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Abstract—The supersingular isogeny key encapsulation (SIKE)
protocol, as one of the post-quantum protocol candidates, is wide-
ly regarded as the best alternative for curve-based cryptography.
However, the long latency, caused by the serial large-degree isoge-
ny computation which is dominated by modular multiplications,
has made it less competitive than most popular post-quantum
candidates. In this paper, we propose a high-speed and low-
latency architecture for our recently presented optimized SIKE
algorithm. Firstly, we design a new field arithmetic logic unit
(FALU) with many algorithmic transformations and architectural
optimizations. Especially, for the FALU, an extremely low-latency
modular multiplier is devised based on a modified algorithm by
fully parallelizing and highly optimizing the small-size multipliers
and the reduction submodules. Secondly, we develop a compact
control logic and update the instructions based on the benchmark
provided in the newest SIKE library, fitting well with our design.
Thirdly, an efficient memory access method is proposed by
scheduling the input and output of the arithmetic logic unit
(ALU) in two identical RAMs, which can significantly reduce
the latency. Finally, we code the proposed architectures using
the Verilog language and integrate them into the SIKE library.
The implementation results on a Xilinx Virtex-7 FPGA show that
for SIKEp751, our design only costs 9.3 ms with a frequency of
155.8 MHz, about 2x faster than the state-of-the-art, and achieves
the best area efficiency among existing works. Particularly, the
modular multiplier merely needs 16 clock cycles, reducing the
delay by nearly one order of magnitude with a small factor of
increase in hardware resource.

Index Terms—Modular multiplication, supersingular isogeny
key encapsulation (SIKE), elliptic curve cryptography (ECC),
post-quantum cryptography (PQC), hardware implementation,
FPGA.

I. INTRODUCTION

IN recent years, much progress has been made in quan-
tum computers [1]–[3]. Many cryptography systems are

threatened by quantum computers. Notably, the commonly
used public-key cryptographic algorithms such as Rivest-
Shamir-Adleman (RSA) [4] and elliptic curve cryptography
(ECC) [5] which are protected by the difficulty to factor
extremely large integers and to perform elliptic curve discrete
logarithms, respectively, could be easily solved by using the
Shor’s algorithm [6] with a powerful quantum computer.
Although it is unclear when such computers will be invented,
these achievements have indeed promoted the development
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of post-quantum cryptography (PQC) which are resistant to
classical and quantum computers’ attacks. From 2017, the
National Insititute of Standards and Technology (NIST) [7]
has hosted three rounds of PQC standardization process and
the supersingular isogeny key encapsulation (SIKE) protocol
[8] still exists in the latest announced alternative candidates.

The SIKE protocol is developed from the Supersingular
Isogeny Diffie-Hellman (SIDH) key exchange protocol that
was proposed by Jao and De Feo in 2011. SIDH is based
on a supersingular elliptic curve to resist the quantum attack
based on the difficulty to find isogenies between supersingular
elliptic curves [9]. This protocol has the characteristics of
ECC’s small key sizes and the advantages of perfect forward
secrecy. Nevertheless, several works have reported that SIDH
is threatened by some side-channel attacks [10]–[12]. As an
improved version of SIDH, the SIKE protocol is proposed to
provide reliable security not only in the post-quantum era but
also in the current environment. Usually, large-degree isogeny
computations are needed to meet the security requirement, and
their considerable serial field computations lead to the long
latency. Compared with other post-quantum candidates, the
main practical limitation of SIKE lies in its performance.

In order to alleviate this problem, many researches have
worked on accelerating the SIDH/SIKE protocol based on
software platforms [13]–[22] and hardware platforms [23]–
[30]. On the software side, the first version of software
implementation for SIDH was done by Jao using the GMP
library in 2011 [13]. The latest version provided in [19] is
recognized as the fastest software implementation. On the
hardware side, many improvements have been made based
on FPGA. Koziel et al. have done much progress for the
SIDH and SIKE protocols using the high-radix Montgomery
multiplication algorithm [31]. In 2016, they proposed the first
architecture of the SIDH protocol in [25]. In 2020, their latest
version in [32] dropped the time of SIKE from 33.4 ms to 25.5
ms for the SIKEp751 parameter (NIST security level 5) based
on a Virtex-7 FPGA platform. The implementation result over
a Kintex UtraScale+ FPGA achieves 1.63x better performance
than the fastest software implementation. Recently, Farzam et
al. [33] further improved the modular multiplier and obtained
a speedup of about 1.4x for SIKEp751 compared to [32].
However, it is still far slower than some popular lattice- and
code-based alternatives.

It should be noted that in general cases, the Montgomery
reduction algorithm [34] has better performance than others
and its variants are widely used in the SIDH/SIKE protocol.
In fact, the special form of the supersingular elliptic curve
can be utilized for accelerating the modular multiplication.
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The first of such work was proposed by Karmarkar et al.
in [35], in which an efficient modular multiplication (EFFM)
algorithm using an unconventional radix is presented with the
modulus form of p = 2 · 2eAbeB − 1 where eA and eB are
even integers. Based on the EFFM, many studies [23], [36]–
[39] have been made to extend the limitation of the form
and simplify the field multiplication algorithm. In our latest
work [39], the limitation for the prime form is removed and a
fast modular multiplication algorithm is provided based on a
universal unconventional-radix polynomial data representation.
Especially, for the parameters of SIKE provided in the spec-
ification [19], the proposed modular multiplication performs
faster than the best Montgomery one. Similar conclusions are
also drawn in other field arithmetic operations. Notably, these
new algorithms are very easily to be processed in parallel
over an FPGA platform. The software implementations for
SIKE were also provided based on the new algorithms and
successfully demonstrated the effectiveness of the methods
in [39].

Our contributions: In this paper, we firstly review and
conclude the promising field arithmetic algorithms based on
the unconventional-radix polynomial representation provided
in [39]. Then, according to these algorithms, we present a
SIKE design with the shortest latency, the fastest speed, and
the best area efficiency among existing designs. The main
contributions are summarized as follows:

1) We propose a new constant-time field arithmetic logic
unit (FALU), which is the core design of the SIKE
architecture. FALU includes a modular multiplier, a mod-
ular adder, a modular subtractor, and an inverse domain
conversion module, all of which are elaborately designed.

a) The modular multiplier is devised with ultra-low la-
tency. It is a feed-forward architecture and can be ex-
tensively pipelined, which greatly simplifies the control
logic. The integer multiplication part and the reduction
part both are fully optimized and highly parallelized
with many novel ideas.

b) For the inverse domain conversion module, we propose
a hardware-friendly algorithm called M-U2N and de-
vise the corresponding architecture with a very small
area.

c) We present a carry/borrow-select-like modular
adder/subtractor for FALU, either of which can be
implemented in one or two cycles with a pleasant
frequency.

2) We develop a compact control logic and update the
instructions based on the benchmark provided in the
newest SIKE library.

3) We provide an efficient memory access method by
scheduling the input and output of the arithmetic logic
unit (ALU) in two identical RAMs, which can theoreti-
cally reduce the total latency by half.

4) We propose a new SIKE design by integrating the pro-
posed compact control logic, RAM module, and FALU
module into the generally used SIKE framework [19].

We code the new FALU in Verilog language, generate the
consistent instruction for the control logic in MATLAB scripts,

and apply them to the SIKE library provided online [19]. The
correctness is verified by using the testbench and testing over
the Xilinx Vivado 2018.2 EDA platform. The implementation
results on a Xilinx Virtex-7 FPGA show that for SIKEp751,
our SIKE design only needs 9.3 ms with a frequency of
155.8 MHz, about 2x faster than the state-of-the-art work
in [33]. Particularly, the modular multiplier merely costs 16
clock cycles, reducing the latency by close to one order of
magnitude in that case.

The rest of the paper is organized as follows. Section
II firstly gives a brief introduction of the SIDH and SIKE
protocols. Subsequently, the basic field arithmetic operations
are summarized based on a polynomial data representation,
where the modular addition, modular subtraction, modular
multiplication, and inverse domain conversion algorithms are
detailed. Section III shows the proposed hardware architec-
tures for those algorithms. The used top-level architecture and
the modified instruction scheduling are presented in Section
IV. In Section V, the FPGA implementation results are pro-
vided and compared with previous works. Finally, Section VI
concludes this paper.

II. PRELIMINARIES

In this section, we will firstly review the SIDH and SIKE
protocols, and then detail the basic arithmetic operations over
field Fp based on a polynomial data representation.

A. Supersingular Isogeny Diffie-Hellman

Algorithm 1: SIDH Key-Exchange Protocol [9]
Input: Public parameters: E/Fp2 , PA, QA, PB , and QB .

1: Key Generation: Bob generates his secret key and
public key and sends the public key to Alice.
skB = random{0, 1, ..., 2blog2 3eB c − 1}
pkB = isogenB(skB)

2: Encryption: Alice encrypts the plaintext with the shared
key and sends her public key and ciphertext to Bob.
skA = random{0, 1, ..., 2eA − 1}
pkA = isogenA(skA)
j = isoexB(pkB , skA)
ss = H(j,M)
cA = ss⊕mA, where mA ∈ {0, 1}M

3: Decryption: Bob decrypts the ciphertext with the shared
key.
j = isoexB(pkA, skB)
ss = H(j,M)
mA = ss⊕ cA

Output: Bob’s received message mA.

The SIDH protocol [9] is designed for two parties (saying,
Alice and Bob), who want to communicate with each other
secretly over a public communication environment. Alice and
Bob both obtain their shared key by using their own secret
key and the other party’s public key. The shared key is the
j-invariant of two isomorphic supersingular elliptic curves
generated based on a public supersingular elliptic curve E.
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Such curve is usually set as the Montgomery curve with the
form of E/Fp2 : Dy2 = x3 + Cx2 + x, where C,D ∈ Fp2 ,
D(C2 − 4) 6= 0, and the prime p = f · aeAbeB ± 1.

The main process of SIDH is shown in Algorithm 1.
Assume that Bob receives messages from Alice. {PA, QA}
and {PB , QB} are two independent points on the public curve
E/Fp2 , and satisfy < PA, QA >= E[aeA ] and < PB , QB >=
E[aeB ]. Firstly, Bob generates his secret key and public key
with the corresponding parameters. Bob’s secret key skB is
chosen from the keyspace {0, 1, ..., 2blog2 3eB c − 1} and his
public key is gotten by using the isogenB function which
can be referred to in the documentation of [19]. And then
Bob sends his public key to Alice. Secondly, Alice generates
her secret key and public key in the same way as Bob. With
her own secret key skA and Bob’s public key pkB , she can
calculate their shared key j by function isoexA. Assuming
the dimension of the plaintext space is M , the j-invariant is
encrypted by the Hash function with a bit width of M . The
plaintext mA is encrypted as cA by using the output of the
Hash function. Finally, to decrypt the cA, Bob gets their shared
key j with the isoexB function. After encrypting j by the Hash
function, he obtains the plaintext mA by using ss.

B. Supersingular Isogeny Key Encapsulation

We know that SIDH can defend from the quantum comput-
er’s attack. However, this protocol is proved unable to resist
some side-channel attacks [10]–[12]. The SIKE protocol is
just proposed to make up this flaw, by using the encapsulation
mechanism.

Algorithm 2: SIKE Protocol [19]
Input: Public parameters: E/Fp2 , PA, QA, PB , and QB .

1: Key Generation: Bob generates his secret key and
public key and sends the public key to Alice.
skB = random{0, 1, ..., 2blog2 3eB c − 1}
pkB = isogenB(skB)

2: Encapsulation:Alice encrypts her plaintext as cA and
em. And em becomes another shared key.
skA = H({mA, pkB}, eA)
pkA = isogenA(skA)
j = isoexA(pkB , skA)
ss = H(j,M)
cA = ss⊕mA, where mA ∈ {0, 1}M
em = H({mA, pkA, cA},K)

3: Decapsulation: Bob decrypts the ciphertext and judges
whether the message is em or em′.
j = isoexB(pkA, skB)
ss = H(j,M)
m′A = ss⊕ cA
sk′A = H({m′A, pkB}, eA)
pk′A = isogenB(sk

′
A)

fmB ∈ {0, 1}M

emA =

{
H({m′A, pkA, cA},K) (pk′A = pkA)

H({fmB , pkA, cA},K) (pk′A 6= pkA)
Output: Bob’s calculated message emA.

Similar to SIDH, we divide the SIKE protocol into three
steps: key generation, encapsulation, and decapsulation, shown
in Algorithm 2. In the first step, Bob generates his secret
key and public key by using the function isogenB . Next he
sends out the public key pkB to Alice. In the encapsulation
step, Alice gets her secret key skA by hashing her plaintext
cascaded with Bob’s public key. Her public key and shared
key are computed in the same way as those in SIDH. Then
she sends to Bob her public key and her ciphertexts cA. At
the same time, she computes a new shared key as em with a
bit width of K which corresponds to the number of bits of
classical security. In the decapsulation step, Bob computes the
original shared key and then calculates the plaintext m′A. With
the computed plaintext and his public key, Bob can recover
Alice’s secret key and public key. Meanwhile, he generates a
random fake message of fmB . Finally, he chooses the output
by judging whether pk′A is equal to pkA.

In the SIKE library, four sets of parameters have been
provided, namely, SIKEp434, SIKEp503, SIKEp610, and
SIKEp751. The corresponding NIST security levels are 1
(AES128), 2 (SHA256), 3 (AES192), and 5 (AES256), re-
spectively, which are the newest judgments corrected by
Costello et al. in [40]. All of those primes have the form of
p = 2eA3eB−1 with eA ≈ eB , which is considered in our field
arithmetic computing for SIKE in this paper. Note that the
field arithmetic architectures proposed in this paper can also
be applied to other supersingular isogeny-based ECCs directly
or with slight modification.

C. Field Arithmetic Operations for SIKE Based on a New
Polynomial Data Representation

By breaking down the computations of the SIKE protocol,
we can find that the five large-degree isogeny operations,
including the isogen and isoex functions, dominate the total
computation. According to the Vélu’s formula [41], in practi-
cal computing, a large-degree isogeny is required to be divided
into many data-dependent small-degree isogenies which are
made up of finite-field arithmetic operations. A supersingular
isogeny elliptic curve is usually considered over a quadratic
finite field Fp2 . The arithmetic operations over Fp2 can be
decomposed into operations over Fp, including the modular
addition, modular subtraction, modular negation, modular mul-
tiplication, modular division, and modular inversion.

As analyzed in [39], the proposed field arithmetic algorithms
over an unconventional-radix polynomial representation are
more efficient than the most popular used field algorithm for
SIKE in many cases. Moreover, they can be easily parallelized
in hardware implementation. In order to make SIKE more
practical, we will design low-latency architectures based on
them in the next section. Before that, we will briefly summa-
rize some of them in the following.

The key idea of the field algorithms in [39] is to replace a
large modulus p with a small modulus R, which can greatly
benefit the modular multiplication. The prime p of SIKE is
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rewritten as:

p = 2eA3eB − 1

= 2−α3−β2eA+α3eB+β − 1

= f ′ ·Rn − 1,

(1)

where f ′ = 2−α3−β , R = 2
eA+α

n 3
eB+β

n , and the parameters
α and β are used to make eA + α and eB + β divisible by
a relatively large n. With this form, a field number, saying
A ∈ Fp, can be directly represented as:

A =

n−1∑
i=0

ai ·Ri, (2)

where ai ∈ [0, R−1] for 0 ≤ i < n−1 and an−1 ∈ [0, f ′R−
1].

Generally, the basic field arithmetic operations can be
completed by three operations, namely, the modular addition,
subtraction, and multiplication. We will briefly review them
in the following. The inverse domain conversion algorithm
named U2N in [39] will also be presented.

1) Modular Addition and Subtraction: Consider two field
operands A,B ∈ Fp represented as in Eq. (2). The modular ad-
dition and subtraction algorithms are merged and summarized
in Algorithm 3, where the different conditions or operations
are jointly expressed as /, ± or ∓. The computing process is
split into two steps.

For the modular addition, in the first step, the coefficients
ai and bi for 0 ≤ i < n are added as ci = ai + bi. In this
way, one N -bit addition is converted into n w-bit additions,
where N is the bit width of p, w is the bit width of R, and
w = dN/ne. Since there are no carries in the adjacent terms,
the n additions can be computed in parallel, which can reduce
the critical path and improve the parallelism in hardware. The
second step is to make the coefficients ci in the standard range
as shown in Steps 2-12. If ci for 0 ≤ i < n − 1 are larger
than R−1, they will be reduced by R and ci+1 will be added
by one. If cn−1 > f ′R− 1, it will be reduced by f ′R and c0
is added by one. Clearly, this step is computed in serial. We
have proposed a carry-select-like method to reduce the latency,
which will be shown in the next section. It should be noted
that a lazy reduction is used for c0 to simplify the reduction,
where c0 ranges in [0, R].

For the modular subtraction, similar to the modular addition,
the first step directly uses n w-bit subtractions for coefficients.
The second step is to make c0, ..., cn−1 lie in the standard
ranges and the output c0 is also applied with the lazy reduction.

2) Modular Multiplication: Assume two field operands
A,B ∈ Fp represented as in Eq. (2). According to [39], the
modular multiplication can be summarized in Algorithm 4,
which is also divided into two steps: integer multiplication
and modular reduction.

In the integer multiplication step, the original N × N
multiplication is replaced by n2 ai·bj where i, j ∈ 0, ..., n− 1.
It should be noted that the parameter 2α3β equals 1/f ′.
Since there are no carries in the adjacent orders, the n2

small multiplications can be computed in parallel and the
fast convolution optimization can be easily applied to the

Algorithm 3: Modular Addition/Subtraction [39]

Input: A =
n−1∑
i=0

ai ·Ri, B =
n−1∑
i=0

bi ·Ri, where

ai, bi ∈ [0, R− 1] for i = 0, ..., n− 2 and
an−1, bn−1 ∈ [0, f ′R− 1]; p = f ′Rn − 1.
Step 1: Integer addition/subtraction.

1: C = A±B =
n−1∑
i=0

(ai ± bi) ·Ri =
n−1∑
i=0

ci ·Ri

Step 2: Modular reduction.
2: if c0 ≥ R / c0 ≤ 0 then
3: c0 = c0 ∓R, c1 = c1 ± 1
4: end if
5: for i = 1→ n− 2 do
6: if ci ≥ R / ci < 0 then
7: ci = ci ∓R, ci+1 = ci+1 ± 1
8: end if
9: end for

10: if cn−1 ≥ f ′R / cn−1 < 0 then
11: cn−1 = cn−1 ∓ f ′R, c0 = c0 ± 1
12: end if
Output: C =

n−1∑
i=0

ci ·Ri ≡ A±B mod p.

coefficient multiplication combinations, both of which are very
friendly in fast hardware implementation.

The modular reduction step is to make the raw coefficients
into standard ranges. According to [39], n+1 improved Barrett
reduction (IBR) (proposed in Algorithm 6 of [39]) functions
are needed with a modulus of R or f ′R. The quotient q
and remainder r can be obtained with about 1.75 w × w
multiplications, where w approximates half of the input data
width. The quotient is added to the next-order coefficient. After
using n+1 IBR functions, the final coefficients are obtained by
using some additions and subtractions, which can be referred
to as the second step of the modular addition. Note that c0 is
also applied with the lazy reduction.

3) From Unconventional Radix Back to Normal (U2N):
Since in the hardware design, the input data are transformed
into the new representation in advance and the coefficients
are saved in the storage, there is no need to design a forward
converter. Therefore, we only provide the inverse domain con-
version algorithm here, named U2N as shown in Algorithm 5.

The number A =
n−1∑
i=0

ai · Ri with standard ranges (except

a0 which has a lazy reduction) is the output from a field
algorithm aforementioned. In the U2N algorithm, recursive
multiplication and addition operations from higher orders to
lower orders are adopted to calculate the output. The final
result is adjusted in terms of the used lazy reduction.

III. PROPOSED FIELD ARITHMETIC LOGIC UNIT

The proposed field arithmetic logic unit (FALU) is shown
in Fig. 1, including four submodules: M-U2N Module
(MU2NM), Modular Adder (MA), Modular Subtractor (MS),
and Modular Multiplier (MM). A multiplexer in the right
is to select the output from one of the four submodules in
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Algorithm 4: Modular Multiplication [39]

Input: A =
n−1∑
i=0

ai ·Ri, B =
n−1∑
i=0

bi ·Ri, where

ai, bi ∈ [0, R− 1] for i = 1, . . . , n− 2 and
an−1, bn−1 ∈ [0, f ′R− 1]; p = f ′Rn − 1.
Step 1: Integer multiplication.

1: for i = 1→ n− 1 do
2: ci =

i∑
j=0

ajbi−j +
n−1∑
j=i+1

ajbi−j+n · 2α3β

3: end for
Step 2: Modular reduction.

4: q−1 = 0
5: for i = 0→ n− 2 do
6: (qi, ri) = IBR(ci + qi−1, R)
7: end for
8: (qn−1, rn−1) = IBR(cn−1 + qn−2, f

′R)
9: (q0, r0) = IBR(r0 + qn−1, R)

10: c0 = r0, r1 = r1 + q0
11: for i = 1→ n− 2 do
12: ci = ri
13: if ri > R− 1 then
14: ci = ri −R, ri+1 = ri+1 + 1
15: end if
16: end for
17: cn−1 = rn−1
18: if rn−1 > f ′R− 1 then
19: cn−1 = rn−1 − f ′R, c0 = c0 + 1
20: end if
Output: C =

n−1∑
i=0

ci ·Ri ≡ A×B mod p.

Algorithm 5: From Unconventional Radix Back to Normal
(U2N) [39]

Input: An operand A =
n−1∑
j=0

aj ·Rj , the radix R, and the

modulus p = f ′Rn − 1.
1: C = an−1
2: for j ← n− 2 to 0 do
3: C ← C ·R+ aj
4: end for
5: If C = p, set C to 0.
6: If C = p+ 1, set C to 1.

Output: The result C ∈ Fp = A mod p.

different conditions controlled by the signal sel strl. More
details about these submodules are shown below.

A. Modified U2N Module

The U2N algorithm is to convert the data from the poly-
nomial format back to the original format (i.e., the field
elements), which is usually used for a Hash input after an
isogeny computation. We have theoretically analyzed and
experimentally examined Algorithms 3 and 4 for modular
addition, subtraction, and multiplication and found that the
case of output equal to p + 1 never occurs though a lazy
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Fig. 1. Proposed FALU architecture.

reduction is applied to a0. It means that the operand A of
Algorithm 5 always ranges in [0, p]. Hence, we have removed
the judgment in Step 6 of Algorithms 5 in our modified
version.

Algorithm 6: Modified U2N (M-U2N) Algorithm for
Hardware Efficiency

Input: An operand A =
n−1∑
i=0

ai ·Ri, where 0 ≤ a0 ≤ R,

0 ≤ a1, ..., an−2 < R, and 0 ≤ an−1 < f ′R;
p = f ′Rn − 1.

1: S0 = an−1, f1 =

{
1, (an−1 = f ′R− 1)

0, (an−1 6= f ′R− 1)
2: for i = 1→ n− 1 do
3: for j = 1→ i do
4: if j == 1 then
5: t = an−1−i
6: else
7: t = D
8: end if
9: P = Sj−1×R+ t, Sj−1 = P mod 2w, D = P / 2w

10: if j == i then
11: Sj = D
12: end if
13: end for

14: f2 =

{
1, (an−1−i = R− 1)

0, (an−1−i 6= R− 1)
, f1 = f1&f2

15: end for

16: C =

{
{Sn−1, Sn−2, ..., S0}, (f1 = 0)

0, (f1 = 1)
Output: Field element C ∈ Fp.

In fact, the original U2N algorithm is unfriendly to hardware
design because the data width is increasing with the iterative
computations. Therefore, we propose a modified U2N algorith-
m abbreviated as M-U2N for hardware efficiency, as shown in
Algorithm 6. The key idea of this algorithm is to save the lower
bits in memory Sj−1 dynamically and only use the higher
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TABLE I
A NUMERICAL EXAMPLE FOR ALGORITHM 6 WITH PARAMETERS n = 5 AND w = 32, AND RANDOM VALUES a0 = 80A0691D, a1 = B6852D35,

a2 = 6B1C90E2, a3 = 7E53F454, a4 = 23DD7, AND R = EB324F68

S4 S3 S2 S1 S0 D P
i = 1 j = 1 0 0 0 20F35 A1506CAC 20F35 20F35A1506CAC

i = 2
j = 1 0 0 0 20F35 E2E9CAC2 94348780 94348780E2E9CAC2
j = 2 0 0 1E45D D7161008 E2E9CAC2 1E45D 1E45DD7161008

i = 3

j = 1 0 0 1E45D D7161008 BAF56A05 D079352C D079352CBAF56A05
j = 2 0 0 1E45D 79F2306C BAF56A05 C59B85BE C59B85BE79F2306C
j = 3 0 1BD01 5502FE86 79F2306C BAF56A05 1BD01 1BD015502FE86

i = 4

j = 1 0 1BD01 5502FE86 79F2306C 7C050625 ABC4063F ABC4063F7C050625
j = 2 0 1BD01 5502FE86 8C31061F 7C050625 70094994 700949948C31061F
j = 3 0 1BD01 9DF80A04 8C31061F 7C050625 4E1A7499 4E1A74999DF80A04
j = 4 198D7 AD548C01 9DF80A04 8C31061F 7C050625 198D7 198D7AD548C01
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Fig. 2. Step-by-step illustration for M-U2N.

bits to compute in each iteration. Two loops are adopted to
keep the sizes of multiplication and addition small. The outer
loop is to shift from the high-order to low-order coefficients
and the inner loop is to refine the multiplication and addition.
To make it clearer, a step-by-step illustration for M-U2N is
shown in Fig. 2. We can see that this algorithm costs n(n−1)

2
w×w multiplications and 2w+w additions, where the sizes of
multiplication and addition operations both are fixed. It should
be noted that since the upper bound of an−1 is the smallest
among the coefficients and the output C is smaller than 2nw,
the data width of these variables is kept within w. Meanwhile,
the flag signals f1 and f2 are used to record whether the result
equals the modulus p or not. If yes, the output will be set to
zero.

For a more intuitive understanding of Algorithm 6, we
give a numerical example in the following. Take n = 5 and
w = 32, and randomly generate 6 values for a0, .., a4, and
R as a0 = 80A0691D, a1 = B6852D35, a2 = 6B1C90E2,
a3 = 7E53F454, a4 = 23DD7, and R = EB324F68. The
intermediate data S0, ..., S4, D, and P in each iteration are
shown in Table I. It takes 10 clock cycles to get the final result
shown in the last row of {S4, S3, S2, S1, S0} in the table.

The corresponding hardware architecture of Algorithm 6
is shown in Fig. 3, where the judgment logic for equal to
p is omitted for brevity. The input coefficients a0, ..., an−2,
intermediate variables S0, ..., Sn−1 and D, are saved in 2n
w-bit registers. Due to the constraint eA ≈ eB for the prime
of SIKE, about w/2 lowest bits of R are zeros. So, we can
use one w/2 × w multiplier and one 3w/2 + w/2 adder for
the calculation. In each outer iteration, the register group of
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Fig. 3. Proposed MU2NM architecture.

the input coefficients shifts w bits to the right. The registers
for the intermediate variables are updated in each cycle. At
the beginning, the input coefficient an−1 is selected and put
into the multiplier. After added by an−2, the 2w-bit sum P is
divided into two parts: w-bit PL and w-bit PH . PL is saved
back to Sj with a demux. PH is saved back to Sj with another
demux only when j = i. Meanwhile, PH is also sent to register
D. In the following iterations, the input of the multiplier is
selected from the registers S0, ..., Sn−1 and that of the adder
is selected from the register D and the rightmost register of
the coefficients. After n(n−1)

2 iterations, the output is obtained
as {Sn−1, Sn−2, ..., S0}. When k levels of the pipeline are
inserted in the iteration, this module needs n(n−1)(k+1)

2 clock
cycles. In our following implementation, k is set to 1.

B. Modular Adder

The architecture for the modular addition of Algorithm 3
is shown in Fig. 4, where the symbol ”-” above a line means
that the associated operation nearby is a subtractor. The adders
for the coefficients are computed in parallel. According to
the reduction step of Algorithm 3, serial computations are
needed, which will cause long latency. In order to deal with
this problem, we have investigated this algorithm carefully
and found that the candidate data can be computed in advance
and selected by some control logic, which looks like a carry-
select adder in the normal domain. As shown in Fig. 4, the
sums are subtracted by R or f ′R in parallel and the leftmost
column of multiplexers are used to select the remainders
r0, ..., rn−2 ∈ [0, R − 1], rn−1 ∈ [0, f ′R − 1], and the
quotients q0, ..., qn−1 ∈ {0, 1}, controlled by the sign bit of
the subtractors’ outputs. The following step is to deal with
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Fig. 4. Proposed modular adder architecture.

the quotients. Since the quotients are whether 0 or 1, the final
outputs of ci for 0 < i < n are equal to ri, ri+1, or 0. And that
for c0 only equals r0 or r0 +1 because of the lazy reduction.
We prepare those candidates in parallel and only update the
1-bit quotients using simple logics deduced by listing the truth
table based on their dependency, which can largely reduce the
latency.

C. Modular Subtractor

Similar to the modular adder, the modular subtractor is also
devised with a high degree of parallelism, as shown in Fig.
5. After the subtractors for the coefficients, the differences
are added by R or f ′R in parallel. The leftmost column of
multiplexers are used to select the remainders r0 ∈ [0, R],
r1, ..., rn−2 ∈ [0, R − 1], and rn−1 ∈ [0, f ′R − 1], controlled
by the sign bit of the subtractors’ outputs. The quotients
q0, ..., qn−1 ∈ {0, 1} are directly set as these sign bits. The
candidates of ci for 0 < i < n − 1 are ri, ri − 1, and
R − 1; those of cn−1 are rn−1, rn−1 − 1, and f ′R − 1;
and those of c0 only are r0 and r0 − 1 because of the lazy
reduction. The candidates are computed in parallel and the
final 1-bit quotients are calculated in terms of the dependency
between the adjacent orders. The outputs are selected from the
candidates controlled by the updated quotients.

D. Modular Multiplier

The modular multiplier is used to compute the product
C ≡ A × B mod p, where A,B,C ∈ Fp. Since the modular
multiplication takes up a large proportion of the computations
in the SIKE protocol, accelerating this operation can efficiently
speed up the entire protocol. As shown in Fig. 1, the proposed
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Fig. 5. Proposed modular subtractor architecture.

modular multiplier has three submodules: 1) mul add; 2)
top IBR; and 3) post process. They will be detailed in the
following.

mul add: This module is used to calculate the integer
multiplication, as shown in Step 1 of Algorithm 4. To reduce
the latency and save resources, we propose a cascaded fast-
convolution-like optimization method that is inspired from the
iterated fast convolution method for FIR in Chapters 8 and 9
of [42], to reduce the number of coefficient multipliers and to
relieve the wire congestion issue. This method is introduced
as follows.

We need to decide two things: the cascaded order and
the fast sub-convolution modules. An example is provided
to show the method in the following. Assume the cascaded
order is 2, and a 2 × 2 and a 3 × 3 fast-convolution-like
submodules are used. Therefore, the number of inputs is 6.
The architectures are shown in Figs. 6 and 7, where the box
of Fig. 6 denotes a multiplier with operands x and y as an
FIR filter used. We can see from Fig. 6 that the delay units
used by the FIR are removed and replaced by the partial sum
products, and that every input is connected to only two instead
of three multipliers which can effectively relieve the wire
congestion issue. With this method, the number of coefficient
multipliers is reduced from 36 to 18 with an increase of adders
consumption. It should be noted that the final output of the
mul add module requires to be further reduced by using the
formula of ci = ci+ ci+n · 2α3β , i = 0, ..., n− 2 with shifters
and adders.

For SIKEp751, since n = 12, we can design the mul add
module in high parallel by directly using four copies of
Fig. 7 or further cascading it with a 2 × 2 FCM. In order
to reduce the complexity of adders, we have adopted the
former method in our following implementation. Additionally,
in every coefficient multiplier, the Karatsuba optimization
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Fig. 6. 3× 3 fast-convolution-like module (FCM).
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Fig. 7. 2× 2 and 3× 3 cascaded fast-convolution-like architecture.

method [43] is used to reduce the resources. To achieve a high
clock frequency, several stages of the pipeline are needed, the
number of which depends on the data width of the input and
the parameter n.

top IBR: This module is used to compute the main opera-

Algorithm 7: Modified Modular Reduction for Low-
Latency Design

Input: The raw coefficients c′0, c
′
1, ..., c

′
n−1.

1: for i = 0→ n− 2 do
2: (q′i, r

′
i) = IBR(c′i, R)

3: end for
4: (q′n−1, r

′
n−1) = IBR(c′n−1, f

′R)
5: q′−1 = q′n−1
6: for i = 0→ n− 2 do
7: (q′′i , r

′′
i ) = SIBR(r′i + q′i−1, R)

8: end for
9: (q′′n−1, r

′′
n−1) = SIBR(r′n−1 + q′n−1, f

′R)
10: for i = 1→ n− 1 do
11: ri = r′′i + q′′i−1
12: end for
13: r0 = r′′0 + q′′n−1
14: (c0, c1, ..., cn−1) = post process(r0, r1, ..., rn−1)

Output: C =
n−1∑
i=0

ci ·Ri ≡ A×B mod p.

tions of the reduction. Our goal is still to reduce the latency.

If we directly use the reduction scheme of Algorithm 4, the
IBR function has to be serially used to reduce the coefficient
plus the adjacent quotient, which will cause a long latency.
In order to deal with this problem, we modify the processing
scheme of that step as shown in Algorithm 7, to make the
reduction process able to parallelize as much as possible.
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Fig. 8. Proposed top IBR architecture.

Thanks to the complexity of IBR function being strongly
correlated with the maximum input data width, we can design
different sizes of IBR architectures to speed up the reduction
process and meanwhile maintain a low complexity. Therefore,
we propose a two-level reduction architecture with two sizes
of IBR modules as shown in Fig. 8. The IBR architecture
is referred to in our previous work [37]. The first level
composed of n IBR modules is to reduce the raw coefficients
c′0, ..., c

′
n−1 (corresponding to Steps 1-4 of Algorithm 7). The

outputs of IBRi are q′i and r′i. The size of those IBR modules
is determined by the maximum of the raw coefficients. As
presented in [39], the maximum data width equals about
log2d((n − 1)2α3β + 1)e + 2 · log2d(R − 1)e. Since r′i is
smaller than R or f ′R, the data with of q′i can reach about
log2d((n − 1)2α3β + 1)e + log2d(R − 1)e. Though the first
term is usually very small relative to the second term, it is
not convenient to directly reduce those quotients with some
subtractors yet. For instance, for SIKEp751, if n = 12,
α = 0, and β = 1, the first and second terms will equal
6 and 63, respectively. Thus, we use n adders to compute
q′i−1 + r′i for 0 < i < n and q′n−1 + r′0, and then send
their sums into the n small IBR (SIBR) modules as the second
reduction level (corresponding to Steps 5-9 of Algorithm 7).
The input data width is almost equal to the maximum size of
the quotients. The outputs of SIBRi are q′′i and r′′i . Similarly,
these quotients and remainders are added up respectively as
outputs r0, ..., rn−1, whose upper bounds are larger than R
but far smaller than 2R (corresponding to Steps 10-13 of
Algorithm 7). They are reduced with some subtractors in the
post process module introduced in the following.

post process: This module is to meet the constraints c0 ∈
[0, R], c1, ..., cn−2 ∈ [0, R − 1] and cn−1 ∈ [0, f · R − 1]. As
the outputs of top IBR r0, ..., rn−1 are in the standard ranges
or a little bigger than the upper bound, only one R or f ′R
should be subtracted to make them in the right range. If R ≤
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Fig. 9. Proposed post process architecture.

ri(i ∈ {0, ..., n−2}), ri will be needed to be subtracted by R
and ri+1 will be required to be added by 1. If f ′R ≤ rn−1,
rn−1 will be subtracted by f ′R and r0 will be added by 1.
Based on this analysis, the coefficients need to be processed
one after another, which causes a long latency. Similar to the
modular adder or subtractor introduced above, we propose a
parallel architecture for this module as shown in Fig. 9. All the
candidates are computed in parallel in advance and selected
by the control logic made up of the sign bits. In this way, the
critical path covers two adders and four multiplexers.

IV. TOP-LEVEL ARCHITECTURE AND INSTRUCTION
SCHEDULING

A. Top-Level Architecture

According to the open VHDL source code provided in
the SIKE library [19], the design coded by Koziel et al. is
divided into five parts: the control unit, ROM, ALU, RAM,
and interface logic. The state transition instruction is generated
by other scripts and saved in ROM for the control logic which
is used to schedule the whole design. The ALU includes the
Keccak Hash unit and FALU. The former is referred to as
the work of the Keccak team [44] and the latter is designed
by Koziel et al. The dual-port RAM is used to store the
intermediate data or to cache the output. The interface logic
is to make the data standard for exchanging with the outside
hardware. The interactive relationship of those five parts for
SIDH with 512-bit prime is illustrated in Fig. 4 of [24] by
Koziel et al.

Figure 10 is the proposed top-level architecture of SIKE,
where the bit widths of the data flow for SIKEp751 are
marked. The basic framework is similar to Koziel’s. In order
to reduce the latency caused by the read and write operations,
we adopt two identical dual-port RAMs to cache the data.
Port As of the two RAMs are always set as read after the
initialization process and their Port Bs are always set as write.
During the calculation process, the two operands opa and opb
of ALU are separately received from Port As of the two RAMs
with two different addresses, and the output is simultaneously
sent into their Port Bs with the same address. It means that
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Fig. 10. Top-level architecture of SIKE.

we can read from and write to the memory at the same time.
Theoretically, when data are read and written in every clock
cycle, this new memory access method can reduce the latency
by half at the cost of memory consumption. Nevertheless,
this reduction ratio in latency cannot be reached by SIKE
due to the limitation of data dependency. In our following
implementation for SIKEp751, this method reduces the total
latency by about 25%.

Since the fully parallelizing scheme is adopted in FALU,
the control logic unit to regulate ALU can be much simpler
than those in previous works [24], [26], [29]. Hence, the bit
width of the control signals for the field arithmetic computing
is reduced from 12 bits to 4 bits. It should be noted that the
bit width of the instruction is increased from 26 bits to 30
bits because we adopt three instead of two addresses in our
design.

The 30 bits of an instruction are allocated as follows. The
first bit is used for starting the inversion unit. The second bit
is the reset signal of MU2NM. Bits 3-5 are used to select
the result of FALU. As shown in Fig. 1, five combinations
of the three bits correspond to the five outputs from the four
arithmetic modules. Bit 6 indicates whether data should be
written to Port Bs. Bits 7-14 are the address of Port Bs. Bits
15-22 are the address of Port A of RAM 0 and bits 23-30 are
that of RAM 1.

B. Instruction Scheduling

Good scheduling can increase the throughput of a design.
We have analyzed some of the instructions saved in ROM
provided by the SIKE library and we found that the scheduling
flow is fully optimized. In this work, we refer to this flow to
schedule our design and modify the start and end time to fit
our FALU and RAM modules. In the following, we provide
an example to show the method.

Take the operating flow of A × B in Fp2 as an example,
where SIKEp751 is considered. An element A in Fp2 is
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Ours

Koziel’s

A0

A1

B0

B1

Step 1

A0+A1

Step 2

B0+B1

Step 3

A0×B0

Step 4

A1×B1

Step 5

(A0+A1)

×(B0+B1)

Step 6

C0=A0B0

-A1B1

Step 7

A0B0+

A1B1

Step 8

C1=(A0+A1)

×(B0+B1)-

A0B0-A1B1

(1-9)

(1-5)

(2-10) (3-152) (4-153) (11-160) (154-162) (155-163) (164-172)

(2-6) (3-20) (4-21) (7-24) (24-28) (25-29) (30-34)

C0

C1

Fig. 11. Step-by-step illustration example for the operating flow of A×B over Fp2 , where the symbols ⊕, 	, and ⊗ denote the modular addition, subtraction,
and multiplication operations, respectively. The adder, subtractor, and multiplier all are processed in a systolic way. The read-write CCs are also considered.
The latencies of Koziel’s [19] modular adder/subtractor and multiplier are 7 CCs and 148 CCs for SIKEp751, and those of ours are 3 CCs and 16 CCs,
respectively.

TABLE II
COMPARISON OF INSTRUCTION SCHEDULING BETWEEN KOZIEL’S AND OURS TO CALCULATE A×B OVER Fp2

Koziel’s Instruction Scheduling
cycle 1 2 3 4 ... 9 10 11 ... 152
instr in1 add in2 add in3 mul in4 mul nop out1 add out2 add in5 mul nop out3 mul
153 154 155 ... 160 161 162 163 164 ... 172

out4 mul in6 sub in7 add nop out5 mul nop out6 sub out7 add in8 sub nop out8 sub
Our Instruction Scheduling

cycle 1 2 3 4 5 6 7 ... 20 21
instr in1 add in2 add in3 mul in4 mul out1 add out2 add in5 mul nop out3 mul out4 mul

... 24 25 ... 28 29 30 31 ... 34
nop out5 mul & in6 sub in7 add nop out6 sub out7 add in8 sub nop nop out8 sub

represented as A = A0 + A1i, where A0, A1 ∈ Fp. The
optimized formula to compute A×B over Fp2 is:

A×B = (A0B0 −A1B1) + (3)
((A0 +A1)(B1 +B0)−A0B0 −A1B1)i.

A step-by-step illustration for the operating flow of A × B
over Fp2 is shown in Fig. 11, where the processing clock
cycles (CCs) in [19] and ours are also listed for a clear
comparison. We can see that our design only needs 3 CCs for
the modular addition/subtraction and 16 CCs for the modular
multiplication, while the design in [19] requires 7 CCs and
148 CCs, respectively. Eight steps are required to compute this
operation, i.e., sixteen active instructions are needed to deploy
the 8 groups of inputs and outputs. A detailed instruction
scheduling comparison is shown in Table II. The notations, like
“in1 add” and “out1 add”, denote the instructions to permit
an input or output of the adder/subtractor/multiplier in the
corresponding cycles and “nop” means no input or output
in that cycle. The omitted cycles all are “nops”. Clearly, the
latency in CCs of our design is reduced by more than 80%
in this example compared with the work in [19]. It should be
noted that in the 24th cycle of our instruction scheduling,
”out5 mul” and ”in6 sub” are processed in one cycle due
to the proposed memory access method. Such case would

frequently appear in SIKE as it contains a vast number of
operations.

V. IMPLEMENTATION RESULTS AND COMPARISON

A. Hardware Implementation for SIKEp751

To compare with conventional SIKE designs, we implement
the proposed architecture in hardware for SIKEp751 targeting
at NIST security level 5. According to [39], the prime of
this parameter is reformulated as p = 23723239 − 1 =
1/3 · (231320)12 − 1. So, the used parameters are f ′ = 3,
R = 231320, and n = 12.

The design and test process is divided as three parts: (1) the
FALU module, (2) the instructions, and (3) the entire SIKE
design. For part (1), we code the proposed FALU architecture
in Verilog language and meanwhile the computing process in
C++ language, where the latter is used as the benchmark. The
submodules and the top-level design of FALU are separately
tested by many pairs of random inputs. For part (2), we analyze
the rules of instructions by choosing several sub-functions of
SIKE provided online [19], such as the 3/4-isogeny comput-
ing/evaluating and differential ladder computing. The control
bits are adjusted to our proposed FALU and RAM by using
MATLAB scripts. The correctness is verified in the selected
sub-functions. For part (3), based on the hardware project of
SIKE online, we insert the generated complete instructions into
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the ROM, replace the original FALU and RAM files with ours,
and modify the control signals in the logic control file. We
then transfer the input data of the testbench file into the new
polynomial data representation and run the simulation over
the Xilinx Vivado 2018.2 EDA platform. The original SIKE
design online is set as our benchmark. The entire SIKE design
is tested jointly and checked step by step. The implementation
results are shown in the following, where the FPGA board is
a Xilinx Virtex-7 with a core of xc7vx690tffg1157-3 which
is widely used in previous works [19], [24]–[26], [29], [32],
[33].

TABLE III
TIMING COMPARISONS OF THE MODULAR MULTIPLIER FOR

SIKEP751 OVER A VIRTEX-7 FPGA

Work #
Mults

fclk
(MHz)

Latency /
Interleaved

(cc)

Normalized
Latency/

Interleaved
[26] 8 193 148 / 101 9.25 / 101
[29] 8 167.4 100 / 69 6.25 / 69
[32] 8 294 138 / 90 8.63 / 90
[33] 6 182.3 77 / 54 6.42 / 54

this work 1 155.8 16 / 1 1.00 / 1

B. Implementation Results and Comparison
Table III shows the timing comparisons of modular mul-

tiplier for SIKEp751 over the Virtex-7 FPGA between ours
and previous works [26], [29], [32], [33]. It can be seen that
the proposed MM achieves the shortest latency and inter-
leaved latency among the state-of-the-arts thanks to the fully
interleaving scheme and the adopted optimized algorithm.
Our design has two overwhelming advantages in the SIKE
implementation. The first advantage is that for the dependent-
data computations, our MM can greatly help accelerate such
computations because of the ultra-low latency. The second ad-
vantage is that for the independent-data computations, we can
only use one multiplier to satisfy any degrees of parallelism
because the proposed MM can be utmostly interleaved with
only one cycle, nearly two orders of magnitude compared
to other popular designs used in SIKE. However, obtaining
a high degree of parallelism in these previous works must
parallelize the multipliers. For example, eight or six multipliers
are used in those implementations as listed in Table III. Since
the resources of this module are not available in the previous
literatures, the area comparisons are not provided here. They
can be implicitly reflected in the following comparisons of the
whole SIKE implementation results.

TABLE IV
ROUND COMPUTATIONS OF SIKEP751 OVER A VIRTEX-7 FPGA

Alice R1 Bob R1 Alice R2 Bob R2 Total
Latency

(cc) 364,434 399,475 321,191 358,584 1,443,684

Time
(ms) 2.34 2.56 2.06 2.30 9.27

MM costs 16 CCs, MA and MS takes 3 CCs, and MU2NM expends
135 CCs.
fclk = 155.8 MHz.

The round computations for SIKEp751 are shown in Ta-
ble IV. The latency is computed through simulation, using

the ending time minus the starting time and then dividing the
interval time. It can be seen that the proposed SIKE costs 1.44
million clock cycles in total. The time is calculated by using
the latency dividing the frequency. As the frequency is 155.8
MHz, the design only costs 9.27 ms.

TABLE V
RESOURCE UTILIZATIONS OF MAJOR COMPONENTS FOR SIKEP751 OVER

A VIRTEX-7 FPGA

Component # FFs # LUTs # DSPs # BRAMs # Slices
FALU 62,797 83,613 834 0 25,136

MM 58,163 77,906 828 0 23,311
MA 1,524 2,469 0 0 1,009
MS 1,525 2,195 0 0 677
MU2NM 1,585 1,043 6 0 667

Keccak-1088 2,703 4,704 0 0 1,510
Register File 0 0 0 42 0
Control Unit 266 1,704 0 31.5 874

Total
68,895/
866,400
7.95%

90,940/
433,200
20.99%

834/
3,600

23.17%

73.5/
1,470
5.00%

27,286/
108,300
25.19%

The resource utilizations of the new SIKE implementation
is shown in Table V, where the numbers of FFs, LUTs, DSPs,
BRAMs and Slices are counted. It should be noted that the
MM module takes up more than 80% resources of SIKE in
terms of the slice.

We compare our SIKE results with those in the literature
[19], [25]–[29], [32], [33] in Table VI, including the area and
timing comparisons. In order to take the DSPs and BRAMs
into consideration for the area efficiency, we use the slice
equivalent cost (SEC) as a new metric for area with the same
approximation method used in [29], i.e., #SEC = #BRAMs ×
100 + #DSPs ×100 + #Slices. The area efficiency computed by
SEC×Time is denoted as ST product, which is calculated and
listed in the table. It can be seen that our design achieves the
shortest latency, the fastest speed, and the best area efficiency
among existing works. Especially, the latency, which is usually
the bottleneck because of the inevitable data dependency,
is drastically reduced compared to the prior arts thanks to
our proposed ultra-low-latency field arithmetic modules and
efficient memory access method. In our test, we have found
that the latency can be reduced by about 1/4 for SIKEp751 by
using the proposed memory access method.

VI. CONCLUSION

In this paper, we presented a fast FPGA implementation
for the SIKE protocol based on the proposed ultra-low-latency
field multiplier, adder, and subtractor. The experimental results
show that the proposed field arithmetic modules achieve very
low latency with acceptable resource consumption. Since those
modules are totally feed-forward, a more compact control logic
is devised. In order to further reduce the latency, an efficient
memory access method is proposed. A new SIKE design is
obtained by integrating the proposed FALU, RAM, and control
logic into the original one. The implementation results demon-
strate that the proposed SIKE design significantly outperform
the prior arts, in terms of latency, speed, and area efficiency.
We hope that these achievements would greatly contribute to
the SIKE’s competitiveness over other PQC candidates.



12

TABLE VI
OVERALL COMPARISONS OF SIKEP751/SIDHP751 FOR FPGA DEVICE

Work # Mults # FFs # LUTs # DSPs # BRAMs # Slices Frequency
(MHz)

Latency
(cc× 106)

/ Normalized

Total Time
(ms)

ST Product
(#SEC3×s)

Koziel et al. [25] 8 46,857 32,726 376 45.5 15,224 182.1 7.74 / 5.4 42.5 2,438
Koziel et al. [26] 8 48,688 34,742 384 58.5 14,447 203.7 6.86 / 4.8 33.7 1,978
Jao et al. [19] 8 51,914 44,822 376 56.5 16,756 198 6.60 / 4.6 33.4 2,004
Massolino et al. [27] 11 13,657 21,210 162 38.0 7,408 142.2 8.60 / 6.0 60.8 1,666
Roy et al. [28] 32 62,124 49,099 294 22.5 18,711 225.7 7.12 / 4.9 31.6 1,591
Koziel et al. [29] 8 50,079 39,953 512 43.5 15,834 163.1 4.55 / 3.2 27.8 1,984
Elkhatib et al. [32] 8 39,339 20,207 452 41.5 11,136 232.7 5.93 / 4.1 25.5 1,542
Farzam et al. [33] 6 54,121 37,502 456 54 15,246 182.3 3.31 / 2.3 18.2 1,206
This Work 1 68,895 90,940 834 73.5 27,286 155.8 1.44 / 1.0 9.3 1,098
1 A scalable multiplier called Carmela256.
2 One multiplier includes three or four parallel modular multiplications.
3 #SEC = #BRAMs × 100 + #DSPs ×100 + #Slices.
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