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Abstract. We exploit the Di�e-Hellman-like structure of CSIDH to build a quantum-resistant
authenticated key-exchange algorithm. Our security proof has optimal tightness, which means
that the protocol is e�cient even when instantiated with theoretically-sound security parameters.
Compared to previous isogeny-based authenticated key-exchange protocols, our scheme is extremely
simple, its security relies only on the underlying CSIDH-problem and it has optimal communication
complexity for CSIDH-based protocols. Our security proof relies heavily on the rerandomizability
of CSIDH-like problems and carries on in the ROM.
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1 Introduction

Authenticated key-exchange protocols allow two parties to collaborate in order to create a shared secret
key, providing each of them with some assurance on the identity of the partner. Authentication can
be achieved in two ways: implicitly, if the algebraic properties of the scheme imply that the only user
who can compute the shared key is the intended one, or explicitly, by receiving a confirmation that
the interlocutor has actually computed the key. The latter implies the use of a second mechanism which
provides authentication, like a signature scheme, a KEM or a MAC. Even if explicit authentication might
seem a stronger and preferable feature, in the real world it does not add much to the security of the
protocol. First of all, it does not guarantee that the partner holds the shared key for all the time between
the key confirmation and the use of the key. Moreover, the generation of signatures or the use of KEMs
and MACs produces evidence of participation to a key-exchange, while implicit authentication does not.
Finally, the schemes relying on implicit authentication typically require less computations and message
exchanges compared to those involving an explicit authentication mechanism, with a significant profit in
computational cost and communication e�ciency.

The security proof limits the advantage of an adversary in breaking the scheme to the probability of
solving some mathematical hard problem. Deploying a cryptographic algorithm should always be done
in a theoretically sound way: the size of the concrete parameters must be large enough to guarantee
the required � bits of security. If on one hand any security proof asymptotically guarantees the desired
security level, on the other hand we want to use the smallest parameters possible, in order to obtain the
most e�cient implementation under the given security constraints. It is useful to measure the so-called
tightness of the proof by computing its security loss L(�): hitting the optimal tightness bound assures a
certain security level while instantiating the protocol with the smallest parameters possible. It is therefore
extremely relevant to build a protocol with a security proof that is as tight as possible. The parameters
on which we focus are, in particular, the number of users running the protocol and the number of sessions
per user. Note that, nowadays, security proofs [JKSS12,KPW13,BFK+14] for a widely deployed protocol
such as TLS have a quadratic loss in the number of sessions, fact that is not taken into account for the
implementation.

In 2019 Cohn-Gordon et al. [CCG+19] developed a key-exchange protocol with a nearly tight security
proof. In particular, the security loss is linear in the number of users and constant in the number of
sessions per user. The schemes in the latter paper base their security on the Strong-DH assumption and
its variants, defined over cyclic groups of prime order. The rerandomization of Di�e-Hellman problems
plays a fundamental role in achieving the optimal tightness of the proofs, and thus it is a desirable
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feature that we cannot disregard. The tightness and practicality of these schemes raise an interesting
question: is it possible to adapt the protocols (together with their security proofs) in order to make them
quantum-safe?

In 1997, Peter Shor [Sho97] published a quantum algorithm for integer factorization and one for com-
puting discrete logarithms, both running in polynomial time. As soon as a large-scale quantum computer
will become available, the information security based on primitives like the RSA cryptosystem and the
Di�e-Hellman key-exchange will be breached. In order to address this quantum threat, many researchers
have focused their attention on post-quantum cryptography. The goal is to find new cryptographic prim-
itives which can be implemented on classical computers, still guaranteeing security against both classical
and quantum adversaries. In 2016, NIST announced a world-wide competition for new post-quantum
standards in public-key encryption and digital signature algorithms. 69 submissions were accepted in
the first round, 26 of which made it to the second step. The search for new post-quantum cryptographic
standards is still ongoing.

Supersingular-Isogeny based Di�e-Hellman (SIDH) [JD11] is one of the promising candidates in the
search for cryptographic protocols that are secure against an adversary equipped with a large-scale
quantum computer. Key-exchange protocols based on isogenies are unique in the sense that they provide
key-sizes roughly similar to those of pre-quantum alternatives, but they are also known for being more
complex (algebraically) compared to some of the post-quantum alternatives. An example of a scheme that
is based on SIDH is SIKE [JAC+19], which is one of the 26 candidates in the second round of NIST’s
2016 competition for post-quantum cryptographic protocols. Even if SIKE is not among the finalists
announced in July 2020, NIST has shown high interest on isogeny-based cryptography, encouraging
further research on this field [AASA+].

Although SIDH-based schemes have been around for a few years now, there are still open questions
about the security behind them. In particular, random self-reducibility of SIDH problems is very hard
to achieve. A di↵erent isogeny-based scheme is CSIDH [CLM+18]: introduced in 2018, it o↵ers a much
more flexible and adaptable algebraic structure. In this paper we show that we can obtain an optimally
tight security proof for a CSIDH-based key-exchange protocol, making use of random self-reducibility.
This kind of rerandomization plays a fundamental role in the tight proofs of, for instance, the classical
Di�e-Hellman key-exchange, but is also used in modern tightly secure key exchanges: Cohn-Gordon et
al. [CCG+19] exploit this property to construct a tightly-secure AKE protocol.

The protocol we introduce is, to our knowledge, the best proven-secure result for isogeny-based
cryptographic systems. The proofs presented here draw on the proofs from Cohn-Gordon et al. [CCG+19],
but with changes to the re-randomisation strategy, since re-randomisation in the isogeny case is di↵erent
from the cyclic group case. Both e�ciency and tightness are a significant improvement over the state of
the art, and can lead to the deployment of schemes with more e�cient parameter choices obtaining high
security at computational costs which are as low as possible.

1.1 Our contributions

In section 3.2 we adapt protocol ⇧ by Cohn-Gordon et al. [CCG+19] to the isogeny setting, obtaining
the first implicitly authenticated CSIDH-like protocol with weak forward secrecy, under only the Strong-
CSIDH assumption. This is the first scheme with a security proof (moreover with optimal tightness) in
the same setting as CSIDH. The protocol requires each user to perform 4 ideal-class evaluations, and its
security proof shown in section 4.3 has a tightness loss which is linear in the number of sessions performed
by a single user.

The adaptation we perform is, however, not straightforward. In the new setting we have only one
operation, namely the multiplication of ideal classes, while in the original protocol rerandomization
is achieved via two operations (addition and multiplication of exponents). This leads to a di↵erent
rerandomization technique which relies one the random self-reducibility of the computational CSIDH
problem shown in appendix A.2.

What we obtain is a significant improvement over the state of the art of isogeny-based key-exchange
protocols. Compared to the latest scheme in “Strongly secure AKE from SIDH” [XXW+19], we obtain
better e�ciency and tightness. Moreover, unlike this latter scheme, our protocol does not require any
authentication mechanism. This allows us to rely on the same class (and a smaller number) of hardness
assumptions, and to avoid the use of signatures, which are tricky and expensive [DG19] to produce
in the isogeny setting. Compared to the CSIDH protocol, which lacks a security proof and for which
authentication seems hard to achieve, our ⇧-SIDE protocol has implicit authentication at the cost of a
few more ideal-class evaluations.
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As shown in section 5, our ⇧-SIDE protocol is competitive with other post-quantum candidates, once
instantiated with theoretically-sound parameters.

1.2 Related work

In the last years, a lot of research has been conducted on SIDH-based schemes. For example, Galbraith
[Gal18] has shown how to adapt generic constructions to the SIDH setting, and he introduced two new
SIDH-AKE protocols. Similar results were achieved by Longa [Lon18], except for the introduction of the
two new schemes. Assuming a straightforward adaptation, a few other protocols have a non-quadratic
tightness loss. For example KEA+ [LM06] has a linear loss in the number of participants multiplied by
the number of sessions, assuming the hardness of the Gap-DH problem. Although, it does not achieve
wPFS and takes O(t log t) time only when instantiated on pairing-friendly curves.

In their recent paper, Xu et al. [XXW+19] propose SIAKE2 and SIAKE3, a two-pass and a three-
pass AKE respectively. SIAKE2, whose security relies on the decisional SIDH assumption, has a rather
convoluted construction: they design a strong One-Way CPA secure PKE scheme, which is then turned
into a One-Way CCA KEM through the modified FO-transform and finally used as a building block for
the AKE scheme. The three-pass AKE SIAKE3 is obtained by modifying the previously designed KEM,
once a new assumption (the 1-Oracle SI-DH, an analogue of the Oracle Di�e-Hellman assumption in
which only one query is allowed) is made. Compared to this scheme, our result is simpler and it has a
tighter security proof, smaller communication complexity and improved overall e�ciency.

2 Preliminaries

In this section, we first recall the definition of tightness for security reductions. Then we provide the
reader with key-concepts and results which are indispensable to understand the constructions of SIDH
and CSIDH. Good references regarding elliptic curves and isogenies are Silverman [HS09], Washington
[Was08] and De Feo [Feo17]; the original papers introducing SIDH and CSIDH are Jao-De Feo [JD11]
and Castryck et al. [CLM+18], respectively.

2.1 Tight reductions

When comparing schemes, one should always consider protocols once they have been instantiated with
theoretically-sound parameters, which guarantee the desired level of security. These parameters (such as
the bit-length of the prime defining a base field or the key size) strongly depend on the security proof
correlated with the protocol. A security proof usually consists of

– a security model, in which we describe an adversary by listing a set of queries that it can make (and
therefore specifying what it is allowed to do);

– a sequence of games leading to a reduction, in which an adversary A against the protocol is turned
into a solver B for an allegedly hard problem.

The “quality” of a reduction can be measured by computing its security loss: if tA and ✏A are respectively
the running time and the success probability of A, and tB and ✏B are respectively the running time and
the success probability of B, then we define the security loss L as

tA
✏A

= L
tB
✏B

. (1)

If L is constant, then we say that the reduction is tight. Having a tight proof is therefore as relevant
as building an e�cient protocol, because this leads to deploy the smallest possible parameters when we
concretely instantiate a protocol (guessing which keys are “large enough” to guarantee security might
not lead to practical sizes).

In some cases, however, it is impossible to obtain a tight reduction. In a simple scheme the adversary
is run only once, in comparison to other protocols which use the Forking Lemma in order to run multiple
copies of the adversary. A linear loss in the number of participants to the protocol is unavoidable for
simple schemes, while applying the Forking Lemma leads to a non-tight proof. We therefore focus on
optimal tightness whenever tightness is unachievable: the L in Equation (1) turns out to be not constant,
but one proves that it is impossible to decrease its order. We rely on the same strategies adopted in the
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paper by Cohn-Gordon et al. [CCG+19] to prove the lower bound on the tightness loss, applying their
variant of the meta-reduction techniques by Bader et al. [BJLS16].

Many available schemes, which are actually taken into account for standardization processes, have
quite non-tight security reductions. Let µ be the number of users running the protocol and let k be the
number of sessions per user. HMQV [Kra05], a classically secure protocol in the random-oracle model
under the CDH assumption, has security loss O

�
µ2k2

�
. If we consider a generic signed KEM approach,

we get a O
�
µ2k2

�
loss in addition to the signature scheme loss. In many cases, parameters are chosen in a

non theoretically-sound way, while tightness loss should always be considered when comparing protocols.

2.2 Elliptic curves, isogenies and endomorphism rings

Let Fp be a finite field for a large prime p and let E be an elliptic curve over Fp. We say that E is
supersingular if and only if it has order #E(Fp) = p + 1. Consider the isomorphisms of elliptic curves,
i.e. all the invertible algebraic maps. Any two elliptic curves over the algebraic closure Fp are isomorphic

if and only if they have the same j-invariant. Thus we can use isomorphisms to define an equivalence
relation between elliptic curves and identify an equivalence class by the j-invariant of the curves in the
class.

Let E1 and E2 be two elliptic curves defined over Fp and let 0E1 , 0E2 denote the respective points at
infinity. An isogeny from E1 to E2 is a morphism � : E1 ! E2 such that �(0E1) = 0E2 . For any isogeny
� : E1 ! E2 there exists a dual isogeny �̂ : E2 ! E1 such that �̂�� = [deg(�)]E1 and �� �̂ = [deg(�)]E2 .
An isogeny is essentially determined by its kernel: given a finite subgroup G ⇢ E(Fp) there exist a
unique (up to isomorphisms) elliptic curve E2 ' E1/G and a separable isogeny � : E1 ! E2 such that
ker(�) = G. The isogeny � has degree ` equal to the cardinality of its kernel, and we call it an `-isogeny.
Given the kernel of an isogeny we can exploit Vélu’s formulae [Vél71] to compute the isogeny � together
with the codomain curve E2 in O(` log(p)2) bit operations. This is the best approach when ` is small
enough and p is shorter than a few thousand bits. Any separable isogeny defined over Fp can be written
as the composition of isogenies of prime degrees.

An endomorphism is an isogeny from E to itself; the set of endomorphisms of E, together with the zero
map and equipped with pointwise addition and composition, forms the endomorphism ring End(E). We
denote by Endp(E) the ring of endomorphisms defined over Fp. For ordinary curves Endp(E) = End(E),
while for supersingular curves Endp(E) ⇢ End(E). In particular, End(E) is an order in a quaternion
algebra, whilst Endp(E) is an order in the imaginary quadratic field Q(

p
p). A classical result by Deuring

[Deu41] reveals that End(E) is a maximal order in Bp,1, the quaternion algebra ramified at p and at
1.

2.3 The ideal class group action

In this section, we provide the reader with the basic definitions and known results regarding ideal class
group action. In particular, we gravitate around the meaning of a recurring sentence in papers on isogeny-
based cryptography:

“The ideal class group of an imaginary quadratic order O acts freely via isogenies on the set of elliptic
curves with Endp(E) ' O.”

We will then focus on the computational aspects, essential to understand CSIDH.

Algebraic foundations. An algebra A is a vector space over a field K equipped with a bilinear operation.
If the bilinear operation is associative, then we say that A is an associative algebra. Given a unitary ring
R, a left R-module RM consists of an abelian group (M,+) and a scalar multiplication R⇥RM �!R M
which satisfies left/right distributivity, associativity and neutrality of ring’s unit. Let R be an integral
domain (a commutative unitary ring without zero-divisors) and let K be its field of fractions; a left
R-module RM is a lattice in the vector space V over K if RM is finitely generated, R-torsion free and
an R-submodule of V . An order is a subring O of a ring A such that 1) A is a finite dimensional algebra
over Q, 2) O spans A over Q (i.e. QO = A), 3) O is an integer lattice in A.

The ideal class group. Let K be a finite extension of Q of degree 2, which is called a quadratic number

field, and let O ✓ K be an order. The norm of an O-ideal a ✓ O is defined as N(a) = |O/a|, which is
equal to gcd({N(↵) | ↵ 2 a}). Norms are multiplicative: N(ab) = N(a)N(b). A fractional ideal of O
is an O-submodule of K of the form ↵a, where ↵ 2 K⇤ and a is an O-ideal. Fractional ideals can be
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multiplied and conjugated in the obvious way, and the norm extends multiplicatively to fractional ideals.
A fractional O-ideal is invertible if there exists a fractional O-ideal b such that ab = O. If such b exists,
we denote a�1 = b. Note that all the principal fractional ideals ↵O where ↵ 2 K⇤ are invertible.

The ideal class group of O, denoted by cl(O), is defined as the quotient of the set of invertible
fractional ideals I(O) by the set of principal invertible fractional ideals P (O):

cl(O) = I(O)/P (O).

For any M 2 Z \ {0}, every ideal class [a] has an integral representative of norm coprime to M .
There is a unique maximal order of K with respect to inclusion, which is called the ring of integers

and is denoted by OK. The conductor of O in OK is the index f = [OK/O]. Every O-ideal of norm
coprime to the conductor is invertible and factors uniquely into prime ideals.

The class group action. Let E``p(O) be the set of supersingular elliptic curves over Fp with Endp(E)
isomorphic to an order O in an imaginary quadratic field and let E 2 E``p(O). Given an O-ideal a, we
define the action of a on E as follows:

1. we consider all the endomorphisms ↵ in a,
2. we compute the a-torsion subgroup E[a] = \↵2aker(↵) = {P 2 E(Fp) : ↵P = 0E 8↵ 2 a},
3. we compute the isogeny �a : E ! Ea ' E/E[a].

It is common practice to denote the action of a on E (and thus the curve Ea) as a ⇤E.
A fundamental result in isogeny-based protocols is the Deuring correspondence between the set of

maximal orders in Bp,1 and the set of elliptic curves: fixing a supersingular elliptic curve E0, every
`-isogeny ↵ : E0 ! E corresponds to an ideal a of norm `, and vice-versa. Since Ea is determined (up
to isomorphism) by the ideal class of a, finding di↵erent representatives of an ideal class corresponds to
finding di↵erent isogenies between two fixed curves.

We can rewrite any ideal a of O as the product of O-ideals a = (⇡pO)ras, where ⇡p is the p-th
Frobenius endomorphism and as 6✓ ⇡pO. This defines an elliptic curve a ⇤E and an isogeny

�a : E �! a ⇤E

of degree N(a) as follows:

– the separable part of �a has kernel \↵2asker(↵);
– the purely inseparable part consists of r iterations of Frobenius.

The isogeny �a and the codomain a⇤E are both defined over Fp and are unique up to Fp-isomorphism.
Directly from this construction it is clear that multiplying ideals and composing isogenies are equivalent
operations.

Let E``p(O,⇡) be the set of elliptic curves defined over Fp whose endomorphism ring is isomorphic to
O such that the Frobenius endomorphism ⇡p corresponds to ⇡. As explained by Castryck et al. [CLM+18],
we get the following fundamental result:

Theorem 1. Let O be an order in an imaginary quadratic field and ⇡ 2 O such that E``p(O,⇡) is

non-empty. Then the ideal class group cl(O) acts freely and transitively on the set E``p(O,⇡) via the

map

cl(O)⇥ E``p(O,⇡) �! E``p(O,⇡)

([a], E) 7�! [a] ⇤E.

From now on, we drop the class notation“[a]” in favor of a simpler “a” by considering any integral
representative in the class.

The structure of the class group. The class group cl(O) is a finite abelian group whose cardinality
is asymptotically #cl(O) ⇠

p
|�|. As argued by CSIDH’s authors [CLM+18], computing the exact

structure of the class group requires a lot of computational e↵ort. The best known algorithm (by Hafner
and McCurley [HM89]) for computing the structure of the class group is subexponential in �, which
is typically very large for CSIDH (about the size of p). Therefore, the authors opt for heuristics which
allow to find a very good approximation.

We are interested in the primes for which there exist distinct prime ideals l, l of O such that `O = ll.
If ` is such a prime, we say that ` splits in O: such ` are know as Elkies primes in the point-counting
setting. The ideal l is generated as (`,⇡ � �), where � 2 Z/`Z is an eigenvalue of ⇡p on the `-torsion,
and its conjugate is l = (`,⇡� ⇡/�), where p/� is any integral representative of that quotient modulo `.
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Remark 1. ` splits in O if and only if � is a non-zero square modulo `.

The CSIDH protocol is carefully designed such that a long list of primes (74 in the 512-bit imple-
mentation) are Elkies primes.

Computing the group action. According to the heuristics which are assumed in CSIDH, any element of
the group can be represented as the product of small primes ideals. We can compute l ⇤E, the action of
a prime ideal l = (`,⇡ � �) on E, in three di↵erent ways:

(a) by using the modular polynomials [Sut13]:
1. find Fp-rational roots of the modular polynomial �l(X, j(E)), which are the j-invariants of the

two possible codomains;
2. compute the kernel polynomials �(x) 2 Fp[x] for the corresponding isogenies;
3. determine which of the options is the correct one by checking if ⇡p(x, y) = [�](x, y) modulo �(x)

over the curve;
(b) by using the division polynomials [Was08, XI.3]:

1. factor the `-th division polynomial  l(E) over Fp;
2. match the irreducible factors with the right Frobenius eigenvalues;
3. use Kohel’s formulae to compute the codomain;

(c) by using Vélu’s formulae:
1. find a basis of the `-torsion points and compute the eigenspaces of ⇡p;
2. apply Vélu’s formulae to a basis point of the correct eigenspace to compute the codomain.

In the CSIDH protocol, the authors opt for the last method, which is the fastest when the necessary
extension fields (in which the basis points lie) are small.

When � = 1 the curve has a rational point defined over the base field Fp. If we also have that
p/� = �1, the other eigenspace of Frobenius endomorphism modulo ` is defined over Fp2 , so both
codomains can be easily computed using Vélu’s formulae over the base field, switching from a curve to
its quadratic twist if necessary.

The parameters of the implementation are decided such that p ⌘ �1 (mod `) for many di↵erent
primes `: in this case, � = 1 automatically implies p/� = �1.

3 Isogeny-based key-exchange protocols

Isogeny-based cryptography is a class of allegedly quantum-resistant schemes resulting from NIST’s
competition. Two of the most peculiar features that distinguish them from the other candidates are the
use of shorter keys and the deployment of more sophisticated algebraic structures. In this section, we
first provide an overview of CSIDH (pronounced “seaside”) [CLM+18], a key-exchange protocol which
does not take part in NIST’s competition but is extremely interesting and promising. Then we introduce
our new protocol ⇧-SIDE (pronounced “pie-side”). It is based on the protocol ⇧ [CCG+19], adapted to
the supersingular isogenies setting.

3.1 CSIDH

What follows is a description in broad terms of the CSIDH protocol, whose underlying algebraic structures
are briefly explained in section 2.3. We dwell in particular on the aspects which are relevant to our results.

Parameters. Fix a large prime p = 4 · `1 · `2 · · · · `n � 1 where `i are small distinct odd primes. Note that
the prime number is designed such that p ⌘ 3 (mod 4) in order to

– easily write down supersingular elliptic curves over Fp;
– make use of the Montgomery form for representing curves in the implementation.

The starting curve for each execution of the protocol is the supersingular elliptic curve in Montgomery
form E0 : y2 = x3 +x over Fp. In this case the characteristic equation of the Frobenius endomorphism is
⇡2

p
= �p, which implies that the Fp-rational endomorphism ring Endp(E0) is an order in the imaginary

quadratic field Q(
p
�p); in particular, Endp(E0) = Z[⇡]. The resulting `i-isogeny graph is a disjoint

union of cycles. Moreover, since ⇡2
� 1 ⌘ 0 (mod `i) for each i = 1, . . . , n, the ideals `iO split as

`iO = lili = (`i,⇡ � 1)(`i,⇡ + 1) (so all the `i are Elkies primes). Furthermore, the kernel of �li is the
subgroup generated by a point P of order `i which lies in the kernel of ⇡ � 1. Analogously, the kernel of
�li is generated by a point Q of order `i that is defined over Fp2 but not in Fp and such that ⇡(Q) = �Q.
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Sampling ideals and computing their action. Although we want to sample uniformly at random from the
ideal class group cl(O), it is preferable not to compute its exact structure because of the large size of the
discriminant �. By heuristically assuming that

– the ideals li do not have very small order,
– the ideals li are evenly distributed in the class group,

two ideals le1
1
le2
2
· · · len

n
for small ei will rarely lie in the same class. The ei are sampled from a short range

{�m, . . .m} for some integer m such that 2m + 1 � n
p
#cl(O). Since the prime ideals li are fixed, we

represent any ideal
Q

i
lei
i

(which will be the user’s secret key) as a vector (e1, e2, . . . , en) 2 [�m,m]n.
Since ⇡2

⌘ �p ⌘ 1 (mod `i), the eigenvalues of all `i-torsion subgroups are +1 and �1. This allows
us to e�ciently compute the action of li by using method 3. in section 2.3.

Representing and validating Fp-isomorphism classes. SIDH misses a key-validation protocol, and coun-
termeasures are expensive. We recall how the authors of CSIDH solve the problem for their protocol.

First of all, they provide a result [CLM+18, Proposition 8]) which states that, for the chosen p and
supersingular elliptic curve, the Montgomery coe�cient uniquely represents the class of elliptic curves
resulting from the evaluation of an ideal.

Secondly, to prove that an elliptic curve is supersingular (and thus #E(Fp) = p + 1), it is enough
to find a point Q 2 E whose order is a divisor of p+ 1 greater than 4

p
p (by Hasse’s theorem, we have

only one multiple of that divisor in the interval [p + 1 � 2
p
p, p + 1 + 2

p
p], which must be the group

order by Lagrange’s theorem). They therefore provide an algorithm which takes a point at random and
computes its order. With high probability (increasing with `i), this will tell in only one step if the curve
is supersingular or not. If x-only Montgomery arithmetic is used, a random point P is obtained by
randomly picking x 2 Fp, and there is no need to di↵erentiate points in Fp and in Fp2 (in the second
case, the point will correspond to an Fp-rational point in the quadratic twist, which is supersingular if
and only if the original curve is supersingular).

The CSIDH protocol. What follows is a summary of the non-interactive key-exchange protocol. First we
describe how to perform the Setup and the key-generation, then we schematise the simple structure of
key-exchange protocol.

Setup. In this phase we set up the global parameters of the key-exchange protocol. In particular, we
fix:

– n distinct odd primes `i, corresponding to n isogeny-degrees;
– a large prime p = 4 · `1 · `2 · · · `n � 1;
– the supersingular elliptic curve E0 : y2 = x3 + x over Fp with endomorphism ring O = Z[⇡].

Key generation. The private key is an n-tuple (e1, . . . , en) of integers, randomly sampled from a
range {�m, . . . ,m} such that 2m+ 1 � n

p
#cl(O), representing the ideal class a = le1

1
le2
2
. . . len

n
2 cl(O).

The public key is the Montgomery coe�cient A 2 Fp of the elliptic curve a ⇤E0 : y2 = x3 +Ax2 + x,
obtained by applying the action of a to the curve E0.

Algorithm 2: CSIDH, the non-interactive key-exchange protocol.

Alice Bob

sskA : a 2 cl(O) sskB : b 2 cl(O)

spkA : EA = a ⇤E0 spkB : EB = b ⇤E0

retrieve EB and check retrieve EA and check

its supersingularity; its supersingularity;

KA = a ⇤ EB KB = b ⇤ EA

KA = ab ⇤ E0 = KB
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3.2 Our protocol: ⇧-SIDE

Algorithm 3: ⇧-SIDE protocol.

Alice: PA 2 Fp Bob: PB 2 Fp

sskA : a 2 cl(O) sskB : b 2 cl(O)

spkA : EA = a ⇤ E0 spkB : EB = b ⇤E0

retrieve EB and check

its supersingularity;

eskA : f
$
 � cl(O)

epkA : EF = f ⇤E0 retrieve EA and check

EF its supersingularity;

eskB : g
$
 � cl(O)

epkB : EG = g ⇤E0

EG

K = H(txt k a ⇤EG k f ⇤EB k f ⇤EG) K = H(txt k g ⇤EA k b ⇤EF k g ⇤EF )

txt = PA k PB k EA k EB k EF k EG

Just like in the CSIDH key-exchange algorithm, we fix a large prime p = 4 · `1 · `2 · · · `n � 1 for odd
and distinct primes `i. Then we consider the supersingular elliptic curve E0 : y2 = x3 + x defined over
Fp, with endomorphism ring O = Z[⇡]. We recall that a key-pair (a, EA) can be correctly (with heuristic
assumptions) formed as follows:

1. for i = 1, 2, . . . , n, sample the exponent ai
$
 � {�m, . . .m}, where m is the smallest integer such

that 2m+ 1 � n
p

#cl(O);
2. construct the fractional ideal a = la1

1
· la2

2
· · · lan

n
. The ideal class a will play the role of secret key;

3. evaluate the action of the ideal class a on the elliptic curve E0, obtaining the curve EA = a ⇤E0; EA

is the Montgomery curve defined by the equation y2 = x3 + Ax2 + x over Fp and EA will be the
public part of the key pair.

The implementation-oriented reader should always remember that each elliptic curve should be repre-
sented using its Montgomery coe�cient. For the sake of notation we will refer to the curve instead.

Let P be the set of participants to the key-exchange protocol. We assume that each party in P holds
a static secret key ssk and a static public key spk, the latter registered at a certificate authority CA.
The certificate authority, upon registering a public key, does not require a proof of knowledge on the
corresponding secret key. We do not demand that public keys di↵er from party to party, but we allow
each party to register only one public key.

Suppose now that two parties Alice and Bob (uniquely identified as PA and PB) in the set P want to
establish a shared key. Here we have to distinguish between the initiator of the protocol (in our example
Alice) and the responder. At the beginning of the session, upon retrieving Bob’s public key, Alice samples
an ephemeral secret key eskA = f, computes the ephemeral public key epkA = EF and sends the result to
PB . Upon receiving EF , Bob first checks that it is supersingular and that its Montgomery coe�cient is
not in {±2}; if so, he in turn samples an ephemeral secret key eskB = g, computes the ephemeral public
key EG and sends it to Alice. Alice herself verifies the validity of EG. Each of them can now obtain the
session key K: given access to an hash function H, they can locally compute

K = H(PA k PB k EA k EB k EF k EG k ag ⇤E0 k bf ⇤E0 k fg ⇤E0).
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3.3 The SIDH case

A question naturally arises: if ⇧ can be adapted to the CSIDH setting, why can’t we do the same in the
SIDH setting?

On one hand, it is surely possible to translate the protocol itself, since SIDH has a Di�e-Hellman-like
structure too. The adaptation would require a di↵erent parameter choice, allowing two extra sets of
basis points, and the exchange of four extra image points (the images of the peer’s basis points via the
ephemeral isogeny) in order to allow the two parties to compute the common key.

On the other hand, in this case the security proof wouldn’t hit the optimality bound in the tightness
loss. As it will be clarified in the next section, a property that plays a fundamental role in this sense
is the random self-reducibility of the computational problem. In the next section we provide a formal
proof of this feature in the CSIDH case. At our knowledge, there exists no evidence that SIDH shares
this property, and it is rather unlikely to find a way to prove it.

4 Security of ⇧-SIDE

In this section, we construct the optimally tight security proof of our protocol ⇧-SIDE. First, we define
some allegedly hard problems in the CSIDH setting. Then we recall the security model adopted by
Cohn-Gordon et at. [CCG+19] for their protocols, which our scheme shares. Finally, we provide the
security proof, assuming the hardness of Strong-CSIDH problem. The structure of the proof is similar
to the original one, but we have made a number of changes, mostly related to the new rerandomization
technique. A straightforward adaption of the original technique would have not been possible by simply
substituting the exponentiation with the class group evaluation.

4.1 Hard problems

Let us first define some allegedly hard problems in the CSIDH setting. In section A.2 we have seen that
the Comp-CSIDH problem consists in finding the Montgomery coe�cient Z 2 Fp of the elliptic curve
ab ⇤E0 given the Montgomery coe�cients of the curves EA = a ⇤E0 and EB = b ⇤E0.

In order to keep the notation as simple as possible, we will formulate the next hard problems referring
to the elliptic curve itself instead of its Montgomery coe�cient. The reader should always keep in mind
that, when it comes to the implementation, each elliptic curve will be represented by its Montgomery
coe�cient, which lies in Fp.

We start with the Dec-CSIDH, the decisional variant of that problem, as follows:

Problem 1 (Decisional-CSIDH problem). In the CSIDH setting, let a, b, r
$
 � cl(O) be three elements

randomly sampled from cl(O) and let b
$
 � {0, 1} be the result of a fairly tossed coin. If b = 0 set

EZ = r ⇤E0, otherwise set EZ = ab ⇤E0 and run the adversary on input (EA = a ⇤E0, EB = b ⇤E0, EZ).
We define the advantage of A in solving the decisional CSIDH problem over cl(O) as

AdvDec�CSIDH

cl(O)
(A) :=

����Prob
⇥
A(EA, EB , EZ) = b

⇤
�

1

2

����.

In other words, the decisional problem is hard if the adversary succeeds with a negligible probability
in distinguishing among a properly computed session key and a random key.

Trivially, if we can solve the computational variant of problem then we can also solve its decisional
variant. But does the opposite hold?

Problem 2 (Gap-CSIDH problem). In the CSIDH setting, let a, b
$
 � cl(O) be two elements randomly

sampled from cl(O), corresponding to the curves EA = a⇤E0 and EB = b⇤E0. Suppose that the adversary

A is given access to a Dec-CSIDH oracle D(·, ·, ·), which outputs 1 if queried with a valid CSIDH triplet

(EA, EB , EAB) and 0 otherwise. We define the advantage of A in solving the Gap-CSIDH problem over

cl(O) as

AdvGap�CSIDH

cl(O)
(A) := Prob

⇥
A(EA, EB) = EA,B, given that A has access to D(·, ·, ·)

⇤
.

The security of protocol ⇧ [CCG+19] relies on the Strong-DH problem[ABR01], a variant of the Gap
problem in which the adversary is granted access to a more limited decisional oracle.
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Problem 3 (Strong-CSIDH problem). In the CSIDH setting, let a, b
$
 � cl(O) be two elements randomly

sampled from cl(O), corresponding to the curves EA = a⇤E0 and EB = b⇤E0. Let D be an oracle for the

decisional CSIDH problem. Suppose that the adversary A is given access to a decisional oracle with fixed

first input Strong � CSIDHX(·, ·) := D(EX , ·, ·), which outputs 1 if queried with a valid CSIDH triplet

(EX , EY , EXY ) and 0 otherwise. We define the advantage of A in solving the Strong-CSIDH problem

over cl(O) as

AdvStrong�CSIDH

cl(O)
(A) := Prob

⇥
A(EA, EB) = EA,B

�� 9 Strong � CSIDHX(·, ·)
⇤
.

4.2 Security model

Suppose that we have a certificate authority CA, a set of parties P = {P1,P2, . . . ,Pµ} an adversary M.
The parties can communicate with each other and with the certificate authority by using an unauthen-
ticated network. The certificate authority can be seen as a globally trusted party, or register, who holds
and distributes the static public keys of the parties in P. At any time, a new player can join in P by
communicating his static public key to the CA, and the register can grow indefinitely. As we mentioned
before, we do not require di↵erent parties to hold di↵erent public keys, and neither we demand any
proof of knowledge of the related secret key. Our protocol is implicitly authenticated and, as such, no
identification or proof of knowledge of any secret information is required. The only constraint we impose
is that each member can commit to only one static public key at a time.

Each party Pi is represented by a set of oracles {⇡1

i
,⇡2

i
, . . . ,⇡k

i
}, one for each of the k sessions the

user can participate to. Each oracle ⇡s

i
= (P s

i
, s

i
,Ks

i
, sents

i
, recvs

i
, roles

i
) of player Pi participating to its

s-th session maintains an internal state consisting of:

– the identity of the intended peer P s

i
which is supposedly taking part to the key-exchange session;

–  s

i
2 {;, accept, reject}, which indicates whether the session key has not been computed yet, or if it

has been accepted or rejected;
– the session key Ks

i
, which is not empty if and only if  s

i
= accept;

– sents
i
, the collection of all the messages sent by the oracle;

– recvs
i
, the collection of all the messages received by the oracle;

– the role roles
i
of the oracle (init or resp).

sents
i
and recvs

i
together form the view views

i
of Pi on the session.

We now define the attribute for indicating two oracles that allegedly participated to the same key-
exchange session. Two oracles ⇡s

i
and ⇡t

j
are called partner oracles if

1. P s

i
= Pj and P t

j
= Pi, i.e. if they are the intended peer of each other;

2.  s

i
=  t

j
= accept, i.e. they both accepted the session key;

3. views

i
= viewt

j
, i.e. the messages sent and received by Pi match with the ones respectively received

and sent by Pj during the key-exchange session;
4. they have specular roles.

Slightly simplifying the definition, an oracle is fresh if and only if its session key has not been revealed,
its partner oracle has not been corrupted or tested and the partner’s session key has not been revealed.
We will later constrain the adversary to test only fresh oracles. A party is honest if all its oracles are
fresh, i.e. if it has not been corrupted yet.

In this model, the adversary A has full control over the network and interacts with the oracles through
queries that allow it to

– activate an oracle ⇡s

i
and assign a role by sending it a message on behalf of a peer Pj ;

– reveal the long-term secret key of a user Pi. This query provides the target user with the attribute
of corrupted and all its oracles will answer ? to each later query;

– register the long-term public key for a new user. No knowledge of the corresponding secret key is
required and the public key is distributed to all other users;

– reveal the session key ks
i
stored in the internal state of any oracle ⇡s

i
. The target oracle is now said

to be revealed.
– test an oracle ⇡s

i
, which outputs ? if  s

i
6= accept. If  s

i
= accept it then outputs a key, which is

either the session-key or one picked at random, according to a previously defined random bit. The
key, may it be real or the random, is consistently issued in case of further tests.
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Note that the adversary is not allowed to reveal the ephemeral key of any session.
We work in the Real-or-Random model: when tested, each oracle will output a real session key or a

random key, according to a bit sampled at the beginning of the security game. In other words, if b = 0
each oracle tested during the game will output a random key, while if b = 1 each tested oracle will output
the real session key.

Once the environment has been set up, we run the following AKE security game G⇧(µ, k), with µ
honest parties and at most k sessions per user:

1. at first we toss a coin b
$
 � {0, 1}. We also set up µ parties, providing each of them with a long-term

key pair (ski, pki) and with k oracles;
2. we then run the adversary A, which knows all the public keys and can make any number of the

previously defined queries. The only restriction is that an oracle must be fresh when it is tested;
3. at some point, A will eventually output b0, its guess on the initial bit b. If the tested oracles are fresh

and b0 = b, then A wins the security game.

An adversary can try to break the system in three di↵erent ways: it can trick two oracles into
computing di↵erent session keys (event breakSound), break the unicity of the partnership relation between
two oracles (event breakUnique) or successfully guess b0 = b (event breakKE). We formalise these ideas in
the following definition.

Definition 4. In this security model, a protocol ⇧ fails if at least one of breakSound, breakUnique and

breakKE occurs while running game G(µ, k). Given an adversary A, we define its advantage against the

AKE security of protocol ⇧ as

AdvAKE

⇧
(A) := max

⇢
Prob[breakSound], P rob[breakUnique], P rob[breakKE]�

1

2

�

and we say that it (t, ✏A, µ, k)-breaks the AKE security of ⇧ if it runs in time t and has advantage

AdvAKE

⇧�SIDE
(A) � ✏A.

4.3 The security proof

As in the proof by Cohn-Gordon et al. [CCG+19], our goal for this section is to prove the following
theorem:

Theorem 2. Consider an environment running protocol ⇧-SIDE together with an adversary A against

AKE security of ⇧-SIDE. Then there exist 3 Strong-CSIDH adversaries B1,B2,B3 such that

AdvAKE

⇧�SIDE
(A)  µ ·AdvStrong�CSIDH

cl(O)
(B1)+AdvStrong�CSIDH

cl(O)
(B2)+µ ·AdvStrong�CSIDH

cl(O)
(B3)+

µk2

N

where µ = |P| is the number of parties, k is the maximal number of AKE-sessions per party and N is

the order of cl(O). The run-time of adversaries B1,B2,B3 is almost the same as A and they make at

most as many queries to the Strong-CSIDH oracle as A does to the hash oracle H.

The proof is analogous to the one of ⇧, rephrased and adapted to our setting. It consists of six
di↵erent games: Game 0 is the AKE experiment, while the other five games involve the following oracle
types:

– type I: an initiator oracle which has received the response from a responder oracle (honest when the
response is received) and with which it agrees on the transcript txt;

– type II: an initiator oracle whose intended peer is honest until the oracle accepts;
– type III: a responder oracle triggered by an honest initiator, with which it agrees on txt and which

is still honest when it receives the response;
– type IV: a responder oracle whose intended peer is honest until the oracle accepts;
– type V: an oracle (whether initiator or responder) whose intended peer is corrupted.

At the time of starting an AKE session, an initiator oracle cannot be entirely sure about the intended
peer’s honesty: we cannot tell if it is of type I or type II. This uncertainty vanishes when it receives the
response and it comes the time to compute the session key. This aspect will be taken in account during
the definition of the security games.
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Oracle Init. Resp.
Honest partner Honest partner Corrupted Agreement

(before acceptance) (after acceptance) partner on txt

Type I

Type II

Type III

Type IV

Type V

Table 1: Oracle types, defined by their role, the honesty of the (intended) partner oracle and the possible
agreement on txt.

We now define six di↵erent security games, which will lead to the definition of the three adversaries
B1,B2,B3 in Theorem 2. In each game we will have to look at the input to the hash function; for future
references, we indicate the general form of the input to the hash oracle involving a key-exchange session
between parties PA,PB as

PA k PB k EA k EB k EF k EG kW1 kW2 kW3 (2)

For i = 0, 1, . . . , 5 we denote with Sj the event “Game i outputs 1”, which will indicate a success for
the adversary in breaking protocol ⇧-SIDE (i.e. at least one of the events breakSound, breakUnique and
breakKE happens during Game i).

Game 0. In this game, we simply run the usual AKE security game: the adversary can corrupt some
players, reveal some session keys (but not any ephemeral secret key) and delay/redirect messages. When
it will be ready, it will pick a fresh oracle and make a query test on its session key. Game 0 will output
1 whenever the adversary breaks the AKE security of protocol ⇧-SIDE:

Prob[S0] = Prob[breakKE].

Game 1. In this game we abort if the same txt is computed by two non-partnered oracles. We can upper-
bound the probability of this event with the probability that the following conditions are simultaneously
verified:

1. two oracles ⇡s

i
,⇡t

i
belong to the same user Pi;

2. they pick the same ephemeral secret key during their respective sessions;
3. they are involved in two key-exchange sessions with the same user Pj (since the identity of the

intended peer is part of the txt).

Recalling that we have µ users engaging in at most k sessions, we get the inequality

|Prob[S1]� Prob[S0]| 
µk2

N

and thus, since in this game the unicity of the partner oracle cannot be broken, we can conclude that

Prob[breakUnique] 
µk2

N
.

Game 2. In this game we modify how each oracle computes the session key: instead of computing the
input to the hash oracle H, it checks if the adversary has queried the oracle on that same input, and
behaves consequently: if the answer is yes, then it stores that hash value as the session key (i.e. it properly
computes the key), otherwise it picks a key at random and stores that one instead. Note that, when it
comes the time for an initiator oracle to compute the session key, the oracle type is fully determined.

A type I oracle (an initiator oracle with a definitely honest partner oracle with which it agrees on the
txt) will store the key computed by the corresponding responder oracle.

Each type II and type V initiator oracles of party PA has to check first if the input

PA k PB k EA k EB k EF k EG k a ⇤EG k f ⇤EB k f ⇤EG
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has been object of any oracle query. If so, it sets its session key to the corresponding hash value (previously
stored by the responder oracle), otherwise it picks a session key at random (answering consistently to
any following hash query on that same input).

Each type III, IV and V responder oracle of a party PB in a session with PA will check if any queries
have been made on input

PA k PB k EA k EB k EF k EG k g ⇤EA k b ⇤EF k g ⇤EF .

If so, it stores the same result; otherwise it picks a key at random and stores it. In any case, each later
hash query is consistently answered with the stored session key.

We cannot observe the exact time in which the key derivation oracle is queried for the first time, thus
Game 2 outputs 1 whenever Game 1 outputs 1, and vice versa. We can therefore conclude that

Prob[S2] = Prob[S1].

Game 3. In this game (which is a variant of Game 2) we modify how a type IV oracle (a responder
oracle whose intended peer is honest until the oracle accepts) chooses the session key. What it does is
1) to pick a random key; 2) to wait for the adversary to possibly corrupt the intended peer PA; 3) only
then modify the hash oracle with the random key k.

We can now define the following events:

– L (for Long-term key), in which the adversary queries the hash oracle on input

PA k PB k EA k EB k EF k EG k g ⇤EA k b ⇤EF k g ⇤EF

before the long-term secret key of any initiator oracle is revealed;
– LA is the same event as L, but for a specific intended peer PA. Trivially Prob[L] =

P
i
Prob[Li];

– CA(for Corruption), in which the adversary queries the hash oracle on input

PA k PB k EA k EB k EF k EG k g ⇤EA kW2 kW3

before peer PA is corrupted; therefore we have Prob[LA]  Prob[CA].

In order to obtain a bound on Prob[CA] (and thus a bound on Prob[L]), we construct an adversary
B1 against the Strong-CSIDH problem.

Definition 5. [Adversary B1] Consider now an adversary B1 which is given a Comp-CSIDH chal-
lenge (ES , ET ) and is given access to a Strong-CSIDHS(·, ·) oracle. First of all, it chooses a user
PA uniformly at random and sets its long-term public key to EA = ES . Then it sets the ephemeral

public key of a type IV oracle to be r ⇤ET , for a random r
$
 � cl(O). Finally, it runs Game 2. If B1

corrupts PA, the experiment aborts.
We need to recognise the hash queries that involve the user PA (happening in Game 2) and those

involving the type IV oracle of any party PB . In particular,

1. consider hash queries of the form

PA k PB k EA k EB k EF k EG kW1 k b ⇤EF k f ⇤EG

involving user PA as initiator. We do not know PA’s secret key a = s, so we have to recognise
if W1 is actually EAG = s ⇤EG. This can be done by checking if Strong-CSIDHS(EG,W1) = 1;

2. consider hash queries of the form

PB k PA k EB k EA k EF k EG k b ⇤EG kW2 k f ⇤EG

involving user PA as responder. Again, we do not know PA’s secret key a = s, but this time it
is W2 = a ⇤EF that we cannot compute; thus we have to recognise if W2 is actually s ⇤EF . This
can be done by checking if Strong-CSIDHS(EF ,W2) = 1;

3. consider hash queries of the form

PA k PB k EA k EB k EF k EG k g ⇤EA kW2 kW3

involving the type IV oracle and user PA. We have to recognise if W1 is actually rt⇤EA = g⇤ES .
This can be done by checking if Strong-CSIDHS(EG,W1) = 1. Whenever we succeed and we
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find that W1 = ESG = s ⇤EG, since we computed EG = r ⇤ET , we output

EZ = r ⇤W1 = rs ⇤EG = rsr ⇤ET = rrsET = s ⇤ET = EST .

We have just described an adversary B1 which succeeds whenever event LA occurs in Game 2. LA can
occur only before PA is corrupt, and thus B1’s game would have gone through.

We can therefore upper bound

AdvStrong�CSIDH

cl(O)
(B1) �

1

µ

µX

i=1

Prob[CI ] �
1

µ

µX

i=1

Prob[LI ] =
1

µ
Prob[L]

from which we get that
��Prob[S3]� Prob[S2]

��  Prob[L]  µ ·AdvStrong�CSIDH

cl(O)
(B1)

the first element at the right-hand side of the inequality in Theorem 2.

Game 4. In this game a type III oracle (a responder oracle triggered by an honest initiator, with which
it agrees on the txt and which is still honest when it receives the response) chooses the session key at
random without modifying the key derivation hash oracle. Consider an oracle belonging to user PB with
static secret key b and ephemeral secret key g whose intended honest peer PA has static secret key a.
The adversary can find out this change only if (call this event L) it makes a query of the form

PA k PB k EA k EB k EF k EG kW1 kW2 k g ⇤EF .

This leads us to the following inequality:
��Prob[S4]� Prob[S3]

��  Prob[L].

Similarly to what we did in the previous game, we want to bound Prob[L] by constructing an adversary
B2 against the Strong-CSIDH problem.

Definition 6. [Adversary B2] Consider now an adversary B2 which is given a Comp-CSIDH chal-
lenge (ES , ET ) and is given access to a Strong-CSIDHS(·, ·) oracle. It runs Game 3., rerandomizing
the challenge as follows: 1) it sets the ephemeral public key of type I and II oracles to EF = r ⇤ES

for a random r
$
 � cl(O); 2) it sets the ephemeral public key of type III oracles to EG = r0 ⇤ET for

a random r0
$
 � cl(O).

In this game, since we embed the challenge in two ephemeral keys, all the static secret keys are
known to the adversary. We need therefore to recognise two types of hash oracle queries:

1. hash queries for type II oracles of the form

PA k PB k EA k EB k EF k EG k a ⇤EG k f ⇤EB k f ⇤EG

given the knowledge of the static secret keys, the only information to be detected is whether
W3 = f ⇤EG = rs ⇤EG or not. The answer can be obtained by performing the oracle query
Strong-CSIDHS(EG, rW3);

2. hash queries for type III oracles of the form

PA k PB k EA k EB k EF k EG kW1 kW2 k g ⇤EF

given the knowledge of the static secret keys, the only information to be detected is whether
W3 = g⇤EF = r0t⇤EF or not. The answer can again be obtained by performing the oracle query
Strong-CSIDHS(EG, [rW3).

If the Strong-CSIDH oracle outputs 1, then we output

EZ = r�1r0
�1

W3 = rr0fg ⇤E0 = rr0rsr0t ⇤E0 = rrr0r0st ⇤E0 = EST .

We have just described an adversary B2 which succeeds whenever event L occurs in Game 2. From
this fact we get that

��Prob[S4]� Prob[S3]
��  Prob[L]  AdvStrong�CSIDH

cl(O)
(B2)

the second element at the right-hand side of the inequality in Theorem 2.
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Game 5. In this game a type II oracle (an initiator oracle whose intended peer is honest until the oracle
accepts) chooses a random key EK and modifies the key derivation hash oracle only if the intended peer
is corrupted. Consider an oracle belonging to user PA with static secret key a and ephemeral secret key
f: if the adversary corrupts the intended peer PB , the hash oracle will output E : k whenever it is queried
on input

PA k PB k EA k EB k EF k EG k a ⇤EG k f ⇤EB k f ⇤EG.

We now reason analogously to what we did in Game 3. We define the following events:

– L: a query on the above input happens before the long-term secret key of any responder oracle is
revealed. It follows that ��Prob[S5]� Prob[S4]

��  Prob[L];

– LB : same as L, but for a specific intended peer PB . Trivially, Prob[L] =
P

i
Prob[Li];

– CB : a query on input

PA k PB k EA k EB k EF k EG kW1 kW2 kW3 W2 = f ⇤EB = b ⇤EF

happens before user PB is corrupted; therefore we have Prob[LB ]  Prob[CB ].

As we did in the previous games, we want to bound Prob[L] by constructing an adversary B3 against
the Strong-CSIDH problem.

Definition 7. [Adversary B3] Consider now an adversary B3 which is given a Comp-CSIDH chal-
lenge (ES , ET ) and is given access to a Strong-CSIDHS(·, ·) oracle. It runs Game 4., it embeds the
challenge as follows: 1) it sets the static public key of a uniformly-at-random user PB to EB = ES ;
2) it sets the ephemeral public key of type I and II oracles whose intended peer is PB to EF = r⇤ET

for a random r
$
 � cl(O).

If the adversary corrupts party PB , the game aborts, since the corresponding static secret key
is unknown. We need therefore to recognise three types of queries made to the hash oracle:

1. hash queries for which PB acts as responder

PA k PB k EA k EB k EF k EG k g ⇤EA k b ⇤EF k g ⇤EF .

Given that both b = s and t are unknown, the only information we cannot compute and that
has to be detected is whether W2 = b ⇤EF = b ⇤ES . The answer can be obtained by performing
the oracle query Strong-CSIDHS(EF ,W2);

2. hash queries for which PB acts as initiator:

PB k PA k EB k EA k EF k EG k b ⇤EG k f ⇤EA k f ⇤EG

(note that, in this case, the second part of the challenge has not been embedded in EF ). The
only information to be detected is whether W1 = b⇤EF = b⇤ES , and the answer can be obtained
by performing the oracle query Strong-CSIDHS(EG,W1);

3. hash queries defining event CB , i.e. made before the user PB is corrupted:

PA k PB k EA k EB k EF k EG kW1 kW2 kW3 W2 = f ⇤EB = b ⇤EF

We have to recognise if W2 is actually f ⇤EB = rt ⇤EB , and this can be done by checking if
Strong-CSIDHS(EF ,W2) = 1.

If the Strong-CSIDH oracle outputs 1 and realise that W2 = s ⇤EF = srt ⇤E0, then we output

EZ = r�1W2 = rsrt ⇤E0 = rrst ⇤E0 = EST .

We have just described an adversary B3 which succeeds whenever event LB occurs in Game 5. LB can
occur only before PB is corrupt, and thus B3’s game would have gone through. We can therefore upper
bound

AdvStrong�CSIDH

cl(O)
(B3) �

1

µ

µX

i=1

Prob[CI ] �
1

µ

µX

i=1

Prob[LI ] =
1

µ
Prob[L]
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from which we get that
��Prob[S5]� Prob[S4]

��  Prob[L]  µ ·AdvStrong�CSIDH

cl(O)
(B3)

the third and last element at the right-hand side of the inequality in Theorem 2.

Concluding the proof. Following from how we constructed each game in the proof, whenever the
games do not abort because of adversarial corruption, the adversary is provided with a random session
key, completely independent of every key and sent message. Therefore

Pr[S5] =
1

2
.

We have seen in Game 1. that

Prob[breakUnique] 
µk2

N
and, due to the perfect correctness of the scheme,

Prob[breakSound] = 0.

We can therefore exploit the bounds on adversarial winning probabilities to prove Theorem 2: given an
adversary A against protocol ⇧-SIDE, we have built three adversaries B1,B2,B3 against Strong-CSIDH
such that

AdvAKE

⇧�SIDE
(A)  µ ·AdvStrong�CSIDH

cl(O)
(B1)+AdvStrong�CSIDH

cl(O)
(B2)+µ ·AdvStrong�CSIDH

cl(O)
(B3)+

µk2

N

where µ is the number of participants to the protocol.
The tightness loss L = O(µ) that we achieve in this security proof is optimal for simple protocols

such as ours. The arguments adopted by Cohn-Gordon et al. [CCG+19] still hold in our setting and the
adaptation is straightforward.

5 Comparison

Comparing the e�ciency of our scheme with other post-quantum schemes is hard, first of all since many
schemes do not have a security proof [Ber19] (and thus the concept of theoretically-sound parameters
does not apply), but also because it is highly non-trivial to convert the concrete analysis into security
parameters for many schemes.

Castryck et al. [CLM+18] describe an implementation for a 128-bit security level that requires about
106 ·106 clock cycles to compute the group action. Since our protocol ⇧-SIDE requires four group action
computations, we have a total cost of about 400 · 106 clock cycles, ignoring hashing and other cheap
operations.

The most natural target for comparison is the NIST submission SIKE [JAC+19]. The original ⇧-
protocol can also be generalized to SIKE, but one would probably not attempt to build it on top of the
defined KEM. Instead, one would use the underlying isogeny computation. Table 2.1 from SIKE [JAC+19]
suggests that an isogeny computation using the optimized implementation (which probably matches
the CSIDH implementation best) requires roughly 50 · 106 clock cycles for the 128 bit security level
(SIKEp434), which becomes roughly 200 · 106 clock cycles for the generalized ⇧-protocol, significantly
faster than the CSIDH-based version.

Now suppose we instantiate the protocol with 216 users and 216 sessions per user. In this case, the
apparent security level of our protocol falls to about 110 bits. The SIKE-based protocol with the standard
security proof will have a quadratic security loss. This means that in order to get a similar theoretically-
sound security level from the SIKE-based protocol, we need to switch to SIKEp610. Again, Table 2.1
from SIKE [JAC+19] suggests that an isogeny computation using the optimized implementation requires
roughly 160 · 106 clock cycles. The generalized ⇧-protocol then requires roughly 640 · 106 clock cycles,
which is significantly slower than the CSIDH-based version.

According to this approximate analysis, the CSIDH-based version is faster than the corresponding
SIKE-based protocol when instantiated with theoretically-sound parameters. However, to properly de-
termine which is faster, comparable optimized implementations would be needed.

Another natural comparison target is the Strongly secure AKE from Supersingular Isogenies by Xu et
al. [XXW+19] referred to in section 1.2. For their two-pass protocol SIAKE2 and their three-pass protocol
SIAKE3, the numbers of cycles are approximately 7 · 109 and 6 · 109, respectively [XXW+19, Table 6].
Our protocol is significantly faster, by about an order of magnitude.
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6 Conclusions and open problems

In this paper we have shown that it is possible to construct post-quantum isogeny-based key-exchange
protocols with optimal tightness, without compromising e�ciency and key-size. The protocol is an easy
adaptation of protocol ⇧ [CCG+19], where we substitute the exponentiation in cyclic groups with the
action of an ideal class on elliptic curves. The adaptation of the proof, which requires random self-
reducibility of the computational-CSIDH problem, could not be done trivially. Indeed, we have had to
exploit a di↵erent rerandomization technique for the computational challenge, since we only have one
group operation on ideal classes against two operations (addition and multiplication) on exponents. We
have shown that the resulting scheme is competitive with other isogeny-based protocols, which lack a
security proof or have a larger tightness loss.

Our protocol is proven secure in the Random Oracle Model. In a crucial step we use the Strong-CSIDH
oracle to detect if the adversary queries the hashing oracle on an input which contains the solution to
a given computational-CSIDH challenge. If we allow the adversary to make quantum queries, the target
solution might be hidden in the superposition of states. We believe that collapsing the input state after
the oracle’s answer is not invalidating our security proof, since we do not need to reprogram the oracle.
We leave the proof of security in the QROM as future work.

A stronger security notion can be achieved by adding the static-static term in the session-key com-
putation, or by applying the NAXOS trick [LLM07]. But security against state compromise (ephemeral
key reveal) increases the tightness loss, since we cannot tightly deal with state reveal queries. How to
move to a stronger security model without losing in tightness is still an open problem.

We have seen how the flexible algebraic structure at the basis of CSIDH can be exploited to remodel
protocol ⇧ in the isogeny setting. Nevertheless, the simplicity of this scheme might be further exploited.
Other quantum-hard problems might be used to translate the scheme in other algebraic contexts. Adap-
tions in this direction are left for further research.

As a last remark, we would like to clarify that our scheme is not a↵ected by the algorithm recently
published by Castryck et al. [CSV20]. This attack, which breaks some instances of the Decisional CSIDH
problem, does not work when p ⌘ 3 (mod 4), as per our protocol.
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Appendix

A Random self-reducibility

According to a very general definition by Blum and Micali and rephrased by Naor [NR97], a problem f
is random self-reducible if solving it at any given instance x can be reduced in polynomial time to the
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solution of f at one or more random instances yi. In order to achieve random self-reducibility, there are
two conditions that have to be satisfied:

– the generation of the random instances y1, . . . yn has to be performed non-adaptively;
– the instances y1, . . . yn must be uniformly distributed.

Random self-reducible problems are extremely relevant for cryptographic purposes. First of all, they
are used in worst-case to average-case reductions. In fact, a worst-case instance of the problem can be
used to generate a set of random instances in such a way that solving f at the random instances allows
us to solve f at the worst-case instance in polynomial time. We can therefore conclude that f is hard on
average case as it is in the worst case. In the early ’80s Goldwasser and Micali exploited random self-
reducibility of mathematical problems to construct cryptographic algorithms for probabilistic encryption
[GM82] and pseudorandom generation [BM82]. Even more, if the group G and its generator g are properly
chosen, the random self-reducibility of the discrete logarithm problem guarantees passive security of the
plain Di�e-Hellman key-exchange protocol.

As we will show in detail, the computational Di�e-Hellman problem is random self-reducible.

g

A

X

B

Y

Z0

Z

·g↵

·g�

E0

EA

ET

EB

EU

ETU

EAB

t⇤

u⇤

Fig. 1: Rerandomization graphs in the proofs of random self-reducibility of the CDH problem and the
Computational-CSIDH problem.

A.1 Random self-reducibility of CDH

In order to clarify this definition with an example, we recall the well known proof of the random self-
reducibility of the Computational Di�e-Hellman problem (which is a natural touchstone, due to the
similarities of the DH protocol with SIDH and CSIDH):

Problem 8 (Computational Di�e-Hellman problem). Let G be a multiplicative cyclic group of order

q and let g be a generator. Given the triplet (g,A,B), where A = ga, B = gb for randomly chosen

a, b 2 {0, 1, . . . q � 1}, a probabilistic polynomial-time adversary has negligible probability of computing

gab.

Let (A = ga, B = gb, Z = gab) be a valid CDH instance and suppose that we have access to a
random oracle which outputs the solution to CDH for some random instance of the problem. We pick

two elements ↵,�
$
 � {0, 1, . . . q�1} (where “$” indicates a uniformly-at-random choice) and we compute

the corresponding elements X = A · g↵ 2 G and Y = B · g� 2 G. Suppose that we consult the oracle,
submitting the instance (g,X, Y ), and that it outputs a valid Di�e-Hellman key Z 0. At this point, we
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can easily reconstruct the shared secret z as follows:

Z 0 = g(a+↵)(b+�)

= gab · ga� · g↵b · g↵�

= Z · (ga)� · (gb)↵ · g↵�

= Z ·A�
·B↵

· g↵� .

The only unknown term is Z, which can be easily retrieved by the last equality as Z = Z 0
·x��

·y�↵
·

g�↵� . Note that, if the oracle runs in t-time, the algorithm we have just designed runs in (t + �)-time,
where � is the (very short) time which is necessary to perform samplings and multiplications.

It is easy to see that all the conditions on instances generation are respected: uniformly sampling from
Z/qZ and computing g↵ is equivalent to uniformly sampling from G, since g generates all elements of G
exactly once. On the other hand, for the same reason, for any random y0 there exists exactly one element
↵0 2 Z/qZ such that y0 = g↵0 . The non-adaptivity condition follows directly from the construction of
the algorithm.

A.2 Random self-reducibility on CSIDH

It is folklore that the key-recovery problem in CSIDH is random self-reducible, while SIDH-based prob-
lems are not. De Feo and Galbraith [DG19] provide a short proof of random self-reducibility of CSIDH;
hereafter, we prove this property more verbosely, in a fashion that resembles the one for CDH in section
A.1. In order to prove random self-reducibility for CSIDH, a fundamental role is played by the commuta-
tive action of cl(O) on the set of elliptic curves with endomorphism ring isomorphic to O. The presence
of a commutative action is a very strong element of resemblance with the Di�e-Hellman protocol.

Let us start with the definition of the Computational CSIDH problem. Let G be the set of elliptic
curves defined over Fp.

Problem 9 (Computational-CSIDH problem). Given n distinct odd primes `i and a large prime p =
4 · `1 · `2 · · · `n � 1, let E0 2 G be the supersingular elliptic curve in Montgomery form y2 = x3 + x.
Given two valid CSIDH public keys A,B 2 Fp, where A is the Montgomery coe�cient of the elliptic

curve EA = a⇤E0 and B is the one of EB = b⇤E0, find the Montgomery coe�cient Z 2 Fp of the elliptic

curve EA,B = ab ⇤E0.

Theorem 3. The computational-CSIDH problem is random self-reducible. In other words, given any two

random elliptic curves ET = t⇤E0 and EU = u⇤E0, for any algorithm B which solves the computational-

CSIDH problem achieving the advantage

AdvComp�CSIDH

G (B) = Prob
⇥
B(ET , EU ) = Z 0

| ET

$
 � G, EU

$
 � G

⇤

there exists an oracle algorithm A
B

that for any input EA, EB 2 G outputs the correct solution to the

corresponding computational-CSIDH problem with advantage AdvComp�CSIDH

G (B) and has roughly the

same running time.

Proof. Let EA = a ⇤E0 and EB = b ⇤E0 be the two elliptic curves corresponding to the Montgomery
coe�cients A and B; we can construct the following algorithm:

A
B(EA, EB)

t, u
$
 � cl(O)

ET  t ⇤EA = t0 ⇤E0, EU  u ⇤EB = u0 ⇤E0

Z 0
 B(ET , EU )

return Z of [t�1u�1] ⇤EZ0

In other words, the algorithm proceeds as follows. First of all, we pick uniformly at random two
isogeny classes t, u 2 cl(O): they are defined as t = lt1

1
lt2
2
. . . ltn

n
2 cl(O) and u = lu1

1
lu2
2

. . . lun
n
2 cl(O)

where each exponent ti, uj is picked uniformly at random from the set {�m, . . . ,m}. Then we evaluate
the action of t on EA and the action u on EB , obtaining two random elliptic curves ET , EU 2 G. Finally,
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we submit the new random instance to the algorithm B, which outputs the solution Z’, the Montgomery
coe�cient of the elliptic curve EZ0 . Since

EZ0 = t0u0 ⇤E0

= (ta)(ub) ⇤E0

= (tu)(ab) ⇤E0

= (tu) ⇤EA,B ,

we can easily retrieve the Montgomery coe�cient Z of the elliptic curve EA,B = t�1u�1
⇤EZ0 .

The advantage of the algorithm A
B can be calculated as follows:

Prob[AB(EA, EB) = Z] = Prob


t, u

$
 � cl(O) : B(t ⇤EA, u ⇤EB) = (ta)(ub) ⇤E0

�
.

By construction, the ideal classes t and u can be considered as sampled uniformly at random from cl(O)
(for the heuristics assumed in CSIDH), and therefore the elliptic curves ET = t ⇤EA and EU = u ⇤EB

are independent and uniformly distributed on G. Therefore, the oracle consulted by A
B receives a well

formed instance, so we can conclude that

Prob[AB(EA, EB) = Z] = Prob


B(ET , EU ) = taub ⇤E0

�� t, u $
 � cl(O)

�
= AdvComp�CSIDH

G (B).

As pointed out in section 2.3, we can e�ciently compute the action of the ideal classes l and l�1 by
using Vélu-type formulae. Therefore we can conclude that, if B runs in t-time, then the algorithm A

B

runs in (t + �)-time, where � is the small running time required to sample elements and evaluate the
action of ideal classes.


