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Abstract. We present a cryptographic construction for anonymous tokens with private metadata bit,
called PMBTokens. This primitive enables an issuer to provide a user with a lightweight, single-use
anonymous trust token that can embed a single private bit, which is accessible only to the party who
holds the secret authority key and is private with respect to anyone else. Our construction generalizes
and extends the functionality of Privacy Pass (PETS’18) with this private metadata bit capability. It
is based on the DDH and CTDH assumptions in the random oracle model and provides unforgeability,
unlinkability, and privacy for the metadata bit. Both Privacy Pass and PMBTokens rely on non-
interactive zero-knowledge proofs (NIZKs). We present new techniques to remove the need for NIZKs,
while still achieving unlinkability. We implement our constructions and we report their efficiency costs.

1 Introduction
The need to propagate trust signals while protecting anonymity has motivated cryptographic con-
structions for anonymous credentials [Cha82, CL01]. While we have constructions that support
complex statements, this comes with computation and communication costs. On the other hand,
some practical uses require very simple functionality from the anonymous credential, while hav-
ing very strict efficiency requirements. One such example is the setting of Privacy Pass [DGS+18].
Privacy Pass was designed as a tool for content delivery networks (CDNs), which need a way to dis-
tinguish honest from malicious content requests, so as to block illegitimate traffic that could drain
network resources causing a denial of service (DoS). Previous solutions leveraged IP reputation to
assess the reputation of users. While helpful in many cases, IP reputation may also lead to a high
rate of false positives because of shared IP use. In particular, this is the case for users of privacy
tools, such as VPNs, Tor, or I2P. Privacy Pass [DGS+18] proposes a solution for this problem, using
anonymous tokens as a mechanism to prove trustworthiness of the requests without compromising
on user privacy. Since CDNs need to potentially handle millions of requests per second, efficiency
of the cryptographic construction is of extreme importance.

In this paper, we consider anonymous tokens that can convey two trust signals, in such a
way that the user cannot distinguish which of the two signals is embedded in her tokens. This
extension is motivated by the fact that in a system relying on anonymous trust tokens, malicious
users be identified as a threat if the issuer stops providing them with tokens. In a real-world
system relying on anonymous tokens without private metadata bit, if the issuer stops providing
malicious users with tokens, the attacker will know that they have been detected as malicious.
In fact, this information could serve as an incentive to corrupt more users, or to train machine



learning models that detect which malicious behavior goes un-noticed. Being able to pass on the
information whether a user is on an allow or disallow list, and consume it in appropriate ways at
redeption time, mitigates such behavior. There has been recent interest in primitives that provide
such functionality in standardization bodies such as the IETF and W3C. This includes a recent
draft proposal for a Trust Token API submitted by Google at the W3C, which calls for a secret
metadata bit functionality.5 Also an IETF working group6 is discussing standardization of the core
protocol of Privacy Pass used by Cloudflare7 together with extensions including private metadata
bit.

In this work, we consider an anonymous token primitive that provides the following functionality:
a user and an issuer interact and, as a result of this interaction, the user obtains a token with a
private metadata bit (PMB) embedded in it. The private metadata bit can be read from a token
using the secret key held by the issuer, at redemption time. Each token is one-time use, which
enables the issuer to update the trust assigned to each user without requiring a complex revocation
process, by just adjusting the number of tokens that can be issued at once and the frequency
of serving new token requests. Anonymous token schemes offer the following security properties:
unforgeability, unlinkability, and privacy of the metadata bit. Unforgeability guarantees that nobody
but the issuer can generate new valid tokens. Unlinkability guarantees that the tokens that were
issued with the same private metadata bit are indistinguishable to the issuer when redeemed.
Privacy of the metadata bit states that no party that does not have the secret key can distinguish
any two tokens, including tokens issued with different metadata bits.

Our goal is to construct a primitive which achieves the above properties, and has competitive
efficiency introducing minimal overhead over Privacy Pass.

1.1 Our Contributions
Our work includes the following contributions. We formalize the security properties of the primitive
of anonymous tokens with private metadata bit. We present a new construction for this primitive,
called PMBToken, which extends Privacy Pass (PP) to support private metadata bit, while main-
taining competitive efficiency. Further, we introduce new techniques that allow to remove the need
for NIZK in the constructions of both Privacy Pass and PMBToken. This simplifies and optimizes
the constructions in which the NIZK proof computation is a major bottleneck. The resulting schemes
satisfy a weaker unlinkability notion. Finally, we implement all the above candidate constructions
in Rust, and we summarize the performance of our schemes.

A failed approach and its insight. The starting point of our study is Privacy Pass, which
uses the verifiable oblivious PRF (VOPRF) primitive of Jarecki et al. [JKK14] Fx(t) = xHt(t)
(additively denoted). In the oblivious PRF evaluation mechanism, the user sends to the issuer
rHt(t) for a randomly selected value r, receives back rxHt(t) from which she recovers the output
xHt(t).8 Obliviousness is guaranteed by the blinding factor r, which makes the distribution of
rHt(t) uniform even when knowing t. The PRF output can be verified by the user providing her

5 See https://github.com/WICG/trust-token-api#extension-metadata and https://web.dev/trust-tokens/.
6 See https://datatracker.ietf.org/wg/privacypass/about/.
7 See https://blog.cloudflare.com/cloudflare-supports-privacy-pass/.
8 In Privacy Pass the resulting value xHt(t) is used for the derivation of a HMAC key in order to avoid credential

hijacking(cf. Appendix D). To simplify our presentation, we skip this step and simply assume that credentials are
redeemed over a secure channel.
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with a DLEQ proof, which guarantees that logHt(t)(Fx(t)) = logGX, where G is the base point and
X := xG is published by the issuer as a public parameter for the scheme.

There is a natural idea to upgrade the above functionality to support a private metadata bit,
which is to have two secret keys and use each of these keys for one of the bits. However, this idea
does not work directly; the reason for this stems from the fact that the underlying VOPRF is a
deterministic primitive. If the issuer “signs” two tokens using two different keys, and use them to
indicate the different private metadata bit values, then the VOPRF evaluations on the same input
t will be the same if they are issued with the same key and will be different if used with different
keys. Thus, if a malicious user demands multiple tokens using the same input value t (the issuer,
by blindness, has no way of telling), she will be able to distinguish which ones were issued with the
same metadata bit.

New randomized tokens and private metadata. To resolve the above issue we introduce a
construction which makes the token issuance a randomized functionality where the randomness is
shared between the user and the issuer. We use the following function F(x,y)(t;S) = xHt(t) + yS,
where t is the value that will be input of the user and S is the randomness of the evaluation, which
will be determined by the two parties, more specifically S = r−1Hs(rHt(t); s) where r is the blinding
factor chosen by the user and s is a random value chosen by the issuer. This functionality suffices to
construct a new anonymized token where during the oblivious evaluation the user sends T ′ = rHt(t),
receives back from the issuer s,W ′ = xT ′ + yHs(T

′; s), unblinds the values S = r−1Hs(T
′; s) and

W = r−1W ′, and outputs (S,W ).
The token verification checks that W = xHt(t) + yS. In order to provide verifiability, the

issuer provides an element of the form X = xG + yH and sends a proof that X = xG + yH and
W = xHt(t)+yS are computed using the same secret key (x, y). This is similar to Okamoto–Schnorr
blind signatures [Oka92], with the key difference that we redefine this as a secret key primitive which
enables us to have a round-optimal blind evaluation algorithm.

We apply the idea of using two different keys for each private metadata bit value to the above
randomized construction; the resulting construction is called PMBTokens. The public parameters
are now a pair (X0 := x0G+ y0H,X1 := x1G+ y1H), a token issued with a private metadata bit b
is of the form W ′ = xbHt(t) + ybS and the DLEQ proof is replaced with a DLEQOR proof stating
that either W ′ and X0, or W ′ and X1, are computed using the same secret key (x0, y0) or (x1, y1).

Removing the NIZK. Both Privacy Pass and PMBTokens employ zero-knowledge arguments
of knowledge to achieve unlinkability. This approach guarantees that the user can verify that tokens
are issued under the same secret key as in the issuer’s public parameters. Unlinkability follows from
the fact that tokens issued under the same secret key are indistinguishable. In section Section 7 we
consider a slightly weaker unlinkability guarantee for the user during token issuance, which is that
either the token she has received is issued under the public key, or, the token is indistinguishable
from a random value. The user cannot know in advance whether she has a token that will be
valid at redemption; incorrectly issued tokens are indistinguishable from honestly-generated ones.
If the issuer misbehaves, incorrectly issued tokens will be indistinguishable from random, malformed
tokens.

We present modifications of both Privacy Pass and PMBTokens that satisfy this version of
unlinkability, while removing the need for DLEQ or DLEQOR proofs and improving the compu-
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tational cost for the issuer, which is the bottleneck in systems that need to support large number
of users that obtain tokens regularly.

Our approach for removing the DLEQ proof from Privacy Pass borrows ideas from the construc-
tion of a verifiable partially oblivious PRF of Jarecki et al. [JKR18], but simplifies their construction
which has additional complexity in order to achieve user verifiability. We use the idea to use not
only multiplicative but also additive blinding of the user’s input in the form T ′ = r(Ht(t) − ρG).
Now, an honest evaluation of the issuer W ′ = xr(Ht(t) − ρG) can be unblinded by the user by
computing r−1W + ρX = xHt(t)− ρ(xG) + ρX = xHt(t), where X = xG is the issuer’s public key.
On the other hand, any dishonestly computed W ′ which is of the form W ′ = r−1T ′ + P for some
P ̸= 0 when unblinded will contain a random additive factor r−1P , thus the resulting value will be
random. Similarly to Jarecki et al. [JKR18], we can recover verifiability by doing another oblivious
evaluation on the same value t and comparing the outputs, which will be equal only if the the issuer
used the public key for both executions. We also observe that these checks can be batched for an
arbitrary number of issued tokens by computing a random linear combination of the values Ht(ti),
obtaining a VOPRF evaluation on that value, and comparing with the same linear combination of
the other tokens. Thus a user can verify n tokens by running one additional token request only. We
note further that removing the zero knowledge argument significantly simplifies the issuer work,
which now consist only of one multiplication.

Applying the above idea to the anonymous token construction with private metadata bit is
more challenging since the user does not know which of the two public keys the issuer will use.
However, the user can unblind the response from the issuer using each of the public keys and thus
obtain one valid and one random token. This property turns out to be true if the issuer behaves
honestly but if the issuer is malicious, he can create public keys and a response W ′ such that
the two values obtained from the unblinding with each of the public keys are correlated and this
correlation can be used for fingerprinting the user. Thus, in our construction the user computes two
values T ′d = rd(Ht(t)− ρdG), for d = 0, 1, and the issuer uses one of them to compute his response
W ′ = xbT

′
b+ybS

′
b with a private bit b. The user unblinds W ′ using both public keys and the scalars

rd, ρd for d ∈ {0, 1} to obtain S0,W0, S1,W1, which she uses for the final token. The resulting token
verifies with only one of the issuer’s keys: the key corresponding to the private metadata value.

Verification oracle. One last wrinkle in the security proof is whether the adversary for un-
forgeability and privacy of the metadata bit properties should have access to a verification ora-
cle for tokens of his choice. This is not explicitly supported in the current Privacy Pass security
proof [DGS+18]. We provide a new proof for unforgeability of Privacy Pass in the presence of a
verification oracle based on a different hardness assumption, the Chosen Target Gap Diffie-Hellman
assumption, which is a formalization of the Chosen Target Diffie-Hellman in a Gap DH group, which
was defined by Boneh et al. [BLS01]. In the context of anonymous tokens with private metadata bit,
we distinguish a Verify oracle which just simply checks validity of the token, and a Read oracle
that returns the value of the private metadata bit (which could be 0, 1, or invalid, and in some
applications, e.g. blocklisting, we can merge the states of value 0 and invalid bit). We present an
anonymous token construction that provides unforgeability and privacy for the metadata bit even
when the adversary has access to the Verify oracle, but we crucially require that the adversary
does not get an oracle access that reads the private metadata bit of a token.

4



Table 1. Computation and communication costs of our constructions.

Construction # Multiplications Communication

user issuer (# elements)

PP (Constr. 1), [DGS+18] 6 3 2
OSPP (Constr. 2) 9 6 2
PMBT (Constr. 3) 15 12 2
PPB (Constr. 4) 4 1 2
PMBTB (Constr. 5) 12 2 3

Efficiency of our constructions. We consider the most expensive computation operation in
the above protocols (scalar multiplication) and the largest communication overhead (the number of
group elements transferred). We report in Table 1 the efficiency of our constructions. Additionally,
the variant of our constructions that supports a verification oracle in the PMB security game adds
the overhead of Okamoto-Schnorr Privacy Pass to the overhead of PMBTokens. The modifications
of the constructions that do not use DLEQ or DLEQOR proofs save work for the issuer with
no or moderate increase in communication and increased user computation. This computation
trade-off is beneficial for settings where the issuer handles orders of magnitude more token issuance
requests than any particular user. We further implement our constructions in Rust, and report their
practicals costs in Section 8. Using a Ristretto group on Curve25519, PMBTokens issuance runs
in 845µs and redemption takes 235µs, while Privacy Pass issuance runs in 303µs and redemption
takes 95µs. Without the issuance NIZK, PMBTB (Constr. 5) introduces a small overhead over
Privacy Pass.

Paper Organization. We overview the hardness assumptions and the building block primitives
we use in Section 2, and Appendices A and B. Section 3 defines our new anonymous tokens primitive
and its security notions. We recall the Privacy Pass construction in Section 4, and present a (ran-
domized) Okamoto–Schnorr anonymous tokens construction in Section 5. Next, Section 6 presents
our construction for anonymous tokens with private metadata bit, called PMBTokens. Section 7
proposes modifications of Privacy Pass and PMBTokens that avoid the need of zero-knowledge
proofs. Finally, Section 8 reports on the efficiency costs of our implementation.

To simplify the presentation, we present our security proofs in Appendices E, F.1 and G to I,
and Appendix J describes a construction where security holds even with a verification oracle.

1.2 Related work
Starting with the work of Chaum [Cha82], the concept of blind signatures has been widely used as
a tool for building anonymous credentials. Blind Schnorr and Okamoto–Schnorr signatures, which
have been studied and analyzed in the random oracle model [CP92, Oka92, PS00, Sch01, Sch06,
FPS19], require three moves of interaction between the user and the issuer. Blind signatures con-
structions that achieve one round, which is the goal for our construction, rely on more expensive
building blocks [FHS15, Bol03]. Partially blind signatures, for which we also have round-optimal
constructions [Fis06, SC12, BPV12], allow the issuer to embed some information in the signature,
however, this information is public, unlike the private metadata bit that is the goal of our con-
struction. The works of Boldyareva [Bol03] and Bellare et al. [BNPS03] achieve round optimal (one
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round) constructions in the random oracle model under interactive assumptions. These construc-
tions use the same blinding idea as the VOPRF [JKK14] used by Privacy Pass, but are defined
over groups where DDH is easy and CDH holds (or where the RSA assumptions hold), which en-
ables public verifiability but requires larger group parameters. Other blind signature constructions
have evolved from constructions that need a CRS [Fis06, SC12, BFPV11] to constructions in the
standard model [GG14, FHS15, FHKS16], but they rely on bilinear groups. This adds complexity
to the group instantiations for schemes and computational cost, which we aim to minimize.

Group signatures [CvH91, Cam97, BMW03] allow all the members of a group to sign messages,
with the property that signatures from different signers are indistinguishable. At the same time,
there is a master secret key that belongs to a group manager, which can be used to identify the
signer of a message. We can view different signer keys as signing keys for the private metadata bits,
and the master secret key as a way to read that bit value. Group blind signatures [LR98], which
provide also the oblivious evaluation for the signing algorithm we aim at, provide a solution for
the anonymous token functionality with a private metadata bit. Existing blind group signatures
constructions [LR98, Ram13, Gha13] require multiple rounds of interaction for the oblivious signing
and communication of many group elements.

Abdalla et al. [ANN06] introduced a notion of blind message authentication codes (MACs),
a secret key analog to blind signatures. They showed that this notion can exist only assuming
a commitment of the private key, and showed how to instantiate that primitive with Chaum’s
blind signatures [Cha82]. Davidson et al. [DGS+18] construct a similar private key functionality for
anonymous tokens using a VOPRF [JKK14]; it is called Privacy Pass and is the basis of this work.

Everspaugh et al. [ECS+15] introduce partially oblivious PRF, which analogously to blind
signatures, allow the party with the secret key to determine part of the input for the PRF evaluation.
However, this input needs to be public for verifiability. The presented partially blind PRF uses
bilinear groups and pairings. Jarecki et al. [JKR18] show how to obtain a threshold variant of the
partially oblivious PRF.

The work of Tsang et al. [TAKS07] presents a construction for blacklistable anonymous creden-
tials using bilinear maps, which enables the issuer to create a blacklist of identities and the user
can only generate an authentication token if she is not blacklisted; hence the user does find out
whether she has been blacklisted in this process.

In keyed-verification anonymous credentials [CMZ14], the issuer and verifier are the same party.
They use an algebraic MAC in place of a signature scheme, where the message space is a n-tuple of
elements in Zp (or in G). They can be used to provide an anonymous token primitive (at a slightly
higher cost) but they’re overall meant for multi-use credentials. We are not aware of any extension
that allows for the embedding of a private metadata bit.

2 Preliminaries
Notation. When sampling the value x uniformly at random from the set S, we write x←$S.
When sampling the value x from a probabilistic algorithm M, we write x ← M. We use := to
denote assignment. For an integer n ∈ N, we denote with [n] the interval {0, . . . , n− 1}. We denote
vectors in bold. For a vector a, we denote with ai the i-th element of a.

The output resulting form the interaction of two (interactive) PPT algorithms A,B is denoted
as Ja, bK ← ⟨A,B⟩. If only the first party receives a value at the end of the interaction, we write
a← ⟨A,B⟩ instead of Ja,⊥K← ⟨A,B⟩.
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Game CTGDHGrGen,A,ℓ(λ)

Γ := (G, p,G)← GrGen(1λ)

x←$Zp; X := xG

q := 0; Q := [ ]

(ti, Zi)i∈[ℓ+1] ← ATarget,Help,Ddh(Γ,X)

for i ∈ [ℓ+ 1] :

if ti ̸∈ Q then return 0

Yi := Q[ti]
return

(
q ≤ ℓ and
∀i ̸= j ∈ [ℓ+ 1] ti ̸= tj and
∀i ∈ [ℓ+ 1] xYi = Zi

)

Oracle Target(t)

if t ∈ Q then

Y := Q[t]
else :

Y ←$G
Q[t] := Y

return Y

Oracle Help(Y )

q := q + 1

return xY

Oracle Ddh(Y, Z)

return (Z = x · Y )

Fig. 1. The Chosen-target gap Diffie–Hellman security game.

We assume the existence of a group generator algorithm GrGen(1λ) that, given as input the
security parameter in unary form outputs the description Γ = (G, p,G,H) of a group G of prime
order p; G and H are two nothing-up-my-sleeve (NUMS) generators of G. For simplicity, we will
assume that the prime p is of length λ.

2.1 Security assumptions

In Appendix A, we define the classical discrete logarithm (DLOG), decisional Diffie–Hellman
(DDH), and computational Diffie–Hellman (CDH) assumptions. Here, we define the chosen-target
gap Diffie–Hellman (CTGDH) assumption.

Chosen-target gap Diffie–Hellman. The so-called chosen-target Diffie–Hellman (CTDH) as-
sumption [Bol03, HL06] states that any PPT adversary A has negligible advantage in solving CDH
on ℓ + 1 target group elements, even when given access to a CDH helper oracle for ℓ instances.
We formalize here its gap [OP01] flavor, in which the adversary has, in addition, access to a DDH
oracle for arbitrary group elements. Note that the CTDH assumption was originally introduced
by Boldyreva [Bol03] in gap DH groups [BLS01], that is, in groups where CDH is hard but DDH
is assumed to be easy. In other words, the original definition of CTDH was already in groups
where the adversary has access to a DDH oracle. Here, we introduce the chosen-target gap Diffie–
Hellman assumption (CTGDH, that is, the gap version of CTDH) as a security experiment where
the adversary is provided a challenge X ∈ G, and has access to three oracles: the Target oracle,
that given as input a string t ∈ {0, 1}∗, outputs a random group element; the Help oracle, that
outputs the CDH of X with an arbitrary group element Y ∈ G, and the Ddh oracle, that given as
input two group elements (Y, Z) ∈ G2 returns 1 if and only if (X,Y, Z) is a Diffie–Hellman tuple.
We describe the Target oracle in this cumbersome way to ease readability of the security proofs
later.

Formally, we say that CTGDH holds for the group generator GrGen if for any PPT adversary
A, and any ℓ ≥ 0:

AdvctgdhGrGen,A,ℓ(λ) := Pr
[
CTGDHGrGen,A,ℓ(λ) = 1

]
= negl(λ) ,
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Game KSNDΠ,R,A,Ext(λ)

Γ ← GrGen(1λ)

(crs, td)← Π.Setup(Γ )

r←$ {0, 1}A.rl(λ); (ϕ, π) := A(crs; r)
w ← Ext(td, r)
return (Π.Verify(crs, ϕ, π) and R(ϕ,w) = false)

Game ZKβ
Π,R,A(λ)

Γ ← GrGen(1λ)

(crs, τ)← Π.Setup(Γ )

β′ ← AProve(crs)
return β′

Oracle Prove(ϕ,w)

if R(ϕ,w) = false then

return ⊥
π0 ← Π.Prove(crs, ϕ, w)

π1 ← Π.Sim(crs, τ, ϕ)
return πβ

Fig. 2. Games for knowledge soundness (KSND), and zero knowledge (ZK).

where CTGDHGrGen,A,ℓ(λ) is defined in Figure 1. Note that for ℓ = 0, the game CTGDHGrGen,A,0(λ)
is equivalent to gap CDH. We direct the reader towards Appendix A for more information on this
assumption, and how it relates to previous works.

2.2 Non-interactive arguments of knowledge
A non-interactive proof system Π for relation R consists of the following three algorithms:
– (crs, td) ← Π.Setup(Γ ), the setup algorithm that outputs a common reference string (CRS) crs

together with some trapdoor information td.
– π ← Π.Prove(crs, ϕ, w), a prover which takes as input some (ϕ,w) ∈ R and a CRS crs, and

outputs a proof π.
– bool ← Π.Verify(crs, ϕ, π) a verifier that, given as input a statement ϕ together with a proof π

outputs true or false, indicating acceptance of the proof.
The proof system Π is a non-interactive zero-knowledge (NIZK) argument of knowledge if it

satisfies the following properties:
Completeness. Π is complete if every correctly generated proof verifies. More formally, a proof
system Π is complete if for any Γ ∈ [GrGen(1λ)], crs ∈ [Π.Setup(Γ )] and (ϕ,w) ∈ R:

Pr[Π.Verify(crs, ϕ,Π.Prove(crs, ϕ, w))] = 1− negl(λ) .

Knowledge soundness. A proof system Π for relation R is knowledge-sound if for any PPT adversary
A there exists a PPT extractor Ext such that:

AdvksndΠ,R,A,Ext(λ) := Pr
[
KSNDΠ,R,A,Ext(λ)

]
= negl(λ) ,

where KSNDΠ,R,A,Ext(λ) is defined in Figure 2 and A.rl(λ) is the randomness length of the adversary
A. An argument of knowledge is a knowledge-sound proof system. In our proofs, for ease of notation,
we will omit sometimes to specify explicitly that the extractor takes as input the coins of the
adversary.
Zero Knowledge. A proof system Π for R is zero-knowledge if no information about the witness
is leaked by the proof, besides membership in the relation. This is formalized by specifying an
additional PPT algorithm Π.Sim, that takes as input the trapdoor information td and a statement
ϕ, and outputs a valid proof π indistinguishable from those generated via Π.Prove. Formally, A
proof system Π for relation R is zero-knowledge if for any PPT adversary A:

AdvzkΠ,R,A(λ) :=
∣∣Pr[ZK0

Π,R,A(λ)
]
− Pr

[
ZK1

Π,R,A(λ)
]∣∣ = negl(λ) ,

where ZKβ
Π,R,A(λ) is defined in Figure 2.
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Throughout this paper, we will assume the existence of the following proof systems, that we
summarize here in Camenisch-Stadler notation [Cam97]:

ΠDLOG := NIZK{(x) : X = xG} (1)
ΠDLEQ := NIZK{(x) : X = xG ∧ W = xT } (2)
ΠDLEQ2 := NIZK{(x, y) : X = xG+ yH ∧ W = xT + yS} (3)

ΠDLOGAND2 := NIZK{(x,y) : ∀i∈{0, 1} Xi = xiG+ yiH } (4)
ΠDLEQOR2 := NIZK{(x, y) : ∃i∈{0, 1} Xi = xG+ yH ∧W = xT + yS} (5)

Eq. (1) and Eq. (4) are discrete logarithm proofs for one, respectively two generators. Eq. (2) and
Eq. (3) prove discrete logarithm equality under one, respectively two generators. Finally, Eq. (5)
proves discrete logarithm equality for one out of two group elements (in the witness, the index is
denoted as i ∈ {0, 1}). In Appendix B, we provide a more formal description of the above relations,
and efficient instantiations with techniques for batching proofs at issuance time.

3 Anonymous tokens
We describe two flavors of anonymous tokens. The first flavor enables a user to obtain a token from
an issuer; the user can later use this token as a trust signal, for one-time authentication. In the
second flavor, the issuer has an additional input during the token issuance, a private metadata bit,
that is hidden within the token. The private metadata bit can later be recovered by the issuer at
redemption time. The following definition captures both functionalities; in shaded text, we refer
only to the anonymous token with private metadata bit.

Anonymous token. An anonymous token scheme with private metadata bit AT consists of the
following algorithms:
– (crs, td) ← AT.Setup(1λ), the setup algorithm that takes as input the security parameter λ in

unary form, and returns a CRS crs and a trapdoor td.
All the remaining algorithms take crs as their first input, but for notational clarity, we usually
omit it from their lists of arguments.

– (pp, sk) ← AT.KeyGen(crs), the key generation algorithm that generates a private key sk along
with a set of public parameters pp;

– σ ← ⟨AT.User(pp, t),AT.Sign(sk, b)⟩, the token issuance protocol, that involves interactive al-
gorithms AT.User (run by the user) with input a value t ∈ {0, 1}λ, and AT.Sign (run by the
issuer) with input the private key sk and a bit b. At the end of the interaction, the issuer outputs
nothing, while the user outputs σ, or ⊥.

– bool← AT.Verify(sk, t, σ), the verification algorithm that takes as input the private key sk and a
token (t, σ). It returns a boolean indicating if the token was valid or not.

– ind← AT.ReadBit(sk, t, σ), the metadata extraction algorithm that takes as input the private key
sk, and a token (t, σ). It returns an indicator ind ∈ {⊥, 0, 1}, which is either the private metadata
bit, or ⊥.
Throughout the rest of this paper, we assume that AT has a one-round signing protocol initiated

by the user. Thus, for simplicity, we split the signing algorithms (AT.Sign and AT.User) into non-
interactive algorithms that take as input a message, and the partial state (if any). They will return
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Game OMUFAT,A,ℓ(λ)

(crs, td)← AT.Setup(1λ)

(pp, sk)← AT.KeyGen(crs)
for b = 0, 1 : qb := 0

(ti, σi)i∈[ℓ+1] ← ASign,Verify,Read(crs, pp)
return

(
∀b = 0, 1 qb ≤ ℓ and
∀i ̸= j ∈ [ℓ+ 1] ti ̸= tj and
∀i ∈ [ℓ+ 1] AT.Verify(sk, ti, σi) = true and
∃b ∈ {0, 1} : ∀i ∈ [ℓ+ 1] AT.ReadBit(sk, ti, σi) = b

)

Oracle Sign(b,msg)

qb := qb + 1

return AT.Sign0(sk, b,msg)

Oracle Verify(t, σ)

return AT.Verify(sk, t, σ)

Oracle Read(t, σ)

return AT.ReadBit(sk, t, σ)

Fig. 3. One-more unforgeability game for the anonymous token scheme AT.

the next message together with the updated state sti. Concretely, the signing protocol will be
composed of the following (non-interactive) algorithms:
– (usr_msg0, st0)← AT.User0(pp, t);
– srv_msg1 ← AT.Sign0(sk, b, usr_msg0);
– σ ← AT.User1(st0, srv_msg1)
We demand that anonymous token schemes satisfies correctness, unforgeability, unlinkability, and
privacy of the metadata bit.

Correctness. An anonymous token scheme AT is correct if any honestly-generated token verifies
and the correct private metadata bit is retrieved successfully. That is, for any crs ∈ [AT.Setup(1λ)],
any (pp, sk) ∈ [AT.KeyGen(crs)], any t ∈ {0, 1}λ, and b ∈ {0, 1}:

Pr[AT.Verify(sk, t, ⟨AT.User(pp, t),AT.Sign(sk, b)⟩) = 1] = 1− negl(λ), (6)
Pr[AT.ReadBit(sk, t, ⟨AT.User(pp, t),AT.Sign(sk, b)⟩) = b ] = 1− negl(λ) (7)

Unforgeability. The first security property that we require from an anonymous token is un-
forgeability, which guarantees that no adversary can redeem more tokens than it is allowed. This is
formalized with a standard one-more security game where the adversary can interact with the issuer
at most ℓ times, and at the end must output ℓ + 1 valid tokens. The adversary has also access to
a verification oracle for tokens of its choice. In the private metadata bit variant, the adversary can
interact with the issuer ℓ times for each private metadata bit, but should not be able to generate
ℓ+ 1 valid tokens with the same private metadata.

Definition 1 (One-more unforgeability). An anonymous token scheme AT is one-more un-
forgeable if for any PPT adversary A, and any ℓ ≥ 0:

Advomuf
AT,A,ℓ(λ) := Pr

[
OMUFAT,A,ℓ(λ) = 1

]
= negl(λ) ,

where OMUFAT,A,ℓ(λ) is defined in Figure 3.

Sometimes, a stronger security notion of unforgeability is desirable, where the adversary can win
also by outputting (ti, σi)i∈[ℓ+1] where some ti’s are the same but the σi’s are different. The schemes
we present were do not provide this type of security.

10



Game UNLINKAT,A,m(λ)

(crs, td)← AT.Setup(1λ)

(st, pp)← A(crs)
q0 := 0; q1 := 0; Q := ∅
(st, (msgi)i∈Q)← AUser0,User1(st)
if Q = ∅ then return 0

// compute a challenge token
j ←$Q; Q := Q \ {j}
σj ← AT.User1(stj ,msgj)

// compute and permute other tokens
for i ∈ Q : σi ← AT.User1(sti,msgi)

ϕ←$SQ
j′ ← A(st, (tj , σj), (tϕ(i), σϕ(i))i∈Q)

return q0 − q1 ≥ m and j′ = j

Oracle User0()

q0 := q0 + 1 // session id
tq0 ←$ {0, 1}λ

(msgq0
, stq0)← AT.User0(pp, tq0)

Q := Q∪ {q0} // open sessions
return (q0,msgq0

)

Oracle User1(j,msg)

if j /∈ Q then

return ⊥
σ ← AT.User1(stj ,msg)
if σ ̸=⊥ then

Q := Q \ {j}
q1 := q1 + 1

return σ

Fig. 4. Unlinkability game for the anonymous token scheme AT. For a set X, SX denotes the symmetric group of X.

Unlinkability. This security property is concerned with user anonymity, and guarantees that a
malicious issuer cannot link the redemption of a token with a particular execution of the token
issuance protocol. More precisely, in κ-unlinkability, if m tokens were issued but not yet redeemed,
the adversary cannot link the relative issuance session of a token with probability better than κ/m,
even after seeing the remaining m− 1 tokens in a random order.

Definition 2 (Unlinkability). An anonymous token scheme AT is κ-unlinkable if for any PPT
adversary A, and any m > 0:

AdvunlinkAT,A,m(λ) := Pr
[
UNLINKAT,A,m(λ) = 1

]
≤ κ

m
+ negl(λ) ,

where UNLINKAT,A,m(λ) is defined in Figure 4.

Private metadata bit. The last security property protects the private metadata bit in the issued
tokens.9 It guarantees that the private metadata embedded in a token is entirely hidden from anyone
who does not possess the private key including the user. More precisely, we require that, even if the
adversary corrupts a large number of users, it cannot guess with probability non-negligibly bigger
than 1/2 if newly issued tokens have private metadata 0 or 1.

Formally, this is modeled as an indistinguishability game where the adversary has access to two
signing oracles: one where it can provide both the message to be signed and the private metadata
bit to be used, and one where the adversary chooses only the message (the metadata bit is fixed),
and a verification oracle for the validity of the tokens. The adversary’s goal is to guess the challenge
private metadata bit used.

9 Consider, e.g., the following practical scenario: the issuer is suspecting that it is targeted by a DoS attack, and
decides to tag users that it believes are controlled by a bot using the private metadata bit. The private metadata
bit property ensures it is difficult for anyone, but the issuer, to learn how malicious traffic is classified.
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Game PMBβ
AT,A(λ)

(crs, td)← AT.Setup(1λ)

(pp, sk)← AT.KeyGen(crs)

β′ ← ASign,Sign′,Verify(crs, pp)
return β′

Oracle Sign(msg)

return AT.Sign0(sk, β,msg)

Oracle Sign′(b,msg)

return AT.Sign0(sk, b,msg)

Oracle Verify(t, σ)

return AT.Verify(sk, t, σ)

Fig. 5. Private metadata bit game for the anonymous token scheme AT.

Definition 3 (Private metadata bit). An anonymous token scheme AT provides private meta-
data bit if for any PPT adversary A:

Advpmb
AT,A(λ) :=

∣∣Pr[PMB0
AT,A(λ)

]
− Pr

[
PMB1

AT,A(λ)
]∣∣ = negl(λ) ,

where PMBβ
AT,A(λ) is defined in Figure 5.

Token hijacking. In our formalization, we do not consider man-in-the-middle adversaries that
can steal tokens from honest users. This attack vector, called token hijacking, can be mitigated with
the use of message authentication codes (MACs). Roughly speaking, instead of sending the entire
token (t, σ) over the wire, the user can derive a symmetric key k := H(σ) to MAC a shared message
(e.g., the resource or the URL she’s trying to access). The resulting message authentication code
is sent together with t to the issuer (and any supplementary randomness that the user needs to
recompute σ). We discuss in detail such concerns in Appendix D.

4 Review: Privacy Pass
We start by recalling, using the notation from Section 3, the anonymous token scheme proposed
in [DGS+18] (under the name Privacy Pass) and built on top of the verifiable oblivious PRF
(VOPRF) “2HashDH-NIZK” [JKK14]. Privacy Pass uses a Schnorr proof in the issuance phase,
that we generalize here to any NIZK. Differently from the initial proof of Goldberg et al. [DGS+18],
our proof takes into account the presence of a verification oracle, and the knowledge error of the
proof system.

Construction 1 (Privacy Pass). Let ΠDLEQ be a proof system for relation RDLEQ; let Ht be
a random oracle {0, 1}∗ → G. The anonymous token scheme PP [DGS+18] is composed of the
following algorithms:
– (crs, td) ← PP.Setup(1λ): invoke the group generator Γ ← GrGen(1λ) and the CRS generation

algorithm of the underlying proof system (pcrs, ptd) ← ΠDLEQ.Setup(Γ ). Return crs := (Γ, pcrs)
and td := ptd.

– (X,x)← PP.KeyGen(crs): sample a uniformly random element x←$Z∗p, that will constitute the
secret key. Let X := xG be the public parameter. Return (X,x).

– W ← ⟨PP.User(X, t),PP.Sign(x)⟩: illustrated in Figure 6.
– bool← PP.Verify(x, t,W ): return true if W = xHt(t); else, return false.

Note that this anonymous token protocol is deterministic, i.e., there will exist a unique value W ∈ G
corresponding to a string t ∈ {0, 1}λ that verifies. This property will make difficult to directly extend
the construction to support private metadata bit.

12



PP.User(X, t) PP.Sign(x)

PP.User0(X, t)

r←$Z∗
p

T := Ht(t)

T ′ := r−1T

return (T ′, (X, r, t))

T ′

W ′, π

PP.Sign0(x, T
′)

W ′ := xT ′

π ← ΠDLEQ.Prove((X,T ′,W ′), x)

return (W ′, π)

PP.User1((X, r, t), (W ′, π))

if not ΠDLEQ.Verify((X,T ′,W ′), π) then

return ⊥
return W := rW ′

Fig. 6. Token issuance for PP (Construction 1).

Correctness. By correctness of the underlying proof system, at the end of the protocol the user
returns ⊥ only with negligible probability. If the user returns W ∈ G, then W always satisfies the
verification equation, since:

W = rW ′ = r(xT ′) = xT = xHt(t).

Security. PP satisfies both unforgeability and 1-unlinkability.

Theorem 4. If CTGDH holds for GrGen and ΠDLEQ is a zero-knowledge proof system for relation
RDLEQ, then PP[GrGen,ΠDLEQ] is one-more unforgeable with advantage:

Advomuf
PP,ℓ (λ) ≤ AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLEQ,RDLEQ(λ).

The full proof can be found in Appendix E.1, and follows directly from chosen-target gap
Diffie–Hellman for GrGen, and zero-knowledge of ΠDLEQ. Consider an adversary A in the game
OMUFPP,A(λ). To win the game, A must return ℓ+1 tokens (ti,Wi)i∈[ℓ+1] such that, for all i ∈ [ℓ+1]:

(a) xHt(ti) = Wi, (b) ∀j ̸= i : tj ̸= ti (8)

During its execution, the adversary A can query at most ℓ times the signing oracle, which given
as input T ∗ ∈ G computes the Diffie–Hellman W = xT ∗, and sends it together with a proof π
that W was correctly computed; additionally, A can query the oracle Verify(t∗,W ∗) that returns
1 if W ∗ = xHt(t

∗), that is, if (X,Ht(t
∗),W ∗) is a DH tuple. Since ΠDLEQ is zero-knowledge, it is

possible to simulate the proof π. We are thus left with the game CTGDH (Fig. 1), where Verify
can be replaced by the oracle Ddh, Ht by Target, and Sign by the oracle Help (together with
ΠDLEQ.Sim).
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OSPP.User(X, t) OSPP.Sign((x, y))

OSPP.User0(X, t)

r←$Z∗
p

T := Ht(t)

T ′ := r−1T

return (T ′, (X, r, t, T ′))

T ′

s,W ′, π

OSPP.Sign0((x, y), T
′)

s←$ {0, 1}λ

S′ := Hs(T
′, s)

W ′ := xT ′ + yS′

π ← ΠDLEQ2.Prove((X,T ′, S′,W ′), (x, y))

return (s,W ′, π)

OSPP.User1((X, r, t, T ′), (s,W ′, π))

S′ := Hs(T
′, s)

if not ΠDLEQ2.Verify((X,T ′, S′,W ′), π) then

return ⊥
S := rS′

W := rW ′

return σ := (S,W )

Fig. 7. Token issuance for OSPP (Construction 2).

Theorem 5. Let GrGen be a group generator algorithm. If ΠDLEQ is a knowledge-sound proof system
for relation RDLEQ, then PP[GrGen,ΠDLEQ] is 1-unlinkable.

We remark that the i-th message sent by PP.User0 is T ′i = r−1Ti, for a uniformly random
ri ∈ Z∗p. Therefore, T ′i contains no information about Ti or ti. Additionally, by knowledge soundness
of ΠDLEQ, it is possible to extract the witness x ∈ Zp used to compute the signatures. With it, the
user can compute Wi herself, without ever using the responses from the issuer. It follows that the
view of the adversary is limited to random group elements and PP is 1-unlinkable, as long as the
proof system is knowledge-sound.

5 Okamoto–Schnorr Privacy Pass

In this section, we describe a novel anonymous token scheme that generalizes PP (Section 4) and
allows for randomized tokens, which will be an important property when we extend the construction
to support private metadata bit (Section 6 and Appendix J). Roughly speaking, while in PP we
issue tokens (and DLEQ proofs) using one generator G of G, in this construction we will issue tokens
under two generators (G,H), in a similar way to Okamoto–Schnorr [Oka92] signatures. Similarly
to Okamoto–Schnorr, it is important here that the discrete logarithm of H base G is unknown.
Fixing y = 0 in the protocol below, we obtain PP (cf. Section 4).
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Construction 2 (Okamoto–Schnorr Privacy Pass). Let GrGen be a group generator al-
gorithm; let ΠDLEQ2 be a proof system for relation RDLEQ2; let Ht,Hs be two random oracles
{0, 1}∗ → G. We construct an anonymous token scheme OSPP defined by the following algorithms:
– (crs, td)← OSPP.Setup(1λ): invoke the group generator Γ ← GrGen(1λ) and the CRS generation

algorithm of the underlying proof system (pcrs, ptd)← ΠDLEQ2.Setup(Γ ). Return crs := (Γ, pcrs)
and td := ptd.

– (X, (x, y)) ← OSPP.KeyGen(crs): sample the secret key (x, y)←$ (Z∗p)2. Let X := xG + yH be
the public parameter. Return (X, (x, y)).

– σ ← ⟨OSPP.User(X, t),OSPP.Sign((x, y))⟩: illustrated in Figure 7.
– bool← OSPP.Verify((x, y), t, σ): read (S,W ) := σ. Return true if W = xHt(t) + yS; else, return

false.

Correctness. By correctness of the underlying proof system, the protocol aborts only with neg-
ligible probability. If the user returns σ := (S,W ) ∈ G2, then σ always satisfies the verification
equation, since

W = rW ′ = r(xT ′ + yS′) = xT + yS = xHt(t) + yS.

Security. OSPP satisfies both unforgeability and 1-unlinkability.

Theorem 6. If CTGDH holds for GrGen, and ΠDLEQ2 is a zero-knowledge proof system for relation
RDLEQ2, then OSPP[GrGen,ΠDLEQ2] is one-more unforgeable with advantage:

Advomuf
OSPP,ℓ(λ) ≤ AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLEQ2,RDLEQ2(λ).

The proof of unforgeability is essentially the same argument of the previous section, with a
slightly more careful analysis to deal with the additional element s ∈ {0, 1}λ. The reduction for
CTGDH receives a challenge A ∈ G, that is now embedded in the public parameters as X =
A+ yH for some y←$Zp; the signing oracle computes W ′ = Help(T ′) + yS′, and the read oracle
Ddh(W−yS). The tokens returned by the adversary can be converted in CDH solutions computing
Wi − ySi, for all i ∈ [ℓ+ 1]. The full proof can be found in Appendix F.1.

Theorem 7. If DDH holds for GrGen and ΠDLEQ2 is an argument of knowledge for relation RDLEQ2,
then OSPP[GrGen,ΠDLEQ2] is 1-unlinkable.

Similarly to the previous proof, we first notice that in the i-th message, T ′i contains no infor-
mation about t; additionally, by knowledge soundness of the proof system, Wi must be computed
with the same witness (x, y) satisfying X = xG + yH (if there exists (x′, y′) ̸= (x, y), then it is
possible to construct an adversary for discrete log for GrGen). The core difference now is that we
use the same blinding factor r both on S′ and W ′. The proof hence proceeds in two steps: first,
W := rW ′ is computed as W := xT + yS with the extracted witness, and next S := rS′ is re-
placed by S←$G. This last step can be reduced to DDH: if the adversary manages to distinguish
(T ′, T = rT ′, S′, S = rS′) from (T ′, T = rT ′, S′, U) for U ←$G, then it is possible to construct an
adversary B for game DDHβ

GrGen,B(λ).
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PMBT.User(X, t) PMBT.Sign((x,y), b)

PMBT.User0(X, t)

r←$Z∗
p

T := Ht(t)

T ′ := r−1T

return (T ′, (X, r, t, T ′))

T ′

s,W ′, π

PMBT.Sign0((x,y), b, T
′)

s←$ {0, 1}λ

S′ := Hs(T
′, s)

W ′ := xbT
′ + ybS

′

π ← ΠDLEQOR2.Prove((X, T ′, S′,W ′), (xb, yb))

return (s,W ′, π)

PMBT.User1((X, r, t, T ′), (s,W ′, π))

S′ := Hs(T
′, s)

if not ΠDLEQOR2.Verify((X, T ′, S′, W ′), π) then

return ⊥
S := rS′

W := rW ′

return σ := (S,W )

Fig. 8. Token issuance for PMBT (Construction 3).

6 Private metadata bit tokens
In this section, we present PMBTokens, an extension of the anonymous token construction from
Section 5 that supports a private metadata bit. The high-level idea is that we use two different
secret keys, one for each private metadata bit. In order to hide which bit is associated with the
token, we will use OR proofs (i.e., ΠDLEQOR2 of Eq. (5)).

Construction 3 (PMBTokens). Let GrGen be a group generator algorithm; let ΠDLEQOR2 be a
proof system for relation RDLEQOR2; let Ht,Hs be two random oracles {0, 1}∗ → G. We construct
an anonymous token scheme PMBT defined by the following algorithms:
– (crs, td) ← PMBT.Setup(1λ): invoke the group generator Γ ← GrGen(1λ) and the CRS gen-

eration algorithm of the underlying proof system (pcrs, ptd) ← ΠDLEQOR2.Setup(Γ ). Return
crs := (Γ, pcrs) and td := ptd.

– (X, (x,y))← PMBT.KeyGen(crs): let (x,y)←$ (Z∗p)2× (Z∗p)2 be the secret key. Define the public
parameters as:

X :=

X0

X1

 :=

x0G+ y0H

x1G+ y1H

 ;

restart if X0 = X1. Return (X, (x,y)).
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– σ ← ⟨PMBT.User(pp, t),PMBT.Sign(sk, b)⟩: illustrated in Figure 8.
– bool← PMBT.Verify((x,y), t, σ): return true.
– ind← PMBT.ReadBit((x,y), t, σ): read (S,W ) := σ. Then:

(a) if W = x0Ht(t) + y0S and W ̸= x1Ht(t) + y1S, return 0;
(b) if W ̸= x0Ht(t) + y0S and W = x1Ht(t) + y1S, return 1;
(c) else, return ⊥.

Our construction does not provide a (meaningful) implementation of Verify, but only a ReadBit
functionality. We elaborate this point in Section 6.1; this construction can be combined with OSPP
to provide an actual verification procedure (described in Appendix J).

Correctness. Validity of honestly-generated tokens (cf. Equation (6)) holds perfectly because
PMBT.Verify always returns true; we focus here on proving that the bit embedded is read correctly
with overwhelming probability (Equation (7)). By correctness of the underlying proof system, the
protocol aborts only with negligible probability. If the user returns (S,W ) ∈ G2, then there exists
b ∈ {0, 1} such that:

W = rW ′ = r(xbT
′ + ybS

′) = xbT + xbS = xbHt(t) + ybS.

The probability that the above equation holds for both b = 0 and b = 1 (in which case, PMBT.ReadBit
returns ⊥), is statistically negligible. In fact, if:

W = x0Ht(t) + y0S = x1Ht(t) + y1S,

then we have two possibilities:
(a) y0 = y1, which in turn implies that x0Ht(t) = x1Ht(t). Because x0 ̸= x1 (by construction of

PMBT.KeyGen), this happens only if Ht(t) is the identity element. This event happens with
probability 1/p;

(b) y0 ̸= y1, which in turn means that:

Ht(t) =
x0 − x1
y0 − y1

S.

However, the left-hand side of the equation is distributed uniformly at random in G and
independently from the terms on the right-hand side. This event happens with probability
1/p.

Security. In Appendix G, we prove the one-more unforgeability and 2-unlinkability of PMBT.

Theorem 8. If CTGDH holds for GrGen and ΠDLEQ2 is a zero-knowledge proof system for relation
RDLEQ2, then PMBT[GrGen,ΠDLEQ2] is one-more unforgeable with advantage:

Advomuf
PMBT,ℓ(λ) ≤ 2AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLEQ2,RDLEQ(λ).

The proof is available in Appendix G.1. Consider an adversary A in the game OMUFPMBT,A(λ).
A wins the game if it returns ℓ + 1 tokens (ti, (Si,Wi))i∈[ℓ+1] such that there exists a b ∈ {0, 1}
satisfying:

(a) ∀i ∈ [ℓ+ 1] : xbHt(ti) + ybSi = Wi, (b) ∀j ̸= i : tj ̸= ti. (9)
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During its execution, A can query ℓ+1 times the signing oracle for b = 0, and ℓ+1 times for b = 1.
We claim (in a similar way to Eq. (8)), that A can be used to construct an adversary B that solves
CTGDH. We embed the CTGDH challenge A ∈ G in one of the two keys: we sample b∗←$ {0, 1}, and
set Xb∗ := A+ yb∗H, where yb∗ ←$Zp. We construct X1−b∗ following the key generation algorithm.
Queries by A to the oracle Sign are responded in the following way: if the adversary demands
issuance for hidden metadata b∗, we use the Help oracle to return W ′ = Help(t, T ′) + yb∗S

′;
otherwise B just follows the signing protocol and computes W ′ using (x1−b∗ , y1−b∗). The zero-
knowledge proof is simulated. Queries to the oracle Read can still be answered by B with the help
of the oracle Ddh available in the game CTGDHGrGen,B,ℓ(λ). Queries to Verify are trivially dealt
with, by answering true. If at the end of its execution A presents forgeries for the bit b = b∗,
then by winning condition (a) (cf. Eq. (9)), for all i ∈ [ℓ + 1], (Wi − yb∗Si) is the CDH of the
challenge A with Ht(ti), which we replace with the CTGDH oracle Target thus presenting ℓ + 1
CDH solutions for the challenge A ∈ G. If the guess b∗ was not correct, then B outputs ⊥, and we
consider the game lost. It follows that B wins the game CTGDHGrGen,B,ℓ(λ) half the time that A
wins OMUFPMBT,A,ℓ(λ).

Theorem 9. If DDH holds for GrGen and ΠDLEQOR2 is a zero-knowledge proof system for relation
RDLEQOR2, then PMBT[GrGen,ΠDLEQOR2] is 2-unlinkable.

The key idea is that adversary can now embed different private metadata bits at issuance time,
at most halving the anonymity set. We use the knowledge extractor to partition the sessions in two
buckets: U0, those associated to the bit 0, and U1, those with bit 1. We sample a biased b ∈ {0, 1}
(depending on the distribution of the private metadata bit in the tokens) and select two sessions
coming from the same bucket Ub. The probability of success of the adversary will be upper bounded
by 2/m+ negl(λ).

Theorem 10. If DDH holds for the group generator GrGen, and ΠDLEQOR2 is a zero-knowledge
proof system for relation RDLEQOR2 then PMBT[GrGen,ΠDLEQOR2] provides private metadata bit
with advantage:

Advpmb
PMBT(λ) ≤

O(q2)

2λ
+ 2AdvddhGrGen(λ) + 2AdvzkΠDLEQOR2,RDLEQOR2

(λ),

where q is the number of queries the adversary makes to Hs or Sign.

The proof is done by means of a hybrid argument, where the first hybrid is PMB0
A,PMBT(λ)

and the last hybrid is PMB1
A,PMBT(λ). In the first hybrid, instead of generating the proof using

the prover ΠDLEQOR2.Prove in the Sign′ oracle, we use the zero-knowledge simulator ΠDLEQOR2.Sim.
The advantage in distinguishing is trivially AdvzkΠDLEQOR2,RDLEQOR2,B(λ). Then, instead of computing
the signature as W ′ = x0T

′+ y0S
′, it computes W ′ := x0T

′+ y′S′, for some y′←$Zp sampled after
the key generation phase. This hybrid can be shown indistinguishable from the previous one under
DDH assumption: (X−x0G,S′,W ′−x0T

′) ∈ G is in fact a DDH triple in the previous hybrid, and
a random triple now. Using random self-reducibility of DDH we can answer all queries to Sign′
using a single DDH challenge. At this point, we remark that W ′ is distributed uniformly at random
(because y′S′ is so) and we can therefore swap x0 with x1. A final sequence of hybrid replaces y′

with y1 (again indistinguishable from DDH) and then the simulator with the honest prover.
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6.1 Enabling token verification
The anonymous token scheme PMBT (Construction 3) does not provide a meaningful verification
algorithm, as it always output true. We note that, given two tokens (t0, (S0,W0)) and (t1, (S1,W1)),
if t0 = t1, then

(
t∗ = t0 = t1, (S

∗ = 2S0 − S1,W
∗ = 2W0 −W1)

)
is a triple of random elements

satisfying W ∗ = xbH(t
∗) + ybS

∗ only if the same metadata bit b was used. Henceforth, having a
verification oracle that checks for the above relation allows an adversary in the game PMBβ

PMBT,A(λ)
to check if two tokens corresponding to the same t were issued with the same private metadata bit.

Instead, we propose to enable such a functionality by combining the PMBT scheme with OSPP,
into one token that has two parts: a token that has no private metadata and can be used for
validity verification, and a second token, which provides a private metadata bit. It is important
that these two parts could not be separated (they will depend on the same Ht(t), S values) and
used independently for the purpose of reading the metadata bit. We present in details the design
combining Constrs. 2 and 3 in Appendix J.

Jumping ahead, we can also instantiate this design by combining Constructions 4 and 5 that
do not use NIZK during issuance. In the later case the unlinkability will degrade to 6-unlinkability
since the issuer can cause each of the two token to be invalid independently.

7 Removing the NIZKs during issuance
In this section, we present a general technique for removing the NIZK sent at issuance time in the
previous schemes, and replace it with a proof of possession sent only once. We present a formal
analysis of it for PP and PMBT (Constructions 1 and 3). We recall that the role of the NIZK is to
provide unlinkability for the user, as they can check that the tokens received are consistent with
the issuer’s public parameters. In particular they prevent the issuer from fingerprinting users by
using a unique key per user. We consider a weaker notion of unlinkability, which guarantees that
the user either receives a valid token, or a completely random value (unpredictable by the issuer).
This implies that the issuer can distinguish valid tokens from invalid tokens since the user cannot
verify herself whether they have a valid token or not. In other words, the issuer can partition the
users into two sets: one that receives valid tokens, and one that receives invalid tokens. The issuer
will be able to identify which of these sets a user belongs to, at redemption time. For a more careful
analysis on how this affect the success probability of the adversary in the unlinkability game, we
refer the reader to Theorems 14 and 22..

In practice, because invalid tokens from a malicious issuers will be uniformly distributed, if all
clients periodically attempt to redeem a random token, the anonymity set won’t change. In fact,
since the tokens resulting from the interaction with a malicious issuer are perfectly indistinguishable
from tokens transmitted by other users, pragmatically we can achieve the same level of anonymity
of the previous protocols.

7.1 PP without issuance NIZK
We start with our new construction for the functionality of Privacy Pass. The change that we
make is that the user blinds her token hash Ht(t) using both multiplicative and additive blinding.
The additive part can be removed during the unblinding if the issuer used the correct secret key.
Otherwise, the generated token (t,W ) ∈ {0, 1}λ × G will be invalid and distributed uniformly at
random.
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PPB.User((X,π), t) PPB.Sign(x)

PPB.User0((X,π), t)

// Check once: ΠDLOG.Verify(X,π)

r, ρ←$Z∗
p

T := Ht(t)

T ′ := r−1 · (T − ρG)

return (T ′, (X, r, ρ, t, T ′))

T ′

W ′
PPB.Sign0(x, T

′)

W ′ := xT ′

return W ′

PPB.User1((X, r, ρ, t, T ′),W ′)

W := rW ′ + ρX

return W

Fig. 9. Token issuance for PPB (Construction 4).

Construction 4 (Privacy Pass without issuance NIZK). Let GrGen be a group generator
algorithm; let ΠDLOG be a proof system for relation RDLOG; let Ht be a random oracle {0, 1}∗ → G.
We construct an anonymous token scheme PPB defined by the following algorithms:
– (crs, td) ← PPB.Setup(1λ): invoke the group generator Γ ← GrGen(1λ) and the CRS generation

algorithm of the underlying proof system (pcrs, ptd) ← ΠDLOG.Setup(Γ ). Return crs := (Γ, pcrs)
and td := ptd.

– ((X,π), x)← PPB.KeyGen(crs): sample the secret key x←$Z∗p. Define π ← ΠDLOG.Prove(pcrs, X, x).
Return the public parameters (X,π), and the secret key x.

– W ← ⟨PPB.User((X,π), t),PPB.Sign(x)⟩: illustrated in Figure 9.
– bool← PPB.Verify(x, t,W ): return true if W = xHt(t); else, return false.

Correctness. By correctness of ΠDLOG, at the end of the protocol the user returns ⊥ only with
negligible probability. If the user returns W ∈ G, then W always satisfies the verification equation,
since:

W = rW ′ + ρX

= rxr−1(T − ρG) + ρX

= xT − ρ(xG) + ρX

= xT.

Security. PPB satisfies unforgeability and 2-unlinkability.

Theorem 11. If CTGDH holds for GrGen, and ΠDLEQ is a zero-knowledge proof system for relation
ΠDLOG, then PPB is one-more unforgeable with advantage:

Advomuf
PPB,ℓ(λ) ≤ AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLOG,RDLOG

(λ).
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The proof can be found in Appendix H.1. Intuitively, unforgeability must hold because the
issuer is sending strictly less information than in PP. The adversary A in game OMUFPPB,A(λ)
takes as input the pair (X,π), where X ∈ G is the CTGDH challenge, and π is a DLOG proof.
By zero-knowledge of ΠDLOG, the proof can be simulated; the adversary is now asked to return
ℓ+ 1 pairs (ti,Wi), all different, such that Wi is the CDH of (X,Ht(ti)). During its execution, the
adversary has at disposal the random oracle Ht (which behaves exactly as the Target oracle), the
Verify oracle, which given as input (Y,W ) ∈ G2 returns 1 if (X,Y,W ) is a DH tuple (just as the
Ddh oracle in the game for CTGDH), and the Sign oracle, which computes at most ℓ times the
CDH with an arbitrary group element (just as the Help oracle in the game for CTGDH).

Theorem 12. Let GrGen be a group generator. If ΠDLOG is a knowledge-sound proof system for
relation RDLOG, then PPB is 2-unlinkable with advantage:

AdvunlinkPPB,m(λ) ≤ 2

m
+ AdvksndΠDLOG,RDLOG

(λ).

First of all, we note that by knowledge soundness of ΠDLOG, for any adversary A that produces
th public parameters (X,π) with X ∈ G, it is possible to extract a witness x ∈ Zp such that
xG = X, except with negligible probability AdvksndΠDLOG,RDLOG,A(λ). We use this witness to partition
the sessions in two sets, U0 where W is correctly computed, and U1 where W isn’t. In the latter
case, we remark that because the additive blinding ρ ∈ Zp is sampled uniformly at random, in U1 all
tokens are distributed uniformly at random. In a similar way to Theorem 7, we select two sessions
k and j from the same Ub (for a b ∈ {0, 1} that sampled at random, following the distribution of
the open sessions) and swap them. If k and j are in U0, unlinkability follows the same reasoning
used for proving unlinkability of PP. If k and j are in U1, then both tokens are uniformly random
elements in G independent from the elements used at issuance time.

User Verifiability

The protocol presented in the previous section does not enable the user to verify that she has
received valid token at the end of an execution. We can enable such verifiability for any number
of tokens at the cost of one additional issuance interaction between the user and the issuer. In
particular, let (ti,Wi)i∈[m] be m tokens that the user has been issued. She sends a token issuance
request T ′ =

∑
i∈[m] ciHt(ti) where ci←$Zp for i ∈ [m]. Let W be the issuer’s response after

unblinding, then the user checks that W =
∑

i∈[m] ciWi.
If the issuer was honest, then Wi = xHt(ti) and

W = x

( ∑
i∈[m]

ciHt(t)

)
=
∑
i∈[m]

ci(xHt(ti)) =
∑
i∈[m]

ciWi .

Next, we argue that if W =
∑

i∈[m] ciWi, then the issuer could be cheating on any of the m token
executions only with negligible probability. We will prove this by induction on m. Let m = 1, then
we have W = c1W1 and at the same time W1 ̸= xHt(t1). By the unlinkability argument above we
know that W1 and hence c1W1 are uniformly distributed. Hence, the adversary has only negligible
probability to guess the value W .

Now, let us assume that the statement holds for m ≤ k and we will be prove it for m = k + 1.
We have W =

∑
i∈[m] ciWi and at the same time there exists an index j such that Wj ̸= xHt(tj). If
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there is an index k such that Wk = xHt(tk), then W − xHt(tk) =
∑

i∈[m]\{k} ciWi and j ∈ [m]\{k},
which contradicts the induction assumption. Therefore, it must be the case that Wi ̸= xHt(ti)
for any i ∈ [m]. However, by the arguments in the unlinkability proof, we know that all Wi’s,
and hence

∑
i∈[m] ciWi, will be distributed uniformly at random. Hence, the adversary has only

negligible probability in guessing the value of W , which concludes the inductive step.

7.2 PMBT without issuance NIZK

The challenge to generalizing the construction of the previous section to the setting of private
metadata is that the user should not find out what metadata bit value the issuer used and hence
which public key it should use when unblinding. Our solution will be to have the user run the
unblinding with both keys where only one of the resulting values will be a valid token under
the corresponding key for the bit value while the other unblinded value will be completely random.
When we do this we need to be careful that the issuer who also generates the public keys should not
be able to make the two unblinded values correlated, which would open an avenue for fingerprinting.

To guarantee that the unblinded value with the public key that does not correspond to the
embedded private metadata bit is random and hence it is independent of the other unblinded
value, even in the case when the issuer is misbehaving, we will need to have that the user generate
two independent blinded values which it sends in its first message. The issuer will be using only
one of the received blinded tokens to sign and embed his metadata bit, however, the user will be
unblinding the message coming from the issuer using two independent sets of blinding parameters,
which would thwart the issuer from embedding correlations.

Construction 5 (PMBTokens without issuance NIZK). Let GrGen be a group generator
algorithm; let ΠDLOGAND2 be a proof system for the relation RDLOGAND2; let Ht,Hs be two random
oracles {0, 1}∗ → G. We construct an anonymous token scheme PMBTB defined by the following
algorithms:
– (crs, td)← PMBTB.Setup(1λ): invoke the group generator Γ ← GrGen(1λ) and the CRS genera-

tion algorithm (pcrs, ptd)← ΠDLOGAND2.Setup(Γ ). Return crs := (Γ, pcrs) and td := ptd.
– ((X, π), (x,y))← PMBTB.KeyGen(1λ): let (x,y)←$ (Z∗p)2 × (Z∗p)2 be the secret key. Define:

X :=

X0

X1

 :=

x0G+ y0H

x1G+ y1H

 ,

and let π ← ΠDLOGAND2.Prove(pcrs,X, (x,y)). The public parameters are (X, π). Return ((X, π), (x,y)).
– σ ← ⟨PMBTB.User((X, π), t),PMBTB.Sign((x,y))⟩: illustrated in Figure 10.
– bool← PMBTB.Verify((x,y), t, σ): return true.
– ind← PMBTB.ReadBit((x,y), t, σ): read σ as (S0, S1,W0,W1) ∈ G4. Then,

(a) if W0 = x0Ht(t) + y0S0 and W1 ̸= x1Ht(t) + y1S1, return 0;
(b) if W0 ̸= x0Ht(t) + y0S0 and W1 = x1Ht(t) + y1S1, return 1;
(c) else, return ⊥.
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PMBTB.User((X, π), t) PMBTB.Sign((x,y), b)

PMBTB.User0((X, π), t)

// Check once: ΠDLOGAND2.Verify(X, π)

T := Ht(t)

for d = 0, 1 :

rd, ρd ←$Z∗
p

T ′
d := r−1

d · (T − ρdG)

return
(
(T ′

0, T
′
1), ((rd, ρd, T

′
d)d∈{0,1}, t)

)
T ′
0, T

′
1

s,W ′

PMBTB.Sign0((x,y, b), (T
′
0, T

′
1))

s←$ {0, 1}λ

S′
b := Hs(T

′
b, s)

W ′ := xbT
′
b + ybS

′
b

return (s,W ′)

PMBTB.User1(
(
(rd, ρd, T

′
d)d∈[2], t

)
, (s,W ′))

for d = 0, 1 :

Sd := rdHs(T
′
d, s) + ρdH

Wd := rdW
′ + ρdXd

return σ := (S0, S1,W0,W1)

Fig. 10. Token issuance for PMBTB (Construction 5).

Correctness. Honestly-generated tokens are always valid, because the verification algorithm
PMBTB.Verify always outputs true. We thus focus on Equation (7). By correctness of the un-
derlying proof system, the protocol aborts only with negligible probability. If the user returns a
tuple (S0, S1,W0,W1) ∈ G4, then there exists b ∈ {0, 1} such that:

Wb = rbW
′ + ρbXb = rb(xbT

′
b + ybS

′
b) + ρbXb

= rbxb(r
−1
b (T − ρbG)) + ybrbHs(T

′
b, s) + ρbXb

= xbT + ybrbHs(T
′
b, s) + ρbXb − ρb(xbG)

= xbT + ybrbHs(T
′
b, s) + ρbybH

= xbT + yb(rbHs(T
′
b, s) + ρbH)

= xbT + ybSb.

The probability that the above holds for both b = 0 and b = 1 (in which case, PMBTB.ReadBit
returns ⊥) is statistically negligible. In fact, if:

W0 = x0Ht(t) + y0S0 = x1Ht(t) + y1S1 = W1,

we have two possible cases:
(a) x0 = x1, which in turn implies that:

S0 =
y1
y0

S1.

23



However, because S0 is distributed uniformly at random in G, this happens with probability
1/p.

(b) x0 ≠ x1, which in turn implies that:

Ht(t) =
1

x1 − x0
(y0S0 − y1S1),

which happens with probability 1/p.

Security. We provide the proofs for the security properties of the construction in Appendix I.

Theorem 13. If CTGDH holds for the group generator algorithm GrGen and ΠDLOGAND2 is a zero-
knowledge proof system for RDLOGAND2, then PMBTB[GrGen,ΠDLOGAND2] is one-more unforgeable
with advantage:

Advomuf
PMBTB,ℓ(λ) ≤ 2AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLOGAND2,RDLOGAND2

(λ).

Inuitively, unforgeability follows a similar reasoning of Theorem 8 (unforgeability of PMBT)
except that here, at issuance time, we are sending strictly less information to the user, since we
removed the NIZK at issuance time. The proof of knowledge of the discrete log, published at the
beginning within the public parameters, can be simulated by zero knowledge.
Theorem 14. If DDH holds for the group generator GrGen and ΠDLOGAND2 is a knowledge-sound
proof system for relation RDLOGAND2, then PMBTB[GrGen,ΠDLOGAND2] is 3-unlinkabile.

A PPT adversary in the game UNLINKPMBTB,A(λ) can now: compute W ′ using (x0, y0), using
(x1, y1), or yet another key. Specifically in the latter case, the token σ will be distributed at random
independently from W ′. In the full version, we prove that now the adversary can partition the set
of open sessions at most in 3, and that therefore the advantage in the game UNLINKPMBTB,A(λ) ≤
3/m+ negl(λ).

Theorem 15. If DDH holds for the group generator GrGen and ΠDLOGAND2 is a zero-knowledge
proof system for relation RDLOGAND2, then PMBTB[GrGen,ΠDLOGAND2] provides private metadata
bit with advantage:

Advpmb
PMBTB(λ) ≤

O(q2)

2λ
+ 2AdvddhGrGen(λ) + 4AdvzkΠDLOGAND2,RDLOGAND2

(λ),

where q is the number of queries the adversary makes either to Hs or Sign.

As for unforgeability, the proof follows a similar reasoning to the case of PMBT. We notice that
now the issuer is sending strictly less information during signing, and that the zero-knowledge proof
π can be simulated.

8 Implementation
We implemented our construction in pure Rust (stable, version 1.41.0), using the Ristretto group10

on the top of Curve25519 [Ber06], as provided by curve25519-dalek11. The second generator
10 https://datatracker.ietf.org/doc/draft-hdevalence-cfrg-ristretto/
11 https://dalek.rs/
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Table 2. Benchmarks for our constructions.

Constructions DLEQ/DLEQOR User Issuer

Prove Verify Token Gen. Unblinding Key Gen. Signing Redemption

PP [DGS+18] 212µs 181µs 111µs 286µs 84µs 303µs 95µs
PMBT 576µs 666µs 135µs 844µs 234µs 845µs 235µs
PPB – – 197µs 164µs 190µs 87µs 95µs
PMBTB – – 368µs 678µs 512µs 155µs 247µs

H ∈ G is chosen by hashing into the group the public generator G. Hashing into the group is done
with a Elligator 2 map [Tib14] with SHA-512. Using rust-wasm12, we were able to compile the
Rust implementation into WebAssembly, and generate blinded tokens from JavaScript in Chromium
(version 79.0.3945.130). Our implementation is not copyrighted and is released in the public
domain.13

We benchmarked our own implementation on a single thread of an Intel(R) Xeon(R) CPU
E5-2650 v4 2.20GHz, running Ubuntu 18.04.3 LTS (kernel version 4.15.0). They are summarized
in Table 2. As expected, Constructions 4 and 5 feature very fast issuance time at a slight increase
in the user computation. Our results are between ten and one thousand faster than the previous
implementation proposed in [DGS+18] due to the different choice14 of elliptic curve (NIST P-256)
as well as the programming language used.
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A Security assumptions
We recall here the classical discrete logarithm, decisional Diffie–Hellman, and computational Diffie–
Hellman assumptions that we will use throughout the paper. Then, we discuss the chosen-target
Diffie-Hellman, and justify our choice of introducing its gap variant, CTGDH, for assessing the
security of the anonymous tokens proposed.

A.1 DL, DDH, CDH

Discrete logarithm. The discrete logarithm assumption for a group generator GrGen states
that given a tuple of elements (G,H) where G←$G and X←$G, any PPT adversary has negligible
advantage in returning x ∈ Zp such that X = xG. More formally, we say that DLOG holds for the
group generator GrGen if for any PPT adversary A:

AdvdlogGrGen,A(λ) := Pr
[
DLOGGrGen,A(λ) = 1

]
= negl(λ) ,

where DLOGGrGen,A(λ) is defined in Figure 11.

Decisional Diffie–Hellman. The decisional Diffie–Hellman (DDH) assumption for a group gen-
erator GrGen states that given a tuple of elements (P,A := aP,B := bP ) where P ←$G, and
a, b←$Zp, any PPT adversary has negligible advantage in distinguishing C←$G from the Diffie–
Hellman C = abP . More formally, we say that DDH holds for the group generator GrGen if for any
PPT adversary A:

AdvddhGrGen,A(λ) :=
∣∣Pr[DDH0

GrGen,A(λ) = 1
]
− Pr

[
DDH1

GrGen,A(λ) = 1
]∣∣

is negligible in λ, where DDHβ
GrGen,A(λ) is defined in Figure 11.

Computational Diffie–Hellman. The computational Diffie–Hellman (CDH) assumption for a
group generator GrGen states that given a tuple of elements (P,A := aP,B := bP ) where P ←$G,
and a, b←$Zp, any PPT adversary has negligible advantage in returning C = abP . More formally,
we say that CDH holds for the group generator GrGen if for any PPT adversary A:

AdvcdhGrGen,A(λ) := Pr
[
CDHGrGen,A(λ) = 1

]
= negl(λ) ,

where CDHGrGen,A(λ) is defined in Figure 11.

A.2 Chosen-target Diffie–Hellman

The CTDH assumption [Bol03] has proven itself very useful for a range of applications: password-
authenticated key exchanges [JKX18], signatures [LQ04], and private-set intersection [JL10]. One
can also find it called in the literature as one-more Diffie–Hellman (OMDH) assumption [BP02,
BNPS03], both in the “chosen-target” flavor (where the adversary can chose the ℓ + 1 subset of
challenges to solve) and the “known-target” flavor (where the adversary must solve a fixed set
of ℓ + 1 challenges). Known-target one-more Diffie–Hellman is equivalent to chosen-target Diffie–
Hellman [KM08].
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Game DLOGGrGen,A(λ)

Γ := (G, p,G)← GrGen(1λ)

x←$Zp; X := xG

y ← A(Γ,X)

return (y = x)

Game DDHβ
GrGen,A(λ)

Γ, := (G, p,G)← GrGen(1λ)

P ←$G
a←$Zp; A := aP

b←$Zp; B := bP

C0 := abP ; C1 ←$G
b′ ← A(Γ, P,A,B,Cβ)

return b′

Game CDHGrGen,A(λ)

Γ := (G, p,G)← GrGen(1λ)

P ←$G
a←$Zp; A := aP

b←$Zp; B := bP

C ← A(Γ, P,A,B)

return (C = abP )

Fig. 11. The games for discrete logarithm, decisional Diffie–Hellman, and computational Diffie–Hellman.

Game CTDHGrGen,A,ℓ(λ)

Γ := (G, p,G)← GrGen(1λ)

x←$Zp; X := xG

q := 0; Q = [ ]

(ti, Zi)i∈[ℓ+1] ← ATarget,Help(Γ,X)

for i ∈ [ℓ+ 1] :

if ti ̸∈ Q then return 0

Yi := Q[ti]
return

(
q < ℓ and
∀i ̸= j ∈ [ℓ+ 1] ti ̸= tj and
∀i ∈ [ℓ+ 1] x · Yi = Zi

)

Oracle Target(ti)

if ∃(ti, Yi) to T then

return Yi

else

Yi ←$G∗

append (ti, Yi) to T

return Yi

Oracle Help(Y )

q := q + 1

return xY

Fig. 12. The Chosen-Target Diffie–Hellman assumption.

Definition 16 (Chosen-target Diffie–Hellman). The chosen-target gap Diffie–Hellman as-
sumption for the group generator GrGen states that for any PPT adversary A, and any ℓ, A has
negligible advantage in solving CDH on ℓ+ 1 target group elements, even if A is given access to a
CDH oracle for ℓ instances. More formally, for any PPT adversary A, any ℓ > 0:

AdvctdhGrGen,A,ℓ(λ) := Pr
[
CTDHGrGen,A,ℓ(λ) = 1

]
≤ negl(λ) ,

where CTDHGrGen,A,ℓ(λ) is defined in Figure 12.

A.3 Equivalence of CTDH and OMD
Privacy Pass, the construction introduced in [DGS+18], is proved unforgeable under one-more
decryption security of Elgamal. One-more decryption security states that it is difficult for any PPT
adversary A to decrypt ℓ + 1 Elgamal ciphertexts of random messages, even when given access to
an oracle for ℓ Elgamal encryptions.

Elgamal (denoted Elg) is a public-key cryptosystem based on a group generator algorithm
GrGen. Elgamal achieves semantic security if DDH holds, i.e., if AdvddhGrGen,A(λ) is negligible. The key
generation algorithm Elg.KeyGen(Γ ) outputs a pair (sk, pk) := (x,X := xG) where x←$Zp. The
encryption algorithm Elg.Enc(M) outputs a ciphertext (C := cG,D := cX + M) where c←$Zp.
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Game OMDElg[GrGen],A,ℓ(λ)

Γ ← GrGen(1λ)

(x,X)← Elg.KeyGen(Γ )

for i ∈ [ℓ+ 1] :

Mi ←$G
ci ← Elg.Enc(X,Mi)

// Dec(c∗) = Elg.Dec(x, c∗), at most ℓ times

(M∗
i )i∈[ℓ+1] = ADec(X, c0, . . . , cℓ)

return (∀i ∈ [ℓ+ 1] : M∗
i = Mi)

Adversary B(Γ,X) for CTDHGrGen,B,ℓ(λ)

for i ∈ [ℓ+ 1] :

Yi ← Target(i); Ri ←$G
ci := (Ci, Di) := (Yi, Yi +Ri)

// Dec(i) := Yi +Ri −Help(Yi)

(M0, . . . ,Mℓ)← ADec(X, c0, . . . , cℓ)

for i ∈ [ℓ+ 1] :

Zi := Yi +Ri −Mi

return (Zi)i∈[ℓ+1]

Fig. 13. Game for one-more decryption (left) and reduction to chosen-target Diffie–Hellman (right).

The decryption algorithm Elg.Dec(x, (C,D)) takes as input the secret key and the ciphertext, and
otuputs the message M = D − xC.

Theorem 17. CTDH holds for GrGen if and only if Elg[GrGen] has one-more decryption security.
More precisely, for all ℓ > 0:

AdvctdhGrGen,ℓ(λ) = Advomd
GrGen,ℓ(λ).

Proof. Let ℓ ∈ N. We start by proving that OMD =⇒ CTDH. Let A be a PPT adversary for
OMDElg[GrGen],A,ℓ(λ). We use it to construct an adversary B for the game CTDHGrGen,A,ℓ(λ). The
adversary B receives as input a group description Γ and a group element X ∈ G. Additionally, it
has access to two oracles: a Target oracle and a Help oracle. It start by querying the Target
oracle ℓ+1 times on i ∈ [ℓ+1], thus receiving Target(i) = Yi ∈ G. It samples uniformly at random
Ri←$G for all i ∈ [ℓ + 1] and invokes A(X, (Ci, Di)

ℓ
i), where (Ci, Di) := (Yi, Yi + Ri). During its

execution, the adversary A may ask for ℓ decryption queries. We answer to those queries returning
Mi := (Yi + Ri) − Zi where Zi := Help(Yi). At the end of its execution, the adversary B returns
ℓ + 1 decryption (M0, . . . ,Mℓ) ∈ Gℓ+1. The adversary B returns (i, Zi := Yi + Ri −Mi) for each
i ∈ [ℓ+ 1].

The distribution of each ciphertext is uniform over G2, exactly as in the game OMDElg[GrGen],A,ℓ(λ)

(because each message is uniformly random in G). Decryption queries are responded exactly in the
same way (subtracting off the CDH of the randomness Yi with the public key X). Furthermore, if
the adversary wins the game OMDElg[GrGen],A,ℓ(λ), it must be the case that it returned Mi for all
i ∈ [ℓ+ 1] such that:

Mi = Elg.Dec(x, (Ci, Di)) =⇒ Zi := (Yi +Ri)−Mi = CDH(X,Yi)

The adversary B wins the game CTDHGrGen,B,ℓ(λ) every time that the adversary A wins the
game OMDElg[GrGen],A,ℓ(λ), therefore for all PPT adversaries A:

AdvctdhGrGen,A,ℓ(λ) ≥ Advomd
GrGen,B,ℓ(λ).

We now prove the reverse implication, that is, CTDH =⇒ OMD. Let A be a PPT adversary for
CTDHGrGen,A,ℓ(λ). We use it to construct an adversary B for OMDElg[GrGen],A,ℓ(λ).

The adversary B receives as input a group description Γ together with a group element X =
xG ∈ G (for some secret x ∈ Zp) and a sequence of ℓ+1 ciphertexts c0, . . . , cℓ such that ci = (Ci, Di)
for all i ∈ [ℓ + 1]. B starts off by selecting a random into map µ : {0, 1}λ → Zp. Then, it invokes
the adversary A on (Γ,X), overriding random oracle queries in the following way:
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− for any query of the form Target(t), the adversary B returns Y =
∑ℓ

j=0 a
µ(t)jCi;

− for any query of the form Help(C), the adversary B samples D←$G, and queries the decryption
oracle Dec((C,D)), thus obtaining M = Elg.Dec(x, (C,D)) = R−CDH(X,Y ). It returns R−M =
CDH(X,Y ).

At the and of its execution, the adversary A returned ℓ+ 1 pairs (ti, Zi). By winning condition of
CTDHGrGen,A,ℓ(λ), for each i ∈ [ℓ+ 1], Zi satisfies:

x ·


Y0
...
Yℓ

 = x ·


a0·µ(t0) · · · aℓ·µ(t0)

a0·µ(t1) · · · aℓ·µ(t1)

... . . . ...
a0·µ(tℓ) · · · aℓ·µ(tℓ)




C0

...
Cℓ

 =
[
Z0 · · · Zℓ

]
.

The matrix A := [ajµ(ti)]i,j is a Vandermonde matrix. The second winning condition states that
ti ̸= tj for all i, j ∈ [ℓ+1], i ̸= j. Therefore, aµ(ti) ̸= aµ(tj). Therefore, A is invertible for all i ̸= j. Let
A′ be the inverse of A; then, Z ′i =

∑
j a
′
i,jZi = CDH(X,Ci). The adversary B returns Mi := Di−Zi,

for all i ∈ [ℓ+ 1].
The replies to the Help oracle are identical to the ones in CTDHGrGen,B,ℓ(λ). The replies to the

Target oracle follow the uniform distribution in G too, since µ is a random injective map hidden
from the view of the adversary.

It follows that the adversary B wins the game OMDHElg[GrGen],B,ℓ(λ) every time that the adver-
sary A wins the game CTDHGrGen,A,ℓ(λ), therefore for all PPT adversaries A:

AdvctdhGrGen,A,ℓ(λ) ≤ Advomd
GrGen,B,ℓ(λ).

⊓⊔

A.4 The gap variant of CTDH

Recall that we formalize the notion of chosen-target gap Diffie–Hellman (CTGDH) problem in
Section 2.1, the gap problem equivalent to the CTDH problem. Indeed, the chosen-target DH
problem was originally introduced by Boldyreva [Bol03] in Gap DH groups [BLS01], that is in
groups where CDH is hard but DDH is assumed to be easy. In other words, the original definition
of CTDH was proposed in groups where the adversary has access to a DDH oracle that reveals if
a tuple is a valid DDH tuple, while our definition of CTDH in Appendix A.2 did not ask for the
group G to be a Gap DH group.

This formalization is not merely an artifact of the proof. Indeed, when a user is redeeming
anonymous tokens, it is likely that her behavior will change depending on whether this token was
valid or not. In other words, when deploying anonymous tokens, an adversary is likely to be able to
learn if a token of their choice satisfies the verification equation. This specific behavior is not unique
to our anonymous tokens primitive. In particular, a similar issue arised many times in the literature:
when proving the CCA security of the (hashed) El Gamal encryption scheme [ABR01, CKS09],
the unforgeability of Chaum’s undeniable signature scheme [CA89, Cha90, OP01], unforgeability of
blind signatures [BLS01], and UC-security of the 2Hash-DH VOPRF [JKK14]. All these schemes
are proved under a gap problem [OP01], i.e., a computational problem that gives oracle access to
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the underlying decision problem.15 For example, [OP01] defines the Gap DH problem, which given
a triple (P, aP, bP ), ask to find the element abP with the help of a Decision Diffie–Hellman oracle
(which answers whether (X,Y, Z) is a valid DH triple).

B NIZK instantiations
Throughout this work, we assumed the existence of a non-interactive, knowledge-sound and zero-
knowledge proof system. We described our anonymous tokens protocols in a modular way, so that
any knowledge-sound and zero-knowledge proof system can be used (e.g. SNARKs, Groth-Sahai
proofs, Σ-protocols). Here, we propose a simple and efficient instantiation of them in the random
oracle model. Equations (1) to (5) define proof systems for the following relations:

RDLOG := {(X,x) ∈ G× Zp : X = xG} ; (10)
RDLOGAND2 :=

{
(X, (x,y)) ∈ G2 × (Z2

p × Z2
p) : ∀i ∈ {0, 1} Xi = xiG+ yiH

}
; (11)

RDLEQ :=

((X,T,W ), x) ∈ G3 × Zp :

X
W

 = x

G
T

 ; (12)

RDLEQ2 :=

((X,T, S,W ), (x, y)) ∈ G4 × Z2
p :

X
W

 = x

G
T

+ y

H
S

 ; (13)

RDLEQOR2 :=


((X, T, S,W ), (b, x, y)) ∈ G5 × ([2]× Zp × Zp) :Xb

W

 = x

G
T

+ y

H
S


 . (14)

All above relations are (implicitly) parameterized in the group description Γ , and can be seen as
facilities of relationships indexed by Γ ∈ [GrGen(1λ)].

Σ-protocols are interactive, special sound, and special honest-verifier zero-knowledge. They
be turned into non-interactive zero-knowledge arguments using the Fiat-Shamir transform in the
random oracle model. In Bernhard’s PhD thesis [Ber14] it is claimed that the Fiat–Shamir trans-
formation of a Σ-protocol is simulation extractable, a soundness property that even stronger than
knowledge soundness.
Theorem 18 ([Ber14, Thm. 5.14]). Let Σ be a Σ-protocol. If the challenge space is exponen-
tial, and the verification equation is a group morphism on the response, the strong Fiat-Shamir
transformation FS[Σ] of Σ is simulation-sound extractable.

In Figure 14 we present a protocol for relation RDLEQOR2 (Eq. (14)), which can be easily adapted
to be a proof system also for relations (10) to (12). The setup algorithm generates the group de-
scription Γ ← GrGen(1λ), The proving algorithm (Fig. 14, left) proceeds simulating the transcripts
for all i ∈ [2], i ̸= b, and choosing the challenges uniformly at random, constrained that their
sum is the challenge provided by Hc. The verification algorithm (Fig. 14, right) checks the validity
of all transcripts, and that the sum of the challeges

∑
i ci = c is the hash of the commitments

Hc(X, T, S,W,K0,K1).
15 We follow the name usage of [OP01, BLS01, JKK14], but the Gap DH problem is also known under the name of

strong Diffie–Hellman problem [ABR01, CKS09].
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ΣDLEQOR2.Prove((X, T, S,W ), (b, xb, yb))

(k0, k1)←$Z2
p

Kb := k0 · (G;T ) + k1 · (H;S)

for i ∈ [n], i ̸= b

ci, ui, vi ←$Zp

Ki := ui · (G;T ) + vi · (H;S)− ci · (Xi;W )

c := Hc(Γ, (X, T, S,W ),K0, . . . ,Kn)

cb := c−
∑

i ̸=b ci

ub := k0 + cbxb

vb := k1 + cbyb

return (c,u,v)

ΣDLEQOR2.Verify((X, S, T,W ), (c,u,v))

∀i ∈ [n] : Ki := ui(G;T ) + vi · (H;S)− ci(Xi;W )

c :=
∑

i ci

return c = Hc(Γ, (X, T, S,W ),K0, . . . ,Kn)

Fig. 14. The protocol ΣDLEQOR2.

The protocol has special soundness by standard OR-composition of sigma protocols [CDS94]:
from two transcripts (c,u,v) and (c′,u′,v′) verifying simultaneously, some b ∈ [2] such that cb ̸= c′b
it is possible to extract a witness (xb, yb) by computing xb := (ub − u′b)/(cb − c′b) and yb := (vb −
v′b)/(cb − c′b).

The protocol is also zero-knowledge: the simulator simply produces valid transcripts for all i ∈ [2]
by selecting ci, ui, vi←$Zp, and computing Ki := ui(G;T )+vi(H;S)−ci(Xi,W ). Then, it computes
c :=

∑n
i ci and programs the random oracle to reply with c when queried on (Γ,X, T, S,W,K0,

K1). The simulator aborts if such a query was already made, which since Ki are all distributed
randomly happens with probability at most q(λ)/pn, where q(λ) is an upper-bound on the number
of queries of the adversary to Hc.

B.1 Batching proofs
The proof can be batched via the same technique of Henry [Hen14]: it is possible to prove knowledge
of a witness (b, x, y) for m different statements (X, Tj , Sj ,Wj)

m
j=0 with a single proof.

Theorem 19. If DLOG holds for the group generator GrGen, then the proof system ΣDLEQOR2[GrGen]
is a zero-knowledge argument of knowledge for relation RDLEQOR2.

Proof (Knowledge soundness). Knowledge soundness for the batched protocol follows from knowl-
edge soundness of the underlying ΣDLEQOR2 proof system, plus a negligible statistical error. By
soundness of the underlying proof system we have that, except with a negligible extraction er-
ror, if Σbatched

DLEQOR2.Verify(Γ,X, T , S,W, π) = true, then it is possible to extract (b, x, y) such that(
(X, T , S,W ), (b, x, y)

)
∈ RDLEQOR2. In other words, there exists an PPT extractor that outputs

b, x, y such that Xb = xG + yH and W = xT + yS. The values T , S, and W are a random linear
combination of the elements (Ti, Si,Wi)

m−1
i=0 . We prove by induction on m that the probability

that there exists any i ∈ [m] such that the (batched) protocol verifies and Wi ̸= xTi + ySi is
at most 2(m + 1)/p = negl(λ). Logically, it will follow that, except with negligible probability,
(b, x, y) ∈ [n]× Zp × Zp is a valid witness for the statement (X, Ti, Si,Wi), for each i ∈ [m].

If m = 1, then W = xT+yS can be written as e0W0 = e0(xT0+yS0). Therefore, W0 = xT0+yS0

iff e0 ̸= 0, which happens with probability 1/p < 3/p. Let us denote with Pr[Em ] the probability
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Σbatched
DLEQOR2.Prove((X,T,S,W), (x, y))

e0, . . . , em := He(Γ,X,T,S,W)

T :=
∑m

j ejTj

S :=
∑m

j ejSj

W :=
∑m

m ejWj

return DLEQOR.Prove((X, T , S,W ), (x, y))

Σbatched
DLEQOR2.Verify((X,T,S,W), π)

e0, . . . , em := He(Γ,X,T,S,W)

T :=
∑m

j ejTj

S :=
∑m

j ejSj

W :=
∑m

m ejWj

return DLEQOR.Verify((X, T , S,W ), π)

Fig. 15. Batching ΠDLEQOR2.

that the (batched) verification equation is satisfied, but the witness is invalid for at least one of the
m statements. Note that for the case Pr[Em+1 ] there are two possibilities: either Wm = xTm+ySm,
in which case we are left with the equation of the inductive step:

m−1∑
j

ejWj =

x

m−1∑
j

ejTj + y

m−1∑
j

ejSj

 ,

Alternatively, if Wm ̸= xTm+ySm, then either the coefficient em is zero or also the other statement
must be invalid. It follows that:

Pr[Em+1 ] ≤ Pr[Em ] +
1

p
(1− Pr[Em ]) +

p− 1

p
Pr[Em ] .

(In fact, if em = 0 we fall in the inductive case; and the probability that the verification equation
is invalid is at least 1 − Pr[Em ].) It follows that Pr[Em+1 ] ≤ 2Pr[Em ] − 2/pPr[Em ] + 1/p ≤
2Pr[Em ] + 1/p ≤ 2(m+ 1)/p. Thus:

AdvksndDLEQORbatched
(m,λ) ≤ AdvksndDLEQORsimple

(λ) +
2(m+ 1)

p
.

⊓⊔

C Choice of curve
Because our constructions rely on the presence of a so-called static DH oracle, special care must
be taken when choosing the group, as in fact stronger cryptanalytic attacks are at disposal for
the adversary. These are Brown-Gallant [BG04] and Cheon’s attack [Che06], as already studied
independently by Taylor Campbell16 in the context of Privacy Pass, by Thomas et al. [TPY+19]
in the context of OPRFs, and by Chiesa et al. [CHM+19] in the context of SNARKs. Both attacks
exploit the smoothness of p±1, where p is the order of the group; if p±1 is smooth, such as in the case
of NISTP224, the security drops to O(288.5) for O(247) queries [TPY+19]. In the case of Ristretto,
p−1 is not smooth. p−1 attacks have best complexity O(

√
p/d +

√
d) and demand a number

of sequential queries proportional to max(d, p/d), where d is a divisor of p ± 1. This concretely
provides a best attack of complexity O(2124). The case p+1 has instead complexity O(

√
p/d+ d),

and requires a similar number of oracle queries. In this case, for Ristretto the security drops to
16 https://mailarchive.ietf.org/arch/msg/cfrg/YDVS5Trpr6suig_VCFEOH6SOn8Q
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Game HIJACKAT,A(λ)

Q := [ ]

(crs, td)← AT.Setup(1λ)

(pp, sk)← AT.KeyGen(crs)
(t, R, σ̄)← AToken(pp)

return (t, R) ̸∈ Q and AT.Bind(crs, sk, t, R, σ̄)

Oracle Token(b, t, R)

σ ← ⟨AT.User(pp, t),AT.Sign(sk, b)⟩
σ̄ := AT.Spend(pp, t, R, σ)

append (t, R) to Q
return σ̄

Fig. 16. Token hijacking game.

O(294) with O(264) sequential queries. Therefore, due to the large number of sequential queries
needed to mount the attack, even for adversaries with close proximity, this attack can be mitigated
with appropriate key rotation mechanisms.

D Token Hijacking
Let us now consider a stronger attacker, a man-in-the middle capable of intercepting messages
between the user and the issuer at redemption time. Despite such an attacker cannot forge or de-
anonymize an user, it is capable of hijacking user tokens sent for redemption, and spend them on
another resource than initially destined for. This attack model is not covered in our definitions,
since we assume that the communication between the user and the issuer always to happen over a
secure channel. We discuss in this section how it is possible to cover also the above scenario.

We model attack vector of a token hijacker as a security experiment where the adversary inter-
acts with with an oracle and request request a token for a specified resource identifier R ∈ {0, 1}∗
(e.g. a ), a private metadata bit b ∈ [2], and randomness t ∈ {0, 1}λ. After interacting an arbitrary
number of times with this oracle, the adversary must return a valid token (t, σ̄) bound to a resource
R that was never queried by the oracle. More formally, we introduce two new procedures: AT.Bind,
that cryptographically binds a token with a specified resource, and AT.Spend that allows to verify
(spend) a token on the selected resource. More formally, we say that an anonymous token AT is
secure against hijacking if, for all PPT adversaries A:

AdvhijackAT,A (λ) :=
∣∣Pr[HIJACKAT,A(λ)

]∣∣ = negl(λ) .

Informally, this can be achieved with the help of a MAC: the user hashes W into a MAC
key Hk(W ) and signs the resource R with this new key. On the other hand, the issuer uses the
randomness t (along with any additional information, such as S) and the secret key x to com-
pute the same shared key Hk(W ). More concretely, in the case of Privacy Pass (Section 4) we set
PP.Bind(pp, t, R, σ) := MAC.Sign(Hk(σ), t, R) and PP.Spend(crs, sk, t, R, σ̄) := MAC.Ver(Hk(xHt(t)), t,
R).

Theorem 20. If MAC is an existentially-unforgeable message authentication code, and PP is a
one-more unforgeable anonymous token, then PP prevents token hijacking.

Proof. The proof proceeds by means of a hybrid argument:
Hyb0 This is the game HIJACKPP,A(λ). The adversary wins if it manages to redeem a token σ̄ for

a resource R that was not previously redeemed. That is, the adversary wins if it outputs a
tuple (R, t, σ̄) such that MAC.Ver(k, t, R) = true with k = Hk(x · Ht(t)) and (t, R) ̸∈ Q.

35



Hyb1 In this hybrid, we abort if the adversary never made a query to the random oracle Hk of
the form W = x · Ht(t) during its execution. For any PPT adversary A making at most
q(λ) = poly(λ) queries to the random oracle Hk, this hybrid is indistinguishable from the
previous one. Therefore:

q(λ)

p
≤
∣∣∣AdvHyb1

PP,A(λ)− AdvHyb0
PP,A(λ)

∣∣∣ .
Hyb2 We retrieve the query W ∈ G associated to the MAC key k = Hk(W ) of the forgery, and we

run the verification equation of the anonymous token PP.Ver(p, t,W ). If it returns false, we
terminate the game immediately and the adversary wins.
If the output of a PPT adversary A in the hybrid Hyb1 is distinguishable from the one in
Hyb2, then it is possible to build an adversary B that wins the game UNFMAC,B(λ) with
non-negligible probability.

At this point, the adversary wins only if it outputs a token (t, σ̄) for a resource R and there exists
a query to the random oracle Hk for W ∈ G such that (t,W ) was not previously produced by the
oracle Token. This is exactly the one-more unforgeability experiment for PP. It follows that:

Advhijack
PP,A (λ) ≤ q(λ)

p
+ Advomuf

PP,A(λ).

⊓⊔

E Security proofs for Privacy Pass (PP)
E.1 Unforgeability
The one-more unforgeability security notion from Privacy Pass [DGS+18] did not provide the
adversary with a Verify oracle. One-more unforgeability without verification oracle is proven
under the one-more decryption of El Gamal problem, which we prove to be equivalent to the
chosen-target Diffie–Hellman problem in Appendix A.3. We therefore prove the following corollary:

Theorem 4. If CTGDH holds for GrGen and ΠDLEQ is a zero-knowledge proof system for relation
RDLEQ, then PP[GrGen,ΠDLEQ] is one-more unforgeable with advantage:

Advomuf
PP,ℓ (λ) ≤ AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLEQ,RDLEQ(λ).

Proof (sketch). The proof follows directly from the proof of Theorem 6. We detail highlight here
the differences:
– In the hybrid, the proof system is with respect to the proof system ΠDLEQ instead of ΠDLEQ2.
– In the reduction to chosen-target gap Diffie–Hellman, B sets the public parameters as A ∈ G,

and answers the signing queries with whatever Help answers and the simulated proof. At the
end of the game, it outputs whatever A outputs.

It follows that that:
Advomuf

PP,ℓ (λ) ≤ AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLEQ,RDLEQ(λ).

⊓⊔
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E.2 Unlinkability
In [DGS+18], the Privacy Pass protocol is proved to be unconditionally unlinkable (up to the
soundness error of the proof system).

Theorem 5. Let GrGen be a group generator algorithm. If ΠDLEQ is a knowledge-sound proof system
for relation RDLEQ, then PP[GrGen,ΠDLEQ] is 1-unlinkable.

Proof. Consider an hybrid game Hyb in which we use the knowledge extractor to recover the
(unique) witness x, and always compute W as xT = xHt(t). This hybrid is indistinguishable from
the original game by the knowledge soundness of the proof system:

q0 · AdvksndΠDLEQ,RDLEQ,B,Ext(λ) ≥
∣∣∣Advhyb

PP,A(λ)− Pr
[
UNLINKPP,A(λ) = 1

]∣∣∣ ,
where q0 is the total number of calls to PP.User1.

Now, consider a second hybrid in which we program the random oracle so that T ′ is drawn
uniformly at random and Ht(t) := rT ′. The distribution is unchanged, and it holds that T ′ and
(t,W ) are independent. Therefore

Pr
[
UNLINKPP,A(λ) = 1

]
≤ 1

m
+ q0 · AdvksndΠDLEQ,RDLEQ,B,Ext(λ)

which concludes the proof. ⊓⊔

F Security proofs for OSPP

F.1 Unforgeability
Theorem 6. If CTGDH holds for GrGen, and ΠDLEQ2 is a zero-knowledge proof system for relation
RDLEQ2, then OSPP[GrGen,ΠDLEQ2] is one-more unforgeable with advantage:

Advomuf
OSPP,ℓ(λ) ≤ AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLEQ2,RDLEQ2(λ).

Proof. We prove this lemma using a hybrid argument. First, we replace the proving algorithm
ΠDLEQ2.Prove by the zero-knowledge simulator ΠDLEQ2.Sim, and then show a direct reduction to
the chosen-target gap Diffie–Helman. Let ℓ ∈ N.
Hyb0 This is the game OMUFAT,A,ℓ(λ). The adversary is provided with X ∈ G, and has access to

the signing oracle Sign, the verification oracle Verify, and the random oracles Hs (used for
the response of the issuer), Ht (used for blinding the message by the user). At the end of its
execution, it must output ℓ+ 1 valid tokens.

Hyb1 This hybrid replaces the way zero-knowledge proofs are generated when answering signing
oracles: instead of using the proving algorithm ΠDLEQ2.Prove, we use the zero-knowledge sim-
ulator ΠDLEQ2.Sim for all signing queries. If there exists a PPT adversary A whose advantage
is different between the two games, then it is possible to construct an adversary for zero-
knowledge of the underlying proof system. Consider the following PPT adversary B for the
game ZKβ

ΠDLEQ2,RDLEQ2,B(λ). B takes as input (Γ, pcrs) and generates the public parameter X
following OSPP.KeyGen. It then invokes the adversary A on X, and for any signing query,
it generates the proofs π’s the Prove oracle. At the end of the execution, A returns ℓ + 1
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tokens. If A wins the game, then B outputs 1, otherwise it outputs 0. It follows that, for any
PPT adversary A, the advantage in distinguishing the two hybrids is at most the advantage
of zero-knowledge, i.e.:

AdvzkΠDLEQ2,RDLEQ2,B(λ) ≥
∣∣∣AdvHyb0AT,A,ℓ(λ)− AdvHyb1AT,A,ℓ(λ)

∣∣∣ .
At this point, we prove that if there is a PPT adversary A that has non-negligible advantage
AdvHyb1AT,A,ℓ(λ), then we can construct a PPT adversary B that has non-negligible advantage in the
chosen-target gap Diffie–Hellman game CTGDHGrGen,B,ℓ(λ). B receives as input the group descrip-
tion Γ and a challenge A ∈ G as input. It runs (pcrs, ptd)← ΠDLEQ2.Setup(Γ ), then samples y ← Z∗p,
and computes X := A+ yH. Then, it invokes the adversary A(crs, X), where crs := (Γ, pcrs). Note
that X is distributed as in Hyb1. The adversary B responds to the queries that A makes to the
oracles Ht, Sign, and Verify in the following way:
– to any query to the oracle Ht(t), the adversary B invokes the oracle Target(t) and returns

whatever it returns;
– to any query to the oracle Sign(T ′), B samples s←$ {0, 1}λ and defines S′ := Hs(T

′, s). Then it
invokes the oracle Z := Help(T ′), defines W ′ = Z + yS′, and simulates the proof π. Finally, it
returns (s,W ′, π);

– to any query to the oracle Verify(t, (S,W )), B sets T := Ht(t) and invokes the oracle Ddh(T,W−
yS), and returns whatever it returns.

(The random oracle Hs is left unchanged.) First, note that the distributions of Ht, Sign, and
Verify are identical to the ones of Hyb1. At the end of the execution, A returns ℓ + 1 tuples
(ti, (Si,Wi)) ∈ {0, 1}λ ×G2, and B finally returns (ti, (Wi − ySi))i∈[ℓ+1].

We claim that B wins the game CTGDHGrGen,B,ℓ(λ) every time that A wins Hyb1: by the winning
condition in Hyb1, A won if and only if all ti are different and Wi = xTarget(ti) + ySi where x is
the unique element of Zp such that A = xG. Furthermore, by the winning condition, A only called
the signing oracle Sign at most ℓ times (and thus Help was called at most ℓ times). Therefore:

Advomuf
OSPP,ℓ(λ) ≤ AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLEQ2,RDLEQ2(λ).

and this concludes the proof. ⊓⊔

F.2 Unlinkability
In this section, we prove that OSPP is 1-unlinkable (cf. Definition 2), that is, that the probability
that an adversary can guess which of m tokens has not been redeemed yet is upper-bounded by
1/m+ negl(λ).

Theorem 7. If DDH holds for GrGen and ΠDLEQ2 is an argument of knowledge for relation RDLEQ2,
then OSPP[GrGen,ΠDLEQ2] is 1-unlinkable.

Proof. The theorem trivially holds for m = 1. Let m > 1. We prove the theorem via a sequence of
hybrids, summarized in Figure 17.
Hyb0 This hybrid is the game UNLINKOSPP,A,m(λ), where the adversary is given as a challenge the

j-th token.
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Game UNLINKOSPP,A,m(λ) in Hyb0, Hyb2, Hyb3, Hyb5

Γ := (G, p,G,H)← GrGen(1λ)

(pcrs, ptd)← ΠDLEQ2.Setup(Γ )

(st, X)← A((Γ, pcrs))
q0 := 0; q1 := 0; Q := ∅(

st, (si,W ′
i , πi)i∈Q

)
← AUser0,User1(st)

if Q = ∅ then return 0

j ←$Q; Q := Q \ {j}
σj ← OSPP.User1(stj , (sj ,W ′

j , πj))

if Q = ∅ then return 0

k←$Q; Q := Q \{k}
σk ← OSPP.User1(stk, (sk,W ′

k, πk))

for i ∈ Q : σi ← OSPP.User1(sti, (si,W ′
i , πi))

if not (xi, yi) = (xk, yk) then abort

Wj := xkHt(tj) + ykSj

if ΠDLEQ2.Verify(pcrs, (X,T ′
j , S

′
j ,W

′
j), πj) then

σj := (tj , (Sj ,Wj))

Wk := xkHt(tk) + ykSk

if ΠDLEQ2.Verify(pcrs, (X,T ′
k, S

′
k,W

′
k), πk) then

σk := (tk, (Sk,Wk))

ϕ← SQ
j′ ← A(st, (tj , σj), (tϕ(i), σϕ(i))i∈Q)

j′ ← A(st, (tj , σj), (tk, σk), (tϕ(i), σϕ(i))i∈Q)

return q0 − q1 ≥ m and j′ = j

Oracle User0 in Hyb1, Hyb8, Hyb9

q0 := q0 + 1

tq0 ←$ {0, 1}λ

if Ht(tq0) was queried then abort

(T ′
q0 , stq0)← OSPP.User0(X, tq0)

rq0 ←$Z∗
p

Tq0 := Ht(tq0); T ′
q0

:= r−1
q0 · Tq0

T ′
q0 ←$G; Tq0 := Ht(tq0) := rq0T

′
q0

stq0 := (pp, rq0 , tq0 , T
′
q0)

Q := Q∪ {q0}
return (q0, T

′
q0)

Oracle User1(i, (si,W
′
i , πi)) in Hyb0, Hyb4, Hyb6, Hyb7

if i /∈ Q then return ⊥
// Below: σi ← OSPP.User1(sti, (si,W ′

i , πi))

(X, ri, ti, T
′
i ) := sti

S′
i := Hs(T

′
i , si)

if not ΠDLEQ2.Verify(pcrs, (X,T ′
i , S

′
i,W

′
i ), πi) then

return ⊥

Si := riS
′
i; Si ←$G

if not RDLEQ2((x, y), (X,T ′
i , S

′
i,W

′
i )) then abort

(x′, y′)← Exti(ptd, (X,T ′
i , S

′
i,W

′
i ), π)

W := rW ′; W := xHt(t) + yS

σi := (Si,Wi)

if σi ̸=⊥ then

Q := Q \ {i}; q1 := q1 + 1

return σi

Fig. 17. Summary of hybrid changes for proof of unlinkability of OSPP in Theorem 7. We recall that SX denotes the
symmetric group of X, i.e., the group of all permutations of X.

Hyb1 We unroll OSPP.User0 inside the oracle User0. This hybrid is perfectly indistinguishable
from Hyb0.

Hyb2 In this hybrid, we return 0 if the set Q is empty after having removed j (that is, if Q = {j}).
This hybrid is perfectly indistinguishable from Hyb1, since if |Q| = 1 = q0−1−q1, the winning
condition q0 − q1 ≥ m cannot be satisfied.

Hyb3 We now sample another element k from Q, and shuffle the others. The distribution is the
same as in the previous hybrid.

Hyb4 We now use the knowledge extractor, using a sequence of hybrids, to recover the witness.
This hybrid is indistinguishable from the previous by the knowledge soundness of the proof
system. Hence, we have:

q0 · AdvksndΠDLEQ2,RDLEQ2,B,Ext(λ) ≥
∣∣∣AdvHyb3OSPP,A(λ)− AdvHyb4OSPP,A(λ)

∣∣∣ ,
where q0 is the total number of calls to OSPP.User1.
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Hyb5 This hybrid aborts if the extracted witnesses at positions j and k differ, and then sets Wj :=
xkHt(tj) + ykSj and Wk := xjHt(tk) + yjSk (which does not change the distributions).
If the game aborts at this step, by soundness of the proof system we would have that X =
xjG+ yjH = xkG+ ykH and thus (yk − yj)/(xj − xk) is the discrete log of H base G. (If the
two witnesses are different, it must be that xj ̸= xk, and thus the inverse of (xj −xk) exists.)
It is therefore possible to construct a PPT adversary B for DLOGGrGen,B(λ): the adversary B
obtains a group description Γ := (G, p, G̃) and a challenge H̃. It sets G := G̃ and H := H̃
and runs exactly as per Hyb4. It extracts the two witnesses (xj , yj), and (xk, yk) and returns
(yk − yj)/(xj − xk). The adversary wins every time that Hyb5 aborts.

Hyb6 In this hybrid, instead of computing all the W ’s by unblinding the elements W ′’s provided
by the adversary, we compute it ourselves using the (valid) extracted witnesses (x, y). The
distribution is left unchanged.

Hyb7 This hybrid proceeds exactly as the previous one, except now all S’s are sampled uniformly
at random from G.
If there exists a PPT adversary A for which the outcome of the two hybrids is different, then
it is possible to construct a distinguisher B for DDHβ

GrGen,B(λ) by exploiting the random self-
reducibility property of DDH. The adversary B takes as input the group description together
with a tuple (P,A := aP,B := bP,C) ∈ G4 where a, b←$Zp and has to distinguish C := abP
(the case β = 0) from a uniformly distributed element over G (the case β = 1). B runs
the game as per Hyb6, except in OSPP.User0, instead of sampling T ′q0 uniformly at random
from G, B sets them as T ′q0 := γq0P where γq0 ←$Zp. Instead of computing Tq0 := rq0T

′
q0 , B

sets Tq0 := γq0αq0A + γq0α
′
q0P = (αq0a + α′q0)γq0P = (αq0a + α′q0)T

′
q0 , i.e. implicitly setting

rq0 := αq0a + α′q0 . For every query Hs(T
′
q0 , s), the adversary B samples βq0,s, β

′
q0,s uniformly

at random and programs Hs(T
′
q0 , s) := γq0βq0,sB + γq0β

′
q0,sP = (βq0,sb + β′q0,s)γq0P . Finally,

when computing S at index i, B sets Si := αiβi,siγiC+αiβ
′
i,si

γiA+α′iβi,siγiB+α′iβ
′
i,si

γiP . If
C is uniformly random then Si is uniformly distributed as well, and therefore its distribution
didn’t change from Hyb7. If C = abP , then:

Si = αiβi,siγi(abP ) + αiβ
′
i,siγi(aP ) + α′iβi,siγi(bP ) + α′iβ

′
i,siγiP

= αiβi,siab(γiP ) + αiaβ
′
i,si(γiP ) + α′ibβi,si(γiP ) + α′iβ

′
i,si(γiP )

= (αia+ α′i)(βi,sib+ β′i,si)(γiP ) ,

which results in the distribution of Hyb6. Therefore, it follows that the advantage in distin-
guishing the two hybrids is:

AdvddhGrGen,B(λ) ≥
∣∣∣AdvHyb7

OSPP,A(λ)− AdvHyb6OSPP,A(λ)
∣∣∣ ,

for any PPT adversary A.
Hyb8 This hybrid aborts if the adversary has already queried Ht(tq0) before running OSPP.User0.

This happens with negligible probability:
q0
2λ
≥
∣∣∣AdvHyb8OSPP,A(λ)− AdvHyb7OSPP,A(λ)

∣∣∣ .
Hyb9 In this hybrid, we program the random oracle so that T ′q0 is sampled uniformly at random, and

we program the random oracle so that Tq0 = Ht(tq0) := rq0T
′
q0 . The distribution is unchanged.
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Hyb10 In the previous hybrid, rj and rk are only used in order to compute Tj and Tk. Therefore,
they look completely random to the adversary, and so do Sj and Sk. In this hybrid, we can
therefore swap the indices j and k without the adversary noticing. This hybrid is perfectly
indistinguishable from Hyb5.

Now, it is sufficient to bound the probability of success adversary in Hyb10. Since the index
that the adversary needs to guess j is independent of the challenge it receives, we conclude that
AdvHyb10OSPP,A(λ) ≤ 1/(q0 − q1). Therefore:

Pr
[
UNLINKOSPP,A,m(λ) = 1

]
≤ 1

m
+ q0 · AdvksndΠDLEQ2,RDLEQ2,A(λ) + AdvdlogGrGen,A(λ) + AdvddhGrGen,A(λ) +

q0
2λ

which completes the proof. ⊓⊔

G Security proofs for PMBT

G.1 Unforgeability
We prove the following theorem using a hybrid argument. The key difference to OSPP (cf. Ap-
pendix F.1) is that, during the reduction to CTGDH, B will draw a bit b ∈ {0, 1} which will
correspond to its guess on which bit A will succeed for the one-more unforgeability game, and
correctly create tokens for the bit 1− b.

Theorem 8. If CTGDH holds for GrGen and ΠDLEQ2 is a zero-knowledge proof system for relation
RDLEQ2, then PMBT[GrGen,ΠDLEQ2] is one-more unforgeable with advantage:

Advomuf
PMBT,ℓ(λ) ≤ 2AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLEQ2,RDLEQ(λ).

Proof. We prove this theorem using a hybrid argument, similar to the proof of Theorem 6. First,
we replace the proving algorithm ΠDLEQOR2.Prove by the zero-knowledge simulator ΠDLEQOR2.Sim
(which defines an hybrid Hyb1), and then show a direct reduction to the chosen-target gap Diffie–
Helman problem.

Let ℓ be an integer. We will prove that if there is a PPT adversary A that has non-negligible
advantage in the hybrid with simulated proofs, then we can construct a PPT adversary B that has
non-negligible advantage in the game CTGDHGrGen,B,ℓ(λ).

Assuming the existence of A, we construct B as follows. First, B draws a bit b ∈ {0, 1} which
will correspond to its guess on which bit A will succeed for the one-more unforgeability game.
B receives the group description and A ∈ G as input, samples yb, xb, y1−b ← Zp invertible, and
computes Xb := A + ybH and X1−b := x1−bG + y1−bH. With overwhelming probability it holds
that X0 ̸= X1. Then, it sets X := (X0, X1) and it runs A(X). Note that X is distributed as in
the previous hybrid Hyb1. The adversary B responds to the oracles Ht, Sign, and Read using the
oracles Target, Help, and Ddh (cf. Figure 1), in the following way:
– to any query to the oracle Ht(t), the adversary B invokes the oracle Target(t) and returns

whatever it returns;
– to any query to the signing oracles Sign′(b̂, T ′) and Sign(T ′), the adversary B proceeds as follows:
• it samples s←$ {0, 1}λ and defines S′ := Hs(T

′, s);
• if b̂ = 1 − b, it computes W ′ = x1−bT

′ + y1−bS
′; else (i.e., b̂ = b), it invokes the oracle

Z := Help(T ′) and sets W ′ = Z + ybS
′;
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• finally, returns (s,W ′, π), where the proof π is simulated.
– to any query of the form Read(t, (S,W )), B (who knows the secrets yb, x1−b, and y1−b) lets

X := W − ybS, and defines boolb := Ddh(t,X) and bool1−b := (W = x1−bHt(t) + y1−bS). It
returns ⊥ if boolb = bool1−b, or then 1 if bool1, or then 0 if bool0.

All other random oracle queries are left unchanged. First, note that the distributions of Ht, Sign,
Sign′, and Read are identical to the ones of Hyb1. At the end of the execution, A returns ℓ + 1
tuples (ti, (Si,Wi)) ∈ {0, 1}λ×G2. If the ℓ+1 forgeries are valid w.r.t. the bit b (that is, B correctly
guessed the bit of the forgery at the beginning), it returns (ti,Wi−ybSi)i∈[ℓ+1]. Otherwise, it returns
⊥. It follows that the adversary B wins the game CTGDHGrGen,B,ℓ(λ) every time that A wins and
produced a forgery on b (sampled unif. at random from {0, 1}). This shows that:

Advomuf
PMBT,ℓ(λ) ≤ 2AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLEQ2,RDLEQ2(λ),

and this concludes the proof.

G.2 Unlinkability
We prove that PMBT is 2-unlinkable instead of 1-unlinkable (cf. Definition 2), which means that
the probability that an adversary can guess which of m tokens not redeemed yet is upper-bounded
by 2/m + negl(λ). Indeed, they key idea is that the adversary can now embed different private
metadata bits, at most halving its search space.

Theorem 9. If DDH holds for GrGen and ΠDLEQOR2 is a zero-knowledge proof system for relation
RDLEQOR2, then PMBT[GrGen,ΠDLEQOR2] is 2-unlinkable.

Proof. The theorem trivially holds for m = 1, 2. Let m > 2. The theorem can be proved by a
sequence of hybrids similar to those of the proof of Theorem 7. Since the user algorithms are the
same (besides the DLOEQOR instead of DLEQ proof) as in Construction 2, we explicit the key
difference in the reduction below, and refer to Fig. 17 and the proof of Theorem 7 for the rest of
the proof.

The key idea is as follows. We will first extract all the witnesses from the proofs πi, i ∈ U , and
hence we will be able to partition the set U in two: the indices with a witness starting with the
bit 0 and the indices with a witness starting with the bit 1. We will then sample a biased bit b
depending on the probability |U1|/|U |, then sample j, k in Ub and perform the same steps as in
the proof of Theorem 7, which proves that the adversary can only guess j with probability 1/|Ub|.
Hence, the probability of success p of the adversary will be upper bounded by

p =
∑
b′=0,1
Ub′ ̸=∅

Pr[b′ = b] · 1

|Ub′ |
+ negl(λ) =

∑
b′=0,1
Ub′ ̸=∅

|Ub′ |
|U |
· 1

|Ub′ |
+ negl(λ)

=
∑
b′=0,1
Ub′ ̸=∅

|Ub′ |
k0 − k1

· 1

|Ub′ |
+ negl(λ) ≤ 2

k0 − k1
+ negl(λ) ≤ 2

m
+ negl(λ) .

G.3 Privacy of the metadata bit
Theorem 10. If DDH holds for the group generator GrGen, and ΠDLEQOR2 is a zero-knowledge
proof system for relation RDLEQOR2 then PMBT[GrGen,ΠDLEQOR2] provides private metadata bit
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Oracle Sign′(b̂, T ′) in Hyb0, Hyb1, Hyb2

s←$ {0, 1}λ

if Hs(T
′, s) was queried then abort

S′ := H(T ′, s)

W ′ := xb̂T
′ + yb̂S

′

π ← ΠDLEQOR2.Prove(pcrs, (X0, X1, T
′, S′,W ′), (xb̂, yb̂))

π ← ΠDLEQOR2.Sim(ptd, (X0, X1, T
′, S′,W ′))

return (s,W ′, π)

Oracle Sign′(b̂, T ′) in Hyb4(λ),Hyb5(λ),Hyb6(λ)

s←$ {0, 1}λ

if Hs(T
′, s) was queried then abort

S′ := H(T ′, s)

W ′ := xb̂T
′ + yb̂S

′

π ← ΠDLEQOR2.Sim(ptd, (X0, X1, T
′, S′,W ′))

return (s,W ′, π)

Oracle Sign(T ′) in Hyb1(λ), Hyb2(λ), Hyb3(λ)

s←$ {0, 1}λ

if Hs(T
′, s) was queried then abort

S′ := H(T ′, s)

W ′ := xbT
′ + ybS

′

π ← ΠDLEQOR2.Prove(pcrs, (X0, X1, T
′, S′,W ′), (xb, yb))

π ← ΠDLEQOR2.Sim(ptd, (X0, X1, T
′, S′,W ′))

return (s,W ′, π)

Oracle Sign(T ′) in Hyb4(λ), Hyb5(λ), Hyb6(λ)

s←$ {0, 1}λ

if Hs(T
′, s) was queried then abort

S′ := H(T ′, s)

W ′ := xbT
′ + ybS

′

y′ ←$Z∗
p; W ′ := xbT

′ + y′S′

W ′ := x1−bT
′ + y′S′

W ′ := x1−bT
′ + y1−bS

′

π ← ΠDLEQOR2.Sim(ptd, (X0, X1, T
′, S′,W ′))

return (s,W ′, π)

Fig. 18. Hybrid changes for privacy of the metadata bit of PMBT in Theorem 10.

with advantage:

Advpmb
PMBT(λ) ≤

O(q2)

2λ
+ 2AdvddhGrGen(λ) + 2AdvzkΠDLEQOR2,RDLEQOR2

(λ),

where q is the number of queries the adversary makes to Hs or Sign.

Proof. We consider the sequence of hybrids presented in Fig. 18 that transitions from PMBb
PMBT,A(λ)

to PMB1−b
PMBT,A(λ) (see Definition 3). We argue that each pair of consecutive hybrids are indistin-

guishable, for any PPT adversary A. We do not explicitly write the verification oracle in the games
since it will always return true.

Hyb0 This is the game PMB0
AT,A(λ). Here, the adversary is provided the public parameters X :=

(X0, X1). The adversary has access to the signing oracle for a bit of its choosing, and a
challenge oracle that signs new tokens with the bit b. Additionally, it has access to the random
oracles Ht,Hs,Hc. At the end of its execution, A outputs a bit b′; if b = b′, the adversary won.

Hyb1 This hybrid replaces the way zero-knowledge proofs are generated in Sign and Sign′: in-
stead of using the proving algorithm ΠDLEQOR2.Prove, we use the zero-knowledge simulator
ΠDLEQOR2.Sim.
If there exists a PPT adversary A whose output is different between the two games, then it is
possible to construct a distinguisher for the zero-knowledge proof system ΠDLEQOR2: consider
the PPT adversary B for the game ZKβ

ΠDLEQOR2,RDLEQOR2,B(λ) (cf. Fig. 2) that, given as input
the CRS pcrs, runs (X, (x,y)) ← PMBT.KeyGen((Γ, pcrs)) and then invokes the adversary
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A((Γ, pcrs),X). All random oracles queries are performed exactly as per Hyb2, except for sign-
ing queries. For each query to Sign and Sign′, after generating the values s, S′, and W ′ as per
Hyb0, the proof π is generated via the proving oracle: π ← Prove((X, T ′, S′,W ′), (b̂, xb̂, yb̂)),
where b̂ ∈ {0, 1} is specified within the signing oracle (b̂ = b in Sign). At the end of its
execution, A returns a guess b′; B outputs b′.
If the Prove oracle outputs proofs via ΠDLEQOR2.Prove, the game is identical to Hyb0. If
Prove outputs proofs via ΠDLEQOR2.Sim, the game is identical to Hyb1. It follows that,
for any PPT adversary A, the advantage in distinguishing the two hybrids is at most the
advantage of zero-knowledge in ΠDLEQOR2 with adversary B, that is:

AdvzkΠDLEQOR2,RDLEQOR2,B(λ) ≥
∣∣∣AdvHyb1PMBT,A(λ)− AdvHyb0PMBT,A(λ)

∣∣∣ .
Hyb2 If, during any of the signing queries, the oracle Hs has already received a query of the form

(T ′, s), we abort. Clearly, the output of the two hybrids is distinguishable only in the case
of a collision on the choice of s ∈ {0, 1}λ between the signing oracles, or via a direct query
to Hs. For a PPT adversary A making at most q = poly(λ) queries to any of the oracles Hs,
Sign, or Sign′, the probability that the game aborts is at most (q − 1)(q − 2)/2λ. In fact,
for the second query (to Sign or Sign′), we have chance 1/p of hitting the string s selected
during the first query, and so on: the i-th query has chance (i− 1)/p of selecting a s that has
been previously used. It follows that:

(q − 1)(q − 2)

2λ
≥
∣∣∣AdvHyb2PMBT,A(λ)− AdvHyb1PMBT,A(λ)

∣∣∣
Hyb3 We now change the way W ′ is computed: during the key generation, we sample an additional

element y′←$Zp, and for any query to the random oracle Sign we construct W ′ as xbT ′+y′S′

instead of xbT ′ + ybS
′. The proof π gets simulated as before.

We prove that if, by contradiction, the two games are distinguishable, then there exists an
adversary B for the game DDHβ

B,GrGen(λ) that wins every time the output of the two hybrids
is different. The adversary B receives as input a DDH tuple (P,A := aP,B := bP,C) ∈ G4

such that C = abP in the case DDH0
B,GrGen(λ) and C←$G in the case DDH1

B,GrGen(λ). Given
a single challenge (P,A,B,C), B can exploit the random self-reducibility property of DDH
to construct q random instances of the DDH challenge: for any i ≤ q the adversary B can
select αi, βi←$Zp and construct the challenge:

(P, A, βiB + αiP, βiC + αiB)

The adversary B proceeds as per Hyb2, embedding the challenge in the public key and oracle
replies. It fixes H := P , and instead of generating Xb := xbG + ybH, it constructs it as
Xb := xbG+ A. Then, it runs the adversary A. The adversary A will make queries to any of
the random oracles Ht and Hs, that are answered as before. We replace queries to the signing
oracles in the following way:
– for any query Sign, sample s←$ {0, 1}λ and check for collisions w.r.t. previous queries

to Hs as per Hyb2. Then, we sample α, β←$Zp and we program the random oracle on
Hs(T

′, s) = S′ to reply with (βiB + αiP ), for some αi, βi←$Zp. Then, B computes W ′ :=
xbT

′ + βiC + αiA and produces the proof π using the simulator. B returns (s,W ′, π)
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– for any query Sign′ with b̂ = b, after sampling s←$ {0, 1}λ, we program the random oracle
on H(T ′, s) = S′ to reply with αiH for some αi←$Zp. B computes W ′ := xbT

′ + αiA, and
simulates the proof. It returns (s,W ′, π).

– any query to Sign′ with b̂ = 1− b is handled exactly as per the previous hybrid.
At the end of A’s execution, B returns whatever guess A returned. We note that if the challenge
C is provided according to DDH0

A,GrGen(λ), B behaves exactly as per Hyb2; if the challenge
C is provided according to DDH1

A,GrGen(λ), B behaves exactly as per Hyb3. Additionally, if
the simulator fails to simulate this statement as it’s not in the language, then B also wins
the game DDHβ

A,GrGen(λ). Therefore, every time that A’s output is different between the two
hybrids (or every time that ΠDLEQOR2.Sim fails), B will distinguish a random tuple from a
DDH tuple. It follows therefore that:

AdvddhGrGen,B(λ) ≥
∣∣∣AdvHyb3PMBT,A(λ)− AdvHyb2PMBT,A(λ)

∣∣∣
Hyb4 In this game, we remark that W ′ := xbT

′+y′S′, and that y′←$Zp is used only for computing
W ′. Therefore, the distribution of W ′ in Hyb3 is uniform (plus a constant xbT ′, i.e., uniform)
as long as S′ ̸= 0G. Therefore, we change once again the way we compute W ′, swapping b
with 1− b: in this hybrid, W ′ := x1−bT

′+ y′S′. For the above remarks, the two games can be
distinguished only if S′ is the identity element, which happens with probability 1/p.

Hyb5 In this hybrid, we remove y′ and we compute W ′ using the witness 1− b. The proof for this
hybrid follows an argument similar to the one used for the transition Hyb2 → Hyb3. Therefore,
it follows that:

AdvddhGrGen,B(λ) ≥
∣∣∣AdvHyb5PMBT,A(λ)− AdvHyb4PMBT,A(λ)

∣∣∣
At this point we note that the oracle Sign is issuing signatures under the witness x1−b, y1−b. It is
possible, through a sequence of hybrids, to remove the condition on the collision of s introduced
in Hyb2 (via the same argument used for the transition Hyb1 → Hyb2), and swap back the zero-
knowledge simulator with the prover’s algorithm ΠDLEQOR2.Prove (via the same argument used for
the transition Hyb0 → Hyb1). Therefore, the advantage of an adversary A in winning the game
PMBβ

PMBT,A(λ) is:

Advpmb
PMBT,A(λ) ≤ 2 · (q − 1)(q − 2)

2λ
+

1

2λ
+ 2AdvddhGrGen(λ) + 2AdvzkDLEQOR(λ),

where q is the number of queries to the signing oracles or to the random oracle Hs.

H Security proofs for PPB

In this section, we argue one-more unforgeability and 2-unlinkability of Construction 4.

H.1 Unforgeability
Theorem 21. If CTGDH holds for GrGen, and ΠDLOG is a zero-knowledge proof system for relation
ΠDLOG, then PPB[GrGen,ΠDLOG] is one-more unforgeable with advantage:

Advomuf
PPB,ℓ(λ) ≤ AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLOG,RDLOG

(λ).
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Game UNLINKPPB,A,m(λ) in Hyb0, Hyb1

Γ := (G, p,G)← GrGen(1λ)

(pcrs, ptd)← ΠDLOG.Setup(Γ )

(st, (X,π))← A((pcrs, Γ ))

x← Ext(ptd, π)
if not RDLOG(X,x) then abort

q0 := 0; q1 := 0;Q := ∅
(st, {W ′

i}i∈Q)← AUser0(),User1(·,·)(st)
if Q = ∅ then return 0

j ←$Q; Q := Q \ {j}
σj ← AT.User1(stj ,W ′

j)

∀i ∈ Q, σi ← AT.User1(sti,W ′
i )

ϕ← SQ
j′ ← A(st, (tj , σj), (tϕ(i), σϕ(i))i∈Q)

return q1 − q0 ≥ m and j′ = j

Oracle User0()

q0 := q0 + 1

tq0 ←$ {0, 1}λ

(T ′
q0 , stq0)← AT.User0(pp, tq0)

Q := Q∪ {q0}
return (q0, T

′
q0)

AT.User0(pp = (X,π), t)) in Hyb0, Hyb3

r, ρ←$Z∗
p

T := Ht(t)

T ′ := r(T − ρG)

T ′ ←$G
st := (p, r, ρ, t)

return (T ′, st)

Oracle User1(j,W
′)

if j /∈ Q then return ⊥
σj ← AT.User1(stj ,W ′)

Q := Q \ {j}
q1 := q1 + 1

return token

AT.User1(pp, r, ρ, t),W
′) in Hyb0, Hyb2, Hyb4

(X,π) := pp

σ := r−1W ′ + ρX

P := W ′ − xT ′

σ := xHt(t) + r−1P

if P ̸= 0 then σ←$G
return σ

Fig. 19. Hybrid changes for unlinkability of PPB in Theorem 22.

The unforgeability of the scheme follows from the unforgeability of Privacy Pass since here the
user receives strictly less information than in the Privacy Pass construction, and the zero-knowledge
proof sent within pp can be simulated.

H.2 Unlinkability

We will formally argue that the each token is either a valid token or is a uniformly distributed
value. Indeed, note that there exists P ∈ Zp such that σ′ = xT ′ + P . If P = 0 and the issuer was
honest, then σ = xHt(t). Otherwise, σ = xHt(t)+r−1P . The value T ′ is uniformly distributed since
ρ is chosen at random, and then σ is uniformly distributed since r is chosen at random.

Theorem 22. Let GrGen be a group generator. If ΠDLOG is a knowledge-sound proof system for
relation RDLOG, then PPB[GrGen,ΠDLEQ] is 2-unlinkabile.

Proof. We formally argue that the each token is either a valid token or is a uniformly distributed
value. We do this with a sequence of hybrids presented in Fig. 19. We argue that the transitions
between the hybrids in Fig. 19 are indistinguishable as follows:

Let m be an integer.
Hyb0 The first hybrid is the unlinkability game.
Hyb1 In this hybrid, we use the knowledge extractor on the public key. Since the extractor fails

only with negligible probability, this hybrid is indistinguishable from the previous one.

AdvksndΠDLOG,RDLOG,B(λ) ≥
∣∣∣AdvHyb0PPB,A(λ)− AdvHyb1PPB,A(λ)

∣∣∣ .
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Hyb2 In this hybrid we compute the value σ in AT.User1 in a different but equivalent way. First,
note that since the challenger knows x, it can define P := W ′ − xT ′. Then, we have

σ = r−1W ′ + ρX = r−1(xT ′ + P ) + ρX

= r−1(xr(Ht(t)− ρG) + P ) + ρX

= xHt(t) + r−1P.

The distribution is identical to the previous hybrid.
Hyb3 In this hybrid, we sample T ′ uniformly at random, which results in the same distributions

since the ρ is sampled at random and is used only in the computation of this specific T ′.
Hyb4 In this hybrid, if P ̸= 0, we sample σ at random. Since r is sampled at random and is only

used in this specific computation, the resulting distribution is the same.
Now, we have that the tokens can be of two types (t, xHt(t)) or (t, R), where tokens of the same
type are indistinguishable for the adversary. Let U0, U1 be the sets of tokens from each type issued
during the unlinkability game, such that U0 ∪ U1 is a partition of U .

Pr
[
UNLINKPPB,A,m(λ)

]
=
∑
d=0,1
Ud ̸=∅

Pr
[
UNLINKPPB,A,m(λ) | j ∈ Ud

]
Pr[j ∈ Ud ]

≤
∑
d=0,1
Ud ̸=∅

1

|Ud|
|Ud|
|U |

+ negl(λ) ≤
∑
d=0,1
Ud ̸=∅

1

q0 − q1
+ negl(λ)

≤ 2

m
+ negl(λ) .

I Security proofs for PMBTB

In this section, we prove that PMBTB (Construction 5) is one-more unforgeable, unlinkable, and
provide privacy for the metadata bit.

I.1 Unforgeability
Theorem 13. If CTGDH holds for the group generator algorithm GrGen and ΠDLOGAND2 is a zero-
knowledge proof system for RDLOGAND2, then PMBTB[GrGen,ΠDLOGAND2] is one-more unforgeable
with advantage:

Advomuf
PMBTB,ℓ(λ) ≤ 2AdvctgdhGrGen,ℓ(λ) + AdvzkΠDLOGAND2,RDLOGAND2

(λ).

Proof. We prove this theorem using a hybrid argument. First, we replace the proving algorithm
by the zero-knowledge simulator, and then show a reduction to the CTGDH problem. Let ℓ be an
integer.
Hyb0 This is the game OMUFPMBTB,A,ℓ(λ): the adversary is provided with the public parameters

(X, π). The adversary has access to the signing oracle Sign, the token validity oracle Verify,
the metadata extraction oracle Read, and the random oracles Hs (used for the response of
the issuer) and Ht (user for bliding the message by the user). At the end of its execution, it
outputs ℓ+ 1 tokens for the same bit b′.
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Hyb1 This hybrid replaces the way the zero-knowledge proof is generated: instead of using the
proving algorithm, we use the zero-knowledge simulator.
If there exists a PPT adversary A whose advantage is different between the two games, then
it is possible to construct a distinguisher B for the underlying zero-knowledge of the proof sys-
tem. The adversary simply generates the proofs via the Prove oracle in ZKβ

ΠDLOGAND2,RDLOGAND2
(λ)

to generate the proofs: if β = 0 we’re in Hyb0; if β = 1 we’re in Hyb1. We have:

AdvzkΠDLOGAND2,RDLOGAND2,B(λ) ≥
∣∣∣AdvHyb0PMBTB,A(λ)− AdvHyb1PMBTB,A(λ)

∣∣∣ .
We will now prove that if there is an adversary A that has non-negligible advantage AdvHyb1PMBTB,A(λ),

then we can construct an adversary B that has non-negligible advantage in winning the chosen-
target gap Diffie–Hellman game CTGDHGrGen,B,ℓ(λ).

Assuming the existence of A, we construct B as follows. First, B guesses the bit b on which
the adversary will succeeds. It receives the group description and A ∈ G as input, samples
yb, x1−b, y1−b ← Zp invertible, and computes Xb := A + ybH, and X1−b := x1−bG + y1−bH, and
simulates the proof π. The public parameters are (X, π) = ((X0, X1), π). It runs A(X, π). Note that
X is distributed as in Hyb1. We need now to specify how B answers oracle queries. The adversary
B overrides the queries to the oracles in the following way:
– for any query to the oracle Ht(t), the adversary B invokes the oracle Target(t) and returns

whatever it returns;
– for any query Sign(b′, (T ′0, T ′1)), it proceeds as follows.
• If b′ = 1−b, it follows the issuance protocol described in Figure 10, i.e., it samples s←$ {0, 1}λ,

define S′1−b := Hs(T
′
1−b, s), compute W ′ = x1−bT

′
1−b + y1−bS

′
1−b. It then answers (s,W ′) to A.

• If b′ = b, it samples s←$ {0, 1}λ and defines S′b := Hs(T
′
b, s). Then it invokes the oracle

Z := Help(T ′b), defines W ′ = Z + ybS
′
b. Finally, it returns (s,W ′).

– For any query Read(t, (S0, S1,W0,W1)), B uses the Ddh and its secret scalars yb, x1−b, y1−b ∈ Zp

to check if Ddh(t,Wb−ybSb) and if W1−b = x1−bHt(t)+y1−bSb, and answers correctly depending
on the values of the booleans.

All other random oracle queries are left unchanged. First, note that the distributions of Ht and
Read are identical to the ones of Hyb1. At the end of the execution, A returns ℓ + 1 tuples
(ti, (Si,Wi)) ∈ {0, 1}λ × G2. If the ℓ + 1 forgeries are valid w.r.t the bit b (that is, B correctly
guessed the bit of the forgery at the beginning), it returns (ti,Wi − ybSi)i∈[ℓ+1]. Otherwise, it
returns ⊥. We claim that the adversary B wins the game CTGDHGrGen,B,ℓ(λ) every time B guesses
correctly the bit b (sampled uniformly at random) of the forgery of A. By the winning condition of
game Hyb1, A wins if all ti are different and Wi = xTarget(ti)+ybSi where x is the unique element
of Zp such that A = xG (and b is the bit on which the forgery happens). By winning condition of
unforgeability, A only called the oracle Read at most ℓ times; therefore Help was called at most
ℓ times. Finally, this shows that:

Advomuf
PMBTB,A,ℓ(λ) ≤ 2AdvctgdhGrGen,A,ℓ(λ) + AdvzkΠDLOGAND2,RDLOGAND2,A(λ).

and this concludes the proof.

I.2 Unlinkability
Theorem 14. If DDH holds for the group generator GrGen and ΠDLOGAND2 is a knowledge-sound
proof system for relation RDLOGAND2, then PMBTB[GrGen,ΠDLOGAND2] is 3-unlinkabile.
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Game UNLINKPMBTB,A,m(λ) in Hyb0, Hyb1

Γ := (G, p,G,H)← GrGen(1λ)

(st, (X, π))← A(Γ )

(x0, y0)← Ext(π)

if not R((x0, y0), X0) then abort

q0 := 0; q1 := 0;Q := ∅
(st, {W ′

i}i∈Q)← AUser0(),User1(·,·)(st)
if Q = ∅ then return 0

j ←$Q; Q := Q \ {j}
tokenj := PMBTB.User1(stj ,W ′

j)

∀i ∈ Q, tokeni := PMBTB.User1(sti,W ′
i )

ϕ← SQ
j′ ← A(st, tokenj , {tokenϕ(i)}i∈Q)

return q0 − q1 ≥ m and j′ = j

PMBTB.User1((pp, {rd, ρd, T ′
d}d=0,1, t), (s,W

′)) in Hyb0, Hyb2, Hyb3, Hyb4

(X0, X1, π0, π1) := pp

S0 = r−1
0 Hs(T

′
0, s) + ρ0H; S0 ←$G; W0 := r−1

0 W ′ + ρ0X0

S1 = r−1
1 Hs(T

′
1, s) + ρ1H S1 ←$G; W1 := r−1

1 W ′ + ρ1X1

P0 := W ′ − x0T
′
0 − y0Hs(T

′
0, s); W0 := x0Ht(t) + y0S0 + r−1

0 P0

P1 := W ′ − x1T
′
1 − y1Hs(T

′
1, s); W1 := x1Ht(t) + y1S1 + r−1

1 P1

σ := (S0, S1,W0,W1)

return σ

PMBTB.User1((pp, {rd, ρd, T ′
d}d=0,1, t), (s,W

′)) in Hyb7, Hyb8

(X0, X1, π0, π1) := pp

S0 ←$G
S1 ←$G
P0 := W ′ − x0T

′
0 − y0Hs(T

′
0, s); W0 := x0Ht(t) + y0S0 + r−1

0 P0

P1 := W ′ − x1T
′
1 − y1Hs(T

′
1, s); W1 := x1Ht(t) + y1S1 + r−1

1 P1

if P0 ̸= 0 then W0 ←$G
if P1 ̸= 0 then W1 ←$G
σ := (S0, S1,W0,W1)

return σ

Oracle User0()

q0 := q0 + 1

tq0 ←$ {0, 1}λ

(T ′
q0 , stq0)← PMBTB.User0(pp, tq0)

Q := Q∪ {q0}
return (q0, T

′
q0)

PMBTB.User0((X,π), t)) in Hyb0, Hyb5, Hyb6

T := Ht(t)

r0, ρ0 ←$Z∗
p

r1, ρ1 ←$Z∗
p

T ′
0 := r0(T − ρ0G)

T ′
1 := r1(T − ρ1G)

T ′
0 ←$G

T ′
1 ←$G

st := (pp, {rd, ρd}d=0,1, t)

return ((T ′
0, T

′
1), st)

Oracle User1(j,W
′)

if j /∈ Q then return ⊥
token← PMBTB.User1(stj ,W ′)

Q := Q \ {j}
q1 := q1 + 1

return token

Fig. 20. Summary of hybrid changes for unlinkability of Construction 5.

Proof. We will formally argue that for an adversary (issuer) who knows the secret key sk :=
((x0, y0), (x1, y1)), the values T ′0, T

′
1 received during the issuance execution, the values S0, S1 from

the signature are indistinguishable from uniformly random, and at most one of the values W0,W1 ∈
G is of the form Wb = xbHt(t) + ybSb.

We present in Fig. 20 the sequence of hybrids that transition from an honest execution on the
user side of a token issuance to an execution where all the values in the token are random except
the relation that allows to read out one value for the embedded private metadata bit.

Let m be an integer.
Hyb0 This is the execution where the adversary interacts with an honest user side for the token

issuance.
Hyb1 In this hybrid, we run the knowledge extractor on the public keys in the public parameters.

This hybrid is indistinguishable from the previous since the extractor succeeds with all but

49



negligible probability.

AdvksndΠDLOGAND2,RDLOGAND2,A(λ) ≥
∣∣∣AdvHyb0PMBTB,A(λ)− AdvHyb1PMBTB,A(λ)

∣∣∣ .
Hyb2 In this hybrid, we compute W0 and W1 in a different but equivalent way in PMBTB.User1.

First, note that since the challenger knows x0, y0, x1 and y1, it can define Pd := W ′ − xdT
′
d −

ydHs(T
′
d, s) for d = 0, 1. Then, for d = 0, 1, we have

Wd = r−1d W ′ + ρdXd = r−1d (xdT
′
d + ydHs(T

′
d, s) + Pd) + ρXd

= r−1d (xdrd(Ht(t)− ρdG) + ydHs(T
′
d, s) + Pd) + ρdXd

= xdHt(t)− ρdxdG+ ydr
−1
d Hs(T

′
d, s) + r−1d Pd + ρdxdG+ ρdydH

= xdHt(t) + yd
(
r−1d Hs(T

′
d, s) + ρdH

)
+ r−1d Pd

= xdHt(t) + ydSd + r−1d Pd.

Hyb3 In this hybrid, we sample S0 uniformly at random. We show that if there is an adversary B
that distinguishes Hyb2 and Hyb3, then we can construct an adversary that breaks DDH.
Let (P, aP, bP, cP ) be a DDH challenge. We set G = P and H = aP . We will use the self-
reducibility of DDH: for each call to PMBTB.User1, we sample γ, γ′←$Z∗p and set ρ0G =
γbP + γ′P , which is used in the computation of T ′0 that is the only other element that
depends on ρ0. Then, we set ρ0H = γcP + γ′aP and use it for the computation of S0. Now if
cP = abP , then the execution coincides with Hyb2, and if cP is a random element, then the
execution is Hyb3. Hence,

AdvddhGrGen,A(λ) ≥
∣∣∣AdvHyb2PMBTB,A(λ)− AdvHyb3PMBTB,A(λ)

∣∣∣ .
Hyb4 In this hybrid, we sample S1 uniformly at random. As before, we can show that if there is

an adversary B that distinguishes Hyb3 and Hyb4, then we can construct an adversary that
breaks DDH.

AdvddhGrGen,A(λ) ≥
∣∣∣AdvHyb3PMBTB,A(λ)− AdvHyb4PMBTB,A(λ)

∣∣∣ .
Hyb5 In this hybrid, we sample T ′0 uniformly at random. Since ρ0 is sampled at random and this

is the only place where it is used Hyb4 and Hyb5 have exactly the same distribution.
Hyb6 In this hybrid, we make an analogous change sampling T ′1 uniformly at random. The distri-

bution in this hybrid is the same as in the previous since ρ1 is sampled at random and used
only in the computation of T ′1.

Hyb7 If P0 ̸= 0, we sample W0 uniformly at random. Since r0 is sampled at random and only used
for the computation of W0 the resulting distributions of Hyb6 and Hyb7 are the same.

Hyb8 We analogously replace r−11 P1 with a random value of P1 ̸= 0. As above the change does not
change the distribution of values.

We argue that it cannot be the case that both P0 = 0 and P1 = 0. Indeed, if there is an
adversary B that generated W ′ such that W ′ = x0T

′
0 + y0S

′
0 and W ′ = x1T

′
1 + y1S

′
1, it follows that

(r0x0 − r1x1)Ht(t) + y0Hs(T
′
0, s)− y1Hs(T

′
1, s) = 0, and the adversary needs to find a s so that the

previous equation is true. This can only happen with negligible probability since Hs is modeled as
a random oracle. Considering Hyb8 the view of the adversary for tokens can one of three types

(t, S0, S1, x0Ht(t) + y0S0,W1), (t, S0, S1,W0, x1Ht(t) + y1S1), or (t, S0, S1,W0,W1)
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where all variables S0, S1,W0,W1 are uniformly distributed. Let U1, U2, U3 ⊂ U be the the indices
of tokens that are in each of these three forms. The above hybrids that tokens that have the same
type are indistinguishable for the adversary. Therefore,

Pr
[
UNLINKPMBTB,A,m(λ)

]
=

∑
d=1,2,3
Ud ̸=∅

Pr
[
UNLINKPMBTB,A,m(λ) | j ∈ Ud

]
Pr[j ∈ Ud ]

≤
∑

d=1,2,3
Ud ̸=∅

1

|Ud|
|Ud|
|U |

+ negl(λ) ≤
∑

d=1,2,3
Ud ̸=∅

1

q0 − q1
+ negl(λ)

≤ 3

m
+ negl(λ) .

I.3 Privacy of the metadata bit
Theorem 15. If DDH holds for the group generator GrGen and ΠDLOGAND2 is a zero-knowledge
proof system for relation RDLOGAND2, then PMBTB[GrGen,ΠDLOGAND2] provides private metadata
bit with advantage:

Advpmb
PMBTB(λ) ≤

O(q2)

2λ
+ 2AdvddhGrGen(λ) + 4AdvzkΠDLOGAND2,RDLOGAND2

(λ),

where q is the number of queries the adversary makes either to Hs or Sign.

Proof. We consider a sequence of hybrids (summarized in Fig. 21) that transitions from an execution
of PMBβ

PMBTB,A(λ) to an execution of PMB1−β
PMBTB,A(λ) (see Definition 3). We argue that each

pair of consecutive hybrids are indistinguishable for the adversary and thus that the advantage
Advpmb

PMBTB,A(λ) is negligible. We do not explicitly write the verification validity oracle in the games
since in this construction this functionality is dummy.

Hyb0 This is the game PMB0
PMBTB,A(λ): here, the adversary is provided the public parameters

pp := (X0, X1, π0, π1). The adversary has access to the signing oracle for a bit of its choosing,
and a challenge oracle that signs new tokens with the bit b. Additionally, it has access to the
random oracles: Ht,Hs,Hc. At the end of its execution, it outputs a bit b′.

Hyb1 This hybrid replaces the way zero-knowledge proofs are generated: instead of using the proving
algorithm ΠDLOGAND2.Prove, we use the zero-knowledge simulator ΠDLOGAND2.Sim.
If there exists a PPT adversary A whose output is different between the two games, then it
is possible to construct an adversary for the underlying zero-knowledge of the proof system:
consider the PPT adversary B for the game ZKβ

ΠDLOGAND2,RDLOGAND2,B(λ) that generates X0, X1

as per PMBTB.KeyGen(1λ) and uses the Prove oracle for the statement (X0, X1). At the
end of its execution, A (and so B) return a guess b′.
If the Prove oracle outputs proofs via ΠDLOGAND2.Prove, the game is identical to Hyb0, else
the game is identical to Hyb1. It follows that, for any PPT adversary A, the advantage in
distinguishing the two hybrids is at most the advantage of zero-knowledge in ΠDLOGAND2, i.e.:

AdvzkΠDLOGAND2,RDLOGAND2,A(λ) ≥
∣∣∣AdvHyb1PMBTB,A(λ)− AdvHyb0PMBTB,A(λ).

∣∣∣
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Oracle Sign′(b̂, T ′) in Hyb1(λ), Hyb3(λ)

s←$ {0, 1}λ

if Hs(T
′
b̂
, s) was queried then abort

S′
b̂
:= H(T ′

b̂, s)

W ′ := xb̂T
′
b̂ + yb̂S

′
b̂

return (s,W ′)

Oracle Sign(T ′) in Hyb1(λ), Hyb3(λ)

s←$ {0, 1}λ

if Hs(T
′
b, s) was queried then abort

S′
b := H(T ′

b, s)

W ′ := xbT
′
b + ybS

′
b

return (s,W ′)

Oracle Sign′(b̂, T ′) in Hyb4–6(λ)

s←$ {0, 1}λ

if Hs(T
′
b̂, s) was queried then abort

S′
b̂
:= H(T ′

b̂, s)

W ′ := xb̂T
′
b̂ + yb̂S

′
b̂

return (s,W ′)

Oracle Sign(T ′) in Hyb4(λ), Hyb5(λ), Hyb6(λ)

s←$ {0, 1}λ

if Hs(T
′
b, s) was queried then abort

S′
b := H(T ′

b, s)

W ′ := xbT
′
b + ybS

′
b

y′ ←$Z∗
p; W ′ := xbT

′
b + y′S′

b

W ′ := x1−bT
′
1−b + y′S′

1−b

W ′ := x1−bT
′
1−b + y1−bS

′
1−b

return (s,W ′)

Fig. 21. Summary of the proof for privacy of the metadata bit of Construction 5.

Hyb2 We strengthen the game: if during any of the signing queries the oracle Hs already had received
a query of the form (T ′b, s), we abort. Clearly, the output of the two hybrids is distinguishable
only in the case of a collision on the choice of s between the signing oracles, or a collision
between the signing oracles themselves. For a PPT adversary A making at most q = poly(λ)
queries to any of the oracles Hs, Sign, or Sign′, the probability that the game aborts is at
most q(q − 1)/2p. It follows that:

q(q − 1)

2p
≥
∣∣∣AdvHyb2PMBTB,A(λ)− AdvHyb1PMBTB,A(λ)

∣∣∣
Hyb3 We now change the way W ′ is computed: at key generation phase we sample an additional ele-

ment y′←$Z∗p, and for any query to the random oracle PMBTB.Sign0(pp, sk, b, ·) we construct
W ′ as xbT

′
b + y′S′b instead of xbT ′ + ybS

′
b.

We prove that if, by contradiction, the two games are distinguishable, then there exists
an adversary B for the game DDHβ

B,GrGen(λ). The adversary B wins every time the output
of the two hybrids is different. The adversary B receives as input a DDH tuple (P,A :=
aP,B := bP,C) ∈ G4 such that C = abP in the case DDH0

B,GrGen(λ) and C←$G in the
case DDH1

B,GrGen(λ). Given a single challenge (P,A,B,C), B can exploit the random self-
reducibility property of DDH to construct q random instances of the DDH challenge: for any
i ≤ q the adversary B can select αi, βi←$Zp and construct the challenge:

(P, A, βiB + αiP, βiC + αiA)

The adversary B proceeds as per Hyb2, embedding the challenge in the public key and oracle
replies. It fixes H := P , and instead of generating Xb := xbG + ybH, it constructs it as
Xb := xbG+ A. Then, it runs the adversary A. The adversary A will make queries to any of
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the random oracles Ht and Hs, where B programs the RO the response to Hs as we discuss
next. We replace queries to the signing oracles:
– for any query to Sign(T ′), we sample s←$ {0, 1}λ and check for collisions w.r.t. previous

queries to Hs as per Hyb2. Then, we sample α, β←$Zp and we program the random oracle
on Hs(T

′
b, s) = S′b to reply with (βiB + αiP ), for some αi, βi←$Zp. Then, B computes

W ′ := xbT
′ + βiC + αiA. B returns (s,W ′)

– for any query to Sign′(b̂, T ′) with b̂ = b, after sampling s←$ {0, 1}λ, we program the
random oracle on H(T ′b, s) = S′b to reply with αiH for some αi←$Zp. B computes W ′ :=
xbT

′
b + αiA. It returns (s,W ′).

– for any query to Sign′(b̂, T ′) with b̂ = 1− b is handled exactly as per Hyb2.
At the end of A’s execution, B returns whatever guess A returned. We note that if the challenge
C is provided according to DDH0

A,GrGen(λ), B behaves exactly as per Hyb2; if the challenge
C is provided according to DDH1

A,GrGen(λ), B behaves exactly as per Hyb3. Therefore, every
time that A’s output is different between the two hybrids, B will distinguish a random tuple
from a DDH tuple. It follows therefore that:

AdvddhB,GrGen(λ) ≥
∣∣∣AdvHyb3PMBTB,A(λ)− AdvHyb2PMBTB,A(λ)

∣∣∣
Hyb4 In this game, we remark that W ′ := xbT

′
b+y′S′, and that y′←$Z∗p is used only for computing

W ′. Therefore, the distribution of W ′ in Hyb3 is uniform (plus a constant xbT ′b, i.e., uniform)
as long as S′b ̸= 0G. Therefore, we change once again the way we compute W ′, swapping b
with 1−b: in this hybrid, W ′ := x1−bT

′
1−b+y′S′1−b. For the above remarks, the two games can

be distinguished only if S′b pr S′1−b is the identity element, which happens with probability
2/p.

Hyb5 In this hybrid, we remove y′ and we compute W ′ using the witness 1− b. The proof for this
hybrid follows an argument similar to the one used for the transition Hyb2 → Hyb3. Therefore,
it follows that:

AdvddhB,GrGen(λ) ≥
∣∣∣AdvHyb5PMBTB,A(λ)− AdvHyb4PMBTB,A(λ)

∣∣∣
At this point we note that the oracle Sign is issuing signatures under the witness x1−b, y1−b. It is
possible, through a sequence of hybrids, to remove the condition on the collision of s introduced
in Hyb2 (via the same argument used for the transition Hyb1 → Hyb2), and swap back the zero-
knowledge simulator with the prover’s algorithm ΠDLEQOR2.Prove (via the same argument used for
the transition Hyb0 → Hyb1). Therefore, the advantage of an adversary A in winning the game
PMBβ

PMBTB,A(λ)

Advpmb
PMBTB,A(λ) ≤

q(q − 1)

2λ
+

2

2λ
+ 2AdvddhGrGen(λ) + 4AdvzkΠDLOGAND2,RDLOGAND2

(λ)

where q is the number of queries to the signing oracles or to the random oracle Hs and the prime
p outputted by GrGen satisfies λ = ⌊log2 p⌋.

J PMBTokens with validity verification
In this section, we present a design for an anonymous token that provides both private metadata
bit as well as verification validity functionality that can be queried by any party.
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Construction 6. Let GrGen be a group generator algorithm; let ΠDLEQ2 be a proof system for
relation RDLEQ2; let ΠDLEQOR2 be a proof system for relation RDLEQOR2; let Ht,Hs be two random
oracles {0, 1}∗ → G. We construct an anonymous token scheme CMBT defined by the following
algorithms:
– (crs, td)← CMBT.Setup(1λ): invoke the group generator Γ ← GrGen(1λ) and the CRS generation

algorithm of the underlying proof system (pcrs, ptd)← ΠDLEQOR2.Setup(Γ );
– (pp, sk)← CMBT.KeyGen(1λ): sample x0, x1, x̃, y0, y1, ỹ uniformly at random from Zp. Define:

X :=

X0

X1

 :=

x0G+ y0H

x1G+ y1H

 , X̃ := x̃G+ ỹH.

Restart if X0 = X1. Set sk := ((x0, y0), (x1, y1), (x̃, ỹ)), and pp := (X0, X1, X̃).
– σ ← ⟨CMBT.User(pp, t),CMBT.Sign(sk, b)⟩: illustrated in Figure 22.
– bool ← CMBT.Verify(sk, t, σ): read σ as (S,W, W̃ ) ∈ G3. Return true if W̃ = x̃Ht(t) + ỹS; else,

return false.
– ind← CMBT.ReadBit(sk, t, σ): read σ as (S,W, W̃ ). Then:

(a) If W = x0Ht(t) + y0S and W ̸= x1Ht(t) + y1S, return 0

(b) If W ̸= x0Ht(t) + y0S and W = x1Ht(t) + y1S, return 1

(c) Else, return ⊥.

J.1 Unforgeability

Theorem 23. If CTGDH is hard for GrGen, ΠDLEQ2 is a knowledge-sound proof system for re-
lation ΠDLEQ2, and ΠDLEQOR2 is a knowledge-sound proof system for relation ΠDLEQOR2, then
CMBT[GrGen,ΠDLEQ2,ΠDLEQOR2] is one-more unforgeable.

One-more unforgeability follows from the one-more unforgeability of Construction 3. We can con-
struct an adversary for Constr. 3 by interacting with an adversary for Constr. 6 in the same way
as the reduction in the proof of Theorem 8 since the user messages in both constructions are the
same, and the issuer’s response in Constr. 3 is a subset of the issuer’s response in Constr. 6.

J.2 Unlinkability

Theorem 24. If DDH is hard for GrGen, ΠDLEQ2 is a knowledge-sound proof system for re-
lation ΠDLEQ2, and ΠDLEQOR2 is a knowledge-sound proof system for relation ΠDLEQOR2, then
CMBT[GrGen,ΠDLEQ2,ΠDLEQOR2] is 2-unlinkable.

Unlinkability of this construction follows from the unlinkability of Constr. 3. We can construct
an adversary for Constr. 3 by interacting with an adversary for Constr. 6 in the same way as the
reduction in the proof of Theorem 9 since the user messages in both constructions are the same,
and the issuer’s response in Constr. 3 is a subset of the issuer’s response in Constr. 6.
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J.3 Privacy of metadata bit
Theorem 25. If DDH holds for the group generator GrGen ΠDLEQ2 is a knowledge-sound proof
system for relation ΠDLEQ2, and ΠDLEQOR2 is a knowledge-sound proof system for relation ΠDLEQOR2,
then CMBT[GrGen,ΠDLEQ2,ΠDLEQOR2] provides private metadata bit.

Private metadata bit here follows closely the proof of Theorem 10. The only difference is that
we need to handle verification queries from the adversary. Since validity is checked only on the part
of the token which is independent of the private metadata bit, the reduction can always have the
private parameters for that part of the token and answer the validity oracle query honestly.
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CMBT.User(pp, t) CMBT.Sign(pp, sk, b)

CMBT.User0(pp, t)

r←$Z∗
p

T := Ht(t)

T ′ := r−1 · T
return (T ′, (pp, r, t, T ′))

T ′

CMBT.Sign0(pp, sk, b, T
′)

(X0, X1, X̃) := pp

((x0, y0), (x1, y1), (x̃, ỹ)) := sk

s←$ {0, 1}λ

S′ := Hs(T
′, s)

W ′ := xbT
′ + ybS

′

W̃ ′ := x̃T ′ + ỹS′

π ← ΠDLEQOR2.Prove((X0, X1, T
′, S′,W ′), (b, xb, yb))

π̃ ← ΠDLEQ2.Prove((X̃, T ′, S′, W̃ ′), (x̃, ỹ))

return (s,W ′, W̃ ′, π, π̃)

s,W ′, W̃ ′, π, π̃

CMBT.User1((pp, r, t, T
′), (s,W ′, W̃ ′, π, π̃))

(X0, X1, X̃) := pp

S′ := Hs(T
′, s)

if not ΠDLEQOR2.Verify((X0, X1, T
′, S′,W ′), π) or

not ΠDLEQ2.Verify((X̃, T ′, S′, W̃ ′), π̃) then

return ⊥
S := rS′

W := rW ′

W̃ := rW̃ ′

σ := (S,W, W̃ )

return σ

Fig. 22. Token issuance for CMBT (Construction 6).
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