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Abstract—Saber, the only module-learning with rounding-
based algorithm in NIST’s third round of post-quantum cryptog-
raphy (PQC) standardization process, is characterized by sim-
plicity and flexibility. However, energy-efficient implementation
of Saber is still under investigation since the commonly used
number theoretic transform can not be utilized directly. In this
manuscript, an energy-efficient configurable crypto-processor
supporting multi-security-level key encapsulation mechanism of
Saber, is proposed. First, an 8-level hierarchical Karatsuba
framework is utilized to reduce degree-256 polynomial multipli-
cation to the coefficient-wise multiplication. Second, a hardware-
efficient Karatsuba scheduling strategy and an optimized pre-
/post-processing structure is designed to reduce the area over-
heads of scheduling strategy. Third, a task-rescheduling-based
pipeline strategy and truncated multipliers are proposed to
enable fine-grained processing. Moreover, multiple parameter sets
are supported in LWRpro to enable configurability among vari-
ous security scenarios. Enabled by these optimizations, LWRpro
requires 1066, 1456 and 1701 clock cycles for key generation,
encapsulation, and decapsulation of Saber768. The post-layout
version of LWRpro is implemented with TSMC 40 nm CMOS
process within 0.38 mm>. The throughput for Saber768 is up
to 275k encapsulation operations per second and the energy
efficiency is 0.15 uJ/encapsulation while operating at 400 MHz,
achieving nearly 50x improvement and 31x improvement, re-
spectively compared with current PQC hardware solutions.

Index Terms—Module-LWR, Saber, crypto-processor, energy-
efficient, Karatsuba, hierarchical calculation framework.

I. INTRODUCTION

ABER, a lattice-based public key cryptography scheme,

is one of the finalists in the third round competition
of National Institute of Standards and Technology (NIST).
The main computational bottleneck of Saber is polynomial
multiplication, which can not be accelerated by number theo-
retic transform (NTT) fast multiplication algorithm. Saber is
also characterized by its direct error introducing technique of
rounding without specific modular operations. For hardware
implementation, how to efficiently implement polynomial mul-
tiplication without using NTT-style calculation is an important
topic.

As the only module-learning with rounding (LWR)-based
candidate, Saber has been optimized on the Intel Xeon pro-
cessors [1], [2], ARM Cortex-series [3] and FPGA platforms
[4]-[6]. For software implementations, a hybrid method com-
bining Toom-Cook and Karatsuba algorithm is utilized for
efficient implementations of polynomial multiplications [1]-
[3]. For hardware implementations, the simple but efficient
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schoolbook multiplication is utilized in [4], [5]. A 4-way
Toom-Cook method is utilized to reduce 43% of the number
of multiplication operations [6]. However, the efficiency of
hardware implementation of fast multiplication algorithm of
Saber can be further optimized.

An energy-efficient configurable crypto-processor, LWRpro,
is proposed based on the algorithm-hardware co-design of
module-LWR with multiple security levels of key encapsu-
latiom mechanism (KEM). The main computation block of
LWRpro is an 8-level recursive split hierarchical Karatsuba
framework, which reduces the degree-256 polynomial multi-
plication to the coefficient-wise multiplication. Several opti-
mization strategies, including optimized pre-/post-processing
structure, the task-rescheduling-based pipeline and truncated
multiplier, are developed to further improve the energy effi-
ciency of LWRpro. In order to make a comprehensive assess-
ment of the proposed methods, LWRpro has been implemented
on Xilinx Virtex UltraScale+ FPGA platform for PKE version
and post-layout ASIC implementation on TSMC 40nm process
for KEM version. Compared with the state-of-the-art FPGA
implementation of Saber [5], nearly 3.6x reduction in cycles
of polynomial multiplications is achieved. The post-layout
implementation results show that the speed of LWRpro is
51x and 50x faster than the state-of-the-art implementation
of Newhope1024 and Kyber1024 [7]. The energy efficiency of
LWRpro is 29x and 33 x higher and area efficiency (estimated
by the reciprocal of equivalent gates-time product) is 112x and
109x higher, respectively. The key contributions of this work
are summarized as follows:

1) Hierarchical Karatsuba framework is utilized to acceler-
ate the degree-256 polynomial multiplication in Saber.

2) Sequential hardware-efficient Karatsuba scheduling for
post-processing and compact input pre-processing are
proposed for the hierarchical Karatsuba framework.

3) Task-rescheduling based pipelining strategy and trun-
cated multipliers empower LWRpro to achieve lower
latency with a small area.

4) Multi-parameter components and core modules reusage
enable LWRpro configurability among three security
levels to meet different security scenarios.

Compared with the schoolbook multiplication, more than
90% of multiplication operations are saved through 8-level
hierarchical Karatsuba framework. Optimization strategies of
hierarchical Karatsuba framework, including post-processing
and pre-processing circuits, reduce 90.5% of registers and
96.0% of adders compared with the existing partial-reusage
solutions. From an implementation aspect, pipelining strat-



egy and truncated multipliers empower LWRpro to achieve
a speed-up of nearly 50x with 45.6% less resource usage
compared with [7].

The remaining part of this paper is organized as fol-
lows. Section II introduces the background of Saber and
the motivations to design LWRpro. Section III proposes the
optimized hierarchical Karatsuba framework with optimized
pre-processing and post-processing structure. In Section IV,
the hardware architectures of LWRpro and details of the
customized circuits are presented. Section V presents the
performance of LWRpro and comparisons with other hardware
implementations. Finally, this paper is concluded in Section
VL

II. BACKGROUND AND MOTIVATION
A. Module-LWR and Saber

The LWR scheme, first described in [8], is regarded as
a derandomized version of the learning with errors (LWE)
scheme. The unique property of LWR scheme lies in that
the coefficients of polynomials belong to Z3» and it in-
troduces randomness through rounding operation. From an
implementation aspect, rounding in LWR implies that modular
operations are realized by a simple shifting operation with
negligible costs. NTT can not be used in LWR scheme because
coefficients of polynomials belong to Zy» rather than a prime
field.

The three stages of public key encryption (PKE) scheme of
Saber [1] are shown in Algo. 1, 2 and 3, where [=2/3/4 and
€: =3/4/6 are for LightSaber, Saber768 and FireSaber, respec-
tively. The Saber-suite offers three security levels: LightSaber,
Saber and FireSaber. To avoid confusion, the general term for
Saber-suite is referred as Saber in this paper, and Saber768
denotes the intermediate security level. Function U denotes the
uniform distribution and the function 3,, denotes the binomial
sampling operation with the corresponding standard deviation
o = +/p/2. The function bits(v, e, ez) denotes the bits
truncation function in which the bits of v from e; — €5 + 1)-th
bit to €;-th bit are remained.

Algorithm 1 Saber Key Generation
seedq « U({0,1}*°%)
A « gen(seedy) € R,
s B (Rg")
b = bits(A7's, ¢,, €,) € R,
return (pk = (b, seedy), sk =s)

Algorithm 2 Saber Encryption

Input: seeda, m

A « gen(seedy) € R,

' B (R

b = bits(As’, ¢, €,) € R,!

v = bbits(s, €p, €p)+h1 € R,

Cm = bits(v'+2¢ " 1m, €p, €+ 1) € Ry
return ¢ = (c,,, V')

Algorithm 3 Saber Decryption

Input: s, V' ¢,

v = b’Tbits(s, €p, €p)th1 € Ry,

m’ = bits(v — 22~ e, 4+ hoy€,, 1) € Ry
return m/’

Pesudo-random numbers in public matrix of polynomials A
are generated from the Keccak. Secret vector of polynomials
s is generated from binomial sampling. The main computa-
tional tasks among all stages are matrix-vector polynomial
multiplications and vector-vector polynomial multiplications
in Z,[X]/(z™ + 1). Matrix-vector polynomial multiplications
are categorized in two kinds according to the generation order
of public matrix: column-major order during key generation
and row-major order during encryption. Some parameters are
different among three security levels: the number of polyno-
mial multiplications, the number of effective bits of secret key
and number of output bits in encryption.

Two additional hash functions, namely, SHA3-256 and
SHA3-512, are needed to support KEM based on PKE scheme.
Keccak is the core module of these hash operations. Besides,
there is an additional verification operation during decapsula-
tion to check whether the ciphertext is qualified or not.

B. Karatsuba Algorithm

The unique property of Saber makes NTT inappropriate for
efficient computations. General options, such as Toom-Cook
and Karatsuba algorithms, seem to be suitable for efficient
polynomial multiplication in Saber. However, the high-speed
implementation of Toom-Cook incurs additional overheads
resulting from multiple instantiations of evaluation and in-
terpolation components [9]. Therefore, Karatsuba algorithm
is adopted in LWRpro benefiting from its good scalabil-
ity in hardware. The Karatsuba algorithm, firstly proposed
in [10], reduces the computational complexity from O(n?) to
O(n'°92"). Taking the calculation P = M x N as an example,
M and N are both n-bit wide, and M;/Myx and N /Ny
denote the lower/higher halves of M and N, respectively.
As shown in Eq. (1), Karatsuba algorithm can reduce n-bit
multiplication to three n/2-bit multiplication operations and
four n-bit addition operations, where 0, 7 and ~y denote three
immediate multiplication results. Eq. (1) only illustrates 1-
level Karatsuba algorithm and multi-level Karatsuba algorithm
is feasible when M /Mg and Np/Np are split recursively
following the same rule.

0 = My, x Np,

T =My X Np,

v = (Mg + Mpg) x (N + Np),
P=MxN=0+(y—0—7)x2% +71x2"

(D

The number of addition operations is further reduced
in [11]. The idea is to avoid the accumulation of overlapping
parts, and thus, only seven n/2-bit addition operations are
required. This is also adopted in the design of LWRpro.



C. Related works and Motivation

There are a few works on LWE and ring-LWE schemes
on FPGAs [6], [12]-[15] and ASIC platforms [4], [16]-[22].
These implementations are based on NTT-style calculation
mechanisms and these works are not applicable to Saber.

Existing implementations in [4], [5] utilized the straight-
forward schoolbook method without reducing the number of
multiplication operations. The work [6] utilizing 4-way Toom-
Cook algorithm is slower than those based on schoolbook
methods. Moreover, only [5] implemented unified Saber of
multi-security levels and other works only focused one ver-
sion of Saber. How to maximize the advantages brought
by efficient multiplication algorithms, such as Karatsuba or
Toom-Cook algorithm, for Saber in hardware and how to
support configurable design for module-LWR still requires
further discussion. Hierarchical Karatsuba framework is firstly
utilized in this paper to accelerate polynomial multiplication.
Correspondingly, the overhead and hardware are discussed.

Karatsuba-based systolic multipliers are usually used to
accelerate large-number multiplication in hardware implemen-
tations of ECC and RSA algorithms [23]-[26]. Unfortunately,
utilizing Karatsuba-based systolic multipliers for Saber re-
sults in large area cost, which means that the traditional
method cannot be directly applied to Saber. A hierarchical
Karatsuba implementation is proposed in [27] by employing
the 64-bit conventional Karatsuba multiplier as the kernel
hardware to implement RSA-type algorithm. Therefore, a 256-
bit multiplication is accomplished by executing this kernel
9 times through Karatsuba scheduling strategy. Although the
computational tasks are fully covered by reusing the relatively
small Karatsuba multipliers, numerous registers and adders in
the scheduling layer are required to keep all the intermediate
data. This overhead also becomes high if the computational
tasks are large. Several optimized strategies are proposed in
the design of LWRpro to reduce this overhead of implementing
Saber. Modules in pre-processing circuits are reused and all
output registers affected by each multiplication are updated
simultaneously to reduce the overhead in this paper. Besides,
the work [27] did not demonstrate the timing details of
implementation and the cycle count. The timing flow has a
crucial influence on the execution efficiency of Saber. How to
design the fine execution flow is analyzed in this paper and
the strategies of scheduling circuits to work with the kernel
hardware in parallel all the time are presented.

Besides, even though there are several hardware imple-
mentations of schemes based on module-lattice [22], [28],
these works did not make full use of the unique properties
of module-lattice. The just-in-time strategy was proposed
in [3] as a memory-efficient approach to optimize the software
implementation of module-LWR. Only one public polynomial
and one secret polynomial need to be stored to support the
multiplications. LWRpro borrowed this idea but with several
issues reconsidered for hardware implementation. Keccak is
assigned to one task exclusively over a period of time to avoid
additional overheads resulted from task switching.

M[d- 1 0] N[o- 1 0]
_________ —_— N ——————
M 8 M 0 Md-L1:d/2]
Lt M[d/2-1:0]
Pre_Add M /\(\ it N[d-1:d/2]
s N[d/2-1:0]
““““ T Ma [MatM] M F--[ Nu [NetNe[ N f-----
N %( PE array that
lat
Multiplication PEA PEA dg:::ea(gfz)
polymul
————————————— By Bo --{ Y Yo l--[ay | agJ----------
. . Pos P[d/2-1:0]
P.: P[d-1:d/2]
Post_Add * iy s P, P[3d/2-1:d]
+ + Py: P[2d-1:3d/2]
““““““ { P | P, | P ] Pp  f--------

Fig. 1. Karatsuba multipliers array executing degree-d polynomial multipli-
cation: P = M X N.

III. KARATSUBA-BASED POLYNOMIAL MULTIPLICATION

LWRpro optimizes the hierarchical Karatsuba framework
proposed in [27] to enable degree-256 polynomial multipli-
cation in 81 cycles without considering pipeline startup time.
Moreover, a hardware-efficient Karatsuba scheduling strategy,
incorporating compact pre-processing circuits and several nec-
essary modules, are developed to achieve high-performance
computations with substantial overhead reduction.

A. Hierarchical Karatsuba Framework

Various types of Karatsuba systolic multipliers were exten-
sively used in the implementations of ECC and RSA [23]-[26].
Fig. 1 shows a fully parallel Karatsuba array corresponding
to 1-level Karatsuba algorithm, following the optimization
method proposed in [11]. The architecture is able to execute
degree-d polynomial multiplication each time, which consists
of three relatively small processing element arrays (PEAs) ex-
ecuting degree-d/2 polynomial multiplication simultaneously.
The Karatsuba algorithm consists of three phases: Pre-Add,
multiplication and Post-Add. Pre-Add and Post-Add denote
all addition or subtraction operations performed before and
after multiplication in Karatsuba algorithm, respectively. One
level split of Karatsuba algorithm is able to reduce four
multiplication operations to three, achieving a 25% reduction.
This structure can be adopted recursively to save more multi-
plication operations.

However, these architectures are not perfectly suitable for
problem of polynomial multiplication in Saber, because the
calculation scale of polynomial multiplication in Saber is
much larger than that of ECC or RSA. Applying Karatsuba
algorithm in multiple dimensions is an efficient method to
reuse a relatively small Karatsuba multipliers array. A hier-
archical Karatsuba framework is used in [27] to accelerate
the large-number multiplication, including the kernel hard-
ware and the scheduling strategy. Fig. 2 depicts a fully-
unfolded hierarchical Karatsuba framework, which illustrates
an example of executing degree-2d polynomial multiplication
(M x N) using a kernel hardware and one level of scheduling
strategy. It is assumed that each coefficient is w-bit width.
The kernel hardware was a Karatsuba multiplier array similar
to Fig. 1, which is able to execute degree-d polynomial



Execution flow:
1, RM<—ML+MH;
RN(_ NL+NH;

2, P—M_XN;
dy«—Py; do—PL.

Kernel
P f2d*w

3, P—My X Ng;
| e1<—Pu; 9Py,

]
Des Delo ‘ Df} Dfp ‘ Ddli Ddo |

4, P—RuXRy;
fi«—Pu; foe—PL

5, Iz<—ey;
ry—fi1+ep-e1-dy;
r1«fo+d;-eo-do;
Fo«—do;

v
Drs |

(P: degree-2d intermediate result polynomial from the kernel; P = P +Py X 2%

I=ro+r2R04+1,5Q%04 15503, E: register group storing d coefficients;
w: coefficient bit width.)

Fig. 2. Hierarchical Karatsuba hardware circuits calculating » = M x N.

multiplication at one call. The scheduling structure included
pre-processing and post-processing circuits, before and after
the kernel, corresponding to the Pre-Add and Post-Add phases
in the scheduling layer, respectively. The scheduling strategy
is a specific algorithm that follows a finite-state machine to
schedule the kernel hardware as the pseudo codes in Fig. 2.
The selection signals of multiplexers and update enable signals
of registers are controlled by this finite-state machine. And
the inverters to support subtraction operations are omitted in
Fig. 2, which is the same as Fig. 4 and Fig. 5. The final
multiplication results are stored in register groups rs, 72,71
and ry and each can store d/2 coefficients. The pseudo codes
in this figure obeys to one level of Karatsuba algorithm and the
scheduling strategy can be extended to obey to the Karatsuba
algorithm with multiple levels.

The work in [27] utilized a 2-level hierarchical Karatsuba
framework similar to a fully-unfolded structure. Similarly, this
work did not consider the module reusage of adders and
registers in the input side. Differently, there is one layer of
registers reusage implemented in the output.

Hierarchical Karatsuba calculating framework is divided
into two layers: kernel layer and scheduling layer. How to
balance the weights of two layers is an important topic for
the implementation of Saber. Although Karatsuba algorithms
in two layers can both reduce the number of multiplication
operations to the same degree, kernel layer arranges multi-
plication operations in a spatial parallel way and scheduling
layer arranges multiplication operations in a time sequential
way. When more levels of Karatsuba algorithm are arranged
in kernel layer, the number of multipliers increases. Corre-
spondingly the latency decreases with the area and required
bandwidth increase.

The main computational task in Saber is degree-256 poly-
nomial multiplications. The design of kernel hardware in
LWRpro is shown in Fig. 3, which is a 4-level recursive
version of Fig. 1. Three phases of calculation are separated
by 2 rows of registers: Rx o/Rip and Rxc. Kernel Pre-Add
and Kernel Post-Add circuits are strings of adders to form
the 4-level recursive adoption of the corresponding circuits in
Fig. 1. Kernel layer, consisting of 81 multipliers and additional
adders, is able to process degree-16 polynomial multiplication
at one call. Scheduling layer in LWRpro needs to transform
from the original task in Saber, namely degree-256 polyno-
mial multiplications, to the processing ability of the kernel
hardware, namely degree-16 polynomial multiplications, in
Karatsuba way. The algorithm of the whole hierarchical Karat-
suba framework is illustrated in Algo. 4. The 16-coefficient
vector input is transformed into Karatsuba input through pre-
processing circuits, in the meantime pre-processing registers
are updated. Kernel hardware processes the multiplication of
Karatsuba input and degree-64 sub-polynomial multiplication
results are mapped onto 128-coefficient intermediate registers
t through one part of the post-processing circuits. Then each
intermediate register is mapped on final results one by one
through another part of post-processing circuits. The design
details of pre-processing and post-processing structures in
scheduling layer are demonstrated in the next two subsections.

Algorithm 4 Hierarchical Karatsuba framework for degree-
256 polynomial multiplication in LWRpro

Input: A, B:degree-256 polynomial.
Output: Res = A x B mod 22°6 + 1.
for (i=1;i<81;i++) do
> Pre-process:
(PreRegA, ;") < Preprocess(PreRegA, InAi);
(PreRegB,ﬁi’) < Preprocess(PreRegB, InBi);
> Kernel calculation:
(P,Pr) < Kernel_degreel6mul(a;’,b;’);
> Post-process:
(t7, te,..., tg) <+ Map21evel(PH,PL);
if a degree-64 sub-polymul has done and j < 7 then
i=0;
Res «<— Res + Map2level_serial(t;);
i=j+ 1
end if
end for
return Res

In hierarchical framework, 4 levels of Karatsuba algorithm
are arranged in kernel layer and another 4 levels are arranged
in scheduling layer to achieve a better trade-off between
latency and area. The overall 8 levels of Karatsuba algorithm
are able to convert the degree-256 polynomial multiplication
to the coefficient-wise multiplication. Each level of Karatsuba
algorithm reduce 25% of multiplications and 8 levels in LWR-
pro saves up to 90% of multiplication operations, reducing
the coefficient-wise multiplication number in a degree-256
polynomial multiplication from 65536 to 6521. When more
levels of Karatsuba algorithms are involved in the kernel hard-
ware, 243 or more multipliers are needed, which is beyond the
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Fig. 3. Kernel hardware of LWRpro based on 4-level Karatsuba algo-
rithm. a;/b;: i-th coefficients in the sub-polynomial. Pr;/Pr: degree-16 sub-
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Registers for operand A, B or multiplication results.

reasonable area and correspondingly the bandwidth of memory
is too large. When more levels of Karatsuba algorithms are
involved in scheduling layer, more complex pre-processing
and post-processing structures are needed and the latency is
higher than the current design. This is the reason why such
a trade off is chosen in LWRpro. Compared with the design
only equipped with the kernel hardware, 4 levels in scheduling
layer reduces the cycle count from 256 to 81 to calculate a
degree-256 polynomial multiplication in LWRpro, achieving a
3.16x speed-up.

The structure of Karatsuba multipliers are relatively mature,
so the overheads of the kernel hardware are relatively fixed.
However, there is much space to discuss the structure and the
cost of scheduling layer. For the convenience of comparison,
the costs of fully-unfolded structure are assessed and the costs
of partial-reusage structure in [27] are estimated naturally
through deleting the corresponding layer of registers in output
side. And it is assumed that there is p-level Karatsuba algo-
rithm in scheduling layer and the kernel hardware is able to
process degree-d polynomial multiplication at one call. In the
input side, there are 3P d-coefficient intermediate terms gen-
erated from p-level Karatsuba algorithm of scheduling layer
and 2” terms are already in input memory for each polynomial.
Besides, each register is equipped with a separate adder. So the
area of pre-processing registers (INreg) is estimated through
the number of 1-coefficient registers and the area of pre-
processing adders (INadd) is estimated through the number
of 1-coefficient input-width adders:

INreg x 2 x (37 —2P) x d; (2)
INadd x 2 x (37 — 2P) x d. 3)

1, PM_XN;
P 14 PL fo—Py; r—Py-Py;
n r2<—-PH;
2, P—My X Ny;
r3<—PH; r2<—r2-(PH-P|_);
R R rie—ri-Py
vy < 3, PRy XRy;
, mMXRy;
|>|'3 |* |>r2 | |>r1 | Yro |

lye—Ir2+Py; rier+P

(P: degree-2d result polynomial from the kernel, P =P +PyX 2d)

Fig. 4. Post-processing in scheduling layer with 1-level SHEKS.

In the output side of 1-level scheduling structure as (shown
in Fig. 2, p = 1), there are 3 sets of registers and each set
consists of 2P d-coefficient registers. There are 5 x 2P~! x d
1-coefficient input-width adders to generate the final results.
When the scale of computational task increases and one more
level of Karatsuba algorithm is added in scheduling layer,
triple more sets of registers and half of register groups in each
set are needed in the new level. It is the same for the adders.
According to the same estimation method, the numbers of
post-processing registers (OUTreg) and post-processing adders
(OUTadd) are estimated as:

p
OUTreg oc Y 3% x 277 x d; 4)
i=1
p . .
OUTadd <y 5 x 37" x 277" x d. ©)
i=1

When p >2, for example p = 4 in this paper, the overheads of
scheduling layer becomes much larger. So more efficient pre-
processing and post-processing structures are necessary, which
are presented in Section III-B and Section III-C.

B. Sequential Hardware-Efficient Karatsuba Scheduling

In the hierarchical Karatsuba framework, post-processing
structure is used to temporarily store the multiplication results
to support Post-Add stage in the scheduling layer. Sequential
hardware-efficient Karatsuba scheduling (SHEKS) strategy is
proposed to optimize this overhead.

The main goal of SHEKS is to allow each multiplication in
the Karatsuba algorithm to completely affects the final results
without additional registers. In Fig. 2, the final values in rq, ro
are influenced by all three multiplications. This is due to the
effect of Post-Add stage of Karatsuba algorithm in scheduling
layer. If all the addresses in the results of each multiplication
are already preassigned and allow each multiplication result
to spread to all affected locations, then additional registers are
no longer needed. The SHEKS version of Fig. 2 is shown in
Fig. 4. The results of each multiplication pass through different
paths and influence the corresponding result registers.

Compared with Fig. 2, Fig. 4 saves all six 16-coefficient
register groups, d e f, and two adder groups with a width of
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Fig. 5. The output side of scheduling layer in LWRpro with 4-level Karatsuba
algorithm.

16-coefficient. The additional overhead is some multiplexers.
The idea of SHEKS can be extended to more levels of
Karatsuba algorithm in scheduling layer and the overheads can
be estimated. All result register groups except for the leftmost
and rightmost ones need a corresponding accumulation adder
group. Besides, 2 adder groups computing intermediate values,
Py-Pr, and Py+ Py, are needed when p > 2. So the overheads
are:

OUTreg x 0; (6)

OUTadd x 2P*! x d. (7)

For the implementation of Saber, p=4 and the number of
adders in a direct application of SHEKS is a little higher.
Moreover, a subtraction polynomial operation on the final
results is needed because there is a modular polynomial
"™ + 1, more adders are needed. So a new layer of registers
is inserted in LWRpro to temporarily store the degree-64
sub-polynomial multiplication results and the values are then
mapped to the final memory one by one. Table I lists the
mapping rules of the SHEKS structure with 2-level Karatsuba
algorithm to calculate degree-64 polynomial multiplication,
namely Map2level function in Algo. 4. And the structure is
shown in Fig. 5.

When one degree-64 polynomial multiplication is executed,
the temporary results are stored in the register group array t.
During this period of time, the values of one register group
are mapped to final memory in each cycle following the
SHEKS rules, too. Differently, the mapping mechanism is
serial, which is different from the parallel way in Fig. 4. And
the mapping rules vary among different degree-64 polynomials
in a degree-256 polynomial following a serial version of
Table I, namely Map2level_serial function in Algo. 4. The
mapping time of 8 cycles is completely hidden by the degree-
64 multiplication time of 9 cycles. Moreover, The polynomial
subtraction operation of the final results are added to the
mapping rule and it is executed during the mapping operation.

To fulfill pipelining and eliminate the bubbles for waiting,
2 additional register groups are needed, which is not shown
in Fig. 5. It has been considered in the overhead estimation
in the end of Section III-C. The post-processing timetable and

4-level pre-process:

Array’ —Conv128_16(ay,..,07);
WR«—Conv256_128(ay,..,a7);//27 cycles
Array’ «Conv128_16(as,..,015);
WR—Conv256_128(as,..,015,RD);//27 cycles
Array’ «—Conv128_16(agtas,.. a7t as)://27
cycles

3-level pre-process:

Array'«—Conv64_16(Conv128_64((a,..,u3));

119 cycles

Array'«—Conv64_16(Conv128_64((ag,..,03,..,07));
119 cycles

Conv64_16 Arra,'—Conve4_16(Conv128_64((w,..,07));

119 cycles

|
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Fig. 6. Optimized pre-processing design of Saber with 4-level Karatsuba
algorithm.

mapping timetable are determined based upon the rules as
discussed above and the input order discussed in Section III-C.

C. Compact Input Pre-Processing

A compact input pre-processing technique is utilized in
LWRpro to reduce the number of registers and adders re-
quired in pre-processing of scheduling layer. Registers in pre-
processing circuits are needed to store two types of data:
the input from input memory and the intermediate results
generated from the pre-processing. The optimization made
in this paper is to reuse the registers and adders. Based on
our observations, storing some inputs is enough to reduce
the memory accesses and eliminate additional latency of
the reading operations. Moreover, the execution order of the
multiplications is reorganized to maximize the reusability of
data stored in the input registers. We take 2-level Karatsuba
algorithm in the scheduling layer as an example, and the
compact pre-processing structure is shown as Conv64_16 in
Fig. 6, which is part of the whole pre-processing circuits of
our design. This module converts the input from a degree-64
polynomial to nine degree-16 polynomials in Karatsuba way.

The pre-processing for the two polynomial multiplication
operands is identical. For simplicity, only the pre-processing
of operand A is discussed in this section, as it is also
applicable to the other operand B. Table II provides the
operation details of Fig. 6 in cycles, where a; is the i-th
degree-16 polynomial in A and A = Y% a; x ', Nine
cycles are needed to calculate a degree-64 sub-polynomial
multiplication. Pre-processing register groups Ry and R; are
used to cache some inputs or outputs to support future addition
operations calculating Karatsuba intermediate values. These
registers eliminate the additional bubble cycles of waiting for
reading the second operand values of addition operation and
store some intermediate values. The input order from input
memory is re-organized to maximize the reusability. Only 1
adder group and 2 register groups with 16 1-coefficient width
are needed in module Conv64_16. Compared with the fully-
unfolded structure, 4 adder groups and 3 register groups are
saved, while extra multiplexers are required.

For the implementation of Saber, the task of the pre-
processing structure is to convert the multiplication operations
with degree-256 polynomials to the operations with degree-16



TABLE I
POST-PROCESSING MAPPING TABLE OF 2-LEVEL KARATSUBA ALGORITHM.

to ty t2 t3 lg ts te t7
aoxﬁo +PL +PH-PL -PH-PL -PH+PL +PH
(ap+a) x (Bo+531) +Pr, +Py -Pr, -Py
a1 Xﬂl -PL -PH+PL +PH+PL +PH-PL -PH
OégXﬂQ 'PL 'PH+PL +PH+PL +PH‘PL ‘PH
(ap+a3) X (B2+33) -Pr, -Py +Pr +Py
OégXﬂg +PL +PH'PL 'PH'PL 'PH+PL +PH
(ap+az) X (Bo+52) +Pr +Py-Pr, -Py
(ap+ar+ag+as)x (Bo+PB1+P2+03) +Pr +Py
(a1+a3)x(B1+53) -Pr, -Py+Py, +Py

aj, B; denote the i-th degree-16 sub-polynomial in a degree-256 polynomial of operand A and B, respectively.

TABLE II
THE PRE-PROCESSING CYCLES TIMETABLE OF CONV64_16 IN FIG. 6.
dim, i1 9 out Ry R,
1 (7)) (7)) 0 (7)) X X
2 (65} (65) 0 (65} (67} X
3 (071 o Qg aota [e7s) X
4 (65 (65 0 (65 (7)) X
5 (6%} Qo [e7s) [T R xe%) (e 75} X
6 (e %} e %} 0 Qs Qo agtan
7 (6%} (6%} (6% a3+0 (e %) aotag
8 | o oy a3 a3+ a3 aptan
9 X apt+ag a1t+ag Gotar+ a1t+ag | apgtan
Qo+Q3

a; denotes the i-th degree-16 sub-polynomial in a degree-256

polynomial of operand A and B, respectively.

polynomials that the kernel hardware is able to process. The
corresponding pre-processing circuit is shown in Fig. 6 and
how the 4-level pre-processing is constructed is depicted in
the pseudo-algorithm of this figure.

It requires 81 cycles with several additional pipeline ini-
tialization cycles to 4-level pre-processing. The first 27 cycles
are needed to calculate the former degree-128 sub-polynomial
multiplication, the second 27 cycles are needed to calculate
the latter degree-128 sub-polynomial multiplication, the last
27 cycles are needed to calculate the sum polynomial of the
former and the latter degree-128 sub-polynomial multiplica-
tion. In Fig. 6, Part Conv256_128 executes the corresponding
polynomial addition operations. During the first 27 cycles, the
corresponding read values are written into an additional input
memory. During the second 27 cycles, the polynomial sum
operation is executed and the sum results are written back
to the additional input memory to support sum polynomial
multiplication during last 27 cycles. The second 27 cycles
and last 27 cycles’ timetables are the same as the first 27
cycles’ timetable except for RD and WR values. Among each
27 cycles, the first 9 cycles are needed to calculate the former
degree-64 sub-polynomial multiplication as the same order
of Table II, the second 9 cycles are needed to calculate
the sum polynomial multiplication, and the last 9 cycles
are needed to calculate the latter degree-64 sub-polynomial
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Fig. 7. Resource usage comparison

multiplication. In Fig. 6, Part Conv128_64 executes the cor-
responding conversion job from a degree-128 polynomial to
three degree-64 polynomials in Karatsuba way. Table III show
a timetable example of Part Conv128_64 for pre-processing
to obtain sum sub-polynomial during first 27 cycles with the
help of Ry and Regout. The output is organized in the order
required by Part Conv64_16. The complete 27-cycle timetable
is easy to obtain because first 9 cycles and last 9 cycles’ pre-
processing are simpler without sum operation of degree-64
polynomials. Register Ry stores some values to support the
polynomial addition operation. Register Regout not only plays
the role of pipeline register, but also helps to latch values for
the next cycle. Part Conv64_16 converts from the degree-64
polynomial into degree-16 polynomials in Karatsuba way, as
described above.

To sum up, as shown in Fig. 7, compared with the
straightforward implementation without reusage and partial-
reusage method in [27], this proposed architecture has more
compact pre-processing and post-processing architectures in
terms of registers and adders utilization. This improvement is
achieved via utilizing two proposed techniques: SHEKS and
compact input structure. The area consumption is evaluated by
the number of 1-coefficient registers and 1-coefficient input-
width adders. The overheads of straightforward fully-unfolded
method are calculated by Eq. 2, Eq. 3, Eq. 4 and Eq. 5.
The overhead of [27] is estimated through deleting one layer
of post-processing registers. Fig. 5 and Fig. 6 depict the
overheads of LWRpro. Besides, the additional input memory



TABLE III
INPUT STREAM TIMETABLE OF PRE-PROCESSING STRUCTURE.

Cycle | in | Ry | i3 | 14 dim, Regout out WR | RD
9 (071 (o %)) (o 7)) (071 oty - - (e 7]
10 a7 (e 70} 0 0 0 agt+oy -

11 (073 a1 a1 (673 a1+ Qpt+Qy - (673
12 Qa9 o 0 0 0 a1+ aotoy

13 Qg (6%) (6% Qg Qo+ a1+as a1+ (075
14 Qa3 Qa9 0 0 0 Qo+ Qo+t togytos

15 ay | ag | ag | a7 | ag+ar | astag Qg ay
16 a7 Qa3 0 0 0 (%% 0%4 Qptaotos+og

17 as | a1 | a1 | as | agtas | astar a7

18 - (073 0 0 0 a1ty az+ootogtar

19 oy | as 0 | ag oy ap+os a3+ Fartoy

20 - (073 (673 0 (0% a4 ot tastaztoy+ast+agt+ay

and 2 group of output pipeline registers are also considered.
Fig. 7 shows the overhead comparisons of pre-processing
registers, pre-processing adders, post-processing registers and
post-processing adders. Up to 90.5% of the registers are no
longer required with the adoption of the proposed meth-
ods, while 96.0% of the reductions are achieved regarding
the adders, which is benefited from the higher reusgae and
parallelism. Most of the costs in the scheduling layer are
compressed and these techniques improve the usability of the
hierarchical calculating framework of Karatsuba algorithm.

IV. HARDWARE ARCHITECTURE
A. System Architecture and Configurable Design

Fig. 8 shows the system architecture of LWRpro. Memory
KEMkey and KEMcipher marked in green stores key-related
data and ciphertext-related data as input and output of SHA-
3 functions to support KEM scheme, respectively. Memory
KEMkey and KEMcipher are organized as two single-port
RAMs and there is a wrapper on these two RAMs for unified
address space. Plaintext, ciphertext and key data pass through
between memory KEMkey/KEMcipher and the PKE mod-
ule. Data are organized in memory KEMkey/KEMcipher for
Keccak module marked in blue to execute SHA-3 functions.
During decapsulation, ciphertext are imported into KEMcipher
and compared in verify module marked in purple with another
ciphertext from re-encryption operation in PKE module. The
comparison operation is parallel with PKE executions, which
hides the latency overheads. The verification results only affect
the input address of memory KEMkey/KEMcipher for the
following SHA-3 operations. In PKE part, public matrix is
generated from Keccak module and imported into memory
marked in green after alignment. Secret vector is generated
from sampler marked in orange and imported into input
memory. Polynomial multiplications are executed in multipli-
cation part marked in yellow and the results are exported to
output memory marked in green. Before output, the results
needs addition operations in adder array and bits truncation
operations in Trunc part.

PreA and PreB represent the input pre-processing cir-
cuits of operand A and operand B in scheduling layer,

and Post denotes the post-processing components. MEMpk
and MEMsk denote memory storing data of public key and
data of secret key, respectively. MEMtmp denotes memory
storing the intermediate results and final results of polynomial
multiplication. MEMsk and MEMtmp are divided into four
banks to store four polynomials of the secret key and the
intermediate values for all three versions of Saber. MEMpk
is divided into two banks to serve as an input ping-pong
buffer to enable pipelining. All PKE memories are organized
as register files and memories are double-port to support write
and read simultaneously. The align part is used to handle the
data alignment. According to the specification for Saber, the
binomial sampler is implemented in a straightforward manner.
High-speed Keccak module comprises two Keccak-f parallel
hardware and supports two Keccak-f[1600] computations per
cycle. Each copy of Keccak-f hardware is implemented in a
straightforward way [29]. Therefore each round of Keccak is
executed every 12 clock cycles.

The multiplier array is reused to support both vector-vector
and matrix-vector multiplication. The Keccak module is shared
to generate both public and secret key pairs. The adder array
following MEMtmp in Fig. 8 is shared by encryption and
decryption. It consists of four adders to facilitate addition
operations for all three versions of Saber, which processes four
terms of the polynomial at each output. The array is shown in
the upper right corner of Fig. 8.

To achieve a configurable design among all the security
levels and stages of Saber, some configurable design ideas are
adopted. Some modules can be reused, such as multiplication
hardware and Keccak hardware, but parameter choices need
to be redundant for all variants of Saber, such as bank number
of MEMsk and sk-input width of multipliers. The adder array
before truncation, which is illustrated in the upper right corner
of Fig. 8, also adopts the configurable design among different
stages and security levels with the help of multiplexers.
However, this idea does not work in some components. These
components, including data alignment modules and output
truncation modules, adopt the idea of multi-parameter design.
The data alignment modules are illustrated in the lower right
corner of Fig. 8. The four data aligning modules execute
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Fig. 8. The system architecture of LWRpro crypto-processor.

different types of data aligning jobs. For example, Align_208
module arranges a 1344-bit input and achieves a 208-bit
output. At each cycle, BitSelect chooses the corresponding bits
from InputReg and ReserveReg part to write to ReserveReg
and OutReg. The truncation modules adopt the same idea.
Multiple truncation modules execute different truncation jobs
of output with different bit numbers and packing jobs.

B. Task-rescheduling-based Pipeline Design

The computational operations involved in Saber are finely
scheduled to enable high-performance processing from the
hardware designer’s perspective. Moreover, some pipeline
tricks are added to reduce the time overheads of data importing
before polynomial multiplication and data exporting after
polynomial multiplication as much as possible.

In hardware implementation, the Keccak is utilized to
generate polynomials of the public key and the secret key.
To ensure that the Keccak is able to focus on one job over a
period of time, the execution order in the software [3] should
be reconsidered. Saber768 is taken as an example, and Fig. 9
shows the circuit design and execution flow of LWRpro. The
number after MEM in Fig. 9 denotes the bank index of the
MEM. MEMtmp is also divided in another way according
to memory address into 4 pieces: MEMtmpl, MEMtmp2,
MEMtmp3 and MEMtmp4, which are abbreviated as Tmpl,
Tmp2, Tmp3 and Tmp4.

For matrix-vector multiplication in Saber, all polynomials
of the secret key, such as Bj, By and Bj, are generated
in advance. Polynomials of public key, such as A;, Ay and
As, are generated in pipeline and the generation is parallel
with the multiplication hardware to reduce the whole latency
overheads and memory size storing public polynomials. The
multiplication operations Ay X By, Ay X By and A3 X Bs ...
are carried out once the corresponding public polynomials are

ready. For vector-vector multiplication, the polynomials of the
public key and the secret key are generated in parallel. This is
because public polynomials are imported from the interface.

Martix-vector and vector-vector polynomial multiplications
are both involved in encryption stage. Vector-vector multi-
plication is scheduled before matrix-vector multiplication in
LWRpro to avoid the additional timing overhead of loading
the vector of the secret key.

While one polynomial of the public key is used in polyno-
mial multiplication, the next polynomial is imported to another
bank of MEMpk. This reduces the data importing time of
multiple polynomials and the multiplication hardware keeps
running once activated as shown at the bottom of Fig. 9.
The same holds for the reduction in data exporting time,
because MEMtmp has more than one bank. For matrix-vector
polynomial multiplication during encryption, the first piece
Tmpl and the second piece Tmp2 serves as an output ping-
pong buffer, which allows data exporting from MEMtmp is
able to execute in parallel with the multiplication.

As shown at the right corner of Fig. 9, the multiplication
Ay x Bj during vector-vector polynomial multiplication is
started as long as parts of the operands A; and B; have been
loaded into the MEM. By implementing this trick, 40 cycles
are reduced in the vector-vector multiplication process, which
improves the efficiency of decryption. For key generation,
public matrix is generated in column-major order and it is
inconsistent with the matrix-vector multiplication order. So
all four result polynomials of FireSaber need to be stored in
MEMtmp temporarily during matrix-vector multiplication in
key generation.

To sum up, MEMpk and MEMtmp are used as ping-
pong buffers in the task-level pipeline. Besides, the multi-
bank design also plays other roles. Four banks of MEMtmp
are needed to store multiple result polynomials during key
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Fig. 9. Task-rescheduling pipeline hardware and execution flow of Saber768.

generation. Hardware reusage can reduce the overheads of
task-level pipeline.

C. Truncated Multiplier

The work in [5] utilized addition operations and look-up
table to perform multiplication operations for Saber. However,
this method is only suitable for the schoolbook multiplication.
For Karatsuba multiplications, truncated multipliers for Saber
are adopted in LWRpro utilizing the properties of binomial
sampling and LWR algorithms.

For a random number sequence generated by the Keccak
module, the binomial sampler divides the input sequence into
subsequences with consecutive p bits. The Hamming weights
of the higher half and lower half of the i-th subsequence are
calculated and stored alternatively into registers denoted as a;
and b;. Then, secret key s; is obtained by:

s; = (a; — b;) mod q. (®)

For Saber768, ;1 = 8 means that a; and b; have a value range
of [0,4]; in other words, the difference of these two operands
has a value range of [—4,4]. For previous software imple-
mentations, s; is extended to 13 bits through sign extensions.
However, not all 13 bits are needed to calculate the final result.
Let s;/ = a; — b; without modular operation; if s;' > 0, then
si' = s;;if 8/ < 0, then s; xr mod ¢ = (s;/+¢) xr mod ¢ =
(si’ x r) mod ¢, where r denotes an arbitrary integer. Thus,
multiplications with 13-bit unsigned s; can be replaced by
signed operations with 4-bit signed s;’. It is noticed that only
4 bits out of all 13 bits are useful in the calculation, which
means that the width of one operand for the multiplier can
be reduced to 4 bits. The storage and transmission of private
keys are also benefited from the reduction in effective bits.
Instead of the modular operation of LWE, the round op-
eration of LWR allows us to trim unnecessary operations.

13-bit*:13-bit x 13-bit with 26-bit output
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Fig. 10. Area consumption comparisons among different input bit-widths.

Considering that the parameter g of Saber is 8192, i.e., only
the lowest 13 bits in the result are kept, all multiplication
operations unrelated to generating the lowest 13 bits in the
result can be avoided. The adoption of truncated multipliers
does not affect the correctness of results and still conforms to
the specification of Saber. Fig. 10 shows the area of multipliers
whose widths of the secret key-related operand vary. All data
are collected under TSMC 40nm process, which is the same as
the process of LWRpro. 13-bit* denotes the full-size multiplier
with all 26-bit output. As Fig. 10 shows, truncated multipliers
only occupy 25% - 50% area of the full-size multiplier.

However, the effectiveness of this technique is limited by the
Pre-Add phase in the kernel hardware and the scheduling layer.
Because the addition operations in the Pre-Add phase expand
the number of effective bits of the operand. This limitation is
acceptable because at least 90% multiplication operations are
saved through 8-level Karatsuba algorithm.



TABLE IV
PERFORMANCE COMPARISONS ON FPGA.

Frequency Latency .
- Platform (MHz) Enc(Polymul)¥/ Dec(Polymul)? LUTs / Flip-flops DSPs / BRAMs
Saber768 [4] UltraScale+ 322 49°/48° 12566/11619 256/3.5
Saber768 [19]° Artix-7 66.7 3550/5472 234171/40824 -/-
Saber768 [6] Artix-7 125 4147/3844 7400/7331 28/2
Saber768 [5] UltraScale+ 250 26.5(3592)/32.1(4484) 23.6k/9.8k -2
LightSaber 26.9/33.6
Saber768 [5] UltraScale+ 150 44.1(3592)/53.6(4484) 24950/10720 -2
FireSaber 68.4/82.0
Saber768(our) UltraScale+ 160 7.2d(978)/2.6d( 1227) 28169/9504 85/6
LightSaber 5.29(492)/6.7%660°%)
Saber768(our) | UltraScale+ 100 11.6%978)/4.14(1227°) 34886/9858 85/6
FireSaber 21.0%1626)/4.9%(1956%)
2 Time of encryption/encapsulation and decryption/decapsulation are listed in us. Latency of polynomial
multiplication involved in two stages are listed in cycle counts.
b Only the latency of hardware components is listed.
¢ Only the costs of multiplication hardware and data RAM implemented on FPGA are listed.
dLatency of encryption and decryption are listed.
¢ The number denotes the polynomial multiplication clock cycles sum during the encryption and decryption.
V. IMPLEMENTATION AND COMPARISON TABLE V
CYCLE COUNTS OF PKE STAGES IN LIGHTSABER, SABER768 AND
A. FPGA Implementation FIRESABER.
The proposed LWRpro crypto-processor of PKE version is Keygen | Encryption | Decryption
firstly implemented on Xilinx Virtex UltraScale+ FPGA, with Light
its operating frequency of 100 MHz. Cycle counts of Saber Saber 519 664 326
PKE scheme on FPGA are listed in Table V. Saber
In terms of resource consumption, 85 DSPs, 34886 LUTs, 768 943 1156 408
9858 Flip-Flops and 6 36-kb-BRAMs are utilized. Among Lich
- : 153 1811 490
them, the components calculating the degree-256 polynomial Saber

multiplication only includes 85 DSPs, 13735 LUTs and 4486
Flip-Flops. When only Saber768 is implemented, the operating
frequency is improved to 160 MHz. LUTs and Flip-flops
utilizations are reduced to 28169 and 9504. Among 85 DSPs,
81 DSPs are utilized for multipliers and another 4 DSPs are
utilized for adders corresponding to 4 banks of MEM storing
final results in Fig. 5. Among 6 BRAMs, 3 BRAMs are
arranged for M E M pk, and another 3 BRAMs for M EMpk,
because of the high word widths.

It is noted that FPGA version of LWRpro only supports
PKE scheme of Saber. The speed comparison is only able
to show the approximate range. And only LWRpro and [5]
supports all three versions and other FPGA implementation
works only support Saber768. The comparisons of the resource
consumption are listed in Table I'V.

The task of polynomial multiplication during encapsulation
of Saber equals to that during encryption, and polynomial
multiplications during decapsulation equals to the sum of
those during encryption and decryption. When cycle counts
are chosen as comparison object, LWRpro achieves 3.67x
and 3.65x reductions in cycles of polynomial multiplications
during encapsulation and decapsulation, respectively. When
encryption performance of [5] is calculated through encapsu-
lation latency subtracting SHA-3 latency, LWRpro on FPGA
is 3.4x faster than unified Saber version [5] at the encryption
stage of Saber768, while 1.39x LUTs, 0.92x Flip-Flops and 3x

BRAMS are needed in our design. In terms of area efficiency,
2.4x (LUTs), 3.7x (Flip-Flops) and 1.1x (BRAMs) higher area
efficiencies are achieved. However, LWRpro utilizes 85 DSPs,
while [5] did not. The works [4], [6] are software-hardware co-
design implementations and only the hardware part is included
in the comparisons. Compared with the results presented in [4],
LWRpro of Saber768 version consumes around 20% of the
latency when ignoring the effect of additional SHA-3 opera-
tions compared with PKE scheme. However, the utilization of
LUTs and BRAMs are more than those of [4], [5]. This occurs
because LWRpro is mainly designed for the ASIC and there
is still room for optimization on FPGA resource consumption.
Compared with the results in [6] and [19], hundreds of times
speed-ups are achieved in LWRpro.

B. Post-layout ASIC Implementation

The post-layout implementation of LWRpro is achieved
based on TSMC 40nm CLN40G process in the worst process
corner. The processor occupies 0.38 mm? after placing and
routing. The area breakdown is shown in Fig. 11(a) and the
power breakdown of Saber768 is shown in Fig. 11(b). Pre-
processing and post-processing structures consume 18.5% of
area, which supports 3.16x speed-up for degree-256 poly-



TABLE VI
PERFORMANCE OF KEM STAGES IN LIGHTSABER, SABER768 AND
FIRESABER.
Keygen Encapsulation | Decapsulation
Cyc- | Power | Cyc- | Power | Cyc- | Power
les (mW) les (mW) les (mW)
Light 1603 | 357 | 859 | 372 | 1075 | 338
Saber
Saber | 066 | 392 | 1456 | 413 | 1701 | 353
768
Fire | 1716 | 448 | 2185 | 440 | 2478 | 421
Saber
Pre and Post gtzgeo;j SST&I/?,r Keccak Pre and ?_;hers Sampler Keccak
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Fig. 11. Area breakdown(a) and power breakdown during encryption of
Saber768(b).

nomial multiplication. The number of equivalent gates of
LWRpro is 446.8k, which includes the hardware components
executing logic operations and memory. The maximum op-
erating frequency is up to 400 MHz with an average power
consumption of 39 mW. Power is simulated through PTPx
based on real netlist simulation waveforms. The detailed
implementation results are listed in Table VI.

In Fig. 12, the results are compared with the works im-
plemented on a mainstream desktop Intel CPU with the
optimization of AVX2 and an embedding CPU. It is observed
that LWRpro is 11 - 14x faster than the implementation on
Intel Core i7 in [1]. Moreover, LWRpro is approximately 2100
- 2500 faster than the work on Cortex-M4 CPU in [3].

Table VII shows the comparison between LWRpro and the
state-of-the-art ASIC implementations of other PQC algo-
rithms. The results show that hardware implementation per-
forms better with respect to both speed and energy efficiency.
When encapsulation of LWRpro is compared with the state-
of-the-art results [7] of algorithms with less post-quantum bits,
FireSaber outperforms Newhope1024 and Kyber1024, by 51 x
and 50x speed, 29x and 33 x in energy efficiency and 112x
and 109x higher gates efficiency in LWRpro. For equivalent
gates, the work [7] consumes 979kGE logic gates and 12
kB SRAM, while LWRpro only consumes 446.8kGE. 45.6%
equivalent gates are needed in LWRpro when area of SRAM
in [7] is not in the scope of comparison. LWRpro’s encapsu-
lation is compared with encryption of algorithms [28], such
as FireSaber vs. Newhopel024 and Saber768 vs. Kyber768.
LWRpro achieves 271x, 360x speed and 50x, 69x energy
efficiency improvement with a reasonable area cost. Besides,
the average power of LWRpro is similar as [7] considering
the process factor and 4x larger than [28]. This is accept-
able because the energy consumption of one encapsulation
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Fig. 12. Comparisons with other software implementations of Saber768.

operation is still at least one order of magnitude less than
that in other works. The energy efficiency of encapsulation
in LWRpro’s Saber768 is around 9.0x greater than the NTT
hardware in [16], which is only one building block of other
encryption algorithms. Compared with pre-quantum elliptic
curve cryptography hardware [17], the implementation of
Saber768 in this paper is around three orders of magnitude
advantage faster than the signature operation and meanwhile
consumes only 1.0% energy without considering the process
technology.

C. Discussions

Although NTT is not suitable for the implementation of
Saber, LWRpro reveals that high performance and low energy
can be achieved in the hardware implementation of module-
LWR, which are even better than ring-LWE and module-
LWE. Some reasons are explored as follows. First, the 8-
level Karatsuba calculation framework saves more than 90%
of multiplication operations, which is closed to the level
of NTT. Second, the truncating properties of technique is
used in hardware implementation of Saber. The multiplier
is much smaller than the full-bit multiplier in the NTT
hardware. This means that, under a similar area consumption,
the design proposed can afford a larger-scale multiplication
array. Therefore, the area ratio of the multiplication module
in LWRpro is much higher. The high speed partly benefits
from the larger size of the multiplier array. Third, distinctions
of data-path in hardware implementations of module-LWR
caused by the chosen parameters are less significant, and it
is easy to configurable among different versions of Saber.
The same polynomial-multiplication component is reused to
save the area cost. Fourth, the pipeline technique is used to
improve the hardware implementation of multiple polynomial
multiplication operations.

VI. CONCLUSIONS

In this paper, an energy-efficient configurable module-LWR
crypto-processor, which supports multi-security-level of Saber,
is proposed. The optimized hierarchical Karatsuba framework
is also suitable for other LWR-based schemes, and the ex-
tension details needs future discussion. When the scale of



TABLE VII
COMPARISONS WITH THE HARDWARE IMPLEMENTATIONS OF OTHER ALGORITHMS.
Energy
Algorithm Function Process | Frequency Area Cycles | efficiency Post-Q.uant.um
(nm) (MHz) Security(bits)
(ul/op)
Newhope1024 [28] encryption 40 72 0.28 mm? | 106611 12 235
Kyber768 [28] encryption 40 72 0.28 mm? | 94440 10.31 161
Newhope1024 [7] encapsulation 28 300 979k GE* | 85871 7.02 235
Kyber1024 [7] encapsulation 28 300 979k GE* | 81569 7.94 218
NTT
- b 2 -
NTT-512 [16] +DG(Binomial) 40 300 2.05 mm 4196 1.346
NTT-1024 [20]¢ NTT 65 25 0.33 mm? - - -
NIST‘P2[5167_]E CDSA sign 65 20 2 mm? 180000 14.58 -
LWRpro LightSaber | encapsulation 40 400 0.38 mm? 859 0.080 115
LWRpro Saber768 encapsulation 40 400 0.38 mm? 1456 0.150 180
LWRpro FireSaber encapsulation 40 400 0.38 mm? 2185 0.240 245

4 The area also includes 12kB SRAM.

b The ring-LWE scheme is implemented in hardware but only cycles of NTT and data generation are shown.
¢ Only hardware of NTT is implemented and no additional components are included in area.

multiplier array is reduced, the optimized strategies can be ex-
tended to resource-constrained platforms, which needs a new
trade-off between area and latency. Considering performance
of hardware implementation is gaining more attention in third
round standardization process, unified design with support of
more algorithms is under developing. Besides, it is believed
that constant-time design is already achieved in LWRpro and
side-channel resistance is considered as the future work.
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