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Abstract. To meet the ever-growing need for performance in silicon de-
vices, SoC providers have been increasingly relying on software-hardware
cooperation. By controlling hardware resources such as power or clock
management from the software, developers earn the possibility to build
more flexible and power efficient applications. Despite the benefits, these
hardware components are now exposed to software code and can poten-
tially be misused as open-doors to new kind of attacks. In this work,
we introduce SideLine, a novel side-channel vector based on delay-line
components widely implemented in high-end SoCs. We demonstrate that
these entities can be used to perform remote power side-channel attacks
and we detail several attack scenarios in which an adversary process lo-
cated in one processor core aims at eavesdropping the activity of a victim
process located in another core. For each scenario, we demonstrate the
adversary ability to fully recover the secret key of an AES algorithm
running in the victim core. Even more detrimental, we show that these
attacks are still practicable when a rich operating system is used.

1 Introduction

The need for direct physical access to a target to perform a hardware attack
was recently proved obsolete. Software-exposed hardware mechanisms imple-
mented to improve SoC performance or power consumption were shown to be
susceptible to remote hijacking by attackers seeking to perform fault injection
or Side-Channel Attacks (SCAs).

Since 2014, and the Rowhammer vulnerability’s disclosure [14], the remote
attack threat has become prevalent in hardware security researches. As a matter
of fact, the influx of connected devices associated with the multiplication of cloud
services offers a new playing field for attackers. Moreover, despite the appearance
of trusted entities (ARM TrustZone, Intel SGX) that testify a growing need for
SoC security, the hardware threat remains underestimated.

Between 2014 and today, Rowhammer capability evolved from random bit
flips generation to privilege escalation on remote devices [12,17,32]. Meanwhile,
the CLKSCREW exploit demonstrated that power and clock glitch attacks can
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be launched from within an ARM SoC using software programmable voltage-
frequency regulators [28]. Recently, this attack was improved [24] and deployed
on Intel SGX devices [13,21]. From a side-channel point of view, two novel fami-
lies of remote attacks have been introduced. On the one hand, micro-architectural
timing attacks with Meltdown-Spectre [19,15], Foreshadow (SGX) [29] and more
recentlyMDS exploits [30,5]. These attacks leverage speculative and out-of-order
execution in modern processors to steal secret data from victim processes. On
the other hand, remote power SCAs have been introduced through several works
on FPGA devices. Through the implementation of sensors inside a multi-user
FPGA fabric, it was demonstrated that an adversary can eavesdrop the activity
of the other users [26]. More recently, remote power SCAs have been extended to
microcontroller devices using the ADCs they embed [10,22] and to Intel devices
using the RAPL interface [18]. This spreads further the threats posed by remote
SCAs from FPGA fabrics to general purpose microcontrollers as those found in
usual connected devices.

In this paper we introduce SideLine, a novel side-channel vector based on
the intentional misuse of hardware resources available in high-end SoC devices.
SideLine leverages delay-lines components embedded in SoCs that use external
memory; it neither requires embedded reconfigurable logic (FPGA) nor ana-
log circuitry (ADC). Two delay-line blocks namely delay-locked-loop and pro-
grammable delay-block are hijacked to perform voltage measurements and mali-
ciously used to conduct power SCAs on application processors (AP) and micro-
controllers units (MCU). SideLine makes it possible for an attacker to perform
software-induced hardware attacks without direct physical access to the target.
Our contributions are listed below:

• We reveal that delay-line-based components available in a broad range of
SoCs that employ external memories can be turned into power consumption
measurement units.

• We describe three attacker-victim (core-vs-core) delay-line-based SCA sce-
narios over two SoC devices:AP-vs-AP attack (on a Xilinx Zynq 7000 SoC),
AP-vs-MCU attack and MCU-vs-AP attack (on a STMicroelectronics
STM32MP1 SoC) where AP and MCU respectively denote the application
processor and the microcontroller.

• For each scenario a correlation power analysis attack is conducted against
the publicly available OpenSSL AES encryption algorithm and the full secret
key is successfully recovered. The attack feasibility is demonstrated on bare
metal and Linux OS-based applications.

Responsible Disclosure: We responsibly disclosed our findings to Xilinx
on September 22th, 2020 and STMicroelectronics on November 2nd, 2020. Both
acknowledged and agreed on the publication of these results. Moreover, this
disclosure led to a close collaboration with these companies to find and build
efficient countermeasures against SideLine and similar attacks. Please keep in
mind that SideLine has been performed on these two processors for demonstra-
tion purposes but the concept is generic and any devices that embed delay-lines
can be affected.
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Fig. 1: On the left, local power SCA uses voltage probes to eavesdrop a leakage
from a victim process. On the right, remote power SCA leverages the target’s
resources to monitor the victim process leakage without requiring physical access.

Outline: The remainder of this paper is organized as follows. In section 2, we
provide background information on power SCAs and describe the state-of-the-
art. In section 3, we introduce delay-lines and their applications in SoC devices.
Then, we present the tested products and the associated threat model in section
4. Sections 5 and 6 are dedicated to the deployment of the three attack scenarios.
Finally, we discuss performance, limitations, countermeasures in section 7 and
conclude in section 8.

2 Background

This section reminds the general side-channel background, the techniques re-
cently introduced to monitor on-chip voltage fluctuations and the related works.

2.1 Power Side-Channel Attacks

A power SCA makes use of transistors switching activity leakage through power
consumption variations to collect information about the processes running inside
a device. Thanks to the correlation that exists between this leakage and the
processed data, an attacker may try to launch an SCA to recover secret data or
cryptographic keys from a target. Traditional power SCAs monitor the voltage
variations induced by a device through a resistor attached to its power pads
[16]. Simply by analysing the collected traces, an attacker can visually speculate
on the different instructions executed by the target using a so-called Simple
Power Analysis (SPA [16]) attack. Such SPA was proved effective to recover the
private key used by asymmetric encryption algorithms like RSA or ECC [31].
Differential Power Analysis [16] and Correlation Power Analysis (CPA) [3] use
statistical tools to infer secret keys by correlating guessed leakage hypotheses
with a set of experimental traces.

Traditionally, power SCAs are carried out locally, in laboratories, using a
voltage probe and an oscilloscope as depicted by the direct physical access at-
tack path in Figure 1. These attacks target secure integrated circuits, such as
smart cards or cryptographic accelerators embedded in SoCs. SCA countermea-
sures such as masking, jitter or shuffling [34,36] are usually implemented in such
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secure devices. It encourages the use of high resolution and high sampling rate
oscilloscopes on the attacker side to outperform the countermeasures.

Because traditional hardware attacks are assumed local and expensive, a
large number of electronic devices are not prepared to withstand remote hard-
ware attack scenarios. For this reason, even with limited performances, digital
and analog integrated sensors may manage to jeopardize the security of devices
ranging from IoT components to cloud servers (remote access in Figure 1). With
the advent of these software-induced hardware attacks that do not require either
direct physical access to the target or specific equipment, the alleged hardware
attack limitations are called into question or even removed.

2.2 On-Chip Voltage Sensing

Two families of sensors enable malicious on-chip voltage sensing: either delay
sensors built with digital logic gates which aim at measuring fluctuations in
the power consumption through delay variations [37,38], or analog sensors us-
ing ADCs usually embedded in MCUs [10,22]. Until this work, digital sensors
dedicated to SCAs have been exclusively implemented in FPGAs. Their avail-
able programmable logic makes it possible to design and tune such delay sensors
in order to measure the power consumption of a device. We describe hereafter
the principles of these delay sensors as their working principle is similar to the
delay-line components we used.

Delay-based voltage sensors leverage a side-effect of voltage fluctuations over
digital logic behavior, which is the relationship between the time taken by a
signal to propagate through a digital logic gate and the on-chip voltage level. An
increase of the gate’s power supply translates into a shortening of its propagation
delay, and respectively a reduction of the voltage induces its increase [9]. As a
result, measuring the variations of the logic gates propagation delay provides
an image of their voltage supply variations. Temperature and capacitive effects
also play a significant part in its equation [9]. Unlike voltage, the propagation
delay can be directly measured using digital logic. Commonly used FPGA-based
sensors are the Ring-Oscillator (RO [37]) and the Time-to-Digital Converters
(TDC [26]).

2.3 Related Works

In 2018, Schellenberg et al. demonstrated that FPGA-based sensors were pre-
cise enough to be used for SCAs on public and secret cryptographic algorithms
[26]. To enable this attack, the adversary (a TDC-based delay sensor and its
control logic for power supply measurement) and the victim (an AES hardware
encryption block) needed to be located within the same FPGA. We define it as
an FPGA-to-FPGA attack. The associated threat model targets multi-user
FPGA cloud services that may appear over the next few years [6]. The same
year, Zhao et al. disclosed that power SCAs can be conducted on heterogeneous
platforms that include both an application processor and an FPGA fabric on the
same silicon die. As a proof of concept, they were able to successfully retrieve
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Fig. 2: Typical SoC connectivity with external memories. Delay-lines are imple-
mented to synchronize clock and data signals arrival in the memory controllers.

the secret key of a custom RSA implementation running within a CPU core
[35]. To do so, they carried out an SPA attack using RO-based voltage sensors
implemented in the FPGA fabric.

Until 2019, remote power SCA remained bounded to FPGA devices or het-
erogeneous SoCs embedding an FPGA fabric as its flexibility allowed the imple-
mentation of powerful sensors. Two works went beyond the FPGA by proving
that on-chip power SCAs can be carried out in microcontroller devices [10,22].
These attacks use ADCs as a straightforward way to measure on-chip power sup-
ply level. Thanks to a leakage of the chip power consumption into this analog
block, the ADC can substitute the voltage probe role. Even with an extremely
limited sampling rate, this noise sampling method was successful in retrieving
the secret keys used by real world software and hardware AES cryptographic
libraries.

3 Delay-Lines in High-End SoC Devices

Delay-line-based sensors were previously used in FPGA devices as a way to mon-
itor chip power consumption (TDC sensor). Despite offering great performance,
these sensors were limited to configurable logic which is rarely integrated in SoC
devices. In this section, we disclose that digital and analog delay-lines are widely
implemented in SoC memory controllers. We present them and discuss their
potential use as voltage sensors (delay sensors).

3.1 Memory Controller Basics

Because high-end SoCs are designed to run operating systems (Linux, Android,
etc.), they require a large amount of Non-Volatile Memory (NVM) to store the
OS and Random-Access-Memory (RAM) to efficiently load it. Due to techno-
logical constraints, these SoCs do not embed a significant amount of RAM nor
NVM memory but are rather interconnected with external memories (memory
cards, Flash memory, SDRAM memory, etc). Thus, depending on the form-
factor, speed and memory size constraints, designers can choose between a wide
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range of external memory devices. A typical scenario of a SoC using external
memories is depicted in Figure 2.

Several memory controllers are required to interface the SoC with its exter-
nal memories. Each memory controller acts as a request arbiter, a transaction
scheduler and as a physical interface to manage data flowing from the SoC to
the memory, and vice-versa. In embedded systems, for cost and efficiency rea-
sons, the memory controller is more likely to be directly integrated as a part
of the SoC. At the edge of the memory controller, a physical controller (dot-
ted lines in Figure 2) outputs and captures the signals that will flow between
the SoC I/Os and the memory device I/Os (clock, data, configuration signals,
etc.). The physical controller also ensures that these signals arrive on time re-
gardless of the interconnection tracks length on the PCB, the voltage and the
temperature variations. To better understand the extent of memory signal prop-
agation timings, we draw a simple example of SoC/Synchronous Dynamic-RAM
(SDRAM) association. When a read operation is initiated by the SoC, the ex-
ternal SDRAM memory outputs the requested data edge-aligned with a clock
signal (strobe) later dedicated to data sampling. Depending on the PCB tracks
length, the clock signal is likely to shift ahead of the data signals, leading then to
a sampling error. To mitigate this effect, the SoC physical controller implements
delay-line-based components (delay-locked-loop DLL and programmable delay-
block DL in Figure 2) to calibrate the phase alignment between the sampling
clock and the data signals. This calibration can be manual and made once and
for all after testing at manufacturing or performed at each chip power-up. It can
also be adjusted dynamically to counterbalance any misalignment due to power
supply or temperature fluctuations.

The relationship between the delay applied and the SoC voltage fluctuations
drew our interest. In the following paragraphs, we present two different delay-
line-based mechanisms that can be used to generate these delays for low and
high-bandwidth external memory applications.

3.2 Delay-blocks in Low-Bandwidth Memory Controllers

In relatively low-bandwidth external memories such as Flash memories, SD cards
and multimedia cards, the impact of voltage and temperature fluctuations is
considered not significant enough to jeopardize the communication integrity:
dynamic calibration is not required. Delay-lines are nonetheless used to mitigate
the impact of the PCB track length on the data and clock signals propagation
timings (these delays are not predictable by SoC designers, they are set only at
board design time). As track lengths are fixed, a static delay is sufficient to ensure
good operation. For a read transaction, the delay-line is typically calibrated in
order to add a phase shift of 90◦ to the clock signal. Thus, it ensures that
data signals are in place when sampling occurs. The delay-line calibration is
carried out through a series of training steps. These training steps modify the
delay of the elements forming the chain and, for each configuration, verify if
the external memory has been properly read. If the training is successful, the
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Fig. 3: An example of delay-block used in low-bandwidth memory controllers.

delay-line configuration is saved in a dedicated register and remains unchanged
until the next test.

Several SoC vendors provide user programmable delay-blocks as a way for
developers to be able to use a wide range of memory chips or cards with dif-
ferent bus speeds. Unlike traditional static delay-lines, these delay-blocks come
with both a complete calibration toolkit and a detailed documentation. Figure
3 illustrates the delay-block structure that was observed in one of the SoC we
benchmarked. Its purpose is to delay the clock signal with respect to the data
signals when a read operation is conducted. The block consists in a simple delay-
line associated with a set of control and status registers. A Command Register
controls the delay t of all the delay-line elements and thus the phase shift added
to the clk signal. To ensure that the phase shift obtained is conform to the ap-
plied command, a state register captures the output of each element forming the
delay-line every time a clkin rising edge event occurs. Then, a specific training
is performed to verify whether the captured pattern matches the command or
not.

Despite some missing parts, this structure is reminiscent of that of a TDC as
the delay-line state is continuously captured and stored in an accessible register.
In section 6, we demonstrate that this delay-block can be turned into a voltage
sensor and hijacked to perform a power SCA.

3.3 DLLs in High-Bandwidth Memory Controllers

Because of the continuous increasing in memory bus speeds, the available slack
time for data sampling is gradually shrinking. Double data rate memories (DDR)
such as SDRAM memory perform one data transfer per clock edge (both rising
and falling) while reaching gigahertz frequencies [25]. On these devices, the data
sampling is very likely to get corrupted by temperature and voltage variations.
This time, a static delay source is not suitable to ensure correct operations. To
effectively cancel voltage and temperature noise side-effects, a dynamic way to
adapt the clock delay has to be considered.

Delay Locked Loops (DLLs) are generally used in recent DDR memory con-
trollers to dynamically track and control the phase shift applied between the
sampling clock and the external memory (e.g. SDRAM) data signals [2,7]. As
illustrated in Figure 4, a DLL has two main blocks: a delay-line, and a feedback
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Fig. 4: An example of delay-locked-loop used in DDR memory controllers.

circuit. The delay-line is calibrated to provide a phase shift to a clk signal us-
ing both coarse and fine delay elements. However, the propagation delay jitter
associated with on-chip voltage and temperature fluctuations is likely to skew
the applied phase. This is why a DLL includes a feedback circuit to tune the
delay-line in order to provide a dynamic control of the phase shift and thus,
counterbalance voltage and temperature variations. The feedback circuit comes
with a phase detector that compares the phase shift between the clock signal
at the input of the delay-line, clkin, and its phase-shifted clock output, clkout.
Then, according to the measured error, a delay controller applies a correction in
order to "deskew" the result, that is, to get back to the initial delay. The applied
correction modifies the delay of the elements forming the delay-line and can be
either analog or digital-controlled depending on the delay-line type [1].

A command register stores the delay settings, it is memory-mapped and hence
can be read from the SoC AP or MCU cores. The DLL operates autonomously,
this means that through a simple access to this register, a process can retrieve the
state of the DLL, which shall be correlated to on-chip voltage and temperature
variations. As a result, tracking the command register content shall provide an
image of the SoC power consumption that may be used to carry out SCAs.
Note that this measurement methodology (tracking the command of a feedback
dynamically controlled system) differs from that described in Section 3.2 for
delay-blocks (sampling a clock signal propagating inside a fixed delay-line). If this
unusual measurement medium provides enough resolution and sampling rate to
eavesdrop power consumption of secure applications running on a processor, this
could represent an important backdoor for computer security. This hypothetical
vulnerability is strengthened by the fact that this attack only requires a read
access to the command register, no configuration steps are required. This attack
scenario is developed in section 5.

4 Experimental Setup

4.1 Tested Devices

Two devices from two different SoC providers have been studied in our experi-
ments. The first target considered in this work is a Xilinx Zynq-7000 SoC [33]
that comes with a dual-core Cortex-A9 application processor (AP). It is a typical
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multi-purpose SoC providing many additional resources: FPGA, I/O, ADCs, bus
controllers, etc. It supports DDR2-DDR3, Flash and SD/MMC external mem-
ories and provides several DLL blocks to interface properly with DDR external
memories. The experiments made on this target have been conducted without
using an OS: we denote it as a bare metal attack. This configuration makes
SCA easier as there are fewer interruptions (with respect to the case in which
an OS is used) that may disturb the attack and victim processes and cause syn-
chronization issues. The entire Zynq-based SideLine attack code can be cloned
from GitHub: https://github.com/Remote-HWA/SideLine_Zynq.

The second target is a STMicroelectronics STM32MP157C-DK2 development
board [20] that embeds a dual-core Cortex-A7 AP associated with a Cortex-M
processor (MCU). It also supports DDR2-DDR3, Flash and SD/MMC external
memories and embeds several DLL blocks. Additionally, it provides user pro-
grammable delay-blocks (DLYB [20]) that can be employed for interfacing low
bandwidth memory (e.g. an SD card). These programmable delay-blocks are the
second case we studied. The experiments done on this SoC have been carried
out with a Linux OS running on its AP (i.e. the Cortex-A7 processor). The re-
sults are those of a Linux OS attack. The entire STM32MP1-based SideLine
attack code can be cloned from GitHub: https://github.com/Remote-HWA/
SideLine_STM32MP1.

4.2 OpenSSL AES Architecture

The OpenSSL library [23] provides several cryptographic algorithms used for se-
curing channels over computer networks. In this work, we focus on the OpenSSL
AES-128 (version 1.1.1) that implements a 32-bit tabulated version of the text-
book AES encryption algorithm [8]. This variant merges the Mixcolumn and
SubBytes transformations into 4 pre-computed look-up tables known as T-tables
(256 x 32-bit) as a way to optimize the computations on 32-bit processors.

4.3 Threat Model

In this work, we introduce three core-vs-core attack scenarios in order to assess
the SCA capabilities of the delay-line-based sensors. For each scenario depicted in
Figure 5, we first deploy a cryptographic application (in green) within a processor
core. This application located either in the AP or in the MCU allows the end-user
to launch AES encryptions/decryptions, with the plaintexts/ciphertexts that he
provides. Secondly, we introduce a malicious user (in red) that has the privilege
level necessary to access the delay-line blocks presented in Section 3 and that
uses them to retrieve the leakage induced by the AES application.

Although not used in this research work, Trusted Execution Environment
(TEE) and TrustZone [2] architecture stand as potential realistic targets for
the delay-lines. TrustZone attacks from the normal-world to the secure-world
have been widely covered in recent remote attack works [28,24,4,22]. However,
from a side-channel point of view, the current TrustZone does not provide any

https://github.com/Remote-HWA/SideLine_Zynq
https://github.com/Remote-HWA/SideLine_STM32MP1
https://github.com/Remote-HWA/SideLine_STM32MP1
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Fig. 5: Basic principle of the three core-vs-core attack variants proposed in this
work. It shows the leakage path from the victim process to the delay sensor and
the sensor data flow retrieved by the attack process.

countermeasures. Thus, the ability of an attacker to turn our feasibility attack
into an end-to-end TrustZone attack is reasonably expected.

In the remainder of the paper, the three scenarios presented are referred to
as:

1. A DLL-based attack (Figure 5.a), or AP-vs-AP attack, that demonstrates
the ability of a DLL to serve as a power supply sensor suitable for a CPA
attack against the AES algorithm. In this scenario, one core of the Zynq
processor runs the AES victim application, while the second core executes
the attack process (both victim and aggressor processes are C programs, in
bare metal mode). The attacker code is in charge of collecting the leakage
data of the AES. It does so by configuring the access to the DLL command
register that makes it possible to sample its values during AES encryptions
performed by the first core. The attacker core is also in charge of providing
the plaintext to be ciphered by the victim process and to trigger both the
encryption and readback of DLL states. This AP-vs-AP attack scenario is
described in details in Section 5.

2. A first Delay-Block-based attack (Figure 5.b), or MCU-vs-AP attack,
where the victim process is ran on the STM32MP1 AP (a C code AES
running on top of a Linux OS) and the attack process is executed by the
Cortex-M MCU (a C program, in bare metal mode). In this scenario the
MCU is in charge of calibrating and using a delay-block to eavesdrop the
activity of the AP. This MCU-vs-AP attack scenario is addressed in Section
6.

3. A second Delay-Block-based attack (Figure 5.c), or AP-vs-MCU attack,
that matches a typical state-of-the-art industrial case where the crypto-
graphic and security operations of a SoC embedding AP cores are delegated
to a less complex MCU core. In this scenario the AP core (Cortex-A7) runs
the attack process while the MCU core (Cortex-M) runs the AES victim
process. This AP-vs-MCU attack scenario is reported in Section 6.
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Fig. 6: DLL response to sudden temperature drops induced by three successive
exposition of the SoC to a cooling spray.

5 DLL-based Power Side-Channel Attack

This section presents a novel way to monitor on-chip voltage fluctuations and
conduct power SCAs using the DLLs embedded in SoC memory controllers.

5.1 Validating DLL Effectiveness: Monitoring Temperature

As a proof of concept, a simple experiment was carried-out on the Zynq SoC to
confirm that the DLL command is actually tracking the SoC package temper-
ature variations. The test uses a C program designed to continuously read and
store the DLL command register content into an acquisition array for a period of
30 seconds. Simultaneously, a cooling spray was used at specific moments to cool
down the SoC package. To limit the acquisition size, each array index contains
the average of 1,000 successive DLL readings. Figure 6 reports the evolution
of the measured DLL command (y-axis) as a function of time (x-axis). Each
spray shot induces a temperature drop (translated into a DLL command drop
in Figure 6) that progressively recovers until the next one. This simple experi-
ment confirms that a DLL is suitable to dynamically track the SoC temperature
variations. As the temperature decreases, the propagation speed of the clk sig-
nal through the delay-line increases [9]. Thus, the phase-shift between clkin and
clkout progressively drifts. To counterbalance this effect, the DLL dynamically
adapts its command in order to maintain a constant phase shift. Because package
temperature evolves relatively slowly, the sampling frequency for this experiment
was limited to 300 kHz. However, as this paper focuses on power side-channel,
which itself depends on transient voltage drops measurements, a higher sampling
rate needs to be achieved: it is the subject of the next subsection 5.2.

5.2 Improving Sampling Rate and Synchronisation using DMA

As mentioned before, the DLL command value can be directly accessed through
its memory address. Then, a loop associated with an array can be added to
collect more samples. This CPU-based sampling method works in principle but
has several drawbacks:
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First, it requires a constant time between each acquisition. If this constant
time is not achieved, the samples won’t be correctly aligned. Consequently, sta-
tistical attacks will be less accurate as the averaging of several acquisitions will
suffer from de-synchronisation. Achieving constant time is feasible in bare metal
applications because they rarely suffer from interruptions. However, if the appli-
cation runs over an OS, interrupts will dramatically affect the timing of acqui-
sitions and make their averaging impossible. The second limitation is related to
the achievable sampling rate. Indeed, the delay induced by CPU memory access
plus the storage of the acquired data into an array is not optimal. Using this
method on the Zynq SoC, the sampling frequency was limited to 2.2 MHz.

To solve these issues, we choose to use Direct Memory Access (DMA) in order
to improve the sampling rate as well as the synchronisation of our samples (as
proposed in [10]). A DMA is a hardware module able to transfer data from a
peripheral to another without processor intervention. For this reason, it is faster
in transmitting data, but also not affected by OS interrupts. The source address
(address from which the DMA should sample the data) is the register containing
the DLL command. The destination address (destination of the DMA transfer)
is the base address of an array whose size depends on the number of samples
required. At the end of the DMA transfer, an interrupt flag is set and ends the
sampling process. With DMA up and running, we improved the DLL sampling
frequency from 2.2 MHz to 16 MHz.

5.3 Bare Metal OpenSSL AES Attack Setup

According to the threat model we consider (see subsection 4.3), the attack pro-
cess shall be able (1) to trigger the start of an AES encryption by the victim
process, and (2) to control the gathering of the leakage from the AES through a
DLL-based voltage sensor. Our test bench includes two processes (their pseudo
codes are given in appendix 1 and 2) executed by the two application cores of our
target in bare metal mode: the attack process on AP#0 and the victim process
on AP#1.

In addition to this attack setup, we used embedded hardware performance
counters to precisely measure the duration of an AES encryption. On average, an
encryption took 837 AP clock cycles or 1,25 µs at a frequency of 667 MHz (both
attack and victim programs were compiled with the optimization parameter set
to -O2). The DMA transfer method we used provides a constant 62.5 ns sampling
period (i.e. a 16 MHz sampling frequency). As a result, 21 samples of the DLL
command are gathered per AES encryption.

5.4 DLL-based SCA Attack on Zynq SoC

The bottom part of Figure 7 illustrates the results of two experiments conducted
to assess the AES encryption impact on the DLL command value and precisely
detect its encryption time window. The two traces depicted in black (1st case)
and red (2nd case) represent the averaged DLL command value (y-axis) obtained
for 1,000 acquisitions as a function of time (expressed in DMA samples). For the
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Fig. 7: DLL-based attack results: the bottom part represents the impact of an
AES encryption on the DLL command value. The top part zooms on the AES
encryption windows and provides the temporal correlation rate for two key bytes.

first experiment (in black), the victim program was kept idle during the entirety
of the DMA sampling operations. The DLL command drop visible between sam-
ple 0 and 1,000 was induced by the extra power consumption linked to the DMA
module activation. The DLL applied a strong correction to maintain a constant
phase shift, that was finally relaxed as the power consumption returned to nor-
mal (sample 2,000 to the end of sampling). The second case (in red) reports
an actual iteration of the attack and victim processes when an AES encryption
is done. The red trace experienced the same DLL command undershoot due
to DMA module activation (sample 0 to 1,000) but also a second undershoot
corresponding to the AES encryption (starting at sample 4,500). It is finally
restored to a steady value lower than the initial one (sample 6,000 to the end of
sampling). The AES encryption window was deduced from the position of the
second DLL command drop. Based on this information the CPA attack could
be conducted on a smaller amount of samples.

We launched a total number of 20 million AES encryptions and acquired
200 DLL command samples per encryption. Samples and plaintexts extraction
through UART took around 8 hours at 921,600 bauds. Then, an external com-
puter was used to apply post-processing to the traces and conduct the CPA
attack. The top part of Figure 7 depicts a filtered and averaged trace of the DLL
command (in red). High-pass filtering was used as a way to reduce the impact of
low frequency variations (induced for instance by temperature fluctuations) on
the acquired traces and thus to reduce the number of traces required for the at-
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tack. Then, we performed a plaintext-based CPA attack on the first round of the
AES. As we mentioned earlier the OpenSSL AES uses T-tables to upgrade its
performances on 32-bit processors. This allows us to leverage a 32-bit T-tables
output prediction: HW [Ttable(key⊕plaintext)]. The obtained correlation results
versus the time are represented above the averaged trace in Figure 7 (for two
key bytes). The correct key hypotheses are depicted in red and emerge from the
incorrect hypotheses (in grey) at sample 120. Based on 20 million encryptions,
we achieved a full AES key recovery. 3 bytes were retrieved in the range 0-5M
traces, 2 between 5-10M million, 5 between 10-15M an 4 between 15-20M. The
key bytes number 7 and 9 never completely emerged from the incorrect candi-
dates, but we assume that a simple brute force can be conducted to retrieve
their values. The progressive correlation of the first 8 key bytes plus the failed
byte #9 are depicted in Figure 12 in the appendix.

5.5 Conclusion on DLL-based SCA

In this section, we demonstrated that a DLL can be used to monitor on-chip
temperature and power supply fluctuations. This unconventional voltage sensor
was then used to conduct a power SCA on an OpenSSL AES algorithm im-
plemented in the Zynq application processor and a full AES key recovery was
achieved (with the help of brute force for the two remaining bytes). Performance,
limitations and potential countermeasures regarding this attack are discussed in
Section 7.

6 Delay-Block-based Power Side-Channel Attack

The DLL-based attack presented in Section 5 was associated with the use of DDR
external memories such as SDRAM in AP-based SoC. This section discloses a
second attack path that allows the hijacking of a programmable delay-block and
its malicious use to perform core-vs-core power SCAs. These experiments are
conducted on the STM32MP1 SoC.

6.1 From Delay-Block to TDC Sensor

The STM32MP1 SoC comes with three programmable delay-blocks IPs (DLYB
[20]) capable of working with different types of external memories (QSPI, SD,
MMC). Their settings can be adjusted depending on the bus speeds of the ex-
ternal memories used. Their initial purpose is to adjust the phase of the clock
signal in order to ensure a reliable exchange of data by tuning the clock delay.

The left part of figure 8 depicts the 12 elements delay-line provided by the
STM32MP1 delay-block and the capture register designed to monitor the state
of the output nodes of every delay element. When a clkin rising edge occurs, the
capture register takes a snapshot of the delay-line. This snapshot contains an
image (represented as a waveform in Figure 8) of the clock propagation through
the delay-line. The propagation delay t of the elementary delay elements can



SideLine 15

Fig. 8: Effect of on-chip voltage variations on the sampled delay values.

be set using a dedicated register. If this delay is set to its minimum the delay-
line width (acquisition window) is small. Thus, only a part of the clock signal
can be captured. By gradually increasing t, the clock signal observation can be
extended, possibly to several periods.

We leveraged this t parameter to make the delay-block sensitive to on-chip
voltage fluctuations. To that end, we took a significant number of delay-line snap-
shots for each of the 128 possible t delay values. A vast majority of them gave
stable results; which means that the captured image remained stable between
successive register readings. For a few however, delay variations arose between
subsequent captures. This interesting behavior can be explained by (1) on-chip
voltage fluctuations that affect the clock propagation time through the delay
elements, and (2) by the fact that several delay values t naturally position the
clock edges in unstable places within the delay line (i.e. in between two delay ele-
ments). The left part of figure 8 displays three waveforms (delay-line snapshots)
obtained with such a t setting. In this configuration, three clock periods stand in
the entire delay line. From top to bottom we have: (1) the steady state register
waveform which stands as our reference (it outputs a 0x666 reference value), (2)
a slowed down waveform that can be obtained due to a supply voltage decrease
(it outputs a 0x64c), and (3) an accelerated waveform that can be obtained due
to a supply voltage increase (it outputs a 0x262). In our experiments, the three
obtained hexadecimal digits are weighted and added to translate into an image
of the voltage supply.

On the right part of figure 8, a program displays as an oscilloscope the actual
delay-line state on the STM32MP1 touchscreen. This way, the actual power con-
sumption noise impact on the delay-block state can be directly observed. To make
it possible, the implemented program automatically calibrates the delay-block
by testing various delay parameters. For each delay value, it collects multiple
delay-line state samples, computes their variance and adopts the calibration that
provided the highest variance. Indeed, a higher variance indicates an important
delay instability and thus a stronger relationship with voltage fluctuations.

6.2 Linux-based OpenSSL AES Attack Setup

Similarly to the attack setup described in subsection 5.3, we used the OpenSSL
AES implementation to evaluate the threat posed by delay-block-based SCAs.
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The STM32MP1 embeds both a dual core AP and a MCU that makes it possible
to test the MCU-vs-AP and AP-vs-MCU attack scenarios introduced in subsec-
tion 4.3. Depending on the scenario, the attack and victim processes were ran
either on the AP core or on the MCU core. Here, we consider the MCU-vs-AP
attack to describe our attack setup.

We use an adapted version of the Zynq-based attack. On the adversary’s
side (here the MCU), delay-block calibration and use of Hardware Performance
Counters (HPCs) were added to the initial algorithm. HPCs are used to accu-
rately time the successive encryptions and to mitigate the de-synchronisation
brought by the Linux OS. For each acquisition, the number of cycles elapsed
during the encryption is compared to a maximal limit Nbcycle set by the ad-
versary above which the entire acquisition is discarded. Prior to the attack, a
preliminary test was conducted in order to identify the optimal value for Nbcycle
(assuming that a lower number of clock cycles corresponds to a lower number
of interrupts). Hence, by launching thousands of AES encryptions, we were able
to find a reference number of clock cycles for almost interrupt-free encryptions.
Then, based on this reference, we set a maximal limit Nbcycle beyond which
we decided to discard the acquisitions. By doing so, at least half of the total
acquisitions were retained and used for the subsequent CPA calculations.

Regarding the CPA, we embedded it directly within the STM32MP1. This
way, we drastically limited the amount of data exported. Moreover, this allowed
us to directly plot the results on screen as illustrated in appendix figure 11.

6.3 Delay-block-based SCA Attacks on STM32MP1 SoC

In the AP-vs-MCU attack scenario, the OpenSSL AES program runs within
the STM32MP1 Cortex-M MCU. Using compiler optimization set to -O0, 1,460
clock cycles are required to perform a single AES encryption, that is 7.3µs at
the MCU operating frequency (200 MHz). Figure 9 displays in its bottom part
the averaged delay values obtained for a time window of 250 DMA samples (or
16.4 µs) over 10 million acquisitions. The AES encryption, which approximately
covers 110 DMA samples, is surrounded by two empty for loops added for vi-
sualisation ease. The top part of Figure 9 provides the CPA correlation rates of
four key bytes (of index #1, #13, #9, and #5) as a function of time. The correct
key hypotheses are depicted in red and emerge from the incorrect hypotheses (in
grey) between samples 70 and 80. We chose to represent these key bytes because
they are equally distant regarding the OpenSSL byte computation order: 0 5
10 15 - 4 9 14 3 - 8 13 2 7 - 12 1 6 11. This explains the regular temporal
offset observed between them. Based on 10 million encryptions, we achieved a
full AES key recovery. 6 bytes were retrieved in the range 0-2M traces, 4 between
2-6M and 6 between 6-10M. The progressive correlation of the eight last AES
key bytes (#8 to #15) are depicted in Figure 13 in the appendix.

In the MCU-vs-AP attack scenario, the OpenSSL AES program runs in
the STM32MP1 Cortex-A7 AP. Using compiler optimization set to -O2, 865
clock cycles are required to perform a single AES encryption, that is 1.33µs at
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Fig. 9: AP-vs-MCU attack results: the bottom part represents the averaged AES
power consumption, the top part provides the correlation rates as a function of
time for four AES key bytes.

the AP operating frequency (650 MHz). Figure 10 displays in its bottom part
the averaged delay value obtained for a time window of 100 DMA samples (or
6,6 µs) over 40 million acquisitions. The AES encryption, which approximately
covers 20 DMA samples, is surrounded by two empty for loops added for visu-
alisation ease. The top part of Figure 10 provides the temporal correlation rate
of four key bytes as a function of time . The correct key hypotheses are depicted
in red and emerge from the incorrect hypotheses (in grey) between samples 30
and 40. Again, we chose to represent these specific key bytes because they are
equally distant in the OpenSSL byte computation order. However, the AES en-
cryption in the AP is faster than that of the MCU (1.33 µs vs. 7.3 µs) and the
DMA sampling frequency that remained fixed between the two experiments is
no longer sufficient to let the temporal offsets appear. This limited sampling
frequency partly explains the higher number of acquisitions required to retrieve
some key bytes. For instance, byte #12 in Figure 10, seems to suffer from the un-
der sampling and gave poorer correlation results (0,07%) than byte #4 (0,32%)
or byte #0 (0,29%). We were able to confirm this assumption through a sec-
ond experiment where the AES encryption temporal window had been slightly
shifted regarding the DMA: the AES leakage was thus sampled at different tim-
ings. This experiment gave better results on several key bytes that struggled to
emerge in the previous attack. Based on 40 million encryptions, we achieved a
full AES key recovery. 3 bytes were retrieved in the range 0-10M traces, 6 be-
tween 10-20M, 2 between 40-30M, 4 between 30-40M. The 13th key byte never
completely emerged from the incorrect candidates, but we assume that a simple
brute force can be conducted to retrieve its value. The progressive correlation of
the first key bytes (0 to 7) are depicted in Figure 14 in the appendix.
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Fig. 10: MCU-vs-AP attack results: the bottom part represents the averaged
AES power consumption. The top part provides the correlation over the time
results over four AES key bytes.

7 Discussion

Two delay-line-based power measurement techniques, using a DLL or a delay-
block were introduced and studied in this research work. Because such delay-
line-based components are embedded in almost every high-end digital SoC that
uses external memories, the threat model we introduced is serious and shall
be considered feasible for a large number of complex SoCs. In this section, we
discuss performance, additional attack scenarios and potential countermeasures
regarding the SideLine attack.

7.1 Performance and Limitations of SideLine

Table 1 summarizes the results obtained for the three attack scenarios consid-
ered in this paper. First, an AP-vs-AP attack was performed on a Zynq SoC
using DLL-based sensors. As DLLs provide a limited resolution, a large amount
of acquisitions were required to integrate enough information for the CPA to
succeed (20 million traces required for full AES key recovery). It took around
12 hours to extract the traces, apply post-processing (filtering) and conduct
the CPA attack. The lack of resolution also made post-synchronization nearly
impossible and thus implied the collection of leakage traces with a constant syn-
chronization. Apart from performances, the DLL was by far the simplest sensor
to implement in our experiments, as it only required the reading of a memory-
mapped register. However, care must be taken as in certain cases, DLLs may
require additional calibration. For instance, some DLLs can either perform delay
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Scenario Sensor NbAcq freqDMA freqTarget Duration
Zynq AP-vs-AP DLL 20M 16 MHz 667 MHz ∼ 12 h

STM32 AP-vs-MCU DL 10M 15.2 MHz 200 MHz ∼ 9 h
STM32 MCU-vs-AP DL 40M 15.2 MHz 650 MHz ∼ 24 h

Table 1: Overall delay-line-based power SCA results.

calibration continuously or at a set of intervals [2]. Such parameters should be
taken into account by the attacker and calibrated if needed.

The second attack proposed in this paper required a preliminary work to
properly turn the delay-block into a custom TDC. Then, two delay-block-based
power SCAs were conducted on a STM32MP1 SoC. The AP-vs-MCU AES at-
tack took around 10 million traces for a full key recovery (trace acquisition and
CPA took approximately 9 hours) while the MCU-vs-AP AES attack required
40 million traces (24 hours). We can compare these results to the attack reported
in [11] against an OpenSSL AES implementation in an FPGA-based heteroge-
neous SoC. In this work, FPGA-based TDCs were able to perform a similar
attack using only 90,000 traces (FPGA-to-CPU attack). FPGAs indeed offer
the possibility to design high resolution and high sampling rate sensors which
explain the higher efficiency of their attack. Such a flexibility is obviously not
available in ASICs. For instance, even using DMA in our experiments, the max-
imum sampling rate achieved (16 MHz) was still way under the FPGA-based
TDC sampling rate given in [11] (200 MHz). Additionally delay-blocks also suf-
fer from a poor resolution as evidenced in Figure 15 in the appendix. Despite
these limitations, we demonstrated that such an attack is still feasible without
using FPGAs and within a reasonable time and number of traces.

The presence of DLLs and programmable delay-blocks is already mandatory
in high-end SoC devices and should become even more prevalent in the future
with the constant increase of memory bus speeds. At the same time, their voltage
sensing capability will be progressively enhanced as they will need to meet higher
performances requirements. This should make SideLine even easier to conduct
and detrimental for hardware security in the future.

7.2 Hardware & Software Mitigations

This section provides some countermeasure guidelines mitigating SideLine:
Adding SCA Countermeasures: A simple way to make the victim process
more resilient to power SCAs is the addition of software or hardware SCA coun-
termeasures [36,34]. As mentioned above, one of the main limitations of SideLine
comes from the low resolution provided by DLL and delay-blocks. This forces
the attacker to acquire a huge number of traces (several million in our case) and
makes it nearly impossible to re-synchronize SCA traces. On the victim side,
software randomization could be a good candidate to efficiently de-synchronize
computations and hence to increase significantly the attack difficulty (e.g. adding
random delays in T-Table computations for OpenSSL AES). On the monitoring
side (delay-line), a straightforward way to mitigate the attack could rely on the
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addition of phase and frequency jitter to the clock signal used for sampling the
delay-line registers.
Preventing Delay-Line Access: Another countermeasure would act at system
level by preventing the access to the delay-line registers by unauthorized software
entities. Hence, only the OS for instance would have access to this resource.
TrustZone could also be used to place DLLs and Delay-blocks in the secure
world and make their use by non-secure world impossible in practice. Locking
the access to the DMA module or the hardware performance counters would also
represent a significant limitation for the attack setup.
Reducing Delay-Line Sampling Rate: Preventing delay-line access through
privilege rights seems insufficient as a malicious attacker or a compromised OS
could overpass it (privileges escalation). A hardware way to mitigate the threat
would be to limit the delay-block access to a lower sampling rate (e.g. 10KHz).
This could be simply achieved by limiting the access rate to the register that
stores delay-line information. This way, even if the power consumption monitor-
ing would remain feasible, it will highly affect the delay sensor performances.
With such a limited sampling rate it would be probably very challenging for an
attacker to conduct SCAs on fast encryption algorithms such as AES.
Abandoning Delay-Lines in SoCs: As SideLine revealed their potential mis-
use as power consumption sensors, the delay-line-based components could be
removed from SoC devices and instead, be placed directly within the external
memory devices. This drastic choice would require the addition of configuration
I/Os in external memories to efficiently calibrate the delay-lines but will almost
entirely remove the delay-line threat from the SoC die. However, even outside
the SoC, the delay-line threat may remain problematic as inter-chip power SCAs
have already been shown feasible [27].

8 Conclusion

Previous works demonstrated that remote power SCAs were feasible using FPGA-
based delay sensors and microcontroller ADC-based sensors. SideLine goes fur-
ther by proving that unsuspected hardware components available in a broad
range of high-end SoC devices, can be turned into power consumption mea-
surement units. In this work, we studied two common SoC resources known
as delay-locked-loops and delay-blocks and proved their capability to eavesdrop
the voltage activity of cryptographic programs running in different processors.
Several core-vs-core attack scenarios on application processors and microcon-
troller units were conducted. For each scenario, we achieved a full key recovery
side-channel attack on the publicly available OpenSSL AES implementation. We
believe that these findings open a new era for remote power side-channel attacks.
SideLine has the advantage of being portable on a wide range of devices as it
does not requires the presence of specific circuitry (e.g. FPGA). Because Side-
Line feeds upon SoC complexity, we also believe that it represents a major threat
for actual high-end SoC security. More importantly this threat is likely to scale
up in line with the constant performance improvements in SoCs and memory
devices.
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9 Appendix

Algorithm 1 Zynq processor attack, AP#0 attack pseudo-algorithm
Input: Nbacq, Nbsample

DMAinit();
UARTinit();
while Nbacq has not been reached do

Send AES plaintext to AP#1;
Launch DMA transfer(Nbsample);
Send StartAES to AP#1;
Wait for EndAES flag();
Wait for EndDMA flag();
Export samples through UART;

end while

Algorithm 2 Zynq processor attack, AP#1 victim pseudo-algorithm
Input: AESkey, AESplaintext

AESinit();
while infinity do

Wait for StartAES flag();
Get AP#0 plaintext;
OpenSSL AES encrypt();
Send EndAES flag to AP#0;
Send AES ciphertext to AP#0;

end while

Fig. 11: AES traces acquisition, CPA computation and GTK display (imple-
mented for demonstration) are all embedded in the same application running
within the STM32MP157-DK2 board.
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Fig. 12: ZYNQ AP-vs-AP attack scenario - The CPA progression (y-axis)
over the number of traces (x-axis) is represented for the first 8 AES key bytes.
Bytes 7th and 9th which never emerged from the incorrect key candidates are also
represented. These CPA results were obtained over 20 million AES encryptions,
the correlation rates are provided in the summary table.
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Fig. 13: STM32MP1 AP-vs-MCU attack scenario - The CPA progression
(y-axis) over the number of traces (x-axis) is represented for the last 8 AES key
bytes. The 1st AES key byte is also represented as it provided the best correlation
rate. These CPA results were obtained over 10 million AES encryptions, the
correlation rates are provided in the summary table.
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Fig. 14: STM32MP1 MCU-vs-AP attack scenario - The CPA progression
(y-axis) over the number of traces (x-axis) is represented for the first 8 AES key
bytes. Bytes 13th which never emerged from the incorrect key candidates is also
represented. These CPA results were obtained over 40 million AES encryptions,
the correlation rates are provided in the summary table.
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Fig. 15: STM32MP1 MCU-vs-AP attack scenario: This figure illustrates the
delay-block resolution limitation when a single AES encryption is acquired (a).
This resolution can be virtually increased by averaging a higher number of traces:
5 (b), 10 (c) and 100 (d) traces.
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