Enabling Faster Operations for Deeper Circuits
in Full RNS Variants of FV-like Somewhat
Homomorphic Encryption

Jonathan Takeshita, Matthew Schoenbauer, Ryan Karl, and Taeho Jung

University of Notre Dame, Notre Dame IN 46556, USA
{jtakeshi,mschoenb,rkarl,tjung}@nd.edu

Abstract. Though Fully Homomorphic Encryption (FHE) has been re-
alized, most practical implementations utilize leveled Somewhat Homo-
morphic Encryption (SHE) schemes, which have limits on the multiplica-
tive depth of the circuits they can evaluate and avoid computationally
intensive bootstrapping. Many SHE schemes exist, among which those
based on Ring Learning With Error (RLWE) with operations on large
polynomial rings are popular. Of these, variants allowing operations to
occur fully in Residue Number Systems (RNS) have been constructed.
This optimization allows homomorphic operations directly on RNS com-
ponents without needing to reconstruct numbers from their RNS repre-
sentation, making SHE implementations faster and highly parallel.

In this paper, we present a set of optimizations to a popular RNS vari-
ant of the B/FV encryption scheme that allow for the use of significantly
larger ciphertext moduli (e.g., thousands of bits) without increased over-
head due to excessive numbers of RNS components or computational
overhead, as well as computational optimizations. This allows for the use
of larger ciphertext moduli, which leads to a higher multiplicative depth
with the same computational overhead. Our experiments show that our
optimizations yield runtime improvements of up to 4.48x for decryption
and 14.68 x for homomorphic multiplication for large ciphertext moduli.

Keywords: Fully Homomorphic Encryption- B/FV Scheme: RNS Vari-
ant- Performance Optimization

1 Introduction

1.1 Homomorphic Encryption

Homomorphic encryption (HE) refers to encryption schemes that allow com-
putations to be done on encrypted messages. Fully homomorphic encryption
(FHE), first presented by Gentry [15] in 2009, allows arbitrary computation on
ciphertexts. The great utility of FHE comes with a price: the computational
overhead involved in performing computations on ciphertexts is high, in some
cases prohibitively so. While many different schemes and optimizations have

2 J. Takeshita et al.

been introduced in the decade after Gentry’s breakthrough, a great deal of re-
search is still focused in improving the computational costs of fully homomorphic
encryption.

One possible application of FHE is in settings where data privacy is paramount.
For example, suppose a hospital wants to outsource statistical computation over
patient data to cloud computing. The main obstacle here is the hospital’s needs
to protect the confidentiality of patients’ data. FHE can be used to encrypt the
data, allowing the cloud computer to perform the desired computations on the
data without being able to learn anything about any patient’s medical informa-
tion. The (encrypted) results can then be returned to the hospital for decryption.

While FHE has been realized theoretically, the bootstrapping procedure re-
quired to allow an arbitrary number of operations on ciphertexts is highly com-
plex and computationally intensive. Therefore, most active research (including
this work) focuses on improving the efficiency of the underlying Somewhat Ho-
momorphic Encryption (SHE) scheme of an FHE scheme. In SHE, a ciphertext
can be operated on arbitrarily up to a certain multiplicative depth before the
noise added from successive multiplications makes correct decryption impossible.

1.2 A brief overview of the state of the art

Many modern cryptographic schemes are based on the difficulty of the Ring
Learning-With-Errors problem [19]. In these schemes, ciphertexts are polyno-
mials with potentially very large coefficients. One such scheme is the popular
Brakerski/Fan-Vercautaren (B/FV) scheme [13]. The original scheme requires
division-with-rounding (DWR) and centered modular reductions on the coeffi-
cients of ciphertext polynomials. These operations are not efficiently compatible
with Residue Number System (RNS) [14] representations of polynomial coeffi-
cients, a common optimization.

The Residue Number System representation uses the Chinese Remainder
Theorem to decompose large numbers into tuples of smaller, more easily handled
(single-precision, as opposed to arbitrarily-sized) numbers. Individual operations
are more efficient on the smaller numbers, and operations on numbers in RNS
form can be parallelized. However, some operations frequently used in B/FV,
such as DWR and centered modular reduction, cannot be performed directly on
numbers in RNS form. In order to perform these operations on numbers stored
in RNS form, the numbers would have to be reconstructed, operated upon, and
decomposed, which requires more computation.

Two different variants of the original B/FV scheme ameliorate the difficul-
ties with RNS representations of B/FV ciphertexts. The scheme by Bajard et
al. [4] uses a series of integer-only operations to compute a fast approximate
base conversion to compute DWRs and centered reductions. This optimization
is very complex, and does slightly affect the noise added to the ciphertext at
each operation. The variant by Halevi et al. [16] replaces the integer-only fast
approximate base conversion with floating-point operations to exactly compute
base conversions, with no changes to the original noise bounds. Efficient soft-
ware implementations of these schemes have been written: SEAL by Microsoft

Title Suppressed Due to Excessive Length 3

Research [10, 9] implements the variant of Bajard et al., and PALISADE by the
PALISADE Project [11] implements the variant of Halevi et al. These variants
bring approximately the same improvement [5].

In this work, we show how careful parameter selection can be used to im-
prove upon the RNS variant of Bajard et al. In particular, we replace some
multiplications (with super-linear complexity) with faster bitshifting operations
(with linear complexity), and some modular reductions (with super-linear com-
plexity) with bitshifting and additions/subtractions (all with linear complexity).
As bitshifting is more efficient than multiplication, this improves the runtime of
the relevant operations (decryption and homomorphic multiplication). A con-
sequence of this parameter selection is the ability to represent the same size of
ciphertext modulus more efficiently with fewer RNS components, thus improving
the depth of circuit that can be computed.

Summary of contributions:

We present the following improvements that can be applied to Bajard et al.’s

RNS variant of the B/FV scheme:

— Parameter choices that allow quicker calculation of products and moduli in
base conversion algorithms, as well as faster decomposition in the variant’s
relinearization.

— An implementation of our improvements and comparison with the previous
state-of-the-art.

— An analysis of when these parameter choices are useful, and the resulting
tradeoffs.

2 Background

In this section we give a brief description of the B/FV scheme and the RNS
variant of Bajard et al. For a full and informative description, the original works
should be referenced.

2.1 Notations

For z € R, |z], |z], [x] indicate rounding to the nearest integer, rounding down,
and rounding up respectively. Also, we use plain lowercase letters (e.g., z,y) to
denote scalar values and bold lowercase letters (e.g., X, y) to denote polynomials.

We use R to denote a polynomial ring of the form Z[z]/®(z), where &(x)
is a cyclotomic polynomial of degree n which is a power of 2. R; is the ring
R/ Ry, with coefficients in the set Z; = [}, £) N Z. ||, is the ordinary modular
reduction of x into the set [0,¢)NZ, i.e., |z|; = 2 — | §]-t, and [z]; is the centered
modular reduction of x into the range Z, ie., [z]; =2 — [§] - L.

For x € R, we use [x]; to denote an element in R; which is obtained by ap-
plying the centered modular reduction to individual coefficients componentwise.

Most additions and multiplications involving x € R or x € R; are closed
in R or R; respectively (i.e., polynomial additions and multiplications with the

4 J. Takeshita et al.

polynomial reduction to R; at the end), where a scalar value is treated as a
polynomial with a constant coefficient only. Temporarily, a division is applied
to x € R, e.g., § - X, which is performed to every coefficient componentwise.
Such a polynomial in Q[z]/®(z) is immediately mapped to R; by applying the
rounding function as follows: [| ¢ - x|];. This is referred to as Division-With-
Rounding (DWR).

The bit-length of a number ¢ is denoted as bit(q) = [log,(¢)]. The expansion
-yl

=T | XY € R), which is equal to n for the

factor of a ring R is dp = maz(
rings we consider [8].

2.2 The B/FV scheme

Suppose we have parameters n (a power of two), t > 1, ¢ > t. The B/FV scheme
operates on plaintexts in R; and ciphertexts in Rﬁ. The secret key s is a randomly
chosen element of R with coefficients from a 1-bounded distribution. The public
key is (po,p1) = ([as + €]4, @), where a is chosen uniformly at random from R,
and e is also chosen from a 1-bounded distribution.

Encryption To encrypt [m]; € Ry, first sample e;, ez from a 1-bounded distri-
bution and a from the uniform distribution on R,. Then compute:

(co;c1) = ([Alm]t, +pou + e1]y, [P1u + e2]y)
where A = [4].

Decryption To decrypt (co,c1) € Rg, compute:

4
m = [[7[co +cisfq[]s

Addition Addition on two ciphertexts (cg,c1), (cp,c}y) that encrypt m,m’
respectively leads to a ciphertext pair (co™, ¢1T), the decryption of which returns
[m + m'];.
Given ciphertexts (cg,c1), (cg,c}), homomorphic addition is calculated by
computing:
(co™,e1™) = ([eo + colg. [e1 + €1]y)

Multiplication Given ciphertexts (cg,c1), (cg,c}) that encrypt m, m’ respec-
tively leads to a ciphertext pair (co*, c1*), decryption of which returns [m-m’];.
To find (co™,c1™) given (co,c1), (cg,c)), we need to first compute:

- . t
(Co,C1,C2) = L&(CO Cg, Co-Cy+c1-cy, c1-ch)]

This gives us three elements, however a ciphertext needs to have only two ele-
ments. To reduce them back down to 2 elements, we need to fold ¢ into the other

Title Suppressed Due to Excessive Length 5

two components. This is accomplished through a process called relinearization
that is performed with relinearization keys.

A set of relinearization keys rlk = {rlkl[i]};cqo,... ¢} includes individual keys
that are polynomials in R,. Each individual key rlk[:] is of the form (rlke[:], rlkq[7]),
where rlkog = [([s? - w'], — (e; + s - a;)], and rlky = a;, for i € {0,---,¢}. Here
the values a; are chosen uniformly at random from R, (just like the value a
used earlier), and similarly e; is chosen from a small error distribution. The
terms e; are small error vectors and the terms a; are uniformly chosen from R,
(analogously to encryption). The multiplication by the base w will cancel out
later when an inner product is taken with a number written in base w. We let
¢ = [log,(q)] + 1.

The relinearization key can be considered as a masking of s? (with a small
error), separated in pieces of small norm. We need this to find (co*,c1™) such
that [co* +¢1* -s]g = [Co+C1-s+Co- sz}q. Relinearization thus proceeds by
computing

(co™,c1™) = ([co + (Dw(C2), rlko)ly; [e1 + (Duw(C2), rlk1)]y)

Here, D,, is the base-w decomposition of its input, i.e.

14

x = sz - Dy (2)[i] mod ¢
i=0

The decomposition D,, is applied coefficientwise to ring operands here.

Parameters, Depth, and Security The parameters n and ¢ affect both the
depth and security of the B/FV scheme. The multiplicative depth L of a function
("circuit“) that can be evaluated by the B/FV scheme is bounded above by a
quantity related to g. This is shown by Theorem 1 of [13], and written more
informatively here:

log(4) + log(t) — log(6g + 1.25)
log(dr) + log(dr + 1.25) + log(t)

As ¢ increases, so will the depth of circuit that the scheme can correctly evaluate.
However, as g increases, the security of the scheme decreases, and n must be
increased to make up for the loss of security [3,2]. It is thus a natural research
goal to attempt to improve the depth of circuit an SHE scheme can evaluate by
finding efficient ways to increase both n and gq.

2.3 The RNS variant of Bajard et al.

In the B/FV cryptosystem, operations take place on polynomials with large
coefficients in Z,. By the Chinese Remainder Theorem, if ¢ is a product of k
pairwise coprime numbers ¢;, then Z, is isomorphic to the Cartesian product
of the rings Z,,. Numbers in Z, can then be represented in RNS form by a k-
tuple of numbers in Z,, i.e. the i*" component of the RNS representation of a

6 J. Takeshita et al.

number z is z; = |z|4 (or [z]y,, in a centered representation). Because of the
isomorphism given by the Chinese Remainder Theorem, addition and multiplica-
tion on numbers in Z, can be performed by performing addition/multiplication
componentwise on the numbers’ RNS representations.

If each modulus ¢; is small enough to fit into a computer word (typically 64
bits), then each individual operation in an RNS addition/multiplication becomes
additions, multiplications, and modular reductions on single computer words.
Also, operations on numbers in RNS form can be parallelized, as each component
is independent. (This is true even when the moduli are larger than a computer
word.) As noted in [4], the precise form of ¢ does not impact the security of the
cryptosystem - this is a fact that we use to our advantage later, in choosing a
special form for q.

Using RNS decomposition to accelerate B/FV encryption has challenges.
Some operations (e.g. DWR) are not easily doable on numbers in RNS form,
which would neccessitate the overhead of frequent decomposition and recom-
position. The RNS variant presnted by Bajard et al. [4] finds various methods
to overcome these challenges, enabling the use of RNS decomposition in B/FV
encryption. This variant only presents nontrivial versions of decryption and ho-
momorphic multiplication, as the other operations are easily realized in an RNS
system.

The RNS variant of Bajard et al. improves the asymptotic complexity of
decryption by a factor of n (from O(n?) to O(n?log(n))). The asymptotic com-
plexity of homomorphic multiplication remains the same (as polynomial multi-
plication dominates the operation’s theoretical complexity). In both operations,
there is a large practical improvement in runtime (up to 20 times faster for de-
cryption, and 4 times faster for multiplication), due in part to faster individual
operations on RNS components.

As a preliminary, we define

k
di q
FastBConv(z,q,B) = Z;+ —|q - — mod b) forbe B
()= q|q 0)

i=1

This quickly converts a number x represented in base ¢ to one in base B, and
it is faster because 1) it skips performing an intermediate modular reduction
by ¢ and 2) it does not require multiprecision arithmetic if all arguments and
moduli are single-precision [1]. (We use FastBConv on multiprecision numbers
in our optimizations, rendering nugatory the second point of improvement.) As
a consequence, the result in base B will be off by some multiple of q. Depending
on the scenario, there are different methods of correcting this. FastBConv is
applied coefficientwise to ring operands.

Decryption Suppose we are given (cg, c1) encrypting [m];, with the secret key
s (both in RNS base ¢). Let x = cg+cq - s. In the first description of the variant,
7 is a number coprime to ¢, though this is not strictly necessary. Decryption then
proceeds as follows:

Title Suppressed Due to Excessive Length 7

1. Base conversion: find s) = | — FastBConv(|ytx|,,q,t) - |¢~*|¢|¢ and s() =
| — FastBConv(|ytx|q: 4,7) - la~ 5]+

2. Find the centered remainder (the additive error): § = [s(V)],

3. Correct the error and remove a factor of y: m®) = [(s®) —§)) . |[y=1]];.

The result of this is m® = [m],.

Multiplication Suppose we are given ciphertexts ¢ = (cg,c1), ¢’ = (cp,).
Let Bsiy = B U mg, be a base coprime to g and m, such that By is large
enough to hold numbers of magnitude up to ng? (as required to hold the result
of products of elements of R,;). Then the RNS variant’s version of homomorphic
multiplication is as follows:

1. Use FastBConv to convert c, ¢’ from ¢ to Bg, U m. (We now have c,c¢’ in
qU Bg, U ﬁl)

2. Reduce extra multiples of ¢ in the By Um-representation using Small Mont-
gomery Reduction [20, 6]. (The intermediate results are now in ¢ U Bgg.)

3. Compute the polynomial products (cp, €1, €2) = (co-Cg, Co-Cy+C1-ChH,C1-Ch)
and scale by ¢ (in ¢ U Bgy).

4. Do a fast floor (using FastBConv) from q U Bgy, to Bgg. (This is an approxi-
mation of the DWR operation.)

5. Perform a Shenoy and Kumaresan-like reduction from By to ¢ [21]. (This
also utilizes FastBConv, though it converts to ¢, not from it.)

This gives us (Cp, €1, C2) in base g. The next step is relinearization, to reduce
this ciphertext back down to 2 elements.

2.4 Relinearization

Suppose we are given (Cp, €1, C2) as above. Let the relinearization keys rlkrns[0], rlkrns[1]
be defined as in Section 4.5 of [4]. (This is essentially a different way of decom-
posing the masking of the secret key.) Define

- - a1 - 42 ~ 4k
Drns(€2) = (Ic2— |45 €2 gn, -+ 5 [€2—1g,.)
q ‘(Il q q2 q “Ik
(Note the similarity between this decomposition operation and the FastBConv

operation.)
We then perform relinearization by computing:

([€o + (Drns(C2), rlkrns[0])]g, [€1 + (Drns(c2), mlkrns[1])]q)

3 Mathematical identities

In this section, we present mathematical identities that can be used to allow
faster computations in either of the above variants. First, we present a choice of
the ciphertext modulus ¢ and its factorization that enables our optimizations.

8 J. Takeshita et al.

Lemma 1. Let ¢ = 29 — 1, and suppose g is a power of two (i.e., g = 2% for
some positive integer x) divisible by 271 for some positive integer f > 1. In
other words, ¢ = 22" — 1 for some integer = that is not less than f + 1. Then q
can be written with k = f + 1 coprime factors ¢ = (2% +1)(2% +1)--- (22%1 +
D@ +1)(23 - 1).

We denote the it factor of q as ¢;.

Proof. 1t is trivial to see by induction that

g=29—1=(2%
= @t +1)2

= (28 £ 1)(2F + 1) (27T 4+ 1)(237 +1)(237 — 1)

NS

A positive number of the form 22" + 1 is called a Fermat number. Not all Fer-
mat numbers are prime, however all Fermat numbers are pairwise coprime [12].
In other words, the sequence of Fermat numbers form an infinite sequence of
coprime numbers. Then, all factors of ¢ except theg last one are pairwise co-

prime. Furthermore, 237 — 1 can be factored into (227FT +1)(22772 +1)(2%7

g

3 4
1)--+(2241) (21 +1)(2! — 1) with the same induction above. Except 2! —1 = 1, all
of these factors are Fermat numbers that are coprime. Since all Fermat numbers
are pairwise coprime, we can finally conclude the last factor of ¢, 237 — 1 is also
coprime with all other factors of q.

3.1 Modular Inverses for Multicands

In the computation of the FastBConv algorithm, multiplication by modular in-
verses is one of the steps that needs to be computed. We show that for moduli
and multipliers as chosen above, the multicands take the form of a power of two,
allowing us to change the multiplication into a bitshift.

qi

R
Ly,) is 227"

Lemma 2. The modular inverse of q/q; modulo g; (i.e.

Proof. In the first case, suppose ¢ # f + 1. Then ¢; = 237 4 1, so 23 = —1
(mod ¢;). Then q/q; is the product (2% 4 1)(2% +1)---(7T 4 1)(22% -1)=
(=12 + D=1 + 1) (F1)2 4+ 1)(-1 1) =271 (=2) = ~27 (mod q,).
Then —2¢-2277" = —23" = —(—1) =1 (mod ¢;).

In the second case, suppose i = f + 1, so 237 = 1 mod ¢;- Then % = (2
DEE+1) @97 4125 +1) = 17 + D) 12+ DA+ 1) = 2
(mod ¢;). Then 2i - 237 ~% = 237 =1 (mod ;).

g

N
+

Title Suppressed Due to Excessive Length 9

3.2 Simpler Flooring

In computing the FastBConv algorithm, modular reductions of products are
computed. When the moduli and multipliers take certain forms as above, both
the computation of products and modular reductions can be expedited. The
following lemma shows that some terms calculated in a modular reduction can
be found quickly (using bitshifts instead of multiplications) when ¢ is chosen as
above.

z| L,
Lemma 3. When x € [0,¢;), L%J = [Z:t], where b is 0 wheni= f+1 or
x =0 and 1 otherwise.

Proof. From above, £ mod ¢; = 257 If g = 0, then the equality is trivial. We
proceed assuming x > 0,ie.z—0b> 0 In the first case, suppose 1 # f + 1.

w4 g, —i - - 237) (227 237 41
Then —* = ””2.;21 t. Consider 7“:2; —zl _ m@¥)o2) o241 _
i 227 41 220 41 (2 2% +1)21
957 A — —~%2— = 2 (1- —%—) € [0,3). Then because ””25 > 21 and
2. 221+1 2t.22% 4] 22t 41 227 41
a
the distance between these terms is less than 3, | 227—*] = | Z:1]. (Note that
227 41
z—1 1 z—1
5 is at most 5 more than | %5~ |.)
. x| L, o .
In the second case, suppose ¢ = f + 1. Then o % — =220 (Consider
* 227 —1
Ly N 9
w2z 22 oedrde — L % c0,1). By the same reasoning as in the
22t 1 21.(22!) 221t
&
22t —q
first case, L%j = |5

4 Our Optimizations

To apply our optimizations to Bajard et al’s RNS variant of the B/FV scheme,
we choose RNS coefficients ¢g; as in Section 3. Other choices of parameters in
the B/FV scheme are unaffected - we choose Bgg, v, and m as normal, and
optimizations from special choices of these parameters are still available.

As noted in Section 2.3, the precise form of ¢ does not affect the security
of the cryptosystem. This is because the RLWE problem is (conjectured to be)
difficult for arbitrary ¢ [17].

When choosing ¢ in the optimized case, we factor it into f+1 coefficients such
that the smallest factor (22% — 1) fits into 64 bits (the size of a typical machine
word). Choosing smaller moduli would most likely not yield much additional
benefit.

Note that storing and operating on coefficients modulo ¢; requires costly
multiprecision arithmetic when ¢; is larger than a machine word. We do this
because the special properties of this form of ¢ and ¢; allow for computational
optimizations.

10 J. Takeshita et al.

4.1 Base Conversion - Multiplication

When the coefficients ¢; are chosen as above, this allows us to apply Lemma 2 to
compute the product z;-|%|,, quickly. Finding this product is part of computing
FastBConv. Because |‘ZI’ @ 1s known to be a power of two, this product can be
efficiently computed by right bitshifting @; by logy (|4 [g,) = 55 — i bits.

In the B/FV scheme, this optimization is applied in the three places that a
fast base conversion from base ¢ is applied. In decryption, this is applied to the
FastBConv to {¢,7}. In homomorphic multiplication, the optimization is applied
to the FastBConv from g to By, U {m} (used to convert to a larger base that
can hold the result of a ring multiplication). It is also applied in the FastB-
Conv to By that is a part of the fast RNS flooring. In decryption, this saves
us n - k multiplications, replacing them with bitshifts. In homomorphic multipli-
cation (without relinearization), this saves 7 - n - k multiplications (FastBConv
is called on two two-component ciphertexts in base extension, and then on a
three-component ciphertext in fast flooring).

It should be noted that it is possible that & —i < 0. In practice, this case
should not occur. It means that too many RNS components are being used for
too small a modulus, and it is disadvantageous to have such a choice parameters
because the machine word size is 64 bits. If RNS component becomes smaller
than this size, the overhead is dominated by the number of instructions instead
of the complexity of the instruction itself.

4.2 Base Conversion - Fast Modular Reduction

Choosing the coefficients ¢; as in Section 3 allows us to use Lemma 3 to quickly

compute the reduction |z; - % q:» also required to compute FastBConv. Note
that for any numbers a,b,c, |abl. = ab — ¢|“|. The usefulness of Lemma 3 is

in calculating the term L%bj, where for our purposes a = z;,

qquc—%

From Lemma 3, | = ‘q, l‘”j = [2572 (b € {0,1}). Thus we can quickly calculate
the floor of the product by left bitshifting = — b by 4 bits. (In the case where z is
zero, bitshifting = — b yields the desired result even when z = 0 and b = 1. The
exception for z = 0 in Lemma 3 is only to account for the difference between
shifting and flooring - shifting rounds towards zero, while flooring rounds down.)

This can be further optimized by recalling that g; is a power of two, plus or

minus one. Then in computing the product of ¢; and Lilqj the multiplication
can be replaced by a shift and one addition or subtractlon.

The modular reduction is then computed by subtracting g; - L%j from
%

€T - q lai

As in Section 4.1, this optimization is applied in the three places where a
FastBConv from base ¢ is computed. Once the term Lilt“J has been found
qu1ck1y, it can be multiplied by ¢;, and the result subtracted from the product
|zi - 4|g, (computed efficiently in Section 4.1). Again, this saves n - k modu-

Title Suppressed Due to Excessive Length 11

lar reductions in decryption and 7 - n - £ modular reductions in homomorphic
multiplication (again not counting relinearization).

4.3 Decomposition for Relinearization

Similar applications of Lemma 2 can be applied to the decomposition of cs.
Recall the RNS decomposition formula used in Bajard et al.’s optimizations is

given as
q1 q2 ~ 9k
) |C27‘Qk)

Drns(cz) = (|C~2;\qu |C~2;|q2, -
We can utilize the strategies of Sections 4.1 and 4.2 to quickly compute the
terms |cz - L[y, (applied coefficientwise). This allows for the faster computation
of relinearization.

In each relinearizations, these optimizations save n -k multiplications (chang-
ing them to bitshifts) and n - k modular reductions (changing them to bitshifts
and additions/subtractions).

It is worth noting that some implementations do not perform relineariza-
tion after each multiplication, but defer it so the necessary computations occur
less often [10,9]. In such cases, the effect of this optimization may not be as
noticeable.

4.4 Fewer RNS Components

When using our choices of moduli, fewer RNS coefficients are needed to repre-
sent the same size of ciphertext modulus, as shown in Table 1. This is because
the number of moduli ¥ needed for some bit(q) increases roughly linearly as
bit(q) increases in the basic variant, while with our choices of moduli k increases
logarithmically.

Consider a machine word size of MW bits (usually 64 in modern computers).
Then in the original variant, the number of RNS coefficients required for some
ciphertext modulus ¢ is k = [bﬁ%)] (unless ¢ fits in a single word, in which
case we obviously need only one component). However, in our optimized case
we need only k = 14 log,(fbﬁg/{,’)l) components (again with the exception when
bit(q) < MW).

Having fewer RNS components to operate upon can give a significant im-
provement to runtime, especially in situations where parallelism or multithread-

ing are unavailable or undesirable.

4.5 Complexity

Our optimizations do not make any improvement to the overall asymptotic com-
plexity of the RNS variant, for the same reason that the variant’s version of mul-
tiplication does not improve on asymptotic complexity. While our optimizations
can speed up some parts of operations, the asymptotic complexity of the opera-
tions remains the same due to other portions of the operations having the same

12 J. Takeshita et al.

Table 1. RNS Components Required with 64-bit Words

bit(q) |k (Regular Moduli)|k (Optimized Moduli)
128 2 2
256 4 3
512 8 4
1024 16 5
2048 32 6
4096 64 7
8192 128 8
16384 256 9
32768 512 10

or a higher asymptotic complexity. In decryption, the operation is still dominated
by the Number-Theoretic Transform (NTT) [18] used for polynomial multipli-
cation. Thus decryption’s complexity remains O(k - n - log(n)) ~ O(n?log(n)),
though we note that our factor of k is smaller (see Section 4.4). For multiplica-
tion, the asymptotic complexity of the operation is also still dominated by the
NTT, and has the same complexity as decryption. While our optimizations do
not improve the theoretical efficiency of the RNS variant, they greatly improve
its practical efficiency.

5 Implementation and Evaluation

5.1 Implementation

We implemented the relevant portions (decryption and multiplication with relin-
earization) of the RNS variant of Bajard et al. in C++, using NTL [22] for poly-
nomial and numerical operations. NTL provides efficient polynomial and integer
arithmetic, including multiplication. Our implementation allows for choosing pa-
rameters normally, or in accordance with our optimizations. With our modified
parameters, we can optimize multiplications (as in Sections 4.1 and 4.3) and
modular reductions (as in Section 4.2).

Our tests were run on a computer with an AMD EPYC 7451 CPU, run-
ning at up to 2.3GHz. The computer had 128GB memory. No multithreading or
parallelism was used, in order to gain the most accurate representation of total
computation.

5.2 Experimental Results

In our experiments, we tested four versions of our scheme: no optimizations, fast
multiplication enabled, fast modular reduction enabled, and all optimizations
enabled. The runtime of each operation and relevant suboperations was measured
(in ns), and averages were taken. All trials had at least 1000 iterations. We then
calculated the speedup of the three cases with some optimization, relative to the
baseline case without optimization.

Title Suppressed Due to Excessive Length 13

Deeper Circuits We were most interested in the impact our optimizations had
with the parameter bit(q) increasing, as this allows for an SHE scheme to evalu-
ate circuits with greater multiplicative depth. Our first set of experiments held
n constant (to 1024), and observed the improvement of each of the three cases
with some optimization. Figure 2 shows the speedup from our optimizations in
decryption, and Figure 5 shows the overall improvement in homomorphic mul-
tiplication. Figures 1 and 3 show the improvement our optimizations yielded in
the FastBConv subroutine (when used in decryption and homomorphic multi-
plication, respectively), and Figure 4 shows the improvement in Dpyg.

In these tests, our optimizations began to improve upon the unoptimized
version at bit(q) = 128 for optimized multiplication only, and bit(q) = 1024
for optimized modular reduction, with or without optimized multiplication. The
amount by which our optimizations improved runtime increased as bit(q) in-
creased, which suggests that our optimizations are well-suited for applications
requiring larger bit(q), such as when requiring deeper multiplicative depth. Put
simply, our optimizations scale well with bit(q).

We note that using the optimization of modular reduction is worse than using
only the optimization of multiplication, though it is still better than not using
any optimizations. The exception to this was relinearization, where using both
optimizations eventually was more efficient than only optimizing multiplication.
As this phenomenon occurs repeatedly, we discuss it in Section 6.1.

In these tests, the greatest improvement in both decryption and homomor-
phic multiplication came from only optimizing multiplication. In that case, when
bit(q) = 16384, decryption achieved a speedup of 4.48 times and homomorphic
multiplication achieved a speedup of 14.68 times.

Speedup for FastBConv (Dec.)
5.0

45
g 4.0
3 35
E 3.0
.3 - == All Optimizations
% 25 =—&— Fast Mod. Only
@ 2.0 Fast Mult. Only
2 15
g 10
o
w 05

0.0
128 256 512 1024 2048 4096 8192 16384

Modulus size (bits)

Fig. 1. Speedup for FastBConv (Decryption)

Higher Security As discussed in Section 2.2, increasing the size of the ci-
phertext modulus decreases the security of the scheme. To counter this, the

14 J. Takeshita et al.

Speedup for Decryption
5.0
45
T 40
g 35
S 30
8 - =—— All Optimizations
% 25 —+— Fast Mod. Only
w 20 Fast Mult. Only
= 1.5
=
g 1o
@ 05
0.0
128 256 512 1024 2048 4096 8192 16384
Modulus size (bits)
Fig. 2. Speedup for Decryption
Speedup for FastBConv (Mult.)
6
g 5
2 4
E
2 =—— All Optimizations
% 3 —4— Fast Mod. Only
@ Fast Mult. Only
=z 2
5
3
2 1
w0
0
128 256 512 1024 2048 4096 8102 16384
Modulus size (bits)
Fig. 3. Speedup for FastBConv (Hom. Mult.)
Speedup for Relin. Decomp. (Mult.)
10
9
T 8
g 7
E
S 6
= = All Optimizations
% 5 —4—Fast Mod. Only
o 4 Fast Mult. Only
s ,_/
E
g ZM :
a1
0
128 256 512 1024 2048 4096 8192 16384

Modulus size (bits)

Fig. 4. Speedup for Decomposition in Relinearization (Hom. Mult.)

polynomial modulus degree n (i.e. the degree of @(x)) can be increased. It is
thus important to discover how our scheme scales with n. To test this, we held

Title Suppressed Due to Excessive Length 15

Speedup for Hom. Mult.

=i All Optimizations
=—&— Fast Mod. Only
Fast Mult. Only

Speedup (relative to baseling)

128 256 512 1024 2048 4096 8192 16384

Modulus size (bits)

Fig. 5. Speedup for Homomorphic Multiplication

bit(q) constant at 2048 (a value at which our optimizations definitely show some
improvement), and tested our improvements with an increasing n in a similar
manner to the tests in Section 5.2.

Figures 6 and 7 show how our optimizations scale with n for decryption and
homomorphic multiplication, respectively. We note that very little change is seen
as n increases. This shows that our optimizations do not incur any additional
costs as n increases. Indeed, when n was doubled, the runtimes of the tests
almost exactly doubled. Again, we note that optimizing multiplication was far
more effective than optimizing modular reduction.

In these tests, the greatest improvement seen was from optimizing only mul-
tiplication. In that case, when n = 16384, decryption became about 2.15 times
faster, and homomorphic multiplication became about 4.07 times faster.

Speedup for Dec. with Paly. Mod. Deg.
3.0

25
2.0
m —8— All Optimizations
L5 === Fast Mod. Red. Only

Fast Mult. Only

1.0

0.5

Speedup (relative to baseling)

0.0
1024 2048 4096 8192 16384

Polynomial Modulus Degree

Fig. 6. Speedup in Decryption with respect to Polynomial Modulus Degree

16 J. Takeshita et al.

Speedup for Hom. Dec. with respect to Poly. Mod. Deg.
42

4.1

4.0

3.9 == All Optimizations

a8 —#— Fast Mod. Red. Only
: Fast Mult. Only

3.7

36

Speedup (relative to baseling)

3.5
1024 2048 4096 8192 16384

Polynomial Modulus Degree

Fig. 7. Speedup in Homomorphic Multiplication with respect to Polynomial Modulus
Degree

Using Standard Parameters Having found how our optimizations scale with
bit(¢) and n, we now turn our attention to how our optimizations improve upon
the baseline in standard settings. From the standards given by the Homomorphic
Encryption Standardization consortium [2], we choose (n,bit(q)) from (8192,
128), (16384, 256), and (32768, 512) - common choices that all guarantee a high
security of 256 bits, which is well above the recommended 112 bits [7]. We then
conducted testing similarly to the previous tests.

Figures 8 and 9 show the improvement our optimizations brought to decryp-
tion and homomorphic multiplication, respectively, for the parameters described
above. Once more, optimizing multiplication only brought about the greatest
improvement. In that case, when (n,bit(q)) = (32768,512), decryption became
about 1.42 times faster and homomorphic multiplication became about 1.69
times faster. For smaller choices of (n,bit(q)), our optimizations were not as
useful, and could even result in a worse performance than the baseline. These
relatively small improvements (as compared to those in Section 5.2) are because
our optimizations bring the greatest improvement with large bit(q), while this
set of tests had bit(q) < 512.

6 Conclusions and Future Work

In this work, we have presented optimizations to the RNS variant of Bajard et al.
that allow for faster operations and better scaling with the size of the ciphertext
modulus, while preserving good scaling with the size of the polynomial modulus
degree.

6.1 Conclusions

1. For larger values of bit(q) (e.g. 1024), our optimizations began to yield much
better running times. In some cases with high values for bit(q), our optimiza-
tions yielded higher speedups, suggesting that our optimizations are highly

Title Suppressed Due to Excessive Length 17

Speedup in Dec. for Standard Parameters
18
16
1.4
12
1 == All Optimizations

0.8 —&#— Fast Mod. Only
Fast Mult. Only
0.6

0.4

Speedup (relative to baseling)

0.2
0
(8102, 128) (16384, 256) (32768, 512)

(n, bit(g))

Fig. 8. Improvement in Decryption for Standard Parameters

Speedup in Hom. Mult. for Standard Parameters

18
16
1.4
12

1 == All Optimizations
0.8 —4— Fast Mod. Only
Fast Mult. Only
0.6
0.4
0.2

0
(8192, 128) (16384, 256) (32768, 512)

(n, bit(g))

Speedup (relative to baseline)

Fig. 9. Improvement in Homomorphic Multiplication for Standard Parameters

effective when a large bit(q) is required for a high multiplicative depth. In
most cases, even if bit(q) is not so large, our optimizations can still bring
some improvement.

. For smaller values of ¢, our optimizations are not as effective as the regu-
lar variant. For values of ¢ that we tested less than 512 bits, little signif-
icant improvement (in either subroutines or the full procedures of decryp-
tion/multiplication) was seen. In a few cases (i.e. for the smallest values of
g that we tested), our optimizations led to significant penalties in runtime.
. In all scenarios, the optimization of multiplication was more effective than
the optimization of modular reduction. In many cases, using the fast multipli-
cation alone was faster than using both fast multiplication and fast modular
reduction. One possible reason for this is that the number of elementary
operations (i.e. high-level functions) required to compute our fast modu-
lar reduction is higher than the ordinary method. This necessitates more
operations, data movement, and memory allocation, which can slow down
computation.

18

4.

5.

6.2

J. Takeshita et al.

Our optimizations also scale as well as could be reasonably expected as n
increases, scaling linearly with n with a correlation very close to 1.

The previous and first key results combined suggest that our optimizations
will scale well as both bit(q) and n increase, which is necessary for both high
multiplicative depth and security.

Future Work

Future related research topics include:

Finding further optimizations in the choices of parameters such as By, 7,
and m, as well as investigating the best choice of the size of the smallest ¢;.
Further tests of our optimizations’ runtime and improvement for very large
choices of n and bit(q), to allow for deep circuits without compromising
security.

Investigating the reasons why the optimized modular reduction was not as
effective as the optimized multiplication.

A more lightweight implementation of the B/FV RNS variant with our op-
timizations, more similar to that of SEAL [10,9].

Investigating the effects and relative gains from parallelization with our op-
timizations.

Applying this work to allow SHE schemes to use greater multiplicative depth
for various privacy-concerned applications.

Acknowledgement

The authors gratefully acknowledge the use of the resources of the Center for
Research Computing at The University of Notre Dame. The authors also thank
Jean-Claude Bajard (Sorbonne Université) and Kim Laine (Microsoft Research)
for their insights.

References

1.

Ahmad Qaisar Ahmad Al Badawi, Yuriy Polyakov, Khin Mi Mi Aung, Bharad-
wa] Veeravalli, and Kurt Rohloff. Implementation and performance evaluation of
rns variants of the bfv homomorphic encryption scheme. IEEE Transactions on
Emerging Topics in Computing, 2019.

. Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey

Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. Homomorphic encryption security standard. Technical report,
HomomorphicEncryption.org, Toronto, Canada, November 2018.

Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. Journal of Mathematical Cryptology, 9(3):169-203, 2015.
Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and Vincent Zucca. A full
rns variant of fv like somewhat homomorphic encryption schemes. In International
Conference on Selected Areas in Cryptography, pages 423-442. Springer, 2016.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Title Suppressed Due to Excessive Length 19

Jean-Claude Bajard, Julien Eynard, Paolo Martins, Leonel Sousa, and Vincent
Zucca. Note on the noise growth of the rns variants of the bfv scheme.
Jean-Claude Bajard, Julien Eynard, and Nabil Merkiche. Montgomery reduction
within the context of residue number system arithmetic. Journal of Cryptographic
Engineering, 8(3):189-200, 2018.

Elaine Barker and Allen Roginsky. Transitioning the use of cryptographic algo-
rithms and key lengths. Technical report, National Institute of Standards and
Technology, 2018.

Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved secu-
rity for a ring-based fully homomorphic encryption scheme. In IMA International
Conference on Cryptography and Coding, pages 45—-64. Springer, 2013.

Hao Chen, Kyoohyung Han, Zhicong Huang, Amir Jalali, and Kim Laine. Simple
encrypted arithmetic library v2. 3.0. Microsoft, 2017.

Hao Chen, Kim Laine, and Rachel Player. Simple encrypted arithmetic library-seal
v2. 1. In International Conference on Financial Cryptography and Data Security,
pages 3—18. Springer, 2017.

Dave Cousins, Kurt Rohloff, Yuriy Polyakov, and Gerard “Jerry” Ryan. The
PALISADE lattice cryptography library. https://palisade-crypto.org/, 2015—
2020.

AWF Edwards. Infinite coprime sequences. The Mathematical Gazette,
48(366):416—-422, 1964.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. TACR Cryptology ePrint Archive, 2012:144, 2012.

Harvey L Garner. The residue number system. In Papers presented at the the
March 3-5, 1959, western joint computer conference, pages 146-153. ACM, 1959.
Craig Gentry et al. Fully homomorphic encryption using ideal lattices. In Stoc,
volume 9, pages 169-178, 2009.

Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved rns variant of the bfv
homomorphic encryption scheme. In Cryptographers’ Track at the RSA Conference,
pages 83—105. Springer, 2019.

Adeline Langlois and Damien Stehlé. Hardness of decision (r) lwe for any modulus.
Technical report, Citeseer, 2012.

Patrick Longa and Michael Naehrig. Speeding up the number theoretic trans-
form for faster ideal lattice-based cryptography. In International Conference on
Cryptology and Network Security, pages 124-139. Springer, 2016.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 1-23. Springer, 2010.

Peter L Montgomery. Modular multiplication without trial division. Mathematics
of computation, 44(170):519-521, 1985.

AP Shenoy and Ramdas Kumaresan. Fast base extension using a redundant mod-
ulus in rns. IEEE Transactions on Computers, 38(2):292-297, 1989.

Victor Shoup et al. NTL: A library for doing number theory (2001). URL:
http://www. shoup. net/ntl, 2001.

