludes our proof.

Lemma 5.5. For any adversary A, adv4
A = 0.

Proof. The challenge commitment is independent of the message. Thus the probability of any
adversary guessing an independent random bit is 1

2 .

From the above lemmas we can conclude that adv0
A = negl(κ). This completes the proof of the

theorem.

6 Compiling our Transformations

We conclude by showing how to compile our transformations. Suppose that we begin with a
base scheme supporting 32 · ilog(c, κ)9 tags for some constant c that is secure against non-uniform
attackers that make same tag queries, and supports randomness recovery. We will compile this
into a scheme supporting 16 · 2κ space against uniform attackers with no same tag restriction.

We begin with applying the transformation of Section 5 to the base scheme which divides the
tag space supported by 2 to get a scheme with 16 · ilog(c, κ) sized tag space, but removes the
same-tag restriction. The we apply the Section 4 tag amplification process c + 1 times. Recall the
transformation takes a N ′ = 4N scheme to a scheme supporting 2N tags. Since 16/4 = 4 and
24 = 16 the effect is of each application is to remove one of the lg iterations and keep the factor
of 16. Since the transformation imposes a polynomial blowup in N on the underlying scheme
and since it is applied a constant number of times, the size of the resulting scheme will also be
polynomial.

Below we give a formal construction utilizing the transformations OneToMany(·) presented in
Section 5, and Amplify(·) presented in Section 4. Since we are transforming a scheme that takes
32 · ilog(c, κ) tags to 16 · 2κ tags, we need to use the amplification transformation c + 1 times.
OneToMany(·),Amplify(·) transformations take in a e-computation enabled scheme and output a
e′ = e · δ-computation enabled scheme where e′ ≥ 1 and δ ∈ (0, 1) and the equivocal commitment
scheme is 2κ

δ
hiding secure. We set OneToMany(·) to take a e · δ−c−2-computation enabled and

output a e · δ−c−1-computation enabled scheme. Amplify(·) takes a e · δ−c−1-computation enabled
scheme and outputs a e-computation enabled scheme after c+ 1 tranformations.

CompiledAmplify(BaseCCA = (BaseCCA.Com,BaseCCA.Val),HPRG,Equiv, e)

1. Let δ be the constant so that Equiv is 2κ
δ

binding secure and c be the constant such that
the base scheme takes 32 · ilog(c, κ).

9For brevity, ilog(c, κ) denotes lg lg · · · lg︸ ︷︷ ︸
c times

(κ).

50



2. AmplifiedCCA0 ← OneToMany(BaseCCA,HPRG,Equiv, e · δ−c−1).
3. For i ∈ [c+ 1]

(a) AmplifiedCCAi ← Amplify(AmplifiedCCAi−1,HPRG,Equiv, e · δi−c−1)

4. Output (AmplifiedCCAc+1.Com,AmplifiedCCAc+1.Val)

Below we analyze CompiledAmplify by stating theorems on correctness, efficiency and security.

Theorem 6.1. For every κ ∈ N, let BaseCCA = (BaseCCA.Com,BaseCCA.Val) be a perfectly correct
CCA commitment scheme by Definition 3.1. Let Equiv = (Equiv.Com,Equiv.Decom, Equiv.Equivocate)
be a perfectly correct equivocal commitment scheme by Definition 2.2. Then, we have that the
scheme CompiledAmplify(BaseCCA,HPRG,Equiv, e) is a perfectly correct CCA commitment scheme.

Proof. By the assumption that BaseCCA is a correct CCA commitment scheme and correctness of
Equiv, we can apply Claim 5.2 to conclude AmplifiedCCA0 is a correct CCA commitment scheme.
Using that again with the correctness of Equiv, we can conclude inductively that AmplifiedCCAi

is a perfectly correct CCA commitment scheme ∀i ∈ [c] via Claim 4.2, including our final output
AmplifiedCCAc+1.

Theorem 6.2. For every κ ∈ N, let BaseCCA = (BaseCCA.Com,BaseCCA.Val) be an efficient CCA
commitment scheme with randomness recovery satisfying Definition 3.2 with tag space 32·ilog(c, κ).
Let Equiv = (Equiv.Com, Equiv.Decom,Equiv.Equivocate) be an efficient equivocal commitment
scheme by Definition 2.3. Then, CompiledAmplify(BaseCCA,HPRG,Equiv, e) is an efficient CCA
commitment scheme.

Proof. By the assumption that BaseCCA is an efficient CCA commitment scheme and the effi-
ciency of Equiv, we can apply Claim 5.1 with BaseCCA being e · δ−c−2-computation enabled, and
N = 16 · ilog(c, κ), to conclude AmplifiedCCA0 is an efficient CCA commitment scheme. Using
that again with the correctness of Equiv, we can inductively apply Claim 4.1 to AmplifiedCCAi

with AmplifiedCCAi−1 being e · δi−c−2-computation enabled and N = 4 · ilog(c − i, κ) (same as in
Claim 6.2). Since i− 1 is at most c, we can see that N will always be polynomial in κ, so Claim 4.1
can be applied c+ 1 times. Since c+ 1 is a constant, we use the fact that a constant number of com-
positions of polynomials is still polynomial and the final expression is going to be polynomially
bounded in parameters |m|, κ for Com,Recover and parameters |m|, 2κ for Val.

Consider algorithm Com. Let poly0 be the polynomial that denotes the efficiency for AmplifiedCCA0

after application of Claim 5.1 i.e. Com runs in poly0(|m|, κ). After applying Amplify once, from
Claim 4.1, AmplifiedCCA1 is a scheme with efficiency polynomial in |m|, κ and efficiency of Com for
AmplifiedCCA0. Thus we can represent runtime of Com for AmplifiedCCA1 by poly1(poly′0(|m|, κ))
where poly′0 includes the call of poly0 on message length equal to the length of decommitment
strings produced by the equivocal commitment scheme on security parameter κe·δ

−c−1
.

Simiarly, after applying Amplify on AmplifiedCCAi−1, from Claim 4.1 we can denote efficiency
for AmplifiedCCAi by polyi(poly′i−1(. . . poly′0(|m|, κ)) where the message length for AmplifiedCCAi−1

is equal to the length of decommitment strings produced by the equivocal commitment scheme
on security parameter κe·δ

i−c−2
. This gives us that for Com the efficiency is given by

polyc+1(poly′c(. . . poly′0(|m|, κ)) ∈ poly(|m|, κ).

A similar analysis shows that Recover ∈ poly(|m|, κ) and Val ∈ poly(|m|, 2κ). This concludes
that our final scheme AmplifiedCCAc+1 is an efficient CCA commitment scheme.
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Theorem 6.3. For every κ ∈ N, let BaseCCA = (BaseCCA.Com,BaseCCA.Val) be a CCA commit-
ment scheme with randomness recovery that is hiding against non-uniform “same tag" adver-
saries according to Definition 3.10 for tag space 32 · ilog(c, κ). HPRG = (HPRG.Setup,HPRG.Eval)
be a hinting PRG scheme that is T = 2κ

γ
secure by Definition 2.1 for γ ∈ (0, 1). Equiv =

(Equiv.Com,Equiv.Decom,Equiv.Equivocate) be an equivocal commitment without setup scheme
that is T = 2κ

δ
binding secure and statistically hiding for some constant δ ∈ (0, 1).

Then, CompiledAmplify(BaseCCA,HPRG,Equiv, e) is a e-computation enabled CCA commitment
scheme that is hiding against uniform adversaries according to Definition 3.9 for tag space 16 · 2κ.

Proof. Consider the following sequence of claims.

Claim 6.1. AmplifiedCCA0 is a CCA commitment scheme secure against e · δ−c−1 computation
enabled adversaries with the recover from randomness property on tag space 16 · ilog(c, κ)

Proof. By assumption in Theorem 6.3, HPRG is a 2κ
γ

secure hinting PRG scheme, Equiv is a 2κ
δ

secure equivocal commitment without setup scheme, BaseCCA is a CCA commitment scheme that
is hiding against non-uniform “same tag" adversaries with the recover from randomness property
on tag space 32 · ilog(c, κ). Apply Claim 3.2 to get that RandomBaseCCA is secure against e · δ−c−2-
computation enabled “same tag" adversaries. Apply Theorem 5.1 with N = 16 · ilog(c, κ) to get
the result.

Claim 6.2. For all i ∈ [c+1], AmplifiedCCAi is a CCA commitment scheme secure against e ·δi−c−1-
computation enabled adversaries with the recover from randomness property on tag space 16 ·
ilog(c− i, κ)

Proof. We will proceed with induction on i ∈ [0, c + 1]. The base case is true by Claim 6.1. By
assumption in Theorem 6.3, HPRG is a 2κ

γ
secure hinting PRG scheme and Equiv is a 2κ

δ
secure

equivocal commitment without setup scheme. By our induction hypothesis, AmplifiedCCAi−1 a
CCA commitment scheme secure against e · δi−c−2-computation enabled adversaries with the re-
cover from randomness property on tag space 16 · ilog(c − i + 1, κ). We apply Theorem 4.1 with
N = 4 · ilog(c + 1 − i, κ). Since i ≤ c + 1, we know N ≤ κ ∈ poly(κ), so the theorem ap-
plies, giving us that AmplifiedCCAi is a CCA commitment scheme secure against δ · e · δi−c−2 =
e · δi−c−1-computation enabled adversaries with the recover from randomness property on tag
space 24·ilog(c−i+1,κ) = 16 · ilog(c− i, κ), which proves the induction step.

By applying Claim 6.2 on i = c + 1, we conclude AmplifiedCCAc+1 is a e-computation enabled
CCA commitment with tag space 16 · 2κ. By Claim 3.1, this is standard secure against uniform
adversaries.

We import the following theorems about instantiating base schemes, from prior work.

Theorem 6.4. [KK19] For every constant c > 0, there exist same-tag CCA secure commitments
with randomness recovery satisfying Definition 3.10 against non-uniform adversaries, with tag
space (c lg lg lg κ), message space u = poly(κ) that make black-box use of subexponential quantum
hard non-interactive commitments and subexponential classically hard non-interactive commit-
ments in BQP, both with randomness recovery.
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Theorem 6.5. [LPS17] For every constant c > 0, there exist CCA secure commitments with ran-
domness recovery satisfying same-tag CCA security w.r.t. over-extraction according to Defini-
tion 3.10 against non-uniform adversaries, with tag space (c lg lg lg κ), that make black-box use of
subexponential time-lock puzzles [LPS17].

We remark that while [LPS17, KK19] prove that their constructions satisfy non-malleability
with respect to commitment, their proof techniques also extend to exhibit same-tag CCA secu-
rity against non-uniform adversaries. In a nutshell, both these works rely on two simultaneous
axes of hardness to build their base schemes. As a consequence of this in the same-tag setting,
for any pair of tags (tag, t̃ag) corresponding to the challenge query and CCA oracle queries of
the adversary respectively, there is an oracle that inverts all commitments generated under ˜tag
but where commitments under tag remain secure in the presence of this oracle. In both these
works [LPS17, KK19], we note that while the specific oracle is only used to invert parallel queries
of the adversary (thereby obtaining many-many non-malleability), the oracle is actually capable
of inverting (unbounded) polynomially many adaptive queries, thereby also achieving same-tag
CCA security. In [LPS17], this oracle over-extracts, therefore achieving the weaker property of
same-tag CCA security w.r.t. over-extraction. The [KK19] scheme does not suffer from over-
extraction and achieves (standard) same-tag CCA security. The [KK19] scheme can be observed
to satisfy randomness recovery by relying on the recovery algorithm of the underlying commit-
ments. The [LPS17] scheme outputs a commitment to a bit b as

f(s; r), r′, 〈s, r′〉 ⊕ b

which satisfies randomness recovery given all the randomness used to commit.
Combining these theorem with Theorem 6.3, we obtain the following corollaries.

Corollary 6.1. There exists a constant e > 0 for which there exists a perfectly correct and polyno-
mially efficient e-computation enabled CCA secure commitment satisfying Definition 3.6 against
uniform adversaries, with tag space 2κ for security parameter κ, that makes black-box use of
subexponential quantum hard non-interactive commitments with randomness recovery, subexpo-
nential classically hard non-interactive commitments in BQP with randomness recovery, subexpo-
nential hinting PRGs and subexponential keyless collision-resistant hash functions.

Corollary 6.2. There exists a constant e > 0 for which there exists a perfectly correct and polyno-
mially efficient e-computation enabled CCA secure commitment satisfying Definition 3.6 against
uniform adversaries, with tag space 2κ for security parameter κ, that makes black-box use of
subexponential time-lock puzzles as used in [LPS17], subexponential hinting PRGs and subexpo-
nential keyless collision-resistant hash functions.

Finally, we point out that while all our formal theorems discuss CCA security, our transfor-
mations also apply as is to the case of amplifying parallel CCA security (equivalently, concurrent
non-malleability w.r.t. commitment). That is, given a base scheme that is only same-tag paral-
lel CCA secure (or non-malleable w.r.t. commitment) for small tags, our transformations yield a
scheme for all tags that is parallel CCA secure (or concurrent non-malleable w.r.t. commitment)
for tags in 2κ, without the same tag restriction.
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A Proofs for Equivocal Commitments without Setup

In this section, we will show that any efficient, statistically hiding, T (κ) binding commitment
scheme (Com,Decom) [DPP93, HM96, BKP18] without setup is also an efficient T (κ1/c) binding
equivocal bit commitment without setup for some constant c.10

Definition A.1. We say a bit commitment scheme is statistically hiding if the statistical distance
between the following two distributions is negligible.

• D0 = c where (c, d)← Com(1κ, 0).

• D1 = c where (c, d)← Com(1κ, 1).

Let r(κ) be the amount of randomness used by Com(1κ, ·). Since we know Com is efficient, we
can bound length of r by some polynomial O(κc) (assuming r ∈ {0, 1}κc for simpler notation). We
set κ′ to be κ1/c and call Com with κ′.

Equiv.Com(1κ, b)

• Set κ′ = κ1/c

• Output (c, d)← Com(1κ
′
, b)

Equiv.Decom(c, d)

• Output Decom(c, d)

Equiv.Equivocate(1κ)

• Set κ′ = κ1/c, D = ∅
• Let (c0, d0) = Com(1κ

′
, 0)

• For randomness r ∈ {0, 1}κ

– Run (c1, d1)Com(1κ
′
, 1; r)

– If c1 = c0, add (r, d1) to a set D.

• If D = ∅, output (⊥,⊥,⊥)

• Otherwise, select a unformly random (r′, d′1) ∈ D

• Output (c0, d0, d
′
1).

10Note that in our construction we require T (κ1/c) to be subexponential, so it suffices for T (κ) to be subexponential
as well.
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Lemma A.1. If (Com,Decom) is a correct commitment scheme, (Equiv.Com,Equiv.Decom, Equiv.Equivocate)
is a correct equivocal commitment scheme as per Definition 2.2.

Proof. Since Equiv.Com,Equiv.Decom simply call and output Com,Decom, correctness directly fol-
lows from the commitment of the underlying scheme.

Lemma A.2. If (Com,Decom) is an efficient commitment scheme, (Equiv.Com,Equiv.Decom, Equiv.Equivocate)
is an efficient equivocal commitment scheme as per Definition 2.3.

Proof. By the efficiency of Com,Decom, we know that their runtime can be bound by some poly-
nomial p(·), so their invocations in Com,Decom are bounded by p(κ′) = p(κ1/c), which is of course
still polynomial in κ. Finally, we note the runtime of Equiv.Equivocate is dominated by invocations
of Com iterating over r ∈ {0, 1}κ, which is poly(κ)2κ ∈ poly(2κ). We also remark that the exis-
tence of a c which a polynomially bounds the amount of randomness Com uses also relies on the
efficiency of Com.

Lemma A.3. If (Com,Decom) is a T (κ) binding secure commitment scheme, (Equiv.Com,Equiv.Decom,
Equiv.Equivocate) a T (κ1/c) binding secure commitment scheme as per Definition 2.4.

Proof. Since Equiv.Com simply calls Com on security parameter κ′ = κ1/c, T (κ′) binding follows
directly from the T (κ) binding of Com.

Lemma A.4. If (Com,Decom) is statistically hiding as per Definition A.1, then (Equiv.Com,Equiv.Decom,
Equiv.Equivocate) is equivocal as per Definition 2.5.

Proof. First, we define the following distributions

• D0 = (c, d) where Equiv.Com(1κ, 0)→ (c, d)

• D1 = (c, d) where Equiv.Com(1κ, 1)→ (c, d)

• D′b = (c, db) where Equiv.Equivocate(1κ)→ (c, d0, d1)

Claim A.1. D0 and D′0 are statistically close.

Proof. We observe that these distributions are generated identically except Equiv.Equivocate has
a possibility of aborting when D = ∅. But the event D = ∅ means that the c0 generated by
Equiv.Equivocate(·) was not in the support of Com(1κ

′
, 1), lower bounding the statistical distance

between c ∈ D0 and c ∈ D1. Since this is negligible by statistical hiding D = ∅ can only happen
with negligible probability, so the claim holds.

Claim A.2. D1 and D′1 are statistically close.

Proof. We examine the marginal distribution of d ∈ D1 and d1 ∈ D′1 conditioned on a fixed c′.
We can observe that in D1, d is generated by a uniformly random r which over the subset of
r : (c, d) ← Com(1κ

′
, 1; r) ∧ c = c′. But this is exactly the set D from which d1 is drawn, so these

marginal distributions are identical.
Observe from the facts that c ∈ D′0 is statistically close to c ∈ D0 (by Claim A.1), and c ∈ D0

is close to c ∈ D1 (by statistical hiding), we can conclude that c ∈ D1 is statistically close to
c ∈ D′1 = c ∈ D′0. Our claim follows directly from the combination of these two observations.

That this satisfies the definition of equivocal follows from Claim A.1 and Claim A.2.
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