
Efficient Post-Quantum SNARKs for RSIS and RLWE and their
Applications to Privacy?

Cecilia Boschini1,2, Jan Camenisch3, Max Ovsiankin4, and Nicholas Spooner4

1 IBM Research - Zurich
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Abstract. In this paper we give efficient statistical zero-knowledge proofs (SNARKs) for Module/Ring
LWE and Module/Ring SIS relations, providing the remaining ingredient for building efficient crypto-
graphic protocols from lattice-based hardness assumptions. We achieve our results by exploiting the
linear-algebraic nature of the statements supported by the Aurora proof system (Ben-Sasson et al.),
which allows us to easily and efficiently encode the linear-algebraic statements that arise in lattice
schemes and to side-step the issue of “relaxed extractors”, meaning extractors that only recover a wit-
ness for a larger relation than the one for which completeness is guaranteed. We apply our approach to
the example use case of partially dynamic group signatures and obtain a lattice-based group signature
that protects users against corrupted issuers, and that produces signatures smaller than the state of
the art, with signature sizes of less than 300 KB for the comparably secure version of the scheme. To
obtain our argument size estimates for proof of knowledge of RLWE secret, we implemented the NIZK
using libiop.
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1 Introduction

Zero knowledge (ZK) proofs allow a prover P to convince a verifier V of the truth of a statement without
revealing any information except that the statement is true. Since their introduction [25], they have been
widely used in cryptography, both as a tool in their own right and as a building block in more complex
protocols [19, 10, 18, 17]. A central difficulty in building efficient lattice-based privacy-preserving protocols
is constructing post-quantum secure zero knowledge proofs for the types of relations which arise in the
constructions. As most schemes are based on some version of the Ring/Module-SIS and Ring/Module-LWE
problems [37, 41, 32, 35, 28], constructing efficient ZK proofs for these relations is of great importance.
However, until now efficient zero-knowledge proof for lattices (cf. [22, 12]) came with the drawback of having
“relaxed extractors”, meaning extractors that only recover a witness for a relation which is a strict superset
of the one for which completeness is guaranteed.

1.1 Our Results

We present non-interactive zero knowledge (NIZK) proofs for Module/Ring-LWE and Module/Ring-SIS
relations, that have size of the order of 70 kB for 128 bits of security. These proofs rely on Aurora, a SNARK
designed by Ben-Sasson et al. [7]. From it, our proofs inherit statistical zero-knowledge and soundness,
post-quantum security, exact extractability (that is, the extraction guarantee is for the same relation as
the protocol completeness), and transparent setup (no need for a trusted authority to generate the system
parameters). Such proofs support algebraic circuits, and therefore can be combined with lattice based building

? The original paper (with the same title and by the same authors) was presented at PQCrypto 2020 [14]. This is
the full version.



Partially Dynamic Anonymous Traceable Non-Frameable Users δHRF Signature(MB)

[22] X X X 280 1.002 0.581
GS X X X 226 1.0007 0.3
GSfull X X X X 226 1.0007 1.44

Table 1. Comparison for around 90 bits of security.

blocks. We show that it is possible to combine this protocol with (the ring version of) Boyen’s signature
[15], to prove knowledge of a signature on a publicly known message, or knowledge of a valid pair message-
signature, and an RLWE-based encryption scheme [35], to prove knowledge of a valid decryption of a given
ciphertext.

To showcase their efficiency we construct a (partially) dynamic group signature [6], and we compare it
with the most efficient NIZK-based group signature to date [22] in Table 1.1. Differently from ours, the
scheme by del Pino et al. does not protect honest users from framing attempts by corrupted issuers (the
non-frameability property). Therefore, we compare it with two variants of our scheme: GS, that does not
guarantee non-frameability, and GS full (cf. Section 5), that also has non-frameability. To compare the security
levels of the schemes we consider the Hermite Root Factors (denoted by δHRF ); a smaller delta implies higher
security guarantees. The choice of the parameters setting is motivated in Section 5.5. In both cases, the NIZK
proof is of size less than 250 KB, improving upon the state of the art.

The group signature is proven secure in the ROM under RSIS and RLWE. Security in the QROM follows
also from [20]; to achieve 128 bits of QROM security requires a three-fold increase in proof size.

We demonstrate the effectiveness of our NIZKs with an implementation. We are able to produce a Ring-
LWE proof in around 40 seconds on a laptop (cf. Section 3.7). In comparison, the scheme of [22] produces
proofs in under a second. Nonetheless, we consider our NIZK and group signature a benchmark for evaluating
efficiency claims for (existing and future) NIZK proofs for lattice relations. In particular, it shows what can
be achieved using ‘generic’ tools.

1.2 Our Techniques

In their simplest form, lattice problems can be generically described as finding a vector s ∈ Znq with small
coefficients (i.e., |si| ≤ β for all i) such that Ms = u mod q for given matrix M ∈ Zm×nq and vector u ∈ Zmq ,
q being a prime.

Until now, in the most efficient protocols (cf. for example [3]) which allow proving knowledge of the vector
s, the prover has to mask s with a previously chosen random vector, and prove that it satisfies some linear
relation. For the norm bound, the prover would prove that with high probability s lies in an interval centered
about the origin (cf. [31, 30]). This method has two main problems: first, the challenge set has low entropy,
hence, to get a low soundness error, the proof needs to be repeated multiple times, and second, the length
of the proof is linear in n, the dimension of s.

The SNARK Aurora allows to prove knowledge of a witness for a given instance of the Rank-1 Constraint
Satisfaction (R1CS), i.e., of a vector z ∈ Fn+1 such that, given a vector v ∈ Fk and three matrices A,B,C ∈
Fm×(n+1), k < n, the vector z extends v to satisfy Az ◦ Bz = Cz, where ◦ denotes the entry-wise product.
The entries of v are the unknowns of the problem, while the equations they satisfy are called constraints
(and are derived from the general equation Az ◦ Bz = Cz). Hence, we say that the previous R1CS system
has n unknowns and m constraints. Aurora provides proofs of length Oλ(log2N), where f = Oλ(log2N)
means f = O(λc log2N) for some c > 0, and N is the total number of nonzero entries of A,B,C.

The conversion of an instance (s,M, u) of a lattice problem to an instance of R1CS is quite natural. We
set F := Zq so that to prove that Ms = u mod q holds, it is enough to set A := [0m×1 M ], B := [1m×1 0m×n],
C := [u 0m×n], and z := [1 sT ]T , where 0m×n (resp. 1m×n) is a matrix with m rows and n columns with all
components equal to 0 (resp. 1), and the parameter k of the R1CS problem is set to be k = n. The number
of constraints of this system is m, and the number of variables is n.

To prove that the secret vector s has also a small norm, we use binary decomposition. In particular, to
prove that a component sj of s is smaller than β = 2h, it is enough to verify that its binary representation
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is at most h bits long, i.e.,

sj = cj

h−1∑
i=0

2ibi,j ,with cj ∈ {±1} and bi,j ∈ {0, 1} ∀i ,

where c is the bit representing the sign of a. This is equivalent to proving that b0,j , . . . , bh−1,j , sj satisfy the
following constraints:

bi,j(1− bi,j) = 0 ∀i ∧

(
h−1∑
i=0

bi,j2
i − sj

)(
h−1∑
i=0

bi,j2
i + sj

)
= 0 .

These correspond to the R1CS instance (Aj , Bj , Cj) and witness zj , with

Aj :=


0

Ih
0

...
...

0 0
0 1 2 . . . 2h−1 −1

 , Bj :=


1

−Ih
0

...
...

1 0
0 1 2 . . . 2h−1 1

 , zj :=


1
b0,j

...
bh−1,j

sj

 ,

and Cj the all-zero matrix, where Ih is the identity matrix of dimension h. Thus proving that s has a small
norm adds n(h+ 1) constraints and nh unknowns to the proof (i.e., the coefficients of the bit decomposition
of each component of s). Hence, expanding A, B, C, z with all the Aj , Bj , Cj , zj (taking care not to repeat
entries in z) yields the full instance. This includes m+ n(h+ 1) constraints, and the nonzero entries of the
matrices A, B, C are N = nm+ 2m+ (5h+ 1)n, and outputs proofs of length O(log2(n(m+ 5h+ 1) + 2m))
(where we recall that h is the logarithm of the bound on the norm of the solution to the lattice problem).

The R1CS formalism allows us to prove knowledge of a message-signature pair in Boyen’s signature
scheme adapted to the polynomial ring setting (cf. [15] and Section 2.3) in a natural way (cf. Section 3.4). As
this case requires to work with vectors of polynomials instead of elements of Fq as in the original definition of
R1CS, particular care has to be taken with multiplications of ring elements (which are represented as a vector
of their coefficients). This can be implemented in an R1CS instance by first applying a linear transformation
to the coefficients to place them in the Fourier (NTT) basis, and then multiplying point-wise.

1.3 Related Work

Both Libert et al. [29] and Baum et al. [3] introduce ZK proof to prove knowledge of solutions of lattice
problems that are linear in the length of the secret and in log β respectively (where β is the bound of the
norm of the secret vector). Our scheme improves these in that the proof length depends polylogarithmically
on the length of the secret vector and log β. Moreover, we implemented our scheme (cf. Section 4), and give
concrete estimates for parameters that guarantee 128 bits of security.

The lattice-based SNARK of [24] relies on the qDH assumption (among others), hence unlike our scheme
this is not post-quantum secure, and needs a trusted setup, which prevents to use it to build group signatures
with the non-frameability property.

Regarding group signature construction, a new construction was published by Katsumata and Yamada
[26], that builds group signatures without using NIZK proofs in the standard model. Their construction is
of a different form, and, in particular, sidesteps the problem of building NIZKs for lattices, hence we can
only compare the signature lengths. Differently from ours, their signature sizes still depend linearly on the
number of users (while ours depend polylogarithmically on the number of users) when security is based on
standard LWE/SIS. They are able to remove this dependency assuming subexponential hardness for SIS.
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2 Preliminaries

We denote vectors and matrices with upper-case letters. Column vectors are denoted as V =
[
v1 ; . . . ; vn

]
and row vectors as V =

[
v1 . . . vn

]
. Sampling and element x from a distribution D are denoted as x $←−D.

If x is sampled uniformly over a set A, we write x $←−A. With x ← a we denote that x is assigned the
value a. When necessary, we denote the uniform distribution over a set S as U(S). We denote by log the
logarithm with base 2. We use the standard Landau notation (i.e., O(·), ω(·), . . .) plus the notation Oλ(·),
where f = Oλ(g) means that there exists c > 0 such that f = O(λcg).

2.1 Preliminaries: Ideal Lattices

Let Z[X] be the ring of polynomials with integer coefficients, f ∈ Z[X] be a monic, irreducible polynomial
of degree n, and R be the quotient ring R := Z[X]/ 〈f〉. Let deg(a) be the degree of the polynomial a. Ring
elements are represented with the standard set of representatives {g mod f : g ∈ Z[X]}, corresponding to

vectors in Zn through the standard group homomorphism h that sends a =
∑n−1
i=0 aix

i to the vector of its
coefficients (a0, . . . , an−1). Let Rq = Zq[X]/〈Xn + 1〉 for a prime q. Elements in the ring are polynomials of
degree at most n− 1 with coefficients in [0, q− 1] and operations between them are done modulo q 1. For an

element a =
∑n−1
i=0 aix

i, the norms are computed as ‖a‖1 =
∑
i |ai|, ‖a‖ =

√∑
i a

2
i and ‖a‖∞ = max |ai|.

For a vector S = [s1, . . . , sm] ∈ Rm, the norm ‖S‖p is defined as maxmi=1 ‖si‖p. Let S1 be the subset of
elements of Rq with coefficients in {0,±1}. BitD(a) is an algorithm that on input elements ai ∈ Rq, outputs
vectors ~ai containing the binary expansion of the coefficients of ai.

Remark that h is a group homomorphism w.r.t. componentwise addition, but it is not a ring homomor-
phism because h(fg) 6= h(f)h(g). Combining the standard set of representatives with the group homomor-
phism we obtain that ideals in R and Rq corresponds to lattices in Zn and Znq respectively. Polynomials
can also be converted into vectors through the NTT transformation [21, 35], that sends each polynomial to
the vector of its evaluation over the n-th roots of unity. This transformation is a ring homomorphism w.r.t.
componentwise addition and multiplication, and is very useful when building ZK proofs (cf. Section 3).

A sample z from a discrete Gaussian DRq,u,σ centered in u and with std. deviation σ, is generated as a
sample from a discrete Gaussian over Zn and then map it intoRq using the obvious embedding of coordinates
into coefficients of the polynomials. Similarly, we omit the 0 and write

[
y1 . . . yk

]
$←−DkRq,σ to mean that a

vector y is generated according to DZkn,0,σ and then gets interpreted as k polynomials yi. With an abuse of

notation, we denote by D⊥A,u,s the distribution of the vectors V ∈ Rm such that V ∼ DmR,0,s conditioned on
AV = u mod q.

Lemma 2.1 (cf. [2, Lemma 1.5], [31, Lemma 4.4]). Let m > 0. The following bounds hold:

1. Pr
S

$←−Dmσ
(‖S‖ > 1.05σ

√
m) < (0.998)m

2. Pr
S

$←−Dmσ
(‖S‖∞ > 8σ) < m2−47

We recall two well-studied lattice problems over rings: RSIS and RLWE. We present RLWE in the “normal
form”, i.e., where the secret and the error are chosen from the same distribution. This version is as hard as
the standard one (cf. Lemma 2.24 in the full version of [36]).

Definition 2.2. (RSISm,q,β problem [35]) The RSISm,q,β problem asks given a vector A $←−R1×m
q to find a

vector S ∈ Rmq such that AS = 0 mod q and ‖S‖ ≤ β.
The inhomogeneous version of RSIS asks to find S ∈ Rmq such that AS = u, and ‖S‖ ≤ β for given

uniformly random A and u.

1 This is because f is monic: by the polynomial division algorithm, if the leading coefficient of f is invertible in the
ring of coefficients, then there exists and are uniquely determined q and r such that for all g ∈ R, g = fq + r,
deg(r) < deg(f), cf. Thm 1.1 on page 173 in [27].
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Definition 2.3. (RLWEk,χ problem, normal form, cf. [36]) The RLWEχ,s distribution (resp., the RLWEχ
distribution in the normal form) outputs pairs (a,b) ∈ Rq×Rq such that b = as+e for a uniformly random
a from Rq, s ∈ Rq and e sampled from distribution χ (resp., a $←−Rq, s, e $←−χ).

The RLWEk,χ decisional problem on ring Rq with distribution χ is to distinguish whether k pairs
(a1,b1), . . . , (ak,bk) were sampled from the RLWEχ distribution or from the uniform distribution over R2

q.
The RLWEk,χ search problem on ring Rq with distribution χ is given k pairs (a1,b1), . . . , (ak,bk) sam-

pled from the RLWEχ distribution, find s.

Module-RSIS and Module-RLWE [28] are a more general formulation of RSIS and RLWE. Module-RSIS
asks to find a short vector S ∈ Rm2

q such that AS = 0 given a matrix A $←−Rm1×m2
q (the inhomogeneous

version is defined analogously). The Module-RLWE distribution outputs pairs (A, 〈A,S〉 + e) ∈ Rkq × Rq,
where the secret S and the error e are drawn from Rkq and Rq respectively.

2.2 RLWE Encryption Scheme

Let n be a power of 2, p, and q be two primes such that q � p, and χ be an error distribution. The RLWE
encryption scheme (EParGen,EKeyGen,Enc,Dec) [36] to encrypt a binary message µ ∈ S1 works as follows.
On input the security parameter λ, the parameters generation EParGen outputs (n, p, q). The key generator
EKeyGen samples a $←−Rq, s $←−Rq and d← χ, and sets b = as+d mod q. The encryption key is epk = (a,b),
the decryption key is esk = s. On input a message µ, the encryption algorithm Enc generates the ciphertext
(v,w) as

v = p(ar + e) mod q

w = p(br + f) + µ mod q ,

where e, f $←−χ and r $←−Rq. Decryption amounts to computing (w − sv mod q) mod p.

Theorem 2.4 (Lemma 8.3 and 8.4 in [36]). The above scheme is IND-CPA secure under RLWE2,χ.
Moreover, if χ outputs elements with norm bounded by N with probability 1− ν(n), p ·χ is δ-subgaussian

with parameter s for some δ = O(1), and q ≥ s
√

2(N)2 + n · ω(
√

log n), then the decryption is correct with
probability 1− ν(n).

Observe that we adapted the parameters bounds to work with the particular polynomial ring we have chosen.
This encryption scheme can be made IND-CCA2 secure combining it with a non-malleable NIZK proof

system following Naor-Yung construction [40]. In our instantiation we choose the error distribution χ to be
a Gaussian distribution with standard deviation sRLWE = ω(

√
log q) (cf. Theorem 1 in [16]).

We remark that this encryption scheme encrypts plaintexts that are polynomials of degree n with binary
coefficients. In case it would be necessary to encrypt a bit string ~b = (b1, . . . , bk), we assume the encryption
algorithm first converts it to an element of S1 (or more than one, if k > n) by setting bi = 0 for k < i ≤ n
and constructing the polynomial b =

∑n
i=1 bix

i−1 (the case k > n is analogous).

2.3 Boyen’s signature on ideal lattices

A digital signature scheme is composed by 4 PPT algorithms (SParGen,SKeyGen,Sign,SVerify). Existential
unforgeability against adaptive chosen-message attacks (eu-acma) requires that the adversary should not be
able to forge a signature on some message µ∗ of her choice, even if she has access to a signing oracle. In this
section we describe the variant of Boyen’s signature [15] by Micciancio and Peikert [38], adapted to have
security based on hardness assumptions on ideal lattices. Such variant has been claimed to be secure since
long time, but, to the best of our knowledge, this is the first time in which a security proof is given explicitly
(cf. Appendix 2.3). In particular, we prove the signature secure when defined over the (2n)-th cyclotomic
ring. We choose to work over ideal lattices because they allow for a more efficient representation of their
elements, thus improving the storage requirements of the scheme (cf. [37]).
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Theorem 2.5 (Trapdoor generation, from [38]). Let Rq be a power of 2 cyclotomic ring and set
parameters m = 2, k = dlog qe, m̄ = m + k. There exists an algorithm GenTrap that outputs a vector
Ā ∈ R1×m̄

q and a trapdoor R ∈ Rm×kq with tag h ∈ Rq such that:

– Ā = [A|AR + hG], where G is the gadget matrix, G = [1 2 4 . . . 2k−1], and A = [a|1] ∈ R1×2
q , a $←−Rq.

– R is distributed as a Gaussian D2×k
R,s for some s = αq, where α > 0 is a RLWE error term, αq >

ω(
√

log n) (cf [36, Theorem 2.22]).

– h is an invertible element in Rq.
– Ā is computationally pseudrandom (ignoring the component set to 1) under (decisional) RLWED where
D = DR,s.

Genise and Micciancio [23] give an optimal sampling algorithm for the previous trapdoor construction.

Theorem 2.6 (Gaussian sampler, adapted from [38] and [23]). Let Rq, m, k, m̄ be as in Theorem
2.5, G be the gadget matrix G = [1 2 4 . . . 2k−1], A ∈ R1×m

q and R ∈ R2×k
q be the output of GenTrap,

and B a vector in R1×d
q for some d ≥ 0. Then, there is an algorithm that can sample from the distribution

D⊥[A | AR+G | B],u,s for any s = O(
√
n log q) · ω(

√
log n) for any u ∈ Rq in time Õ(n log q) for the offline

phase and Õ(n2) for the online phase.

The original signature was proved existentially unforgeable against adaptive chosen-message attacks eu-
acma under SIS. Micciancio and Peikert proved their variant to be strongly unforgeable against static chosen-
message attack (su-scma) under SIS with a tighter reduction, and then made it strongly unforgeable against
adaptive chosen-message attacks su-acma using chameleon hash functions [43]. For our purposes adaptive
existential unforgeability is enough, so our aim is to prove the scheme eu-acma under RSIS combining the
techniques used in the proofs of these two papers.

Parameters: spar ← SParGen(1λ)
Let f be the (2n)-th cyclotomic polynomial, f = xn + 1. and q be a prime. Construct the polynomial
rings R = Z[X]/〈f〉 and Rq = Zq[X]/〈f〉. Let k = dlog2 qe, m = 2, and m̄ = m + k = 2 + dlog qe be

the length of the public matrices, and ` be the length of the message. Let sssk =
√

log(n2) + 1 and

sσ =
√
n log n ·

√
log n2 be the standard deviations of the distributions of the signing key and of the

signature respectively (their values are determined following Theorem 2.5 and 2.6 respectively).

Key Generation: (svk , ssk)← SKeyGen(spar)
Run the algorithm GenTrap from Theorem 2.5 to get a vector [A | B] = [A | AR+G] and a trapdoor R.
The public key is composed by `+ 1 random matrices A0, . . . ,A`

$←−R1×k
q , a random vector u $←−Rq and

the vector [A | B] ∈ R1×m̄
q . i.e., svk = (A,B,A0, . . . ,A`,u), and the (secret) signing key is ssk = R.

Remark that the probability distribution of R is D2×k
R,sssk .

Signing: σ ← Sign(µ, ssk)
To sign a message µ = (µ1, . . . , µ`) ∈ {0, 1}`, the signer constructs a message-dependent public vector

Aµ = [A | B | A0 +
∑`
i=1(−1)µiAi] and then it samples a short vector S ∈ Rm̄+k

q running the algorithm
SampleD from Theorem 2.6 on input (Aµ,u,R). The algorithm outputs the signature σ = S. Remark
that the probability distribution of the signature S is D⊥Aµ,u,sσ

.

Verification: {0, 1} ← SVerify(σ, µ, svk)
The verifier checks that the vector S has small norm, i.e., ‖S‖∞ ≤ 8sσ. Then, he constructs Aµ =

[A | B | A0 +
∑`
i=1(−1)µiAi] and checks that S satisfies the verification equation, i.e., AµS = u mod q.

Correctness follows from Theorem 2.5 and 2.6 and from Lemma 2.1. We prove the eu-acma security of
the scheme under RSIS by proving that if there exists a PPT adversary A that can break the signature
scheme we can construct an algorithm B that can solve RSIS exploiting A. The proof is obtained combining
the message guessing technique in the proof of Theorem 25 in [15] with the proof of Theorem 6.1 in [38].
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Theorem 2.7. (eu-acma security) If there exists a PPT adversary A that can break the eu-acma security
of the signature scheme (SParGen,SKeyGen,Sign,SVerify) in time tA with probability εA asking qA queries
to the signing oracle, then there exists a PPT algorithm B that can solve RSISm̄+1,q,β for a large enough

β = 8sσ + (`+ 1)kn8sσ exploiting A in time tB ∼ tA with probability εB = εA · (1− εRLWE) · 1
q

(
1− qA

q

)
or a

PPT algorithm that solves RLWE(`+1)k,U(S1) with probability εA in time tA.

Proof. The algorithm B has access to a RSIS oracle that outputs a RSIS instance ARSIS when prompted.
To exploit A to solve RSIS, B has to plug in the RSIS instance in the verification key of the signature, and to
exploit the forgery that A produces to build a solution for RSIS. The verification key generated by B should
be indistinguishable from a honestly generated key. Moreover, B should also implement a signing oracle that,
on input a message from A, outputs a signature on that message.

Upon receiving the instance ARSIS from the RSIS oracle, B generates the public parameters for the
signature scheme as it follows. First, it parses ARSIS as ARSIS = [A | B | u] = [a | 1 | B | u] 2. Rearranging
its components, this corresponds to the normal form of RSIS (cf. beginning of Section 4 in [36]). In the
eu-acma scenario, the adversary chooses the message µ∗ she will forge a signature for after receiving the
public key of the scheme and having possibly queried the signing oracle. Hence, the game is as follows. The
simulator B generates the verification key (A,B,A0, . . . ,A`,u) from the RSIS instance ARSIS as follows.
First, it samples random Ri

$←−S2×k
1 for i = 0, . . . , `, the random integers hi

$←−U(Zq) for i = 1, . . . , `, and
sets h0 := 1. Then, it sets:

[A | B | u] := ARSIS , (1)

Ai := ARi + hiG for i = 1, . . . , ` .

Then, B sends svk = (A,B,A0, . . . ,A`,u) to A. The key svk generated by the simulator is indistinguishable
from a honestly generated one under RLWE(`+1)k,U(S1) (cf. Lemma 2.8).

The adversary is allowed to query signatures on at most qA messages µ of her choice. Upon receiving the
message µ, B constructs

hµ := h0 +
∑̀
i=1

(−1)µihi

Rµ := R0 +
∑̀
i=1

(−1)µiRi

Aµ = [A | B | A0Rµ + hµG]

=

[
A | B | (AR0 +

∑̀
i=1

(−1)µiRi) + (h0 +
∑̀
i=1

(−1)µihi)G

]

= [A | B | A0 +
∑̀
i=1

(−1)µiAi] .

If hµ = 0, B aborts. The product hµG can be written as HµG, where Hµ = hµIk is an invertible matrix,
as hµ ∈ Zq and q is a prime. Hence G is a Hµ-trapdoor for A, and B can use it to sample a short element
S in the lattice Λ⊥u (Aµ) thanks to Theorem 2.6. In fact, B samples an element of Λ⊥u (Aµ) distributed as a

2 This can be done with high probability, if the ring Rq contains enough invertible elements (cf. for example [34,
Lemma 2.2]). Indeed, assume that Rq contains N invertible elements. Then with probability (m+ 2)N/qn at least
one of the components of ARSIS = [a1 . . . am+2] is invertible. Assume w.l.o.g. such component to be b := am+2.
Then b−1ai are iid (uniform) random variables over Rq, and solving the RSIS instance [b−1a1 . . . b−1am+1 1]
implies finding a solution for the ARSIS instance of RSIS. In case no component of ARSIS is invertible, B aborts.
This happens with probability 1− (m+ 2)N/qn, that is negligible if the number N of invertible elements in Rq is
large enough.
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Gaussian with standard deviation α, hence the norm of the coefficients of the elements of S is bounded by
B = 8α. Hence, the vector S is a valid signature on µ, and B can send it back to A.

Upon receiving a forgery (µ∗, σ∗), B aborts if 0← SVerify(σ∗, µ∗, svk) or if hµ∗ 6≡ 0 mod q. Otherwise, B
can extract a solution to RSIS from σ, as it can be seen from the verification equation:

Aµ∗S
∗ = u mod q

⇒ [A | B | A0 +
∑̀
i=1

(−1)µ
∗
i Ai]

S∗1
S∗2
S∗3

 = u mod q

⇒ [A | B | A0Rµ∗ ]

S∗1
S∗2
S∗3

 = u mod q

⇒ [A | B | u]

S∗1 + Rµ∗S
∗
3

S∗2
−1


︸ ︷︷ ︸

SRSIS

= 0 mod q

where Rµ∗ := R0 +
∑`
i=1(−1)µ

∗
i Ri. The norm of the vector SRSIS is dominated by

‖S∗1 + Rµ∗S
∗
3‖∞ ≤ 8sσ + (`+ 1) max

i
‖RiS

∗
3‖∞ ≤ 8sσ + (`+ 1)kn8sσ ,

as the norm maxi ‖RiS
∗
3‖∞ ≤ kmaxi,j,h ‖rih,js∗j‖∞ ≤ kn8sσ, where rih,j and s∗j are the components of

Ri and S∗3 respectively, and the last inequality follows by standard bounds on the infinity norm of the
product of polynomials (cf. for example [13, Lemma 1]). The success probability of B is εA × (1− εRLWE)×
Pr[B does not abort], where εRLWE is the probability that the adversary can distinguish the verification key
generated by B from a honestly generated one.The abort probability of algorithm B can be bounded from
below as

Pr[B does not abort] ≥ 1

q

(
1− qA

q

)
following the same augment in the proof of [15, Lemma 27]. Hence the success probability of B is

εB = εA × (1− εRLWE)× 1

q

(
1− qA

q

)
and it is negligible assuming that q � 2qA (where recall that qA is the number of queries that A is allow to
ask the signing oracle). ut

Lemma 2.8. Assume there exist a PPT algorithm A playing the eu-acma experiment that can distinguish
the verification key as generated in Equation (1) from a honestly generated one with probability εA in time tA.
Then there exists an algorithm B that can solve RLWE(`+1)k,U(S1) with probability εB = in time tB = poly(tA)
exploiting A.

Proof. The proof is essentially equal to the proof of Lemma 10 in [11, Appendix E], hence we omit it.

Remark 2.9. Observe that to have a non-negligible success probability it should hold that q � 2qA, where qA
is the number of signing queries the adversary is allowed to do. When using this signature as a building block
for a group signature, this is actually not limiting. Recall that in the group signature this signature scheme is
used to authenticate an encryption of a user’s identity. Hence, a limit in the number of users, e.g., assuming
232 users (i.e., more than half of the Earth population), implies that the adversary can make at most 232

queries to the signing oracle. Therefore, choosing q � 233 would be enough to ensure a non-negligible success
probability. The value of q could be improved using the technique shown in Section 3.5 of [15], which allows
to relax the requirement to qt � 2qA, for some divisor t of n. We decided against the use of this technique
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as the improvement would not be significant (the parameter q has to be quite large anyway to ensure the
hardness of the RSIS instance underlying the security proof). Finally, remark that for q � 2`, the security
proof can also be done using complexity leveraging, along the lines of the proofs of Theorems 7,8,9 in [11],
and results in better parameters.

2.4 The Aurora Protocol

Aurora is a Interactive Oracle Proof for R1CS relations by Ben-Sasson et al. [7].

Definition 2.10 (R1CS relation). The relation RR1CS consists of the set of all pairs ((F, k,m, n,A,B,C, v), w)
where F is a finite field, k is the number of inputs, n is the number of variables, m is the number of constraints,
A,B,C are matrices in Fm×(n+1), v ∈ Fk, and w ∈ Fn−k such that Az ◦Bz = Cz where z = (1, v, w) ∈ Fn+1

and ◦ denotes entry-wise (Hadamard) product.

The following theorem summarizes the properties of Aurora when compiled to a SNARK via the transform
by Ben-Sasson et al. (cf. Theorem 7.1 in [8]). In the statement below, N := max(m,n); generally n and m
will be of roughly the same magnitude.

Theorem 2.11 (informal, cf. Theorem 1.2 in [7]). There exists a non-interactive zero-knowledge ar-
gument for R1CS that is unconditionally secure in the random oracle model with proof length O(λ2 log2N)
and one-time simulation soundness error 2−λ against adversaries making at most 2λ queries to the oracle.
The prover runs in time Oλ(N logN) and the verifier in time Oλ(N).

Remark 2.12 (Simulation soundness). To use the above construction in the Naor–Yung paradigm, as we later
do, requires one-time simulation soundness (OTSS). This is shown as follows; we assume some familiarity
with [9]. Let π be a proof output by the simulator for a statement x supplied by the adversary. First recall
that to achieve adaptive soundness and zero knowledge, the oracle queries of the verifier and honest prover
are prefixed with the statement x and a fresh random string r ∈ {0, 1}λ. Since with high probability no
efficient adversary can find x′ 6= x, q, q′ such that ρ(x‖r‖q) = ρ(x′‖r‖q′), if the adversary in the OTSS game
chooses an instance different from that of the simulated proof, the success probability of the extractor is
affected only by a negligible amount.

Now suppose that an adversary generates a different proof π′ 6= π of the same statement x. In the Aurora
IOP, the query locations for the first oracle are a uniformly random subset of [`] (where ` is the oracle length,
` = Ω(N)) of size Ω(λ). This is determined by the verifier’s final randomness, which in the compiled NIZK
depends on all of the Merkle tree roots; these are all included in π. Moreover, these collectively depend on
every symbol of π; hence no efficient adversary can find a valid π′ 6= π whose query set is the same as that of
π. In particular, the Merkle tree root corresponding to the first round has some query in π′ which is not in
π; since it is infeasible to find an accepting authentication path for this query relative to the root provided
by the simulator, the value of this root must differ between π and π′. It follows that, with high probability,
the extractor only ‘programs’ queries which were not already programmed by the simulator, and so one-time
simulation soundness holds.

3 NIZKs for Lattices from R1CS

We build the NIZKs from simple, reusable building blocks. When composing these building blocks, it is often
necessary to make explicit inputs private. Generally this involves no additional complication; if changes are
needed to ensure soundness, we will point them out. When we construct R1CS instances (cf. Definition 2.10),
we typically write down a list of variables and constraints, rather than explicitly constructing the matrices.
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3.1 Basic operations

We describe how to express some basic lattice operations in Rq as arithmetic operations over Fq ∼= Zq for
prime q.

Representation of ring elements. We represent ring elements as vectors in Fnq w.r.t. some basis of Rq.
Note that regardless of the choice of basis, addition in Rq corresponds exactly to component-wise addition
of vectors. An Rq-element is denoted by a lowercase bold letter (e.g. a) and the corresponding vector in Fnq
by an arrow (e.g. ~a). A vector in Rmq is denoted by an uppercase bold letter (e.g. A) and the corresponding
matrix in Fm×nq , whose rows are the coefficients of the elements of the vector, is denoted by an uppercase
letter (e.g. A).

Bases. We will use two bases: the coefficient basis and the evaluation or number-theoretic transform (NTT)
basis. The NTT basis, which is the discrete Fourier basis over Fq, allows polynomial multiplication to be
expressed as pointwise multiplication of vectors. Transforming from the coefficient basis to the NTT basis is
a linear transformation T ∈ Fn×nq . The choice of basis depends on the type of constraint we wish to check;
generally we will represent inputs in the coefficient basis.

An issue with the NTT basis is that to multiply ring elements a,b ∈ Rq naively requires us to compute
the degree-2n polynomial ab ∈ Fq[X] and then reduce modulo Xn + 1. This would make multiplying ring
elements quite expensive. For our choice of Rq, however, so long as q has 2n-th roots of unity we can

employ the negative wrapped convolution [33], which is a linear transform T such that if ~a,~b,~c represent the

coefficients of a,b, c ∈ Rq respectively, T~a ◦ T~b = T~c if and only if c = ab in Rq. From here on, T is the
negative wrapped convolution.

Addition and multiplication. Following the above discussions, addition is (always) componentwise over
Fq and multiplication is componentwise in the NTT basis. Hence to check that a + b = c or a · b = c in

Rq when a,b, c are represented in the coefficient basis as ~a,~b,~c, we use the constraint systems ~a+~b = ~c or

T~a ◦ T~b = T~c respectively. Each of these ‘constraints’ is a shorthand for a set of n constraints, one for each
dimension; i.e., ai + bi = ci for all i ∈ [n], or 〈Ti,~a〉 ◦ 〈Ti,~b〉 = 〈Ti,~c〉 for all i ∈ [n] where Ti is the i-th row
of T .

Decomposition. A simple but very important component of many primitives is computing the subset-sum
decomposition of a Zq-element a with respect to a list of Zq-elements (e1, . . . , e`); that is, finding b1, . . . , b`
such that bi ∈ {0, 1} and

∑`
i=1 biei = a. For example, when ei = 2i−1 for each i, this is the bit decomposition

of a. The following simple constraint system enforces that b1, . . . , b` is the subset-sum decomposition of a ∈ Fq
with respect to (e1, . . . , e`).

bi(1− bi) = 0 ∀i ∈ {0, . . . , `− 1} ∧
`−1∑
i=0

biei − a = 0

For the case of ei = 2i−1 we will use the notation ~b = BitDec(a) to represent this constraint system.
For a vector ~a ∈ Fnq and matrix B ∈ Fn×`q we write B = BitDec(~a) for the constraint system “Bj =
BitDec(aj) ∀j ∈ [k]”, for Bj the j-th row of B.

Proof of shortness. Showing that a ∈ Zq is bounded by β < (p− 1)/2, i.e. −β < a < β, can be achieved
using its decomposition. It was observed in [30] that taking e1 = dβ/2e, e2 = d(β − b1)/2e, . . . , e` = 1 for
` = dlog βe yields a set of integers whose subset sums are precisely {0, . . . , β− 1}. We then have that |a| < β

if and only if there exist b1, . . . , b` ∈ {0, 1}, c ∈ {−1, 1} such that c
∑`
i=1 biei = a. The prover will supply

b1, . . . , b` as part of the witness. This introduces the following constraints:

bi(1− bi) = 0 ∀i ∧ (
∑̀
i=1

biei − a)(

k−1∑
i=0

biei + a) = 0

The number of new variables is k; the number of constraints is k+ 1. When we describe R1CS instances we
will write the above constraint system as “|a| < β”. For ~a ∈ Znq , we will write “‖~a‖∞ < β” for the constraint

10



system “|ai| < β ∀i ∈ [n]”, i.e. n independent copies of the above constraint system, one for each entry of
~a.

3.2 Proof of knowledge of RLWE secret key

We give a proof of knowledge for the relation R = {(c,d; t, e) ∈ R4
q : d = ct + e mod q ∧ ‖e‖∞ < β}. Let

~c, ~d,~t, ~e ∈ Fnq encode c,d, t, e in the coefficient basis. The condition is encoded by the following constraint
system:

T~c ◦ T~t = T ~f ∧ ~f + ~e = ~d ∧ ‖~e‖∞ ≤ β

where ~f ∈ Fnq should be the coefficient representation of ct. The number of variables and constraints are

bounded by n(log β + 6). We write RLWEβ(~c, ~d,~t, ~e) as shorthand for the above system of constraints. Note

that we did not use the fact that the verifier knows ~c, ~d; this will allow us to later use the same constraint
system when ~c, ~d are also secret. Hence, applying Theorem 2.11 yields the following.

Lemma 3.1. There is a NIZK proof (SNARK) for the relation R, secure and extractable in the random
oracle model, with proof length O(λ2 log2

(
n log β

)
log q).

With our parameters as given in Section 5.5, the size of a NIZK for a single proof of knowledge of an RLWE
secret key is 72 kB (obtained from our implementation Section 4 using libiop). Constraint systems for RSIS,
Module-RSIS and Module-RLWE can be derived similarly.

3.3 Proof of knowledge of plaintext

We give a proof of knowledge for the relation R = {(a,b,v,w; e, f , r, µ) ∈ R7
q × S1 : v = p(ar + e) ∧w =

p(br + f) + µ ∧ ‖e‖∞, ‖f‖∞ < β}. Recall that S1 ⊆ Rq is the set of all polynomials of degree less than n
whose coefficients are in {0, 1}, which is in natural bijection with the set {0, 1}n.

Let ~a,~b,~v, ~w,~e, ~f, ~r, ~µ ∈ Fnq be the coefficient representations of the corresponding ring elements. The
condition is encoded by the following constraint system:

RLWEβ(~g,~a, ~r,~e) ∧ RLWEβ(~h,~b, ~r, ~f) ∧ ~w = p · ~g ∧ ~v = p · ~h+ ~µ ∧ µi(µi − 1) = 0 ∀i.

The number of variables is n(2 log β + 10); the number of constraints is n(2 log β + 15). This constraint
system (repeated twice) is also used to build the NIZK required for the Naor-Yung construction. We write

“~v, ~w = Encp(~a,~b, ~r, ~µ)” to denote the above system of constraints; ~e and ~f will be fresh variables for each

instance of the system. Once again, we do not use the fact that the verifier knows ~a,~b,~v, ~w, which will be
useful later.

To encrypt tn bits, we simply encrypt t n-bit blocks separately. The constraint system is then given by
t copies of the above system. We will use the notation V,W = Encp(~a,~b, ~r, ~µ) to represent this, where V,W
are n× k matrices whose rows are the encryptions of each n-bit block.

3.4 Proof of valid signature

An important component of the group signature scheme is proving knowledge of a message µ ∈ {0, 1}`
together with a Boyen signature on µ (see Section 2.3). We first consider a simpler relation, where we prove
knowledge of a signature on a publicly-known message. In the Boyen signature scheme, this corresponds to
checking an inner product of ring elements, along with a proof of shortness for the signature. This corresponds
to checking the relation R = {(Aµ,u; S) ∈ (R1×k

q × Rq) × Rkq : AµS = u ∧ ‖S‖∞ < β}. Let A,S ∈ Fk×nq

be the matrices whose rows are the coefficients of the entries of Aµ,S, and let ~u ∈ Fnq be the coefficient
representation of u. We obtain the following constraint system:

TAi ◦ TSi = TFi ∀i ∈ [k] , ∧
k∑
i=1

Fi = ~u , ∧ ‖Si‖∞ < β ∀i ∈ [k]
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where F ∈ Fk×nq , and Ai, Si, Fi are the i-th rows of the corresponding matrices.

Now we turn to the more complex task of proving knowledge of a (secret) message and a signature on
that message. Here the verifier can no longer compute Aµ by itself, and so the work must be done in the
proof. In particular, we check the following relation.

R =

{
([A | B],A,u;µ,S) ∈ R1×m

q ×
×(R1×k

q )`+1 ×Rq × {0, 1}` ×Rm+k
q

: AµS = u ∧ ‖S‖∞ < β

}
,

where A = (A0, . . . ,A`) and Aµ = [A | B | A0 +
∑`
i=1(−1)µiAi]. Let M ∈ Fm×n be the matrix whose

rows are the coefficients of the entries of [A | B], and let A0, . . . , A` ∈ Fk×n be matrices whose rows are the
coefficients of the entries of A0, . . . ,A` respectively. Let µ′ = ((−1)µ1 , . . . , (−1)µ`) be the string in {±1}`
corresponding to the message µ. Clearly, the transform from µ to µ′ is bijective. Let A′i ∈ Fn×(`+1) be such
that the j-th column of A′i is the i-th row of Aj (i.e., the coefficients of the i-th entry of Aj). Observe that

A′i · (1, µ′) is the coefficient representation of the i-th entry of A0 +
∑`
j=1 µ

′
jAj . Given this, the following

constraint system captures the relation we need:

TMi ◦ TSi = TFi ∀i ∈ [m] , ∧ (TA′i)(1, µ) ◦ TSm+i = TFm+i ∀i ∈ [k]

k+m∑
i=1

Fi = ~u , ∧ (1 + µi) · (1− µi) = 0 ∀i ∈ [`] , ∧ ‖Si‖∞ < β ∀i ∈ [m+ k]

with F ∈ F(m+k)×n
q . We will denote the above constraint system by SVerifyβ(M,A, ~u, S, µ), with A =

(A0, . . . , A`). The number of variables and constraints are bounded by (4+log β)(m+k)n+k(max(n, `+1)).

3.5 Signature generation

Here we specify the relation whose proof constitutes a signature for our group signature scheme; see Sec-
tion 5.2 for details. We repeat its formal description below.

RS =


(
A,B,A,u, (a0,b0,a1,b1),

(V0,W0), (V1,W1); t, i, c,d, e,S
) s.t.

1← SVerify(S, (c,d, i),A,B,A0, . . . ,A`,u)
∧ d = ct + e ∧ ‖e‖ ≤ β′

∧ (V0,W0)← Enc(i, c,d, (a0,b0))
∧ (V1,W1)← Enc(i, c,d, (a1,b1))


We now describe the constraint system which represents this relation. The variables ~c, ~d, ~e, i, A, B, A, ~u,
S, ~a0, ~a1, ~b0, ~b1, V0, W0, V1, W1 are the coefficient representations of the corresponding variables in the
relation. Using the notation defined in the previous subsections, the constraint system is as follows.

C = BitDec(~c) ∧ D = BitDec(~d) ∧ ~i = BitDec(i) ∧
SVerifyβ([A|B],A, ~u, S, (C,D,~i)) ∧ RLWEβ′(~c, ~d,~e) , ∧

V0,W0 = Encp(~a0,~b0, ~r, (C,D,~i)) ∧ V1,W1 = Encp(~a1,~b1, ~r, (C,D,~i))

The number of variables and constraints are bounded by (4+log β)(m+k)n+2kn log q+5n log β+30n+6.
With our parameters this yields approximately 10 million variables and constraints. By applying the proof
system of [7], we obtain the following lemma

Lemma 3.2. There is a NIZK proof (SNARK) for the relation RS, secure and extractable in the random
oracle model, with proof length O(log2

(
(m+ k)n log β + n2 log q

)
log q).
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3.6 Proof of valid decryption

The relation R = {(v,w, µ,a,b; s, e) : (w − sv) mod p = µ ∧ b = as + e ∧ ‖s‖∞, ‖e‖∞ ≤ β} , captures
the statement that the prover knows the RLWE secret key corresponding to a given public key, and that a
given ciphertext decrypts to a given message under this key. The constraint system is as follows.

RLWEβ(~a,~b, ~s,~e) ∧ T ~w − T~s ◦ T~v = T (~µ+ p~h) ∧ ‖~h‖∞ < (q − 1)/2p

The final constraint ensures that ~µ+ p~h does not ‘wrap around’ modulo q. Since ~v, ~w are public, the verifier
can incorporate them into the constraint system. The number of variables and constraints is bounded by
n(log β + log(q/p) + 5).

3.7 Parameter choices

In this section we discuss how the parameter choices in Section 5.5 relate to the relations described in the
above sections, and the resulting constraint system sizes given by our implementation (Section 4). Throughout
we let q be a prime with log2 q ≈ 65, and Rq = Fq/〈Xn + 1〉 with n = 1024. We have log β = 10.

Proof of knowledge of RLWE secret key. Our implementation yields a constraint system with 16,383
variables and 15,361 constraints for the parameters specified. The resulting proof is 72kB in size, and is
produced in roughly 40 seconds on a consumer laptop (MacBook Pro).

Proof of knowledge of plaintext. Our implementation yields a constraint system with 32,769 variables
and 29,696 constraints for the parameters specified. The resulting proof is 87kB in size, and is produced in
roughly three minutes.

Proof of valid signature. Here k = m̄ = 67, m = 2m̄ = 134. Proving knowledge of a message µ ∈ {0, 1}`
and signature on µ yields at most 3× 106 + 67` constraints, for ` > n. Our message size is ` = 2nk + logN ,
where N is the number of users in the system; we obtain roughly 12× 106 + 67 logN constraints. Since the
number of users will always be bounded by (say) 240, the number of constraints is bounded by 12 million.

Our implementation yields a constraint system of 2,663,451 variables and 2,530,330 constraints. This is
too large to produce a proof for on our Google Cloud instance, but extrapolating from known proof sizes we
expect this to be at most 150kB.

Signature generation. Our implementation yields a constraint system with 10,196,994 variables and
10,460,226 constraints. This is too large to produce a proof for, but extrapolating from known proof sizes
we expect at most 250kB.

4 Implementation

The implementation was written in C++, primarily using the following libraries:

– libff (https://github.com/scipr-lab/libfff)
– libiop (https://github.com/scipr-lab/libiop)

libff is a C++ implementation of finite fields, and libiop includes a C++ implementation of the Aurora
IOP and SNARK. The implementation took advantage of the libiop-provided APIs to construct the R1CS
encodings of the various relations detailed in 3. Once these R1CS constraint systems were constructed,
libiop was used to construct the Aurora IOPs, which where then compiled to zkSNARKs. Finally, the
proof size of these SNARKs was measured directly.

libiop does not currently provide primitives to organize very large constraint systems as in this paper.
To prevent the constraint systems from getting unwieldy, an additional class ring poly was created to
represent ring elements 3.1 as vectors of R1CS variables. This class also contains an implementation of the
negative wrapped convolution (along with its inverse), which was tested by comparing with multiplication
of polynomials in the ‘long-form’ method. In addition, now polynomial multiplication using the negative
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wrapped convolution could be represented as a basic constraint and be composed as part of a larger constraint
system. Similarly, bit decompositions and proofs of shortness were also represented as basic constraints.

Mirroring the definition of the relations themselves, the implementations for 3.1, 3.2 were composed by
referencing the relevant smaller relations.

Several small utilites were also created in order to compute the parameters libff requires for the specific
prime fields used in this paper, and to generate other prime fields to test how proof sizes varied with number
of bits of the underlying prime field.

The constraint systems were compiled and run on a consumer-grade 2016 Macbook Pro, when running
the prover and verifier could fit in memory. For the larger constraint systems such as for 3.2, a Google Cloud
large-memory compute instance was used to finish constructing the proofs.

5 Group signatures

We present a dynamic group signature GS = (GKg,UKg, Join, Iss,GSign,GVerify,GOpen,GJudge) that sup-
ports N users and guarantees non-frameability in the ROM under post-quantum assumptions. Being dy-
namic means that users can join at any time during the lifespan of the group. Our construction fol-
lows the framework by Bellare, Shi and Zhang [6]and is built from a lattice-based hash-and-sign signa-
ture (SParGen,SKeyGen,Sign,SVerify) (cf. Section 2.3), SNARKs (P,V), a post-quantum one-time signa-
ture scheme (OTSGen,OTSSign,OTSVf) (e.g., Lamport’s signature scheme with key length 2λ bits) and
a CCA2-secure encryption scheme (EParGen,EKeyGen,Enc,Dec) (the RLWE encryption scheme [36] made
CCA2-secure via the Naor-Yung paradigm [40], cf. Section 2.2). Correctness of our construction trivially
follows from the correctness of the building blocks. Security can be proved along the lines of the proofs in
[6] (cf. Section 5.4).

5.1 Key Generation and Joining Protocol

Let N be the maximum number of users supported by the scheme. We assume there exists a publicly available
list upk containing the personal (OTS) verification keys of the users, i.e., upk[i] = vk i.

GKg: A trusted third party generates the parameters spar ← SParGen(1λ) and epar ← EParGen(1λ).
The error distribution of the RLWE encryption scheme is a Gaussian distribution with standard deviation
σRLWE = 2

√
log q. Then it sets ` = 2ndlog qe+ dlogNe, and checks that q ≥ 4p

√
log q log n

√
64 log q + n. If

that’s not the case, it aborts and restarts the parameter generation. It generates the group manager’s secret
signing key TA with corresponding public key (A,B,A0, . . . ,A`,u) running the key generation algorithm
SKeyGen of the signature scheme. Finally, it generates the opener’s keys by first generating two pairs of
encryption and decryption keys of the encryption scheme, ((ai,bi), si) ← EKeyGen(epar) for i = 0, 1, and
then setting opk = (a0,b0,a1,b1) and osk = s0; s1 is discarded. Recall that the RLWE error distribution χ
is set to be a discrete Gaussian with standard deviation sRLWE . By Lemma 2.1 an element e $←−χ has norm
bounded by BI = 8sRLWE .

UKg: The i-th user generates her OTS keys running (sk i, vk i) ← OTSGen(1λ). The verification key vk i is
added as the i-th entry to the public list upk. The keys of the user are (usk i, upk i) = (sk i, vk i).

Join and Iss: The joining protocol is composed by a pair of algorithms (Join, Iss) run by the user and the
group manager respectively, as showed in Figure 5.1.

– The user starts by running Join on input her key pair ((ci,di), ti). The algorithm ends outputting
(ci,di, σi, vk i) to M along with a proof Πi that the user knows ti, ei, i.e., a proof that (ci,di) is a RLWE
pair. The signature is generated running OTSSign((ci,di), sk i), while the proof is generated running
PI(ci,di; ti, ei) that is the prover algorithm of a SNARK (PI ,VI) for the following relation:

RI = {(ci,di; ti, ei) ∈ R4
q : di = citi + ei mod q ∧ ‖ei‖∞ ≤ β′}
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Ui (usk i = ti) M (TA)

ci
$←−Rq, ti

$←−Rq, e $←−χ
di = citi + ei mod q
Πi ← PI(ci,di; ti, ei)
σi ← OTSSign(BitD(ci,di), sk i)

ci,di,Πi,σi,vki−−−−−−−−−−−−−→
If

1← VI(ci,di, Πi) ∧ 1← OTSVf(σi, (ci,di), vk i)
Then
µ← BitD(ci,di, i)
Si ← Sign(TA, µ)

Else
abort.

Si←−−−−−
If 1← SVerify(Si, µ,A) :

accept−−−−−−−→
l[i]← (ci,di, σi)

Output gsk i = (ci,di, ti, i,Si).

Fig. 1. Joining protocol.

where β′ is an upper bound on the absolute value of the coefficients of ei computed in the parameters
generation phase.

– M runs VI(ci,di, Πi) and OTSVf(σi, (ci,di), vk i). If any of them outputs 0, the group manager aborts.
Otherwise, he signs (ci,di, i) using the signature scheme, i.e., he generates Si with small norm such that

[A | B | A0 +
∑`
j=1(−1)µjAj ]Si = u mod q where µ = (µ1, . . . , µ`) is the binary expansion of (ci,di, i).

Then, M sends Si to Ui.

– The user verifies that Si is a valid signature on (ci,di, i). If this is the case, she sends accept to the issuer,
and sets her signing key to be (ti, ci,di, i,Si). Otherwise, she aborts.

– On input accept, the issuer stores in the list l[i] = (ci,di, σi) and concludes the protocol.

At the end of this process, the user obtains a credential cred i = Si linked to her public key (ci,di). The
user’s public key (ci,di) is a RLWE sample: RLWE guarantees that the group manager cannot recover the
user’s secret key s from it.

5.2 Signing Algorithm

The signature algorithm is shown in Figure 5.3.

To produce a valid signature, a user has to prove that she has a valid credential. This means she has
to prove that she has a signature by M on her user public key and group identity (ci,di, i). Moreover, to
allow the opener to output a proof of honest opening, it is necessary that he can extract ci and di from
the signature. Hence, the user attaches to the NIZK proof also two encryptions (V0,W0), (V1,W1) of the
user’s identity i and of the RLWE sample (ci,di) w.r.t the two RLWE encryption keys in the opener public
key. Remark that this does not compromise the user, as the opener never gets the user’s secret key nor the
user’s signing key. To guarantee that the user is not cheating by encrypting a fake credential or by encrypting
different plaintexts in the two ciphertexts, the user has to prove that the two ciphertexts encrypt the same
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GSign(gsk i, gpk , opk , µ)
Parse gsk i = (ci,di, ti, i,Si) and opk = (a0,b0,a1,b1).
For b = 0, 1

(Vi,Wi)← Enc(BitD(ci,di, i), (ab,bb))
ΠS ← PS(µ; gpk , opk , (V0,W0), (V1,W1); ti, i, ci,di, ei,Si)
Return σ = (ΠS ,V0,W0,V1,W1) .

GVerify(gsk i, gpk , opk , µ)
Parse gsk i = (ci,di, ti, i,Si) and opk = (a0,b0,a1,b1).
For b = 0, 1

(Vi,Wi)← Enc(BitD(ci,di, i), (ab,bb))
ΠS ← PS(µ; gpk , opk , (V0,W0), (V1,W1); ti, i, ci,di, ei,Si)
Return σ = (ΠS ,V0,W0,V1,W1) .

Fig. 2. Signing and verification algorithms of the group signature.

(i, ci,di) on which she proved she has a credential. The relation becomes:

RS =


(A,B,A0, . . . ,A`,u,
opk , (V0,W0),
(V1,W1);
ti, i, ci,di, ei,Si)

:

1← SVerify(Si,BitD(i, ci,di),A,B,A0, . . . ,A`,u)
∧ di = citi + ei ∧ ‖ei‖ ≤ β′

∧ (V0,W0)← Enc(BitD(i, ci,di), (a0,b0))
∧ (V1,W1)← Enc(BitD(i, ci,di), (a1,b1))

 (2)

and (PS ,VS) is a non-interactive SNARK for RS (cf. Section 3.5). The user outputs the signature σ =
(V0,W0,V1,W1, ΠS).

Remark 5.1. In Bellare et al.[6] the user has to add to the signature the encryption of the credential to
allow the simulator to recover a forgery for the signature scheme from a valid forgery in the security proof
of traceability and non-frameability. Instead, in the security proofs of our scheme the credential is extracted
through extraction. This is not possible in the construction by Bellare et al., as their NIZK proof is not
required to be a proof of knowledge.

5.3 Signature Verification, Opening, and the Judge Algorithm

To verify a signature σ on a message µ, the algorithm GVerify checks ΠS by outputting what VS(ΠS , µ,A,B,
A0, . . . ,A`,u, opk , (V0,W0,V1,W1)) outputs.

The opener first runs GVerify on the signature. If GVerify returns 0 the opener outputs (0, ε). Otherwise
he decrypts the ciphertext (V0,W0) using his secret key s0 to recover the identity i and public key (c′i,d

′
i)

of the signer using his secret key s. Then, to prove that the user’s identity he extracted is valid, he recovers
the i-th entry of the list l[i] = (ci,di, σi) and checks that (c′i,d

′
i) = (ci,di). If that is true, he outputs l[i]

along the (c′i,d
′
i) he recovered from the signature. Finally, the opener produces a proof that the opening

procedure was performed honestly using the decryption key osk corresponding to the opener’s public key
opk , i.e., he outputs a proof ΠO for the following relation:

RO =

 (V0,W0, i, c
′
i,d
′
i,

a0,b0; s0, e0)
: (W0 − s0V0) mod p =

 î
ĉ′i
d̂′i

 ∧ b0 = a0s0 + e0 mod q
‖s0‖∞, ‖e0‖∞ ≤ β′

 , (3)

where î, ĉ′i, d̂
′
i are the binary polynomials obtained from the binary expansions of i, c′i,d

′
i. If every check

and the decryption go through, the output of the opener is (i, τ) = (i, (c′i,d
′
i, ci,di, σi, ΠO)). Otherwise, the

opener outputs (i, τ) = (0, ε).
The Judge algorithm verifies the opener claims of having opened correctly a signature. Hence, it has to

verify ΠO and that the decrypted public key, the entry in the list and the certified public key of the user
coincides. It takes as input (gpk , σ, µ, (i, τ)), i.e., the group public key, the signature σ = (ΠS , (V0,W0,V1,
W1)) and the respective message µ, and the output of the opener (i, τ) = (i, (c′i,d

′
i, ci,di, σi, ΠO)). It

recovers the public key upk i of user i from the public list, and outputs 1 if all of the following conditions
hold:

– (i, τ) 6= (0, ε)
– 1← GVerify(σ, µ, gpk)
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– (c,d) = (c′,d′)
– 1← VO(ΠO,V0,W0, i, c

′
i,d
′
i,a0,b0)

– 1← OTSVf(σi, (ci,di), vk i) .

Otherwise, the algorithm outputs 0.

5.4 Correctness, Security and Parameters

Correctness follows from the correctness of the building blocks, as shown in the proof of Theorem 5.2.

Theorem 5.2 (Correctness). If the signature, OTS, RLWE encryption and NIZK proof system are cor-
rect, the group signature described above is correct.

Proof (Sketch of the proof of Theorem 5.2.). The proof consists of 5 steps

– proving that the joining protocol results in the group manager producing a signature on the user’s RLWE
pair,

– proving that a user can produce a signature through the NIZK and the RLWE encryption,
– proving that verification accepts honestly generated signatures,
– proving that the decryption of the ciphertext contained in a honestly generated signature outputs the

identity of the signer and a NIZK,
– proving that the judge always accepts the output of a honest opener.

We start from the joining procedure. A user can prove it has a RLWE pair (ci,di) running PI as ei is
sampled from a Gaussian (as specified in the Parameter Generation), hence it has infinity norm less than
8σRLWE thanks to Lemma 2.1. The signing algorithm succeeds as all the parameters are generated according
to specifications. On the user’s side, the correctness of the signature guarantees that the verification algorithm
outputs 1 with high probability.

During the signing procedure we only need to make sure that the prover PS can in fact output a NIZK
for relation RS . This follows from the correctness of the signature, encryption and NIZK proof system. The
bounds in relation RS are set in Section 3 and follow from Lemma 2.1.

As the NIZK is generated honestly, the verification is guaranteed to output 1 with overwhelming probabil-
ity by the correctness of the NIZK proof system. The correctness of the decryption of the RLWE ciphertext
holds as long as q ≥ pσRLWE

√
2 · 16σ2

RLWE + n · 2
√
logn by Theorem 2.4. As σRLWE = 2

√
log q, q as cho-

sen in Section 5.1 satisfies the inequality. Finally, the opener can generate a NIZK proof to guarantee the
opening was performed correctly, as the secret opening key sO and sO are again sampled from a Gaussian
with standard deviation σRLWE , hence they have infinity norm bound by 8σRLWE w.h.p. by Lemma 2.1.

The judge outputs 1 when receiving as input a honestly generated opening thanks to the correctness of
the OTS and of the NIZK proof system.

Our group signature guarantees anonymity, traceability and non-frameability, meaning that it protects
also against a corrupted group manager trying to frame a honest user. More precisely, the scheme is proven
secure in the Random Oracle Model under quantum-safe assumptions. This essentially means that the scheme
is provably secure against a classical adversary (i.e., an adversary that can only ask classical queries to the
random oracle) that has access to a quantum computer.

Anonymity relies on simulation soundness and zero-knowledge of the proof system, and on the IND-CPA
property of the encryption. The construction does not require the IND-CCA2 security of the encryption, as
in the proof we exploit a step similar to the Sahai extension [42] of the Naor-Yung approach [40].

Theorem 5.3 (Anonymity). The group signature scheme GS is anonymous in the Random Oracle Model
under the zero-knowledge and simulation soundness property of the NIZK proof system and under the IND-
CPA security of the encryption scheme.
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Proof. Assume A is an adversary against anonymity interacting with a simulator B. We prove through game
hops that the experiment ExpanA,0(1λ) is indistinguishable from the experiment ExpanA,1(1λ) (cf. Figure A for
the anonymity experiment). The success probability of A is:

εA =

∣∣∣∣Pr [b = b′ : b $←−{0, 1}, b′ ← ExpanA,b(1
λ)
]
− 1

2

∣∣∣∣
=

1

2

∣∣Pr [b′ = 0 : b′ ← ExpanA,0(1λ)
]

+ Pr
[
b′ = 1 : b′ ← ExpanA,1(1λ)

]
− 1
∣∣

=
1

2

∣∣Pr [b′ = 0 : b′ ← ExpanA,0(1λ)
]

+ Pr
[
b′ = 0 : b′ ← ExpanA,1(1λ)

]∣∣ .
We proof that this probability is negligible if the rNIZK is zero-knowledge through a standard sequence of
game hops. Let Gamei the probability that A outputs 0 at the end of the i-th game.

Game 0. Game 0 executes ExpanA,0(1λ). Hence,

Pr[Game0] = Pr
[
b′ = 0 : b′ ← ExpanA,0(1λ)

]
.

Game 1. In game 1 B simulates the NIZK proof in the oracle Chall using the simulator ΣS of the proof
system (PS ,VS). An adversary that can distinguish this game from the previous one can be used to break
the ZK property of the NIZK proof system. Indeed, an algorithm B1 with access to an oracle ONIZK that
outputs either simulated or honestly generated proofs can exploit A to distinguish the outputs of such oracle
as follows. B1 runs the anonymity experiment honestly but Chall. When it has to generate the challenge
signature on µ0, B1 queries it to the oracle instead. It is clear that if the oracle outputs a simulated proof,
this is exactly Game 1 and if the proof is honestly generated, A is playing exactly Game 0. At the end of the
interaction, B1 outputs exactly the same bit b′ output by A. Hence, the success probability ε1 of B1 is

ε1 =
∣∣∣Pr [b′ = b : b $←−{0, 1}, b′ ← ExpZK−bB1

(1λ)
]
− 1

2

∣∣∣
= 1

2

∣∣∣Pr [b′ = 0 : b′ ← ExpZK−0
B1

(1λ)
]

+ Pr
[
b′ = 1 : b′ ← ExpZK−1

B1
(1λ)

]
− 1
∣∣∣

= 1
2

∣∣∣Pr [b′ = 0 ∧ b′ ← ExpZK−0
B1

(1λ)
]
− Pr

[
b′ = 0 ∧ b′ ← ExpZK−1

B1
(1λ)

]∣∣∣
= 1

2 |Pr [Game0]− Pr [Game1]| ,

where we denoted by ExpZK−bB1
the experiment in which B1 has access to an oracle ONIZK that implements

either the honest prover when b = 0, or the simulator when b = 1.

Game 2. In Game 2 B does everything as in Game 1, except that now it generates (V1,W1) as an encryption
of 1

¯̀
(where ¯̀ is the length of the plaintext) while (V0,W0) is still an encryption of id∗0 = (i∗0, c

∗
0,d
∗
0). The

IND-CPA property of the encryption guarantees the indistinguishability of the games. Namely, let A be an
adversary such that Pr[Game1]− Pr[Game2] is non-negligible. Then B2 can win the IND-CPA experiment
exploiting A as follows. Upon receiving (a1,b1) from the oracle, B2 generates (a0,b0) honestly and sends
opk = (a0,b0,a1,b1) to A. When A sends back the identities (id∗0, id

∗
1), B2 generates (V0,W0) as an

encryption of id∗0 = (i∗0, c
∗
0,d
∗
0), sends id∗1 to the encryption oracle and generates the proof ΠS using the

simulator. B2 outputs the same bit b′ output by A. Remark that if the encryption outputs an encryption of
id∗1, then B2 is implementing Game 1, otherwise this is exactly Game 2. Hence, the success probability ε2 of
B2 is

ε2 =
1

2
|Pr[Game1]− Pr[Game2]| .

Game 3. In Game 3 B does everything as in Game 2, except that now it generates (V1,W1) as an
encryption of id∗1 = (i∗1, c

∗
1,d
∗
1) ((V0,W0) is still an encryption of id∗0 = (i∗0, c

∗
0,d
∗
0)). Again, the IND-CPA

property of the encryption guarantees the indistinguishability of the games. Indeed, an adversary A such
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that Pr[Game2] − Pr[Game3] is non-negligible can be exploited by B3 to win the IND-CPA experiment
exactly as before. Hence, the success probability ε3 of B3 is

ε3 =
1

2
|Pr[Game2]− Pr[Game3]| .

Game 4. In Game 4 the simulator does everything as in Game 3 except the generation of the opening keys
and of the opening oracle OGOpen. Indeed, when generating the opening keys, B preserves s1 instead of s0, and
then it performs the decryption in OGOpen w.r.t. s1. The only way that an adversary can distinguish the games
is if it can submit a valid signature σ whose two RLWE ciphertexts encrypt different messages. This would
break the simulation soundness of the NIZK proof system. Indeed, an algorithm B4 would break the soundness
exploiting A as follows. When generating the opening keys, it would keep s0 as well. Whenever it receives a
decryption query, it would decrypt both (V0,W0) and (V1,W1), checking that the resulting plaintexts are
equal. If that is not the case, then B4 can return ((µ, vk , gpk , opk , (V0,W0), (V1,W1), ti, i, ci,di, ei,Si), ΠS)
as a proof of false statement. Since making this query s the only way A can distinguish the two games, the
algorithm B3 has success probability

ε4 = |Pr[Game3]− Pr[Game4]| .

Game 5. In Game 5 B does everything as in Game 4, except that now it generates (V0,W0) as an encryption
of 1

¯̀
(where ¯̀ is the length of the plaintext) while (V1,W1) is an encryption of id∗1 = (i∗1, c

∗
1,d
∗
1). As before,

the IND-CPA property of the encryption guarantees the indistinguishability of the games. Remark that a
simulator B5 trying to win the IND-CPA experiment exploiting A never has to decrypt (V0,W0), thanks to
the key switching in the previous game. The success probability ε5 of B5 is

ε5 =
1

2
|Pr[Game4]− Pr[Game5]| .

Game 6. In Game 6 B does everything as in Game 5, except that now it generates (V0,W0) as an
encryption of id∗1 = (i∗1, c

∗
1,d
∗
1). As before, a simulator B5 trying to win the IND-CPA experiment exploiting

A has success probability

ε6 =
1

2
|Pr[Game5]− Pr[Game6]| .

Game 7. In Game 7, B reverts back to decrypt using s0 in the opening oracle. As in Game 4, an algorithm
B7 breaks the soundness exploiting an adversary such that Pr[Game6] − Pr[Game7 is non negligible has
success probability

ε7 = |Pr[Game6]− Pr[Game7]| .

Game 8. In Game 8 B reverts back to generating the proof Π∗S in the challenge signature honestly. This
is equivalent to B running Chall1, hence Game 8 is exactly ExpanA,1(1λ), and it holds that Pr[Game8] =

Pr
[
b′ = 0 : b′ ← ExpanA,1(1λ)

]
. Moreover, analogously to Game 1, an adversary distinguishing Game 8 from

Game 7 allows to construct a distinguisher B8 that has advantage

ε8 =
1

2
|Pr [Game7]− Pr [Game8]| ,

in breaking the zero-knowledge property of the proof system.
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This yields that the advantage of A in breaking anonymity is bounded by

ε =
1

2

∣∣Pr [b′ = 0 : b′ ← ExpanA,0(1λ)
]

+ Pr
[
b′ = 0 : b′ ← ExpanA,1(1λ)

]∣∣
=

1

2
|Pr [Game0]− Pr [Game8]|

=
1

2

∣∣∣∣∣
7∑
i=0

Pr [Gamei]− Pr [Gamei+1]

∣∣∣∣∣
≤

7∑
i=0

1

2
|Pr [Gamei]− Pr [Gamei+1]|

= ε1 + ε2 + ε3 +
1

2
ε4 + ε5 + ε6 +

1

2
ε7 + ε8

= 2εZK + εSS + 4εCPA ,

where εZK , εSS , and εCPA are the advantage in breaking the zero-knowledge property of the NIZK proof
system, the simulation soundness property of the NIZK proof system and the IND-CPA security of the
encryption scheme. ut

Theorem 5.4 (Traceability). The group signature scheme GS satisfies traceability in the Random Oracle
Model if the signature scheme is eu-acma secure and the proof system is a sound argument of knowledge.

Proof. Assume A is a PPT algorithm that breaks the traceability of the GS with non-negligible advantage
AdvAtrac(λ). We define an adversary B (shown in Figure 3) that breaks the eu-acma security of the signature
with non negligible probability, assuming the NIZK proof is a sound argument of knowledge.

The simulator B runs the eu-acma experiment in Figure A. At the beginning of the experiment, B receives
the signature verification key svk , and access to a signing oracle OSig.

B instantiates the group signature GS as follows. It generates honestly the opener’s keys (opk , osk)
running EKeyGen, and sets the issuer’s public key to be gpk = svk . Then it implements the oracles according
to their definition (cf. Appendix A), except for OIss and AddU. When answering these oracles, B produces
the signature S by querying the signature oracle OSig as shown in Figure 3.

At the end of the experiment, the adversary A outputs a valid pair message-signature (µ∗, σ∗). Consider
the following events:

E1: the signature is valid but the opener cannot recover a valid signer’s identity:
1← GVerify(µ∗, σ∗, gpk , opk) ∧ (i∗ = 0);

E2: the signature is valid, the opener can recover a valid identity but it cannot prove that the opening was
performed correctly:
1← GVerify(µ∗, σ∗, gpk , opk) ∧ (i∗ 6= 0) ∧ 0← GJudge(gpk , opk , upk i∗ , µ

∗, σ∗, i∗, τ∗);
E: E1 ∨ E2;
S: the signature is valid and the opening is correct: (gpk , opk , c0, c1, gsk i, e) ∈ RS ;

where (i∗, τ∗)← GOpen(µ∗, σ∗, gpk , osk). Notice that E1 and E2 are disjoint. Then we can write the advan-
tage of A in breaking the traceability of GS as:

AdvAtrac(λ) = Pr[E] = Pr[E ∧ S̄] + Pr[E1 ∧ S] + Pr[E2 ∧ S] .

We now compute the three probabilities.
The event E ∧ S̄ (remark that S̄ means that the signature is valid, as we assume A outputs a signature

that passes verification, and the opening is not correct) corresponds to A breaking the soundness of the
SNARK. Indeed, if the opening is not correct either there is no entry l[i] or l[i] is not equal to the output
of the decryption (i is the decrypted identity). In both cases B can parse σ∗ = (Π∗S ,V

∗
0,W

∗
0,V

∗
1,W

∗
1) and

send (Π∗S , µ
∗, gpk , opk , (V∗0,W

∗
0,V

∗
1,W

∗
1)) as a proof of false statement. From the previous analysis it holds:

Pr[E ∧ S̄] = Pr[1← GVerify(µ∗, σ∗, gpk , opk) ∧ (gpk , opk , c0, c1, gsk i, e) /∈ RS ]

≤ 2−λ

20



BOSig, A(gpk)

(opk , osk)← EKeyGen(1λ)
CU← ∅
HU← ∅
GSig← ∅
(µ∗, sig∗, sig ′)← GFOIss, AddU, USK, CrptU, RReg

A (gpk , opk , osk)
If 0← GVerify(µ∗, σ∗, gpk , opk), abort.
Else (i∗, τ∗)← GOpen(µ∗, σ∗, gpk , osk).
If (i∗ = ε) ∨ 0← GJudge(gpk , opk , upk i∗ , µ

∗, σ∗, i∗, τ∗) abort.
Else ((c̄i, d̄i, ī), S̄)← E(sig∗, sig ′).
Return ((c̄i, d̄i, ī), S̄).

OIss(ci,di, Πi, otsi, vk i)
b← VI(ci,di, Πi)
b′ ← OTSVf(otsi, (ci,di), vk i)
If (b = 0 ∨ b′ = 0) abort.
µ← BitD(ci,di, i)
Si ← OSig(µ)
l[i]← (ci,di, otsi, vk i)
l[i]← (ci,di, otsi, vk i)
Return i,Si

AddU(i)
If i ∈ CU ∪HU abort.

(sk , vk)← OTSGen(1λ)
HU[i]← (vk , sk)

ci
$←−Rq, ti

$←−Rq, e $←−χ
di = citi + ei mod q
Πi ← PI(ci,di; ti, ei)
otsi ← OTSSign(BitD(ci,di), sk i)
µ← BitD(ci,di, i)
Si ← OSig(µ)
l[i]← (ci,di, otsi)
l[i]← (ci,di, otsi, vk i)
gsk i = (ci,di, ti, i,Si).
HU[i]← gsk i
Return upk i = vk .

Fig. 3. Simulator for the proof of traceability.

In the event E1 ∧ S the opener decrypts the ciphertext contained in the signature to obtain a user’s
identity and public key (i, c′i,d

′
i). Then, it recovers the i-th entry of the list l[i]. There can be two cases:

either l[i] = ⊥ or l[i] = (ci,di, otsi) and (ci,di) 6= (c′i,d
′
i). Both cases implies that A did not query the

signing oracle on (c′i,d
′
i). Hence, B can break the unforgeability of the signature scheme using the extractor

of the SNARK to obtain a valid signature S̄ on (c′i,d
′
i). Therefore,

Pr[E1 ∧ S] ≤ 8(1− ν(λ))Adveu−acmaB (λ) ,

where 1 − ν(λ) comes from the success probability of the extractor and the factor 8 from the Generalized
Forking Lemma [5], that is needed to get the input for the extractor. The runtime of B is tA · 8n2qH/εA ·
ln(8n/εA), where tA is the runtime of A, εA = Pr[E1 ∧ S], and qH = poly(λ) as an algorithm that runs in
polynomial time can query the random oracle at most a polynomial number of times. Remark that B makes
N queries to the signing oracle as N is the bound on the number of users supported by the scheme.

Finally, it holds that Pr[E2 ∧ S] = 0. To verify this claim, let us analyze the algorithm GJudge. Upon
receiving (gpk , opk , upk i, µ, σ, i, τ), the algorithm parses τ = (V0,W0, i, c

′
i,d
′
i,a0,b0, ΠO), and recovers l[i].

Given that the opener outputs (i, τ) 6= (0, ε), the user’s public key obtained by the opener from the decryption
(c′i,d

′
i) should be equal to the entry l[i] = (c,d) output by the Opener, i.e., (c′i,d

′
i) = (ci,di). All the

verification algorithms go through, as the opener executed honestly the verification of the one-time signature
ots, and the event S implies that (gpk , opk , c0, c1, gsk i, e) ∈ RS , hence the verification of the proof ΠO

produced by the opener outputs 1. Therefore, if the opener is honest the algorithm GJudge outputs 1 and
the claim follows.

In conclusion, the advantage of A against GS is

AdvtracA (λ) ≤ 2−λ + 8(1− ν(λ))Adveu−acmaB (λ) + ν(λ) ,
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that is negligible if the signature is eu-acma secure and the proof system is sound and a proof of knowledge.
ut

Theorem 5.5 (Non-Frameability). The group signature scheme GS satisfies non-frameability in the
Random Oracle Model if the proof system is a zero-knowledge argument of knowledge, the OTS is a OTS,
and RLWE1,U(S1) is hard.

Proof. Let A be a PPT algorithm which wins the non-frameability experiment in Figure A with advantage
εA = Advnon−frA (λ). We start analyzing the event E =“A succeeds”. Consider the following events:

F : 1← GVerify(µ∗, σ∗, gpk , opk), HU[i∗] 6= ⊥, A did not query USK(i), 1← GJudge(gpk , opk , upk i∗ , µ
∗, σ∗, i∗,

τ∗), (i∗, µ∗) /∈ GSig, where (i∗, τ∗)← GOpen(µ∗, σ∗, gpk , osk);
S1: (µ∗, σ∗, gpk , opk) ∈ RS ;
S2: (gpk , opk , µ∗, σ∗, τ∗, i∗) ∈ RO;
P : (c′i,d

′
i) = (ci,di), where (ci,di) is obtained from l[i] and (c′i,d

′
i) from the opening.

Then the advantage of the adversary in winning the non-frameability experiment is

AdvnfA (λ) = Pr[F ] ≤ Pr[F ∧ S̄1] + Pr[F ∧ S̄2] + Pr[F ∧ P ∧ S1 ∧ S2] + Pr[F ∧ P̄ ∧ S1 ∧ S2]

because the events S1 and S2 are not disjoint3. In the following we compute the probabilities of these events.
The soundness of the proof systems yields that Pr[F ∧ S̄1] ≤ 2−λ and Pr[F ∧ S̄1] ≤ 2−λ.
If the event F ∧ P ∧ S1 ∧ S2 happens, we can construct an algorithm B1 that solves the Search version

of RLWE, i.e., that given (c̄, d̄) finds t̄ such that d̄ = c̄s̄ + ē for some small error ē.

Lemma 5.6. Pr[F ∧ P ∧ S1 ∧ S2] ≤ AdvRLWE
B (λ) · 8N(λ)(1− ν(λ)) .

Proof. The algorithm B1 (cf. Figure 4) is given access to an oracle ORLWE that outputs RLWE pairs (c,b)
when prompted, and simulates all oracles according to their definitions but USK, OIss, SndToU and OGSign.
Indeed, B samples a random u and simulates all honest users honestly but the u-th, whose RLWE pair is
set to be the pair (c̄, d̄) output by ORLWE . Then, B simulates USK honestly unless A queries for the user u;
in such case, B aborts. If the adversary runs OIss with user identity u (where u has not been assigned yet),
B1 samples another u and then runs the algorithm Iss honestly. Whenever A queries the oracle SndToU for
the user u, B sends (c̄, d̄) as user’s keys, and simulates the SNARK of t̄. In a similar way, whenever the user
queries OGSign for a signature by the user u, B simulates the proof ΠS . If the adversary successfully outputs
a forgery, this means that A was able to generate a SNARK of, among other things, small t̄ and ē such that
d̄ = c̄s̄ + ē. Hence, B can recover t̄ rewinding A and exploiting the extractor of the proof system (PS ,VS).
Given that solving the search version of RLWE is equivalent to solving the decisional version (cf. [35]), the
advantage of B in solving RLWE is Pr[F ∧ P ∧ S1 ∧ S2] ≤ AdvRLWE

B (λ) · 8N(λ)(1− ν(λ)) where the factor
8 comes from the Generalized Forking Lemma, N(λ) is the number of users and (1− ν(λ)) comes from the
success probability of the extractor of the SNARK.

Finally, consider the event F ∧ P̄ ∧S1 ∧S2. We construct an algorithm B2 that breaks the unforgeability
of the OTS exploiting A.

Lemma 5.7. AdvOTSB (λ) ≥ Pr[F ∧ P̄ ∧ S1 ∧ S2] · 1/N(λ) where N(λ) .

3 Indeed, if S1 and S2 are not disjoint events it holds that, for all sets P in the set space Ω:

S̄1 ∪ S̄2 ∪
[
(P ∩ S1 ∩ S2) ∪ (P̄ ∩ S1 ∩ S2)

]
= S̄1 ∪ S̄2 ∪ (S1 ∩ S2) = Ω ,

hence {S̄1, S̄2, (P ∩ S1 ∩ S2), (P̄ ∩ S1 ∩ S2)} covers the space Ω.
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BORLWE , A
1 (1λ)

(gpk , gsk , opk , osk)← GKg(1λ)
CU← ∅, HU← ∅, GSig← ∅
u $←−{1, . . . , N}
(µ∗, σ∗1 , σ

∗
2)← GF

OGSign, AddU, USK, CrptU, RReg, WReg, SndToU

A (gpk , gsk , opk , osk)
(i, τ)← GOpen(σ∗1 , osk)
If i 6= u abort.
For j = 1, 2, parse σ∗j = (Π∗S,j ,V

∗
0,j ,W

∗
0,j ,V

∗
1,j ,W

∗
1,j)

(t̄u, ū, c̄u, d̄u, ēu, S̄u)← ES(Π∗S,1, Π
∗
S,2)

Return (t̄u, ēu).

OSndToU(i, aux )
If HU[i] = ⊥ abort.
Parse HU[i] = (upk i, usk i).
If aux = ⊥

If i = u
(c̄, d̄)← ORLWE

Πu ← ΣI(c̄, d̄)
ots ← OTSSign(BitD(c̄, d̄), usku)
Return c̄, d̄, Πu, otsu, vku.

Else

ci
$←−Rq, ti

$←−Rq, e $←−χ
di = citi + ei mod q
Πi ← PI(ci,di; ti, ei)
otsi ← OTSSign(BitD(ci,di), usk i)
Return ci,di, Πi, otsi, vk i.

Else
Parse aux = Si
BitD(ci,di, i)
If 0← SVerify(Si, µ,A) abort.
l[i]← (ci,di, otsi)
gsk i = (ci,di, ti, i,Si)
HU[i]← (upk i, usk i), HU[i]← gsk i
Return accept

USK(i)
If i = u abort.
If HU[i] = ⊥ ∨ HU[i] = ⊥ abort.
Return usk i, gsk i.

OGSign(i, µ)
If HU[i] = ⊥ abort.
Parse HU[i] = gsk i.
If i = u

For b = 0, 1
(Vi,Wi)← Enc(BitD(ci,di, i), (ab,bb))

ΠS ← ΣS(µ; gpk , opk , (V0,W0), (V1,W1))
Else

For b = 0, 1
(Vi,Wi)← Enc(BitD(ci,di, i), (ab,bb))

ΠS ← PS(µ; gpk , opk , (V0,W0), (V1,W1), ti, i, ci,di, ei,Si)
GSig← GSig ∪ {(i, µ)}
Return σ = (ΠS ,V0,W0,V1,W1).

Fig. 4. Simulator that solves RLWE exploiting an adversary against non-frameability.

Proof. B2 (cf. Figure 5) has access to an oracle OOTS that, when prompted, outputs a verification key vk ,
and that allows querying (only) one signature w.r.t. such key pair on a message of B2’s choice. Again, B2

samples a random user identity u, and simulates all the oracle honestly but USK, OIss, SndToU, and AddU.
If A queries USK for the user u, B2 aborts. Otherwise, B2 simulates all other users honestly (according to
the definitions in Appendix A). If it runs OIss with user identity u (where u has not been assigned yet), B2

samples another u and then runs the algorithm Iss honestly. If A prompts SndToU for user u, B2 generates
the RLWE pair (cu,du), and prompts OOTS to get the key pair (vk , sk) and a signature on (cu,du). Then it
generates the proof ΠI and sends everything to A. Otherwise, B2 executes SndToU according to the definition
in Appendix A. Finally, if A asks to add a honest user i to AddU, B2 behaves honestly but in case i = u,
when it gets the one-time signature from OOTS .

When A outputs the forged signature σ∗, B runs the opening algorithm on it to find the targeted identity
and aborts if the target user is not u. Otherwise, according to the definition of the event F ∧ P̄ ∧ S1 ∧ S2,
the pair (c′u,d

′
u) output by the opening is not equal to the pair (cu,du) contained in l[u]. Therefore, the

one-time signature ots ′u output by the opener (which is valid w.r.t. , as GJudge outputs 1) is a valid signature
w.r.t. the user public key upku = vk on a message (c′u,d

′
u) that was not queried to the signing oracle (as
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BOOTS2 (1λ)

(gpk , gsk , opk , osk)← GKg(1λ)
CU← ∅, HU← ∅, GSig← ∅
u $←−{1, . . . , N}
(µ∗, σ∗)← AOGSign, AddU, USK, CrptU, RReg, WReg, SndToU(gpk , gsk , opk , osk)
(i, τ)← GOpen(σ∗1 , osk)
Parse τ = (c̄u, d̄u, c

′
u,d

′
u, ots

′
u, vku, ΠO))

Parse l[u] = (cu,du, otsu).
If i 6= u ∨ (cu,du) = (c′u,d

′
u) ∨ 0← GJudge(gpk , opk , upk i, µ

∗, σ∗, i, τ) abort.
Return (c′u,d

′
u, ots

′
u).

OSndToU(i, aux )
If HU[i] = ⊥ abort.
Parse HU[i] = (upk i, usk i).
If aux = ⊥

ci
$←−Rq, ti

$←−Rq, e $←−χ
di = citi + ei mod q
Πi ← PI(ci,di; ti, ei)
If i = u

otsu ← OOTS(BitD(cu,du))
Else

otsi ← OTSSign(BitD(ci,di), usk i)
Return ci,di, Πi, otsi, vk i.

Else
Parse aux = Si
BitD(ci,di, i)
If 0← SVerify(Si, µ,A) abort.
l[i]← (ci,di, otsi)
gsk i = (ci,di, ti, i,Si)
HU[i]← (upk i, usk i), HU[i]← gsk i
Return accept

USK(i)
If i = u abort.
If HU[i] = ⊥ ∨ HU[i] = ⊥ abort.
Return usk i, gsk i.

AddU(i)
If i ∈ HU ∪ CU abort.
If i = u

usku ← ⊥
upk i ← OOTS

Else

(sk i, vk i)← OTSGen(1λ)
gsk i ← 〈Iss(gsk), SndToU(i, aux )〉
HU[i]← (upk i, usk i)
HU[i]← gsk i
Return upk i.

Fig. 5. Simulator that breaks the unforgeability of the OTS exploiting an adversary against non-frameability.

OOTS was only queried for a signature on (cu,du)). Hence, B can output ((c′u,d
′
u), ots ′u) to win the eu-acma

experiment, and it holds AdvOTSB (λ) ≥ Pr[F ∧ P̄ ∧ S1 ∧ S2] · 1/N(λ) where N(λ).

Hence, the advantage of A is

AdvnfA (λ) ≤ 2−λ+1 + 8N(k)(AdvRLWE
B (λ)(1− ν(λ)) +N(λ)AdvOTSB′ (λ)) .

ut

5.5 Parameters and Storage Requirements

We compute parameters for λ ≥ 128 bits of security in the “paranoid” framework of Alkim et al. [1], that
in particular requires δ ≤ 1.00255. We intend “security” here as the claim that the underlying hardness
assumptions are hard to solve for a quantum computer. We choose as ring the polynomial ring Rq defined
by n = 210 and a prime 264 < q < 265. Such choice of degree guarantees that the set S1 contains more than
2256 elements, hence finding the user’s secret ti through a brute-force attack is not possible. The number N
of supported users is 226. For technical reasons, Aurora requires that Fq has a large power-of-2 multiplicative
subgroup, and so we choose q accordingly (most choices of q satisfy this requirement). This implies that the
unforgeability of the signature scheme is based on a RSISd,β instance where d = 68 and β ≤ 246, and on a

24



RLWEl,χ instance with l < 225. To estimate their hardness, we use the root Hermite factor δ (cf. [39]), and
we obtained a δRSIS ≤ 1.00062 and δRLWE ≤ 1.00001.

We now compute the length of the keys and of a signature output by the group signature. An element in
Rq can be stored in nk ≤ 8.32 KB. The opener’s secret key is composed by one ring element, hence it can
be stored in 8.32 KB, while the opener’s public key in 33.28 KB (as it is composed by 4 ring elements).

The group manager’s public key requires a bit of care. Indeed, the key (A,B,A0, . . . ,A`,u) includes
A = [a,1], B ∈ R1×m̄

q that are generated with the trapdoor (cf. Section 2.3), ` random vectors with m̄ = 67
components in Rq, where ` = 2nk + dlogNe, and a random element u ∈ Rq. Storing these would require
nk · (1 + m̄+ m̄ · `+ 1) = 210 · 65 · (1 + 67 + 67 · 218 + 1) = 146 GB, and it is clearly infeasible. Instead, the
issuer can send a condensed (pseudorandom) representation of the random elements A0, . . . ,A`,u, having
considerably smaller size. The size of the public key then becomes the size of such a representation plus
(m̄+ 1)nk ≤ 0.57 MB.

The group manager’s secret key is the trapdoor TA, that has components with coefficients smaller than
8sssk = 8

√
log(n2) + 1 (cf Lemma 2.1 and Theorem 2.5). Hence the size of TA is 2kn log(8sssk ) ≤ 91 KB.

At the end of the joining phase the user obtains the credential (ci,di, ti, i,Si), where the vector Si is

composed by 2m̄ + 2 ring elements with coefficients smaller than 8sσ = 8
√
n log n log n2 (cf. Section 2.3).

Hence it has size 3nk + dlogNe+ (2m̄+ 2)n log(8
√
n log n · log n2) ≤ 231 KB. The secret signing key of the

OTS can be discarded after the joining phase.

Finally, a signature is composed by the NIZK proof ΠS , and 4 vectors of elements in the ring. The proof
length is around 250 KB (estimate from [7]). The vectors V0,W0,V1,W1 are the encryptions of two ring
elements (ci,di) and a number i < N . As the encryption algorithm converts them into polynomials in S1

whose coefficients are the bits of their binary expansions, each vector is composed by d(2nk+ dlogNe)/ne =
2k + ddlogNe/ne elements in Rq, hence (V0,W0,V1,W1) has size (2k + ddlogNe/ne) · nk ≤ (2 · 65 + d26 ·
2−10e) · 210 · 65 = 131 · 1024 · 65 = 1.09 MB. Hence a signature is roughly 1.34 MB long.

To compare our scheme with previous ones (such as del Pino et al. [22] or Boschini et al. [12]), we compute
the length of the signature for the case in which the group manager is assumed to be honest (by default our
scheme guarantees a stronger notion of security). Modifying our signature to have a honest group manager
essentially means that it is enough that during issuance the user gets a signature by the group manager on
the user identity i. Hence, opening only requires the signature to contain an encryption of the user’s identity
i, whose bit decomposition can be encoded as one element of S1. Therefore, the vectors V0,W0,V1,W1

actually are just ring elements, hence the size of the signature is at most 250+4 ·210 ·65 ≤ 300 KB (obviously,
the size of the proof should shrink too, as the number of variables is smaller, but we mean this number as a
rough upper bound).
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A Formal Definition of Group Signature

In this section we present and discuss the Bellare-Shi-Zhang (BSZ) model for such group signature [6]. All
the results and observations presented in the section are taken from their work, (unless otherwise stated).

A (dynamic) group signature is a set of algorithms (GKg,UKg, Join, Iss,GSign,GVerify,GOpen,GJudge)
between a group manager, an opener and users. It is called dynamic because users can join at any time
during the lifespan of the group (while in static group signatures where joining can only happen during the
setup phase at the beginning).

To exclude man-in-the-middle attacks, we assume the existence of a PKI that allows to obtain certified
copies of the public key of the entities. To include this in our model, we assume there exists a public list
upk whose i-th entry contains the public key of user i. The position i is the user identity. Finally, the group
manager keeps another list called l, whose i-th entry contains the public key of the i-th user and her signing
key.

Key Generation. A trusted third party generates the group manager’s and opener’s keys running (gpk , gsk ,
opk , osk)← GKg(1`) (where ` is the security parameter). For the sake of clarity, we distinguish the group
public key gpk from the opener’s public key opk . A user generates her user secret key as (usk , upk) ←
UKg(gpk).

Joining Phase. The joining phase is an interactive protocol between a user i (running algorithm Join) and
the group manager (running Iss). Each takes as input an incoming message (ε if it is the first step of the
interaction) and the current state, and outputs an outgoing message, an updated state, and a decision
(accept, reject, continue). At the end of the interaction, the user obtains a signing key gsk i that includes
her keys usk , upk and her identity i as group member. If at the end of the interaction the user accepts,
the group manager creates a new entry l[i] in the list l containing the identity and signing key of user
i. The list is needed to allow the opener to prove that the identity he has extract from the signature
corresponds to an existing group member.

Signing. A user can sign a message µ on behalf of the group using her signing key with the algorithm
GSign(gsk i, gpk , opk , µ).

Verification. A signature σ on a message µ can be verified with the algorithm {1, 0} ← GVerify(µ, σ,
gpk , opk).

Opening. The opener can recover the identity i′ of the group member that signed a message µ running
(i′, τ) ← GOpen(µ, σ, gpk , osk , l). The algorithm outputs the identity of the signer with a proof that
the opening procedure was performed honestly (contained in τ). The list is needed to prove that the
identity i′ that the opener outputs corresponds to an existing group member. If opening fails, it outputs
(i′, τ) = (0, ε)

Judge. A third party can check whether the opener honestly opened a signature by running the algorithm
0, 1← GJudge(gpk , opk , µ, σ, τ, i′, l). Differently from Bellare et al., we allow the judge to have access to
the list instead of being given the public key gpk i′ . We think this choice is a better interpretation of the
role of safeguard that this algorithm has. Otherwise, the correctness of the output of GJudge depends on
it being given the right public key. This implies that the algorithm GJudge cannot be invoked by random
users, as the list l is not public (nor accessible to users).

The security requirements of the group signature are correctness, anonymity, traceability, and non frame-
ability.

The formal definitions require the definition of some lists. In the following, we clarify what are the lists
for the BSZ model and how are they used. To keep track of honest users, a list HU is created. Such list
contains as i-th entry the public and secret key of the user with identity i. Hence, by “adding i to the list
HU” we mean we set the i-th entry of the list to be (upk i, usk i). The list CU contains all the users that were
corrupted before joining the group (i.e., corrupted by A through CrptU). The adversary is allowed to corrupt
users after they become group members (through USK), but such users are not into this list. In fact, such
list contains the users that might have colluded with the group manager (in case M is corrupted) to tamper
with the list l (impacting honest opening and J). To detect when the adversary forges a signature by simply
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Group Manager User Opener Judge

Correctness X(the adversary can add users)
Anonymity X X(all usk can be leaked)
Traceability X(all usk can be leaked) X (partially)

Non frameability X X(there should exist at least one honest user) X

Table 2. Corrupted entities depending on the security property.

querying a user’s signing key, the non-frameability experiment checks A’s queries to USK before accepting a
forgery. Finally, we need a list of the challenge message-signature pairs CH generated during the anonymity
game, and a list GSig of the signatures output by the signing oracle.

OIss: this oracle (denoted SndToI in [6]) performs honestly the issuer’s side of the joining phase. During the
interaction, the adversary impersonates a user i willing to join the group. The oracle first checks that
the user i is a corrupted user; if i /∈ CU the algorithm aborts. At the end of the interaction it updates
the list of users l with the new user credential.

OGOpen: on input a pair (µ, σ), if (µ, σ) /∈ CH this oracle (denoted Open in [6]) outputs the honest opening
of the signature, otherwise it outputs ⊥.

OGSign: on input i and a message µ, it aborts if i /∈ HU. Otherwise, it recovers the corresponding signing
key gsk i (it aborts if such key does not exist), then it outputs a signature σ ← GSign(gsk i, gpk , opk , µ).
It stores (i, µ) in a list GSig.

Challb: on input a message µ and two identities i0, i1, it recovers gsk ib and outputs a signature σ on µ using
the signing key of user ib if i0, i1 ∈ HU (otherwise it aborts). The algorithm adds the entry (µ, σ) to CH.

RReg: on input i, outputs the i-th entry of the list l[i] to the adversary.
WReg: on input i and a string B (that is a valid list entry), sets l[i] to B.
SndToU: this algorithm allows the adversary to choose a user i and to run with i the joining protocol

impersonating the issuer. The result of this interaction is that there is a new honest group member,
hence the algorithm adds i to HU.

CrptU: the adversary uses this algorithm whenever she wants to corrupt a user before it has joined the group.
On input i, upk ′, it first checks whether i is in HU or CU. If i ∈ CU ∪ HU, it returns ε. Then it looks
up the user with keys (upk i, usk i), and sets her key to be (upk ′, usk i). Finally, if i is in HU, it removes
it and adds (upk ′, usk i) to CU it is in CU, it updates it to be (upk ′, usk i).

USK: on input the user’s public key upk i, outputs the corresponding secret key usk i and secret signing key
gsk i.

AddU: on input a user identity i, it creates a new honest user with identity i. If i ∈ CU ∪ HU it aborts.
Otherwise, it generates usk i, upk i, adds i to HU, and executes honestly the group joining protocol by
running Join and Iss on behalf of user i and of the issuer respectively, where both algorithms are initialized
with the necessary keys. If the protocol ends successfully, it returns upk i.

We slightly modified the BSZ model to clarify the definitions. Mainly, we introduced a list GSig, to make
it easy to verify whether a message was signed with a particular usk by the honest signing algorithm OGSign,
and we do not assume that access to WReg implies that A is able to read the list too. The result is that,
whenever the adversary can corrupt the issuer, she is given access to both RReg and WReg.

To understand why we need these oracles, we analyze the different degrees of corruption of the entities
depending on the security property we want to guarantee. We briefly explain this in the following; our
observations are summarized in Table A. Note that the Judge is always honest by construction.

The algorithms OIss, OGOpen and OGSign model the honest behavior of the issuer, the opener and a
user respectively. The other algorithms model the various hostile scenarios. There are different degrees of
corruption, but the distinction Bellare et al. are concerned with is between partial and full corruption. In
both cases the secret key is leaked to the adversary. However, a partially corrupt entity still performs its task
honestly, while a fully corrupt one will give the adversary full control, allowing deviations from the protocols.
Note that this distinction is not relevant in the case of the issuer. In fact, knowing the issuer secret key is
not useful for the adversary if she cannot interact with users. Hence in the definitions a corrupted issuer is
always assumed to be fully corrupted (i.e., when the adversary gets gsk she is also given access to the oracle

29



Experiment ExpcorrA (1λ)
CU← ∅, HU← ∅
(gpk , gsk , opk , osk)← GKg(1λ)

(i, µ)← AAddU, RReg(gpk , opk)
If (i /∈ HU ∨ gsk i = ε) return 0.
σ ← GSign(gsk i, gpk , opk , µ)
If 0← GVerify(µ, σ, gpk , opk) return 1.
(i′, τ)← GOpen(µ, σ, gpk , osk)
If (i′ 6= i ∨ 0← GJudge(gpk , opk , µ, σ, τ, i′, l)) return 1, else return 0.

Fig. 6. Correctness experiment for dynamic group signature.

SndToU). The case of the opener is different. In fact, in this case knowing the secret opening key is useful to
the adversary, as it is enough to de-anonymize signatures produced by group members.

Finally, regarding users, the adversary has multiple options. She can either create users (querying OIss or
exploiting knowledge of gsk), ask users to sign messages of her choice (interacting with OGSign), or corrupt a
user to either change her public key (CrptU), or reveal her secret key (USK).

The algorithm Challb is used in the anonymity experiment to model the generation of the challenge
signature. In this way, it is not necessary to distinguish in the experiment the adversary’s capabilities before
and after receiving the challenge.

Correctness requires that honestly generated signatures satisfy the verification checks, can be opened to
the correct identity of the signer, and that the proof generated by a honest opener is always accepted by the
GJudge algorithm.

Definition A.1 (Correctness). A group signature (GKg,UKg, Join, Iss,GSign,GVerify,GOpen,GJudge) sat-
isfies correctness if every adversary A has no advantage in winning the experiment ExpcorrA (1λ) in Figure A,
i.e.,

AdvcorrA (λ) := Pr(1← ExpcorrA (1λ)) = 0 .

Anonymity informally requires the adversary not to be able to distinguish which user has signed a message
of her choice. For the property to be meaningful, the adversary should not be allowed to corrupt the opener.
On the other hand, the adversary is allowed to fully corrupt (i.e., to know the secret key of) both the users
and the issuer. In particular, the adversary should not be able to recognize the signatures generated by a
user even if she recovers the secret key of the user.

Definition A.2 (Anonymity). A group signature satisfies anonymity if

AdvanonA (λ) := Pr(1← ExpanA,1(1λ))− Pr(1← ExpanA,0(1λ))

is negligible in the security parameter for all PPT adversaries A, where the experiment can be found in Figure
A.

Coherently with Bellare et al., in ExpanA the adversary is not given access to a signing oracle, as it would
be redundant.

Experiment ExpanA,b(1
λ)

(gpk , gsk , opk , osk)← GKg(1λ)
CU← ∅, HU← ∅, CH← ∅
b′ ← AOGOpen, CrptU, USK, RReg, WReg, SndToU, Challb(gpk , gsk , opk)
Return b′.

Fig. 7. Anonymity experiment for dynamic group signature.
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Experiment ExptrA (1λ)

(gpk , gsk , opk , osk)← GKg(1λ)
CU← ∅, HU← ∅, GSig← ∅
(µ∗, σ∗)← AOIss, AddU, USK, CrptU, RReg(gpk , opk , osk)
If 0← GVerify(µ∗, σ∗, gpk , opk), return 0
Else (i∗, τ∗)← GOpen(µ∗, σ∗, gpk , osk).
If (i∗ = ε) ∨ 0← GJudge(gpk , opk , µ∗, σ∗, τ∗, i∗, l) return 1.
Else return 0.

Fig. 8. Traceability experiment for dynamic group signature.

The notion of traceability for group signature essentially means that the opener can always link a signature
back to the signer (cf. [4]). When the group signature has blinded joining protocol, such notion is split in
two, as both the issuer and the opener can be corrupted. First, an adversary A should not be able to produce
a signature that cannot be opened by an honest opener, or such that a honest opener is unable to prove that
the opening was correctly executed, even if A corrupts the opener (traceability). If A could corrupt the issuer
this would be trivial to achieve, as the issuer could issue a signing key gsk i to a user i, without adding the
user keys to the list l. In this way, A can produce valid signatures using gsk i, but the opener cannot recover
the user’s public key, as l[i] does not exist. Analogously, if A could fully corrupt the opener the definition
would be meaningless, as the adversary would win it always by simply forcing the opener to declare itself
unable to open the forged signature A outputs.

Definition A.3 (Traceability). A group signature satisfies traceability if all PPT adversaries A have neg-
ligible advantage in the experiment ExptrA , i.e.,

AdvtracA (λ) := Pr(1← ExptrA ) = ν(λ) .

Remark that again there is no need to give to the adversary explicit access to an oracle that produces
signatures of honest users, as the adversary could just query the user’s secret keys through USK.

On the other hand, it should be impossible for A to generated a signature that links back to a honest
user who did not produce it, even if she corrupted both the issuer and the opener (non-frameability).

Definition A.4 (Non-frameability). A group signature satisfies non-framea- bility if all PPT adversaries

A have negligible advantage in the experiment ExpnfA in Figure A, i.e.,

Advnon−frA (λ) := Pr(1← ExptrA ) = ν(λ) .

Experiment ExpnfA (1λ)

(gpk , gsk , opk , osk)← GKg(1λ)
CU← ∅, HU← ∅, GSig← ∅
(µ∗, σ∗)← AOGSign, AddU, USK, CrptU, RReg, WReg, SndToU(gpk , gsk , opk , osk)
If 0← GVerify(µ∗, σ∗, gpk , opk), return 0
Else (i∗, τ∗)← GOpen(µ∗, σ∗, gpk , osk).
If i∗ ∈ HU ∧ 1← GJudge(gpk , opk , µ∗, σ∗, τ∗, i∗, l) ∧ (i∗, µ∗) /∈ GSig

return 1.
Else return 0.

Fig. 9. Non-frameability experiment for dynamic group signature.
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