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Abstract. We propose a generic construction of 2-pass authenticated
key exchange (AKE) scheme with explicit authentication from key en-
capsulation mechanism (KEM) and signature (SIG) schemes. We im-
prove the security model due to Gjøsteen and Jager [Crypto2018] to
a stronger one. In the strong model, if a replayed message is accepted
by some user, the authentication of AKE is broken. We define a new
security notion named “IND-mCPA with adaptive reveals” for KEM.
When the underlying KEM has such a security and SIG has unforgeabil-
ity with adaptive corruptions, our construction of AKE equipped with
counters as states is secure in the strong model, and stateless AKE with-
out counter is secure in the traditional model. We also present a KEM
possessing tight “IND-mCPA security with adaptive reveals” from the
Computation Diffie-Hellman assumption in the random oracle model.
When the generic construction of AKE is instantiated with the KEM
and the available SIG by Gjøsteen and Jager [Crypto2018], we obtain
the first practical 2-pass AKE with tight security and explicit authen-
tication. In addition, the integration of the tightly IND-mCCA secure
KEM (derived from PKE by Han et al. [Crypto2019]) and the tightly
secure SIG by Bader et al. [TCC2015] results in the first tightly secure
2-pass AKE with explicit authentication in the standard model.

Keywords: Authenticated key exchange · Tight security · Explicit au-
thentication · Two-pass protocol

1 Introduction

Among the primitives, algorithms and protocols in public key cryptography, au-
thenticated key exchange (AKE) [4, 7, 20, 1, 11, 8, 15, 6, 22] is by far the most
widely deployed one in the real world. For example, TLS [21] implements AKE to
compute shared session keys for peer communication parties. There are several
billions of active users in Facebook, Instagram, Wechat, etc., which lead to more
than 230 TLS handshakes daily [11]. AKE allows two communication parties to



share a session key, which is then used to provide security for the later commu-
nications of the two parties. The wide deployment of AKE pushes its security to
paramount importance. The security of AKE consists of two aspects. One aspect
considers passive adversaries, and it requires the pseudorandomness of the shared
session key. The other considers authentication to detect active adversaries. The
authentication functionality of AKE guarantees the identification of the parties
and the integrity of the messages transmitted during AKE, by detecting message
modification, discard, insertion, etc., from adversaries. There are two types of
authentication, explicit authentication [4, 7, 20, 1, 11] and implicit authentica-
tion [16, 8, 6, 15, 22]. Implicit authentication detects active attacks in the later
communication (after the completion of key exchange), while explicit authentica-
tion detects active attacks during the execution of AKE. Explicit authentication
enjoys its own advantages. Once the authentication fails, the protocol execu-
tion stops and no subsequent messages follow any more, avoiding unnecessary
computation and communication.

The security of AKE (also other cryptographic primitives) is achieved by a
security reduction under proper security model. Security reduction transforms
the ability of a successful adversary A to an algorithm B solving a well-known
hard problem. If A wins with probability ε, then B solves the problem with
probability ε/L. The parameter L is called the security loss factor. If L is a
constant (or O(λ) with λ security parameter), the security reduction is tight
(almost tight). The loose factor L is generally a polynomial of µ, the number of
users, and `, the number of executions per user. Given a loose security reduction,
the deployment of AKE has to choose a larger security parameter to compensate
the loss factor L, resulting in larger elements and slower computations in the
execution of AKE. Taking µ ≈ 230 into account, this will lead to a great efficiency
loss of AKE. Therefore, pursuing tight security of AKE is not only of theoretical
value but also of practical significance.

1.1 Tightly Secure Authenticated Key Exchange

AKE is generally implemented in the multi-user setting, and it is quite possible
for an adversary A to adaptively obtain session keys of some protocol instances
and/or long-term secret keys of corrupted users. This is formalized by the reveal
and corruption queries of A in the security model. The security of AKE asks au-
thentication and indistinguishability. Roughly speaking, authentication requires
that if a party Pi uses received messages to compute a session key and accepts
it, then the messages must be sent from another (unique) party Pj , instead of
A. Indistinguishability characterizes the pseudorandomness of the session key,
which is successfully generated and accepted by two parties.

A good choice for AKE is the 2-pass signed Diffie-Hellman protocol [7]. It uses
a signature (SIG) scheme to provide authentication and a DH-like key encapsu-
lation mechanism (KEM) to provide indistinguishability, where Pi contributes
pk = ga, Pj contributes C = gb and the session key is K = gab. However, as
shown by Gjøsteen and Jager [11], it is hard to achieve tight security due to
the following “commitment problem”: in the reduction, if the DDH challenge
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(gx, gy, gz) is embedded in the challenge session, then it can not be revealed,
and vice verse. Hence, the reduction algorithm has to guess the challenge session
(from µ` sessions) and embed the DDH problem into it. That is reason why many
protocols [16, 18, 7] have a loose factor L = µ` (or quadratic factor L = µ2`2).

To deal with the “commitment problem”, Gjøsteen and Jager [11] suggested
to add an extra hash commitment G(ga) as the first message, resulting in a
3-pass signed DH protocol with tight security.

Up to now, there are only two constructions of AKE [1, 11] with tight security
and explicit authentication, and both need three passes. One is the 3-pass signed
DH protocol in the random oracle model [11], as mentioned above. The other is a
3-pass AKE in the standard model by Bader et al. [1]. This AKE is constructed
from a SIG scheme secure against adaptive corruptions (MU-EUF-CMAcorr secu-
rity), a strongly secure one-time SIG and a KEM scheme secure against adaptive
corruptions (MU-IND-CPAcorr security). The KEM is constructed from two pub-
lic key encryption schemes, where the ciphertext is two encryptions of the same
random encapsulated key. Note that such a KEM is not a good choice for AKE,
since the session key is completely determined by the responder.

Over these years, reducing the round complexity and pursuing low-latency
key exchange have become a major design criteria [13, 10, 17, 21] by both re-
searchers and practitioners. Compared with 3-pass protocols, 2-pass protocols
are clearly more efficient, especially when the transmission time is high. Fur-
thermore, in a 2-pass AKE, any modification of the last (2nd) message can be
detected immediately, and no payloads from the initiator follow, which saves
computation and communication resources. Hence, a natural question is:

Is it possible to construct 2-pass AKE with explicit authentication and tight
security?

1.2 Our Approach

We answer the above question in the affirmative.

Achieving Tight Security. Our generic construction of AKE consists of two
building blocks, KEM and SIG. KEM is used to generate the session key, where
initiator Pi contributes pk and responder Pj contributes ciphertext C under pk.
We rely on KEM’s security to guarantee the pseudorandomness of the session
key. Meanwhile, every party has a signing key as its long-term secret key, and
every transmitted message is signed by SIG, which provides authentication to
resist active attacks. See Fig. 1 (a) for the construction.

We solve the “commitment problem” with a tightly IND-mCPAreveal secure
KEM. The IND-mCPAreveal security is a new notion, which allows the adversary
to reveal the encapsulated keys from the challenge ciphertexts. With such a KEM,
the reduction algorithm B can embed challenge ciphertexts to every session of
AKE, while keeping the ability of answering reveal queries from A. We also ask
KEM to have diverse property (subsec. 2.3) to make sure that both initiator and
responder contribute to the session key. Meanwhile, SIG is required to have tight
MU-EUF-CMAcorr security, where the adversary can corrupt some users to get
their signing keys.
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Currently, tight MU-EUF-CMAcorr secure SIGs are available [1, 11]. To achieve
tight security for AKE, the difficulty is constructing KEM with tight IND-
mCPAreveal security. As discussed above, it is hard for the traditional DH-like
KEM to achieve tight IND-mCPAreveal security, due to the “commitment prob-
lem” in the security reduction.

In this paper, we present two KEM schemes that achieve tight IND-mCPAreveal

security. Our first proposal is pk = (gx1 , gx2), C = gy,K = H(gx1y, gx2y)
in the random oracle model1, which is derived from twin ElGamal PKE [5],
and based on the strong twin Diffie-Hellman (st2DH) assumption (which in
turn on CDH). Here we explain why tight IND-mCPAreveal security can be
achieved in the single user setting. It can be easily extended to the multi-
user setting, since B can embed the 2DH problem into multiple (pk,C) pairs
with the help of the random self-reducibility of DDH [9]. In the reduction,
given a 2DH challenge tuple (gx1 , gx2 , gy), B sets pk = (gx1 , gx2), generates
a randomization b and computes the challenge ciphertext as C = gy+b. The
“commitment problem” is circumvented by B’s simulation of random oracle
H(·) and the decision oracle 2DH, which checks whether the inputs are two
DDH tuples. If A has not asked H(Cx1 , Cx2) before, then the encapsulated
key is random to A, and B just samples a random key k and implicitly set
H(Cx1 , Cx2) = k. If A has asked H(Cx1 , Cx2), then B must have stored item
(Cx1 , Cx2 , k = H(Cx1 , Cx2)) in the hash list. Hence B can always resort to the
decision oracle 2DH(gx1 , gx2 , C, Cx1 , Cx2) = 1 to locate this item, and return the
corresponding k to A. In this way, B can answer reveal queries from A correctly,
and tight IND-mCPAreveal security follows.

Our second proposal of KEM is derived from the tightly IND-mCCA secure
PKE scheme in [14], which has tight IND-mCCA security in the standard model.
We prove that IND-mCCA security implies IND-mCPAreveal security with a tight
reduction. Note that the two notions are defined in different styles, e.g., the
decapsulation oracle in IND-mCCA security cannot decapsulate the challenge
ciphertext, while IND-mCPAreveal security allows the challenge encapsulated key
to be revealed. Hence, the tight security proof of implication is non-trivial (see
subsect. 2.2 for details).

Perfect Forward Security and KCI Resistance. Our generic construc-
tion provides perfect forward security (PFS, a.k.a. perfect forward secrecy [12,
16]) and KCI resistance (security against key-compromise impersonation attacks
[16]). PFS means that once a party has been corrupted at some moment, then the
exchanged session keys completed before the corruption remain hidden from A.
KCI resistance assures that sessions, which are established by honest Pi but not
controlled by A, remain secure after corruption. In our construction, the long-
term secret key is used to sign messages and provide authentication. Hence, the
exposure of long-term secret key does not give A any advantages to break the
pseudorandomness of the session key. The same analysis applies to KCI resis-
tance.

1 To simplify the description, the hash input does not include pk and C.
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Dealing with Replay Attacks. Compared with multi-pass AKE, 2-pass AKE
inherently open to replay attacks [13]. In a 2-pass AKE protocol, when Pi sends
a message msg to Pj , there are only two choices for Pj : compute a session key
& accept or reject. If Pj accepts, the message msg can always be replayed to
Pj by an adversary (see Fig. 1 (b)). This replay attack contradicts neither the
explicit authentication defined by [11], nor the implicit authentication, since msg
does originate from Pi and the session key keeps pseudorandom to the adversary.
However, it does exhaust the computing & memory resources of Pj and waste
bandwidth of the network.

The essence of explicit authentication is to detect active attacks in real time.
In this paper, we formalize a stronger security of AKE, by including replay
attacks in the active attacks. Meanwhile, we choose an efficient and practical
way to prevent replay attacks, by adding counters to identify the freshness of
messages, as advised in [13]. Roughly speaking, each party maintains a local
counter ctr. Initiator Pi increases its counter ctri before it sends (msg, ctri) to
Pj . Responder Pj recognizes the freshness of (msg, ctri) by checking whether
ctri > ctrj . To respond fresh msg, Pj will synchronize its counter ctrj := ctri
and send (msg′, ctrj) to Pi. The freshness of (msg′, ctrj) is recognized by Pi’s
checking of the synchronization ctri = ctrj . In this way, any replayed message
contradicts either ctri > ctrj or ctri = ctrj , and replay attacks can be detected
immediately in our 2-pass AKE (see Fig. 1 (c)).

Fig. 1. (a) KEM+SIG construction, (b) replay attacks, and (c) counter measure.

1.3 Our Contribution

We present a security model which is stronger than that in [11]. In our strong
model, the adversary breaks authentication as long as a party accepts a replayed
message. To detect replay attacks, we introduce counters for each party as its
state. The counter will increase after execution of AKE, thus a replayed message
will be rejected due to its old counter.

We propose a generic construction of 2-pass AKE from KEM and SIG schemes.
We formalize a new security notion, named IND-mCPAreveal, for KEM and show
that IND-mCCA security of KEM implies IND-mCPAreveal security. The strong
security of our 2-pass AKE (equipped with counter) can be tightly reduced to
the IND-mCPAreveal security of KEM and the MU-EUF-CMAcorr security of SIG.
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Taking off counters from AKE results in a stateless AKE, which is tightly secure
in the original model of [11].

We give two instantiations of tightly secure 2-pass AKE.

– We present an instantiation of KEM and proved its tight IND-mCPAreveal

security based on the CDH assumption in the random oracle model. Together
with the signature scheme in [11], we obtain the first practical 2-pass AKE
scheme with strong and tight security (and a 2-pass stateless AKE scheme
with tight security) from the DDH assumption in the random oracle model.

– When instantiating KEM with the tightly IND-mCCA secure KEM derived
from [14] and SIG with the signature scheme in [1], we obtain the first 2-
pass AKE scheme with strong and tight security (also a 2-pass stateless
AKE scheme with tight security) based on the Matrix-DDH assumption in
the standard model.

The comparison of our AKE schemes with other tightly secure AKE schemes
with explicit authentication2 is shown in Table 1.

Table 1. Comparison among tightly secure AKE schemes with explicit authentication.
Here “Comp.” denotes computation complexity in terms of exponentiations or pairing
operations, “Comm.” denotes communication complexity in terms of the number of
group elements/exponents (identities of users excluded). “I” denotes the initiator, “R”
the responder, “Sec. Loss” the security loss factor, “#Pass.” the number of passes
in AKE, “RO” the random oracle model, and “Std” the standard model. Note: in
[BHJ+15]’s AKE, the session key is determined only by the responder.

AKE Scheme Comp. (I) Comp. (R) Comm. (I+R) Assumption Sec. Loss #Pass. Model

[GJ18][11] 17 17 12+11 DDH O(1) 3 RO

Ours: AKEDDH 19 18 12+11 DDH O(1) 2 RO

[BHJ+15][1]
22

O(k2)
23

O(k2)
11+9

(2k2 + 4k + 5)+(4k + 7)
1-LIN = SXDH
Dk-MDDH

O(λ) 3 Std

Ours: AKEMDDH
37
O(k3)

22
O(k3)

7+8
(k2 + 5k + 1)+(4k + 4)

1-LIN = SXDH
Dk-MDDH

O(λ) 2 Std

2 Preliminaries

Let λ ∈ N denote the security parameter. For µ ∈ N, define [µ] := {1, 2, ..., µ}.
Denote by x := y the operation of assigning y to x. Denote by x

$←− X the
operation of sampling x uniformly at random from a set X . For a distribution D,

2 Some AKE protocols, like [6] and [22], consider tight security and implicit authen-
tication. In the security model of implicit authentication, A’s advantage is defined
by the ability of breaking indistinguishability (with no authentication requirement).
Most AKE protocols with implicit authentication are 2-pass. They can be extended
to provide explicit authentication via the key confirmation method [16], but with
the price of an extra pass and the addition computation of MAC.
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denote by x← D the operation of sampling x according to D. For an algorithm
A, denote by y ← A(x; r), or simply y ← A(x), the operation of running A with
input x and randomness r and assigning the output to y. “PPT” is short for
probabilistic polynomial-time, and ∅ an empty string.

2.1 Digital Signature with Adaptive Corruptions

Definition 1 (SIG). A signature (SIG) scheme SIG=(Setup,Gen,Sign,Ver) con-
sists of four algorithms.

– Setup(1λ): The setup algorithm takes as input the security parameter 1λ and
outputs the public parameter ppSIG, which determines the message space M,
the signature space Σ, and the key space VK × SK.

– Gen(ppSIG): The key generation algorithm takes as input ppSIG and outputs
a pair of keys (vk, sk) ∈ VK × SK.

– Sign(sk,m): The signing algorithm takes as input a signing key sk and a
message m ∈M, and outputs a signature σ ∈ Σ.

– Ver(vk,m, σ): The verification algorithm takes as input a verification key
vk, a message m and a signature σ, and outputs a binary bit 0/1, indicating
whether (m,σ) is valid or not.

Correctness of SIG. For all ppSIG ← Setup(1λ), (vk, sk) ← Gen(ppSIG), σ ←
Sign(sk,m), it holds that Ver(vk,m, σ) = 1.

We recall the security notion existential unforgeability with adaptive corrup-
tions (MU-EUF-CMAcorr) by Bader et al. in [1].

Definition 2. A signature scheme SIG is MU-EUF-CMAcorr secure if for all
PPT adversary A, Advm-corr

SIG,µ,A(λ) := Pr[Expm-corr
SIG,µ,A(λ)⇒ 1] is negligible.

Expm-corr
SIG,µ,A(λ):

ppSIG ← Setup(1λ)
For i ∈ [µ]: (vki, ski)← Gen(ppSIG)

Si := ∅ //Record the signing queries
Scorr := ∅ //Record the corruption queries

(i∗,m∗, σ∗)← AOSign(·,·),OCorr(·)(ppSIG,VKList := {vki}i∈[µ])

If i∗ /∈ Scorr ∧ (m∗, ·) /∈ Si∗ ∧ Ver(vki∗ ,m
∗, σ∗) = 1: Return 1

Else: Return 0

OSign(i,m):

σ ← Sign(ski,m)
Si := Si ∪ {(m,σ)}
Return σ

OCorr(i):

Scorr := Scorr ∪ {i}
Return ski

Fig. 2. The MU-EUF-CMAcorr security experiment Expm-corr
SIG,µ,A(λ) of SIG.

2.2 KEM and Its Security in the Multi-User Setting

We review the syntax of KEM and its multi-challenge CCA (IND-mCCA) secu-
rity. We also define a new security notion, namely IND-mCPAreveal, which will
serve our generic construction of AKE. Then we show that IND-mCCA security
of KEM implies IND-mCPAreveal security.
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Definition 3 (KEM). A key encapsulation mechanism (KEM) scheme KEM=
(Setup, Gen, Encap, Decap) consists of four algorithms:

– Setup(1λ): The set up algorithm takes as input 1λ and outputs the public
parameter ppKEM, which determines the encapsulation key space K, the key
space PK × SK, and the ciphertext space CT .

– Gen(ppKEM): The key generation algorithm takes as input ppKEM and outputs
a pair of keys (pk, sk) ∈ PK × SK.

– Encap(pk): The encapsulation algorithm takes as input pk and outputs an
encapsulated key K ∈ K along with a ciphertext C ∈ CT .

– Decap(sk, C): The decapsulation algorithm takes as input sk and a ciphertext
C, and outputs K ′ with K ′ ∈ K ∪ {⊥}.

Correctness of KEM. For all ppKEM ← Setup(1λ), (pk, sk) ← Gen(ppKEM),
(K,C)← Encap(pk), it holds that Decap(sk, C) = K.

Definition 4 (IND-mCCA security). A KEM scheme KEM is IND-mCCA
secure if for all PPT adversary A, Advm-cca

KEM,θ,A(λ) :=
∣∣Pr[Expm-cca

KEM,θ,A(λ)⇒ 1]− 1
2

∣∣
is negligible.

Expm-cca
KEM,θ,A(λ):

ppKEM ← Setup(1λ)
For i ∈ [θ]: (pki, ski)← Gen(ppKEM)
CList := ∅ //Records the encapsulation queries

β
$←− {0, 1}

β′ ← AO
β
Enc

(·),ODec(·,·)(ppKEM,PKList := {pki}i∈[θ])

If β′ = β: Return 1
Else: Return 0

OβEnc(i):

(K,C)← KEM.Encap(pki)

k0 := K; k1
$←− K

CList := CList ∪ {(pki, C)}
Return (kβ , C)

ODec(i, C′):

If (pki, C
′) ∈ CList: Return ⊥

K′ ← KEM.Decap(ski, C
′)

Return K′

Fig. 3. The IND-mCCA security experiment Expm-cca
KEM,θ,A(λ) of KEM.

IND-mCPAreveal Security. The IND-mCPA security of KEM considers the
pseudorandomness of multiple encapsulated keys {K | (K,C) ← Encap(pki)},
where {(pki, C)} are the corresponding public keys and challenge ciphertexts.
Now consider a stronger attack which allows the adversary to choose any (pki, C),
even if (pki, C) is one of the challenges, and see the (revealed) keyK decapsulated
from C and ski. This defines a stronger security notion IND-mCPAreveal, which
asks the pseudorandomness of unrevealed keys. KEM with this security notion
fits our AKE protocol.

Definition 5. A KEM scheme KEM is IND-mCPAreveal secure if for all PPT

adversary A, Advr-m-cpa
KEM,θ,A(λ) :=

∣∣∣Pr[Expr-m-cpa
KEM,θ,A(λ)⇒ 1]− 1

2

∣∣∣ is negligible.

Note that in Expr-m-cpa
KEM,θ,A(λ), the encapsulation oracle generates tuples {(pki, C)}

as challenges. However, keys decapsulated from {(pki, C)} can also be revealed.
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Upon revealed, {(pki, C)} cannot serve as challenges any more. Meanwhile, each
challenge (pki, C) will be associated with an independently chosen random bit
β. Therefore, IND-mCPAreveal is different from IND-mCCA.

Expr-m-cpa
KEM,θ,A(λ):

ppKEM ← Setup(1λ)
For i ∈ [θ]: (pki, ski)← Gen(ppKEM)
CList := ∅ //Records the encapsulation queries
RList := ∅ //Records the reveal queries

(pki∗ , C
∗, β′)← AOEncap(·),OReveal(·,·)(ppKEM,PKList := {pki}u∈[θ])

If ∃(pki∗ , C∗, ·, β) ∈ CList s.t. (pki∗ , C
∗) /∈ RList ∧ β′ = β: Return 1

Else: Return 0

OEncap(i):

(K,C)← Encap(pki)

β
$←− {0, 1}; k0 := K; k1

$←− K
CList := CList ∪ {(pki, C,K, β)}
Return (kβ , C)

OReveal(i, C
′):

K′ ← Decap(ski, C
′)

RList := RList ∪ {(pki, C′)}
Return K′

Fig. 4. The IND-mCPAreveal security experiment Expr-m-cpa
KEM,θ,A(λ) of KEM.

IND-mCCA Implies IND-mCPAreveal. We prove that IND-mCCA security
implies IND-mCPAreveal security with a tight reduction.

Theorem 1. If a KEM KEM is IND-mCCA secure, it is also IND-mCPAreveal

secure. More precisely, for any PPT adversary A of advantage Advr-m-cpa
KEM,θ,A(λ) in

Expr-m-cpa
KEM,θ,A(λ), there exists a PPT algorithm B which has advantage Advm-cca

KEM,θ,B(λ)

in Expm-cca
KEM,θ,B(λ) such that Advr-m-cpa

KEM,θ,A(λ) ≤ 2Advm-cca
KEM,θ,B(λ).

Proof. Given a PPT A in Expr-m-cpa
KEM,θ,A(λ), we construct a PPT algorithm B in

Expm-cca
KEM,θ,B(λ). Let C be B’s challenger. Then C provides two oracles, OβEnc(·) and

ODec(·, ·) to B. B simulates Expr-m-cpa
KEM,θ,A(λ) for A as follows.

1. First B gets ppKEM and a set of public keys {pki}i∈[θ] from its own challenger
C. Then it sends ppKEM and PKList := {pki}i∈[θ] to A. B also prepares two
lists CList := ∅ and RList := ∅.

2. There are two kinds of oracle queries from A, and B answers them as follows.
OEncap(i): B asks its own oracle OβEnc(i) and obtains (K,C) ← OβEnc(i).

Then it sets k0 := K, samples k1 ← K, throws a coin b
$←− {0, 1},

appends (pki, C,K, b) into CList and returns (kb, C) to A.
OReveal(i, C

′): B checks whether (pki, C
′, ·, ·) ∈ CList. If yes, B parses

the tuple as (pki, C
′,K, b) and returns K to A. Otherwise, B asks its

own oracle ODec(i, C ′). Let K ′ ← ODec(i, C ′), then B updates RList :=
RList ∪ {(pki, C ′)} and returns K ′ to A.

3. If A aborts, B outputs a random bit. Otherwise, A outputs (pki∗ , C
∗, b′). If

∃(pki∗ , C∗, ·, b) ∈ CList s.t. (pki∗ , C
∗) /∈ RList ∧ b′ = b, B outputs β′ = 0.

Otherwise, it outputs 1.

Let β be the random bit generated by B’s challenger C, then B wins in
Expm-cca

KEM,θ,B(λ) if β′ = β. Recall that OβEnc(·) will always return real keys if β = 0
and random keys if β = 1.
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Case 1: β = 0. In this case, the output (K,C) of O0
Enc(i) is a real encapsu-

lation pair. B simulates OEncap(i) by outputting (kb, C), where kb is ei-
ther a real or a random key with 1/2 probability. Furthermore, for each
(pki, C

′,K, b) ∈ CList, it holds that Decap(ski, C
′) = K. For simulation of

OReveal(i, C
′), if there exists (pki, C

′,K, b) ∈ CList, B returns K; otherwise
B asks its own oracle ODec(i, C ′) and returns the output of ODec(i, C ′) to
A. Thus, B perfectly simulates Expr-m-cpa

KEM,θ,A(λ) for A.

Case 2: β = 1. In this case, the output (K,C) of O1
Enc(i) contains a random

key K, which is independent of C. In B’s answer (kb, C) to OEncap(i), kb is
a random key, independent from b. Moreover, B ’s answer to OReveal(i, C

′)
does not use b at all. Hence A learns nothing about b from OEncap(i) and
OReveal(i, C

′). Thus, Pr[b′ = b] = 1/2 and Pr[β′ = β] = 1/2.

Advm-cca
KEM,θ,B(λ) = |Pr[β′ = β]− 1/2|

= |Pr[β′ = β|β = 0] Pr[β = 0] + Pr[β′ = β|β = 1] Pr[β = 1]− 1/2|

= |1
2

(
1

2
+ Advr-m-cpa

KEM,θ,A(λ)) +
1

2
· 1

2
− 1

2
| = 1

2
Advr-m-cpa

KEM,θ,A(λ). ut

2.3 Diverse Property of KEM

We define a property called diverse property for KEM, which is useful in the
security proof of our AKE.

Definition 6 (Diverse Property). A KEM scheme KEM = (Setup,Gen,Encap,
Decap) has diverse property if for all ppKEM ← Setup(1λ), it holds that:

Pr

[
r̃

$←− R̃; r, r̄
$←− R; (pk, sk)← Gen(ppKEM; r̃);

(K,C)← Encap(pk; r); (K̄, C̄)← Encap(pk; r̄)
: K = K̄

]
= 2−Ω(λ),

Pr

 r̃, r̃′
$←− R̃; r

$←− R;
(pk, sk)← Gen(ppKEM; r̃); (pk′, sk′)← Gen(ppKEM; r̃′);

(K,C)← Encap(pk; r); (K′, C′)← Encap(pk′; r)

: K = K′

 = 2−Ω(λ), where

R̃, R are the randomness spaces in Gen and Encap respectively.

2.4 The Strong Twin Diffie-Hellman Assumption

Let GGen be a group generation algorithm such that G := (G, q, g)← GGen(1λ),
where G is a cyclic group of prime order q with generator g.

Definition 7. For any adversary A, the advantage of A in solving the Compu-
tational Diffie-Hellman (CDH) problem is defined as

AdvCDH
G,A (λ) := Pr[(G, q, g)← GGen(1λ);x, y

$←− Zq : A(G, q, g, gx, gy) = gxy].

Definition 8. For any adversary A, the advantage of A in solving the Deci-
sional Diffie-Hellman (DDH) problem is defined as

AdvDDH
G,A (λ) := |Pr[(G, q, g)← GGen(1λ);x, y

$←− Zq : A(G, q, g, gx, gy, gxy) = 1]−

Pr[(G, q, g)← GGen(1λ);x, y, z
$←− Zq : A(G, q, g, gx, gy, gz) = 1]|.
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In [5], Cash et al. proposed the Strong Twin Diffie-Hellman (strong 2DH or
st2DH) problem, and proved that it is as hard as the CDH problem.

Definition 9. [5] For any adversary A, its advantage in solving the strong twin

Diffie-Hellman problem is defined as Advst2DH
G,A (λ) :=

Pr[G ← GGen(1λ);x1, x2, y
$←− Zq : A2DH(gx1 ,gx2 ,·,·,·)(G, q, g, gx1 , gx2 , gy) = (gx1y, gx2y)],

where the decision oracle 2DH(gx1 , gx2 , ·, ·, ·) takes as input (gy, gz1 , gz2) and
outputs 1 if (x1y = z1) ∧ (x2y = z2) and 0 otherwise.

Theorem 2. [5] For any PPT adversary A against the strong 2DH problem,
there exists a PPT algorithm B against the CDH problem such that Advst2DH

G,A (λ) ≤
AdvCDH

G,B (λ) +Q/q, where Q is the maximum number of decision oracle queries.

3 Authenticated Key Exchange Scheme

3.1 Definition of Authenticated Key Exchange

We consider a generic AKE scheme, in which each party maintains a state sti.
If sti =⊥, the AKE scheme is stateless.

Definition 10 (AKE). An authenticated key exchange (AKE) scheme AKE =
(AKE.Setup, AKE.Gen,AKE.Protocol) consists of two probabilistic algorithms and
an interactive protocol.

– AKE.Setup(1λ): The setup algorithm takes as input the security parameter
1λ, and outputs the public parameter ppAKE.

– AKE.Gen(ppAKE, Pi): The generation algorithm takes as input ppAKE and a
party Pi, and outputs a key pair (pki, ski) and an initial state sti.

– AKE.Protocol(Pi(resi) 
 Pj(resj)): The protocol involves two parties Pi and
Pj, who have access to their own resources, resi := (ski, sti, ppAKE, {pku}u∈[µ])
and resj := (skj , stj , ppAKE, {pku}u∈[µ]), respectively. Here µ is the total num-
ber of users. After execution, Pi outputs a flag Ψi ∈ {∅,accept, reject}, and
a session key ki (ki might be empty string ∅), and Pj outputs (Ψj , kj) simi-
larly. Note that every execution of protocol may lead to update of sti, stj.

Correctness of AKE. For any distinct and honest parties Pi and Pj , they share
the same session key after the execution AKE.Protocol(Pi(resi) 
 Pj(resj)), i.e.,
Ψi = Ψj = accept, ki = kj 6= ∅.

Definition 11 (Stateless AKE). In Definition 10, if sti is set to ⊥ (i.e., no
state involved) for each party Pi, then the AKE becomes a stateless AKE.

11



3.2 Security Model of AKE

We will adapt the security model formalized by [1, 19, 11], which in turn followed
the model proposed by Bellare and Rogaway [2]. We also include replay attacks
in the security model, leading to a stronger model than those in [1, 11, 2].

First we will define oracles and their static variables in the model. Then we
describe the security experiment and the corresponding security notions.

Oracles. Suppose there are at most µ users P1, P2, ..., Pµ, and each user will
involve at most ` instances. Pi is formalized by a series of oracles, π1

i , π
2
i , ..., π

`
i .

Oracle πsi formalizes Pi’s execution of the s-th protocol instance. Since we con-
sider stateful Pi, we have two requirements.

(1) The very first queries to oracles π1
i , π

2
i , ..., π

`
i by the adversary A must be

in chronological order 1, 2, ..., `. That is, for 1 ≤ s < `, πs+1
i is inaccessible

to A before πsi is invoked. However, we stress that it does not eliminate the
possibility that A queries πsi , then πs+1

i , and back to πsi , π
s−1
i , ... again.

(2) There is a state sti shared and maintained by π1
i , π

2
i , ..., π

`
i .

Each oracle πsi has access to Pi’s resource resi := (ski, sti, ppAKE,PKList :=
{pku}u∈[µ]), where sti is the state of the time being. πsi also has its own variables
varsi := (Pidsi , k

s
i , Ψ

s
i ).

– Pidsi : The intended communication peer’s identity.
– ksi ∈ K: The session key computed by πsi . Here K is the session key space.

We assume that ∅ ∈ K.
– Ψsi ∈ {∅,accept, reject}: Ψsi indicates whether πsi has completed the proto-

col execution and accepted ksi .

At the beginning, (Pidsi , k
s
i , Ψ

s
i ) are initialized to (∅, ∅, ∅). We declare that

ksi 6= ∅ if and only if Ψsi = accept.

Security Experiment. To define the security notion of AKE, we first formalize
the security experiment ExpAKEµ,`,A(λ) with the help of the oracles defined above.

ExpAKEµ,`,A(λ) is a game played between an AKE challenger C and an adversary A.
C will simulate the executions of the ` protocol instances for each of the µ users
with oracles πsi . See Fig. 5 for the formal description of ExpAKEµ,`,A(λ).

Adversary A may copy, delay, erase, replay, and interpolate the messages
transmitted in the network. This is formalized by the query Send to oracle πsi .
With Send,A could send arbitrary message to any oracle πsi . Then πsi will execute
the AKE protocol according to the protocol specification for Pi.

We also allow the adversary to observe session keys of its choices. This can
be reflected by the Reveal query to oracle πsi .

Corrupt query allows A to corrupt a party Pi and get its long-term secret key
ski. With RegisterCorrupt query, A can register a new party without public key
certification. The public key is then known to all other users.

We introduce Test query to formalize the pseudorandomness of ksi . For a Test
query to πsi , the oracle will return ⊥ if the session key ksi is not generated yet.

12



Expstrong
AKE,µ,`,A(λ), ExpAKE,µ,`,A(λ):

ppAKE ← AKE.Setup(1λ)
For i ∈ [µ]:

(pki, ski, sti)← AKE.Gen(ppAKE, Pi);
crpi := 0 //Corruption variable

PKList := {pki}i∈[µ]
For (i, s) ∈ [µ]× [`]:

bsi
$←− {0, 1}; Pidsi := ksi := Ψsi := ∅;

Aflagsi := 0; Tflagsi := 0;
//Whether Pidsi is corrupted when πsi is accepted or tested
T si := 0; Rsi := 0 //Test & Reveal variables

(i∗, s∗, b∗)← AOAKE(·)(ppAKE,PKList)

WinAuth:=0
WinAuth:=1, If ∃(i, s) ∈ [µ]× [`] s.t.
(1) Ψsi = accept //πsi is τ -accepted
(2) Aflagsi = 0 //Pj is τ̂ -corrupted with j := Pidsi and τ̂ > τ
(3) (3.1) ∨ (3.2) ∨ (3.3). Let j := Pidsi

(3.1) @ t ∈ [`] s.t. Partner(πsi ← πtj)
(3.2) ∃ t ∈ [`], (j′, t′) ∈ [µ]× [`] with (j, t) 6= (j′, t′) s.t.

Partner(πsi ← πtj) ∧ Partner(πsi ← πt
′

j′)

(3.3) ∃ t ∈ [`], (i′, s′) ∈ [µ]× [`] with (i, s) 6= (i′, s′) s.t.

Partner(πsi ← πtj) ∧ Partner(πs
′

i′ ← πtj)

WinInd:=0
(i, s, b∗) := (i∗, s∗, b∗); j := Pidsi
If (1′) T si = 1 ∧ Tflagsi = 0

//πsi is τ -tested and Pidsi is τ̃ -corrupt with τ̃ > τ
(2′) Rsi = 0 //πsi is ∞-revealed
(3′) If ∃t ∈ [`] s.t. Partner(πsi ← πtj) then Rtj = T tj = 0
//If πsi is partnered to πtj , then πtj is ∞-revealed and ∞-tested

Then: If b∗ = bsi : WinInd=1; Return 1
Else: Return 0

Else: Abort

D-Partner(πsi , π
t
j): //Checking whether Partner(πsi ← πtj)

If πsi is the initiator and ksi = K(πsi , π
t
j) 6= ∅: Return 1

If πsi is the responder and ksi = K(πtj , π
s
i ) 6= ∅: Return 1

Return 0

OAKE(query):

If query=Send(i, s, j,msg):
resi := (ski, sti, ppAKE,PKList)
varsi := (Pidsi , k

s
i , Ψ

s
i )

(msg′, st′i,Pidsi , k
s
i , Ψ

s
i )← πsi (msg, resi, varsi )

sti := st′i
Let j := Pidsi
If Ψsi = accept ∧ crpj = 1: Aflagsi := 1
Return msg′

If query=Corrupt(i):
crpi := 1
Return ski

If query=RegisterCorrupt(u, pku):
If u ∈ [µ]: Return ⊥
PKList := PKList ∪ {pku}
Return PKList

If query=Reveal(i, s)
If Ψsi 6= accept: Return ⊥
Else: Rsi := 1; Return ksi

If query=Test(i, s):
If Ψsi 6= accept: Return ⊥
Let j := Pidsi
If crpj = 1: Tflagsi := 1

T si := 1; k0 := ksi ; k1
$←− K; Return kbsi

πsi (msg, resi, varsi ):

//πsi executes AKE according to the protocol specification

If msg = >:
πsi is an initiator;
πsi generates the first message msg′ of AKE

and updates st′i and (Pidsi , k
s
i , Ψ

s
i )

If msg 6= >:
πsi uses msg to generate the next message msg′

and updates st′i and (Pidsi , k
s
i , Ψ

s
i );

If msg is the last message of AKE: msg′ := ∅
Return (msg′, st′i,Pidsi , k

s
i , Ψ

s
i )

Fig. 5. The strong security experiment Expstrong
AKE,µ,`,A(λ) and the security experiment

ExpAKE,µ,`,A(λ) of AKE, with framed part · · · only in Expstrong
AKE,µ,`,A(λ).

13



Otherwise, πsi will return ksi or a truly random key with half probability. The
task of A is to tell whether the key is the true session key or a random key.

Formally, the queries by A are described as follows.

– Send(i, s, j,msg): If msg = >, it means that A asks oracle πsi to send the first
protocol message to Pj . Otherwise, A impersonates Pj to send message msg
to πsi . Then πsi executes the AKE protocol with msg as Pi does, outputs a
message msg′, and updates the state sti and its own variables varsi . In formula,
(msg′, st′i,Pid

s
i , k

s
i , Ψ

s
i ) ← πsi (msg, resi, var

s
i ). Only the output message msg′

is returned to A.
If Send(i, s, j,msg) is the τ -th query asked by A and πsi changes Ψsi to accept
after that, then we say that πsi is τ -accepted.

– Corrupt(i): C reveals to A party Pi’s long-term secret key ski. After corrup-
tion, π1

i , ..., π
`
i will stop answering any query from A.

If Corrupt(i) is the τ -th query asked by A, we say that Pi is τ -corrupted.
If A has never asked Corrupt(i), we say that Pi is ∞-corrupted.

– RegisterCorrupt(i, pki): It means that A registers a new party Pi (i > µ). C
distributes (Pi, pki) to all users. In this case, we say that Pi is 0-corrupted.

– Reveal(i, s): The query means that A asks C to reveal πsi ’s session key. If
Ψsi 6= accept, C returns ⊥. Otherwise, C returns the session key ksi of πsi .
If Reveal(i, s) is the τ -th query asked by A, we say that πsi is τ -revealed.
If A has never asked Reveal(i, s), we say that πsi is ∞-revealed.

– Test(i, s): If Ψsi 6= accept, C returns ⊥. Otherwise, C throws a coin bsi
$←−

{0, 1}, sets k0 = ksi , samples k1
$←− K, and returns kbsi to A. We require that

A could ask Test(i, s) to each oracle πsi only once.
If Test(i, s) is the τ -th query asked by A and Ψsi = accept, we say that πsi
is τ -tested.
If A has never asked Test(i, s), we say that πsi is ∞-tested.

Informally, the pseudorandomness of ksi asks that any PPT adversary A,
access to Test(i, s), could guess bsi with probability no better than 1/2 + negl.
Yet, we have to exclude some trivial attacks: (1) A asks Reveal(i, s); (2) A asked
Corrupt(j) before Ψsi = accept; (3) A asks Reveal(j, t); (4) A asks Test(j, t),
given that πsi and πtj have a successful protocol execution with each other.

Definition 12 (Original Key [19]). For two oracles πsi and πtj, the original
key, denoted as K(πsi , π

t
j), is the session key computed by the two peers of the

protocol under a passive adversary only, where πsi is the initiator.

Remark 1. We note that K(πsi , π
t
j) is determined by the identities of Pi and Pj ,

the internal randomness and the states stsi and sttj , where stsi and sttj denote the
states when πsi and πtj are invoked respectively.

Definition 13 (Partner [19]). Let K(·, ·) denote the original key function. We
say that an oracle πsi is partnered to πtj, denoted as Partner(πsi ← πtj)

3, if one of
the following requirements holds:

3 The arrow notion πsi ← πtj means πsi (not necessarily πtj) has computed and accepted
the original key.
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– πsi is the initiator and ksi = K(πsi , π
t
j) 6= ∅, or

– πsi is the responder and ksi = K(πtj , π
s
i ) 6= ∅.

For 2-pass AKE, the security model of [11] cannot cover replay attacks. Given
Partner(πs

′

i′ ← πtj), a successful replay attack means that A resends to πsi the

messages, which were sent from πtj to πs
′

i′ , and πsi is fooled to compute a session
key, i.e., Partner(πsi ← πtj). Now, we add the formalization of replay attacks (see
(3.3) in Fig. 5) in the security model of [11] and define a stronger security notion.

Definition 14 (Strong Security of AKE). Let µ be the number of users
and ` the maximum number of protocol executions per user. The strong security
experiment ExpstrongAKE,µ,`,A(λ) (see Fig. 5) is played between the challenger C and
the adversary A.

1. C runs AKE.Setup(1λ) to get AKE public parameter ppAKE.
2. For each party Pi, C runs AKE.Gen(ppAKE, Pi) to get the long-term key pair

(pki, ski) and Pi’s initial state sti. Then it provides A with the public pa-
rameter ppAKE and public key list PKList := {pki}i∈[µ].

3. A asks C Send, Corrupt, RegisterCorrupt, Reveal, and Test queries adaptively.
4. At the end of the experiment, A terminates with an output (i∗, s∗, b∗), where

b∗ is a guess for bs
∗

i∗ of oracle πs
∗

i∗ .

Strong Authentication. Let WinAuth denote the event that A breaks authen-
tication in the security experiment. WinAuth happens iff ∃(i, s) ∈ [µ]× [`] s.t.

(1) πsi is τ -accepted.
(2) Pj is τ̂ -corrupted with j := Pidsi and τ̂ > τ .
(3) Either (3.1) or (3.2) or (3.3) happens. Let j := Pidsi .

(3.1) There is no oracle πtj that πsi is partnered to.

(3.2) There exist two distinct oracles πtj and πt
′

j′ , to which πsi is partnered.

(3.3) There exist two oracles πs
′

i′ and πtj with (i′, s′) 6= (i, s), such that both

πsi and πs
′

i′ are partnered to πtj.

Remark 2. Given (1) ∧ (2), (3.1) indicates a successful impersonation of Pj,
(3.2) suggests one instance of Pi has multiple partners, and (3.3) corresponds to
a successful replay attack.

Indistinguishability. Let WinInd denote the event that A breaks indistinguisha-
bility in ExpstrongAKE,µ,`,A(λ) above. For simplicity, let (i, s, b∗) := (i∗, s∗, b∗) be A’s
output. WinInd happens iff b∗ = bsi , and the following conditions are satisfied.

(1′) πsi is τ -tested and Pidsi is τ̃ -corrupt with τ̃ > τ .
(2′) πsi is ∞-revealed.
(3′) If πsi is partnered to πtj ( j = Pidsi ), then πtj is ∞-revealed and ∞-tested.

Note that ExpstrongAKE,µ,`,A(λ)⇒ 1 iff WinInd happens. Hence, the advantage of A is
defined as

AdvstrongAKE,µ,`,A(λ) : = max{Pr[WinAuth], |Pr[WinInd]− 1/2|}

= max{Pr[WinAuth], |Pr[ExpstrongAKE,µ,`,A(λ)⇒ 1]− 1/2|}.
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An AKE scheme AKE has strong security if for any PPT adversary A, it holds
that AdvstrongAKE,µ,`,A(λ) is negligible.

Remark 3. Indisitinguishability asks the pseudorandomness of the session key
shared between Pi and Pj , excluding trivial attacks such like Pj is corrupted, or
the session key is tested in Pj , or it is revealed.

Definition 15 (Security of AKE). The security experiment ExpAKE,µ,`,A(λ)

(see Fig. 5) is defined like ExpstrongAKE,µ,`,A(λ) except that (3.3) is eliminated from
WinAuth. Similarly, an AKE scheme AKE has security if for any PPT adversary
A, the following advantage is negligible:

AdvAKE,µ,`,A(λ) := max{Pr[WinAuth], |Pr[ExpAKE,µ,`,A(λ)⇒ 1]− 1/2|}.

Remark 4 (Perfect Forward Security and KCI Resistance). The security model
of AKE supports (perfect) forward security (a.k.a. forward secrecy [12]) (charac-
terized by “πsi is τ -tested and Pidsi is τ̃ -corrupt with τ̃ > τ” in WinInd). That is,
if Pi or its partner Pj has been corrupted at some moment, then the exchanged
session keys completed before the corruption remain hidden from the adversary.
Meanwhile, πsi may be corrupted before Test(i, s), which provides resistance to
key-compromise impersonation (KCI) attacks [16].

4 Generic Construction of AKE and Its Security Proof

4.1 Construction

There are two building blocks in our AKE scheme, namely a MU-EUF-CMAcorr

secure signature scheme SIG = (SIG.Setup,SIG.Gen,SIG.Sign,SIG.Ver) and an
IND-mCPAreveal secure KEM scheme KEM = (KEM.Setup,KEM.Gen,KEM.Encap,
KEM.Decap) with diverse property. Our AKE scheme is shown in Fig. 6.

In our AKE scheme AKE, every party Pi will keep two arrays of static coun-
ters as its state, i.e., sti = {sctri,0[j], sctri,1[j]}j∈[µ]. Static counters sctri,b[j] are
initialized to 0s and will record the serial number of protocol instances. Counter
sctri,0[j] implies that Pi is the initiator and Pj is the responder, while sctri,1[j]
implies Pj the initiator and Pi the responder. For example, sctri,0[j] = 3 denotes
that Pi has initialized 3 protocol instances with Pj , while sctrj,1[i] = 5 denotes
that Pj , as a responder, has 5 protocol instances with Pi.

AKE.Setup(1λ). ppSIG ← SIG.Setup(1λ), ppKEM ← KEM.Setup(1λ). Return ppAKE
:= (ppSIG, ppKEM).

AKE.Gen(ppAKE, Pi). (vki, ski) ← SIG.Gen(ppSIG), sctri,0[u] := 0; sctri,1[u] := 0
for u ∈ [µ], sti := {sctri,0[u], sctri,1[u]}u∈[µ]. Return ((vki, ski), sti).

AKE.Protocol(Pi 
 Pj). Pi has access to resi = (ski, sti, ppAKE,PKList = {vku}u∈[µ])
and Pj has access to resj = (skj , stj , ppAKE,PKList = {vku}u∈[µ]). As an ini-
tiator, Pi invokes (pkKEM, skKEM)← KEM.Gen(ppKEM), increases its counter
with sctri,0[j] := sctri,0[j] + 1, and uses ski to sign a signature σ1 of message
m1 := (Pi, Pj , sctri,0[j], pkKEM). Then Pi sends (m1, σ1) to Pj .
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AKE.Setup(1λ):

ppSIG ← SIG.Setup(1λ); ppKEM ← KEM.Setup(1λ)
Return ppAKE := (ppSIG, ppKEM)

AKE.Gen(ppAKE, Pi):

(vki, ski)← SIG.Gen(ppSIG)

sti := {sctri,0[u] := 0, sctri,1[u] := 0}u∈[µ]
Return ((vki, ski), sti )

AKE.Protocol(Pi 
 Pj):

Pi(resi) Pj(resj)

resi = (ski, sti, ppAKE,PKList := {vku}u∈[µ]) resj = (skj , stj , ppAKE,PKList := {vku}u∈[µ])
with sti = {sctri,0[u], sctri,1[u]}u∈[µ] with stj = {sctrj,0[u], sctrj,1[u]}u∈[µ]

Ψi := ∅; ki := ∅
(pkKEM, skKEM)← KEM.Gen(ppKEM)

sctri,0[j] := sctri,0[j] + 1

m1 := (Pi, Pj , sctri,0[j], pkKEM)

σ1 ← SIG.Sign(ski,m1)

//Update the state

sti := {sctri,0[u], sctri,1[u]}u∈[µ] (m1,σ1)−−−−−−−−−−−−→ Ψj := ∅; kj := ∅
Parse m1 = (Pi, P

′
j , ctr, pkKEM)

If NOT (P ′j = Pj ∧ ctr > sctrj,1[i]

∧ SIG.Ver(vki,m1, σ1) = 1):
Ψj = reject //m1 is invalid

Else: //m1 is valid

sctrj,1[i] := ctr;

(K,C)← KEM.Encap(pkKEM);

m2 := (Pi, Pj , sctrj,1[i], C);

σ2 ← SIG.Sign(skj ,m1||m2);
kj := K; Ψj = accept;

//Update the state

stj := {sctrj,0[u], sctrj,1[u]}u∈[µ]
Return (Ψj , kj)

(m2,σ2)←−−−−−−−−−−−−Parse m2 = (P ′i , P
′
j , ctr′, C)

If NOT (P ′i = Pi ∧ P ′j = Pj ∧ sctri,0[j] = ctr′

∧ SIG.Ver(vkj ,m1||m2, σ2) = 1):
Ψi := reject //m2 is invalid

Else: //m2 is valid
K′ ← KEM.Decap(skKEM, C);
ki := K′; Ψi := accept

Return (Ψi, ki)

Fig. 6. Generic construction of AKE and AKEstateless from KEM and SIG, with
gray parts only in AKE.

After Pj obtains (m1, σ1), it will verify σ1 with vki and check whether its
own counter sctrj,1[i] is less than ctr contained in m1 = (Pi, Pj , ctr, pkKEM).
If everything goes well, then Pj takes m1 as a valid message; otherwise Pj
returns (reject, ∅). If m1 is valid, Pj stores (m1, σ1), encapsulates a key K
via (K,C)← KEM.Encap(pkKEM) and synchronizes sctrj,1[i] := ctr. Then Pj
signsm1||m2 withm2 := (Pi, Pj , sctrj,1[i], C) via σ2 ← SIG.Sign(skj ,m1||m2)
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and sends (m2, σ2) to Pi. Pj will accept K as the session key with Pi by re-
turning (accept,K).

After Pi obtains (m2, σ2), it will verify whether (m1||m2, σ2) is a valid
message-signature pair w.r.t. vkj . It also checks synchronization of its own
counter sctri,0[j] and the counter ctr′ in m2 = (Pi, Pj , ctr

′, C), i.e., whether
sctri,0[j] = ctr′. If everything goes well, Pi will take m2 as a valid message and
decapsulate the ciphertext C in m2 to obtain K ′ ← KEM.Decap(skKEM, C).
Pi will accept K ′ as the session key with Pj by returning (accept,K ′). If
m2 is invalid, Pi returns (reject, ∅).

Correctness. The correctness of AKE follows from the correctness of SIG &
KEM and the fact of sctri,0[j] ≥ sctrj,1[i]. The increasing mode of counters in
our AKE is as follows: the initiator Pi always increases the counter sctri,0[j],
while the responder Pj synchronizes its counter sctrj,1[i] := sctri,0[j] only if
the received message m1 is valid. If m1 is invalid, sctrj,1[i] stays the same, so
sctri,0[j] > sctrj,1[i]. Consequently, sctri,0[j] ≥ sctrj,1[i] holds in either case.

We can also construct a stateless AKE scheme AKEstateless, where all states
are removed from the AKE scheme. See Fig. 6.

Remark 5 (Synchronization). A failed execution of AKE does not lead to desyn-
chronization. If m1 or m2 is lost (due to the network) or modified by active
attacks, then the underlying session fails (i.e., Pi does not accept). In this sce-
nario, it keeps that sctri,0[j] ≥ sctrj,1[i], and Pi can launch a new session as the
initiator latter and correctness (synchronization) still holds.

Remark 6 (PKI Setting). Our security model simply assumes that each party
has access to the public key list. In practice, the users’ public keys are regis-
tered via certificates from PKI. In some real-world protocols (like TLS [21]),
public keys and certificates are also exchanged through the protocol (by send-
ing (m1, vki, certi, σ1) and (m2, vkj , certj , σ2)). In this case, σ1 is a signature
of (m1, vki, certi), and so is σ2. (Identities are suggested to be included in the
signature to prevent unknown key-share (UKS) attacks [3].)

4.2 Security Proof

Before the proof, we define two sets Sentsi and Recvsi for πsi and event (4) for
each (i, s) ∈ [µ]× [`] in ExpstrongAKE,µ,`,A(λ).

– Sentsi : The set collecting messages sent by πsi .
– Recvsi : The set collecting valid messages received and stored by πsi . We stress

that invalid messages will be discarded and do not appear in Recvsi .

Message Consistency. πsi is message-consistent with πtj as a responder,
if πsi is a responder with Recvsi = {(m1, ·)} 6= ∅ and πtj is an initiator with

Senttj = {(m1, ·)} 6= ∅. πsi is message-consistent with πtj as an initiator, if πsi
is an initiator with Sentsi = {(m1, ·)} 6= ∅, Recvsi = {(m2, ·)} 6= ∅ and πtj is a

responder with Recvtj = {(m1, ·)} 6= ∅, Senttj = {(m2, ·)} 6= ∅.
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Define Event (4) for (i, s): Let j := Pidsi . If πsi is responder, then @t ∈ [`] such
that πsi is message-consistent with πtj as a responder; if πsi is an initiator, then
@t ∈ [`] such that πsi is message-consistent with πtj as an initiator.

Claim 1. For a specific pair (i, s) with j := Pidsi , if ¬(4) happens, there exists
t ∈ [`] such that πsi is not only message-consistent with πtj either as a responder
or as an initiator, but also Partner(πsi ← πtj).

Proof of Claim 1. If ¬(4) happens, then πsi must be message-consistent with
some πtj . Hence πsi and πtj are executing the protocol following the specification
of AKE, and πsi must be accepted with ksi (6= ∅). According to the correctness
of AKE, ksi must be the original key, so Partner(πsi ← πtj).

Claim 2. For a specific pair (i, s), if (1) πsi is accepted; (2) Pj with j = Pidsi
is uncorrupted; and (4) happens, then πsi can always collect a valid message-
signature pair (m,σ) from Sentsi and Recvsi , such that SIG.Ver(vkj ,m, σ) = 1
with j := Pidsi . Meanwhile, m must be different from any message m′ signed by
πtj for all t ∈ [`].

Proof of Claim 2. (1) means πsi is accepted, so Recvsi 6= ∅ and Sentsi 6= ∅. (2)
says Pj is not corrupted yet, so πtj is accessible.

Case 1: Responder πsi . Let Recvsi = {(m1, σ1)}, we have SIG.Ver(vkj ,m1, σ1) =
1 since m1 is valid. And for any πtj with Senttj = {(m′1, σ′1)} 6= ∅, we know
that σ′1 is a signature ofm′1 signed with skj . Meanwhile, (4) impliesm1 6= m′1.

Case 2: Initiator πsi . Let Sentsi = {(m1, σ1)} and Recvsi = {(m2, σ2)}, we have
SIG.Ver(vkj ,m1||m2, σ2) = 1 since m2 is valid. And for any πtj with Recvtj 6=
∅ and Senttj 6= ∅, let Recvtj = {(m′1, σ′1)} and Senttj = {(m′2, σ′2)}, then σ′2 is

a signature of m′1||m′2 signed with skj . Similarly, m1||m2 6= m′1||m′2 by (4).

We analyse WinAuth first in the proof of AKE’s strong security.

Theorem 3. Suppose that SIG is MU-EUF-CMAcorr secure, KEM is IND-mCPAreveal

secure and has diverse property, then AKE has strong authentication. More pre-
cisely, for any PPT adversary A against AKE, there exists a PPT adversary
BSIG such that Pr[WinAuth] ≤ 2Advm-corr

SIG,µ,BSIG
(λ) + 2−Ω(λ).

Proof. In ExpstrongAKE,µ,`,A(λ), A is allowed to ask Send, Corrupt, RegisterCorrupt,

Reveal, and Test queries adaptively (see Fig. 9 in Appendix B). According to the
definition, WinAuth happens iff ∃(i, s) such that (1) ∧ (2) ∧ ((3.1) ∨ (3.2) ∨ (3.3))
holds, where
(1) πsi is τ -accepted;
(2) Pj is τ̂ -corrupted with j := Pidsi and τ̂ > τ ;
(3.1) @t ∈ [`] s.t. Partner(πsi ← πtj), where j := Pidsi ;

(3.2) ∃ t ∈ [`], (j′, t′) ∈ [µ] × [`] with (j, t) 6= (j′, t′) s.t. Partner(πsi ← πtj) ∧
Partner(πsi ← πt

′

j′), where j := Pidsi ;

(3.3) ∃ t ∈ [`], (i′, s′) ∈ [µ] × [`] with (i, s) 6= (i′, s′) s.t. Partner(πsi ← πtj) ∧
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Partner(πs
′

i′ ← πtj), where j := Pidsi ;

Pr[WinAuth] = Pr
∃(i,s)

[(1) ∧ (2) ∧ ((3.1) ∨ (3.2) ∨ (3.3))]

≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.3)]. (1)

Lemma 1. There exists a PPT algorithm BSIG such that

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] ≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (4)] ≤ Advm-corr
SIG,µ,BSIG

(λ).

Proof of Lemma 1. First we prove Pr∃(i,s)[(1)∧(2)∧(3.1)] ≤ Pr∃(i,s)[(1)∧(2)∧(4)].
This can be done by a proof of Pr∃(i,s)[(1)∧(2)∧¬(3.1)] ≥ Pr∃(i,s)[(1)∧(2)∧¬(4)].
For a specific pair (i, s), if (1)∧ (2)∧¬(4) happens, according to Claim 1, there
exists t ∈ [`] such that Partner(πsi ← πtj), hence (1) ∧ (2) ∧ ¬(3.1) must happen.

Next we prove that Pr∃(i,s)[(1) ∧ (2) ∧ (4)] ≤ Advm-corr
SIG,µ,BSIG

(λ).
To this end, we construct a PPT algorithm BSIG against the MU-EUF-

CMAcorr security of SIG. Let CSIG be the challenger of BSIG in Expm-corr
SIG,µ,BSIG

(λ).
BSIG gets a list of verification keys {vki}i∈[µ] from CSIG. CSIG also provides BSIG
with ppSIG, oracles OSign(·, ·) and OCorr(·), where OSign(i,m) returns a signature
with σ ← SIG.Sign(ski,m), and OCorr(i) returns the signing key ski.
BSIG simulates the strong security experiment of AKE for A. First BSIG in-

vokes ppKEM ← KEM.Setup(1λ), sets ppAKE := (ppSIG, ppKEM), and sends ppAKE
and PKList := {vki}i∈[µ] to A. Then BSIG answers the queries of A as follows.

– Send(i, s, j,msg): BSIG answers just like the challenger in ExpstrongAKE,µ,`,A(λ).
Whenever there is a message m to be signed with ski, BSIG asks its own oracle
OSign(i,m) to get the corresponding signature. In this way, BSIG answers the
Send query perfectly.

– Corrupt(i): Given i, BSIG asks its own oracle OCorr(i) to get ski. Then it
returns ski to A.

– RegisterCorrupt(u, vku): BSIG registers a new party Pu (0-corrupted) and adds
vku to PKList. Then BSIG returns PKList.

– Reveal(i, s): BSIG answers just like the challenger in the experiment.
– Test(i, s): BSIG answers just like the challenger in the experiment.

In the simulation, BSIG checks whether ∃(i, s) such that (1) ∧ (2) ∧ (4) hap-
pens. If yes, there exists a τ -accepted oracle πsi with j := Pidsi . Claim 2 tells us
that a valid message-signature pair (m,σ) can be derived from Sentsi ∪ Recvsi =
{(m1, σ1), (m2, σ2)}, such that SIG.Ver(vkj ,m, σ) = 1. BSIG then outputs (j,m, σ)
as its forgery.

Now BSIG simulates the experiment perfectly. Event (2) implies that Pj is
not corrupted yet, so BSIG never queries OCorr(j). And by Claim 2, m must be
different from any message signed by πtj for all t ∈ [`]. Therefore, BSIG never
queries OSign(j,m) and m is a fresh message. So if (1) ∧ (2) ∧ (4) happens, BSIG
wins in Expm-corr

SIG,µ,BSIG
(λ), thus Pr[(1)∧ (2)∧ (4)] ≤ Advm-corr

SIG,µ,BSIG
(λ).
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Lemma 2. Pr∃(i,s)[(1) ∧ (2) ∧ (3.2)] = 2−Ω(λ).

Proof of Lemma 2. For a specific pair (i, s), if event (1) ∧ (2) ∧ (3.2) happens,
then there exist at least two oracles to which πsi is partnered. Suppose πsi is

partnered to two distinct oracles πtj and πt
′

j′ .

Case 1: Responder πsi . Let pkKEM, pk′KEM be the public keys of KEM deter-

mined by the internal randomness of πtj and πt
′

j′ . On the one hand, Partner(πsi ←
πtj) means ksi = K, and the original key K is derived from (K,C) ←
KEM.Encap(pkKEM; r); on the other hand, Partner(πsi ← πt

′

j′) means ksi = K ′

and K ′ is derived from (K ′, C ′) ← KEM.Encap(pk′KEM; r). Here r is the in-
ternal randomness chosen by πsi . This suggests K = K ′. According to the
diverse property of KEM, this occurs with probability 2−Ω(λ).

Case 2: Initiator πsi . Let pkKEM be the public key of KEM determined by
the internal randomness of πsi , and r, r′ be the randomness chosen by πtj
and πt

′

j′ , respectively. Let (K,C) ← KEM.Encap(pkKEM; r) and (K ′, C ′) ←
KEM.Encap(pkKEM; r′). Since Partner(πsi ← πtj) and πsi is the initiator, we

have ksi = KEM.Decap(skKEM, C). Similarly Partner(πsi ← πt
′

j′) implies ksi =
KEM.Decap(skKEM, C

′). By the correctness of KEM, we have K = ksi = K ′,
which occurs with probability 2−Ω(λ) by the diverse property of KEM.

There are µ` choices for (i, s) and C2
µ` choices for (j, t) and (j′, t′). By a union

bound, Pr∃(i,s)[(1) ∧ (2) ∧ (3.2)] = µ` · C2
µ` · 2−Ω(λ) = 2−Ω(λ).

Lemma 3. If there exists an accepted πsi with j := Pidsi , and Pj is uncorrupted
when πsi accepts, then there exists a unique πtj, which πsi is partnered to and

message-consistent with, except with probability Advm-corr
SIG,µ,BSIG

(λ) + 2−Ω(λ), i.e.,

Pr∃(i,s)[(1)∧ (2)]−Pr∃(i,s)[(1)∧ (2)∧¬(4)∧¬(3.2)] ≤ Advm-corr
SIG,µ,BSIG

(λ) + 2−Ω(λ).

Proof of Lemma 3. This is done by the total probability rule, Lemmas 1 and 2.

Pr
∃(i,s)

[(1) ∧ (2)]

= Pr
∃(i,s)

[(1) ∧ (2) ∧ (4)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ ¬(4) ∧ (3.2)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ ¬(4) ∧ ¬(3.2)]

≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (4)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ ¬(4) ∧ ¬(3.2)]

≤ Advm-corr
SIG,µ,BSIG(λ) + 2−Ω(λ) + Pr

∃(i,s)
[(1) ∧ (2) ∧ ¬(4) ∧ ¬(3.2)]

Lemma 4. Pr∃(i,s)[(1) ∧ (2) ∧ (3.3)] ≤ Advm-corr
SIG,µ,BSIG

(λ) + 2−Ω(λ).

Proof of Lemma 4. Suppose that there exists (i, s) such that (1) ∧ (2) ∧ (3.3)
holds. That is to say, ∃ (i, s), (i′, s′), t with (i, s) 6= (i′, s′) and j := Pidsi , such
that Pj is uncorrupted, Partner(πsi ← πtj) and Partner(πs

′

i′ ← πtj).

According to Lemma 3, except with probability Advm-corr
SIG,µ,BSIG

(λ) + 2−Ω(λ),

both πsi and πs
′

i′ must be uniquely partnered to and message-consistent with πtj .

In this case, Pidsi = Pids
′

i′ = j. Meanwhile, the message sent by πtj contains a
unique identity indicating its peer, so i = i′.

Given i = i′, we have the following fact. Suppose s′ < s.
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Fact 1 Let stsi = {sctrsi,0[u], sctrsi,1[u]}u∈[µ] and sts
′

i = {sctrs′i,0[u], sctrs
′

i,1[u]}u∈[µ]

be the current states when πsi and πs
′

i′ are invoked. If Ψs
′

i = accept and Pids
′

i =

j, then sctrs
′

i,0[j] < sctrsi,0[j] and sctrs
′

i,1[j] ≤ sctrsi,1[j].

We then show that the counters in states will make (1) ∧ (2) ∧ (3.3) impossible.

Case 1: Responder πsi . Suppose that ((m2, σ2), st
s′

i , ...) ← πs
′

i ((m1, σ1), ...),

where st
s′

i = {sctrs
′

i,0[u], sctr
s′

i,1[u]}u∈[µ]. Let ctr be the counter contained in

m1, then sctrs
′

i,1[j] < ctr = sctr
s′

i,1[j]. By Fact 1 we have sctr
s′

i,1[j] ≤ sctrsi,1[j].
Consequently ctr ≤ sctrsi,1[j], which means Ψsi = reject. This contradicts to
Ψsi = accept.

Case 2: Initiator πsi . Let (m2, σ2) be the message sent by πtj . Message m2

contains a counter ctr and defines a unique partner. Ψs
′

i = Ψsi = accept

means sctrs
′

i,0[j] + 1 = sctrsi,0[j] + 1 = ctr. By Fact 1 we have sctrs
′

i,0[j] <

sctrsi,0[j], and this leads to a contradiction.

Theorem 3 follows from Eq. (1), Lemmas 1, 2 and 4. ut

Theorem 4. Suppose that SIG is MU-EUF-CMAcorr secure, KEM is IND-mCPAreveal

secure and has diverse property, then AKE is strongly secure. More precisely, for
any PPT adversary A against AKE, there exist PPT adversaries BSIG and BKEM
such that AdvstrongAKE,µ,`,A(λ) ≤ 2Advm-corr

SIG,µ,BSIG
(λ) + Advr-m-cpa

KEM,µ`,BKEM
(λ) + 2−Ω(λ).

Proof. We prove it by three games, Game 0, Game 1 and Game 2. The security
games for the proof are shown in Fig. 9 in Appendix B.
Game 0. Game 0 is the original game. Thus

Pr[ExpstrongAKE,µ,`,A(λ)⇒ 1] = Pr[Game 0⇒ 1]. (2)

Game 1. Game 1 is the same as Game 0 except that the experiment will abort
if bad happens, where bad := ∃(i, s) ((1)∧ (2)∧ (4)). In words, bad means there
exists an accepted πsi such that πsi is not message-consistent with any oracle πtj .
If bad does not happen, Game 0 is identical to Game 1. By the difference lemma
and Lemma 1, we have

|Pr[Game 1⇒ 1]− Pr[Game 0⇒ 1]| ≤ Pr[bad] ≤ Advm-corr
SIG,µ,BSIG

(λ). (3)

Game 2. Game 2 is the same as Game 1 except that D-Partner(πsi , π
t
j) in the

experiment is changed to a new one, where D-Partner(πsi , π
t
j) is the algorithm to

check whether πsi is partnered to πtj .

D-Partner(πsi , π
t
j) in Game 1 D-Partner(πsi , π

t
j) in Game 2

Initiator πsi :
If ksi = K(πsi , π

t
j) 6= ∅: Return 1

Responder πsi :
If ksi = K(πtj , π

s
i ) 6= ∅: Return 1

Else: Return 0

If Ψsi 6= accept: Return 0
If πsi is message-consistent with πtj

as a responder: Return 1
If πsi is message-consistent with πtj

as an initiator: Return 1
Else: Return 0
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In Game 2, deciding Partner(πsi ← πtj) is implemented by simply checking the
message consistency between πsi and πtj . It gets rid of computation of original
keys as in Game 1, and this is a preparation for the proof of Lemma 5.

We then prove that the new algorithm D-Partner(πsi , π
t
j) has the same func-

tionality as the old one except with probability 2−Ω(λ).
Note that D-Partner(πsi , π

t
j) is only invoked in testing (1′) ∧ (2′) ∧ (3′). (1′)

implies the existence of an accepted πsi with j := Pidsi and Pj uncorrupted. If
bad does not happens, according to Claim 1, there exists t ∈ [`] s.t. Partner(πsi ←
πtj) and πsi is message-consistent with πtj . So, if πsi is uniquely partnered, then
Partner(πsi ← πtj) if and only if πsi is message-consistent with πtj . Hence, Game
1 and Game 2 are the same unless πsi is partnered to multiple oracles, which
happens with probability no more than 2−Ω(λ) by Lemma 2. Thus,

|Pr[Game 2⇒ 1]− Pr[Game 1⇒ 1]| ≤ 2−Ω(λ). (4)

Lemma 5. There exists a PPT algorithm BKEM such that

|Pr[Game 2⇒ 1]− 1/2| ≤ Advr-m-cpa
KEM,µ`,BKEM

(λ). (5)

Proof of Lemma 5. Let (i∗, s∗, b∗) be the output of A. For simplicity, define
(i, s, b∗) := (i∗, s∗, b∗) and j := Pidsi . Recall that ExpstrongAKE,µ,`,A(λ) outputs 1 iff
b∗ = bsi under the following conditions.
(1′) πsi is τ -tested and Pidsi is τ̃ -corrupt with τ̃ > τ .
(2′) πsi is ∞-revealed.
(3′) If ∃t ∈ [`] s.t. πsi is partnered to πtj , then πtj is ∞-revealed and ∞-tested.

Now we construct a PPT algorithm BKEM to break KEM’s IND-mCPAreveal

security (Definition 5) by simulating Game 2 for A. BKEM first obtains from its
challenger CKEM the public parameter ppKEM of KEM and a list of µ` public keys
PKListKEM := {pk1, pk2, ..., pkµ`}. Meanwhile, BKEM has access to two oracles
OEncap(·) and OReveal(·, ·). See Fig. 7 for BKEM’s simulation of Game 2.

In the simulation, to send the first message (m1, σ1) for πsi , BKEM can al-
ways use public key pk(i−1)µ+s ∈ PKListKEM as pkKEM in m1 and sign m1

with ski. Hence BKEM’s simulation of (m1, σ1) is perfect. After receiving a mes-
sage (m1, σ1), to generate (m2, σ2) for πtj , BKEM invokes its oracle OEncap(·) to
generate (K,C) if pkKEM ∈ PKListKEM (pkKEM is in m1). In this case, BKEM
stores (pkKEM,K,C) into CList, but BKEM cannot determine the session key
ktj , since K might be random with half probability. So BKEM sets ktj := ∗. If
pkKEM /∈ PKListKEM, then m1 must be forged by A. In this case, BKEM can in-
voke (K,C)← KEM.Encap(pkKEM) and set ktj := K. Thus in either case, BKEM’s
simulation of (m2, σ2) for πtj is perfect, just like Game 2 does.

After receiving the last message (m2, σ2) for πsi , BKEM retrieves pkKEM from
m1 and C from m2 (pkKEM ∈ PKListKEM since m1 is generated by BKEM). If
(pkKEM, C,K) ∈ CList for some K, then BKEM has asked OEncap(·) to generate
(K,C) w.r.t pkKEM, so BKEM sets ksi := ∗. Otherwise, C is forged by A. In
this case, BKEM uses its oracle OReveal(·, ·) to reveal the real key K ′, and sets
ksi := K ′. At last, BKEM returns ∅ to A as Game 2 does.
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BOEncap(·),OReveal(·,·)
KEM (1λ, µ, `, ppKEM,PKListKEM):

//Simulation of Game 2

ppSIG ← SIG.Setup(1λ); ppAKE := (ppSIG, ppKEM)
For i ∈ [µ]:

(vki, ski)← SIG.Gen(ppSIG);
sti := {sctri,0[u] := 0, sctri,1[u] := 0}u∈[µ];
crpi := 0 //Corruption variable

For (i, s) ∈ [µ]× [`]:

bsi
$←− {0, 1}; Pidsi := ksi := Ψsi := ∅; Sentsi := Recvsi := ∅;

Aflagsi := 0; Tflagsi := 0;
//Whether Pidsi is corrupted when πsi is accepted/tested
T si := 0; Rsi := 0 //Test & Reveal variables

PKList := {vki}i∈[µ]; CList := ∅
(i∗, s∗, b∗)← AOAKE(·)(ppAKE,PKList)
BKEM aborts if bad happens during the simulation
If (i∗, s∗) satisfies (1′) ∧ (2′) ∧ (3′):

Parses CList[i∗, s∗] = (pkKEM, C,K);
Return (pkKEM, C, b

∗)

OAKE(query):

If query=Send(i, s, j,msg = >): //sim. of initiator πsi
pkKEM := pk(i−1)µ+s

Pidsi := j; sctri,0[j] := sctri,0[j] + 1
m1 := (i,Pidsi , sctri,0[j], pkKEM); σ1 ← SIG.Sign(ski,m1)
Sentsi := {(m1, σ1)}
Return (m1, σ1)

If query=Send(j, t, i,msg 6= >): //sim. of responder πtj
Parse msg = (m1 = (i,Pidsi , ctr, pkKEM), σ1)
If Not (Pidsi = j ∧ ctr > sctrj,1[i]

∧ SIG.Ver(vki,m1, σ1) = 1):
Ψ tj := reject; Return ⊥

Pidtj := i; sctrj,1[i] := ctr
If pkKEM ∈ PKListKEM:

(K,C)← OEncap(pkKEM);

CList[j, t] := (pkKEM, C,K); ktj := ∗
If pkKEM /∈ PKListKEM:

(K,C)← KEM.Encap(pkKEM); ktj := K
Ψ tj := accept; Recvtj := {(m1, σ1)}
If crpi = 1: Aflagtj := 1
m2 := (Pidtj , j, sctrj,1[i], C); σ2 ← SIG.Sign(skj ,m1||m2)
Senttj := {(m2, σ2)}
Return (m2, σ2)

OAKE(query):

If query=Send(i, s, j,msg 6= >): //sim. of initiator πsi
Parse msg = (m2 = (Pidtj , j, ctr, C), σ2)
Choose (m1, σ1) ∈ Sentsi , pkKEM ∈ m1

If NOT (Pidtj = i ∧ Pidsi = j ∧ ctr = sctri,0[j]
∧ SIG.Ver(vkj ,m1||m2, σ2) = 1):

Ψsi := reject; Return ⊥
//pkKEM ∈ PKListKEM, since m1 is generated by πsi
If ∃t ∈ [`] s.t. CList[j, t] = (pkKEM, C,K) for some K:

CList[i, s] := (pkKEM, C,K); ksi := ∗
Else:

K′ ← OReveal(pkKEM, C); ksi := K′

Ψsi := accept; Recvsi := {(m2, σ2)}
If crpj = 1: Aflagsi := 1
Return ∅

If query=Corrupt(i):
crpi := 1; Return ski

If query=RegisterCorrupt(u, pku):
If u ∈ [µ]: Return ⊥
PKList := PKList ∪ {pku}; Return PKList

If query=Reveal(i, s)
If Ψsi 6= accept: Return ⊥
Rsi := 1
If ksi 6= ∗: Return ksi
If ksi = ∗: Parse CList[i, s] = (pkKEM, C,K);

K′ ← OReveal(pkKEM, C); Return K′

If query=Test(i, s):
If Ψsi 6= accept: Return ⊥
j := Pidsi ; T

s
i := 1

If crpj = 1: Tflagsi := 1

If ksi 6= ∗: k0 := ksi ; k1
$←− K; Return kbsi

Parse CList[i, s] = (pkKEM, C,K);
If ksi = ∗ ∧ ∃t ∈ [`] s.t. (D-Partner(πsi , π

t
j) = 1 ∧ T tj = 1):

//A has asked Test(j, t) where Partner(πsi ← πtj)
K′ ← OReveal(pkKEM, C);

k0 := K′; k1
$←− K; Return kbsi

Else: Return K

Fig. 7. BKEM’s simulation of Game 2.
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BKEM’s simulation makes sure that if Ψsi = accept and ksi 6= ∗, then ksi must
be the real session key. Hence, upon a Reveal(i, s) query, BKEM will return ksi if
ksi 6= ∗. Otherwise, it will ask OReveal(·, ·) to get the real key and return it to A.
Therefore, BKEM’s answers to Reveal queries are perfect.

Upon a Test(i, s) query, if ksi 6= ∗, then ksi is the real session key. If ksi = ∗
and A has asked Test(j, t), where Partner(πsi ← πtj), then BKEM asks OReveal(·, ·)
to get the real session key. In either case, BKEM can answer Test queries with
the help of the real session key, exactly like Game 2 does. We stress that BKEM
checks partnership with message consistency, instead of computing the original
key. If ksi = ∗ and there is no such a partner which has been tested, BKEM
retrieves CList[i, s] = (pkKEM, C,K) associated with πsi , and returns K to A.
This simulation is also perfect, since K is either a real key or a random key with
half probability.

Given A’s outputs (i∗, s∗, b∗), let (i, s, b∗) := (i∗, s∗, b∗) and j := Pidsi . Con-
dition (1′) implies that Pj is uncorrupted when πsi is tested (hence accepted).
Thus there exists a unique πtj to which πsi is partnered, and this implies the

existence of CList[i, s] = (pkKEM, C,K). Conditions (2′) ∧ (3′) said that πsi , π
t
j

are ∞-revealed, and πtj is ∞-tested. Hence BKEM has never asked OReveal(·, ·)
for (pkKEM, C). Consequently, BKEM implicitly sets bsi = β where β is the random
coin chosen by CKEM. Thus BKEM wins as long as b∗ = bsi , and Lemma 5 follows.

By Eqs. (2), (3), (4), (5), we have

|Pr[ExpstrongAKE,µ,`,A(λ)⇒ 1]− 1/2| ≤ Advm-corr
SIG,µ,BSIG

(λ) +Advr-m-cpa
KEM,µ`,BKEM

(λ) + 2−Ω(λ).

AdvstrongAKE,µ,`,A(λ) := max{Pr[WinAuth], |Pr[ExpstrongAKE,µ,`,A(λ)⇒ 1]− 1/2|}

≤ 2Advm-corr
SIG,µ,BSIG

(λ) + Advr-m-cpa
KEM,µ`,BKEM

(λ) + 2−Ω(λ). ut

Note that in the strong security of AKE, only the proof of Pr[(1)∧(2)∧(3.3)] ≤
Advm-corr

SIG,µ,BSIG
(λ) + 2−Ω(λ) in Lemma 4 makes use of the non-decreasing property

of counters in states. For our stateless AKE scheme AKEstateless, the normal (not
strong) security requirement (see Fig. 5) does not need (1)∧(2)∧(3.3). Therefore,
AKEstateless can be proved to be secure, and the security proof almost verbatim
follows that of Theorems 3 and 4. Hence we have the following corollary.

Corollary 1. Suppose that SIG is MU-EUF-CMAcorr secure, KEM is IND-mCPAreveal

secure and has diverse property, then our stateless AKE scheme AKEstateless is
secure. More precisely, for any PPT adversary A against AKEstateless, there exist
PPT adversaries BSIG and BKEM such that

Adv stateless

AKE,µ,`,A(λ) ≤ Advm-corr
SIG,µ,BSIG

(λ) + Advr-m-cpa
KEM,µ`,BKEM

(λ) + 2−Ω(λ).

5 Instantiations of AKE with Tight Security

In this section, we present specific constructions of AKE by instantiating the two
building blocks KEM and SIG, where KEM has tight IND-mCPAreveal security
and diverse property, and SIG has tight MU-EUF-CMAcorr security.
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5.1 Instantiations of KEM with Tight IND-mCPAreveal Security

We present two KEM schemes. The first one is derived from the twin ElGamal
encryption [5] based on the CDH assumption in the RO model. The other is
derived from [14] and based on the MDDH assumption in the standard model.

KEMst2DH from the st2DH Assumption in the RO Model. Now we present
KEMst2DH, and prove that its IND-mCPAreveal security can be tightly reduced to
the st2DH assumption [5], which is in turn to the CDH assumption by Theorem
2, in the random oracle model. See Fig. 8

KEM.Setup(1λ):

(G, q, g)← GGen(1λ)
H : G2 → K
Return ppKEM := (G, q, g,H)

KEM.Gen(ppKEM):

x1, x2
$←− Zq

X1 := gx1 ; X2 := gx2

pk := (X1, X2); sk := (x1, x2)
Return (pk, sk)

KEM.Encap(pk):

Parse pk = (X1, X2)

y
$←− Zq; C := gy

K := H(X1, X2, C,X
y
1 , X

y
2 )

Return (K,C)

KEM.Decap(sk, C):

Parse sk = (x1, x2)
K′ := H(X1, X2, C, C

x1 , Cx2)
Return K′

Fig. 8. KEMst2DH from the strong twin DH assumption.

Correctness. Correctness is due to ((gx1)y, (gx2)y) = ((gy)x1 , (gy)x2).

Theorem 5. The KEM scheme KEMst2DH is IND-mCPAreveal secure in the ran-
dom oracle model. More precisely, for any PPT adversary A against the IND-
mCPAreveal security, there exists a PPT adversary B solving the st2DH problem
such that Advr-m-cpa

KEMst2DH,θ,A(λ) ≤ Advst2DH
G,B (λ) ≤ AdvCDH

G (λ) + 2−Ω(λ).

Proof. We construct a PPT algorithm B that simulates Expr-m-cpa
KEMst2DH,θ,A(λ) to the

KEM adversary A, and uses A’s ability to solve the st2DH problem.
First we sketch the high-level idea in the single user setting. Let (gx1 , gx2 , gy)

be the tuple needed to be solved. Intuitively B will embed (gx1 , gx2) to the pub-
lic key, and embed gy to the challenge ciphertext C = gy+b. If A never asked
H(gx1 , gx2 , C, Cx1 , Cx2), then k = H(gx1 , gx2 , C, Cx1 , Cx2) is truly random and
A has no advantage at all. If A ever asked H(gx1 , gx2 , C, Cx1 , Cx2), then B can
find the answer (Cx1/gb, Cx2/gb) to the st2DH problem. The difficult part of B’s
simulation is the reveal of encapsulated key k = H(gx1 , gx2 , C, Cx1 , Cx2) to A,
when the secret key (x1, x2) and logg C are unknown. This difficulty is circum-
vented by B’s simulation of random oracle H(·) and the decision oracle 2DH. If A
has not asked H(gx1 , gx2 , C, Cx1 , Cx2) before, B samples a random key k and im-
plicitly set H(gx1 , gx2 , C, Cx1 , Cx2) = k. If A has asked H(gx1 , gx2 , C, Cx1 , Cx2),
B must have stored item ((gx1 , gx2 , C, Cx1 , Cx2), k) in the hash list. Then B can
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resort to the decision oracle 2DH(gx1 , gx2 , C, Cx1 , Cx2) = 1 to locate this item,
and return k to A. In this way, B successfully simulates the reveal oracle to A.

Now we show B’s simulation in detail. Firstly B gets a group description
G = (G, q, g) along with (gx1 , gx2 , gy) from its strong 2DH challenger. The chal-
lenger also provides a decision oracle 2DH(gx1 , gx2 , ·, ·, ·), which takes as input
(gy, gz1 , gz2) and returns whether (x1y = z1) ∧ (x2y = z2).
B prepares four lists, CList, RList, LH and L2DH. CList and RList are used

to record OEncap(·) and OReveal(·, ·) queries and their answers respectively. LH
is used to store the hash queries and their values. L2DH is a list of tuples in
G5 ×Zq ×K. For any w ∈ L2DH, w is the form of (pk = (gx1+ai,1 , gx2+ai,2), C =
gy+b, Z1 = Cx1+ai,1 , Z2 = Cx2+ai,2 , b, k = H(pk,C, Z1, Z2)). If some entry is
still unknown to B, it will be denoted by ?. As long as B learns the value of the
entry, B will replace ? with the value. Then B simulates Expr-m-cpa

KEMst2DH,θ,A(λ) to A
as follows.

1. B sets ppKEM := (G, q, g,H), samples ai,1, ai,2
$←− Zq and sets pki = (gx1+ai,1 ,

gx2+ai,2), ski = (∅, ∅) for i ∈ [θ]. Then B sends ppKEM and {pki}i∈[µ] to A.
2. Upon receiving a hash query (X1, X2, C, Z1, Z2) from A, B replies as follows:

– If there exists ((X1, X2, C, Z1, Z2), k) ∈ LH for some k, B returns k to
A.

– Otherwise, for each w = (X1 = gx1+ai,1 , X2 = gx2+ai,2 , C, ?, ?, ·, k) ∈
L2DH, B queries the 2DH oracle with (C,Z1/C

ai,1 , Z2/C
ai,2). If 2DH(gx1 ,

gx2 , C, Z1/C
ai,1 , Z2/C

ai,2) = 1, B replaces (?, ?) with (Z1, Z2) in w. Now
w = (gx1+ai,1 , gx2+ai,2 , C, Z1, Z2, ·, k). Then B adds ((X1, X2, C, Z1, Z2), k)

to LH and returns k. If no such w exists, B samples k
$←− K, adds

((X1, X2, C, Z1, Z2), k) to LH and returns k.

3. When A asks OEncap(i), B samples b
$←− Zq and sets C := gy+b.

– If there exists ((gx1+ai,1 , gx2+ai,2 , C, Z1, Z2), k) ∈ LH such that 2DH(gx1 ,
gx2 , C, Z1/C

ai,1 , Z2/C
ai,2) = 1, B adds w = (gx1+ai,1 , gx2+ai,2 , C, Z1, Z2, b, k)

to L2DH, sets k0 := k, samples k1
$←− K, β

$←− {0, 1}, adds (pki, C, k, β)
to CList and returns (kβ , C).

– Otherwise, B samples k0, k1
$←− K, β

$←− {0, 1}, sets k := k0, adds w =
(gx1+ai,1 , gx2+ai,2 , C, ?, ?, b, k) to L2DH, adds (pki, C, k, β) to CList and
returns (kβ , C).

4. When A asks OReveal(i, C
′), B parses pki = (gx1+ai,1 , gx2+ai,2) and adds

(pki, C
′) to RList.

– If there exists w = (gx1+ai,1 , gx2+ai,2 , C ′, ·, ·, ·, k) ∈ L2DH for some k, B
returns k.

– If there exists ((gx1+ai,1 , gx2+ai,2 , C ′, Z1, Z2), k) ∈ LH such that 2DH(gx1 ,
gx2 , C ′, Z1/C

′ai,1 , Z2/C
′ai,2) = 1, B adds w = (gx1+ai,1 , gx2+ai,2 , C ′, Z1, Z2, ?, k)

to L2DH and returns k. Otherwise, B samples k
$←− K, adds w = (gx1+ai,1 , gx2+ai,2 ,

C ′, ?, ?, ?, k) to L2DH and returns k.

At last A terminates with an output (pki∗ , C
∗, β′). If there exists w∗ ∈ L2DH

of the form (gx1+ai∗,1 , gx2+ai∗,2 , C∗, Z1, Z2, b, k), B outputs (Z ′1, Z
′
2) with

(Z ′1, Z
′
2) = (Z1/(g

x1bgyai∗,1gbai∗,1), Z2/(g
x2bgyai∗,2gbai∗,2)). (6)
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Otherwise, B outputs a fail symbol ⊥.

First, if such w∗ exists, B’s output must be the correct answer. The exis-
tence of w∗ implies 2DH(gx1 , gx2 , C∗, Z1/C

∗ai∗,1 , Z2/C
∗ai∗,2) = 1, which holds

iff 2DH(gx1 , gx2 , gy, Z1/(g
x1bgyai∗,1gbai∗,1), Z2/(g

x2bgyai∗,2gbai∗,2)) = 1.

Let (pki∗ , C
∗, β′) be the output of A, where β′ is A’s guess of β for some

(pki∗ , C
∗, ·, β) ∈ CList, and C∗ is generated by B after an OEncap(i∗) query

with C∗ = gy+b. Recall that pki∗ = (gx1+ai∗,1 , gx2+ai∗,2) and the real key k =
H(pki∗ , C

∗, C∗x1+ai∗,1 , C∗x2+ai∗,2). Let queryH be the event that A has asked a
hash query with (pki∗ , C

∗, Z∗1 = C∗x1+ai∗,1 , Z∗2 = C∗x2+ai∗,2). We have

Pr[Expr-m-cpa
KEMst2DH,θ,A(λ)⇒ 1] = Pr[Expr-m-cpa

KEMst2DH,θ,A(λ)⇒ 1|¬queryH ] Pr[¬queryH ]+

Pr[Expr-m-cpa
KEMst2DH,θ,A(λ)⇒ 1|queryH ] Pr[queryH ]

≤ Pr[Expr-m-cpa
KEMst2DH,θ,A(λ)⇒ 1|¬queryH ] + Pr[queryH ].

Note that (pki∗ , C
∗) has never been revealed and H works as a random

oracle. If A has never asked a hash query with (pki∗ , C
∗, Z∗1 = C∗x1+ai∗,1 , Z∗2 =

C∗x2+ai∗,2), then the encapsulated key k is truly random for A and independent
of β. Therefore, Pr[Expr-m-cpa

KEMst2DH,θ,A(λ)⇒ 1|¬queryH ] = 1/2.

Next we claim that Pr[queryH ] ≤ Advst2DH
G,B (λ). Note that (pki∗ , C

∗, ·, β) ∈
CList, so we must have w∗ = (gx1+ai∗,1 , gx2+ai∗,2 , C∗, ?, ?, b, k) ∈ L2DH. Since A
ever asked a hash query (pki∗ , C

∗, Z∗1 = C∗x1+ai∗,1 , Z∗2 = C∗x2+ai∗,2) (queryH
happens), and 2DH(gx1 , gx2 , C∗, Z∗1/C

∗ai∗,1 , Z∗2/C
∗ai∗,2) = 1, B can always lo-

cate w∗ and update w∗ := (gx1+ai∗,1 , gx2+ai∗,2 , C∗, Z∗1 , Z
∗
2 , b, k). As discussed

above, w∗ can be used to solve the 2DH problem according to Eq. (6).

Thus we have5 Advr-m-cpa
KEMst2DH,θ,A(λ) =

|Pr[Exp
r-m-cpa
KEMst2DH,θ,A(λ)⇒ 1]− 1/2| ≤ |1/2 + Advst2DH

G,B (λ)− 1/2| ≤ Advst2DH
G,B (λ). ut

To save space, the proof of diverse property of KEMst2DH is put in Appendix C.

KEMMDDH from the MDDH Assumption in the Standard Model. In
[14], Han et al. proposed a public key encryption (PKE) scheme based on the
MDDH assumption over bilinear groups (see Appendix A for their definitions).
The PKE scheme has almost tight IND-mCCA security. In the encryption, the
plaintext is masked by K, which can be regarded as an encapsulated key. As
a result, from the PKE we can derive an IND-mCCA secure KEM KEMMDDH,
which is shown in Fig. 10 in Appendix D.1.

Theorem 6 (IND-mCCA Security of KEMMDDH). Let `′ ≥ 2k + 1. If (i)
the D`′,k-MDDH assumption holds over both G1 and G2, (ii) H is a collision-
resistant function family, then KEMMDDH in Fig. 10 is IND-mCCA secure. More
precisely, for any PPT adversary A who makes at most Qe times of Enc queries

5 Without loss of generality, we assume that Pr[Expr-m-cpa
KEMst2DH,θ,A(λ)⇒ 1] ≥ 1/2.
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and Qd times of Dec queries, there exist PPT adversaries B1, B2 and B3, such
that

Advm-cca
KEMMDDH,θ,A(λ) ≤ (4dlogQee+ `′ − k + 2) ·

(
AdvMDDH

D`′,k,G1,B1
(λ) + AdvMDDH

D`′,k,G2,B2
(λ)

)
+ AdvcrH,B3

(λ) + 2−Ω(λ).

The diverse property of KEMMDDH can also be easily tested (see Appendix D.2).

5.2 Instantiations of SIG with Tight MU-EUF-CMAcorr Security

We review two signature schemes. The first one SIGDDH was proposed by Gjøsteen
and Jager [11] and its MU-EUF-CMAcorr security was based on the DDH as-
sumption in the random oracle model. The other one SIGMDDH was proposed by
Bader et al. [1] and its MU-EUF-CMAcorr security was based one the MDDH
assumption over bilinear group but in the standard model.

SIGDDH from the DDH Assumption in the RO Model. The DDH-based
signature scheme SIGDDH in [11] is shown in Fig. 11 in Appendix D.3, and its MU-
EUF-CMAcorr security can be tightly reduced to the DDH & CDH assumptions
in the random oracle model. See Theorem 7.

Theorem 7. [11] For any PPT adversary A against SIGDDH, there exist PPT
adversaries BDDH and BCDH against the DDH and CDH problems such that

Advm-corr
SIGDDH,µ,A(λ) ≤ AdvDDH

G,BDDH
(λ) + 2AdvCDH

G,BCDH
(λ) + 2−Ω(λ).

SIGMDDH from the MDDH Assumption in the Standard Model. The
MDDH-based signature scheme SIGMDDH in [1] is shown in Fig. 12 in Appendix
D.4, and its MU-EUF-CMAcorr security can be tightly reduced to the MDDH
assumption. See Theorem 8.

Theorem 8. [1] For any PPT adversary A against SIGMDDH, there exist PPT
adversaries B1 and B2 against Dk-MDDH in G1 and G2 such that

Advm-corr
SIGMDDH,µ,A(λ) ≤ AdvMDDH

Dk,G1,B1
(λ) + 2λ · AdvMDDH

Dk,G2,B2
(λ) + 2/q.

5.3 Instantiations of AKE

Following the generic construction of AKE in Fig. 6, if we instantiate the KEM
and SIG schemes with KEMst2DH and SIGDDH, then we obtain a practical 2-pass
AKE scheme AKEDDH (AKEstateless

DDH ) with tight security in the random oracle
model. See Fig. 13 for the AKEDDH scheme in Appendix D.5.

By Theorems 2, 4, 5, 7, we have the following corollary.
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Corollary 2. AKEDDH is strongly secure (AKEstateless
DDH is secure) in the ran-

dom oracle model. More precisely, for any PPT adversary A against AKEDDH

(AKEstateless
DDH ), there exist PPT adversaries BDDH and BCDH against the DDH and

CDH problems such that

AdvAKEstateless
DDH ,µ,`,A(λ) ≤ AdvstrongAKEDDH,µ,`,A(λ) ≤ 2AdvDDH

G,BDDH
(λ)+5AdvCDH

G,BCDH
(λ)+2−Ω(λ).

Similarly, if we instantiate the KEM and SIG schemes with KEMMDDH and
SIGMDDH, then we obtain another 2-pass AKE scheme AKEMDDH (AKEstateless

MDDH )
with tight security in the standard model. See Fig. 14 for the AKEMDDH scheme
in Appendix D.6.

By Theorems 1, 4, 6, 8, we have the following corollary.

Corollary 3. AKEMDDH is strongly secure (AKEstateless
MDDH is secure) in the standard

model. More precisely, for any PPT adversary A against AKEMDDH (AKEstateless
MDDH ),

there exist PPT adversaries B1, B2, B′1, B′2 and B3 such that

AdvAKEstateless
MDDH

,µ,`,A(λ) ≤ AdvstrongAKEMDDH,µ,`,A(λ) ≤ 2−Ω(λ) + 2AdvMDDH
Dk,G1,B1(λ) + 4λ · AdvMDDH

Dk,G2,B2(λ)

+2AdvcrH,B3(λ) + (8dlogQee+ 2`′ − 2k + 4) ·
(
AdvMDDH

D`′,k,G1,B′1
(λ) + AdvMDDH

D`′,k,G2,B′2
(λ)
)
.
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[9] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for diffie-hellman assumptions. In: Advances in Cryptology - CRYPTO 2013, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II. pp. 129–147 (2013)

[10] Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: The case of the
TLS 1.3 handshake candidates. In: 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017. pp. 60–75 (2017)

[11] Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Advances in Cryptology - CRYPTO 2018, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part II. pp. 95–125 (2018)

[12] Günther, C.G.: An identity-based key-exchange protocol. In: Advances in Cryp-
tology - EUROCRYPT ’89, Houthalen, Belgium, April 10-13, 1989, Proceedings.
pp. 29–37 (1989)

[13] Halevi, S., Krawczyk, H.: One-pass HMQV and asymmetric key-wrapping. In:
Public Key Cryptography - PKC 2011, Taormina, Italy, March 6-9, 2011. Proceed-
ings. pp. 317–334 (2011)

[14] Han, S., Liu, S., Lyu, L., Gu, D.: Tight leakage-resilient cca-security from quasi-
adaptive hash proof system. In: Advances in Cryptology - CRYPTO 2019, Santa
Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II. pp. 417–447 (2019)

[15] Jin, Z., Zhao, Y.: Generic and practical key establishment from lattice. In: Applied
Cryptography and Network Security - 17th International Conference, ACNS 2019,
Bogota, Colombia, June 5-7, 2019, Proceedings. pp. 302–322 (2019)

[16] Krawczyk, H.: HMQV: A high-performance secure diffie-hellman protocol. In: Ad-
vances in Cryptology - CRYPTO 2005, Santa Barbara, California, USA, August
14-18, 2005, Proceedings. pp. 546–566 (2005)

[17] Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: IEEE Euro-
pean Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,
March 21-24, 2016. pp. 81–96 (2016)

[18] LaMacchia, B.A., Lauter, K.E., Mityagin, A.: Stronger security of authenticated
key exchange. In: Provable Security, First International Conference, ProvSec 2007,
Wollongong, Australia, November 1-2, 2007, Proceedings. pp. 1–16 (2007)
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Supplementary Material

A Bilinear Group and the MDDH Assumption

Let PGGen be a bilinear group generation algorithm. PGGen takes as input 1λ,
and returns a description Gbp = (G1,G2,GT , q, e, g1, g2) of an asymmetric pairing
groups, where G1,G2,GT are cyclic groups of order q, g1 and g2 are generators
of G1 and G2 respectively, and e : G1 × G2 → GT is an efficiently computable
(non-degenerated) bilinear map. Define gT := e(g1, g2) be the generator in GT .
For s ∈ {1, 2, T} and a ∈ Zq, define [a]s := gas ∈ Gs as the implicit representation
of a in Gs. For a matrix A := (aij)n×m with aij ∈ Zq, define [A]s as the implicit
representation of A in Gs. For a,b ∈ Zkq , define e([a]1, [b]2) := [a>b]T ∈ GT .

Let `, k ∈ N and ` > k. D`,k is a matrix distribution if it outputs matrices
in Z`×kq of full rank k in polynomial time. If ` = k + 1, we denote it by Dk.

For B ∈ Z(k+1)×n
q , define B ∈ Zk×nq as the first k rows of B. Without loss of

generality, assume that the first k rows A of A← Dk form an invertible matrix.

Definition 16 (D`,k-MDDH). Let D`,k be a matrix distribution and s ∈ {1, 2, T}.
For any PPT adversary A, the advantage of A in solving D`,k-Matrix Diffie-
Hellman (D`,k-MDDH) problem is defined as

AdvMDDH
D`,k,Gs,A(λ) := |Pr[G ← GGen; A← D`,k; w

$←− Zkq : A(G, [A]s, [Aw]s) = 1]

− Pr[G ← GGen; A← D`,k; u
$←− Z`q : A(G, [A]s, [u]s) = 1]|.

B Expstrong
AKE,µ,`,A(λ) and Security Games in the Proof of

Theorem 4

There are three security games in the proof of Theorem 4, as shown in Fig. 9.

– Game 0 is just the experiment ExpstrongAKE,µ,`,A(λ) for AKE.
– Game 1 aborts if bad happens.
– Game 2 uses a new algorithm D-Partner(πsi , π

t
j) to check Partner(πsi ← πtj).
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Expstrong
AKE,µ,`,A(λ): //Game 0, Game 1, Game 2

ppSIG ← SIG.Setup(1λ); ppKEM ← KEM.Setup(1λ)
ppAKE := (ppSIG, ppKEM)
For i ∈ [µ]:

(vki, ski)← SIG.Gen(ppSIG);
sti := {sctri,0[u] := 0, sctri,1[u] := 0}u∈[µ];
crpi := 0 //Corruption variable

PKList := {vki}i∈[µ]
For (i, s) ∈ [µ]× [`]:

bsi
$←− {0, 1}; Pidsi := ksi := Ψsi := ∅; Sentsi := Recvsi := ∅;

Aflagsi := 0; Tflagsi := 0;
//Whether Pidsi is corrupted when πsi is accepted or tested
T si := 0; Rsi := 0 //Test & Reveal variables

(i∗, s∗, b∗)← AOAKE(·)(ppAKE,PKList)

WinAuth:=0
WinAuth:=1, If ∃(i, s) ∈ [µ]× [`] s.t.
(1) Ψsi = accept //πsi is τ -accepted
(2) Aflagsi = 0 //Pj is τ̂ -corrupted with j := Pidsi and τ̂ > τ
(3) (3.1) ∨ (3.2) ∨ (3.3). Let j := Pidsi

(3.1) @ t ∈ [`] s.t. Partner(πsi ← πtj)
(3.2) ∃ t ∈ [`], (j′, t′) ∈ [µ]× [`] with (j, t) 6= (j′, t′) s.t.

Partner(πsi ← πtj) ∧ Partner(πsi ← πt
′

j′)
(3.3) ∃ t ∈ [`], (i′, s′) ∈ [µ]× [`] with (i, s) 6= (i′, s′) s.t.

Partner(πsi ← πtj) ∧ Partner(πs
′

i′ ← πtj)

bad:=0
If ∃(i, s) ∈ [µ]× [`] s.t. (1) ∧ (2) ∧ (4): then bad:=1
(4) @t ∈ [`] such that πsi is message-consistent with πtj (j := Pidsi )
If bad=1: Abort

WinInd:=0
(i, s, b∗) := (i∗, s∗, b∗); j := Pidsi
If (1′) T si = 1 ∧ Tflagsi = 0

//πsi is τ -tested and Pidsi is τ̃ -corrupt with τ̃ > τ
(2′) Rsi = 0 //πsi is ∞-revealed
(3′) If ∃t ∈ [`] s.t. Partner(πsi ← πtj) then Rtj = T tj = 0
//If πsi is partnered to πtj , then πtj is ∞-revealed and ∞-tested

Then: If b∗ = bsi : WinInd=1; Return 1
Else: Return 0

Else: Abort

//Checking whether Partner(πsi ← πtj)
D-Partner(πsi , π

t
j): //Game 0, Game 1

If πsi is the initiator and ksi = K(πsi , π
t
j) 6= ∅: Return 1

If πsi is the responder and ksi = K(πtj , π
s
i ) 6= ∅: Return 1

Return 0

D-Partner(πsi , π
t
j) //Game 2

If Ψsi 6= accept: Return 0
If πsi is message-consistent with πtj : Return 1
Else: Return 0

OAKE(query): //Game 0, Game 1, Game 2

If query = Send(i, s, j,msg = >): //πsi is the initiator
Pidsi = j; (pkKEM, skKEM)← KEM.Gen(ppKEM)
sctri,0[j] := sctri,0[j] + 1
m1 := (i,Pidsi , sctri,0[j], pkKEM)
σ1 ← SIG.Sign(ski,m1)
Sentsi := {(m1, σ1)}
Return (m1, σ1)

If query = Send(j, t, i,msg 6= >): //πtj is the responder
Parse msg = (m1 = (i,Pidsi , ctr, pkKEM), σ1)
If NOT (Pidsi = j ∧ ctr > sctrj,1[i]

∧ SIG.Ver(vki,m1, σ1) = 1):
Ψ tj := reject; Return ⊥ //m1 is invalid

Pidtj := i; sctrj,1[i] := ctr
(K,C)← KEM.Encap(pkKEM)
m2 := (Pidtj , j, sctrj,1[i], C)
σ2 ← SIG.Sign(skj ,m1||m2)
Recvtj := {(m1, σ1)}; Senttj := {(m2, σ2)}
ktj := K; Ψ tj := accept
If crpi = 1: Aflagtj := 1
Return (m2, σ2)

If query = Send(i, s, j,msg 6= >): //πsi is the initiator
Parse msg = (m2 = (Pidtj , j, ctr, C), σ2)
Choose (m1, σ1) ∈ Sentsi
If NOT (Pidtj = i ∧ Pidsi = j ∧ ctr = sctri,0[j]

∧ SIG.Ver(vkj ,m1||m2, σ2) = 1):
Ψsi := reject; Return ⊥ //m2 is invalid

Recvsi := {(m2, σ2)}
K ← KEM.Decap(skKEM, C)
ksi := K; Ψsi := accept
If crpj = 1: Aflagsi := 1
Return ∅ //msg is the last message of AKE

If query = Corrupt(i):
crpi := 1; Return ski

If query = RegisterCorrupt(u, vku):
If u ∈ [µ]: Return ⊥
PKList := PKList ∪ {vku}; Return PKList

If query = Reveal(i, s)
If Ψsi 6= accept: Return ⊥
Else: Rsi := 1; Return ksi

If query=Test(i, s):
If Ψsi 6= accept: Return ⊥
Let j := Pidsi
If crpj = 1: Tflagsi := 1

T si := 1; k0 := ksi ; k1
$←− K; Return kbsi

Fig. 9. Expstrong
AKE,µ,`,A(λ) and security games for the proof of AKE.
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C Proof of Diverse Property of KEMst2DH

For all ppKEM ← KEM.Setup(1λ), let ppKEM = (G, q, g,H), and H : G2 → K be a
random oracle. Recall that pk = (gx1 , gx2), (K,C) = (H(gx1y, gx2y), gy), where
x1, x2 ∈ Zq are randomness used to generate pk in KEM.Gen, and y ∈ Zq is the
randomness used to generate the encapsulated key K in KEM.Encap.

The diverse property of KEMst2DH can be proved with the following two cases.

(1) Given x1, x2
$←− Zq, y, ȳ

$←− Zq,

Pr[K = K̄] = Pr[K = K̄ ∧ y = ȳ] + Pr[K = K̄ ∧ y 6= ȳ]

= Pr[y = ȳ] + Pr[K = K̄|y 6= ȳ] Pr[y 6= ȳ]

≤ 1/q + Pr[H(gx1y, gx2y) = H(gx1ȳ, gx2ȳ)|y 6= ȳ]

= 1/q + 1/q2 + 1/|K|
= 2−Ω(λ).

(2) Given x1, x2, x
′
1, x
′
2

$←− Zq, y
$←− Zq,

Pr[K = K ′] = Pr[K = K ′ ∧ (x1, x2) = (x′1, x
′
2)] + Pr[K = K ′ ∧ (x1, x2) 6= (x′1, x

′
2)]

= Pr[(x1, x2) = (x′1, x
′
2)] + Pr[K = K ′|(x1, x2) 6= (x′1, x

′
2)] Pr[(x1, x2) 6= (x′1, x

′
2)]

≤1/q2 + Pr[H(gx1y, gx2y) = H(gx
′
1y, gx

′
2y)|(x1, x2) 6= (x′1, x

′
2)]

=1/q2 + 1/q + 1/|K|
=2−Ω(λ).
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D Instantiations

D.1 The Tightly IND-mCCA Secure KEM KEMMDDH

The KEMMDDH scheme is derived from the PKE scheme in [14]. See Fig. 10.

KEM.Setup(1λ):

Gbp = (G1,G2,GT , q, e, g1, g2)← PGGen(1λ)

A1,A2 ← D`,k; H
$←− H

Return ppKEM := (Gbp, [A1]1, [A2]2,H)

KEM.Encap(pk):

w1
$←− Zkq ; [c1]1 := [A1]1 ·w1 ∈ G`1

w2
$←− Zkq ; [c2]2 := [A2]2 ·w2 ∈ G`2

K := [p>]2 ·w2 ∈ G2

[τ ]2 := H([c1]1, [c2]2,K) ∈ G2

[π]T := w>2 · [P̂]T ·w1︸ ︷︷ ︸
[π̂]T

+ [1, τ ]2 · [P̃]1 ·w1︸ ︷︷ ︸
[π̃]T

∈ GT

C := ([c1]1, [c2]2, [π]T )
Return (K,C)

KEM.Gen(ppKEM):

k
$←− Z`q; [p>]2 := k> · [A2]2 ∈ G1×k

2

K̂
$←− Z`×`q ; [P̂]T := [A2]>2 · K̂ · [A1]1 ∈ Gk×kT

K̃
$←− Z2×`

q ; [P̃]1 := K̃ · [A1]1 ∈ G2×k
1

pk := ([p]2, [P̂]T , [P̃]1); sk := (k, K̂, K̃)
Return (pk, sk)

KEM.Decap(sk, C):

Parse C = ([c1]1, [c2]2, [π
′]T )

K := k> · [c2]2 ∈ G2

[τ ]2 := H([c1]1, [c2]2,K) ∈ G2

[π]T := [c2]>2 · K̂ · [c1]1︸ ︷︷ ︸
[π̂]T

+ [1, τ ]2 · K̃ · [c1]1︸ ︷︷ ︸
[π̃]T

∈ GT

If [π′]T = [π]T : Return K
Else: Return ⊥

Fig. 10. The tightly IND-mCCA secure KEM KEMMDDH in [14].

D.2 Proof of Diverse Property of KEMMDDH

For all ppKEM ← KEM.Setup(1λ), let ppKEM = (Gbp, [A1]1, [A2]2,H), and Gbp =
(G1,G2,GT , q, e, g1, g2). Note that K = [k> ·A2 · w2]2 ∈ G2, where [A2]2 is a
part of ppKEM and A2 is of full rank. k ∈ Z`q is a part of randomness used to

generate pk := (k> · [A2]2, ...) in KEM.Gen. Meanwhile, w2 ∈ Zkq is a part of
randomness used to generate the encapsulated key K in KEM.Encap.

The diverse property of KEMMDDH can be proved with the following two
cases.

(1) Given k
$←− Z`q, w2, w̄2

$←− Zkq ,

Pr[K = K̄] = Pr[k> ·A2 ·w2 = k> ·A2 · w̄2]

= Pr[k> ·A2 · (w2 − w̄2) = 0]

≤ Pr[w2 = w̄2] + Pr[k> ·A2 · (w2 − w̄2) = 0|w2 6= w̄2]

= 1/qk + 1/q // det A2 = k

= 2−Ω(λ).
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(2) Given k,k′
$←− Z`q, w2

$←− Zkq ,

Pr[K = K ′] = Pr[k> ·A2 ·w2 = k′
> ·A2 ·w2]

= Pr[(k− k′)> ·A2 ·w2 = 0]

≤ Pr[A2 ·w2 = 0] + Pr[(k− k′)> ·A2 ·w2 = 0|A2 ·w2 6= 0]

= 1/qk + 1/q // det A2 = k

= 2−Ω(λ).

D.3 The Tightly MU-EUF-CMAcorr Secure SIG SIGDDH

Gjøsteen and Jager [11] proposed an efficient MU-EUF-CMAcorr signature scheme
SIGDDH with tight security in the random oracle model. The scheme is based on
the DDH and CDH assumptions. It makes use of the Fiat-Shamir approach and
does not depend on bilinear maps.

Let GGen be a group generation algorithm (Section 2.4). Let H1 : R ×
{0, 1}∗ → G and H2 : G11 → Zq be two hash functions, where R is a ran-
domness set. The scheme SIGDDH is shown in Fig. 11.

SIG.Setup(1λ):

(G, q, g)← GGen(1λ)
H1 : R× {0, 1}∗ → G
H2 : G11 → Zq
Return ppSIG := (G, q, g,H1, H2)

SIG.Gen(ppSIG):

b
$←− {0, 1}; ab

$←− Zq
xb := gab ; x1−b

$←− G
vk := (x0, x1); sk := (b, ab)
Return (vk, sk)

SIG.Sign(sk,m):

Parse sk = (b, ab)

t
$←− R; y := H1(t,m)

zb := yab ; z1−b
$←− G

πeq,or ← ZPrveq,or(b, ab;x0, x1, y, y, z0, z1)
Return σ := (t, z0, z1, πeq,or)

SIG.Ver(vk,m, σ):

Parse vk = (x0, x1); σ = (t, z0, z1, πeq,or)
y := H1(t,m)
If ZVfyeq,or(πeq,or;x0, x1, y, y, z0, z1) = 1:

Return 1
Else: Return 0

ZPrveq,or(b, ab;x0, x1, y, y, z0, z1):

γ1−b, β1−b
$←− Zq

α1−b := gγ1−b(x1−b)
β1−b

α′1−b := yγ1−b(z1−b)
β1−b

ρb
$←− Zq

αb := gρb ;α′b := yρb

β ← H2(g||x0||x1||y||y||z0||z1||α0||α1||α′0||α′1)
βb := β − β1−b
γb := ρb − βbab
πeq,or := (α0, α

′
0, α1, α

′
1, β0, β1, γ0, γ1)

Return πeq,or

ZVfyeq,or(πeq,or;x0, x1, y, y, z0, z1):

Parse πeq,or = (α0, α
′
0, α1, α

′
1, β0, β1, γ0, γ1)

β′ ← H2(g||x0||x1||y||y||z0||z1||α0||α1||α′0||α′1)
If: β′ = β0 + β1;

α0 = gγ0xβ00 ;

α′0 = yγ0zβ00 ;

α1 = gγ1xβ11 ;

α′1 = yγ1zβ11 :
Return 1

Else: Return 0

Fig. 11. The tightly MU-EUF-CMAcorr secure signature scheme SIGDDH in [11].
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D.4 The Tightly MU-EUF-CMAcorr Secure SIG SIGMDDH

SIG.Setup(1λ):

Gbp ← PGGen(1λ); A,A′ ← Dk; B := A′ ∈ Zk×kq

For 0 ≤ i ≤ l, 0 ≤ b ≤ 1:

xi,b
$←− Zkq ; Yi,b

$←− Zk×kq

Zi,b := (Y>i,b||xi,b) ·A ∈ Zk×kq

Return ppSIG := (Gbp, [A]1, [B]2,

([Zi,b]1, [x
>
i,bB]2, [Yi,bB]2)0≤i≤l,0≤b≤1)

For m = (m1, ...,ml) ∈M := {0, 1}l: //Message space

x(m) :=
∑l
i=1 x

>
i,mi ∈ Z1×k

q

Y(m) :=
∑l
i=1 Yi,mi ∈ Zk×kq

Z(m) :=
∑l
i=1 Zi,mi = (Y(m)>||x(m)>) ·A ∈ Zk×kq

SIG.Gen(ppSIG):

a
$←− Zq; b

$←− Zkq
c> := (b>||a) ·A ∈ Z1×k

q

vk := [c]1 ∈ Gk1 ; sk := ([a]2, [b]2) ∈ Gk+1
2

Return (vk, sk)

SIG.Sign(sk,m):

Parse sk = ([a]2, [b]2)

r′
$←− Zkq ; r := B · r′ ∈ Zkq

u := a+ x(m) · r ∈ Zq
v := b + Y(m) · r ∈ Zkq
Return σ := ([r]2, [u]2, [v]2)

SIG.Ver(vk,m, σ):

Let vk = [c]1

s
$←− Zkq

If e
(
[c> · s]1 · [1]2

)
=

e

(
[A · s]1 ·

[
v
u

]
2

)
· e
(
[Z(m) · s]1, [r]2

)−1
:

Return 1
Else: Return 0

Fig. 12. The tightly MU-EUF-CMAcorr secure signature scheme SIGMDDH in [1].

D.5 The Instantiation of AKEDDH

Let GGen be a group generation algorithm, which outputs a cyclic group G of
prime order q with generator g (Section 2.4). Let H : G2 → K, H1 : R×{0, 1}∗ →
G and H2 : G11 → Zq be three hash functions, where R is a randomness set and
K is the key space.

Following the generic construction of AKE in Fig. 6, we instantiate the KEM
and SIG schemes with KEMst2DH and SIGDDH, and obtain a practical 2-pass AKE
scheme AKEDDH (AKEstateless

DDH ) with tight security in the random oracle model. See
Fig. 13 for the AKEDDH scheme.

D.6 The Instantiation of AKEMDDH

Let PGGen be a bilinear group generation algorithm that takes as input 1λ, and
returns a description Gbp = (G1,G2,GT , q, e, g1, g2) of an asymmetric pairing
groups (see Appendix A). Following the generic construction of AKE in Fig. 6,
we instantiate the KEM and SIG schemes with KEMMDDH and SIGMDDH, and
obtain the first 2-pass AKE scheme AKEMDDH (AKEstateless

MDDH ) with tight security
in the standard model. See Fig. 14 for the AKEMDDH scheme.
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AKE.Setup(1λ):

(G, q, g)
$←− GGen(1λ)

H : G2 → K
H1 : R× {0, 1}∗ → G
H2 : G11 → Zq
Return ppAKE := (G, q, g,H,H1, H2)

AKE.Gen(ppAKE, Pi):

b(i)
$←− {0, 1}; a(i)b

$←− Zq
x
(i)
b := ga

(i)
b ; x

(i)
1−b

$←− G
vk(i) := (x

(i)
0 , x

(i)
1 ); sk(i) := (b(i), a

(i)
b )

For u ∈ [µ]:
sctri,0[u] := 0; sctri,1[u] := 0

sti := {sctri,0[u], sctri,1[u]}u∈[µ]
Return (vk(i), sk(i), sti)

AKE.Protocol(Pi 
 Pj): //Phase I

Ψi := ∅; ki := ∅
//KEM.Gen

u1, u2
$←− Zq; U1 := gu1 ; U2 := gu2

sctri,0[j] := sctri,0[j] + 1
m1 := (i, j, sctri,0[j], (U1, U2))

//SIG.Sign

Parse sk(i) = (b(i), a
(i)
b )

t
$←− R; y := H1(t,m1)

zb(i) := ga
(i)
b ; z1−b(i)

$←− G
πeq,or ← ZPrveq,or(b

(i), a
(i)
b ;x

(i)
0 , x

(i)
1 , y, y, z0, z1)

σ1 := (t, z0, z1, πeq,or)
Send (m1, σ1)

AKE.Protocol(Pi 
 Pj): //Phase II

Ψj := ∅; kj := ∅
Parse m1 = (i, j′, ctr, (U1, U2))

Parse vk(i) = (x
(i)
0 , x

(i)
1 ); σ1 = (t, z0, z1, πeq,or)

y := H1(t,m1)
If not (j′ = j ∧ ctr > sctrj,1[i]

∧ ZVfy(πeq,or, x
(i)
0 , x

(i)
1 , y, y, z0, z1) = 1):

Return (Ψj := reject, kj)
sctrj,1[i] := ctr

//KEM.Encap

v
$←− Zq; V := gv; K := H(U1, U2, V, U

v
1 , U

v
2 )

m2 := (i, j, sctrj,1[i], V )
//SIG.Sign

Parse sk(j) = (b(j), a
(j)
b )

t
$←− R; y := H1(t,m1||m2)

zb(j) := ga
(j)
b ; z1−b(j)

$←− G
πeq,or ← ZPrveq,or(b

(j), a
(j)
b ;x

(j)
0 , x

(j)
1 , y, y, z0, z1)

σ2 := (t, z0, z1, πeq,or)
Send (m2, σ2)
Return (Ψj := accept, kj := K)

AKE.Protocol(Pi 
 Pj): //Phase III

Parse m2 = (i′, j′, ctr′, V )

Parse vk(j) = (x
(j)
0 , x

(j)
1 ); σ2 := (t, z0, z1, πeq,or)

y := H1(t,m1||m2)
If not (i′ = i ∧ j′ = j ∧ ctr′ = sctri,0[j]

∧ ZVfy(πeq,or, x
(j)
0 , x

(j)
1 , y, y, z0, z1) = 1):

Return (Ψi := reject, ki)
//KEM.Decap

Ψi := accept; ki := H(U1, U2, V, V
u1 , V u2)

Return (Ψi, ki)

Fig. 13. Construction of AKEDDH.
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AKE.Setup(1λ):

Gbp ← PGGen(1λ); A,A′ ← Dk; B := A′ ∈ Zk×kq //ppSIG

For 0 ≤ i ≤ l, 0 ≤ b ≤ 1:

xi,b
$←− Zkq ; Yi,b

$←− Zk×kq ; Zi,b := (Y>i,b||xi,b) ·A ∈ Zk×kq

M1,M2 ← D`,k; H : {0, 1}∗ → G2 //ppKEM

Return ppAKE := (Gbp, [A]1, [B]2, [M1]1, [M2]2,H,
([Zi,b]1, [x

>
i,bB]2, [Yi,bB]2)0≤i≤l,0≤b≤1)

For m = (m1, ...,ml) ∈M := {0, 1}l: //Message space

x(m) :=
∑l
i=1 x

>
i,mi ∈ Z1×k

q

Y(m) :=
∑l
i=1 Yi,mi ∈ Zk×kq

Z(m) :=
∑l
i=1 Zi,mi = (Y(m)>||x(m)>) ·A ∈ Zk×kq

AKE.Gen(ppAKE, Pi):

a(i)
$←− Zq; b(i) $←− Zkq ; c(i)> := (b(i)>||a(i)) ·A ∈ Z1×k

q

vk(i) := [c(i)]1; sk(i) := ([a(i)]2, [b
(i)]2)

For u ∈ [µ]:
sctri,0[u] := 0; sctri,1[u] := 0

sti := {sctri,0[u], sctri,1[u]}u∈[µ]
Return (vk(i), sk(i), sti)

AKE.Protocol(Pi 
 Pj): //Phase I

Ψi := ∅; ki := ∅
//KEM.Gen

k
$←− Z`q; [p>]2 := k> · [M2]2

K̂
$←− Z`×`q ; [P̂]T := [M2]>2 · K̂ · [M1]1

K̃
$←− Z2×`

q ; [P̃]1 := K̃ · [M1]1
pkKEM := ([p]2, [P̂]T , [P̃]1); skKEM := (k, K̂, K̃)
sctri,0[j] := sctri,0[j] + 1
m1 := (i, j, sctri,0[j], pkKEM)

//SIG.Sign

Parse sk(i) = ([a(i)]2, [b
(i)]2)

r′
$←− Zkq ; r := B · r′

u := a(i) + x(m1) · r; v := b(i) + Y(m1) · r
σ1 := ([r]2, [u]2, [v]2)
Send (m1, σ1)

AKE.Protocol(Pi 
 Pj): //Phase II

Ψj := ∅; kj := ∅
Parse m1 = (i, j′, ctr, pkKEM = ([p]2, [P̂]T , [P̃]1))

Parse σ1 = ([r]2, [u]2, [v]2); vk(i) = [c(i)]1

s
$←− Zkq

If not (j′ = j ∧ ctr > sctrj,1[i] ∧ e
(

[c(i)> · s]1 · [1]2
)

= e

(
[A · s]1 ·

[
v
u

]
2

)
· e
(
[Z(m1) · s]1, [r]2

)−1
):

Return (Ψj := reject, kj)
sctrj,1[i] := ctr

//KEM.Encap

w1
$←− Zkq ; [ct1]1 := [M1]1 ·w1

w2
$←− Zkq ; [ct2]2 := [M2]2 ·w2

K := [p>]2 ·w2; [τ ]2 := H([ct1]1, [ct2]2,K)

[π]T := w>2 · [P̂]T ·w1 + [1, τ ]2 · [P̃]1 ·w1

C := ([ct1]1, [ct2]2, [π]T )
m2 := (i, j, sctrj,1[i], C)

//SIG.Sign

Parse sk(j) = ([a(j)]2, [b
(j)]2)

r′
$←− Zkq ; r := B · r′

u := a(j) + x(m1||m2) · r; v := b(j) + Y(m1||m2) · r
σ2 := ([r]2, [u]2, [v]2)
Send (m2, σ2)
Return (Ψj := accept, kj := K)

AKE.Protocol(Pi 
 Pj): //Phase III

Parse m2 = (i′, j′, ctr′, C = ([ct1]1, [ct2]2, [π
′]T ))

Parse σ2 = ([r]2, [u]2, [v]2); vk(j) = [c(j)]1

s
$←− Zkq

If not (i′ = i ∧ j′ = j ∧ ctr′ = sctri,0[j] ∧ e
(

[c(j)> · s]1 · [1]2
)

= e

(
[A · s]1 ·

[
v
u

]
2

)
· e
(
[Z(m1||m2) · s]1, [r]2

)−1
):

Return (Ψi := reject, ki)
//KEM.Decap

K := k> · [ct2]2; [τ ]2 := H([ct1]1, [ct2]2,K)

[π]T := [ct2]>2 · K̂ · [ct1]1 + [1, τ ]2 · K̃ · [ct1]1
If [π′]T 6= [π]T : Return (Ψi := reject, ki)
Else: Return (Ψi := accept, ki := K)

Fig. 14. Construction of AKEMDDH.
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