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Abstract

We give new, fully-quantitative and concrete bounds that justify the SIGMA and TLS 1.3 key
exchange protocols not just in principle, but in practice. By this we mean that, for standardized
elliptic curve group sizes, the overall protocol actually achieves the intended security level.

Prior work gave reductions of both protocols’ security to the underlying building blocks
that were loose (in the number of users and/or sessions), so loose that they gave no guarantees
for practical parameters. Adapting techniques by Cohn-Gordon et al. (Crypto 2019), we give
reductions for SIGMA and TLS 1.3 to the strong Diffie–Hellman problem which are tight.
Leveraging our tighter bounds, we meet the protocols’ targeted security levels when instantiated
with standardized curves and improve over prior bounds by up to over 90 bits of security across
a range of real-world parameters.
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1 Introduction
The Transport Layer Security (TLS) protocol [45] is responsible for securing billions of Internet
connections every day. Usage statistics for Google Chrome1 and Mozilla Firefox2 report that 76–
98% of all web page accesses are encrypted. At the heart of TLS is an authenticated key exchange
(AKE) protocol, the so-called handshake protocol, responsible for providing the parties (client and
server) with a shared, symmetric key that is fresh, private and authenticated. The ensuing record
layer secures data using this key. The AKE protocol of TLS is based on the SIGMA (“SIGn-and-
MAc”) design of Krawczyk [35] for the Internet Key Exchange (IKE) protocol [30] of IPsec [34],
which generically augments an unauthenticated, ephemeral Diffie–Hellman (DH) key exchange with
authenticating signatures and MACs.

Naturally, the SIGMA AKE protocol and its incarnation in TLS have been the recipients of
proofs of security. We contend that these largely justify the AKE protocols in principle, but not
in practice, meaning not for the parameters in actual use and at the desired or expected level of
security. Our work takes steps towards filling this gap.

1.1 Qualitative and Quantitative Bounds

Let us expand on this. The protocols KE we consider are built from a cyclic group G in which some
DH problem P is assumed to be hard, a pseudorandom function PRF and unforgeable signature and
MAC schemes S and M. The target for KE is session-key security with explicit authentication as
originating from [12, 10, 17]. A proof of security has both a qualitative and quantitative dimension.
Qualitatively, a proof of security for the AKE protocol KE says that KE meets its target definition
assuming the building blocks meet theirs, where, in either case, meeting the definition means any
poly-time adversary has negligible advantage in violating it.

The quantitative dimension associates to each adversary in the security game of KE a set of
resources r, representing its runtime and attack surface (e.g., the number of users and executed
protocol sessions the adversary has access to). It then relates the maximum advantage of any r-
resource adversary in breaking KE’s security to likewise advantage functions for the building blocks
through an equation of the (simplified) form

AdvKE(r) ≤ fG · AdvP
G(rG) + fS · AdvEUF-CMA

S (rS) + . . . ,

deriving quantitative factors fX and resources rX for the advantage of each building block X.
Speaking asymptotically again, when fX and rX are polynomial functions in r, then AdvKE(r)

is negligible whenever all building blocks’ advantages are. Due to the complexity of key exchange
models and the challenging task of combining the right components in a secure manner, key ex-
change analyses (including prior work on SIGMA [18] and TLS 1.3 [24, 38, 25, 27, 23]) indeed often
remain abstract and consider only qualitative, asymptotic security bounds.

Standardized protocols like TLS in contrast have to define concrete choices for each crypto-
graphic building block. This involves considering reasonable estimates for adversarial resources
(like runtime t and number of key-exchange model queries q) and specific instances and parameters
for the underlying components X. One would hope that key exchange proofs can provide guidance
in making sound choices that result in the desired overall security level. Unfortunately, AKE secu-
rity bounds regularly are highly non-tight, meaning that fX and/or rX for some components X are
so large that reasonable stand-alone parameters for X yield vacuous key exchange advantages for

1https://transparencyreport.google.com/https/
2https://telemetry.mozilla.org/
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Adv. resources SIGMA TLS 1.3
t #U #S Curve Target CK [18] Us (Thm. 5.1) DFGS [23] Us (Thm. 7.1)

260 220 235 secp256r1 2−68 ≈ 2−61 ≈ 2−116 ≈ 2−64 ≈ 2−116

260 230 255 secp256r1 2−68 ≈ 2−21 ≈ 2−106 ≈ 2−24 ≈ 2−106

260 220 235 x25519 2−68 ≈ 2−57 ≈ 2−112 ≈ 2−60 ≈ 2−112
260 230 255 x25519 2−68 ≈ 2−17 ≈ 2−102 ≈ 2−20 ≈ 2−102

280 220 235 secp256r1 2−48 ≈ 2−21 ≈ 2−76 ≈ 2−24 ≈ 2−76

280 230 255 secp256r1 2−48 1 ≈ 2−66 1 ≈ 2−66

280 220 235 x25519 2−48 ≈ 2−17 ≈ 2−72 ≈ 2−20 ≈ 2−72
280 230 255 x25519 2−48 1 ≈ 2−62 1 ≈ 2−62

280 220 235 secp384r1 2−112 ≈ 2−149 ≈ 2−204 ≈ 2−152 ≈ 2−204

280 230 255 secp384r1 2−112 ≈ 2−109 ≈ 2−194 ≈ 2−112 ≈ 2−194

Table 1: Exemplary concrete advantages of a key exchange adversary with given resources t (running
time), #U (number of users), #S (number of sessions), in breaking the security of the SIGMA and
TLS 1.3 protocols when instantiated with curve secp256r1, secp384r1, or x25519, based on the
prior bounds by Canetti-Krawczyk [18] resp. Dowling et al. [23], and the bounds we establish
(Theorem 5.1 and 7.1). Target indicates the maximal advantage t/2b tolerable when aiming for
the respective curve’s security level (b = 128 resp. 192 bits); entries in red-shaded cells miss that
target. See Section 8 for full details and curves secp521r1 and x448.

practical parameters. While the asymptotic bound tells us that scaling up the parameters for X
(say, the DDH problem [15]) will at some point result in a secure overall advantage, this causes
efficiency concerns (e.g., doubling elliptic curve DH security parameters means quadrupling the
cost for group operations) and hence does not happen in practice.

We illustrate in Table 1 the effects of the non-tight bounds for SIGMA and TLS 1.3 when
instantiating the protocols with NIST curves secp256r1, secp384r1 [43], or curve x25519 [40] and
idealizing the protocols’ other components (see Section 8 for full details). Following the curves’
security, we aim at a security level of 128 bits, resp. 192 bits, meaning the ratio of an adversary’s
runtime to its advantage should be bounded by 2−128, resp. 2−192. When considering the advantage
of key exchange adversaries running in time t, interacting in the security game with #U users and
#S sessions, we can see that previous security bounds fail to meet the targeted security level for
real-world–scale parameters (#U ranging in 220–230 based on 227 active certificates on the Internet3,
#S ranging in 235–255 based on 232 Internet users and 233 daily Google searches4). In the security
analysis by Canetti and Krawczyk [18] (CK) for SIGMA, the factor associated to the decisional
Diffie–Hellman problem is fDDH(t,#U,#S) = #U ·#S, where #U and #S again are the number
of users, resp. sessions, accessible by the adversary. The analysis by Dowling et al. [23] (DFGS) for
TLS 1.3 reduces to the strong Diffie–Hellman problem [1]—via the PRF-ODH assumption [32, 16]—
with factor fstDH(t,#U,#S) = (#S)2. In contrast, we reduce to the strong Diffie–Hellman problem
with a constant factor for both SIGMA and TLS 1.3.

Let us discuss three data points from Table 1:

1. Already with medium-sized resources, investing time t = 260 and interacting with a million
users (#U = 220) and a few billion sessions (#S = 235), the CK [18] and DFGS [23] advantage
bounds for SIGMA and TLS 1.3 with curves secp256r1 and x25519 fall 6–11 bits below the
target of 2−68 for 128-bit security.

3https://letsencrypt.org/stats/
4https://www.internetlivestats.com/
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2. When considering a more powerful, global-scale adversary (t = 280, #U = 230, #S = 255),
both CK and DFGS bounds for secp256r1/x25519 become fully vacuous; the upper bound
on the probability of the adversary breaking the protocol is 1. We stress that secp256r1 is
the mandatory-to-implement curve for TLS 1.3; secp256r1 and x25519 together make up for
90% of the TLS 1.3 ECDHE handshakes reported through Firefox Telemetry.

3. Finally, and notably, even switching to the higher-security curve secp384r1 helps only marginally
in the latter case: the resulting advantage against SIGMA falls 3 bits short of the 192-bit se-
curity target of 2−112, and the TLS advantage bound only barely meets that target.

For all curves and choices of parameters, our bounds do better.

1.2 Contributions

Most prior results in tightly secure key exchange (e.g., [4, 28]) apply only to bespoke protocols,
carefully designed to allow for tighter proof techniques, at the cost of requiring more complex
primitives which, in the end, eat up the gained practical efficiency. Recently, Cohn-Gordon et
al. [19, 20] established a proof strategy for a simple and efficient DH key exchange with reasonable
tightness loss (only linear in the number of users #U), achieving implicit authentication through
static DH keys through careful key derivation via a random oracle [11] with an optional explicit-
authentication step.

Our work in contrast establishes tight security for standardized AKE protocols. We give tight
reductions for the security of SIGMA and TLS 1.3 to the strong Diffie–Hellman problem [1] [46,
41] and give fully quantified bounds for the latter in the generic group model (GGM) [46, 41].
Instantiating our bounds shows that, with standardized real-world parameters, we achieve the
intended security levels even when considering powerful, globally-scaled attackers.

Code-based security model and proofs. For our proofs, we provide detailed proof steps and
reductions using the code-based game-playing framework of Bellare and Rogaway [13]. Our security
model is similar to the one applied by Cohn-Gordon et al. [19], but formalized also as a code-based
game (in Section 2) and stronger in that it captures explicit authentication and regular (“perfect”)
forward secrecy (instead of only weak forward secrecy in [19]).

Tighter security proof of SIGMA(-I). We establish fully quantitative security bounds for
SIGMA and its identity-protecting variant SIGMA-I [35] in Sections 4 and 5. Our result is for BR-
like [12] key exchange security and gives a tight reduction to the strong Diffie–Hellman problem [1]
in the used DH group, and to the multi-user (mu) security of the employed pseudorandom function
(PRF), signature scheme, and MAC scheme, adapting the techniques by Cohn-Gordon et al. [19]
in the random oracle model [11]. The latter mu-security bounds are essentially equivalent to the
corresponding bounds by CK [18]. Our improvement comes from shaving off a factor of #U ·#S
(number of users times number of sessions) on the DH problem advantage compared to CK. While
we move to the interactive strong Diffie–Hellman problem (compared to the decisional DH (DDH)
problem [15] used in [18]), we re-prove (in Appendix B) that the strong DH problem, like DDH,
is as hard as solving discrete logarithms in the generic group model (GGM) [46, 41], reflecting the
(only generic) algorithms known for solving discrete logarithms in elliptic curve groups. A similar
proof of the generic hardness of strong DH already appears in [1] where the problem is introduced;
our version gives a fully quantified bound.
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Tighter security proof for the TLS 1.3 DH handshake. We likewise establish fully quan-
titative security bounds for the key exchange of the recently standardized newest version of the
Transport Layer Security protocol, TLS 1.3 [45], in Sections 6 and 7. The main quantitative im-
provement in our reduction is again a tight reduction to the strong DH problem, whereas prior
bounds by DFGS [23] incurred a quadratic loss to the PRF-ODH assumption [32, 16], a loss which
translates directly to strong DH [16]. While TLS 1.3 roughly follows the SIGMA-I design, its
cascading key schedule impedes the precise technique of Cohn-Gordon et al. [19] and a direct appli-
cation of our results on SIGMA-I, as no single function (to be modeled as a random oracle) binds
the Diffie–Hellman values to the session context. We therefore have to carefully adapt the proof to
accommodate the more complex key schedule and other core variations in TLS 1.3’s key exchange,
achieving conceptually similar tightness results as for SIGMA-I.

Evaluation. In Section 8, we evaluate the concrete security implications of our improved bounds
for SIGMA and TLS 1.3 for a wide range of real-world resource parameters and all five elliptic
curves (secp256r1, secp384r1, secp521r1, x25519, x448) standardized for use in TLS 1.3 [45],
a summary of which is displayed in Table 1. Leveraging our fully-quantified GGM bound for
the strong Diffie–Hellman problem, we focus on the hardness of solving discrete logarithms in the
respective elliptic curve groups, instantiating signatures based on ECDSA [43] resp. EdDSA [14].
We idealized the symmetric PRF, MAC, and hash function primitives (in two variants, with key
and output sizes twice as large as the curve’s security level, or fixed at 256 bits corresponding to
the choice in most TLS 1.3 cipher suites).

We report that our tighter proofs indeed materialize for a wide range of real-world resource
parameters (adversary runtime t ∈ {240, 260, 280}, number of users #U ∈ {220, 230}, and number of
sessions #S ∈ {235, 245, 255}). The resulting attacker advantages meet the targeted security levels
of all five curves. In comparison to the prior CK [18] SIGMA and DFGS [23] TLS 1.3 bounds,
our results improve the obtained security across these real-world parameters by up to 85 bits for
SIGMA and 92 bits for TLS 1.3, respectively.

1.3 Optimizations, Limitations, and Possible Extensions

SIGMA being a generic AKE design, the signature, PRF, and MAC schemes may be instantiated
with primitives optimized for multi-user security. While we focus on standardized and deployed
schemes in our evaluation without assuming tight mu-security, our SIGMA bound allows to directly
leverage such optimization. For PRFs and MACs, efficient candidates exist (e.g., AMAC [6]). For
signatures, tight mu-security is more challenging [5] and often involves computationally much more
expensive constructions [4].

Like Cohn-Gordon et al. [19], our key exchange security model considers exposure of long-term
secrets and session keys, but does not allow revealing internal session state or randomness (as in the
(e)CK model [17, 39]). This is appropriate for protocols like TLS 1.3 not aiming to protect against
such threats. The original SIGMA proof [18] did establish security in the CK model [17] allowing
exposure of session state; in that sense our results are qualitatively weaker. In recent work, Jager
et al. [31] give a tightly secure protocol which uses symmetric state encryption to protect against
ephemeral state reveals. Establishing a tight security reduction for a SIGMA-style DH-based AKE
protocol which can handle adaptive compromises of session state (including DH exponents) remains
a challenging open problem.

In our proofs, we crucially rely on the ability to observe and program a random oracle used for
key derivation in the AKE protocol, borrowing from [19]. Notably, the approach of Cohn-Gordon
et al. is tailored to an AKE protocol achieving authenticity implicitly through mixing long-term
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DH keys into the key derivation. Our proofs can hence be seen as translating and adapting their
technique to the setting of SIGMA and TLS 1.3, where an unauthenticated ephemeral DH exchange
is explicitly authenticated through signatures and MACs, confirming that the generic SIGMA
design as well as the standardized TLS 1.3 protocol bind enough context to their DH shares for this
proof technique to work. Leveraging the random oracle model [11] is another qualitative difference
compared to the original SIGMA proof [18] in the standard model. Interestingly, this distinction
vanishes in comparison to the provable security results for the TLS 1.3 handshake protocol [24, 25,
27, 23] which employ the PRF-ODH assumption [32, 16], an interactive assumption which plausibly
can only be instantiated in the random oracle model (from the strong DH assumption).

1.4 Concurrent Work

In concurrent and independent work, Diemert and Jager (DJ) [22] studied the tight security of
the main TLS 1.3 handshake. Their work also tightly reduces the security of TLS 1.3 to the
strong Diffie–Hellman problem by extending the technique of Cohn-Gordon et al. [19], and their
bounds and ours are similarly tight. When instantiated with real-world parameters, both bounds
are dominated by the same terms, as we will demonstrate in Section 8. Our proof differs from
theirs in two key ways: We use an incomparable security model that is weaker in some ways and
stronger in others, and we approximate the TLS 1.3 key schedule with fewer random oracles. We
also contextualize our results quite differently than the DJ work, with a detailed numerical analysis
that is enabled by our fully parameterized, concrete bounds. Uniquely to this work, we treat the
more generic SIGMA-I protocol and justify our use of the strong DH problem with new bounds in
the generic group model. Diemert and Jager [22] in turn study tight composition with the TLS
record protocol.

The DJ analysis is carried out in the multi-stage key exchange model [26], proving security not
only of the final session key, but also of intermediate handshake encryption keys and further secrets.
While our proof does show security of these intermediate keys, we do not treat them as first-class
keys accessible to the adversary through dedicated queries in the security model. Unlike either the
DJ or Cohn-Gordon et al. works, our model addresses explicit authentication, which we prove via
HMAC’s unforgeability.

To tackle the challenge that TLS 1.3’s key schedule does not bind DH values and session context
in one function, DJ model the full cascading derivation of each intermediate key monolithically as
an independent, programmable random oracle (cf. [22, Theorem 6]). We instead model the key
schedule’s inner HKDF [37] extraction and expansion functions as two individual random oracles,
carefully connected via efficient look-up tables, yielding a slightly less extensive use of random
oracles and compensating for the existence of shared computations in the derivation of multiple
keys. This approach produces more compact bounds and allows our analysis to stay closer to the
use of HKDF in TLS 1.3, where the output of one extraction call is used to derive multiple keys.

2 AKE Security Model
We provide our results in a game-based key exchange model formalized in Figure 1, at its core
following the seminal work by Bellare and Rogaway [12] considering an active network adversary
that controls all communication (initiating sessions and determining their next inputs through
Send queries) and is able to corrupt long-term secrets (RevLongTermKey) as well as session
keys (RevSessionKey). The adversary’s goal is then to (a) distinguish the established shared
session key in a “fresh” (not trivially compromised, captured through a Fresh predicate) session
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from a uniformly random key obtained through Test queries (breaking key secrecy), or (b) make
a session accept without matching communication partner (breaking explicit authentication).

Following Cohn-Gordon et al. [19], we formalize our model in a real-or-random version (following
Abdalla, Fouque, and Pointcheval [3] with added forward secrecy [2]) with many Test queries
which all answer with a real or uniformly random session key based on the same random bit b. We
focus on the security of the main session key established. While our proofs (for both SIGMA and
TLS 1.3) establish security of the intermediate encryption and MAC keys, too, we do not treat
them as first-class keys available to the adversary through Test and RevSessionKey queries. We
expect that our results extend to a multi-stage key exchange (MSKE [26]) treatment and refer to
the concurrent work by Diemert and Jager [22] for tight results for TLS 1.3 in a MSKE model.

In contrast to the work by Cohn-Gordon et al. [19] and Diemert and Jager [22], our model
additionally captures explicit authentication through the ExplicitAuth predicate in Figure 1, ensur-
ing sessions with non-corrupted peer accept with an honest partner session. We and [22] further
treat protocols where the communication partner’s identity of a session may be unknown at the
outset and only learned during the protocol execution; this setting of “post-specified peers” [18]
particularly applies to the SIGMA protocol family [35] as well as TLS 1.3 [45].

2.1 Key Exchange Protocols

We begin by formalizing the syntax of key exchange protocols. A key exchange protocol KE consists
of three algorithms (KGen,Activate,Run) and an associated key space KE.KS (where most commonly
KE.KS = {0, 1}n for some n ∈ N). The key generation algorithm KGen() $−→ (pk, sk) generates new
long-term public/secret key pairs. In the security model, we will associate key pairs to distinct
users (or parties) with some identity u ∈ N running the protocol, and log the public long-term
keys associated with each user identity in a list peerpk. (The adversary will be in control of
initializing new users, identified by an increasing counter, and we assume it only references existing
user identities.) The activation algorithm Activate(id, sk, peerid, peerpk, role) $−→ (st′,m′) initiates
a new session for a given user identity id (and associated long-term secret key sk) acting in a given
role role ∈ {initiator, responder} and aiming to communicate with some peer user identity peerid.
Activate also takes as input the list peerpk of all users’ public keys; protocols may use this list to
look up their own and their peers’ public keys. We provide the entire list instead of just the user’s
and peers’ public keys to accommodate protocols with post-specified peer. These protocols may
leave peerid unspecified at the time of session activation; when the peer identity is set at some later
point, the list can be used to find the corresponding long-term key. Activation outputs a session
state and (if role = initiator) first protocol message m′, and will be invoked in the security model
to create a new session πi

u at a user u (where the label i distinguishes different sessions of the
same user). Finally, Run(id, sk, st, peerpk,m) $−→ (st′,m′) delivers the next incoming key exchange
message m to the session of user id with secret key sk and state st, resulting in an updated state st′
and a response message m′. Like Activate, it relies on the list peerpk to look up its own and its
peer’s long-term keys.

The state of each session in a key exchange protocol contains at least the following variables,
beyond possibly further, protocol-specific information:

peerid ∈ N. Reflects the (intended) partner identity of the session; in protocols with post-
specified peers this is learned and set (once) by the session during the protocol execution.

role ∈ {initiator, responder}. The session’s role, determined upon activation.

status ∈ {running, accepted, rejected}. The session’s status; initially status = running, a session
accepts when it switches to status = accepted (once).
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skey ∈ KE.KS. The derived session key (in the protocol-specific key space KE.KS), set upon
acceptance.

sid. The session identifier used to define partnered session in the security model; initially unset,
sid is determined (once) during protocol execution.

2.2 Key Exchange Security

We formalize our key exchange security game GKE-SEC
KE,A in Figure 1, based on the concepts intro-

duced above in Figure 1 and following the framework for code-based game playing by Bellare and
Rogaway [13]. After initializing the game, the adversary A is given access to queries NewUser
(generating a new user’s public/secret key pair), Send (controlling activation and message pro-
cessing of sessions), RevSessionKey (revealing session keys), RevLongTermKey (corrupting
user’s long-term secrets), and Test (providing challenge real-or-random session keys), as well as a
Finalize query to which it will submit its guess b′ for the challenge bit b, ending the game.

The game GKE-SEC
KE,A then (in Finalize) determines whether A was successful through the fol-

lowing three predicates, formalized in pseudocode in Figure 1:

Sound. The soundness predicate Sound checks that (a) no three session identifiers collide (hence
the session identifier properly serves to identify two partnered sessions). Furthermore, it en-
sures that (b) accepted sessions with the same session identifier, agreeing partner identities,
and distinct roles derive the same session key. The adversary breaks soundness if it violates
either of these properties.

ExplicitAuth. The predicate ExplicitAuth captures explicit authentication in that it requires that
for any session of some user id that accepted while its partner peerid was not corrupted
(captured through logging relative acceptance time tacc and long-term reveal time revltkpeerid)
has (a) a partnered session run by the intended peer identity and in an opposite role, and (b)
if that partnered session accepts, it will do so with peer identity id. The adversary breaks
explicit authentication if this predicate evaluates to false.

Fresh. Finally, to capture key secrecy, we have to restrict the adversary to testing only so-called
fresh sessions in order to exclude trivial attacks, which the freshness predicate Fresh ensures. A
tested session is non-fresh, if (a) its session key has been revealed (in which case A knows the
real key), (b) its partnered session (through sid) has been revealed or tested (in which case A
knows the real key or may see two different random keys), or (c) its intended peer identity
was compromised prior to accepting (in which case A may fully control the communication
partner). If the adversary violates freshness, we invalidate its guess by overwriting b′ ← 0.

We call two distinct sessions πi
u and πj

v partnered if πi
u.sid = πj

v.sid. We refer to sessions
generated by Activate (i.e., controlled by the game) as honest sessions to reflect that their behavior
is determined honestly by the game and not the adversary. The long-term key of an honest session
may still be corrupted, or its session key may be revealed without affecting this notion of “honesty”.

Definition 2.1 (Key exchange security). Let KE be a key exchange protocol and GKE-SEC
KE,A be the

key exchange security game defined in Figure 1. We define

AdvKE-SEC
KE (t, qN, qS, qRS, qRL, qT) := 2 ·max

A
Pr
[
GKE-SEC

KE,A ⇒ 1
]
− 1,

where the maximum is taken over all adversaries, denoted (t, qN, qS, qRS, qRL, qT)-KE-SEC-adversaries,
running in time at most t and making at most qN, qS, qRS, qRL, resp. qT queries to their oracles
NewUser, Send, RevSessionKey, RevLongTermKey, resp. Test.
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GKE-SEC
KE,A

Initialize:
1 time← 0; users← 0
2 b $←− {0, 1}

NewUser:
3 users← users + 1
4 (pkusers, skusers) $←− KGen()
5 revltkusers ←∞
6 peerpk[users]← pkusers

7 return pkusers

Send(u, i,m):

8 if πiu = ⊥ then
9 (peerid, role)← m

10 (πiu,m′) $←− Activate(u, sku, peerid, peerpk, role)
11 πiu.tacc ← 0
12 else
13 (πiu,m′) $←− Run(u, sku, πiu, peerpk,m)
14 if πiu.status = accepted then
15 time← time + 1
16 πiu.tacc ← time
17 return m′

RevSessionKey(u, i):

18 if πiu = ⊥ or πiu.status 6= accepted then
19 return ⊥
20 πiu.revealed← true
21 return πiu.skey

RevLongTermKey(u):
22 time← time + 1
23 revltku ← time
24 return sku

Test(u, i):

25 if πiu = ⊥ or πiu.status 6= accepted or πiu.tested then
26 return ⊥
27 πiu.tested← true
28 T ← T ∪ {πiu}
29 k0 ← πiu.skey

30 k1
$←− KE.KS

31 return kb

Finalize(b′):
32 if ¬Sound then
33 return 1
34 if ¬ExplicitAuth then
35 return 1
36 if ¬Fresh then
37 b′ ← 0
38 return [[b = b′]]

Sound:
1 if ∃ distinct πiu, πjv, πkw with πiu.sid = πjv.sid = πkw.sid

then // no triple sid match
2 return false
3 if ∃πiu, πjv with

πiu.status = πjv.status = accepted
and πiu.sid = πjv.sid
and πiu.peerid = v and πjv.peerid = u
and πiu.role 6= πjv.role, but πiu.skey 6= πjv.skey then

// partnering implies same key
4 return false
5 return true

ExplicitAuth:
1 return

∀πiu : πiu.status = accepted
and πiu.tacc < revltkπi

u.peerid

// all sessions accepting with a non-corrupted peer . . .
=⇒ ∃πjv : πiu.peerid = v

and πiu.sid = πjv.sid
and πiu.role 6= πjv.role

// . . . have a partnered session . . .
and (πjv.status = accepted =⇒ πjv.peerid = u)

// . . . agreeing on the peerid (upon acceptance)

Fresh:
1 for each πiu ∈ T
2 if πiu.revealed then
3 return false // tested session may not be revealed
4 if ∃πjv 6= πiu : πjv.sid = πiu.sid

and (πjv.tested or πjv.revealed) then
5 return false // tested session’s partnered session may

not be tested or revealed
6 if revltkπi

u.peerid
< πiu.tacc then

7 return false // tested session’s peer may not be cor-
rupted prior to acceptance

8 return true

Figure 1: Key exchange security game.
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2.3 Security Properties

Let us briefly revisit some core security properties captured in our key exchange security model.
First, we capture regular key secrecy of the main session key throughTest queries, incorporating

forward secrecy (sometimes called “perfect” forward secrecy) by allowing the adversary to corrupt
any user as long as all tested sessions accept prior to corrupting their respective intended peer.
This strengthens our model compared to that of Cohn-Gordon et al. [19] which only captures weak
forward secrecy where the adversary has to be passive in sessions where it corrupts long-term
secrets. Diemert and Jager [22] additionally treat the security of intermediate keys and further
secrets beyond the main session key in a multi-stage approach [26], but without capturing explicit
authentication.

Our model encodes explicit authentication (via ExplicitAuth), a strengthening compared to the
implicit-authentication model in [19].

Like [19, 22], our model captures key-compromise impersonation attacks by allowing the session
owner’s secret key of tested sessions to be corrupted at any point in time. Similarly, we do not
capture session-state or randomness reveals [17, 39] or post-compromise security [21].

3 Assumptions, Building Blocks, and Multi-User Security
Before we continue to our main technical results, let us briefly introduce notation and discuss the
multi-user security of the involved building blocks: strong Diffie–Hellman (including the GGM
bound we prove), PRFs, digital signatures, MAC schemes, and hash functions.

3.1 Decisional and Strong Diffie–Hellman

The classical decisional Diffie–Hellman assumption [15] states that, when only observing the two
Diffie–Hellman shares gx, gy, the resulting secret gxy is indistinguishable from a random group
element.

Definition 3.1 (Decisional Diffie–Hellman (DDH) assumption). Let G = 〈g〉 be a cyclic group of
prime order p. We define

AdvDDH
G (t) := max

A

∣∣∣Pr [A(G, g, gx, gy, gxy)⇒ 1 | x, y $←− Zp]−

Pr [A(G, g, gx, gy, gz)⇒ 1 | x, y, z $←− Zp]
∣∣∣,

where the maximum is taken over all adversaries, denoted (t)-DDH-adversaries running in time at
most t.

The strong Diffie–Hellman assumption [1], a weakening of the gap Diffie–Hellman assump-
tion [44], states that solving the computational Diffie–Hellman problem given a restricted decisional
Diffie–Hellman oracle is hard.

Definition 3.2 (Strong Diffie–Hellman assumption [1]). Let G = 〈g〉 be a cyclic group of prime
order p. Let DDH(X,Y, Z) := [[X logg(Y ) = Z]] be a decisional Diffie–Hellman oracle. We define

AdvstDH
G (t, qsDH) := max

A
Pr
[
ADDH(gx,·,·)(G, g, gx, gy) = gxy

∣∣∣ x, y $←− Zp

]
,

where the maximum is taken over all adversaries, denoted (t, qsDH)-stDH-adversaries running in
time at most t and making at most qsDH queries to their DDH oracle.
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The strong (or gap) Diffie–Hellman assumption has been deployed in numerous works to analyze
practical key exchange designs, directly or through the PRF-ODH assumption [32, 16] it supports,
including [32, 26, 24, 38, 25, 27, 23] as well as in the closely related works on practical tightness
by Cohn-Gordon et al. [19] and Diemert and Jager [22]. To argue that it is reasonable to rely on
the strong Diffie–Hellman assumption, we turn to the generic group model [46, 41]. Although some
known algorithms for solving discrete logarithms in finite fields like index calculus fall outside the
generic group model, the best known algorithms for elliptic curve groups are generic. Shoup [46]
proved that, in the generic group model, any adversary computing at most t group operations in
a group of prime order p has advantage at most O(t2/p) in solving the discrete logarithm problem
or the computational or decisional Diffie–Hellman problem in that group. Abdalla et al. [1], when
introding the strong Diffie–Hellman problem, showed that any adversary in the generic group model
making at most t group operations and DDH oracle queries, also has advantage at most O(t2/p) in
solving the problem. We revisit5 this result in Appendix B to establish the following, fully-quantified
bound.

Theorem 3.3. Let G be a group with prime order p. In the generic group model, AdvstDH
G (t, q) ≤

4t2/p.

3.2 Multi-User PRF Security

Let us recap the multi-user security notion for pseudorandom functions (PRFs) [7].

Definition 3.4 (Multi-user PRF security). Let PRF : {0, 1}k × {0, 1}m → {0, 1}n be a function
(for k, n ∈ N and m ∈ N ∪ {∗}) and Gmu-PRF

PRF,A be the multi-user PRF security game defined as in
Figure 2. We define

Advmu-PRF
PRF (t, qNw, qFn, qFn/U) := 2 ·max

A
Pr
[
Gmu-PRF

PRF,A ⇒ 1
]
− 1,

where the maximum is taken over all adversaries, denoted (t, qNw, qFn, qFn/U)-mu-PRF-adversaries,
running in time at most t and making at most qNw queries to their New oracle, at most qFn total
queries to their Fn oracle, and at most qFn/U queries Fn(i, ·) for any user i.

Generically, the multi-user security of PRFs reduces to single-user security (formally, Gmu-PRF
PRF,A

with A restricted to qNw = 1 queries to New) with a factor in the number of users via a hybrid
argument [7], i.e.,

Advmu-PRF
PRF (t, qNw, qFn, qFn/U) ≤ qNw · Advmu-PRF

PRF (t′, 1, qFn/U, qFn/U),

where t ≈ t′. (Note that the total number qFn of queries to the Fn oracle across all users does not
affect the reduction.) There exist simple and efficient constructions, like AMAC [6], that however
achieve multi-user security tightly.

If we use a random oracle RO as a PRF with key length kl, then

Advmu-PRF
RO (t, qNw, qFn, qFn/U, qRO) ≤ qNw · qRO

2kl
.

5In earlier versions of this work, the attribution of the O(t2/p) to Abdalla et al. [1] was missing. The authors of
this work wish to retract any claimed novelty in that bound.
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Gmu-PRF
PRF,A

Initialize:
1 b $←− {0, 1}
2 u← 0

New:
3 u← u+ 1
4 if b = 1 then
5 Ku

$←− {0, 1}k

6 fu := PRF(Ku, ·)
7 else
8 fu

$←− FUNC

Fn(i, x):
9 return fi(x)

Finalize(b∗):
10 return [[b = b∗]]

Figure 2: Multi-user PRF security of a pseudorandom function PRF : {0, 1}k × {0, 1}m → {0, 1}n.
FUNC is the space of all functions {0, 1}m → {0, 1}n.

3.3 Multi-User Unforgeability with Adaptive Corruptions of Signatures and
MACs

We recap the definition of digital signature schemes and message authentication codes (MACs) as
well as the natural extension of classical existential unforgeability under chosen-message attacks [29]
to the multi-user setting with adaptive corruptions. For signatures, this notion was considered by
Bader et al. [4] and, without corruptions, by Menezes and Smart [42].

Definition 3.5 (Signature scheme). A signature scheme S = (KGen,Sign,Vrfy) consists of three
efficient algorithms defined as follows.

• KGen() $−→ (pk, sk). This probabilistic algorithm generates a public verification key pk and a
secret signing key sk.

• Sign(sk,m) $−→ σ. On input a signing key sk and a message m, this (possibly) probabilistic
algorithm outputs a signature σ.

• Vrfy(vk,m, σ) → d. On input a verification key pk, a message m, and a signature σ, this
deterministic algorithm outputs a decision bit d ∈ {0, 1} (where d = 1 indicates validity of the
signature).

Definition 3.6 (Signature mu-EUF-CMA security). Let S be a signature scheme and Gmu-EUF-CMA
S,A

be the game for signature multi-user existential unforgeability under chosen-message attacks with
adaptive corruptions defined as in Figure 3. We define

Advmu-EUF-CMA
S (t, qNw, qSg, qSg/U, qC) := max

A
Pr
[
Gmu-EUF-CMA

S,A ⇒ 1
]
,

where the maximum is taken over all adversaries, denoted (t, qNw, qSg, qSg/U, qC)-mu-EUF-CMA-
adversaries, running in time at most t and making at most qNw, qSg, resp. qC total queries to their
New, Sign, resp. Corrupt oracle, and making at most qSg/U queries Sign(i, ·) for any user i.

Multi-user EUF-CMA security of signature schemes (with adaptive corruptions) can be reduced
to classical, single-user EUF-CMA security (formally, Gmu-EUF-CMA

S,A with A restricted to qNw = 1
queries to New) by a standard hybrid argument, losing a factor of number of users. Formally, this
yields

Advmu-EUF-CMA
S (t, qNw, qSg, qSg/U, qC) ≤ qNw · Advmu-EUF-CMA

S (t′, 1, qSg/U, qSg/U, 0),

where t ≈ t′. (Note that the reduction is not affected by the total number of signature queries qSg
across all users.) In many cases, such loss is indeed unavoidable [5].
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Gmu-EUF-CMA
S,A

Initialize:
1 Q← ∅
2 C ← ∅
3 u← 0

Corrupt(i):
4 C ← C ∪ {i}
5 return ski

New:
6 u← u+ 1
7 (pku, sku) $←− KGen()
8 return pku

Sign(i,m):
9 σ $←− Sign(ski,m)

10 Q← Q ∪ {(i,m)}
11 return σ

Finalize(i∗,m∗, σ∗):
12 d∗ ← Vrfy(pki∗ ,m∗, σ∗)
13 return [[d∗ = 1 ∧ i∗ /∈ C ∧ (i∗,m∗) /∈ Q]]

Gmu-EUF-CMA
M,A

Initialize:
1 Q← ∅
2 C ← ∅
3 u← 0

Corrupt(i):
4 C ← C ∪ {i}
5 return Ki

New:
6 u← u+ 1
7 Ku

$←− KGen()

Tag(i,m):
8 τ $←− Tag(Ki,m)
9 Q← Q ∪ {(i,m)}

10 return τ

Vrfy(i,m, τ):
11 d← Vrfy(Ki,m, τ)
12 return d

Finalize(i∗,m∗, τ∗):
13 d∗ ← Vrfy(Ki∗ ,m

∗, τ∗)
14 return [[d∗ = 1 ∧ i∗ /∈ C ∧ (i∗,m∗) /∈ Q]]

Figure 3: Multi-user existential unforgeability (mu-EUF-CMA) of signature schemes (top) and MAC
schemes (bottom).

Definition 3.7 (MAC scheme). A MAC scheme M = (KGen,Tag,Vrfy) consists of three efficient
algorithms defined as follows.
• KGen() $−→ K. This probabilistic algorithm generates a key K.

• Tag(K,m) $−→ τ . On input a key K and a message m, this (possibly) probabilistic algorithm
outputs a message authentication code (MAC) τ .

• Vrfy(K,m, τ)→ d. On input a key K, a message m, and a MAC τ , this deterministic algorithm
outputs a decision bit d ∈ {0, 1} (where d = 1 indicates validity of the MAC).

Definition 3.8 (MAC mu-EUF-CMA security). Let M be a MAC scheme and Gmu-EUF-CMA
M,A be the

game for MAC multi-user existential unforgeability under chosen-message attacks with adaptive
corruptions defined as in Figure 3. We define

Advmu-EUF-CMA
M (t, qNw, qTg, qTg/U, qVf, qVf/U, qC) := max

A
Pr
[
Gmu-EUF-CMA

M,A ⇒ 1
]
,

where the maximum is taken over all adversaries, denoted (t, qNw, qTg, qTg/U, qVf, qVf/U, qC)-
mu-EUF-CMA-adversaries, running in time at most t and making at most qNw, qTg, qVf, resp.
qC queries to their New, Tag, Vrfy, resp. Corrupt oracle, and making at most qTg/U queries
Tag(i, ·), resp. qVf/U queries Vrfy(i, ·) for any user i.

As for signature schemes, multi-user EUF-CMA security of MACs reduces to the single-user
case (qNw = 1) by a standard hybrid argument:

Advmu-EUF-CMA
M (t, qNw, qTg, qTg/U, qVf, qVf/U, qC)

≤ qNw · Advmu-EUF-CMA
M (t, 1, qTg/U, qTg/U, qVf/U, qVf/U, 0),
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where t ≈ t′. (Note that the reduction is not affected by the total number of tagging and verification
queries qTg resp. qVf across all users.)

Our multi-user definition of MACs provides a verification oracle, which is non-standard (and
in general not equivalent to a definition with a single forgery attempts, as Bellare, Goldreich and
Mityiagin [9] showed). For PRF-based MACs (which in particular includes HMAC used in TLS 1.3),
it however is equivalent and the reduction from multi-query to single-query verification is tight [9].

In our key exchange reductions, we actually do not need to corrupt MAC keys, i.e., we achieve
qC = 0. This in particular allows specific constructions like AMAC [6] achieving tight multi-user
security (without corruptions).

If we use a random oracle RO as PRF-like MAC with key length kl and output length ol, then

Advmu-EUF-CMA
RO (t, qNw, qTg, qTg/U, qVf, qVf/U, qC, qRO) ≤ qVf

2ol
+ (qNw − qC) · qRO

2kl
.

3.4 Hash Function Collision Resistance

Finally, let us define collision resistance of hash functions.

Definition 3.9 (Hash function collision resistance). Let H : {0, 1}∗ → {0, 1}ol for ol ∈ N be a
function. For a given adversary A running in time at most t, we can consider

AdvCR
H (t) := Pr

[
(m,m′) $←− A : m 6= m′ and H(m) = H(m′)

]
.

If we use a random oracle RO as hash function, then by the birthday bound

AdvCR
RO(t, qRO) ≤ q2

RO

2ol+1 + 1
2ol
.

4 The SIGMA Protocol
The SIGMA family of key exchange protocols introduced by Krawczyk [35, 36] describes several
variants for building authenticated Diffie–Hellman key exchange using the “SIGn-and-MAc” ap-
proach. Its design has been adopted in several Internet security protocols, including, e.g., the
Internet Key Exchange protocol [30, 33] as part of the IPsec Internet security protocol [34] and the
newest version 1.3 of the Transport Layer Security (TLS) protocol [45].

Beyond the basic SIGMA design, we are particularly interested in the SIGMA-I variant which
forms the basis of the TLS 1.3 key exchange and aims at hiding the protocol participants’ identities
as additional feature. We here present an augmented version of the basic SIGMA/SIGMA-I proto-
cols which includes explicit exchange of session-identifying random numbers (nonces) to be closer
to SIGMA(-like) protocols in practice, somewhat following the “full-fledged” SIGMA variant [36,
Appendix B]. We illustrate these protocol flows in Figure 4. and Figure 5 formalizes both as key
exchange protocols according to the syntax of Section 2.1.

The SIGMA and SIGMA-I protocols make use of a signature scheme S = (KGen,Sign,Vrfy),
a MAC scheme M = (KGen,Tag,Vrfy), a pseudorandom function PRF, and a function RO which
we model as a random oracle. The parties’ long-term secret keys consist of one signing key, i.e.,
KE.KGen = S.KGen. The protocols consists of three messages exchanged and accordingly two steps
performed by both initiator and responder, which we describe in more detail now.

Initiator Step 1. The initiator picks a Diffie–Hellman exponent x $←− Zp and a random nonce nI

of length nl and sends nI and gx.
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Initiator I Responder Rcyclic group G = 〈g〉 of prime order p

RunInit1(I, skI , st) RunResp1(R, skR, st, peerpk,m = (nI , X))
x $←− Zp, X ← gx y $←− Zp, Y ← gy

nI
$←− {0, 1}nl nR

$←− {0, 1}nlnI , X

sid← (nI , nR, X, Y )
mk ← RO(nI , nR, X, Y,X

y)
ks/kt/ ke ← PRF(mk, 0/1/2)

σ ← S.Sign(skR, Lrs‖nI‖nR‖X‖Y )
τ ← M.Tag(kt, Lrm‖nI‖nR‖R)

c← (R, σ, τ) c← Encke(R, σ, τ)
RunInit2(I, skI , st, peerpk,m = (nR, Y, c))

nR, Y, csid← (nI , nR, X, Y )
mk ← RO(nI , nR, X, Y, Y

x)
ks/kt/ ke ← PRF(mk, 0/1/2)
(R, σ, τ)← c (R, σ, τ)← Decke(c)
abort if ¬S.Vrfy(peerpk[R], Lrs‖nI‖nR‖X‖Y, σ)
abort if ¬M.Vrfy(kt, Lrm‖nI‖nR‖R, τ)
status← accepted; peerid← R

σ′ ← S.Sign(skI , Lis‖nI‖nR‖X‖Y )
τ ′ ← M.Tag(kt, Lim‖nI‖nR‖I)
c′ ← (I, σ′, τ ′) c′ ← Encke(I, σ′, τ ′) RunResp2(id, sk, st, peerpk,m = c′)

c′

(I, σ′, τ ′)← c′ (I, σ′, τ ′)← Decke(c′)
abort if ¬S.Vrfy(peerpk[I], Lis‖nI‖nR‖X‖Y, σ′)

abort if ¬M.Vrfy(kt, Lim‖nI‖nR‖I, τ ′)
status← accepted; peerid← I

accept with key skey = ks and session identifier sid = (nI , nR, X, Y )

st.state← (n,X, x)

st.state← (n, n′, X, Y, ks, kt, ke )

Figure 4: The SIGMA/SIGMA-I protocol flow diagram. Boxed code is only performed in the
SIGMA-I variant. Values Lx indicate label strings (distinct per x).

Responder Step 1. The responder also picks a random DH exponent y and a random nonce nR.
It then derives a master key as mk ← RO(nI , nR, X, Y,X

y) from nonces, DH shares, and the
joint DH secret gxy = (gx)y. From mk, keys are derived via PRF with distinct labels: the
session key ks, the MAC key kt, and (only in SIGMA-I) the encryption key ke.
The responder computes a signature σ with skR over nonces and DH shares (and a unique
label Lrs) and a MAC value τ under key kt over the nonces and its identity R (and unique
label Lrm). It sends nI , gy, as well as R, σ, and τ to the initiator. In SIGMA-I the last three
elements are encrypted using ke to conceal the responder’s identity against passive adversaries.

Initiator Step 2. The initiator also computes mk and keys ks, kt, and (in SIGMA-I, used to
decrypt the second message part) ke. It ensures both the received signature σ and MAC τ
verify, and aborts otherwise.
It computes its own signature σ′ under skI on nonces and DH shares (with a different label Lis)
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Activate(id, sk, peerid, peerpk, role):

1 st′.role← role

2 st′.status← running
3 if role = initiator then
4 (st′,m′)← RunInit1(id, sk, st′)
5 else m′ ← ⊥
6 return (st′,m′)

Run(id, sk, st, peerpk,m):
1 if st.status 6= running then
2 return ⊥
3 if st.role = initiator then
4 (st′,m′)← RunInit2(id, sk, st, peerpk,m)
5 else if st.sid = ⊥
6 (st′,m′)← RunResp1(id, sk, st, peerpk,m)
7 else
8 (st′,m′)← RunResp2(id, sk, st, peerpk,m)
9 return (st′,m′)

RunInit1(id, sk, st):

1 nI
$←− {0, 1}nl

2 x $←− Zp
3 X ← gx

4 st′.state← (nI , X, x)
5 m′ ← (nI , X)
6 return (st′,m′)

RunResp1(id, sk, st, peerpk,m):
1 (nI , X)← m

2 nR
$←− {0, 1}nl

3 y $←− Zp
4 Y ← gy

5 st′.sid← (nI , nR, X, Y )
6 σ ← S.Sign(sk, Lrs‖nI‖nR‖X‖Y )
7 mk ← RO(nI‖nR‖X‖Y ‖Xy)
8 ks ← PRF(mk, 0)
9 kt ← PRF(mk, 1)

10 ke ← PRF(mk, 2)

11 τ ← M.Tag(kt, Lrm‖nI‖nR‖id)
12 st′.state← (nI , nR, X, Y, ks, kt)

st′.state← (nI , nR, X, Y, ks, kt, ke)

13 m′ ← (nR, Y, id, σ, τ)
m′ ← (nR, Y,Enc(ke, (id, σ, τ)))

14 return (st′,m′)

RunInit2(id, sk, st, peerpk,m):
1 (nR, Y, peerid, σ, τ)← m

(nR, Y, c)← m

2 (nI , X, x)← st.state

3 st′.sid← (nI , nR, X, Y )
4 mk ← RO(nI‖nR‖X‖Y ‖Y x)
5 ks ← PRF(mk, 0)
6 kt ← PRF(mk, 1)
7 ke ← PRF(mk, 2)

8 (peerid, σ, τ)← Dec(ke, c)

9 st′.peerid← peerid

10 if S.Vrfy(peerpk[peerid], Lrs‖nI‖nR‖X‖Y, σ)
and M.Vrfy(kt, Lrm‖nI‖nR‖peerid, τ) then

11 st′.status← accepted
12 st′.skey ← ks

13 σ′ ← S.Sign(sk, Lis‖nI‖nR‖X‖Y )
14 τ ′ ← M.Tag(kt, Lim‖nI‖nR‖id)
15 m′ ← (id, σ′, τ ′)

m′ ← Enc(ke, (id, σ′, τ ′))

16 else
17 m′ ← ⊥
18 st′.status← rejected
19 return (st′,m′)

RunResp2(id, sk, st, peerpk,m):
1 (nI , nR, X, Y, ks, kt)← st.state

(nI , nR, X, Y, ks, kt, ke)← st.state

2 (peerid, σ′, τ ′)← m
(peerid, σ′, τ ′)← Dec(ke,m)

3 st′.peerid← peerid

4 if S.Vrfy(peerpk[peerid], Lis‖nI‖nR‖X‖Y, σ′)
and M.Vrfy(kt, Lim‖nI‖nR‖peerid, τ ′) then

5 st′.status← accepted
6 st′.skey ← ks

7 else st′.status← rejected
8 m′ ← ε

9 return (st′,m′)

Figure 5: The formalized SIGMA/SIGMA-I key exchange protocols (cf. Section 2.1). Boxed code
is only performed in the SIGMA-I variant.
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and a MAC τ ′ under kt over the nonces and its identity I (with yet another label Lim). It
sends I, σ′, and τ ′ to the responder (in SIGMA-I encrypted under ke) and accepts with session
key ks using the nonces and DH shares (nI , nR, X, Y ) as session identifier.

Responder Step 2. The responder finally checks the initiator’s signature σ′ and MAC τ ′

(aborting if either fails) and then accepts with session key skey = ks and session identi-
fier sid = (nI , nR, X, Y ).

5 Tighter Security Proof for SIGMA-I
We now come to our first main result, a tighter security proof for the SIGMA-I protocol. Note that
by omitting message encryption our proof similarly applies to the basic SIGMA protocol.

Theorem 5.1. Let the SIGMA-I protocol be as specified in Figure 5 based on a group G of prime
order p, a PRF PRF, a signature scheme S, and a MAC M, and let RO in the protocol be modeled
as a random oracle. For any (t, qN, qS, qRS, qRL, qT)-KE-SEC-adversary against SIGMA-I making
at most qRO queries to RO, we give algorithms B1, B2, B3, and B4 in the proof, with running
times tB1 ≈ t+ 2qRO log2 p and tBi ≈ t (for i = 2, . . . , 4) close to that of A, such that

AdvKE-SEC
SIGMA-I(t, qN, qS, qRS, qRL, qT)

≤ 3q2
S

2nl+1 · p
+ AdvstDH

G (tB1 , qRO) + Advmu-PRF
PRF (tB2 , qS, 3qS, 3)

+ Advmu-EUF-CMA
S (tB3 , qN, qS, qS, qRL) + Advmu-EUF-CMA

M (tB4 , qS, qS, 1, qS, 1, 0).

Here, nl is the nonce length in SIGMA-I and G is the used Diffie–Hellman group of prime order p.

In terms of multi-user security for the employed primitives, multi-user PRF and MAC security
can be obtained tightly, e.g., via the efficient AMAC construction [6], and multi-user signature
security can be generically reduced to single-user security of any signature scheme with a loss in
the number of users, here parties (not sessions) in the key exchange game.

Proof. Our proof of key exchange security for SIGMA-I proceeds via a sequence of code-based
games [13]. For the first half, the proof conceptually follows the strategy put forward by Cohn-
Gordon et al. [19].

Game 0. The initial game, G0, is the key exchange security game played by A (cf. Figure 1),
using the KGen, Activate, and Run routines of SIGMA-I defined in Figure 5. Therefore,

Pr[G0 ⇒ 1] = Pr[GKE-SEC
KE,A ⇒ 1].

Game 1. Between G0 and G1 (Figure 6), we make internal changes to the record-keeping of the
game, namely we track the nonces and group elements chosen and received by honest sessions.
Whenever two honest sessions pick the same nonce or group element, we set a flag badC . Whenever
an honest responder session picks a nonce and group element that has already been received by an
initiator session, we set a flag badO. This change is unobservable by the adversary, hence

Pr[G0 ⇒ 1] = Pr[G1 ⇒ 1].
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G1, G2

RunInit1(id, sk, st):

1 nI
$←− {0, 1}nl

2 x $←− Zp
3 X ← gx

4 if (nI , X) ∈ N then badC ← true ; abort
5 N ← N ∪ {(nI , X)}
6 st′.state← (nI , X, x)
7 m′ ← (nI , X)
8 return (st′,m′)

RunInit2(id, sk, st, peerpk,m):
9 (nR, Y, c)← m

10 Recv ← Recv ∪ {(nR, Y )}
11 (nI , X, x)← st.state

12 . . .

RunResp1(id, sk, st, peerpk,m):
13 (nI , X)← m

14 nR
$←− {0, 1}nl

15 y $←− Zp
16 Y ← gx

17 if (nR, Y ) ∈ Recv then badO ← true ; abort
18 if (nR, Y ) ∈ N then badC ← true; abort
19 N ← N ∪ {(nR, Y )}
20 st′.sid← (nI , nR, X, Y )
21 . . .

RO(m):

101 if H[m] = ⊥ then H[m] $←− {0, 1}kl

102 return H[m]

Figure 6: Games G1 (changes highlighted in gray) and G2 (changes highlighted in frames) of the
SIGMA-I proof; with the explicit (lazy-sampled) random oracle RO.

Game 2. In Game G2 (Figure 6), we abort whenever nonces and group elements collide among
honest sessions (i.e., the badC flag is set), or whenever an honest responder session chooses a nonce
and group element already submitted by the adversary to an initiator (i.e., the badO flag is set).
By the identical-until-bad lemma [13],

Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1] ≤ Pr[badC or badO ← true in G1].

In all of the calls to RunInit1 and RunResp1, up to qS pairs of nonces and group elements are chosen
uniformly at random. By the birthday bound, the probability of a collision between two of these
pairs setting the badC flag is at most q2

S

2nl+1·p (where nl is the nonce length and p the order of the
Diffie–Hellman group). There are at most qS pairs received by initiator sessions, so the probability
that a responder session randomly chooses one of these pairs is at most qS

2nl·p ; then by the union

bound we have that Pr[badO ← true in G1] ≤ q2
S

2nl·p . Since each of RunInit1 and RunResp1 is called
at most once per Send query, if an adversary makes qS queries to its Send oracle, then

Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1] ≤ 3q2
S

2nl+1 · p
.

In all subsequent games, we are now sure that each honest session chooses a unique nonce and
group element. Since the session identifier sid = (nI , nR, X, Y ) contains exactly one initiator and
one responder nonce, this furthermore implies that when two honest sessions are partnered, they
must have different roles.

Game 3. In Game G3 (Figure 7), we remove the now superfluous collision flags badC and badO

and add additional bookkeeping. All honest initiator sessions now log their outgoing messages in an
internal table Sent. Honest responder sessions use this table to check if the message they received
was sent by an honest initiator session. If so, they log their keys kt, ke, and ks in a second internal
table, S, indexed by their session identifier. These changes are unobservable by the adversary, so

Pr[G2 ⇒ 1] = Pr[G3 ⇒ 1].
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G3, G4

RunInit1(id, sk, st):

1 nI
$←− {0, 1}nl

2 x $←− Zp
3 X ← gx

4 if (nI , X) ∈ N then abort
5 N ← N ∪ {(nI , X)}
6 st′.state← (nI , X, x)
7 m′ ← (nI , X)
8 Sent← Sent ∪m′

9 return (st′,m′)

RunInit2(id, sk, st, peerpk,m):
10 (nR, Y, c)← m

11 Recv ← Recv ∪ {(nR, Y )}
12 (nI , X, x)← st.state

13 st′.sid← (nI , nR, X, Y )
14 if S[st′.sid] 6= ⊥ then
15 mk ← RO(nI‖nR‖X‖Y ‖Y x)
16 ks ← PRF(mk, 0)
17 kt ← PRF(mk, 1)
18 ke ← PRF(mk, 2)
19 ks, kt, ke ← S[st′.sid]

20 else
21 mk ← RO(nI‖nR‖X‖Y ‖Y x)
22 ks ← PRF(mk, 0)
23 kt ← PRF(mk, 1)
24 ke ← PRF(mk, 2)
25 (peerid, σ, τ)← Dec(ke, c)
26 st′.peerid← peerid

27 . . .

RunResp1(id, sk, st, peerpk,m):
28 (nI , X)← m

29 nR
$←− {0, 1}nl

30 y $←− Zp
31 Y ← gx

32 if (nR, Y ) ∈ Recv then abort
33 if (nR, Y ) ∈ N then abort
34 N ← N ∪ {(nR, Y )}
35 st′.sid← (nI , nR, X, Y )
36 σ ← S.Sign(sk, Lrs‖nI‖nR‖X‖Y )
37 mk ← RO(nI‖nR‖X‖Y ‖Xy)
38 ks ← PRF(mk, 0)
39 kt ← PRF(mk, 1)
40 ke ← PRF(mk, 2)
41 if m ∈ Sent then
42 S[st′.sid]← (ks, kt, ke)
43 τ ← M.Tag(kt, Lrm‖nI‖nR‖id)
44 st′.state← (nI , nR, X, Y, ks, kt)
45 m′ ← (nR, Y,Enc(ke, (id, σ, τ)))
46 return (st′,m′)

Figure 7: Games G3 (changes highlighted in gray) and G4 (changes highlighted in frames) of the
SIGMA-I proof.

Game 4. In Game G4 (Figure 7), we require that initiator sessions whose key material has already
been computed by an honest partner session simply copy their partners’ key material. When an
honest initiator session πi

u with nonce n and group element X receives a message m ← (nR, Y, c),
it sets its session identifier sid ← (nI , nR, X, Y ). It then checks if S[sid] 6= ⊥ (which is only the
case if πi

u has an honest partner), and if so uses the stored key material ks, kt, ke ← S[st′.sid].
Recall that both partnered sessions agree on the DH shares X and Y as components of sid.

They hence also agree on the shared DH secret Z = gxy and thus on the master key derived
as RO(nI‖nR‖X‖Y ‖Z) as well as the derived key ks, kt, and ke. For the adversary A it is hence
unobservable if initiators with honest partner actually compute their keys themselves or copy their
partners’ key material in Game G4, so

Pr[G3 ⇒ 1] = Pr[G4 ⇒ 1].
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Game 5. In Game G5 (Figure 8), all honest sessions sample their master keys uniformly at
random (as long as the random oracle has not been been queried on the corresponding input) and
program the random oracle to that value (through RO’s internal table H[nI‖nR‖X‖Y ‖Y x]← mk).
This is equivalent to RO performing the same checks and uniform sampling, and hence undetectable
for A:

Pr[G4 ⇒ 1] = Pr[G5 ⇒ 1].

Game 6. In Game G6 (Figure 8), responder sessions whose first message came from an honest
initiator stop programming the random oracle on their uniformly chosen master keymk. This is un-
detectable for adversary A unless it makes a query RO(nI‖nR‖X‖Y ‖Z), where sid = (nI , nR, X, Y )
is the session identifier shared by two honest partnered sessions, and Z is the Diffie–Hellman secret
corresponding to the pair (X,Y ). We call this event F , and bound the probability of F by giving
a reduction B1 (specified in Figure 9) to the strong Diffie–Hellman assumption in the DH group G.
The reduction makes at most as many queries to its stDH oracle as A makes to its RO oracle, as
follows.

Given its strong DH challenge (A = ga, B = gb) and having access to an oracle stDHa(U, V )
which outputs 1 if Ua = V and 0 otherwise, B1 simulates G6 for an adversary A as follows. In all
honest initiator sessions, B1 embeds its challenge into the sent DH value as X ← A·gr, where r ∈ Zp

is sampled uniformly at random for each session. Furthermore, in all responder sessions receiving
their first message from an honest initiator, B1 embeds its challenge as Y ← B · gr′ , where r′ ∈ Zp

is sampled uniformly at random for each session.
Let us first observe that if event F occurs, then the value Z in the random oracle query

RO(nI‖nR‖X‖Y ‖Z) will equal g(a+r)(b+r′) for some r, r′ ∈ Zp chosen by B1, and consequently

Z · Y −r = g(a+r)(b+r′)−(b+r′)·r = ga(b+r′) = Y a.

This equality can be tested for by B1 by calling its stDHa oracle on the pair (Y,Z ·Y −r). We let B1
do so whenever A queries RO on some value (nI‖nR‖X‖Y ‖Z) where (nI , X = A · gr) was output
by an honest initiator session and (nR, Y = g(b+r′)) was output by a responder session with an
honest initiator; the responder stores (nI , nR, X, Y ) in a look-up table Q so this can be checked
efficiently. If stDHa(Y, Z · Y −r) = 1 on such occasion, i.e., event F occurs, B1 stops with output
Z · Y −r ·A−r′ = g(a+r)(b+r′) · g−(b+r′)·r · g−ar′ = gab and wins. Therefore,

Pr[F ] ≤ AdvstDH
G,B1 .

One subtlety in this step is ensuring that B1 can correctly simulate answers to RevSessionKey
queries to any initiator or responder session. We do so by accordingly programming the random
oracle on the sampled master key, where needed. First of all observe that responder sessions without
honest initiator keep picking their own Y share and compute mk regularly. Initiator and responder
sessions with honest partner have the challenge embedded and sample an independent master key
which is not programmed to the random oracle. However, B1 stops and wins (as described above)
if A ever queries the random oracle on the correct DH secret; i.e., A never sees the (inconsistent)
random oracle output for these master keys. The interesting case is when an initiator session
(which always embeds the challenge in its DH share as X = A · gr) obtains a message (nR, Y, c) not
originating from an honest responder: Here, Y may well have been picked by the adversary who
could furthermore have corrupted the initiator’s peer and hence make the initiator accept—with a
master key it cannot compute itself.

We therefore let B1 attempt to copy the adversary’s master key, if it has been computed. The
RO oracle logs all queries it receives by their putative session id (nI , nR, X, Y ) in a look-up table H ′,
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G5, G6

RunInit2(id, sk, st, peerpk,m):
1 (nR, Y, c)← m

2 Recv ← Recv ∪ {(nR, Y )}
3 (nI , X, x)← st.state

4 st′.sid← (nI , nR, X, Y )
5 if S[st′.sid] 6= ⊥ then
6 ks, kt, ke ← S[st′.sid]
7 else
8 mk $←− {0, 1}kl

9 if H[nI‖nR‖X‖Y ‖Y x] 6= ⊥
10 mk ← H[nI‖nR‖X‖Y ‖Y x]
11 H[nI‖nR‖X‖Y ‖Y x]← mk

12 ks ← PRF(mk, 0)
13 kt ← PRF(mk, 1)
14 ke ← PRF(mk, 2)
15 (peerid, σ, τ)← Dec(ke, c)
16 st′.peerid← peerid

17 if S.Vrfy(peerpk[peerid], Lrs‖nI‖nR‖X‖Y, σ)
and M.Vrfy(kt, Lrm‖nI‖nR‖peerid) then

18 st′.status← accepted
19 st′.skey ← ks

20 σ′ ← S.Sign(sk, Lis‖nI‖nR‖X‖Y )
21 τ ′ ← M.Tag(kt, Lim‖nI‖nR‖id)
22 m′ ← Enc(ke, (id, σ′, τ ′))
23 else
24 m′ ← ⊥ ; st′.status← rejected
25 return (st′,m′)

RunResp1(id, sk, st, peerpk,m):
26 (nI , X)← m

27 nR
$←− {0, 1}nl

28 y $←− Zp
29 Y ← gx

30 if (nR, Y ) ∈ Recv then abort
31 if (nR, Y ) ∈ N then abort
32 N ← N ∪ {(nR, Y )}
33 st′.sid← (nI , nR, X, Y )
34 σ ← S.Sign(sk, Lrs‖nI‖nR‖X‖Y )
35 mk $←− {0, 1}kl

36 if m 6∈ Sent then
37 if H[nI‖nR‖X‖Y ‖Xy] 6= ⊥
38 mk ← H[nI‖nR‖X‖Y ‖Xy]
39 H[nI‖nR‖X‖Y ‖Xy]← mk

40 ks ← PRF(mk, 0)
41 kt ← PRF(mk, 1)
42 ke ← PRF(mk, 2)
43 if m ∈ Sent then
44 S[st′.sid]← (ks, kt, ke)
45 τ ← M.Tag(kt, Lrm‖nI‖nR‖id)
46 st′.state← (nI , nR, X, Y, ks, kt)
47 m′ ← (nR, Y, id, σ, τ)
48 return (st′,m′)

Figure 8: Games G5 (changes highlighted in gray) and G6 (changes highlighted in frames) of the
SIGMA-I proof.

so B1 can efficiently access all Z such that (nI , nR, X, Y, Z) has been queried to RO. Since the DH
secret corresponding to the pair (X,Y ) equals Y a+r, if Z is this DH secret, then

Z · Y −r = Y (a+r)−r = Y a.

The reduction can check this equality using its stDHa oracle and in that case use the response
to RO(nI , nR, X, Y, Z) as mk. Otherwise, B1 samples mk at random and stores it in the table Q
(Line 48 of Figure 9), indicating it should be programmed in the random oracle later if queried on a
matching Z value (Line 75). This ensures all responses to RevSessionKey queries are consistent
with A’s queries to the random oracle RO.

Observe that, in all this, B1 calls its stDH oracle at most once for each entryH[nI‖nR‖X‖Y ‖Z] =
mk in the RO table H. In RO, stDH is called (once) only for entries that were not present when
Q[(nI , nR, X, Y )] was set, then H ′ is set. In RunInit2 and RunResp1, stDH is called only for matching
H ′ entries established prior to setting Q. Therefore, if stDH is called in RO for an entry, it was not
called in either RunInit2 or RunResp1. If stDH is called on an entry in RunResp1, then the responder
session is partnered, so its partner will copy its keys in RunInit2 and not call stDH. Furthermore,
due to uniqueness of nonces and DH shares (by Game G2), no RunInit2 or RunResp1 call makes
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B1(A,B)stDHa(·,·)

RunInit1(id, sk, st):

1 nI
$←− {0, 1}nl

2 r $←− Zp
3 X ← A · gr

4 if (nI , X) ∈ N then abort
5 N ← N ∪ {(nI , X)}
6 st′.state← (nI , X, r)
7 m′ ← (nI , X)
8 Sent[m′]← x

9 return (st′,m′)

RunInit2(id, sk, st, peerpk,m):
10 (nR, Y, c)← m

11 Recv ← Recv ∪ {(nR, Y )}
12 (nI , X, r)← st.state

13 st′.sid← (nI , nR, X, Y )
14 if S[st′.sid] 6= ⊥ then
15 ks, kt, ke ← S[st′.sid]
16 else
17 mk $←− {0, 1}kl

18 for each Z ∈ H ′[nI‖nR‖X‖Y ]
19 if stDHa(Y,Z · Y −r) = 1 then
20 mk ← H[nI‖nR‖X‖Y ‖Z]
21 Q[st′.sid]← (r,⊥,mk)
22 ks ← PRF(mk, 0)
23 kt ← PRF(mk, 1)
24 ke ← PRF(mk, 2)
25 (peerid, σ, τ)← Dec(ke, c)
26 st′.peerid← peerid

27 if S.Vrfy(Lrs‖nI‖nR‖X‖Y, σ, pkpeerid)
and M.Vrfy(kt, Lrm‖nI‖nR‖peerid) then

28 st′.status← accepted
29 st′.skey ← ks

30 σ′ ← S.Sign(sk, Lis‖nI‖nR‖R‖W )
31 τ ′ ← M.Tag(kt, Lim‖nI‖nR‖id)
32 m′ ← Enc(ke, (id, σ′, τ ′))
33 else
34 m′ ← ⊥
35 st′.status← rejected
36 return (st′,m′)

RunResp1(id, sk, st, peerpk,m):
37 (nI , X)← m

38 nR
$←− {0, 1}nl

39 r′ $←− Zp
40 mk $←− {0, 1}kl

41 if m ∈ Sent then
42 r ← Sent[m]
43 Y ← B · gr

′

44 st′.sid← (nI , nR, X, Y )
45 for each Z ∈ H ′[nI‖nR‖X‖Y ]
46 if stDHa(Y,Z · Y −r) = 1 then
47 Finalize(Z · Y −r ·A−r

′
)

48 Q[st′.sid]← (r, r′,mk)
49 else
50 Y ← gr

′

51 st′.sid← (nI , nR, X, Y )
52 if H[nI‖nR‖X‖Y ‖Xy] 6= ⊥
53 mk ← H[nI‖nR‖X‖Y ‖Xr′ ]
54 H[nI‖nR‖X‖Y ‖Xy]← mk

55 if (nR, Y ) ∈ Recv then abort
56 if (nR, Y ) ∈ N then abort
57 N ← N ∪ {(nR, Y )}
58 σ ← S.Sign(sk, Lrs‖nI‖nR‖X‖Y )
59 ks ← PRF(mk, 0)
60 kt ← PRF(mk, 1)
61 ke ← PRF(mk, 2)
62 if m ∈ Sent then
63 S[st′.sid]← (ks, kt, ke)
64 τ ← M.Tag(kt, Lrm‖nI‖nR‖id)
65 st′.state← (nI , nR, X, Y, ks, kt, ke)
66 m′ ← (nR, Y,Enc(ke, (id, σ, τ))
67 return (st′,m′)

RO(m):
68 if H[m] = ⊥ then
69 H[m] $←− {0, 1}kl

70 parse nI‖nR‖X‖Y ‖Z ← m

71 H ′[nI‖nR‖X‖Y ]← H ′[nI‖nR‖X‖Y ] ∪ {Z}
72 if Q[(nI , nR, X, Y )] 6= ⊥ then
73 (r, r′,mk)← Q[nI , nR, X, Y ]
74 if stDHa(Y,Z · Y −r) = 1 then
75 if r′ = ⊥ then H[m]← mk

76 else Finalize(Z · Y −r ·A−r
′
)

77 return H[m]

Figure 9: Reduction B1 to the strong Diffie–Hellman assumption of the SIGMA-I proof. Sections
highlighted in gray have been significantly altered compared to Game G6.
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stDH be invoked twice for the same H ′ entry.
Since the total time to iterate through the for loops over all Run and RO queries is at most

O(qRO), the running time of B1 is roughly that of A, plus the time needed to compute the arguments
of the stDH queries. Each of these arguments requires one group operation and one exponentiation.
(All other operations performed by B1 add only a small constant amount of time per Send query,
which is dominated by the runtime of A.) The exponentiation can be computed using 2 log2 p group
operations using the square-and-multiply (or double-and-add) algorithm, so tB1 ≈ t+ 2qRO log2 p.
The runtime t of A already includes the computation of 2qS log2 p group operations, so this is a
significant but not prohibitive increase in runtime.

Having B1 perfectly simulate Game G5 for A up to the point when F happens, and G6 and G5
differing only when F happens, we have

Pr[G5 ⇒ 1] = Pr[G6 ⇒ 1] + Pr[F ] ≤ Pr[G6 ⇒ 1] + AdvstDH
G, (tB1 , qRO),

and tB1 ≈ t+ 2qRO log2 p.

Game 7. In Game G7 (Figure 10), responder oracles responding to honest messages samples
session, MAC, and encryption keys ks, kt, and ke randomly instead of computing them through
a PRF. (Initiator oracles partnered with an honest responder will continue to copy those, now
randomly sampled keys.)

Since the PRF keymk in this case is sampled independently of the random oracle and the rest of
the game, this reduces straightforwardly to the multi-user security of the PRF via the reduction B2
we give in Figure 10. The adversary B2 makes one New and two FUNC queries for each RunResp1
query, or three FUNC queries in SIGMA-I. Notably, it makes at most three FUNC queries per user,
and no Corrupt queries because mk is never revealed to the adversary. Outside of the oracle calls,
its running time exactly equals that of A in Game G6, as their pseudocode is identical, so tB2 ≈ t.
Using its Fn oracle of the PRF game, B2 perfectly simulates G6 if the oracle gives real-PRF answers
and G7 if it returns uniformly random values. Therefore,

Pr[G6 ⇒ 1] ≤ Pr[G7 ⇒ 1] + Advmu-PRF
PRF, (tB2 , qS, 3qS, 3, 0).

Observe that from now on, session and MAC keys of responder oracles that received honest ini-
tiator’s messages are chosen independently at random, and that initiator oracles with matching sid
will copy those keys. Notably, this is the case even for sessions whose (own or peer’s) long-term
secret have been revealed to the adversary. We will use these properties in the following to argue
authentication of sessions as well as forward security of the session keys.

Our final game hops are concerned with the explicit authentication performed through sig-
natures and MACs in the SIGMA-I protocol, and as such extend those proof steps for implicit
authentication of the main protocols in [19].

Game 8. In Game G8 (Figure 11), we log all messages for which signatures are generated by
an honest session, and set a bad flag badS if the adversary submits a valid signature under an
uncorrupted signing key for a message which was not produced by an honest session. This internal
bookkeeping does not affect the adversary’s advantage, so

Pr[G7 ⇒ 1] = Pr[G8 ⇒ 1].

Game 9. In Game G9 (Figure 11), we abort if the badS flag is set. By the identical-until-
bad lemma, the difference in advantage between G8 and G9 is bounded by the probability that
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G7

RunResp1(id, sk, st, peerpk,m):
1 (nI , X)← m

2 nR
$←− {0, 1}nl

3 y $←− Zp
4 Y ← gy

5 if (nR, Y ) ∈ Recv then abort
6 if (nR, Y ) ∈ N then abort
7 N ← N ∪ {(nR, Y )}
8 st′.sid← (nI , nR, X, Y )
9 σ ← S.Sign(sk, Lrs‖nI‖nR‖X‖Y )

10 mk $←− {0, 1}kl

11 if m 6∈ Sent then
12 if H[Y x‖nI‖nR‖X‖Y ] 6= ⊥
13 mk ← H[Y x‖nI‖nR‖X‖Y ]
14 ks ← PRF(mk, 0)
15 kt ← PRF(mk, 1)
16 ke ← PRF(mk, 2)
17 if m ∈ Sent
18 ks

$←− {0, 1}kl

19 kt
$←− {0, 1}kl

20 ke
$←− {0, 1}kl

21 S[st′.sid]← (ks, kt, ke)
22 τ ← M.Tag(kt, Lrm‖nI‖nR‖id)
23 st′.state← (nI , nR, X, Y, ks, kt)
24 m′ ← (nR, Y,Enc(ke, (id, σ, τ))
25 return (st′,m′)

BFn(·,·)
2

RunResp1(id, sk, st, peerpk,m):
1 (nI , X)← m

2 nR
$←− {0, 1}nl

3 y $←− Zp
4 Y ← gy

5 if (nR, Y ) ∈ Recv then abort
6 if (nR, Y ) ∈ N then abort
7 N ← N ∪ {(nR, Y )}
8 st′.sid← (nI , nR, X, Y )
9 σ ← S.Sign(sk, Lrs‖nI‖nR‖X‖Y )

10 mk $←− {0, 1}kl

11 if m 6∈ Sent then
12 if H[nI‖nR‖X‖Y ‖Xy] 6= ⊥
13 mk ← H[nI‖nR‖X‖Y ‖Xy]
14 ks ← PRF(mk, 0)
15 kt ← PRF(mk, 1)
16 ke ← PRF(mk, 2).
17 if m ∈ Sent
18 New(); i+ +
19 ks ← Fn(i, 0)
20 kt ← Fn(i, 1)
21 ke ← Fn(i, 2)
22 S[st′.sid]← (ks, kt, ke)
23 τ ← M.Tag(kt, Lrm‖nI‖nR‖id)
24 st′.state← (nI , nR, X, Y, ks, kt)
25 m′ ← (nR, Y,Enc(ke, (id, σ, τ))
26 return (st′,m′)

Figure 10: Game G7 and reduction B2 to PRF security of the SIGMA-I proof. Changes from G6
resp. compared to G7 highlighted in gray.

this event occurs, which we reduce via an algorithm B3 to the multi-user security of the digital
signature scheme S.

In the reduction, B3 obtains all long-term public keys from the multi-user signature game and
uses its signing oracles for any honest signature to be produced. It therefore makes qN queries to
New and one Sign query for each call to RunResp1 or RunInit2, for at most qS such queries. It
relays RevLongTermKey queries as corruptions in its multi-user game, making qRL corruption
queries in total. When badS is triggered, B3 submits the triggering message and signature under
the targeted (uncorrupted) public key as its forgery. As the triggering message was not signed
before under the corresponding secret key (and hence not queried to the signing oracle by B3), the
forgery is valid and B3 wins if badS is set. It follows that

Pr[G8 ⇒ 1] ≤ Pr[G9 ⇒ 1] + Advmu-EUF-CMA
S,B3 (tB3 , qN, qS, qS, qRL).

Except for the replacement of key generation, signatures, corruptions with oracle queries, the
pseudocode of B3 is identical to that of A in game G8, so tB3 ≈ t.

Game 10. In Game G10 (Figure 11), we remove the now redundant badS flag again, and log all
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G8, G9

RunInit2(id, sk, st, peerpk,m):
1 . . .
2 if S.Vrfy(peerpk[peerid], Lrs‖nI‖nR‖X‖Y, σ)

and M.Vrfy(kt, Lrm‖nI‖nR‖peerid, τ) then
3 if revltkpeerid =∞ and

(peerid, Lrs‖nI‖nR‖X‖Y ) /∈ QS then
4 badS ← true ; abort

7 st′.status← accepted
8 st′.skey ← ks

9 σ′ ← S.Sign(sk, Lis‖nI‖nR‖X‖Y )
10 QS ← QS ∪ {(id, Lis‖nI‖nR‖X‖Y )}
11 τ ′ ← M.Tag(kt, Lim‖nI‖nR‖id)

14 . . .

RunResp1(id, sk, st, peerpk,m):
15 . . .
16 σ ← S.Sign(sk, Lrs‖nI‖nR‖X‖Y )
17 QS ← QS ∪ {(id, Lrs‖nI‖nR‖X‖Y )}
18 . . .
19 τ ← M.Tag(kt, Lrm‖nI‖nR‖id)

21 . . .

RunResp2(id, sk, st, peerpk,m):
22 . . .
23 if S.Vrfy(peerpk[peerid], Lis‖nI‖nR‖X‖Y, σ′)

and M.Vrfy(kt, Lim‖nI‖nR‖peerid, τ ′) then
24 if revltkpeerid =∞ and

(peerid, Lrs‖nI‖nR‖X‖Y ) /∈ QS then
25 badS ← true ; abort

28 st′.status← accepted
29 st′.skey ← ks

30 else st′.status← rejected
31 return (st′,m′)

G10, G11

RunInit2(id, sk, st, peerpk,m):
1 . . .
2 if S.Vrfy(peerpk[peerid], Lrs‖nI‖nR‖X‖Y, σ)

and M.Vrfy(kt, Lrm‖nI‖nR‖peerid) then
3 if revltkpeerid =∞ and

(peerid, Lrs‖nI‖nR‖X‖Y ) /∈ QS then
4 abort
5 if S[st′.sid] 6= ⊥ and

(st′.sid, Lrm‖nI‖nR‖peerid) /∈ QM then
6 badM ← true ; abort
7 st′.status← accepted
8 st′.skey ← ks

9 σ′ ← S.Sign(sk, Lis‖nI‖nR‖X‖Y )
10 QS ← QS ∪ {(id, Lis‖nI‖nR‖X‖Y )}
11 τ ′ ← M.Tag(kt, Lim‖nI‖nR‖id)
12 if S[st′.sid] 6= ⊥ then
13 QM ← QM ∪ {(st′.sid, Lim‖nI‖nR‖id)}
14 . . .

RunResp1(id, sk, st, peerpk,m):
15 . . .
16 σ ← S.Sign(sk, Lrs‖nI‖nR‖X‖Y )
17 QS ← QS ∪ {(id, Lrs‖nI‖nR‖X‖Y )}
18 . . .
19 τ ← M.Tag(kt, Lrm‖nI‖nR‖id)
20 if S[st′.sid] 6= ⊥ then
21 QM ← QM ∪ {(st′.sid, Lrm‖nI‖nR‖id)}
22 . . .

RunResp2(id, sk, st, peerpk,m):
23 . . .
24 if S.Vrfy(peerpk[peerid], Lis‖nI‖nR‖X‖Y, σ′)

and M.Vrfy(kt, Lim‖nI‖nR‖peerid, τ ′) then
25 if revltkpeerid =∞ and

(peerid, Lis‖nI‖nR‖X‖Y ) /∈ QS then
26 abort
27 if S[st′.sid] 6= ⊥ and

(st′.sid, (peerid, Lim‖nI‖nR‖peerid) /∈ QM then
28 badM ← true ; abort
29 st′.status← accepted
30 st′.skey ← ks

31 else st′.status← rejected
32 return (st′,m′)

Figure 11: Games G8, G9, G10, and G11 of the SIGMA-I proof. Changes in G8 and G10 are
highlighted in gray, changes in G9 and G11 are highlighted in frames.
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MAC tags generated by honest sessions with honest partners in a list QM (using, as before, the
table S to determine whether a session has an honest partner). We set a flag badM if a session with
an honest partner receives a valid MAC tag which was not computed by any honest oracle. This
bookkeeping is similar to the changes from G7 to G8, but noting MAC tags instead of signatures.
As before, the bookkeeping itself does not affect the adversary’s advantage:

Pr[G9 ⇒ 1] = Pr[G10 ⇒ 1].

Game 11. In Game G11 (Figure 11), we abort if the badM flag is set to true. Again applying the
identical-until-bad lemma, we need to bound the probability of badM being set in G10, which we
do via the following reduction B4 to the multi-user EUF-CMA security of the MAC scheme M.

The reduction B4 simulates G10 truthfully, except that for any session with honest origin partner
(i.e., session with state st where S[st.sid] 6= ⊥), B4 does not compute kt itself, but instead assigns
an incremented user identifier i to this session’s sid and computes any calls to Tag or Vrfy using
its corresponding oracles for user i. There is at most one query to NewUser, and one each to Tag
and Vrfy for each of A’s queries to Send. Hence B4 makes at most qS queries to each of these three
oracles, and at most one query to Tag and Vrfy per user in the mu-EUF-CMA game. When badM is
triggered, B4 submits the triggering message and MAC tag under user identifier i as its forgery. In
the simulation, sessions will share a user identifier i if and only if they are partnered and would share
keys in Game G10. These keys are furthermore unique to one initiator and one responder session
only, so consistency is maintained. Furthermore, kt cannot be exposed (by RevLongTermKey
or RevSessionKey) to adversary A, hence implicitly replacing it with the MAC game’s oracles is
sound, and B4 makes no Corrupt queries. Except for oracle replacements, the pseudocode of B4
is identical to that of A in G10, so tB4 ≈ t.

If badM is triggered, then S[st′.sid] 6= ⊥, so st′.sid corresponds to some user identifier i in the
multi-user EUF-CMA game. Additionally, a tag τ for message m was verified under identity i, and
(st′.sid,m) was not logged in QM . Since B4 logs (st′.sid,m) every time it calls its Tag oracle on the
pair (i,m), this call cannot have occurred. Then τ is a valid forgery on m, which B4 will output
for user i to win the EUF-CMA game. Thus,

Pr[G10 ⇒ 1] ≤ Pr[G11 ⇒ 1] + Advmu-EUF-CMA
M, (tB4 , qS, qS, 1, qS, 1, 0).

We can now consider the final advantage of an adversary playing Game G11. Adversary A has
a non-zero advantage if in the final oracle query Finalize(b′)

1. Sound is false,

2. ExplicitAuth is false, or

3. Fresh is true and b′ = b.6

Soundness. The flag Sound is set if (1) three honest sessions hold the same session identifier, or
if (2) two partnered sessions hold different session keys.

For (1): No three honest sessions can share the same session identifiers, as this would require a
collision in either the contained initiator or responder nonce, which is excluded by Game G2.

For (2): The session identifier includes both nonces n and nR and DH shares X and Y , which
together determine the derived master key mk = RO(nI‖nR‖X‖Y ‖Z) (where Z is the DH secret

6If Fresh is false, b = b′ = 0 happens with probability 1
2 , so A’s advantage is 0.
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from X and Y ) and thus the session key. Agreement on the session identifier hence implies deriving
the same session key.

Hence, in Game G11, Sound is always true.

Explicit authentication. The predicate ExplicitAuth requires that for any session πi
u accepting

with a non-compromised peer v, there exists a partnered session πj
v of user v with opposite role

which, if it accepts, has u set as its peer.
The session πi

u, prior to accepting, obtained a valid signature on πi
u.sid and a label corresponding

to a role r 6= πi
u.role. Due to Game G9, this signature must have been issued by an honest session πj

v

(since v was not compromised at this point). All honest sessions sign their own sid and a label
corresponding to their own role, so πi

u.sid = πj
v.sid and πi

u.role = r 6= πj
v.role are satisfied.

Furthermore, when πj
v accepts, it must have received a valid MAC tag τ on a label identifying

an opposite-role session and that session’s user identity, as well as their shared nonces. Due to
Game G11, this MAC value must have been computed by an honest session holding the same
nonces, as πj

v has an honest partner session and therefore S[πj
v.sid] 6= ⊥. Furthermore, by Game G2,

nonces do not collide and hence that session must have been πi
u, thus computing the MAC on user

identity u, which πj
v accordingly sets as peer identity.

Therefore ExplicitAuth is always true in G11. Note that we did not require that the long-term
key of user u was uncorrupted, and we allow the adversary to continue interacting with sessions
after compromise; hence covering key compromise impersonation attacks.

Guessing the challenge bit. Finally, we have to consider A’s chance of guessing the challenge
bit b, which it may only learn through Test queries such that all tested sessions are fresh (i.e.,
Fresh is true).

The Fresh predicate being true ensures that all tested sessions (those in T ) accepted prior to
their respective partner being corrupt. Then, as ExplicitAuth is true, we have that for each tested
session there exists an honest session with the same sid and different roles. This session, by Fresh,
was not tested or revealed. Being partnered, the first message (nI , X) between these two honest
sessions was not tampered with, so in the responder session, whether it was the tested session or its
partner, the master and session keys are sampled uniformly at random (due to Games G6 and G7).
Since the initiator session holds the same sid, it copied the responder’s random session key (due
to Game G4). This random session key was not revealed in either of the two sessions (by Fresh),
and hence from A’s perspective is a uniformly random and independent value. In all Test oracle
responses, k0 and k1 are hence identically distributed and so G11 is fully independent of b. It follows
that the adversary A has no better than a 1

2 probability of choosing b′ equal to b, so

Pr[G11 ⇒ 1] = 1
2 ,

which concludes the proof.

6 The TLS 1.3 Handshake Protocol
The Transport Layer Security (TLS) protocol in version 1.3 [45] bases its key exchange design (the
so-called handshake protocol) on a variant of SIGMA-I. Following the core SIGMA design, the
TLS 1.3 main handshake is an ephemeral Diffie–Hellman key exchange, authenticated through a
combination of signing and MAC-ing the (full, hashed) communication transcript.7 Additionally,

7TLS 1.3 also specifies an abbreviated resumption-style handshake based on pre-shared keys; we focus on the main
DH-based handshake in this work.
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and similar to SIGMA-I, beyond establishing the main (application traffic) session key, handshake
traffic keys are derived and used to encrypt part of the handshake.

Beyond additional protocol features like negotiating the cryptographic algorithms to be used,
communicating further information in extensions, etc.—which we do not capture here—, TLS 1.3
however deviates in two core cryptographic aspects from the more simplistic and abstract SIGMA(-
I) design: it hashes the communication transcript when deriving keys and computing signatures
and MACs, and it uses a significantly more complicated key schedule. In this section we revisit the
TLS 1.3 handshake and discuss the careful technical changes and additional assumptions needed
to translate our tight security results for SIGMA-I to TLS 1.3’s main key exchange mode.

6.1 Protocol Description

We focus on a slightly simplified version of the handshake encompassing all essential cryptographic
aspects for our tightness results. In particular, we only consider mutual authentication and security
of the main application traffic keys (see [24, 25, 27, 23] for full computational, multi-stage key
exchange analyses of the different modes with varying authentication) and accordingly leave out
some computations and additional messages. To ease linking back to the underlying SIGMA-I
structure, we describe the protocol in the following referencing back to the latter (cf. Section 4).
We illustrate the handshake protocol and its accompanying key schedule in Figure 12, the latter
deriving keys in the extract-then-expand paradigm of the HKDF key derivation function [37].8

In the TLS 1.3 handshake, the client acts as initiator and the server as responder. Within Hello
messages, both send nonce values nC resp. nS together with ephemeral Diffie–Hellman shares gx

resp. gy. Based on these values, both parties extract a handshake secret HS from the shared DH
value DHE = gxy using HKDF.Extract with a constant salt input.9 In a second step, client and
server derive their respective handshake traffic keys tkchs, tkshs and MAC keys fkC , fkS through
two levels of HKDF.Expand steps from the handshake secret HS, including in the first level distinct
labels and the hashed communication transcript H(CH‖SH) so far as context information.

The handshake traffic keys are then used to encrypt the remaining handshake messages. First
the server, then the client send their certificate (carrying their identity and public key), a signature
over the hashed transcript up to including their certificate (H(CH‖ . . . ‖SCRT), resp. H(CH‖ . . . ‖CCRT)),
as well as a MAC over the (hashed) transcript up to incl. their signatures (H(CH‖ . . . ‖SCV), resp.
H(CH‖ . . . ‖CCV)). Note the similarity to SIGMA-I here: each party signs both nonces and DH val-
ues (within CH‖SH, modulo transcript hashing) together with a unique label, and then MACs both
nonces and their own identity (the latter being part of their certificate).10 The application traffic
secret ATS—which we treat as the session key skey, unifying secrets of both client and server—is
then derived from the master secret MS through HKDF.Expand with handshake context up to the
ServerFinished message. The master secret in turn is derived through (context-less) Expand and
Extract from the handshake secret HS.

8We follow the standard HKDF syntax: HKDF.Extract(XTS,SKM) on input salt XTS and source key material SKM
outputs a pseudorandom key PRK. HKDF.Expand(PRK,CTXinfo) on input a pseudorandom key PRK and context
information CTXinfo outputs pseudorandom key material KM.

9This salt input becomes relevant for pre-shared key handshakes, but in the full handshake takes the constant
value C1 = Expand(Extract(0, 0), "derived",H("")).

10Instead of using distinct labels for the client and server MAC computations, TLS 1.3 employs distinct MAC keys
for client and server, achieving separation between the two MAC values this way.
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Client Server

ClientHello: nC
$←− {0, 1}nl, X ← gx

ClientHello

ServerHello: nS
$←− {0, 1}nl, Y ← gy

ServerHello

DHE← Y x DHE← XyHS← HKDF.Extract(C1,DHE)
CHTS/SHTS← HKDF.Expand(HS, L1/L2,H(CH‖SH))

dHS← HKDF.Expand(HS, L3,H(""))
tkchs/tkshs ← HKDF.Expand(CHTS/SHTS, L4,H(""))

ServerCert: pkS

ServerCertVfy: SCV← S.Sign(skS , L5‖H(CH‖ . . . ‖SCRT))
fkS ← HKDF.Expand(SHTS, L6,H(""))

ServerFinished: SF← HMAC(fkS ,H(CH‖ . . . ‖SCV))
{ServerCert, ServerCertVfy, ServerFinished}tkshs

abort if ¬S.Vrfy(pkS , L5‖H(CH‖ . . . ‖SCRT), SCV)
abort if SF 6= HMAC(fkS ,H(CH‖ . . . ‖SCV))

ClientCert: pkC

ClientCertVfy: CCV← S.Sign(skC , L7‖H(CH‖ . . . ‖CCRT))
fkC ← HKDF.Expand(CHTS, L6,H(""))
ClientFinished: CF← HMAC(fkC ,H(CH‖ . . . ‖CCV))

{ClientCert, ClientCertVfy, ClientFinished}tkchs

abort if ¬S.Vrfy(pkC , L7‖H(CH‖ . . . ‖CCRT), CCV)
abort if CF 6= HMAC(fkC ,H(CH‖ . . . ‖CCV))

MS← HKDF.Extract(dHS, 0)
ATS← HKDF.Expand(MS, L8,H(CH‖ . . . ‖SF))

accept with key skey = ATS, session identifier sid = (nC , nS , X, Y )

DHE = gxy

HS

dHS

MS

Ext

Exp

Ext

CHTS tkchs

fkC

Exp

H(CH‖SH)

Exp

Exp

SHTS tkshs

fkS

Exp

H(CH‖SH)

Exp

Exp

ATSExp

H(CH‖ . . . ‖SF)

Protocol flow legend Message Abbreviations
MSG: Z message MSG sent, containing Z CH ClientHello
{MSG}K message AEAD-encrypted with K = tkshs/tkchs SH ServerHello

CCRT/SCRT Client/ServerCert
CCV/SCV Client/ServerCertVfy
CF/SF Client/ServerFinished

Figure 12: The simplified TLS 1.3 main Diffie–Hellman handshake protocol (left) and key schedule
(right). Values Li and Ci indicate bitstring labels, resp. constant values, (distinct per i). Boxes
Ext and Exp denote HKDF extraction resp. expansion, dashed inputs to Exp indicating context
information (see protocol figure for detailed computations).

6.2 Handling the TLS 1.3 Key Schedule

As mentioned before, the message flow of the TLS 1.3 handshake relatively closely follows the
SIGMA-I design [35, 36] (cf. Figure 4): after exchanging nonces and DH shares (in Hello) from
both sides, the remaining (encrypted) messages carry identities (Certificate), signatures over the
nonces and DH shares (CertificateVerify), and MACs over the nonces and identities (Finished).

What crucially differentiates the TLS 1.3 handshake from the basic SIGMA-I design (beyond
putting more under the respective signatures and MACs, which does not negatively affect the
key exchange security we are after) is the way keys are derived. While SIGMA-I immediately
derives a master key through a random oracle with input both the shared DH secret and the
session identifying nonces and DH shares, TLS 1.3 separates them in its HKDF-based extract-then-
expand key schedule: The core secrets—handshake secret (HS) and master secret (MS)—are derived
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without further context purely from the shared DH secret DHE = gxy (beyond other constant
inputs). Only when deriving the specific-purpose secrets—handshake traffic keys (tkchs, tkshs),
MAC keys (fkC , fkS), and session key (ATS)—is context added to the key derivation, including in
particular the nonces and DH shares identifying the session. To complicate matters even further,
this context is hashed before entering key derivation (or signature and MAC computation), and the
final session key ATS depends on more messages than just the session-identifying ones. Since our
tighter security proof for the SIGMA(-I) protocol (cf. Section 5) heavily makes use of (exactly) the
session identifiers being input together with DH secrets to a random oracle when programming the
latter, the question arises how to treat the TLS 1.3 key schedule when aiming at a similar proof
strategy.

In their concurrent work, Diemert and Jager [22] satisfy this requirement by modeling the full
derivation of each stage key in their multi-stage treatment as a separate random oracle. This
directly connects inputs to keys, but results in a monolithic random oracle treatment of the key
schedule which loses the independence of the intermediate HKDF.Extract and HKDF.Expand steps
in translation.

We overcome the technical obstacle of this linking while staying closer to the structure of
TLS 1.3’s key schedule. First of all, we directly model both HKDF.Extract and HKDF.Expand as
individual (programmable) random oracles, which leads to a slightly less excessive use of the random
oracle technique. We then have to carefully orchestrate the programming of intermediate secrets and
session keys in a two-level approach, connecting them through constant-time look-ups, and taking
into account that inputs to deriving the session keys depend on values established through the
intermediate secrets (namely, the server’s Finished MAC). Along the way, we separately ensure
that we recognize any hashed inputs of interest that the adversary might query to the random
oracle, without modeling the hash function H as a random oracle itself. By tracking intermediate
programming points (especially HS and MS) in the random oracles, we recover the needed capability
of linking sessions and their session identifiers and DH shares exchanged to the corresponding session
keys. This finally allows us to again (efficiently) determine when and on what input to query the
strong Diffie–Hellman oracle when programming challenge DH shares into the TLS 1.3 key exchange
execution during the proof.

7 Tighter Security Proof for the TLS 1.3 Handshake
We now give our second main result, the tighter-security bound for the TLS 1.3 handshake protocol.

Theorem 7.1. Let A be a key exchange security adversary against the TLS 1.3 handshake protocol
as specified in Figure 12 based on a hash function H, a signature scheme S, and a group G of
prime order p, and let the HKDF functions Extract and Expand in the protocol be modeled as
(independent) random oracles RO1, resp. RO2. For any (t, qN, qS, qRS, qRL, qT)-KE-SEC-adversary
against SIGMA-I making at most qRO queries to the random oracle, we give algorithms B1, B2, B3,
and B4 in the proof, with running times tBi ≈ t (for i = 1, 3, 4) and tB2 ≈ t + 2qRO log2 p close to
that of A, such that

AdvKE-SEC
TLS 1.3(t, qN, qS, qRS, qRL, qT) ≤ 3q2

S

2nl+1 · p
+ AdvCR

H (tB1)

+ 2 · AdvstDH
G (tB2 , qRO) + qRO · qS

2kl−1 + Advmu-EUF-CMA
S (tB3 , qN, qS, qS, qRL)

+ Advmu-EUF-CMA
HMAC (tB4 , qS, qS, 1, qS, 1, 0).
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Here, nl = 256 is the nonce length in TLS 1.3, kl is the output length of RO2 = HKDF.Expand, G
is the used Diffie–Hellman group of prime order p, and qS · qRO ≤ 2kl−3.11

Proof. We prove our bound by making an incremental series of changes to the key exchange security
game and limiting the amount that each change affects the success probability of A.

Game 0. The initial game, Game G0, is the key exchange security game for TLS played by A,
using the implicit KGen, Activate, and Run routines defined by the TLS protocol specification on
the left side of Figure 12. (In this game, HKDF.Extract and HKDF.Expand are modeled by random
oracles RO1 and RO2 respectively.) By definition,

Pr[G0 ⇒ 1] = Pr[GKE-SEC
TLS,A ⇒ 1].

Game 1. In game G0, we start logging the nonces and group elements chosen by honest sessions.
Whenever two honest sessions choose the same nonces or group elements, we set a flag badC .
Whenever an honest responder session chooses a nonce and group element that have already been
received by another session, we set a flag badO. We also make both random oracles RO1 and RO2
lazily sampled using internal tables H1 and H2. These changes only affect the values of the game’s
internal state, and the view of the adversary remains the same as in G0, so

Pr[G1 ⇒ 1] = Pr[G0 ⇒ 1].

Game 2. Starting with G2, we abort whenever two honest sessions sample the same nonce or
group element and whenever an honest responder samples a nonce and group element that are
already in use. Since this happens only after one of the flags badC and badO is set, by the identical-
until-bad lemma,

Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1] ≤ Pr[badC ← true or badO ← true in G1].

One nonce and one group element is chosen in each RunInit1 call and each RunResp1 call, so at most
one nonce and one group element is chosen for each of the qS queries the adversary makes to its
Send oracle. We use the birthday bound to limit the probability of a collision (flag badC) in either
the set of honest sessions’ nonces or the set of honest sessions’ DH shares to q2

S

2nl+1·p . Every time
a responder session chooses a nonce and group element, there are at most qS values have already
been chosen, so by the union bound badO is set with probability at most q2

S

2nl·p . Therefore

Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1] ≤ 3q2
S

2nl+1 · p
.

Game 3. Next, we must ensure that partial transcripts between honest sessions do not collide
under the hash function H. This is a step unique to the TLS proof, which hashes all of its context
with a collision-resistant hash function before it is input into key-derivation. In G3, honest sessions
will log all of their hash outputs in a look-up table T : whenever an honest session computes d = H(s)
for some string s, it sets T [d] ← s if T [d] has not already been defined. If T [d] is not empty, then

11We simplify the factor on AdvstDH
G to 2 by assuming qS · qRO ≤ 2kl−3, which is true for any reasonable real-world

parameters. See the proof for the exact bound.
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some prior honest session has computed d = H(s′) for some string s′. The session will set a flag
badH if s′ 6= s, noting that a collision has occurred. We also remove the now superfluous badC flag.
These administrative changes do not affect the view of the adversary, so

Pr[G3 ⇒ 1] = Pr[G2 ⇒ 1].

Game 4. In Game G4, we abort whenever hashes computed by honest sessions collide (i.e. the
badH flag is set). By the identical-until-bad lemma,

Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1] ≤ Pr[badH ← true in G3].

We bound the probability that badH is set via a reduction B1 to the collision-resistance security
of H. The reduction simulates G3 honestly for the adversary A. If the flag badH is set, then the
reduction has obtained strings s, s′, and d such that s′ 6= s, and H(s) = H(s′) = d. Then B1 outputs
(s, s′) and wins the collision-resistance game, so Advcr

H,B1 ≥ Pr[badH ← true in G3]. The runtime tB1

of B1 approximately equals the runtime of A in G3. It follows that

Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1] ≤ AdvCR
H (tB1).

Game 5. In Game G5, we remove the superfluous badH flag and make additional internal changes
to the behavior of honest sessions. As in the SIGMA-I proof, all honest initatior sessions now log the
first message they send in a set Sent, and honest responder sessions use this set to check whether
their first received message came from an honest session without tampering. If so, we say the
responder session has an “honest origin partner.” In the SIGMA-I protocol, partnering between
honest sessions was sufficient to ensure agreement on the derived master key and all subsequently
computed keys, since partners are guaranteed to hold the same nonces and group elements. In
TLS 1.3, partnering also ensures agreement on the handshake traffic secrets SHTS and CHTS,
but it does not ensure agreement on the session key ATS. Therefore the responder only logs the
handshake traffic keys fkS , fkC , tkshs, and tkchs in a look-up table S under its session identifier. In
addition to the session identifier, the application traffic secret ATS depends on the server’s identity
SCRT, signature SCV, and MAC tag SF. These values are not necessarily shared by partner sessions
in Game G5, so two partnered sessions may derive different values of ATS. The responder session
therefore logs its session key ATS in a second look-up table S′ indexed by all of the dependencies
of the session key: sid, SCRT, SCV, and SF. All of this is just bookkeeping, so

Pr[G5 ⇒ 1] = Pr[G4 ⇒ 1].

Game 6. Going forward from Game G6, honest initiators copy their key material from tables S
and S′ if it is consistent for them to do so. In the case where the adversary has tampered with
the values of SCRT, SCV, or SF, the partner’s session key depends on the untampered values and
should not be copied. Therefore honest initiators always copy encryption and MAC keys from the
table S if they have an honest partner session, but they only copy ATS when the SCRT, SCV, and
SF messages they received match the ones sent by their partner. The initiator session can check
whether tampering occurred using the table S′, which will contain a session key ATS at index
sid‖SCRT‖SCV‖SF if and only if the honest partner session computed and sent SCRT, SCV, and SF.

We argue that all copied keys are consistent with the keys that would be derived in G5. Recall
that partnered sessions agree on the nonces and the DH shares X and Y as components of sid,
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so they also agree on the shared DH secret Z associated with the pair (X,Y ). Partnered sessions
therefore agree on the handshake secret HS, which is derived from Z without context, and on the
handshake traffic secrets, which are derived with the session identifier as context. Thus partnered
sessions agree on the values of the handshake traffic keys fkS , fkC , tkshs, and tkchs which are derived
from the handshake traffic secrets. For the adversary it is hence unobservable if honest sessions
compute the handshake traffic keys themselves, or copy the keys from their partners. By agreeing
on the handshake secret HS, partnered sessions will also agree on the master secret MS, which is
derived from HS without context. The if SCRT, SCV, and SF are left untampered, both sessions
will derive the session key as RO2(MS, L8,H(sid‖SCRT‖SCV‖SF)]). Hence it is again unobservable
whether an honest initiator derives ATS itself or copies ATS from an honest partner which agrees
on the values of SCRT, SCV, SF; consequently

Pr[G6 ⇒ 1] = Pr[G5 ⇒ 1].

Game 7. In Game G7, all responders sample ATS, SHTS and CHTS randomly (unless their
values have already been fixed by queries to random oracle RO2 on the corresponding input), then
retroactively programs random oracle RO2 by setting its internal table H2 on the appropriate input.
Partnered initiator sessions which have not copied ATS (i.e., those who received tampered SCRT,
SCV, and SF) also sample ATS randomly and program RO2 when necessary. We choose to program
ATS, SHTS, and CHTS, as opposed to only mk in the SIGMA-I proof, because these three keys are
derived with context. Most importantly, the DH shares X and Y indirectly enter the key derivation
for these keys, which will be critical for the reduction in the next step. This simply moves the lazy
sampling process from RO2 to RunResp1 and RunInit2 for certain queries, which is unobservable to
the adversary; therefore

Pr[G7 ⇒ 1] = Pr[G6 ⇒ 1].

Game 8. The step between G7 and G8 is most technically involved step of this proof, and it
is also the most significantly altered from the corresponding step in the proof of SIGMA-I. In
G8, partnered initiators and responder sessions with honest origin partners will stop maintaining
the consistency of their keys ATS, SHTS, and CHTS with the random oracle RO2. Specifically,
responders with honest origin partners sample ATS, SHTS, and CHTS uniformly at random even
if RO2 has already been queried on the string HS, L, d for the appropriate label and hash, and they
do not retroactively program RO2. Partnered initiator sessions which have not copied ATS from
their partner also sample ATS uniformly without checking or programming RO2. These keys are
therefore completely random, and they will be inconsistent with any random oracle queries made
before or after the keys are sampled.

In order to detect this inconsistency, the adversary must make a query to RO2 that would, in
G7, return one of the unprogrammed keys. Which queries are these? They are the queries that an
honest responder session with honest origin partner would use to derive SHTS, CHTS, and ATS,
and the queries that an honest partnered initiator which received a tampered message would use
to derive ATS. Formally, let sid = (n, n′, X, Y ) be the session ID held by some honest responder
session with honest origin partner, and let SCRT, SCV, SF be the identity, signature, and MAC
tag sent by this session. Let DHE be the DH secret corresponding to the pair (X,Y ). Then the
adversary A can detect an inconsistency (in derviations of honest responders) in game G8 if at any
point during the game A queries RO2 on one of the tuples

(RO1(C1,DHE), L,H(sid)) or (MS, L8,H(sid‖SCRT‖SCV‖SF)),
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where L ∈ {L1, L2} and where for some HS, dHS, we have that HS = RO1(C1,DHE), that dHS =
RO2(HS, L3,H("")), and that MS = RO1(dHS, 0). Otherwise (for derivations of honest initiators),
let sid be the session ID held by an honest partnered initiator session, and let SCRT, SCV, and SF
be the identity, signature, and MAC tag received by that session. For initiator sessions that do not
copy ATS, at least one of these values was not sent by the honest partner. Then the adversary A
can detect an inconsistency in game G8 if at any point it queries RO2 on the tuple

(MS, L8,H(sid‖SCRT‖SCV‖SF)),

where for some HS, dHS, we have that HS = RO1(C1,DHE), that dHS = RO2(HS, L3,H("")), and
that MS = RO1(dHS, 0). Let event F denote the event that the adversary A makes at least one of
the above queries. If event F does not occur, then ATS, SHTS, and CHTS are chosen uniformly
at random in both G7 and G8, hence

Pr[G7 ⇒ 1]− Pr[G8]⇒ 1] ≤ Pr[F occurs in G7].

We bound the probability of event F via a reduction B2 to the strong Diffie–Hellman assumption
in group G. The reduction will make no more queries to its stDH oracle than A makes to its RO2
oracles.

Given its strong DH challenge (A = ga, B = gb) and having access to the strong Diffie–Hellman
oracle stDHa, B2 simulates G7 for an adversary A in the following manner: In all honest initiator
sessions, B2 samples r uniformly at random from Zp and sets the session’s DH share X ← A ·gr. In
all honest responder sessions with honest origin partner, B2 samples r′ uniformly from Zp and sets
the session’s DH share Y ← B · gr′ . Both of these DH shares are still distributed uniformly over Zp

as long as p is prime and A and B are not the identity. To extract gab when event F occurs, the
reduction B2 will follow the same general strategy as the reduction B1 in the proof of SIGMA-I,
with four major points of divergence. We address these points first, before giving a full description
of B2.

1. Since B2 no longer knows x or y such that X = gx or Y = gy, it cannot compute the Diffie–
Hellman secret DHE or the derived handshake secret HS, so it samples HS randomly for honest
responder sessions with honest origin partners and for honest partnered initiator sessions. The
adversary can only tell that HS was not correctly computed if it notices that SHTS, CHTS, or
dHS are derived from an incorrect value of HS. The former two cases require the adversary to
make a query that triggers event F . In the latter case, dHS is not revealed to the adversary
through any oracle, so the adversary must notice that ATS, which is derived indirectly from
dHS via the master secret, is derived from an incorrect value of HS. This also requires A to
make a query that triggers event F . Therefore, until event F occurs, this change is unobservable
to the adversary.

2. In the TLS protocol, the context string, including the Diffie–Hellman sharesX and Y , is hashed
with H before it enters key derivation, so B2 cannot directly associate a query to RO2 with the
honest session(s) whose session ID is being used. The reduction addresses this by having each
honest responder with honest origin partner and each honest partnered initiator, log the hash
of its context in a reverse look-up table R. (The context does not include the handshake or
master secrets.) Then in the RO2 oracle, B2 can use R to efficiently check whether the hash d
of a query is used to derive a handshake or application traffic key.

3. Due to TLS’s complex key schedule, no one random oracle query contains both a pair of Diffie–
Hellman shares and the DH secret associated with that pair. Instead, B2 will augment the RO1
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and RO2 oracles to log in a reverse look-up table T the DH secret associated with each of the
intermediate values HS, dHS, and MS. The DH secret for dHS = RO2(HS, L3,H("")) simply
be copied from T [HS], and the DH secret for MS = RO1(dHS, 0) will be copied from T [dHS].
For each query to RO2 with secret s, the reduction can efficiently check using T whether s was
derived from some DH secret via RO1.

4. The TLS key schedule uses multiple random oracle queries (if we model HKDF.Extract and
HKDF.Expand as random oracles) whereas the SIGMA-I protocol uses only one. If A can guess
the intermediate value HS = RO1(C1,DHE), where DHE is the DH secret associated to some
pair of embedded shares (X,Y ) chosen by honest sessions, then it can trigger event F without
ever submitting DHE to an oracle. In this case, A can trigger event F , but B2 cannot win the
strong DH game. However, if RO1(C1,DHE) is never queried, then it is uniformly random, and
the probability that A guesses correctly is bounded by qRO·qS

2kl by the birthday bound.

To compute the correct handshake and application traffic keys, B2 needs to be able to correctly
program CHTS, SHTS, and ATS. When these keys are chosen by an honest responder with honest
origin partner or a partnered initiator, B2 uses its strong DH oracle to check whether RO2 has
already received the query that the adversary needs to make to generate these keys. If the query
has already been made, B2 can look up the DH secret using T and win the game. Otherwise, B2
hashes the session’s context and logs it in R, so that future RO2 queries can identify this session
for retroactive programming. It also logs the session’s randomness in a look-up table Q, to be used
if event F is triggered relative to this session by a future RO2 query.

Like in the SIGMA-I proof, B2 must be able to correctly compute handshake and application
traffic keys for unpartnered initiator sessions. Because all initiator sessions have embedded DH
shares, B2 cannot compute the DH secret DHE for these sessions. However, it can use its strong
DH oracle to check whether the adversary has queried such a secret and copy the expected keys
to preserve consistency in this case. If no query has been made, the keys are selected randomly
and the initiator session stores its context, randomness, and keys in R. In future queries to the
RO2 oracle, B2 will use R to efficiently check whether a query should output one of the initiator
session’s keys. If so, it retroactively programs the oracle using the keys from R.

Therefore, if event F occurs, reduction B2 wins the strong Diffie–Hellman game except with
probability qRO·qS

2kl , resulting in AdvstDH
G (tB2 , qRO) ≥ (1 − qRO·qS

2kl ) · Pr[F ]. Then Pr[F ] ≤ 2kl
2kl−qRO·qS

·
AdvstDH

G (tB2 , qRO). Otherwise, the reduction simulates G7 perfectly except with probability qRO·qS
2kl .

Pr[G7 ⇒ 1] = Pr[G8 ⇒ 1] + Pr[F ] + (1− Pr[F ]) · qRO · qS
2kl

≤ Pr[G8 ⇒ 1] + 2kl + qRO · qS
2kl − qRO · qS

· AdvstDH
G (tB2 , qRO) + qRO · qS

2kl

≤ Pr[G8 ⇒ 1] + 2 · AdvstDH
G (tB2 , qRO) + qRO · qS

2kl
,

where the last simplification step assumes that qS · qRO ≤ 2kl−2, which is true for any reasonable
real-world parameters.

Game 9. In Game G9, honest responders with honest origin partners sample fkS , fkC , tkchs and
tkshs uniformly at random, so these keys are no longer consistent with RO2. The adversary can
distinguish this change if and only if it queries RO2 on a string SHTS, L,H(""), or CHTS, L,H(""),
where L ∈ {L4, L6}, and SHTS and CHTS are chosen by an honest responder sessions with honest
origin partner. Call this event E. In these sessions, SHTS and CHTS are chosen uniformly at
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random by G8, and they are never revealed by any oracle. Therefore the probability of event E is
at most qRO·qS

2kl by the birthday bound, hence

Pr[G8] ≤ Pr[G9] + qRO · qS
2kl

.

Note that this step in the SIGMA-I proof introduced a multi-user PRF security bound due to
final keys being derived through a PRF, not the random oracle. Modeling HKDF.Expand as random
oracle RO2, we here instead incur a birthday bound under the random oracle instead of a multi-user
PRF security bound for HKDF.Expand.

The remaining game hops are identical to those in the proof of SIGMA-I, so we discuss them
only briefly.

Game 10. In Game G10, we log all messages signed by an honest session in a look-up table QS ,
and we set a flag badS whenever a partnered session verifies a signature with an uncorrupted public
key on a message that was not in QS . This is just administrative, so

Pr[G10 ⇒ 1] = Pr[G9 ⇒ 1].

Game 11. In Game G11, we abort if the flag badS is set. In this case, an honest partnered session
received a signature which was not computed by an honest session, and which was verified by an
uncorrupted public key. We can give a straightforward reduction B3 to the multi-user EUF-CMA
security of the signature scheme that wins whenever badS is set and has runtime approximately
equal to that of A in G10. By the identical-until-bad lemma,

Pr[G10 ⇒ 1]− Pr[G11 ⇒ 1] ≤ Advmu-EUF-CMA
S (tB3 , qN, qS, qS, qRL).

Interestingly and in contrast to the SIGMA-I proof, soundness is still not guaranteed after this
game hop, because we do not require the signature scheme to be strongly unforgeable. Therefore
the adversary may be able to produce a new signature on a message that had been signed by an
honest session, allowing it to tamper with SCV without setting the badS flag.

Game 12. In Game G12 we log all messages for which an honest session computed a MAC tag in
a look-up table QM . We remove the badS flag and instead set a flag badM if an honest partnered
session verifies a MAC on a message that is not in QM . Again, this is only bookkeeping and does
not impact the view of A, hence

Pr[G12 ⇒ 1] = Pr[G11 ⇒ 1].

Game 13. Finally, in Game G13, we abort if an honest session with an honest partner verifies
a MAC tag on a message which was not tagged by any honest session; i.e if the badM flag is set.
We can give a simple reduction B4 to multi-user MAC security. The reduction B4 assigns a pair
of indices i, i + 1 to each session identifier held by an honest session with honest origin partner.
When an honest session with honest origin partner needs to compute a server MAC tag, B4 finds
the pair (i, i+ 1) using the session identifier and calls its Tag oracle with user identity i. When the
session needs a client MAC tag B4 calls Tag with user identity i + 1. The reduction calls its Tag
oracle no more than twice for every query A makes to Send (once to generate a tag, and once to
verify a tag). Since by Game G9 all honest sessions with honest origin partners sample their MAC
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keys fkS and fkC uniformly at random, the keys implicitly generated by the MAC security game
are consistent with the expected operation of Game G13. When the flag badM is set, a partnered
session has received a valid tag on a message which was never logged in QM . The reduction can
look up the pair (i, i+ 1) using the session identifier of whichever session set badM . Since B4 logs
every message for which it calls its Tag oracle, this is a valid forgery for either identity i or identity
i+ 1, and B4 will win. Then

Pr[G12 ⇒ 1]− Pr[G13 ⇒ 1] ≤ Advmu-EUF-CMA
M (tB4 , qS, qS, 1, qS, 1, 0).

The runtime of B4 is about that of A in G12.

We can now finally argue that the advantage of A in G13 is zero. The adversary A would win
game G13 with probability better than 1

2 in one of three ways:

1. Sound is false,

2. ExplicitAuth is false, or

3. Fresh is true and b′ = b.

Soundness. The flag Sound is set if (1) three honest sessions hold the same session identifier, or
if (2) two partnered sessions accept with different session keys. By Game G2, each session identifier
is held by at most one session of each role. There are only two roles so case (1) never occurs. If two
partnered sessions π1 and π2 accept, the initiator session π1 verified a MAC tag τ on the message
m = n‖n′‖X‖Y ‖SCRT‖SCV. Because τ was verified by an honsest partnered session, by Game G13,
this message was tagged by an honest session. Honest sessions only tag strings including their own
nonce, and by Game G2, the only honest session with nonce n′ is π2. Then π2 must have tagged the
message m, so π1 and π2 agree on both τ and m. Since the DH shares X and Y are components of
m, π1 and π2 also agree on the DH secret DHE associated with the pair (X,Y ). Consequently, π1
and π2 will agree on any value derived deterministically from m, τ , and DHE, including the session
key ATS. Then the flag Sound is always true in G13.

Explicit authentication. The flag ExplicitAuth is set if there exists a session πi
u that accepts

with uncorrupted peer identity v, and either (1) no honest session πj
v is partnered with πi

u, or (2)
a session πj

v is partnered with πi
u but accepts with peer identity w 6= u. To have accepted with

peer identity v, the session πi
u must have received and verified a signature σ using the public key of

identity v on a message m containing the session identifier of πi
u. As v was uncorrupted at the time

that πi
u accepted, by Game G11, the message m must have been signed by some honest session πj

v.
As honest sessions only sign messages containing their own session identifiers, πj

v.sid = πi
u.sid, so

πj
v and πi

u are partnered. If case (2) occurs, πj
v must have accepted a MAC tag τ on message m′

containing its session ID and the identity w of its peer. We know that πj
v is a partnered session,

so by G13, m′ was tagged by some honest session. Honest sessions tag only messages containing
their own session identifiers, so by G2, the message m′ must have been tagged by either πi

u or πj
v.

In SIGMA-I, the messages tagged by these two sessions are differentiated by there labels. Here,
they are differentiated by their length: one role signs a message including values SF, CCRT, and
CCV, while the other signs a message which does not contain these values. For this reason πj

v will
not verify the tag on a message it signed itself. Therefore m′ must have been tagged by πi

u, so m′
contains the identity u. This contradicts the assumption that w 6= u, so case (2) never occurs, and
the flag ExplicitAuth is always false in G13.
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Guessing the challenge bit. Now the adversary can only win with advantage better than zero
is by guessing the correct value of b when the Fresh flag is set to true. This requirement ensures
that all tested sessions accepted with uncorrupted peer identities. Since ExplicitAuth is true, each
tested session must therefore have an honest session with which it is partnered, and by Sound, this
session holds the same session key. Then by G6, each tested initiator session copies the session key
of its partner. By G8 each tested responder session, and each responder session partnered with
a tested initiator session chooses its session key uniformly at random. By Fresh, the partners of
tested sessions were not tested or revealed. Then the session keys of all tested sessions are sampled
uniformly and never revealed to the adversary by any oracle. Therefore the key returned by each
Test query is uniformly random and independent of the bit b. The adversary’s view is independent
of the bit b, so it will win G13 with probability 1

2 , and consequently its advantage is 0.

Collecting the bounds across all game hops gives the theorem statement.

8 Evaluation
Tighter security results in terms of loss factors are practically meaningful only if they materialize
in better concrete advantage bounds when taking the underlying assumptions into account. In our
case, this amounts to the question: How does the overall concrete security of the SIGMA/SIGMA-I
and the TLS 1.3 key exchange protocols improve based on our tighter security proofs?

Parameter selection. In order to evaluate our and prior bounds pratically, we need to make
concrete choices for each of the parameters entering the bounds. Let us explain the choices we
made in our evaluation:

Runtime t ∈ {240, 260, 280}. We parameterize the adversary’s runtime between well within com-
putational reach (240) and large-scale attackers (280).

Number of users #U = qN ∈ {220, 230}. We consider the number of users a global-scale ad-
versary may interact with to be in the order of active public-key certificates on the Internet,
reported at 130–150 million12 (≈ 227).

Number of sessions #S ≈ qS ∈ {235, 245, 255}. Chrome13 and Firefox14 report that 76–98% of
all web page accesses through these browsers are encrypted, with an active daily base of about
2 billion (≈ 230) users. We consider adversaries may easily see 235 sessions and a global-scale
attacker may have access to 255 sessions over an extended timespan. Note that the number of
send queries essentially corresponds to the number of sessions.

Number of RO queries #RO = qRO = t
210 . We fix this bound at a 210-fraction of the overall

runtime accounting for all adversarial steps.

Diffie–Hellman groups and group order p. We consider all five elliptic curves standardized
for use with TLS 1.3 (bit-security level b and group order p in parentheses): secp256r1 (b =
128, p ≈ 2256), secp384r1 (b = 192, p ≈ 2384), secp521r1 (b = 256, p ≈ 2521), x25519
(b = 128, p ≈ 2252), and x448 (b = 224, p ≈ 2446). We focus on elliptic curve groups only,
as they provide high efficiency and the best known algorithms for solving discrete-log and DH

12https://letsencrypt.org/stats/, https://trends.builtwith.com/ssl/traffic/Entire-Internet
13https://transparencyreport.google.com/https/
14https://telemetry.mozilla.org/
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problems are generic, allowing us to apply GGM bounds for the involved DDH and strong DH
assumptions.

Signature schemes. In order to unify the underlying hardness assumptions, we consider the
ECDSA/EdDSA signature schemes standardized for use with TLS 1.3, based on the five elliptic
curves above, treating their single-user unforgeability as equally hard as the corresponding
discrete logarithm problem.

Symmetric schemes and key/output/nonce lengths kl, ol, nl. Since our focus is mostly
on evaluating ECDH parameters, we idealize the symmetric primitives (PRF, MAC, and hash
function) in the random oracle model. Applying lengths standardized for TLS 1.3, we set
the key and output length to kl = ol = 256 bits for 128-bit security curves and 384 bits for
higher-security curves, corresponding to ciphersuites using SHA-256 or SHA-384. The nonce
length is fixed to nl = 256 bits, again as in TLS 1.3.

Reveal and Test queries qRS, qRL, qT. Using a generic reduction to single-user signature un-
forgeability, the number of RevLongTermKey, RevSessionKey, and Test queries do not
affect the bounds; we hence do not place any constraints on them.

Fully-quantitative CK/DFGS bounds for SIGMA/TLS 1.3. For our evaluation, we need
to reconstruct fully-quantitative security bounds from the more abstract prior security proofs for
SIGMA by Canetti-Krawczyk [18] and for TLS 1.3 by Dowling et al. [23]. We report them in
Appendix A for reference. In terms of their reduction to underlying DH problems, the CK SIGMA
bound reduces to the DDH problem with a loss of #U · #S, whereas the DFGS TLS 1.3 bound
reduces to the strong DH problem with a loss of (#S)2.

Numerical advantage bounds for CK, DFGS, and ours. We report the numerical advantage
bounds for SIGMA and TLS 1.3 based on prior (CK [18], DFGS [23]) and our bounds when ranging
over the full parameter space detailed above in Table 2. Table 1 summarizes the key data points
for 128-bit and 192-bit security levels.

Throughout Table 2, we assume that an adversary with running time t makes no more than
t · 2−10 queries to its random oracles. We target the bit-security of whatever curve we use; this
means that for b bits of security we want an advantage of t/2b. If a bound does not achieve this
goal, we color it red. We consider runtimes between 240 and 280, a total number of users between
to vary between 220 and 230, and a total number of sessions between 235 and 255 (see above for the
discussion of these parameter choices). We evaluate these parameters in relation to all of the elliptic
curve groups standardized for use with TLS 1.3. We idealize symmetric primitives, assuming the
use of 256-bit keys in conjunction with 128-bit security curves and 384-bit keys in conjunction
with higher-security curves, this corresponds to the available SHA-256 and SHA-384 functions in
TLS 1.3. The nonce length is fixed to 256 bits (as in TLS 1.3).

Our bounds do better than the CK [18] and DFGS [23] bounds across all considered param-
eters and always meet the security targets, which these prior bounds fail to meet for secp256r1
and x25519 for almost all parameters, but notably also for the 192-bit security level of curve
secp384r1 for large-scale parameters. We improve over prior bounds by at least 20 and up to 85
bits of security for SIGMA, and by at least 35 and up to 92 bits of security for TLS 1.3.

In comparison, the TLS 1.3 bounds from the concurrent work by Diemert and Jager [22] yield
bit security levels similar to ours for TLS 1.3: While some sub-terms in their bound are slightly
worse (esp. for strong DH), the dominating sub-terms are the same.
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Adv. resources SIGMA TLS 1.3

t #U #S #RO Curve (bit security b, group order p) Target t/2b CK [18] Us (Thm. 5.1) DFGS [23] Us (Thm. 7.1)

240 220 235 230 secp256r1 (b = 128, p≈2256) 2−88 ≈ 2−101 ≈ 2−156 ≈ 2−104 ≈ 2−156

240 220 245 230 secp256r1 (b = 128, p≈2256) 2−88 ≈ 2−91 ≈ 2−156 ≈ 2−84 ≈ 2−156

240 220 255 230 secp256r1 (b = 128, p≈2256) 2−88 ≈ 2−81 ≈ 2−156 ≈ 2−64 ≈ 2−156

240 230 235 230 secp256r1 (b = 128, p≈2256) 2−88 ≈ 2−81 ≈ 2−146 ≈ 2−104 ≈ 2−146

240 230 245 230 secp256r1 (b = 128, p≈2256) 2−88 ≈ 2−71 ≈ 2−146 ≈ 2−84 ≈ 2−146

240 230 255 230 secp256r1 (b = 128, p≈2256) 2−88 ≈ 2−61 ≈ 2−146 ≈ 2−64 ≈ 2−146

240 220 235 230 secp384r1 (b = 192, p≈2384) 2−152 ≈ 2−229 ≈ 2−284 ≈ 2−232 ≈ 2−284

240 220 245 230 secp384r1 (b = 192, p≈2384) 2−152 ≈ 2−219 ≈ 2−284 ≈ 2−212 ≈ 2−284

240 220 255 230 secp384r1 (b = 192, p≈2384) 2−152 ≈ 2−209 ≈ 2−284 ≈ 2−192 ≈ 2−284

240 230 235 230 secp384r1 (b = 192, p≈2384) 2−152 ≈ 2−209 ≈ 2−274 ≈ 2−232 ≈ 2−274

240 230 245 230 secp384r1 (b = 192, p≈2384) 2−152 ≈ 2−199 ≈ 2−274 ≈ 2−212 ≈ 2−274

240 230 255 230 secp384r1 (b = 192, p≈2384) 2−152 ≈ 2−189 ≈ 2−274 ≈ 2−192 ≈ 2−274

240 220 235 230 secp521r1 (b = 256, p≈2521) 2−216 ≈ 2−298 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 220 245 230 secp521r1 (b = 256, p≈2521) 2−216 ≈ 2−288 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 220 255 230 secp521r1 (b = 256, p≈2521) 2−216 ≈ 2−278 ≈ 2−298 ≈ 2−242 ≈ 2−297

240 230 235 230 secp521r1 (b = 256, p≈2521) 2−216 ≈ 2−288 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 230 245 230 secp521r1 (b = 256, p≈2521) 2−216 ≈ 2−278 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 230 255 230 secp521r1 (b = 256, p≈2521) 2−216 ≈ 2−268 ≈ 2−298 ≈ 2−242 ≈ 2−297

240 220 235 230 x25519 (b = 128, p≈2252) 2−88 ≈ 2−97 ≈ 2−152 ≈ 2−100 ≈ 2−152

240 220 245 230 x25519 (b = 128, p≈2252) 2−88 ≈ 2−87 ≈ 2−152 ≈ 2−80 ≈ 2−152

240 220 255 230 x25519 (b = 128, p≈2252) 2−88 ≈ 2−77 ≈ 2−152 ≈ 2−60 ≈ 2−152

240 230 235 230 x25519 (b = 128, p≈2252) 2−88 ≈ 2−77 ≈ 2−142 ≈ 2−100 ≈ 2−142

240 230 245 230 x25519 (b = 128, p≈2252) 2−88 ≈ 2−67 ≈ 2−142 ≈ 2−80 ≈ 2−142

240 230 255 230 x25519 (b = 128, p≈2252) 2−88 ≈ 2−57 ≈ 2−142 ≈ 2−60 ≈ 2−142

240 220 235 230 x448 (b = 224, p≈2446) 2−184 ≈ 2−291 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 220 245 230 x448 (b = 224, p≈2446) 2−184 ≈ 2−281 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 220 255 230 x448 (b = 224, p≈2446) 2−184 ≈ 2−271 ≈ 2−298 ≈ 2−242 ≈ 2−297

240 230 235 230 x448 (b = 224, p≈2446) 2−184 ≈ 2−271 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 230 245 230 x448 (b = 224, p≈2446) 2−184 ≈ 2−261 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 230 255 230 x448 (b = 224, p≈2446) 2−184 ≈ 2−251 ≈ 2−298 ≈ 2−242 ≈ 2−297

260 220 235 250 secp256r1 (b = 128, p≈2256) 2−68 ≈ 2−61 ≈ 2−116 ≈ 2−64 ≈ 2−116

260 220 245 250 secp256r1 (b = 128, p≈2256) 2−68 ≈ 2−51 ≈ 2−116 ≈ 2−44 ≈ 2−116

260 220 255 250 secp256r1 (b = 128, p≈2256) 2−68 ≈ 2−41 ≈ 2−116 ≈ 2−24 ≈ 2−116

260 230 235 250 secp256r1 (b = 128, p≈2256) 2−68 ≈ 2−41 ≈ 2−106 ≈ 2−64 ≈ 2−106

260 230 245 250 secp256r1 (b = 128, p≈2256) 2−68 ≈ 2−31 ≈ 2−106 ≈ 2−44 ≈ 2−106

260 230 255 250 secp256r1 (b = 128, p≈2256) 2−68 ≈ 2−21 ≈ 2−106 ≈ 2−24 ≈ 2−106

260 220 235 250 secp384r1 (b = 192, p≈2384) 2−132 ≈ 2−189 ≈ 2−244 ≈ 2−192 ≈ 2−244

260 220 245 250 secp384r1 (b = 192, p≈2384) 2−132 ≈ 2−179 ≈ 2−244 ≈ 2−172 ≈ 2−244

260 220 255 250 secp384r1 (b = 192, p≈2384) 2−132 ≈ 2−169 ≈ 2−244 ≈ 2−152 ≈ 2−244

260 230 235 250 secp384r1 (b = 192, p≈2384) 2−132 ≈ 2−169 ≈ 2−234 ≈ 2−192 ≈ 2−234

260 230 245 250 secp384r1 (b = 192, p≈2384) 2−132 ≈ 2−159 ≈ 2−234 ≈ 2−172 ≈ 2−234

260 230 255 250 secp384r1 (b = 192, p≈2384) 2−132 ≈ 2−149 ≈ 2−234 ≈ 2−152 ≈ 2−234

260 220 235 250 secp521r1 (b = 256, p≈2521) 2−196 ≈ 2−278 ≈ 2−298 ≈ 2−250 ≈ 2−285

260 220 245 250 secp521r1 (b = 256, p≈2521) 2−196 ≈ 2−268 ≈ 2−288 ≈ 2−240 ≈ 2−285

260 220 255 250 secp521r1 (b = 256, p≈2521) 2−196 ≈ 2−258 ≈ 2−278 ≈ 2−222 ≈ 2−277

260 230 235 250 secp521r1 (b = 256, p≈2521) 2−196 ≈ 2−268 ≈ 2−298 ≈ 2−250 ≈ 2−285

260 230 245 250 secp521r1 (b = 256, p≈2521) 2−196 ≈ 2−258 ≈ 2−288 ≈ 2−240 ≈ 2−285

260 230 255 250 secp521r1 (b = 256, p≈2521) 2−196 ≈ 2−248 ≈ 2−278 ≈ 2−222 ≈ 2−277

260 220 235 250 x25519 (b = 128, p≈2252) 2−68 ≈ 2−57 ≈ 2−112 ≈ 2−60 ≈ 2−112

260 220 245 250 x25519 (b = 128, p≈2252) 2−68 ≈ 2−47 ≈ 2−112 ≈ 2−40 ≈ 2−112

260 220 255 250 x25519 (b = 128, p≈2252) 2−68 ≈ 2−37 ≈ 2−112 ≈ 2−20 ≈ 2−112

260 230 235 250 x25519 (b = 128, p≈2252) 2−68 ≈ 2−37 ≈ 2−102 ≈ 2−60 ≈ 2−102

260 230 245 250 x25519 (b = 128, p≈2252) 2−68 ≈ 2−27 ≈ 2−102 ≈ 2−40 ≈ 2−102

260 230 255 250 x25519 (b = 128, p≈2252) 2−68 ≈ 2−17 ≈ 2−102 ≈ 2−20 ≈ 2−102

260 220 235 250 x448 (b = 224, p≈2446) 2−164 ≈ 2−251 ≈ 2−298 ≈ 2−250 ≈ 2−285

260 220 245 250 x448 (b = 224, p≈2446) 2−164 ≈ 2−241 ≈ 2−288 ≈ 2−234 ≈ 2−285

260 220 255 250 x448 (b = 224, p≈2446) 2−164 ≈ 2−231 ≈ 2−278 ≈ 2−214 ≈ 2−277

260 230 235 250 x448 (b = 224, p≈2446) 2−164 ≈ 2−231 ≈ 2−296 ≈ 2−250 ≈ 2−285

260 230 245 250 x448 (b = 224, p≈2446) 2−164 ≈ 2−221 ≈ 2−288 ≈ 2−234 ≈ 2−285

260 230 255 250 x448 (b = 224, p≈2446) 2−164 ≈ 2−211 ≈ 2−278 ≈ 2−214 ≈ 2−277

280 220 235 270 secp256r1 (b = 128, p≈2256) 2−48 ≈ 2−21 ≈ 2−76 ≈ 2−24 ≈ 2−76

280 220 245 270 secp256r1 (b = 128, p≈2256) 2−48 ≈ 2−11 ≈ 2−76 ≈ 2−4 ≈ 2−76

280 220 255 270 secp256r1 (b = 128, p≈2256) 2−48 ≈ 2−1 ≈ 2−76 1 ≈ 2−76

280 230 235 270 secp256r1 (b = 128, p≈2256) 2−48 ≈ 2−1 ≈ 2−66 ≈ 2−24 ≈ 2−66

280 230 245 270 secp256r1 (b = 128, p≈2256) 2−48 1 ≈ 2−66 ≈ 2−4 ≈ 2−66

280 230 255 270 secp256r1 (b = 128, p≈2256) 2−48 1 ≈ 2−66 1 ≈ 2−66

280 220 235 270 secp384r1 (b = 192, p≈2384) 2−112 ≈ 2−149 ≈ 2−204 ≈ 2−152 ≈ 2−204

280 220 245 270 secp384r1 (b = 192, p≈2384) 2−112 ≈ 2−139 ≈ 2−204 ≈ 2−132 ≈ 2−204

280 220 255 270 secp384r1 (b = 192, p≈2384) 2−112 ≈ 2−129 ≈ 2−204 ≈ 2−112 ≈ 2−204

280 230 235 270 secp384r1 (b = 192, p≈2384) 2−112 ≈ 2−129 ≈ 2−194 ≈ 2−152 ≈ 2−194

280 230 245 270 secp384r1 (b = 192, p≈2384) 2−112 ≈ 2−119 ≈ 2−194 ≈ 2−132 ≈ 2−194

280 230 255 270 secp384r1 (b = 192, p≈2384) 2−112 ≈ 2−109 ≈ 2−194 ≈ 2−112 ≈ 2−194

280 220 235 270 secp521r1 (b = 256, p≈2521) 2−176 ≈ 2−258 ≈ 2−278 ≈ 2−210 ≈ 2−245

280 220 245 270 secp521r1 (b = 256, p≈2521) 2−176 ≈ 2−248 ≈ 2−268 ≈ 2−200 ≈ 2−245

280 220 255 270 secp521r1 (b = 256, p≈2521) 2−176 ≈ 2−238 ≈ 2−258 ≈ 2−190 ≈ 2−245

280 230 235 270 secp521r1 (b = 256, p≈2521) 2−176 ≈ 2−248 ≈ 2−278 ≈ 2−210 ≈ 2−245

280 230 245 270 secp521r1 (b = 256, p≈2521) 2−176 ≈ 2−238 ≈ 2−268 ≈ 2−200 ≈ 2−245

280 230 255 270 secp521r1 (b = 256, p≈2521) 2−176 ≈ 2−228 ≈ 2−258 ≈ 2−190 ≈ 2−245

280 220 235 270 x25519 (b = 128, p≈2252) 2−48 ≈ 2−17 ≈ 2−72 ≈ 2−20 ≈ 2−72

280 220 245 270 x25519 (b = 128, p≈2252) 2−48 ≈ 2−7 ≈ 2−72 1 ≈ 2−72

280 220 255 270 x25519 (b = 128, p≈2252) 2−48 1 ≈ 2−72 1 ≈ 2−72

280 230 235 270 x25519 (b = 128, p≈2252) 2−48 1 ≈ 2−62 ≈ 2−20 ≈ 2−62

280 230 245 270 x25519 (b = 128, p≈2252) 2−48 1 ≈ 2−62 1 ≈ 2−62

280 230 255 270 x25519 (b = 128, p≈2252) 2−48 1 ≈ 2−62 1 ≈ 2−62

280 220 235 270 x448 (b = 224, p≈2446) 2−144 ≈ 2−211 ≈ 2−266 ≈ 2−210 ≈ 2−245

280 220 245 270 x448 (b = 224, p≈2446) 2−144 ≈ 2−201 ≈ 2−266 ≈ 2−194 ≈ 2−245

280 220 255 270 x448 (b = 224, p≈2446) 2−144 ≈ 2−191 ≈ 2−258 ≈ 2−174 ≈ 2−245

280 230 235 270 x448 (b = 224, p≈2446) 2−144 ≈ 2−191 ≈ 2−256 ≈ 2−210 ≈ 2−245

280 230 245 270 x448 (b = 224, p≈2446) 2−144 ≈ 2−181 ≈ 2−256 ≈ 2−194 ≈ 2−245

280 230 255 270 x448 (b = 224, p≈2446) 2−144 ≈ 2−171 ≈ 2−256 ≈ 2−174 ≈ 2−245

Table 2: Advantages of a key exchange adversary with given resources t (running time), #U
(number of users), #S (number of sessions), and #RO (number of random oracle queries), in
breaking the security of the SIGMA and TLS 1.3 protocols when instantiated with the given
curves (bit security b and group order p in parentheses), based on the prior bounds by Canetti-
Krawczyk [18] resp. Dowling et al. [23], and the bounds we establish (Theorem 5.1 and 7.1). Target
indicates the maximal advantage t/2b tolerable when aiming for the respective curve’s security
level b; entries in red-shaded cells miss that target. See Section 8 for further details.
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Group size requirements based on CK, DFGS, and our bound. Finally, let us take a
slightly different perspective on what the prior and our bounds tell us: Figure 13 illustrates the
group size required to achieve 128-bit resp. 192-bit AKE security for SIGMA and TLS 1.3 based
on the different bounds, dependent on a varying number of sessions #S. The CK SIGMA and our
SIGMA and TLS 1.3 bounds are dominated by the signature scheme advantage (with a #S · (#U)2

loss for CK and a #U loss for our bound); the DFGS TLS 1.3 bound instead is mostly dominated
by the (#S)2–loss reduction to strong DH. The CK and DFGS bounds require the use of larger,
less efficient curves to achieve 128-bit security even for 235 sessions. For large-scale attackers, they
similarly require a larger curve than secp384r1 above about 255 sessions. We highlight that, in
contrast, with our bounds a curve with 128-bit, resp. 192-bit, security is sufficient to guarantee
the same security level for SIGMA and TLS 1.3, for both small- and large-scale adversaries and for
very conservative bounds on the number of sessions.
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A Evaluation Details

A.1 Fully-quantitative CK SIGMA Bound

Recall our security bound for SIGMA/SIGMA-I from Theorem 5.1:

AdvKE-SEC
SIGMA-I(t, qN, qS, qRS, qRL, qT)

≤ 3q2
S

2nl+1 · p
+ AdvstDH

G (tB1 , qRO) + Advmu-PRF
PRF (tB2 , qS, 3qS, 3)

+ Advmu-EUF-CMA
S (tB3 , qN, qS, qS, qRL) + Advmu-EUF-CMA

M (tB4 , qS, qS, 1, qS, 1, 0).

Comparing this bound to the original security proof for SIGMA by Canetti and Krawczyk [18]
(CK) faces two complications. First, we must reconstruct a concrete security bound from the
CK proof, which merely refers to the decisional Diffie–Hellman and “standard security notions”
for digital signatures, MACs, and PRFs (i.e., single-user EUF-CMA and PRF security). Second,
the CK result is given in a stronger security model for key exchange [17] which allows state-reveal
attacks. Further, the CK proof assumes out-of-band unique session identifiers, whereas protocols in
practice have to establish those from, e.g., nonces (introducing a corresponding collision bound as
in our analysis). We are therefore inherently constrained to compare qualitatively different security
properties here.

Let us informally consider a game-based definition of the CK model [17] in the same style as our
AKE model (cf. Definition 2.1), capturing the same oracles plus an additional state-reveal oracle,
with qRSt denoting the number of queries to this oracle, and session identifiers that, like ours,
consist of the session and peers’ nonces and DH shares. Translating the SIGMA-I security proof
from [18, Theorem 6 in the full version], we obtained the following concrete security bound:

AdvCK
SIGMA-I(t, qN, qS, qRS, qRL, qRSt, qT)

≤ 2q2
S

2nl · p
+ Advmu-EUF-CMA

S (tB1 , qN, qS, qS, qRL) // sid collision & property P1

+ qN · qS ·
(
AdvDDH

G (tB2) + Advmu-PRF
PRF (tB5 , 1, 3) // property P2 . . .

+ (qN + 1) · Advmu-EUF-CMA
S (tB3 , 1, qS, qS, 0) + Advmu-EUF-CMA

M (tB4 , 1, 2, 2, 2, 2, 0)
)
,

where nl is the nonce length, G the used Diffie–Hellman group of prime order p, the number of test
queries is restricted to qT = 1, and Bi (for i = 1, . . . , 5) are the described reductions for property P1
and P2 in [18, Theorem 6 in the full version] all running in time tBi ≈ t. For simplicity, we present
the above bound in terms of “multi-user” PRF, signature, and MAC advantages for a single user
qNw = 1, which are equivalent to the corresponding single-user advantages (cf. Section 3).

A.2 Fully-quantitative DFGS TLS 1.3 Bound

Recall our security bound for TLS 1.3 from Theorem 7.1:

AdvKE-SEC
TLS 1.3(t, qN, qS, qRS, qRL, qT) ≤ 3q2

S

2nl+1 · p
+ AdvCR

H (tB1)

+ 2 · AdvstDH
G (tB2 , qRO) + qRO · qS

2kl−1 + Advmu-EUF-CMA
S (tB3 , qN, qS, qS, qRL)

+ Advmu-EUF-CMA
HMAC (tB4 , qS, qS, 1, qS, 1, 0).
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We compare this bound with the bound of Dowling et al. [23] (DFGS). Note that this bound is
established in a multi-stage key exchange model [26], here we focus only on the main application
key derivation, as in our proof. The DFGS bound needs instantiation through the random oracle
only in one step (the PRF-ODH assumption on HKDF.Extract) while other PRF steps remain in
the standard model. Our proof instead models both HKDF.Extract and HKDF.Expand as random
oracles. Translating the bound from [23, Theorems 5.1, 5.2] yields:

AdvDFGS
TLS 1.3(t, qN, qS, qRS, qRL, qT)

≤ q2
S

2nl · p
+ qS ·

(
AdvCR

H (tB1) + qN · Advmu-EUF-CMA
S (tB2 , 1, qS, qS, 0)

+ qS ·
(
Advdual-snPRF-ODH

HKDF.Extract,G (tB3) + Advmu-PRF
HKDF.Expand(tB4 , 1, 3, 3, 0)

+ 2 · Advmu-PRF
HKDF.Expand(tB5 , 1, 2, 2, 0) + Advmu-PRF

HKDF.Extract(tB6 , 1, 1, 1, 0)

+ Advmu-PRF
HKDF.Expand(tB7 , 1, 1, 1, 0)

))
.

Let us further unpack the PRF-ODH term. Following Brendel et al. [16], it can be reduced to the
strong Diffie–Hellman assumption modeling HKDF.Extract as a random oracle.15 In this reduction,
the single DH oracle query is checked against each random oracle query via the strong-DH oracle,
hence establishing the following bound:

Advdual-snPRF-ODH
RO,G (tB3 , qRO) ≤ AdvstDH

G (tB3 , qRO).

B Proof of the Strong Diffie–Hellman GGM Bound (Theorem 3.3)
We begin by giving a code-based game for the strong Diffie–Hellman problem in the generic group
model. First, we establish some preliminaries, using the setting and notation of Bellare and Dai [8].
Let G be an arbitrary set of strings with prime order p, and let E : Zp → G be a bijection,
called the encoding function. For any two strings A,B ∈ G, we define the operation AOPE B =
E(E−1(A) + E−1(B) mod p). The set G is a group with respect to this operation, and it is
isomorphic to Zp. Therefore, G has the identity E(0), and it is generated by E(1).

In the generic group model, we wish for the adversary to compute group operations only through
an oracle OP. We accomplish this by picking the encoding function E at random and keeping it
secret; then providing oracle access to OPE through OP. In this model, we can give a sequence
of games bounding the advantage of any adversary A that makes t queries to the OP oracle and q
queries to the stDH oracle.

Game 0. This first game formalizes the strong Diffie–Hellman problem in the generic group
model. Note that for any a ∈ Zp, a is the discrete logarithm of the group element E(a).

It follows that
AdvstDH

G (t, qsDH) = Pr[G0 ⇒ 1].

Game 1. In Game G1, we change the internal notation of the game. First, for clarity and
without loss of generality, we assume the adversary queries its OP and stDH oracles only on valid

15The same paper suggests that a standard-model instantiation of the PRF-ODH assumption via an algebraic
black-box reduction to common cryptographic problems is implausible.
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inputs (meaning their inputs are valid group elements in GL). Instead of representing each element
of G with an element of Zp, we use a vector over Z3

p. We define the basis vectors ~e1 := (1, 0, 0),
~e2 := (0, 1, 0), and ~e3 := (0, 0, 1). We map Z3

p to Zp by taking the inner product with the vector
(1, x, y). (Effectively, we are representing each element of Zp as a linear combination modulo p of
1, x, and y.) We cache the map from Z3

p to G induced by this transformation in a table TV and
its inverse map in a table TI.

Although one element of G may now have multiple representations, the bilinearity of the inner
product ensures that the view of the adversary is not changed, and Pr[G1] = Pr[G0].

Game 2. Next, we replace the random encoding function E with a lazily sampled encoding
represented by table TV for the forward direction and TI for the backward direction. Because we
want our encoding to be one-to-one, we sample from the set G\GL. This assigns a unique element
of G to each vector ~t. However, as we’ve noted, each integer in Zp has multiple representations in
Z3

p. If two representations of the same integer are submitted to the encoding algorithm VE, we set
a bad flag and program the encoding table to maintain consistency.

We also change the format of the check in the stDH oracle. Since VE(x~a) = B = VE(~b) if and
only if 〈x~a, ~x〉 = 〈~b, ~x〉, we return true if the latter condition holds and false otherwise. These two
conditions are equivalent, so Pr[G2] = Pr[G1].

Game 3. In this game, we stop programming the encoding table after the bad flag is set. Let
F1 denote the event that G3 sets the bad flag at any point. By the fundamental lemma of game
playing, Pr[G2] ≤ Pr[G3 and F1 + Pr[F1].

Game 4. We remove the now-redundant bad flag, but the Finalize oracle now returns true if
at any point in game G3 the bad flag would have been set (i.e. if event F1 occurs). Otherwise, all
oracles behave exactly as they did in G3. It follows that Pr[G3 and F1] + Pr[F1] ≤ Pr[G4].

Additionally, in the stDH oracle, we separate out checking for trivial queries: if the adversary
computed A = ga and B = Xa for an integer a of their choosing. If this is so, then ~a = a~e1
and ~b = a~e2, so 〈x~a, ~x〉 = xa = 〈~b, ~x〉, so may return true. If the query is nontrivial but should
still return true according to our previous condition, we set a bad2 flag. This does not change the
oracle’s response to any query, so the above bound still holds.

Game 5. In Game G5, we no longer return true in the stDH oracle after the bad2 flag is set. This
makes the second check redundant and has the effect that the stDH oracle’s behavior is no longer
dependent on the value of either x or ~x. Let event F2 denote the event that G5 sets the bad2 flag.
By the fundamental lemma of game playing, Pr[G4] ≤ Pr[G5 and F2] + Pr[F2].

Game 6. In Game G6, we remove the redundant check and bad flag from the stDH oracle, and in
the Finalize oracle we return true whenever the bad2 flag would have been set in G5. Otherwise
all oracles behave precisely as they did in G5. It follows that Pr[G5 and F2] + Pr[F2] ≤ Pr[G6].
We also move the initialization of variables x, y, and ~x from Initialize to Finalize. Since these
variables are not used by any oracle but Finalize, this does not change the view of the adversary.

At this point, we can collect the bounds from each gamehop to see that

AdvstDH
G (t, qsDH) ≤ Pr[G6].

Therefore we analyze the advantage of an adversary in game G6.
We can separately analyze each condition of Finalize. We know that x and y are sampled

independently of the t + 4 entries of TV . For each index i ∈ [1 . . . t + 4], let Fi be the bivariate
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linear polynomial over Zp whose coefficients are given by the vector ~ti. Then for any pair of vectors
(~ti, ~tj), the condition 〈~ti − ~tj〉 = 0 holds only if (1, x, y) is a root of Fi −Fj . Using Lemma 1 of [46]
and a union bound over all pairs, the probability of this event is at most (t+ 4)2/p.

For the second condition; we see that for any (~ti, ~tj), it is true that 〈x~ti− ~tj〉 = 0 only if (1, x, y)
is a root of XFi − Fj , which is a bivariate quadratic polynomial over Zp. Again Using Lemma 1
and a union bound, this occurs with probability at most 2(t+ 4)2/p.

If neither event occurs, then the adversary wins only if [VE(x~e3) = Z]. Because the second
condition failed, we know that (x~e3) is not an entry in table TV . Therefore the response to VE(x~e3)
will be sampled uniformly at random, and it will equal Z with probability 1/p. Then by the union
bound, Pr[G6] ≤ (3(t + 4)2 + 1)/p. Collecting the bounds gives the theorem statement for all
t > 25.
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Figure 13: Elliptic curve group order (y axis) required to achieve 128-bit (top) and 192-bit (bottom)
AKE security for SIGMA and TLS 1.3 based on the CK [18] SIGMA, DFGS [23] TLS 1.3, and our
bounds (ours giving the same result for SIGMA and TLS 1.3), for a varying number of sessions #S
(x axis). Both axes are in log-scale.
For each security and bound, we plot a smaller-resource “(sm)” setting with runtime t = 260,
number of users #U = 220, and number of random oracle queries #RO = 250 and a larger-resource
“(lg)” setting with t = 280, #U = 230, and #RO = 270. We let symmetric key/output lengths
be 256 bits for 128-bit security and 384-bits for 192-bit security; nonce length is 256 bits. The
group orders of NIST elliptic curves secp256r1 (p ≈ 2256) and secp384r1 (p ≈ 2384) are shown as
horizontal lines for context.
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G0

Initialize():
1 p← |G|; E $←− Bijections(Zp,G)
2 1← E(0); g ← E(1)
3 x, y $←− Z∗p; X ← E(x); Y ← E(y)
4 GL← {1, g, x, y}
5 return (1, g, x, y)

OP(A,B, sgn ):
6 if A 6∈ GL or B 6∈ GL then return ⊥
7 c← E−1(A) sgn E−1(B) mod p

8 C ← E(c); GL← GL ∪ {C}
9 return C

stDH(A,B):
10 if A 6∈ GL or B 6∈ GL then return ⊥
11 z ← x · E−1(A) mod p

12 Z ← E(z)
13 return [[Z = B]]

Finalize(Z):
14 if Z 6∈ GL then return false
15 z ← x · y mod p; return [[Z = E(z)]]

Figure 14: Game G0 of the stDH proof.

G1

Initialize():
1 p← |G|; E $←− Bijections(Zp,G)
2 k ← 0; 1← VE(~0); g ← VE(~e1)
3 x, y $←− Z∗p; ~x← 1, x, y

4 X ← VE(~e2); Y ← VE(~e3)
5 return (1, g, x, y)

OP(A,B, sgn ):

6 ~c← VE−1(A) sgn VE−1(B) mod p

7 C ← VE(~c); return C

VE(~t):

1 if TV [~t] 6= ⊥ then return TV [~t]
2 k ← k + 1; ~tk ← ~t

3 v ← 〈~t, ~x〉; C ← E(v); GL← GL ∪ {C}
4 TV [~t]← C; TI[C]← ~t

5 return TV [~t]

stDH(A,B):

8 ~a← VE−1(A); ~b← VE−1(B)
9 return [[VE(x~a) = B]]

Finalize(Z):
10 return [[VE(x~e3) = Z]]

VE−1(C):
1 return TI[C]

Figure 15: Game G1 of the stDH proof.
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G2, G3

stDH(A,B):

1 ~a← VE−1(A); ~b← VE−1(B)
2 if 〈x~a, ~x〉 = 〈~b, ~x〉 then return true
3 return false

VE(~t):

1 if TV [~t] 6= ⊥ then return TV [~t]
2 C ← G \GL
3 if (∃~s : TV [~s] 6= ⊥ and 〈~t, ~x〉 = 〈~s, ~x〉)
4 then bad ← true; C ← TV [~s]

5 k ← k + 1; ~tk ← ~t

6 GL← GL ∪ {C}
7 TV [~t]← C; TI[C]← ~t

8 return TV [~t]

G4, G5

stDH(A,B):

1 ~a← VE−1(A); ~b← VE−1(B); a← ~a[1]
2 if ~a = a~e1 and ~b = a~e2 then return true
3 if 〈x~a, ~x〉 = 〈~b, ~x〉 then bad2 ← true; return true
4 return false

VE(~t):

1 if TV [~t] 6= ⊥ then return TV [~t]
2 C ← G \GL
3 k ← k + 1; ~tk ← ~t

4 GL← GL ∪ {C}
5 TV [~t]← C; TI[C]← ~t

6 return TV [~t]

Finalize(Z):

5 if ∃i, j : 1 ≤ i < j ≤ k and 〈~ti − ~tj , ~x〉 = 0
6 then return true
7 return [[VE(x~e3) = Z]]

G6

Initialize():
1 p← |G|;
2 k ← 0;1← VE(~0); g ← VE(~e1)
3 X ← VE(~e2); Y ← VE(~e3)
4 return (1, g, x, y)

Finalize(Z):
5 x, y $←− Z∗p; ~x← (1, x, y)
6 if ∃i, j : 1 ≤ i < j ≤ k and 〈~ti − ~tj , ~x〉 = 0)
7 then return true
8 if ∃i, j : 1 ≤ i < j ≤ k

and 〈x~ti − ~tj , ~x〉 = 0 or 〈x~tj − ~ti, ~x〉0
9 then return true

10 return [[VE(x~e3) = Z]]

stDH(A,B):

11 ~a← VE−1(A); ~b← VE−1(B);a← ~a[1]
12 if (~a = a~e1 and ~b = a~e2) then return true
13 return 0

Figure 16: Top left: Games G2 (changes highlighted in gray) and G3 (changes highlighted in frames)
of the strong Diffie–Hellman proof. Top right: Games G4 and G5. Bottom: Game G6 (changes
highlighted in gray) of the strong Diffie–Hellman proof.

52


	Introduction
	Qualitative and Quantitative Bounds
	Contributions
	Optimizations, Limitations, and Possible Extensions
	Concurrent Work

	AKE Security Model
	Key Exchange Protocols
	Key Exchange Security
	Security Properties

	Assumptions, Building Blocks, and Multi-User Security
	Decisional and Strong Diffie–Hellman
	Multi-User PRF Security
	Multi-User Unforgeability with Adaptive Corruptions of Signatures and MACs
	Hash Function Collision Resistance

	The SIGMA Protocol
	Tighter Security Proof for SIGMA-I
	The TLS 1.3 Handshake Protocol
	Protocol Description
	Handling the TLS 1.3 Key Schedule

	Tighter Security Proof for the TLS 1.3 Handshake
	Evaluation
	Evaluation Details
	Fully-quantitative CK SIGMA Bound
	Fully-quantitative DFGS TLS 1.3 Bound

	Proof of the Strong Diffie–Hellman GGM Bound (Theorem 3.3)

