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Abstract—Power-based side-channel leakage is a known problem
in the design of security-centric electronic systems. As the
complexity of modern systems rapidly increases through the
use of System-on-Chip (SoC) integration, it becomes difficult
to determine the precise source of the side-channel leakage.
Designers of secure SoC must therefore proactively apply ex-
pensive countermeasures to protect entire subsystems such as
encryption modules, and this increases the design cost of the
chip. We propose a methodology to determine, at design time,
the source of side-channel leakage with much greater accuracy, at
the granularity of a single cell. Our methodology, Architecture
Correlation Analysis, uses a leakage model, well known from
differential side-channel analysis techniques, to rank the cells
within a netlist according to their contribution to the side-
channel leakage. With this analysis result, the designer can
selectively apply countermeasures where they are most effective.
We demonstrate Architecture Correlation Analysis (ACA) on
an AES coprocessor in an SoC design, and we determine the
sources of side-channel leakage at the gate-level within the AES
module as well as within the overall SoC. We validate ACA by
demonstrating its use in an optimized hiding countermeasure.
Index Terms—Side-channel Leakage, Netlist Analysis, Side-
Channel Leakage Source, Design-time Analysis;

I. INTRODUCTION

Power-based side-channel leakage occurs when a secure chip
performs operations that depend on an internal secret value
such as a cryptographic key. An adversary who observes
the chip power consumption can derive the internal secret
value through differential analysis techniques that correlate a
power model of the secret activity with the observed power
consumption. Power-based side-channel leakage is prevented
using countermeasures such as power-randomization, hiding,
or masking. However, these techniques are expensive, and their
cost is proportional to the size of the secure chip that must be
protected. To reduce the cost of these countermeasures, they
could be limited to a small section of the chip, but then the
designer must identify the precise gates which contribute to
the side-channel leakage. To our knowledge, there are no tools
to identify the source of side-channel leakage in a netlist at
the granularity of a cell.

ACA is motivated by the following scenario, common in
industry, where two teams collaborate to create a leakage-free
design. A design team develops the product, while a security
verification team independently checks for security problems
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Fig. 1: Difference between Differential Power Analysis and
Architecture Correlation Analysis(ACA): (a) DPA reveals an
unknown key by matching a power model to a netlist (b) ACA
ranks gate in a netlist according to their contribution to side-
channel leakage.

with the design. When the security verification team finds side-
channel leakage, it is up to the design team to fix it. The
guidance of the testing team consists of a demonstrate side-
channel leak. However, based on a leakge model alone, it is
very hard for the design team to identify the precise source of
the leakage, especially in complex hardware designs.

In this work, we describe a methodology that is used to
analyze a gate-level netlist for side-channel leakage. The
methodology analyzes the netlist using a power model of
the secure-sensitive operations in the chip. Power models
are commonly used in the traditional differential side-channel
analysis, and they are used to predict the power of internal
secret-dependent operations in the chip. Hence, secure-SoC
designers are familiar with such power models. The outcome
of the methodology is a ranking of all the cells in the netlist
with respect to their similarity to the power model. A cell’s
behavior is considered similar to the power model if its output
transitions are matched to those predicted by the power model.
The rationale is that while the power consumption of the
entire chip includes the power contributions of every cell, only
those cells that reflect the predictions of the power model will



contribute to side-channel leakage.

The ranking is numerically expressed using the Leakage Im-
pact Factor (LIF), a gate-level metric to express side-channel
leakage. The higher the LIF, the more a cell contributes to
power-side-channel leakage. With the LIF, the designer can
then decide what cells to protect using a countermeasure.
While ACA in itself is not a countermeasure, it enables a
critical step in applying countermeasures more efficiently.
Figure || clarifies the difference between Architecture Cor-
relation Analysis (ACA) and traditional side-channel anal-
ysis. Traditional (differential) side-channel analysis (Figure
[Th) aims to reveal a secret, such as a cryptographic key. A
power model, dependent on a secret key, is compared with
the measured (or simulated) power trace obtained from a chip.
The best-matching power model reveals the most likely key.
On the other hand, our proposed ACA (Figure [Ip) ranks cells
in a netlist according to their contribution to side-channel
leakage. The ranking is determined by comparing the power
consumption from individual gates with a power model that
uses a known key, and a closer similarity between cell power
and power model leads to a higher ranking. The gate-level
power consumption is obtained using power simulation. Thus,
ACA is not a side-channel analysis technique, but rather a
netlist analysis technique.

In this contribution, we introduce the ACA methodology
and we apply it to a System-on-Chip Design. We analyze
individual modules (such as an AES coprocessor) as well as
system-level interconnect. ACA has two different use-modes.
First, when a known source of side-channel leakage such
as an unprotected hardware cipher is analyzed, ACA will
confirm the source of side-channel leakage at the granularity
of a single cell. Second, with a known side-channel leakage
power model, such as the transfer of a secret value, ACA will
identify every cell that contributes to the side-channel leakage
predicted by the power model. In both cases, our experiments
on practical SoC design show that only a small number of
cells are significantly contributing to side-channel leakage.
The outline of the paper is as follows. In the next section, we
discuss related work. Section III describes the ACA method-
ology. We demonstrate two practical case studies. Section IV
introduces the experimental setup. Section V applies ACA to
the analysis of a coprocessor. Section VI applies ACA to the
analysis of an SoC bus transfer. Section VII illustrates the
effectiveness of ACA by using it to implement an optimized
hiding countermeasure. In Section VIII, we provide several
discussions about the relevant issues of ACA. By selectively
protecting the cells flagged by ACA as sources of side-channel
leakage, we show that the side-channel leakage in the overall
system can be reduced significantly. We then conclude the

paper.
II. RELATED WORK

Many authors have investigated the problem of predicting side-
channel leakage using circuit simulation techniques, including
simulation of EM-leakage [1]], transistor (SPICE-level) power
consumption [2], gate-level (PrimeTime Px-level) power con-
sumption [3], or profiled modeling [4]]. These efforts aim at
reproducing side-channel leakage at design time, so that a

side-channel attack can be simulated and countermeasures can
be tested. Simulation-based side-channel leakage assessment
methods make a trade-off between simulation speed and
accuracy. Such simulations result in noiseless power estimates,
thereby significantly reducing the number of traces required
for a side-channel attack. Nevertheless, none of these methods
investigates the ranking of design components according to
side-channel leakage, which is the main contribution of ACA.
A second related work topic is on how designers can use
design data, at any level of abstraction, to identify the source
of side-channel leakage. Information flow tracking techniques
automatically identify causal dependencies between the dif-
ferent parts of a design, and therefore these techniques can
analyze the dependencies between a sensitive or secret input
and an observable design output. At the register-transfer level,
SecVerilog [5] analyzes hardware information flow to detect
timing-based channels. At the gate-level, GLIFT [6] simi-
larly detects timing-dependent information leaks. However,
information-flow based mechanisms cannot express power-
based side-channel leakage. RTL-PSC [7] describes a design-
time side-channel leakage assessment methodology at the
Register-Transfer level. The authors identify side-channel leak-
age at the module-level, when a design is still at RTL.
However, RTL-PSC ignores low level effects such as glitches,
a known source of side-channel leakage [8]], as well as the
effects of physical placement and routing. Other authors have
proposed empirical methods for locating side-channel leakage
in a prototype implementation. By systematically scanning a
chip and establishing a cartography of EM-based side-channel
leakage [9], the areas of the chip with the most side-channel
leakage can be found. However, the accuracy of these methods
is very coarse and they are unable to identify side-channel
leakage at the cell level.

Karna [[10] is another approach to design-time side-channel
leakage assessment which operates at the layout level. The
authors partition a chip spatially in small cells, and determine
a TVLA leakage metric for each area. This reveals the leakage
specific to local area of the chip. TVLA is a generic leakage
metric with known caveats, the most important being that it
does not confirm that a side-channel attack exists. Second,
the resolution of Karna is limited by the layout area over
which TVLA is computed, which typically will still contain
many gates. As previous authors have repeatedly shown, side-
channel leaks can often be attributed to a single gate [L1],
which may trigger the use of specific gate-level countermea-
sures. For this reason, we think it remains imperative to
identify the side-channel leakage contributed by a single gate.

III. ACA METHODOLOGY

In this section, we describe the ACA methodology. We mo-
tivate principal design choices, recall preliminaries on side-
channel leakage models, and introduce the ACA method to
compute the leakage impact factor of a gate.

We motivate two of our principal design choices. First, to
detect leakage, ACA relies on a leakage model, and it is up
to the designer to select the right leakage model. However,
these models are commonly known. Internal and external
security testing labs estimate the strength of an implementation



using state of the art side-channel attacks either on silicon or
through simulations. Such attacks typically use leakage models
and therefore the designer can obtain the knowledge of the
‘right’ leakage model as a result of the testing effort. We
acknowledge that statistical detection methods, such as TVLA,
can demonstrate the presence of sensitive variables in a power
trace and that they avoid the difficulty of choosing a leakage
model. However, TVLA comes with its own risks such as false
positives [12]. This means that a positive leakage test result for
TVLA does not imply that an attack exists. Second, ACA uses
gate-level power modeling on post-synthesis or post-layout
netlists. Power modeling at the gate-level abstraction level
strikes a balance between simulation efficiency and accuracy. It
is applicable to the complete chip, while still correctly charac-
terizing sub-cycle-level power effects. In contrast, RTL power
modeling or toggle-counting misses many of the important
electrical effects in side-channel leakage, and transistor-level
power modeling is too complex to achieve at chip-level over
extended periods of time.

A. Leakage model

The leakage model, in the context of power-based side-channel
analysis, is an estimate for the information leakage incurred
through power consumption variations. The leakage model L
is a function computed over a secret intermediate variable
V. The objective of side-channel analysis is to reveal the
value of V' through many observations of the measured power
consumption and correlating those observations with L(V).
Popular choices for L(V) are the Hamming Weight or the
Hamming Distance on V'; the Hamming Weight reflects value-
based power leakage in CMOS, while the Hamming Distance
reflects distance-based power leakage in CMOS.

The objective of ACA is to identify, within a gate-level
netlist, those cells that realize L(V'). Naturally, there are
many possible choices for the leakage function, and ACA
makes the assumption that the designer is able to provide
L(V). If the algorithm and implementation are known, such a
leakage function can always be found. For example, a common
choice for L(V) for AES hardware implementations is the
Hamming Distance between the state of different rounds. For
AES software implementations, the Hamming Weight of one
or a few bytes of the AES state is typically used.

However, V' does not have to be related to a cryptographic
key, and any sensitive value processed in a design could be
analyzed. For example, ACA can be used to study bus transfer
operations in an SoC. In that case, V' is a sensitive value
transferred over the bus, and L(V') is the Hamming weight
of the value. The Hamming weight reflects the pre-charged
nature of a shared bus [13]].

B. Computing the Leakage Impact Factor

The purpose of ACA is to define the Leakage Impact Factor
(LIF) for every cell in a design. The LIF is a dimensionless
number that expresses the contribution of the cell’s power
consumption to the side-channel leakage of a design, and a
higher LIF indicates a higher contribution. We summarize the
steps of LIF computation. The input of ACA consists of a
netlist to be analyzed, a secure asset V, a leakage model L(V),

TABLE I: Pearson Correlation Threshold Levels as a function
Confidence

Confidence Interval n=600 n=1000 n=2000
99% +0.105 | £0.081 | £0.058
95% +0.080 | +£0.062 | £0.044
90% +0.067 | +£0.052 | £0.037

and a set of stimuli that exercise the netlist and the secure asset.
We first identify the Leakage Time Interval (LTI), the time
interval over which we want to obtain LIF. Next, we compute
for every cell 7 in the design an architecture correlation factor
C; as well as the average normalized power consumption 5;.
Finally, we obtain the gate LIF as the product of these two.
We discuss each of these steps in detail.

a) Selecting the Leakage Time Interval:

The first step of ACA is to narrow down the time window over
which the Leakage Impact Factors are computed. The rationale
is that we want to determine the LIF over an interval during
which the leakage model L(V') is valid and during which side-
channel leakage may occur. We therefore narrow the search
window to the Leakage Time Interval using power correlation.
We use simulated system-level power traces P and correlate
them with the traces from the leakage model L(V'). We then
compute the correlation p as

_ cou(L(V), P(t))
PL(V),t = —UL(V)UP (D)

where:

cov = the covariance
or(vy = the standard deviation of L(V')
op = the standard deviation of P

The Leakage Time Interval is defined as the time window(s)
for which

PL(V),t > Pthreshold (2)

The threshold level pipreshoid 1S based on the designer’s
definition of a distinguishable correlation peak. We can use
the Pearson Correlation Confidence Interval to define bounds
for pihreshold- Tableillustrates several choices for pipreshold-
Under the hypothesis that the true p is zero, the table shows
confidence intervals in function of the number of traces (n)
and the confidence level. Hence, if the observed p falls outside
of the confidence interval then we reject the hypothesis and
conclude that the design shows leakage.

Because we are computing p in a noiseless, controlled envi-
ronment with full knowledge of the secure asset, we can find
sharp correlation peaks with a limited number of traces.

b) Architecture Correlation:

Within the Leakage Time Interval, we next perform the archi-
tecture correlation as follows. First, we obtain a toggle trace
from a gate-level simulation of the design. A toggle trace K;
records the activity of each net ¢ (driven by cell 7) using the
discrete values —1 and +1. If a cell has multiple outputs, then
we compute the architecture correlation and leakage impact
factor for each output separately. For each time stamp ¢ in
the simulation, a toggle trace for net ¢ has the value —1 if
the net does not change value, and it has the value +1 if the



TABLE II: Example of Architecture Correlation

Stimuli SO S1 S22 S3 | Cyy
Leakage Model Toggle Activity (H;) 1 -1 -1 1

net0 (Ko ) 1 -1 -1 1 4
netl (K1) 1 1 1 1 0
net2 (K3) -1 1 -1 -1 -2

net does change value. We also obtain a toggle trace H that
represents the toggle activities of the leakage model L(V).
Next, we perform Architecture Correlation. For each net (or
gate driver), we compute the dot product of the toggle trace
of the leakage model H with the toggle trace of net <.

Ci=K,-H 3)

A high value in C; has a different meaning compared to a
high value in p. A high value in p reflects a strong dependency
between the overall power dissipation and the leakage model.
Therefore, a high p indicates side-channel leakage. On the
other hand, a high value in C; reflects a strong dependency
between activity of net ¢ and the leakage model. A high C;
therefore means that the assumed leakage model is realized
by net i. Table [[I] describes an example computation for the
architecture correlation factor C;. The second row records the
toggle activities of the leakage model for different stimuli. The
leakage model value toggles for the first stimuli Sy, it does not
toggle for stimuli S; and S5, and toggles for S3. At the same
time, nety also only toggles on Sy and S3 which matches
the leakage model in all the four stimuli, therefore, the nety’s
correlation score is 4. On the other hand, net; and nety have
a weaker correlations as 0 and -2 respectively. Overall, a more
positive and larger architecture correlation indicates that a net
approximates the leakage model more closely.

c¢) Compute Leakage Impact Factors:

The final step of ACA computes the Leakage Impact Factor F;
of the driver of each net 7, as the Architecture Correlation of
net ¢, weighted with the average power consumption P; of the
driver of net i normalize by the average power consumption
of the whole design Pr , during the leakage time interval
averaged over all stimuli.

P;

Fi=G; Pr “4)
This additional weighing factor 5;’ is needed because the
architecture correlation factor by itself ignores the relative
contribution of a cell in the side-channel leakage power
footprint. Once the LIF F; of all cells are determined, they are
ranked from highest to lowest. The cells with the highest LIF
make the greatest contribution to side-channel leakage. This
list can then be used by a designer to efficiently optimize the
netlist with countermeasures.

IV. DEMONSTRATING ARCHITECTURE CORRELATION
ANALYSIS

To demonstrate ACA, we apply it to define the leakage impact
factors in an SoC built around a LEON3 core, an in-order 32-
bit RISC processor. As shown in the Figure 2] the SoC includes
a two-level AMBA bus with on-chip memory and several
coprocessors. One coprocessor, an AES encryption engine, is
a single-round per cycle AES-128 design with on-line key
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Fig. 2: SoC block diagram
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expansion. A single hardware AES encryption completes in 11
clock cycles. The AES design contains no countermeasures.
To perform a hardware-accelerated encryption, the LEON3
writes secure assets (128 bits of plaintext and 128 bits of
key material) to the AES coprocessor, triggers the encryption,
and waits for a completion flag. The LEON3 then retrieves
the ciphertext. We have access to the gate-level netlist of the
design, which is implemented in 180nm CMOS technology.
Figure |3| illustrates the power simulation procedure. Logic
synthesis converts the high-level RTL description into a gate-
level netlist, which is the stimulated in a ModelSim simulation
with a set of varying and random plaintext stimuli using
a software testbench. For each plaintext input, we perform
functional simulation using Modelsim at the logic level to
obtain toggle traces (Value Change Dump). These traces are
used for Architecture Correlation (III.B.b). Next, we perform
gate-level power simulation using Primetime PX to produce a
simulated power trace per plaintext input, which is used for the
Leakage Time Interval (IIl.B.a) and to compute the Leakage
Impact Factors (IIL.B.c).

In the following, we demonstrate ACA for two different use
cases. First, we use it to identify cells that cause side-channel
leakage in the AES hardware engine. Next, we study the
transfer of secure assets in the SoC, and we use ACA to mark
cells within the LEON3 core as side-channel leakage sources.
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V. ACA OF AN AES HARDWARE ENGINE

In this case study, we apply ACA to a stripped down version
of the AES coprocessor, modified to run as a stand-alone
hardware design. The leakage power model used by ACA is
the Hamming distance on the previous and current values of
the AES state register.

We analyze the output of the first round to find the leakage
time interval. Figure ] reveals a sharp correlation peak when
the SBOX output is computed, and we use these correlation
peaks to determine pipreshola at 99% confidence level with
600 power traces. This gives a leakage time interval of 1.57ns
(for an AES running at 41.67ns clock period).

Next, we perform architecture correlation. Since there are

128 bits of state, there are 128 different leakage models to
consider using architecture correlation. In the following, we
present the results for a single leaking bit. Our conclusions
remain valid for the entire AES state by repeating ACA for
each state bit. ACA yields a list of cells in the descending
order of their Leakage Impact Factor (LIF) value, which
signifies the individual contribution of these cells to side
channel leakage.

TABLE III: LIF Distribution Data for the AES Hardware
Engine using HD(AES state bit) as the leakage model

LIF Range | No. of Cells
1.9 ~25 1

1.3 ~19 1

07 ~13 0

0.1 ~0.7 58

-0.5 ~ 0.1 9525
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Fig. 5: LIF Distribution for the AES Hardware Engine
Leakage Model: HD(AES state bit); Logarithmic Y scale

Result Analysis: We analyzed on the cell ranking list from

ACA output, Figure [3] illustrates the LIF distribution for all
the cells in the AES design based on the ACA output and
Table lists the corresponding data. The distribution is
highly skewed with only a small amount of cells have high
LIF. This indicates that only a small number of cells actively
contribute to the side-channel leakage produced following
the selected leakage model. The most leaky cell, as identified
by the LIF ranking, is a flip-flop of the state-register. As the
128bit state register holds the state of the AES process and
is updated after every round, it is reasonable that it is the
most leaky cell in the coprocessor. Furthermore, the cells
ranked just below this register is a cell in the SBOX that is
directly driven by this register. After these cells, there is a
sharp drop-off in LIF factors, indicating that the remaining
cells only contribute marginally to the leakage.

Runtime Evaluation: Table shows the runtime overhead
of the analysis. We use a 2.3GHz Intel Xeon E5-2699 design
server with 128GB of main memory. The complexity of this
AES design is 9585 cells. The runtime is broken down into
gate-level power simulation (per stimuli), and ACA (per AES
state bit). Hence, a full AES design can be analyzed with 600
traces in about 2 hours.

TABLE IV: Runtime Evaluation for AES Hardware Engine
(9,585 cells)

Procedure Runtime
s/stimuli

Power Simulation 12.28

Architecture Correlation Analysis (per AES bit) | 0.268

VI. ACA OF AN SOC BUs TRANSFER

ACA applies to any activity for which one can find a leakage
model. In this case study, we demonstrate how to analyze the
bus interface logic of an SoC for side-channel leakage with
ACA.

To initiate an encryption operation, the LEON3 writes a key
and a plaintext to the memory-mapped hardware of the AES
coprocessor. This affects a large number of components in
the SoC, including the caches, the write buffers, the AMBA
AHB and APB bus bridges, and finally the memory-mapped
interface in the coprocessor. Any of these can potentially
contribute to side-channel leakage, and ACA helps to identify
which components leak most.

For this case study, we consider the hamming weight of
plaintext inputs of encryption as the leakage model for
ACA analysis target. The input data (secure asset) is 128-bit
wide, and therefore there are 128 different leakage models
to consider. The transfer to the AES coprocessor consists
of four 32-bit transfers. Using correlation analysis of the
leakage model with the simulated power trace over an interval
of these four transfers, we obtain a sharp correlation peak
shown in Figure @ We use these peaks to fix piareshoid at
99.0% confidence level for 600 power traces. The leakage
time interval is 1.082us, roughly 26 simulated clock cycles.
As before, we present the analysis for a single bit. Since the
leakage time interval at the level of SoC covers many different
components, we limit the discussion to cells included within
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the LEON3 core.

TABLE V: LIF Distribution Data for the SoC Bus Transfer
Leakage Model: HW (transferred bit)

LIF Range | No. of Cells
1.9~ 25 1
1.3~ 1.9 0
07~13 8
0.1 ~ 0.7 332
-0.5 ~ 0.1 99563
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Result Analysis: From the ACA output, we obtained the cell
ranking based on LIF. Figure [/|illustrates the LIF distribution
for all cells in the SoC and Table |V| shows corresponding
distribution data. Investigating the results of ACA reveals both
expected and unexpected sources of leakage. Top-LIF cells
include the flip-flops from the register file, flip-flops from the
pipeline operand register of the execution stage, and flip-flops
from the pipeline result register of the memory access stage.
We notice that cells in the data cache of LEON3 are pointed
out by ACA as sources of side channel leakage. This is
unexpected because the data cache is disabled by our testbench
during the experiment. With the cache disabled, stores of the
secure data asset should be directly passed to the memory
controller. However, ACA reveals cell activity in the data
cache correlating with the secure data asset. Investigation of
the specific cells reveals that the leakage is due to a Write
Buffer which is integrated in the data cache. The Write Buffer
remains active even if the data cache is disabled and is used
by LEON3 to ensure that stores do not impede the progress
of the execution pipeline by putting pending stores in the

Write Buffer. We concluded that identifying such cells would
be extremely hard without the systematic analysis offered by
ACA.

The cells inside the Instruction Trace Buffer (ITB), integrated
in the LEON3 core, are another unanticipated source of
leakage exposed by ACA on this time window. In our case,
LEON3 contains 1 KiloByte of memory as ITB for storing
executed instructions. The ITB is implemented as a circular
buffer and can hold upto 64 executed instructions. The source
of side channel leakage revealed here are the memory cells in
the ITB. The ITB is a source of side-channel leakage due to
our test mechanism where the plaintext data is a part of the
operands in a few of the instructions. These retired instructions
end up in the ITB after execution. The existence of the ITB
further means that the instructions carrying the secure data
asset can persist in the LEON3 core for much later than
intended.

Runtime Evaluation: Table [VI| shows the runtime overhead
of this analysis. The complexity of the SoC is 99,904 cells,
10 times the size of the AES hardware engine. Thus, a full
design can be analyzed with 600 traces in about 60 hours.

TABLE VI: Runtime Evaluation for SoC Bus Transfer (99,904
cells)

Procedure Runtime
s/stimuli

Power Simulation 329.00

Architecture Correlation Analysis (per AES bit) | 32.27

VII. ACA VALIDATION

In the previous section, we demonstrate that ACA precisely
identifies the cells in the netlist which are responsible for the
side-channel leakage and output a ranking list of the cells
based on the Leakage Impact Factor(LIF) which quantify each
cell’s contribution to the side-channel leakage. In this section,
we elaborate on the validation of the ACA methodology. We
emphasize that here we are not proposing a counter-
measure, rather we are verifying the correctness of the
proposed ACA methodology insofar as the cells we detected
are actually the leakage source.

We demonstrate that the high-LIF cells identified by ACA have
a significant impact on side-channel leakage as follows. We
emphasis that here we are not proposing a countermeasure, We
replace these high-LIF cells with equivalent cells that are pro-
tected using a hiding countermeasure. The protected cells are
based on Wave Dynamic Differential Logic (WDDL), adapted
such that a per-cell replacement can be achieved. WDDL is
a well-known dual-rail logic style which was proposed as a
circuit-level countermeasure against side-channel leakage [[14].
WDDL logic ensures that each cell makes a single 0 — 1
transition per evaluation, regardless of the computed value.
WDDL cells require a dynamic clocking style with a pre-
charge phase and an evaluation phase. Although the feasibility
of WDDL has been demonstrated in ASIC, it is expensive. In
comparison to unprotected single-rail logic, WDDL occupies
3 times more area and consumes 4 times more power. WDDL
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is therefore a costly technique to apply chip-wide. When
we replace only the high-LIF cells with WDDL versions,
the impact on area will be much smaller, while still having
a significant impact on the side-channel leakage. We will
first explain our countermeasure methodology to implement
WDDL on a cell-replacement basis. Next, we evaluate the
cost and impact of this countermeasure on the side-channel
leakage of the AES hardware.

A. Selective-replacement WDDL

The WDDL version of a logic cell is created by adding a
complementary version of that cell. For example, the AND
gate becomes an AND-OR tuple, and a single-rail circuit
becomes a dual-rail circuit with complementary outputs. At
the start of every WDDL-evaluation, both rails are precharged
to logic-0. Then, the WDDL cell evaluates and a single net
in every rail pair switches 0 — 1. To integrate a WDDL
cell or a cluster of connected WDDL cells in a single-ended
netlist, we add single-to-dual and dual-to-single conversions at
the inputs and outputs, respectively, of the protected WDDL
region. Every internal net in the WDDL region is protected.
Figure[8h shows a two-gate circuit with one internal net. Figure
[Bb is the protected version of the same two-gate circuit. As
shown in the Figure, the conversion of a single-rail flip-flop
to WDDL requires special attention since a flip-flop does not
support precharge. We use a master-slave dynamic differential
logic [14], which stores the precharge value in a redundant
layer of flip-flops. To insert the precharge value, we convert a
flip-flop together with its (data-input) driving cell into WDDL.
Figure [B illustrates the timing signals of the original circuit
and the transformed circuit. A disadvantage of the master-slave
method is that it doubles the clock frequency and quadruples
every flip-flop. There are many variations and circuit-level
improvements of WDDL but these are out of scope for our
experiments, which focus on validating ACA.

B. Validation results

Within our AES experiment, we selected top-ranking LIF cells
and converted them to WDDL versions while leaving the bulk
of the design unprotected. Then, we reran the power simulation
and re-evaluated the Pearson correlation under the same power
model to detect the impact on the resulting correlation peak.
Since the top-ranking cell gate was a flip-flop, we converted
the entire state register (128 bits) as well as an output register
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Fig. 9: Impact on the Pearson Correlation Peak before and
after replacing the two top-LIF cells by WDDL

TABLE VII: Impact on the Pearson Correlation Peak under
various levels of replacement

Top-LIF cells Pmax Cells +Area
Added (+ %)
reference 0.1789 0 0
2 0.0847 282 +8.44
20 0.0586 422 +9.43
40 0.0480 577 +10.54
WDDL[14] NA NA +300

(128 bits) to a dual master-slave flip-flop, so that we could
use a single clock for the entire design. Figure [0] shows the
effect of replacing just 2 top-ranking LIF cells to WDDL.
The correlation is now well below the pipresnord selected for
this confidence level. We also evaluated the effect of replacing
additional top-LIF cells. Table demonstrates the impact of
replacing 2, 20 and 40 top-LIF cell in the design on the peak
correlation over the leakage time interval. Although the impact
is far less dramatic than the first substitution, a consistent drop
can be noticed. The table also indicates the area overhead for
this ad-hoc countermeasure, as well as the number of cells
we added to the overall design (9,985 cells in total). At only
10% area increase, we are able to obtain a drop of almost four
times in the correlation peak. We conclude that ACA helps to
identify the cells of a design that cause side-channel leakage.

VIII. DISCUSSION

In this section, we elaborate on several topics relevant to ACA
including leakage model, method for side-channel leakage
detection and power simulation vs ASIC measurement.

Selection of Leakage Model: The ACA methodology heavily
depends on the choice of a leakage model. By targeting
different leakage models, ACA will reveal the leakage sources
corresponding to the choice of the leakage model. In this
paper, we assume that the designer knows a vulnerable
leakage model for the design. Applications such as AES
have well-known leakage models. For example, the Hamming
distance of the adjacent rounds outputs in hardware AES
implementation which reveals the side channel leakage during
the update of the state register, is a typical leakage model
used by attackers to attack AES. Hence, it is a crucial
ACA target for the designer. For analyzing the bus transfer
procedure of a microprocessor, the Hamming weight model
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Fig. 10: Overview of Leakage Peaks for the AES Hardware
Engine Leakage Model: HD(AES state bit) obtained from
(a)Simulated Traces (b)ASIC Measurement Traces

is chosen because during bus transfer the power consumption
dependent on the Hamming weight of the secret data [13].
Even if the designer has no knowledge of what leakage
models to use beforehand, exploring vulnerable leakage
models for the design is not complex. In our setup, we iterate
through all leakage models (all combinations of input data
and intermediate values) of the AES application and choose
the leakage model which gives us significant correlation peaks
which can then be used for analysis using ACA. Moreover,
there are methodologies like GLIFT [15] which reveal how a
secret asset propagates in architecture and can help designers
identify an appropriate leakage model.

Power Correlation vs TVLA: Statistical based side-channel
detection method, such as TVLA, can demonstrate the
presence of sensitive variables in a power trace. TVLA avoids
the selection of power models. However, TVLA indeed has its
own short-commings. The most notorious one being the lack
of an obvious relationship between the leakage peaks detected
by the TVLA and the exploitability and efficiency of it in
attack. Another problem of TVLA is the false negatives/false
positives, i.e. TVLA fails to detect the leakage while the
leakage exist/detects the leakage while the leakage does not
actually exist. Power correlation based on the leakage model
is always used as a distinguisher for attack. Therefore, power
correlation peaks reflects actual difficulty of key recovery.
Furthermore, unlike TVLA, power correlation has a precise
interpretation in terms of the gates in the netlist of a design.
Therefore, we use power correlation rather than TVLA as the
side channel leakage evaluation tool.

Power simulation vs ASIC measurements: ACA relies on
power simulation. It enables the designers, at early design-
time before chip tape-out, to the identify side channel leakage
source and efficiently fix the vulnerability. However, questions
may arise that how close the simulated traces to practical
measurement traces in terms of side-channel leakage? In
order to evaluate the accuracy of the design-time power
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Fig. 11: Overview of Leakage Peaks for the SoC Bus
Transfer Leakage Model: HW (transferred bit) obtained from
(a)Simulated Traces (b)ASIC Measurement Traces

estimation, we take the measurement of the corresponding
ASIC prototype and make comparison with our simulated
trace.In ASIC measurement trace, 500k traces are needed
until a distinguishable leakage peak can be observed. By
comparison in simulations, only 500 traces are needed. The
presnet of noise in the ASIC measurement traces makes side
channel leakage assessment difficult, while highlighting the
advantages of simulated trace.

Figure [I0] shows the overview of leakage peaks for AES
hardware engine leakage model mentioned in the first case
study. We can observe that both in the ASIC measurement
and simulated trace leakage peaks can be detected. The
time interval during which correlation peaks appear in the
simulated trace is aligned with the time interval in the ASIC
prototype measurement. These observations demonstrate the
accuracy of the power estimation of the simulated traces.
Similar to the first case study, Figure shows the leakage
peaks for the SoC bus transfer leakage model in the second
case study. Correlation peaks of power traces with input data
can be observed in both the ASIC measurement traces and the
simulated traces starting at the same period of time. However,
as compared to the simulated traces, the ASIC traces are
noisy which leads to fewer and smaller correlation peaks.
An increased number of measured traces might enhance the
correlation peaks by cancelling out the effect of noise, which
again highlights the advantages of using design-time side
channel assessment.

IX. CONCLUSION

We demonstrated that it is possible, at design time, to rank
the cells in a netlist according to their contribution to side-
channel leakage. The proposed ACA methodology supports
chip-wide analysis of side-channel leakage. Using ACA, a
designer can investigate the sources of side-channel leakage
that result from the integration of cryptographic modules in
system-on-chip. We have experimentally verified that a side-
channel correlation peak can be directly attributed to only a



minority of the cells in a netlist. A potential use of ACA is
therefore to fix side-channel leakage by selective replacement
of cells in the netlist. This can be done iteratively, and it opens
up a new perspective for the development of side-channel
countermeasures. Indeed, traditional countermeasures work in
an all-or-nothing approach, treating a cryptographic module
as a black box and protecting all of its cells. This is not
only expensive, it also ignores residual side-channel leakage
that stems from the integration of the module in a system-
on-chip. The ACA methodology fits in a design flow that
comprehensively optimizes the security, timing, and area of
a design.
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