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Abstract. We provide a standard-model implementation (of a relaxation) of the algebraic group model
(AGM, [Fuchsbauer, Kiltz, Loss, CRYPTO 2018]). Specifically, we show that every algorithm that uses
our group is algebraic, and hence “must know” a representation of its output group elements in terms
of its input group elements. Here, “must know” means that a suitable extractor can extract such a
representation efficiently. We stress that our implementation relies only on falsifiable assumptions in the
standard model, and in particular does not use any knowledge assumptions.
As a consequence, our group allows to transport a number of results obtained in the AGM into
the standard model, under falsifiable assumptions. For instance, we show that in our group, several
Diffie-Hellman-like assumptions (including computational Diffie-Hellman) are equivalent to the discrete
logarithm assumption. Furthermore, we show that our group allows to prove the Schnorr signature
scheme tightly secure in the random oracle model.
Our construction relies on indistinguishability obfuscation, and hence should not be considered as a
practical group itself. However, our results show that the AGM is a realistic computational model (since
it can be instantiated in the standard model), and that results obtained in the AGM are also possible
with standard-model groups.
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1 Introduction

The generic group model. In order to analyze the plausibility and relative strength of computational
assumptions in cyclic groups, Shoup [Sho97] and Maurer [Mau05] have proposed the generic group model
(GGM). In the GGM, any adversary can only interact with the modeled group through an oracle. In particular,
all computations in that group must be explicitly expressed in terms of the group operation. To prevent
an adversary from locally performing computations, that adversary gets to see only truly random strings
(in [Sho97]) or independent handles (in [Mau05]) as representations of group elements.3

The discrete logarithm and even many Diffie-Hellman-style problems are hard generically (i.e., when
restricting group operations in the above way) [Sho97; MW98]. Hence, the only way to break such a generically
hard assumption in a concrete group is to use the underlying group representation in a nontrivial way. In that
sense, the GGM can be very useful as a sanity check for the validity of a given assumption, or even the security
of a given cryptographic scheme. However, generic groups cannot be implemented: there exist cryptographic
schemes that are secure in the GGM, but insecure when instantiated with any concrete group [Den02].

The algebraic group model. The algebraic group model (AGM, [FKL18]) is a relaxation of the GGM that
tries to avoid impossibilities as in [Den02] while preserving the GGM’s usefulness. Specifically, the AGM only
considers algebraic (rather than generic) adversaries. An algebraic adversary A can make arbitrary use of
the representation of group elements, but must supply an explicit decomposition for any of its output group
elements in terms of input group elements. In other words, A must also output an explanation of how any
group element in its output was computed from its input using the group operation.

Now [FKL18] show that many GGM proofs only use this type of algebraicity of an adversary, and carry over
to the AGM. At the same time, GGM impossibilities like [Den02] do not apply to the AGM, since algebraic
adversaries are able to work with the actual group (and not only with random or abstract representations of
group elements).

The AGM and knowledge assumptions. The AGM is closely related to the notions of knowledge assumptions
and extractability. To illustrate, assume that for any (possibly non-algebraic) adversary A, we can find an
extractor E that manages to extract from A a decomposition of A’s output in terms of A’s input. Then,
composing E and A yields an algebraic adversary Aalg. In this situation, we can then say that without loss of
generality, any adversary can be assumed to be algebraic.4 Conversely, any algebraic adversary by definition
yields the results of such an extraction in its output.

This observation also provides a blueprint to instantiating the AGM: simply prove that any adversary
A can be replaced by an algebraic adversary Aalg, possibly using an extraction process as above. If this
extraction requires A’s code and randomness but no other trapdoor, we obtain an AGM instantiation
based on a knowledge assumption such as the knowledge of exponent assumption [Dam92]. Indeed, this was
recently done by [KP19] under a very strong generalized version of the knowledge of exponent assumption.
Unfortunately, such knowledge assumptions are not falsifiable in the sense of Naor [Nao03]. It is thus not
entirely clear how to assess the plausibility of such a universal and strong knowledge assumption. Naturally,
the question arises whether an AGM implementation inherently requires such strong and non-falsifiable
assumptions. Or, more generally:

Can we achieve knowledge-type properties
from falsifiable assumptions?

Note that in the AGM, the discrete logarithm assumption implies the existence of extractable one-way
functions (EOWFs) with unbounded auxiliary input. The existence of such EOWFs, however, conflicts with
the existence of indistinguishability obfuscation, [BCPR14]. Due to this barrier, we can only hope for an
instantiation of some suitably relaxed variant of the AGM from falsifiable assumptions.

3 Other black-box abstractions of groups with similar ramifications exist [Nec94; BL96].
4 This observation about algebraic adversaries has already been made in [BV98; PV05]. Also, similar but more specific

knowledge assumptions have been used to prove concrete cryptographic constructions secure, e.g., [Dam92; HT98;
BP04; Den06].
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Our strategy: private extraction. There is also another way to instantiate the AGM: show that it is possible
to extract a decomposition of A’s outputs from these outputs and a suitable (secret) extraction trapdoor. In
other words, our idea is to avoid non-falsifiable knowledge assumptions by assuming that extraction requires
a special trapdoor that can be generated alongside the public parameters of the group. This entails a number
of technical difficulties (see below), but allows us to rely entirely on falsifiable assumptions.

Specifically, our main result is an algebraic wrapper that transforms a given cyclic group into a new one
which allows for an extraction of representations. More specifically, an element of the new group carries an
encrypted representation of this group element relative to a fixed basis (i.e., set of group elements). Upon
group operations, this representation is updated, and a special trapdoor (generated alongside the public
parameters) allows to extract it.

Our results. Our strategy allows us to retrieve several AGM results (from [FKL18; FPS19]) in the standard
model, in the sense that the group can be concretely implemented from falsifiable assumptions.5 In particular,
we show that in our group,

– the discrete logarithm assumption, the computational Diffie-Hellman assumption, the square Diffie-Hellman
assumption, and the linear-combination Diffie-Hellman assumption (see [FKL18]) are all equivalent,

– the security of the Schnorr signature scheme [Sch91] can be tightly reduced to the discrete logarithm
assumption escaping impossibility results due to [FJS19]. Similarly, Schnorr-signed ElGamal can be shown
tightly IND-CCA2 secure.6

While, on a technical level, the AGM proofs from [FKL18; FPS19] need to be adapted, the general AGM
proof strategies (that rely on extraction) can be replicated.

Limitations. We note that not all known AGM proofs can be transported to the standard model. For instance,
[FKL18] also prove the Boneh-Lynn-Shacham [BLS04] signature scheme tightly secure in the AGM. Their
reduction relies on the fact that the view of a signature forger is statistically independent of how simulated
signatures are prepared by the reduction. However, with our algebraic wrapper, group elements (and thus
BLS signatures) always carry an encrypted representation of how they were generated. In this case, our
private extraction strategy also reveals additional (statistical, computationally hidden) information to an
adversary. This additional information is problematic in the AGM-based BLS proof of [FKL18]. We believe it
is an interesting open problem to obtain a tight security proof for the BLS scheme with our group.7

Furthermore, as we will detail below, the amount of information we can extract from a group element is
limited by the size of that group element. In particular, in settings in which no a-priori bound on the size of
a desired algebraic representation is known, our techniques do not apply. This can be problematic, e.g., for
constructions that depend on q-type assumptions.

Our assumptions. We stress that our algebraic wrapper relies on a strong (but falsifiable) computational
assumption: the existence of subexponentially strong indistinguishability obfuscation (subexp-iO).8 Addi-
tionally, we assume a re-randomizable encryption scheme. Together with subexp-iO, this implies a number
of other strong primitives that we use: a variant of probabilistic iO (see [CLTV15]), fully homomorphic
encryption (see [CLTV15]), and dual-mode non-interactive zero-knowledge (see [HU19]).

Interpretation. Due to their inefficiency, we view algebraic wrappers not as a tool to obtain practical
cryptographic primitives. Rather, we believe that algebraic wrappers show that the AGM is a useful and

5 Note that by “standard model”, we mean that the group itself is formulated without idealizations and can be
concretely implemented. While our construction itself does not rely on the ROM, we still can transfer some ROM
proofs in the AGM to ROM proofs using our concrete group instantiation. We stress that a standard model
instantiation of the (full-fledged) AGM from very strong non-falsifiable assumptions is already known due to [KP19].

6 Tight security reductions provide a tight relation between the security of cryptographic schemes and the hardness of
computational problems. Apart from their theoretical importance, tight reductions are also beneficial for practice,
since they allow smaller keylength recommendations.

7 We note that impossibility results for tight reductions of schemes like BLS (e.g., [Cor00]) do not apply in our case,
as the representation of our group elements is not unique.

8 We note that iO and knowledge assumptions contradict each other [BCPR14]. However, we stress that the notion of
private extractability we obtain does not contradict iO.
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realistic abstraction and not merely an idealized model which heuristically captures known adversaries: we
show that AGM proofs can be replicated in the standard model, and even without resorting to knowledge
assumptions.

On implementing idealized models. Replacing idealized (heuristic) models with concrete standard-model
implementations is a widely studied intriguing problem. A well-known example for this is the line of work on
programmable hash functions. A programmable hash function due to [HK12] is a cryptographic primitive
which can be used to replace random oracles in several cryptographic schemes. Following their introduction,
a line of work [FHPS13; HSW13; HSW14] leveraged multi-linear maps or indistinguishability obfuscation to
transport proofs from the random oracle model to the standard model. Our results can be interpreted as
following this endeavor by leveraging indistinguishability obfuscation to replace the AGM with a standard
model implementation (from falsifiable assumptions). From this angle, our algebraic wrapper relates to the
AGM as programmable hash functions relate to the ROM.

1.1 Technical overview

Algebraic wrappers. In the following, we speak of group schemes ([AFHLP16], also called encoding schemes
in [GGH13]) as a generalization of groups with potentially non-unique encodings of group elements. This
implies that a dedicated algorithm is required to determine if two given group elements are equal.9 Our
algebraic wrapping process takes a group G (which we call “base group”) as input, and outputs a new group

scheme H which allows for an efficient extraction process. Concretely, every H-element ĥ can be viewed as a
G-element h ∈ G, plus auxiliary information aux .

Intuitively, aux carries (encrypted) information that allows to express h as a linear combination of fixed
base elements b1, . . . , bn ∈ G. The corresponding decryption key (generated alongside the group parameters)
allows to extract this information, and essentially yields the information any algebraic adversary (in the
sense of the AGM) would have to provide for any output group element. However, we are facing a number of
technical problems:
(a) The group operation algorithm should update aux (in the sense that the linear combinations encrypted

in the input elements should be added).
(b) Validity of aux should be ensured (so that no adversary can produce an H-element from which no valid

linear combination can be extracted from aux ).
(c) It should be possible to switch the basis elements b1, . . . , bn to an application-dependent basis. (For

instance, to prove a signature scheme like Schnorr’s [Sch91] secure, one would desire to set the basis
vectors to elements from an externally given computational challenge.)

(d) To preserve tightness of reductions from the AGM (which is necessary in some of our applications), it
should be possible to re-randomize group element encodings statistically.

Our solution largely follows the group scheme from [AFHLP16]. In particular, (a) will be solved by encrypting
the coefficients z1, . . . , zn with h =

∑
i b
zi
i using a homomorphic encryption scheme in aux . Hence, such

coefficient vectors can be added homomorphically during the group operation. For (b), we will add a suitable
non-interactive zero-knowledge proof of consistency in aux .10 For (c), we adapt a “switching” lemma from
[AFHLP16]. In [AFHLP16], that lemma allows to switch between two different representations of the same
group element, but under a fixed basis. In our case, we show that similar techniques allow to also switch
the group elements that form this basis. This switching property already implies a notion of computational
re-randomizability. Finally, for (d), we introduce a re-randomization lemma using techniques from (c) in
conjunction with a novel notion for probabilistic iO.

At this point, one main conceptual difference to the line of work [AFHLP16; AH18; FHHL18] is that
the basis elements b1, . . . , bn appear as part of the functionality of the new group scheme H, not only in a
proof. In particular, our construction must be able to deal with arbitrary bi that are not necessarily randomly
chosen. This issue is dealt with by additional linear randomization of the base group elements.

9 That is, formally, the group is defined as the quotient set of all well-formed bitstrings modulo the equivalence
relation induced by the equality test.

10 Note that this approach is related to [BSW12] in the sense that we restrict the homomorphic operations an adversary
can perform on encodings by requiring a consistency proof.
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Another main conceptual difference to [AFHLP16; AH18; FHHL18] is the notion of statistical re-random-
izability of group elements. The group schemes from [AFHLP16; AH18; FHHL18] do not satisfy this property.
This will be resolved by developing a stronger notion of statistically correct probabilistic iO which may be of
independent interest.

We note, however, that our techniques are inherently limited in the following sense: our extraction can
only extract as much information as contained in (the auxiliary information of) group elements. Technically
speaking, we cannot treat settings in which the size of the basis b1, . . . , bn is not known in advance (e.g., in
case of constructions based on q-type assumptions).

Applications. The applications we consider have already been considered for the AGM in [FKL18; FPS19].
Hence, in this description, we focus on the technical differences that our extraction approach entails for these
proofs.

First, recall that in the AGM by [FKL18], an adversary outputs an algebraic representation of each
output group element to the basis of its input group elements. Therefore, this basis depends also on the
respective security game. On the other hand, in security proofs with our algebraic wrapper, a reduction needs
to select such a basis in advance. The appropriate selection of such a basis is one of the main challenges when
transferring proofs from the AGM to our setting. Namely, even though the basis as well as the representation
of each group element is hidden, the choice of representations will still be information-theoretically known
to the adversary. Therefore, security games that are identically distributed in the AGM might only be
computationally indistinguishable in the wrapper, depending on the choice of a basis.

When transferring proofs from the AGM to our new group scheme, we thus use a technique we call
symmetrization to extend the basis in such a way that security games are identically distributed in the
relevant situations. In a nutshell, symmetrization achieves a uniform way to express challenge elements across
most games of a security proof, and yields statistical security guarantees.

Another challenge is the implementation of tight security reductions in the wrapper. In some security
reductions, the basis of the group and the algebraic representations of oracle responses need to be switched in
order to be able to extract a useful algebraic representation. However, as we only achieve computationally
indistinguishable group element representations, switching the representations of q oracle responses would
lead to a q-fold computational loss, compromising the tightness of the reduction.

We show that it is possible to circumvent this loss by constructing oracle responses via the group operation
from so-called origin elements, reducing the number of elements whose representation gets switched to a
constant. In a nutshell, we derive many coordinated oracle answers from just few group elements (the “origin
elements”), such that switching these origin elements affects (and changes) all oracle answers.

1.2 Related work

This work builds upon the line of work [AFHLP16; AH18; FHHL18] who build group schemes from iO.
[AFHLP16] lays the conceptual foundations for the construction of group schemes with non-unique encodings
from iO and uses this framework to equip groups with multilinear maps. [FHHL18] extends this approach
by allowing partial evaluations of the multilinear map yielding a graded encoding scheme. In contrast to
[AFHLP16; FHHL18], [AH18] does not extend the functionality of an underlying group, but builds a group
scheme with reduced functionality (group elements lack a unique representation). The resulting group scheme
allows to mimic commonly used proof techniques from the generic group model. This is demonstrated by
proving the validity of an adaptive variant of the Uber assumption family [Boy08] in the constructed group
scheme. Our results can hence be viewed as an extension of [AH18].

[KP19] make a first step towards instantiating the AGM. The authors identify an equivalence between the
AGM and a very strong generalized version of the knowledge of exponent assumption [Dam92], thus giving
rise to the first instantiation of the AGM.

Acknowledgments
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2 Preliminaries

Notation

Throughout this paper λ denotes the security parameter. For a natural number n ∈ N, [n] denotes the
set {1, . . . , n}. A function negl : N → R is negligible in λ if for every constant c ∈ N, there exists a bound
nc ∈ R, such that for all n ≥ nc, |negl(n)| ≤ n−c. Given a finite set S, the notation x← S means a uniformly
random assignment of an element of S to the variable x. Given an algorithm A, the notation y ← A(x) means
evaluation of A on input of x with fresh random coins and assignment to the variable y. The notation AO
indicates that the algorithm A is given oracle access to O. Given a random variable B, supp(B) denotes the
support of B.

Let G be a finite cyclic group with generator g and order p. For x ∈ Zp, the notation [x]G denotes the
group element gx. Note that using this notation does not imply knowledge of x. Let K be a field and V be a
vector space over K of finite dimension n. For i ∈ [n], ei denotes the vector which carries 1 in its i-th entry
and 0 in all other entries.

In game based proofs, out i denotes the output of game Gi. Further, we will use this notation to highlight
differences to previous hybrids.

2.1 Subset membership problem

Let L = (Lλ)λ∈N be a family of families of languages L ⊆ Xλ in a universe Xλ = X. Further, let R be an
efficiently computable witness relation, such that x ∈ L if and only if there exists a witness w ∈ {0, 1}poly(|x|)
with R(x,w) = 1 (for a fixed polynomial poly). We assume that we are able to efficiently and uniformly sample
elements from L together with a corresponding witness, and that we are able to efficiently and uniformly
sample elements from X \ L.

Definition 1 (Subset membership problem, [CS02]). A subset membership problem L ⊆ X is hard,
if for any PPT adversary A, the advantage

Advsmp
L,A (λ) := Pr[x← L : A(1λ, x) = 1]− Pr[x← X \ L : A(1λ, x) = 1]

is negligible in λ.

We additionally require that for every L and every x ∈ L, there exists exactly one witness r ∈ {0, 1}∗
with R(x,w) = 1. Note that given a cyclic group G of prime order p in which DDH is assumed to hold, the
Diffie-Hellman language L[(1,x)]G

:= {[(y, xy)]G | y ∈ Zp} (for randomly chosen generators [1]G , [x]G) satisfies
this definition. Another instantiation of Definition 1 is the language containing all commitments to a fixed
value using a perfectly binding commitment scheme with unique opening.

2.2 Dual-mode NIWI

A dual-mode NIWI proof system is a variant of NIWI proofs [FS90] offering two computationally indis-
tinguishable modes to setup the common reference string (CRS). A binding mode CRS provides perfect
soundness guarantees whereas a hiding mode CRS provides perfect witness indistinguishability guarantees.

Note that there are instantiations of NIWI proof systems without common reference string [BP15].
These instantiations, however, do not satisfy perfect soundness and perfect witness-indistinguishability
simultaneously.

Definition 2 (Dual-mode NIWI proof system, [GS08; AFHLP16]). A dual mode non-interactive
witness-indistinguishable (NIWI) proof system for a relation R is a tuple of PPT algorithms Π = (Setup,
HSetup,Prove,Verify,Ext).

Setup(1λ). On input of 1λ, Setup outputs a perfectly binding common reference string crs and a corresponding
extraction trapdoor td ext.

HSetup(1λ). On input of 1λ, HSetup outputs a perfectly hiding common reference string crs.
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Prove(crs, x, w). On input of the CRS crs, a statement x and a corresponding witness w, Prove produces a
proof π.

Verify(crs, x, π). On of the CRS crs, a statement x and a proof π, Verify outputs 1 if the proof is valid and 0
otherwise.

Ext(td ext, x, π). On input the extraction trapdoor td ext, a statement x and a proof π, Ext outputs a witness w.

We require Π to satisfy the following properties.

CRS indistinguishability. For all PPT adversaries A,

Advcrs-ind
Π,A (λ) :=

∣∣Pr[(crs, td ext)← Setup(1λ) : A(1λ, crs) = 1]

− Pr[crs← HSetup(1λ) : A(1λ, crs) = 1]
∣∣

is negligible.
Perfect completeness. For all λ ∈ N, all (crs, ·) ∈ supp(Setup(1λ)), all (x,w) such that (x,w) ∈ R, and

all π ∈ supp(Prove(crs, x, w)), Verify(crs, x, π) = 1. The same holds for all crs ∈ supp(HSetup(1λ)).
Perfect soundness under Setup. For all λ ∈ N, all (crs, ·) ∈ supp(Setup(1λ)), all statements x such that

there exists no witness w with (x,w) ∈ R and all π ∈ {0, 1}∗, Verify(crs, x, π) = 0.
Perfect extractability under Setup. For all λ ∈ N, all tuples (crs, td ext) ∈ supp(Setup(1λ)), all (x, π) such

that Verify(crs, x, π) = 1 and for all w ∈ supp(Ext(td ext, x, π)), w is a satisfying witness for the statement
x, that is (x,w) ∈ R.

Perfect witness-indistinguishability under HSetup. For every λ ∈ N, all crs ∈ supp(HSetup(1λ)), all
(x,w0) and (x,w1) with (x,w0), (x,w1) ∈ R, the output distributions of Prove(crs, x, w0) and of Prove(crs,
x, w1) are identical.

There are several instantiations of dual-mode NIWI proof systems satisfying the above definition. The
construction [GS08] relies on pairing-friendly groups where either the pairing is asymmetric and the SXDH
assumption holds, or the pairing is symmetric and the DLin assumption holds. [PS19] build a (statistically
secure, statistically extractable and statistically zero-knowledge) dual-mode NIZK from the plain learning with
errors assumption. The recent paper [HU19] proposes an instantiation of (a statistically secure, statistically
extractable and statistically witness-indistinguishable) dual-mode NIWI proof system based on strong but
unstructured assumptions, namely, sub-exponentially secure indistinguishability obfuscation, sub-exponentially
secure one-way functions and a secure lossy encryption scheme.

2.3 Probabilistic indistinguishability obfuscation

Let C = (Cλ)λ∈N be a family of sets Cλ of probabilistic circuits. The set Cλ contains circuits of polynomial size
in λ with input length n(λ) expecting (at most) m(λ) random bits. A circuit sampler for C is defined as a
family of (efficiently samplable) distributions S = (Sλ)λ∈N, where Sλ is a distribution over triplets (C0, C1, z)
with C0, C1 ∈ Cλ such that C0 and C1 take inputs of the same length and z ∈ {0, 1}poly(λ). We write S(1λ)
to denote efficient sampling according to Sλ.

Definition 3 (X-ind sampler, [CLTV15]). Let X(λ) be a function upper bounded by 2λ. The class SX-ind

of X-ind samplers for a circuit family C contains all circuit samplers S = (Sλ)λ∈N for C such that for all
λ ∈ N, there exists a set Xλ ⊆ {0, 1}∗ with |X | ≤ X(λ), such that

X-differing inputs. With overwhelming probability over the choice of (C0, C1, z)← Sλ, for every x 6∈ Xλ,
for all r ∈ {0, 1}m(λ), C0(x; r) = C1(x; r).

X-indistinguishability. For all (non-uniform) adversaries A, the advantage

X(λ) ·
(

Pr[Expsel-ind
S,A (λ) = 1]− 1

2

)
is negligible, where Expsel-ind

S,A (λ) is defined in Figure 1.
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Expsel-ind
S,A (λ)

(x, st)← A(1λ)
(C0, C1, z)← S(1λ)
b← {0, 1}
y ← Cb(x)
b′ ← A(st, (C0, C1, z), y)
return b = b′

Fig. 1: Description of the game Expsel-ind
S,A (λ).

Definition 4 (Probabilistic indistinguishability obfuscation for a class of samplers S, [CLTV15]).
A probabilistic indistinguishability obfuscator for a class of samplers S over the probabilistic circuit family
C = (Cλ)λ∈N is a uniform PPT algorithm piO, such that the following properties hold.

Correctness. For every PPT adversary A, every C ∈ Cλ, the advantage of A, given the description of the
circuit C, to distinguish oracle access to the original randomized circuit C from oracle access to piO(C) is
negligible. Note that A is not allowed to query the oracle more than once on the same input.

Security with respect to S. For all circuit samplers S ∈ S, for all PPT adversaries A, the advantage

Advpio-ind
piO,S,A (λ) :=∣∣∣Pr
[
(C0, C1, z)← S(1λ) : A(1λ, C0, C1, z, piO(1λ, C0)) = 1

]
−Pr

[
(C0, C1, z)← S(1λ) : A(1λ, C0, C1, z, piO(1λ, C1)) = 1

] ∣∣∣
is negligible.

[CLTV15] present the to date only known construction of pIO for X-ind samplers over the family of all
polynomial sized probabilistic circuits. Given a probabilistic circuit C with size at most λ, piO(C) samples a
PRF key K and obfuscates the deterministic circuit C which on input of x evaluates the deterministic circuit
C(x;F (K,x)). Furthermore, this construction respects the support of the original randomized circuit, i.e. for
all circuits C ∈ Cλ, all inputs x ∈ {0, 1}∗ (of matching length), all Λ ∈ supp(piO(C)), Λ(x) ∈ supp(C(x)).

2.4 Re-randomizable and fully homomorphic encryption

Definition 5 (Public-key encryption (PKE), [Gam85]). An IND-CPA secure public-key encryption
scheme for message spaceM is a tuple of algorithms PKE = (KGen,Enc,Dec) such that the following properties
are satisfied.

Perfect correctness. For all (pk , sk) ∈ supp(KGen(1λ)), all m ∈M,

Pr
[
Dec(sk ,Enc(pk ,m)) = m

]
= 1.

IND-CPA security. For all legitimate PPT adversaries A,

Advind-cpa
PKE,A (λ) :=

∣∣∣∣∣Pr

 (pk , sk)← KGen(1λ)
(m0,m1, st)← A(pk)

c∗ ← Enc(pk ,m0)
: A(pk , c∗, st) = 1



−Pr

 (pk , sk)← KGen(1λ)
(m0,m1, st)← A(pk)

c∗ ← Enc(pk ,m1)
: A(pk , c∗, st) = 1


∣∣∣∣∣

is negligible, where legitimate means that A always outputs two messages m0,m1 ∈M of identical length.

Without loss of generality, we assume that sk is the random tape used for key generation. Therefore,
making the random tape of KGen explicit, we write (pk , sk) = KGen(1λ; sk).

A re-randomizable public-key encryption scheme allows to perfectly re-randomize any ciphertext.
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Definition 6 (Perfectly re-randomizable public-key encryption, [PR07]). A perfectly re-randomiz-
able public-key encryption scheme with message space {0, 1}∗ is a tuple of PPT algorithms E = (KGen,Enc,
Dec,Rerand) such that (KGen,Enc,Dec) is a perfectly correct PKE scheme such that the following additional
properties are met.

– For all (pk , ·) ∈ supp(KGen(1λ)), all messages m ∈ {0, 1}∗, all ciphertexts C ∈ supp(Enc(pk ,m)),
Rerand(C) is distributed identically to Enc(pk ,m).

– For all (pk , ·) ∈ supp(KGen(1λ)), all (maliciously chosen) ciphertexts C, and all C ′ ∈ supp(Rerand(C)),
Dec(sk , C ′) = Dec(sk , C).

For our purposes it suffices to let E.Rerand receive the public key as input. Furthermore, in contrast
to [PR07], we do not require that with overwhelming probability over the choice of (pk ′, ·)← E.KGen(1λ),
supp(E.Enc(pk , ·))∩ supp(E.Enc(pk ′, ·)) = ∅. The ElGamal encryption scheme [Gam85] is a perfectly correct
and perfectly re-randomizable public-key encryption scheme.

Fully homomorphic encryption. Let C = (Cλ)λ∈N be a family of sets of polynomial sized circuits of arity a(λ),
i.e. the set Cλ contains circuits of polynomial size in λ. We assume that for any λ ∈ N the circuits in Cλ
share the common input domain ({0, 1}poly(λ))a(λ) for a fixed polynomial poly(λ). A homomorphic encryption
scheme enables evaluation of circuits on encrypted data.

Definition 7 (Fully homomorphic public-key encryption (FHE), [Gen09]). A fully homomorphic
public-key encryption scheme with message space M ⊆ {0, 1}∗ for a deterministic circuit family C = (Cλ)λ∈N
of arity a(λ) and input domain ({0, 1}poly(λ))a(λ) is a tuple of PPT algorithms FHE = (KGen,Enc,Dec,Eval)
such that (KGen,Enc,Dec) is a perfectly correct IND-CPA secure public- key encryption scheme and the
following properties are met.

Perfect correctness. For all λ ∈ N, all (pk , sk) ∈ supp(KGen(1λ)), all m1, . . . ,ma(λ) ∈ M , all ci ∈
supp(Enc(pk ,mi)), all C ∈ Cλ, and all c ∈ supp(Eval(pk , C, c1, . . . , ca(λ))), Dec(sk , c) = C(m1, . . . ,ma(λ)).

Compactness. The size of the output of Eval is polynomial in λ and independent of the size of the circuit C.

Due to [CLTV15], probabilistic indistinguishability obfuscation in conjunction with (slightly super-
polynomially secure) perfectly correct and perfectly re-randomizable public-key encryption yields a perfectly
correct and perfectly re-randomizable fully homomorphic encryption scheme.

3 Statistically correct input expanding pIO

Looking ahead, we require a notion of statistically correct probabilistic IO. More precisely, we require statistical
closeness between evaluations of the original (probabilistic) circuit and the obfuscated (deterministic) circuit.
Clearly, in general, this is impossible since the obfuscated circuit is deterministic and hence has no source of
entropy other than its input. However, as long as a portion of the circuit’s input is guaranteed to be outside
the view of the adversary (and has sufficiently high min-entropy), the output of the obfuscated circuit and
the actual probabilistic circuit can be statistically close.

Therefore, we compile probabilistic circuits such that they receive an auxiliary input aux but simply
ignore this input in their computation. Even though the obfuscated circuit is deterministic, the auxiliary
input can be used as a source of actual entropy.

First try. We recall that the pIO construction from [CLTV15] obfuscates a probabilistic circuit C by using IO
to obfuscate the deterministic circuit C(x) := C(x;FK(x)). A natural idea to achieve statistical correctness is
to modify this construction such that the auxiliary input aux is directly XORed on the random tape which
is derived using F , i.e. to obfuscate the circuit C(x, aux ;FK(x) ⊕ aux ). For uniform auxiliary input aux ,
statistical correctness follows immediately. However, security breaks down. Consider two circuits C1 and C2

such that C1 outputs the first bit on its random tape and C2 outputs the second bit on its random tape.
Since C1 and C2 produce identical output distributions, it is desirable that a probabilistic indistinguishability
obfuscator conceals which of the two circuits was obfuscated. However, this construction admits a successful
attack. An adversary can evaluate the obfuscated circuit Λ on inputs (x, aux ) and (x, aux ⊕ 1). If both
evaluations yield identical outputs, C2 was obfuscated, otherwise C1 was obfuscated.
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Using an extracting PRF. Our construction of statistically correct pIO applies an extracting puncturable
PRF on the entire input of the circuit to derive the random tape for the probabilistic circuit. An extracting
PRF guarantees that PRF outputs are uniformly distributed (even given the PRF key) as long as the input
has high min-entropy. This is achieved using a universal hash function and the leftover hash lemma.

Definition 8 (`-expanding compiler). An `-expanding compiler E` takes as input a probabilistic circuit
C of polynomial size p(λ), expecting inputs x ∈ {0, 1}n′(λ) and randomness r ∈ {0, 1}m(λ), and outputs a

circuit Ĉ of polynomial size p′(λ) = p(λ)+ `(λ) expecting inputs (x, aux ) ∈ {0, 1}n′(λ)×{0, 1}`(λ), randomness
r ∈ {0, 1}m(λ) such that for all x ∈ {0, 1}n′(λ), all aux ∈ {0, 1}`(λ) and all r ∈ {0, 1}m(λ),

C(x; r) = Ĉ(x, aux ; r).

The compiler E` which simply appends `(λ) input gates (without any additional edges) to the original
circuit satisfies the above definition.

Our construction of pIO will first expand the given circuit as above and then use a slightly modified
version of the pIO scheme of [CLTV15] to obfuscate the expanded circuit. In the following we formally define
the properties of this expanding probabilistic indistinguishability obfuscator.

Definition 9 (`-expanding X-ind sampler). Let S be a circuit sampler. With Ŝ we denote the cir-

cuit sampler which on input of 1p(λ)+`(λ) samples (C0, C1, z) ← S(1p(λ)) and outputs the circuits Ĉ0 :=

E`(C0), Ĉ1 := E`(C1) and auxiliary information ẑ := (C0, C1, z). The class SX-(?)-ind
` of `-expanding X-ind

samplers for a circuit family C contains all circuit samplers S = (Sλ)λ∈N for C such that the circuit sampler

Ŝ is an X-ind sampler according to Definition 3, i.e. Ŝ ∈ SX-ind.

We note that since the compilation process of E` is reversible, we could actually omit C0, C1 from ẑ.
Unfortunately, not all X-ind samplers S induce a sampler Ŝ which also is an X-ind sampler. This is

justified by the following observation. In order for Ŝ to satisfy the X-differing inputs property, we need to set
X̂(λ) := X(λ) · 2`(λ) ≤ 2p(λ)+`(λ), where p(λ) is the security parameter used for S.11 X̂-indistinguishability,

however, requires that X(λ) · 2`(λ) ·Advsel-ind
Ŝ,Â (p(λ) + `(λ)) is negligible (for all PPT adversaries Â). Due to

X-indistinguishability of S, we are only guaranteed that X(λ) ·Advsel-ind
S,A (p(λ)) is negligible (for all PPT

adversaries A), which does not suffice to prove X̂-indistinguishability of Ŝ.
Nevertheless, `-expanding X-ind samplers cover a wide class of circuit samplers. In the following we

present two lemmas which facilitate the usage of `-expanding X-ind samplers.

Lemma 1. Let S be a circuit sampler for C which outputs two circuits C0 and C1 which always behave

exactly identically on identical inputs and random tapes. Then, S ∈ SX-(?)-ind
` .

Proof. Let Ŝ be the sampler which on input of 1p(λ)+`(λ) samples (C0, C1, z) ← S(1p(λ)) and outputs
(E`(C0), E`(C1), (C0, C1, z)). Let X(λ) := 0 and X := ∅. Since for all x 6∈ X , aux ∈ {0, 1}`(λ) and r ∈
{0, 1}m(λ), E`(C0)(x, aux ; r) = C0(x; r) = C1(x; r) = E`(C1)(x, aux ; r), Ŝ satisfies X-differing inputs. Since

X(λ) = 0, X-indistinguishability is trivially satisfied. Hence, Ŝ ∈ SX-ind and, therefore, S ∈ SX-(?)-ind
` . ut

Lemma 2. Let S be a circuit sampler for C which outputs two circuits C0 and C1 such that for all inputs x,

C0(x) and C1(x) produce the exact same distribution. Then, S ∈ SX-(?)-ind
` .

Proof. Let Ŝ be the sampler which on input of 1p(λ)+`(λ) samples (C0, C1, z) ← S(1p(λ)) and outputs
(E`(C0), E`(C1), (C0, C1, z)). Let X(λ) := 2p(λ)+`(λ) and X := {0, 1}p(λ)+`(λ). Since there is no input for
the circuits which is outside of X , X-differing inputs is trivially satisfied. Furthermore, as for all inputs
x the distributions C0(x) and C1(x) are identical, the same holds for the distributions E`(C0)(x, aux ) and
E`(C1)(x, aux ) for all inputs x and all aux ∈ {0, 1}`(λ). Thus, for all adversaries A, Expsel-ind

Ŝ,A (p(λ)+`(λ)) = 1
2 .

Hence, Ŝ ∈ SX-ind and, therefore, S ∈ SX-(?)-ind
` . ut

Our expanding pIO scheme satisfies similar correctness and security properties as defined in [CLTV15]
but additionally guarantees statistical correctness.

11 Note that Ŝ is called with security parameter p(λ) + `(λ) to compensate for the expanded circuits.
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Definition 10 (`-expanding pIO for the class of samplers S). An `-expanding probabilistic indis-
tinguishability obfuscator for the class of samplers S over C = (Cλ)λ∈N is a uniform PPT algorithm piO?` ,
satisfying the following properties.

Input expanding correctness. For all PPT adversaries A, all circuits C ∈ C,∣∣∣Pr[AOC(·,·)(1λ, C) = 1]− Pr[Λ← piO?` (1
p(λ), C) : AOΛ(·,·)(1λ, C) = 1]

∣∣∣
is negligible, where the oracles must not be called twice on the same input (x, aux ).

OC(x, aux )

r ← {0, 1}m
return C(x; r)

OΛ(x, aux )

return Λ(x, aux )

Security with respect to S. For all circuit samplers S ∈ S, for all PPT adversaries A, the advantage

Adv
pio-ind(?)
piO?` ,S,A

(λ) :=∣∣∣Pr
[
(C0, C1, z)← S(1λ) : A(1λ, C0, C1, z, piO

?
` (1

p(λ), C0)) = 1
]

−Pr
[
(C0, C1, z)← S(1λ) : A(1λ, C0, C1, z, piO

?
` (1

p(λ), C1)) = 1
] ∣∣∣

is negligible in λ.
Support respecting. For all circuits C ∈ Cλ, all inputs x ∈ {0, 1}n′(λ), all aux ∈ {0, 1}`(λ), all Λ ∈

supp(piO?` (1
p′(λ), C)), Λ(x, aux ) ∈ supp(C(x)).

Statistical correctness with error 2−e(λ). For all circuits C ∈ Cλ and all joint distributions (X1, X2)

over {0, 1}n′(λ) × {0, 1}`(λ) with average min-entropy `(λ) ≥ H̃∞(X2 | X1) > m(λ) + 2e(λ) + 2, the
statistical distance between {

Λ← piO?` (1
p(λ), C) : (Λ,Λ(X1, X2))

}
and

{
Λ← piO?` (1

p(λ), C) : (Λ,C(X1;Um(λ)))
}

is at most 2−e(λ).

Setting ` := 0 recovers the original definition of pIO for X-ind samplers due to [CLTV15]. Furthermore,
instantiating an easy modification of the construction of piO for SX-ind due to [CLTV15] with a suitably
extracting PRF family satisfies our definition of `-expanding pIO.

3.1 Puncturable PRFs

As preparation for our construction, we introduce several variants of puncturable pseudorandom functions
(pPRFs). Puncturable PRFs allow to puncture a key at a certain amount of inputs, such that the punctured
key works on all remaining inputs as before. Furthermore, evaluations at punctured points are pseudorandom
even given the punctured key.

Definition 11 (Puncturable PRF, [GGM84; BW13; BGI14; KPTZ13]). A puncturable family of
PRFs is a tuple of PPT algorithms F = (Key,Puncture,Eval) and two computable functions n(λ),m(λ)
satisfying the following properties.

Functionality preserved under puncturing. For all PPT adversaries A such that A(1λ) outputs a set
S ⊆ {0, 1}n(λ), for all x 6∈ S, all K ∈ supp(Key(1λ)) and all KS ∈ supp(Puncture(K,S)) we have
Eval(K,x) = Eval(KS , x).

Pseudorandom at punctured points. For all PPT adversaries (A1,A2), we have∣∣Pr[A2(s,KS ,Eval(K,S)) = 1]− Pr[A2(s,KS , Um(λ)·|S|) = 1]
∣∣

is negligible, where the probabilities are over (S, s)← A1(1λ),K ← Key(1λ),KS ← Puncture(K,S) and
Um(λ)·|S|.
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For ease of notation we often write F (K,x) to denote F.Eval(K,x).

Definition 12 (Statistically injective puncturable PRF, [SW14]). A statistically injective puncturable
PRF family with error ε(·) is a family of puncturable PRFs F mapping n(λ) bits to m(λ) bits such that
F (K, ·) is injective with probability at least 1− ε(λ).

Lemma 3 ([SW14]). If one-way functions exist, then for all efficiently computable functions n(·),m(·), e(·)
such that m(λ) ≥ 2n(λ) + e(λ), there exists a statistically injective puncturable PRF family with error 2−e(λ)

mapping n(λ) bits to m(λ) bits.

Definition 13 (Average min-entropy, [DORS08]). Let (X,Z) be a joint distribution. The average
min-entropy of X conditioned on Z is

H̃∞(X | Z) := − log( E
z←Z

[max
x

Pr[Xz = x]]).

As already indicated, we instantiate the construction of [CLTV15] with a pPRF which allows to use the
entropy provided via the auxiliary input aux such that the obfuscated circuit is evaluated with statistically
uniform random coins. The following definition captures this pPRF property.

Definition 14 (Special extracting puncturable PRF, [SW14]). A special extracting puncturable PRF
family with error ε(·) for average min-entropy k(·) is a family of puncturable PRFs F mapping n(λ) =
n′(λ)+n′′(λ) bits to m(λ) bits such that for all λ and all joint distributions (X1, X2) over {0, 1}n′(λ)×{0, 1}n′′(λ)
with average min-entropy H̃∞(X2 | X1) > k(λ), the statistical distance between

{K ← Key(1λ) : (K,X1, F (K,X))} and {K ← Key(1λ) : (K,X1, Um(λ))}

is at most ε(λ), where X := (X1, X2).

The leftover hash lemma states that universal hash functions are good randomness extractors. In other
words, if the input of a universal hash function has sufficiently high (average) min-entropy, the output of that
hash function is statistically close to uniform even given the function description.

Lemma 4 (Leftover Hash Lemma for average min-entropy, [HILL99]). Let H be a 2-universal

hash function family mapping n to m bits. If H̃∞(X | E) ≥ k and m = k − 2 log( 1
2ε ), then ∆({H ←

H : (H,E,H(X))}, {H ← H : (H,E,Um)} ≤ ε.

Looking ahead, we need that the statistical distance between

{H ← H : (H,E,H(X,E))} and {H ← H : (H,E,Um)}

is at most ε. Since H̃∞(X | E) = H̃∞((X,E) | E), this is implied by Lemma 4.

Theorem 1. If one-way functions exist, then for all efficiently computable functions n′(·), n′′(·),m(·), k(·)
and e(·) such that n = n′ + n′′ ≥ k ≥ m+ 2e+ 2, there exists a special extracting puncturable PRF family
mapping n bits to m bits with error 2−e for average min-entropy k.

Proof. The proof is very similar to [SW14]. Let F be a family of statistically injective puncturable PRFs
with error 2−(e+1) mapping n bits to 2n+ e+ 1 bits. By Lemma 3, such a PRF family exists from one-way
functions. Let H be a family of 2-universal hash functions mapping 2n+ e+ 1 bits to m bits. We define a
family F ′ of puncturable PRFs as follows.

F ′.Key(1λ)
h← H
K ← F.Key(1λ)
return K ′ := (K,h)

F ′.Eval(K ′, x)

return h(F.Eval(K,x))

F ′.Puncture(K ′, S)

KS ← F.Puncture(K,S)
return K ′S := (KS , h)
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Due to [SW14], F ′ is a family of puncturable PRFs mapping n bits to m bits.

Let (X1, X2) be a joint distribution over {0, 1}n = {0, 1}n′×{0, 1}n′′ such that H̃∞(X2 | X1) ≥ m+2e+2.

Fix a key K such that F (K, ·) is injective. Hence, H̃∞(X2 | X1) = H̃∞(F (K, (X1, X2)) | X1). Lemma 4
implies that the statistical distance between{

h← H : (h,X1, h(F (K, (X1, X2))))
}

and
{
h← H : (h,X1, Um)

}
is at most 2−(e+1). The probability that a randomly sampled key K yields a non-injective PRF is at most
2−(e+1). Therefore, the statistical distance between{

K ′ ← F ′.Key(1λ) : (K ′, X1, F
′(K ′, (X1, X2)))

}
and

{
K ′ ← F ′.Key(1λ) : (K ′, X1, Um)

}
is at most 2−e. ut

3.2 Construction

piO(1λ, C)

λ′ := (λ log2(λ))
1/ε

K ← F.Key(1λ
′
)

let E[C,K](x) := C(x;F (K,x))
λ′′ := q(λ′)

Λ← iO(1λ
′′
, E[C,K])

return Λ

piO?` (1
λ, C)

Ĉ := E`(C)

Λ← piO(1λ+`(λ), Ĉ)
return Λ

Fig. 2: Construction of pIO for X-ind samplers from [CLTV15] (left) and of `-expanding pIO (right), both
definitions for circuits of size λ. The polynomial q(λ′) denotes an upper bound on the size of E[C,K] and F
denotes a special extracting sub-exponentially secure pPRF with distinguishing gap 2−λ

ε

(for a constant ε).

Figure 2 defines our construction of an `-expanding pIO scheme piO?` . We use the pIO scheme for X-ind
samplers piO from [CLTV15] instantiated with a special extracting pPRF as a subroutine. Note that as in
[CLTV15], the security parameter used for the obfuscator needs to be scaled to the supported circuit size.

Theorem 2. Let e be an efficiently computable function. Let F be a sub-exponentially secure special extracting
PRF family with distinguishing advantage 2−λ

ε

(for some constant ε) and error 2−e(λ) mapping n(λ) =
n′(λ)+`(λ) bits to m(λ) bits which is extracting if the input average min-entropy is greater than m(λ)+2e(λ)+2.
Let piO denote the construction of pIO from [CLTV15] instantiated with F . Then, piO?` as defined in Figure 2

is a statistically correct input expanding pIO for the class of samplers SX-(?)-ind
` .

Proof. We recall that due to [CLTV15], piO is correct and secure with respect to X-ind samplers.

Input expanding correctness. Note that input expanding correctness does not follow in a black-box
manner from the correctness of piO since input expanding correctness allows an adversary to query the
randomized circuit multiple times on the same input x using different auxiliary inputs aux . This can not be
simulated by an adversary on correctness of piO.
Input expanding correctness follows from pseudorandomness of the PRF used in the construction of piO.
Let G0 denote the game in which the adversary gets C as input and has oracle access to OC(·, ·) and let G1

denote the game in which the adversary gets C as input and has oracle access to OΛ(·, ·) for Λ← piO?` (1
λ, C).

Consider an intermediate game H, where the oracle OΛ(x, aux ) evaluates Ĉ(x, aux ;R(x, aux )) for a truly
random function R. By the security of the PRF F , oracle access to F (K, ·) (for a randomly sampled key K)
and a truly random function are indistinguishable. Hence, by perfect correctness of iO and the security of F ,
G1 and H are indistinguishable. Furthermore, since Ĉ(x, aux ;R(x, aux )) = C(x;R(x, aux )), H and G0 are
identically distributed.
Security with respect to SX-ind. Since piO is secure with respect to X-ind samplers (and E`(C) ∈ C),
piO?` is secure with respect to expanding X-ind samplers.
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More formally, let S ∈ SX-(?)-ind
` be a circuit sampler and let A be an adversary on the security of piO?` .

We construct a circuit sampler Ŝ (as described above) and an adversary B on the security of piO. Ŝ on
input of 1λ, calls S(1λ) to obtain (C0, C1, z) and outputs (E`(C0), E`(C1), ẑ := (z, C0, C1)). On input of
(E`(C0), E`(C1), ẑ, Λ), B calls A on input of (C0, C1, z, Λ) and outputs A’s output. Hence, for b ∈ {0, 1},

Pr
[
(C0, C1, z)← S(1λ) : A(1λ, C0, C1, z, piO

?
` (1

λ, Cb)) = 1
]

= Pr
[
(E`(C0), E`(C1), (C0, C1, z))← Ŝ(1λ) :

B(1λ, E`(C0), E`(C1), (C0, C1, z), piO(1λ, E`(Cb))) = 1
]
.

Therefore, for all S ∈ SX-(?)-ind
` , all PPT adversaries A, there exists a sampler Ŝ ∈ SX-ind and a PPT

adversary B such that

Adv
pio-ind(?)
piO?` ,S,A

(λ) = Advpio-ind

piO,Ŝ,B
(λ)

which is negligible since Ŝ ∈ SX-ind.
Support respecting. Follows directly by the definition.
Statistical correctness with error 2−e(λ). Let e(λ) be an efficiently computable function. Let C ∈ C
be a circuit expecting inputs x ∈ {0, 1}n′(λ) and randomness r ∈ {0, 1}m(λ), and let Ĉ := E`(C) be its
corresponding `-expanded circuit. Let X := (X1, X2) be a joint distribution over {0, 1}n′(λ) × {0, 1}`(λ) with

average min-entropy `(λ) ≥ H̃∞(X2 | X1) > m(λ) + 2e(λ) + 2. Then, by Theorem 1, the statistical distance
between

{K ← Key(1λ) : (K,X1, F (K,X))} and {K ← Key(1λ) : (K,X1, Um(λ))}

is at most 2−e(λ). Since, for all distributions A,B and for every randomized function f , the statistical distance
between f(A) and f(B) is upper bounded by the statistical distance between A and B, we have that the
statistical distance between

{K ← Key(1λ) : (K,C(X1;F (K,X)))} and {K ← Key(1λ) : (K,C(X1;Um(λ)))}

and the statistical distance between

{Λ← piO?` (C) : (Λ,C(X1;F (K,X))︸ ︷︷ ︸
=Λ(X1,X2)

)} and {Λ← piO?` (C) : (Λ,C(X1;Um(λ)))}

are at most 2−e(λ).

ut

It seems plausible that our construction also achieves security with respect to X-ind samplers. This,
however, would come at the cost of a non-black box proof reproducing the hybrid argument of [CLTV15].

4 How to simulate extraction – Algebraic Wrappers

In order to instantiate the AGM, we need to first find a way to conceptualize what it means to be a group in
a cryptographic sense. This is captured by the notion of a group scheme or encoding scheme, [GGH13]. In
a nutshell, a group scheme provides an interface of algorithms abstracting the handling of a cryptographic
group. As we want to prove hardness of certain problems based on hardness assumptions in an already
existing base group, we incorporate this existing group into our group scheme.

More specifically, we introduce the concept of an algebraic wrapper, i.e. a group scheme that allows to
extract a representation which – similar to the AGM – can be used in a security reduction. A similar approach
has already been taken by [KP19]. [KP19] define their group scheme as a linear subspace of G×G for an
existing group G in such a way that the Generalized Knowledge of Exponent Assumption (GKEA) can be
used to extract a representation (membership can for instance be tested via a symmetric pairing). Hence,
that group scheme can also be viewed as an extension, or a wrapper, for the underlying base group. However,
[KP19] relies on GKEA in the base group which more or less directly yields an equivalence between algebraic
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groups and GKEA. The existence of algebraic groups, however, implies the existence of extractable one-way
functions with unbounded auxiliary input (since the AGM allows an additional unstructured input from
{0, 1}∗) which in turn conflicts with the existence of indistinguishability obfuscation, [BCPR14]. Due to
this contradiction and the difficulty to assess the plausibility of knowledge-type assumptions, we strive for a
weaker model which can purely be based on falsifiable assumptions.

Extraction trapdoors. In [KP19], extraction is possible as long as the code and the randomness which where
used to produce a group element are known. Since we strive to avoid knowledge-type assumptions, we need to
find a different mechanism of what enables extraction. We observe that in order to reproduce proof strategies
from the algebraic group model, extraction is only necessary during security reductions. Since the reduction
to some assumption in the base group is in control of the group parameters of the wrapper, the reduction
may use corresponding trapdoor information which we define to enable extraction. We call this notion private
extractability.

4.1 Group schemes

A group scheme or encoding scheme [GGH13] abstracts the properties of mathematical groups used in
cryptography. Group schemes have recently been studied in [AFHLP16; AH18; FHHL18; KP19]. In contrast
to traditional groups, group elements are not bound to be represented by a unique bitstring (henceforth
referred to as encoding). This allows to encode auxiliary information inside group elements.

Formally, a group scheme H consists of the algorithms (GGenH,SamH,ValH,AddH,EqH,GetIDH). A group
generation algorithm GGenH, which given 1λ, samples group parameters ppH. A sampling algorithm SamH,
given the group parameters and an additional parameter determining the exponent of the desired group
element, produces an encoding corresponding to that exponent. A validation algorithm ValH, given the group
parameters and a bitstring, decides whether the given bitstring is a valid encoding. The algorithm AddH
implements the group operation, i.e. expects the group parameters and two encodings as input and produces
an encoding of the resulting group element. Since group elements do not necessarily possess unique encodings,
the equality testing algorithm EqH enables to test whether two given encodings correspond to the same group
element (with respect to the given group parameters). Note that EqH(ppH, ·) defines an equivalence relation
on the set of valid bitstrings. Finally, again compensating for the non-unique encodings, a group scheme
describes a “get-identifier” algorithm which given the group parameters and an encoding of a group element,
produces a bitstring which is unique for all encodings of the same group element.12 Note that EqH(ppH, a, b)
can be implemented using GetIDH by simply comparing GetIDH(ppH, a) and GetIDH(ppH, b) as bitstrings. The
“get-identifier” algorithm compensates for the potential non-uniqueness of encodings and allows to extract, for
instance, symmetric keys from group elements.

For a group scheme it is required that the quotient set

{a ∈ {0, 1}∗ | ValH(ppH, a) = 1}/EqH(ppH, ·)

equipped with the operation defined via AddH(ppH, ·, ·) defines a mathematical group (with overwhelming
probability over the choice of ppH ← GGenH(1λ)). We say that an a is (an encoding of) a group element
(relative to ppH), written as a ∈ H, if and only if ValH(ppH, a) = 1.

A group scheme requires that encodings corresponding to the same group element are computationally
indistinguishable as formalized by the “Switching Lemma(s)” in [AFHLP16; AH18; FHHL18].

Due to the non-uniqueness of encodings, we henceforth use the notation ĥ to denote an encoding of a
group element.

4.2 An algebraic wrapper

Given a cyclic group, an algebraic wrapper is a group scheme which equips a given group G with a notion of
extractability while preserving its group structure and complexity theoretic hardness guarantees. In particular,
we achieve a property which we refer to as “private extractability” with respect to a given set of group

12 Previous work refers to this algorithm as “extraction algorithm”. However, in order not to overload the word
“extraction”, we rename this algorithm in this work.
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elements in the base group. More precisely, the group generation algorithm expects group parameters ppG of
the base group together with a set of group elements [b]G ∈ Gn in that base group, henceforth referred to
as basis, and produces group parameters ppH of the wrapper group together with a corresponding trapdoor
τH. This trapdoor enables to extract a representation with respect to the basis [b]G from every encoding.
Looking ahead, this property will allow to implement proof strategies of the algebraic group model, [FKL18].

More precisely, encodings can be seen to always carry computationally hidden representation vectors with
respect to the basis [b]G. The private extraction recovers this representation vector. Given the trapdoor,
we require that it is possible to “privately” sample encodings which carry a specific dictated representation
vector. We require that publicly sampled encodings and privately sampled encodings are computationally
indistinguishable. We refer to this property as “switching”. In order to preserve tightness of security reductions
when implementing AGM proofs with our algebraic wrapper, we require a statistical re-randomization property.
Furthermore, we require that representation vectors compose additively (in Znp ) with the group operation
and do not change when encodings are re-randomized.

Let BnppG := {([1]G , [x2]G , . . . , [xn]G)ᵀ ∈ Gn | x2, . . . , xn ∈ Z×p } be the set of what we call “legitimate basis
vectors”. Note that we require the first group element to be the generator of the group. This is necessary to
allow public sampling.

Definition 15 (Algebraic wrapper for G). An algebraic wrapper H for G is a tuple of PPT al-
gorithms (GGenH,SamH,ValH,AddH,EqH,GetIDH,RerandH,PrivSamH,PrivExtH,UnwrapH) such that (GGenH,
SamH,ValH,AddH,EqH,GetIDH) constitutes a group scheme and the following properties are satisfied.

G-wrapping. The algorithm UnwrapH(ppH, ·) is deterministic and for all ppG ∈ supp(GGenG(1λ)), all [b]G ∈
BnppG , all (ppH, τH) ∈ supp(GGenH(ppG, [b]G)), UnwrapH(ppH, ·) defines a group isomorphism from H to
G.

Extractability. The algorithm PrivExtH is deterministic. Furthermore, for all ppG ∈ supp(GGenG(1λ)), all

[b]G ∈ BnppG , all (ppH, τH) ∈ supp(GGenH(ppG, [b]G)), all ĥ ∈ H, we require that PrivExtH always extracts

a representation of [x]G with respect to [b]G, i.e. for z := PrivExtH(τH, ĥ), [zᵀ · b]G = UnwrapH(ppH, ĥ).
Correctness of extraction. For all ppG ∈ supp(GGenG(1λ)), all [b]G ∈ BnppG , all (ppH, τH) ∈ supp(GGenH(

ppG, [b]G)), all ĥ0, ĥ1 ∈ H, we require that private extraction respects the group operation in the sense that

for all ĥ2 ∈ supp(AddH(ppH, ĥ0, ĥ1)), z(i) := PrivExtH(τH, ĥi) satisfy z(2) = z(0) + z(1). Furthermore, for

all ppG ∈ supp(GGenG(1λ)), all [b]G ∈ BnppG , all (ppH, τH) ∈ supp(GGenH(ppG, [b]G)), all ĥ ∈ H, we require

that re-randomization does not interfere with private extraction in the sense that for all ĥ′ ∈ supp(RerandH(

ppH, ĥ)), PrivExtH(τH, ĥ) = PrivExtH(τH, ĥ′).
Correctness of sampling. For all ppG ∈ supp(GGenG(1λ)), all [b]G ∈ BnppG , all (ppH, τH) ∈ supp(GGenH(

ppG, [b]G)), we require that
– for all v ∈ Znp , Pr[PrivExtH(τH,PrivSamH(τH,v)) = v] = 1, and
– for all x ∈ Zp, Pr[PrivExtH(τH,SamH(ppH, x · e1)) = x · e1] = 1.

k-Switching. We say a PPT adversary A is a legitimate k-switching adversary if on input of base group

parameters ppG, A outputs two bases ([b]
(j)
G )j∈{0,1} and two lists comprising k representation vectors

(v(j),(i))i∈[k],j∈{0,1} (and an internal state st) such that [b]
(0)
G , [b]

(1)
G ∈ BnppG and v(0),(i),v(1),(i) ∈ Znp for

some n ∈ N and all i ∈ [k] and
[
(v(0),(i))ᵀ · b(0)

]
G =

[
(v(1),(i))ᵀ · b(1)

]
G for all i ∈ [k].

For all legitimate k-switching PPT adversaries A,

Adv
k-switching
H,A (λ) :=

∣∣∣Pr[Exp
k-switching
H,A,0 (λ) = 1]− Pr[Exp

k-switching
H,A,1 (λ) = 1]

∣∣∣
is negligible, where Expk-switchingH,A,b (λ) (for b ∈ {0, 1}) is defined in Figure 3.

Statistically re-randomizable. We say an unbounded adversary A is a legitimate re-randomization ad-
versary if on input of base group parameters ppG, A outputs [b]G and a state st such that [b]G ∈ BnppG
and, in a second phase, A on input of (ppH, τH, st) outputs two valid encodings ĥ0, ĥ1 (and a state st)

such that PrivExtH(τH, ĥ0) = PrivExtH(τH, ĥ1).
For all unbounded legitimate re-randomization adversaries A,

Advrerand
H,A (λ) :=

∣∣Pr[Exprerand
H,A,0 (λ) = 1]− Pr[Exprerand

H,A,1 (λ) = 1]
∣∣ ≤ 1

2λ
,
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where Exprerand
H,A,b (λ) (for b ∈ {0, 1}) is defined in Figure 3.

Exprerand
H,A,b (λ)

ppG ← GGenG(1λ)
([b]G , st)← A(1λ, ppG)
(ppH, τH)← GGenH(ppG, [b]G)

(ĥ0, ĥ1, st)← A(ppH, τH, st)

ĥ← RerandH(ppH, ĥb)

return A(ĥ, st)

Expk-switchingH,A,b (λ)

ppG ← GGenG(1λ)(
([b]

(j)
G )j∈{0,1},

(v(j),(i))i∈[k],j∈{0,1}, st
)
← A(1λ, ppG)

(ppH, τH)← GGenH(ppG, [b]
(b)
G )

ĥ∗i ← PrivSamH(τH,v
(b),(i))

return A(ppH, (ĥ
∗
i )i∈[k], st)

Fig. 3: The re-randomization and k-switching games.

For simplicity we require that encodings are always in {0, 1}penc(λ) for a fixed polynomial penc(λ).
The k-switching property allows to simultaneously switch the representation vectors of multiple group

element encodings. It is necessary to switch all encodings simultaneously since private sampling can only be
simulated knowing the trapdoor τH which is not the case in Expk-switchingH,A,b (λ).

4.3 Construction

Our construction follows the ideas from [AFHLP16; AH18; FHHL18]. Let GGenG be a group generator for
a cyclic group G. Let T D be a family of hard subset membership problems. Let FHE = (KGen,Enc,Dec,
Eval,Rerand) be a perfectly correct and perfectly re-randomizable fully homomorphic public-key encryption
scheme. Let ppG be group parameters for G and [Ω]G ∈ Gn for some n ∈ N. Let TD ⊆ X be a subset
membership problem from T D and y ← X \TD and pk be a public key for FHE. For ease of notation, we define
pars := (ppG, TD, y, pk , [Ω]G). Let Π := (Setup,Prove,Verify,HSetup,Ext) be a perfectly complete, perfectly
sound and perfectly witness-indistinguishable dual-mode NIZK proof system for the language

L :=
{
y := (pars, [x]G , C)

∣∣ ∃w : (y, w) ∈ R := R1 ∨R2 ∨R3

}
.

The relations R1,R2,R3 are defined as follows.

R1 =


(

(pars, [x]G , C), (sk ,v)
) ∣∣∣∣∣∣∣∣

KGen(1λ; sk) = (pk , sk)
∧ Dec(sk , C) = v
∧ [Ωᵀ · v]G = [x]G


R2 =

{(
(pars, [x]G , C), (r,v)

) ∣∣∣∣∣ Enc(pk ,v; r) = C
∧ [Ωᵀ · v]G = [x]G

}
R3 =

{ (
(pars, [x]G , C), (wy)

) ∣∣∣ (y, wy) ∈ RTD

}
With m′(λ) we denote a polynomial upper bound on the number of random bits FHE.Rerand(1λ, ·, ·) expects
and with m′′(λ) we denote a polynomial upper bound on the number of random bits Π.Prove(1λ, ·, ·, ·)
expects. Let `(λ) := m′(λ) +m′′(λ) + 2(λ+ 1) + 3. Let piO be a pIO scheme for the class of samplers SX-ind

and let piO?` be an `-expanding pIO scheme for the class of samplers SX-(?)-ind
` . Further, let padd(λ) denote a

polynomial upper bound on the size of addition circuits and prerand(λ) denote a polynomial upper bound on
the size of re-randomization circuits which are used during the proof, see fig:cadds for details.

Our algebraic wrapper H is composed of the PPT algorithms (GGenH,SamH,ValH,AddH,EqH,RerandH,
PrivExtH,PrivSamH,GetIDH,UnwrapH) which are defined in Figures 4a and 4b. We note that the algorithm
ValH which is evaluated inside CAdd and Crerand only requires a certain part of the public parameters as input.
In particular, ValH does not depend on ΛAdd and Λrerand.

During “honest” use of our algebraic wrapper, encodings carry proofs produced for relation R1 or relation
R2. Relation R2 enables sampling without knowledge of any trapdoors. Re-randomized encodings always
carry proofs for relation R1. Relation R3 is a trapdoor branch enabling simulation. Note that during “honest”
use of the algebraic wrapper y 6∈ TD and, hence, due to perfect soundness of Π, there exists no proof for
relation R3.
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GGenH(ppG, [b]G = [(b1, . . . , bn)ᵀ]G)

α1 := 1, α2, . . . , αn ← Z×p
[Ω]G := ([b1]α1

G , . . . , [bn]αnG )ᵀ

(pk , sk)← FHE.KGen(1λ)
crs← Π.Setup(1λ),TD← T D, y ← TD

ΛAdd ← piO(1padd(λ), CAdd)
Λrerand ← piO?` (1

prerand(λ), Crerand)
pars := (ppG, TD, y, pk , [Ω]G)
ppH := (crs, pars, ΛAdd, Λrerand)
τH := (ppH, sk , α1, . . . , αn, [b]G)
return (ppH, τH)

SamH(ppH,v ∈ Znp )

C = Enc(pk ,v; r)
[x]G := [Ωᵀ · v]G
π = Prove(crs, (pars, [x]G , C), (r,v))

return ĥ := ([x]G , C, π)H

ValH(ppH, ĥ)

parse x̂ =: ([x]G , C, π)H
return Π.Verify(crs, (pars, [x]G , C), π)

UnwrapH(ppH, ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
return [x]G

EqH(ppH, ĥ1, ĥ2)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
return [x1]G = [x2]G

GetIDH(ppH, ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
return [x]G

AddH(ppH, ĥ1, ĥ2)

return ΛAdd(ĥ1, ĥ2)

CAdd[pars, crs, sk ](ĥ1, ĥ2; r)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
[xout]G := [x1]G · [x2]G
Cout ← FHE.Eval(pk , C(+)[Znp ], C1, C2)

// C(+)[Znp ] computes addition in Znp
vi ← Dec(sk , Ci)
vout := v1 + v2

πout ← Prove(crs,
(pars, [xout]G , Cout), (sk ,vout))

return ĥout := ([xout]G , Cout, πout)

(a) Definition of the algorithms GGenH, SamH,ValH,EqH,GetIDH,AddH,UnwrapH and the circuit CAdd.

Differences to [AFHLP16; AH18; FHHL18]. [AFHLP16; FHHL18] introduce similar constructions of
a group scheme featuring a multilinear map and of a graded encoding scheme, respectively. More precisely,
[AFHLP16; FHHL18] equip a base group with encodings carrying auxiliary information which can be used
(in an obfuscated circuit) to “multiply in the exponent”. We observe that these constructions already wrap a
given base group in the sense that “unwrapping” encodings yields a group isomorphism to the base group.

Our construction builds upon these group schemes. In order to enable extractability with respect to a
dynamically chosen basis13, our group parameters must be generated depending on that basis.

This modification, however, comes at the cost of the multilinear map functionality. This is because any
implementation of a multilinear map requires knowledge of discrete logarithms of each group element encoding

13 With basis we mean a set of group elements in the base group.

PrivSamH(τH,v ∈ Znp )

v∗ := (v1 · α−1
1 , . . . , vn · α−1

n )ᵀ

[x]G := [bᵀ · v]G = [Ωᵀ · v∗]G
C = Enc(pk ,v∗; r)
π = Prove(crs, (pars, [x]G , C), (sk ,v∗))
return ([x]G , C, π)H

PrivExtH(τH, ĥ)

if ¬ValH(ppH, ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
(v1, . . . , vn)ᵀ =: v = Dec(sk , C)
return (v1 · α1, . . . , vn · αn)ᵀ

RerandH(ppH, ĥ)

u← {0, 1}`(λ)

return Λrerand(ĥ, u)

Crerand[pars, crs, sk ](ĥ; r1, r2)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
v := Dec(sk , C)
Cout := FHE.Rerand(pk , C; r1)
πout ← Prove(crs,

(pars, [x]G , Cout), (sk ,v); r2)

return ĥout := ([x]G , Cout, πout)H

(b) Definition of the algorithms PrivSamH,PrivExtH,RerandH and the circuit Crerand.

Fig. 4: Algorithms of our algebraic wrapper construction.
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to a fixed generator. This is undesirable for our purposes, since we want to be able to use sets of group
elements as basis which we do not know discrete logarithms of (for instance group elements provided by a
reduction). Thus, we have to give up the multiplication functionality.

Furthermore, looking ahead, we crucially require that the basis can be altered via computational game
hops during proofs. We solve this problem by linearly perturbing the given basis [b]G (except for its first
entry to enable meaningful public sampling). We refer to this perturbed basis as [Ω]G. Our group element
encodings are defined to carry representation vectors with respect to [Ω]G. By construction of CAdd, these
representation vectors are treated homomorphically by the group operation.

To preserve tightness of security reductions, we additionally introduce a statistical re-randomization
mechanism.

As opposed to [AFHLP16; FHHL18], [AH18] uses a quite different approach. In [AH18], the group scheme
is constructed from scratch, meaning there is no necessity for an underlying group. The consequences are
twofold. On one hand, very strong decisional assumptions can be proven to hold in the resulting group scheme.
On the other hand, however, the group scheme from [AH18] lacks a GetIDH algorithm limiting its applicability.

Theorem 3. Let (i) GGenG be a group generator for a cyclic group G, (ii) T D be a family of hard subset
membership problems, (iii) FHE = (KGen,Enc,Dec,Eval,Rerand) be a perfectly correct and perfectly re-ran-
domizable fully homomorphic public-key encryption scheme, (iv) Π := (Setup,Prove,Verify,HSetup,Ext) be a
perfectly complete, perfectly sound and perfectly witness-indistinguishable dual-mode NIZK proof system for
the language L, (v) piO be a pIO scheme for the class of samplers SX-ind and (vi) piO?` be an `-expanding pIO

scheme for the class of samplers SX-(?)-ind
` . Then, H defined in Figures 4a and 4b is an algebraic wrapper.

Proof. Since the algorithms defined in Figure 4a equip the base group G with non-unique encodings but
respect its group structure, the tuple (GGenH,SamH,ValH,EqH,AddH,GetIDH) forms a group scheme such
that UnwrapH(ppH, ·) defines a group isomorphism from H to G. Hence, H satisfies G-wrapping.

Lemma 5. The group scheme H defined in Figures 4a and 4b satisfies extractability.

Proof (of Lemma 5). The algorithm PrivExtH is clearly deterministic. Let ppG ∈ supp(GGenG), [b]G ∈ Znp
and (ppH, τH) ∈ supp(GGenH(ppG, [b]G)). Since y 6∈ TD and because Π is perfectly sound, every valid encoding

ĥ = ([x]G , C, π)H must satisfy either relation R1 or R2 with respect to pars. Hence, decryption of C yields a
vector v such that [Ωᵀ · v]G = [x]G or C was produced as an encryption of a vector v such that the above is
true. Due to perfect correctness of FHE, FHE.Dec(sk , C) recovers this v in both cases. Therefore, the output

z produced by PrivExtH(τH, ĥ) satisfies

(v1 · α1, . . . , vn · αn)︸ ︷︷ ︸
=:z

· [b]G = (v1, . . . , vn) ·

 b1 · α1

...
bn · αn


G

= [x]G .

Since [x]G = UnwrapH(ppH, ĥ), extractability follows. ut

Lemma 6. The group scheme H defined in Figures 4a and 4b satisfies correctness of extraction.

Proof (of Lemma 6). We first prove, that AddH respects private extraction in Znp . Let ppG ∈ supp(GGenG),

[b]G ∈ Znp and (ppH, τH) ∈ supp(GGenH(ppG, [b]G)). Let ĥ0 =: ([x0]G , C0, π0)H, ĥ1 =: ([x1]G , C1, π1)H ∈ H
with v(0) = Dec(sk , C0) and v(1) = Dec(sk , C1). Let ([x2]G , C2, π2)H := ĥ2 := AddH(ppH, ĥ0, ĥ1) and
v(2) = Dec(sk , C2). Since FHE is perfectly correct and piO is support respecting, we have v(2) = v(0) + v(1)

(in Znp ). Therefore, we have

v(2) ◦ (α1, . . . , αn)ᵀ︸ ︷︷ ︸
=PrivExtH(τH,ĥ2)

= v(0) ◦ (α1, . . . , αn)ᵀ︸ ︷︷ ︸
=PrivExtH(τH,ĥ0)

+ v(1) ◦ (α1, . . . , αn)ᵀ︸ ︷︷ ︸
=PrivExtH(τH,ĥ1)

∈ Znp .

Furthermore, RerandH does not interfere with private extraction. Let ppG ∈ supp(GGenG), [b]G ∈ Znp and

(ppH, τH) ∈ supp(GGenH(ppG, [b]G)). Let ĥ =: ([x]G , C, π)H ∈ H with v = Dec(sk , C). Let ([x′]G , C
′, π′)H :=

ĥ′ ∈ supp(RerandH(ppH, ĥ)) and v′ = Dec(sk , C ′). Since FHE is perfectly correct and piO?` is support respecting,

v = v′ and thus PrivExtH(τH, ĥ) = PrivExtH(τH, ĥ′). ut
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Lemma 7. The group scheme H defined in Figures 4a and 4b satisfies correctness of sampling.

Proof (of Lemma 7). Let ppG ∈ supp(GGenG), [b]G ∈ Znp and (ppH, τH) ∈ supp(GGenH(ppG, [b]G)).
We prove that PrivExtH(τH, ·) and PrivSamH(τH, ·) act inversely to each other. Let v ∈ Znp and let

([x]G , C, π)H := ĥ ∈ supp(PrivSamH(τH,v)). By correctness of FHE, FHE.Dec(sk , C) = v ◦ (α−11 , . . . , α−1n )ᵀ.

Hence, PrivExtH(τH, ĥ) outputs ((v1 · α−11 ) · α1, . . . , (vn · α−1n ) · αn)ᵀ = v.
Next, we prove that PrivExtH(τH, ·) and SamH(ppH, ·) act inversely to each other for multiples of e1. Let

x ∈ Zp and let ([x]G , C, π)H := ĥ ∈ supp(SamH(ppH, x · e1)). By correctness of FHE, FHE.Dec(sk , C) =

x · e1 ◦ (α−11 , . . . , α−1n )ᵀ = x · e1 since α1 = 1. Hence, PrivExtH(τH, ĥ) outputs (x · α1, 0, . . . , 0)ᵀ = x · e1 since
α1 = 1. ut

Lemma 8 (Removing information from ppH). Let GGen′H denote the distribution of public parameters
sampled as in GGenH with the difference that y ← TD is a yes-instance of the subset membership problem, crs

is sampled according to HSetup and ΛAdd, Λrerand are produced for the circuits C
(3)
Add and C

(3)
rerand, see Figure 6.

Then, for all legitimate PPT adversaries A,

Adv
swap
H,A (λ) :=

∣∣∣Pr[Exp
swap
H,A,0(λ) = 1]− Pr[Exp

swap
H,A,1(λ) = 1]

∣∣∣
is negligible, where Exp

swap
H,A,b(λ) is defined in Figure 5 and where legitimate means that A on input of ppG

guarantees [b]G ∈ BnppG for some n ∈ N.

Expswap

H,A,0(λ)

ppG ← GGenG(1λ)
([b]G , st)← A(1λ, ppG)
(ppH, τH)← GGenH(ppG, [b]G)
return A(ppH, τH, st)

Expswap

H,A,1(λ)

ppG ← GGenG(1λ)
([b]G , st)← A(1λ, ppG)
(ppH, τH)← GGen′H(ppG, [b]G)
return A(ppH, τH, st)

Fig. 5: Indistinguishability between GGenH and GGen′H.

Proof (of Lemma 8). The proof strategy is closely related to the proof of the “swap lemma” from [AFHLP16;
AH18]. After some preparations, we replace the no-instance of the subset membership problem with a
yes-instance y ∈ TD enabling relation R3 to be satisfied. The extraction trapdoor td ext for crs used inside the
obfuscated circuits can then be replaced by the witness wy for (y, wy) ∈ RTD. This enables to switch crs from
binding to hiding mode. Due to perfect witness-indistinguishability, the obfuscated circuits can be replaced
by variants which always use wy to simulate proofs. We refer the reader to Table 1 for an overview on the

hybrid games. We assume that the circuits CAdd, C
(1)
Add, C

(2)
Add, C

(3)
Add are padded to size padd(λ) and the circuits

Crerand, C
(1)
rerand, C

(2)
rerand, C

(3)
rerand are padded to size prerand(λ), see Figure 6.

Table 1: Overview of proof steps of Lemma 8

y ∈ TD ΛAdd Λrerand crs Remark

G0 NO CAdd Crerand Setup

G1 NO C
(1)
Add C

(1)
rerand Setup piO and piO?`

G2 YES C
(1)
Add C

(1)
rerand

Setup subset membership problem

G3 YES C
(2)
Add C

(2)
rerand Setup piO and piO?`

G4 YES C
(2)
Add C

(2)
rerand

HSetup CRS indistinguishability

G5 YES C
(3)
Add C

(3)
rerand HSetup piO and piO?`

Game G0. This game is identical to Expswap
H,A,0(λ).

Game G0.1. G0.1 is defined as G0 but ΛAdd is produced via piO(1padd(λ), C
(1)
Add), see Figure 6.

Indistinguishability between G0 and G0.1 follows from the security of piO with respect to SX-ind. More
formally, let A be a legitimate PPT adversary distinguishing G0 and G0.1.

20



Let S be the circuit sampler which on input of 1padd(λ) samples ppG ← GGenG(1λ), calls A(ppG) to obtain
([b]G , st) and produces parameters as GGenH(ppG, [b]G) (except for the obfuscated circuit ΛAdd) and outputs

C0 := CAdd, C1 := C
(1)
Add and auxiliary information z := (crs, pars = (ppG, TD, y, pk , [Ω]G), Λrerand, (sk , α1, . . . ,

αn, [b]G), st). Since y 6∈ TD and Π is perfectly sound, the circuits CAdd and C
(1)
Add behave exactly identical on

identical inputs and random tapes. Hence, for the function X(λ) := 0 and a differing domain X := ∅, the
circuit sampler S satisfies X-differing inputs and X-indistinguishability and, hence, is an X-ind sampler.
We construct an adversary B on the security of piO. On input of (1padd(λ), C0, C1, z, Λ), B defines ppH :=
(crs, pars, Λ, Λrerand) and τH := (ppH, sk , α1, . . . , αn, [b]G), calls A(ppH, τH, st) and outputs A’s output. If Λ is
produced via piO(1padd(λ), CAdd), S together with B perfectly simulate G0 for A. Otherwise, if Λ is produced

via piO(1padd(λ), C
(1)
Add), S together with B perfectly simulate G0.1 for A. Hence, |Pr[out0.1 = 1]− Pr[out0 =

1]| ≤ Advpio-ind
piO,S,B (padd(λ)).

Game G1. The game G1 is identical to G0.1 except that Λrerand is produced via piO?` (1
prerand(λ), C

(1)
rerand), see

Figure 6. Indistinguishability between G0.1 and G1 follows from the security of piO?` with respect to SX-(?)-ind
` .

The proof is very similar to the previous game hop. The main difference is that the used circuit sampler needs

to be in SX-(?)-ind
` .

Let A be a legitimate PPT adversary distinguishing G0.1 and G1. Let S be the circuit sampler which on
input of 1prerand(λ) samples ppG ← GGenG(1λ), calls A(ppG) to obtain ([b]G , st) and produces parameters

as GGenH(ppG, [b]G) (except for the obfuscated circuit Λrerand and such that ΛAdd is produced for C
(1)
Add),

and outputs C0 := Crerand, C1 := C
(1)
rerand and auxiliary information z := (crs, pars = (ppG, TD, y, pk , [Ω]G),

ΛAdd, (sk , α1, . . . , αn, [b]G), st). Since y 6∈ TD and Π is perfectly sound, the circuits Crerand and C
(1)
rerand behave

exactly identical on identical inputs and random tapes. Therefore, by Lemma 1, S ∈ SX-(?)-ind
` . Hence,

|Pr[out1 = 1]− Pr[out0.1 = 1]| ≤ Adv
pio-ind(?)
piO?` ,S,B

(prerand(λ)).

Game G2. The game G2 is defined as game G1 except that y ← TD is a yes-instance of the subset
membership problem. This game hop is justified by the hardness of the subset membership problem. Hence,
|Pr[out2 = 1]− Pr[out1 = 1]| ≤ Advsmp

TD,B (λ).

Game G2.1. G2.1 is defined as G2 but ΛAdd is produced via piO(1padd(λ), C
(2)
Add), see Figure 6. Due to the

perfect extractability of Π and the fact that for every y ∈ TD there exists exactly one witness wy for the

statement y ∈ TD, the two circuits C
(1)
Add and C

(2)
Add behave exactly identical on identical inputs and random

tapes. Hence, for every PPT adversary A, there exists a circuit sampler S ∈ SX-ind and a PPT adversary B
such that |Pr[out2.1 = 1]− Pr[out2 = 1]| ≤ Advpio-ind

piO,S,B (padd(λ)).

Game G3. The game G3 is identical to G2.1 except that Λrerand is produced via piO?` (1
prerand(λ), C

(2)
rerand), see

Figure 6. Indistinguishability between G2.1 and G3 follows from the security of piO?` with respect to SX-(?)-ind
` .

Again, due to the perfect extractability of Π and the fact that for every y ∈ TD there exists exactly one

witness wy for the statement y ∈ TD, the two circuits C
(1)
rerand and C

(2)
rerand behave exactly identical on identical

inputs and random tapes. Hence, by Lemma 1, for every PPT adversary A, there exists a circuit sampler

S ∈ SX-(?)-ind
` and a PPT adversary B such that |Pr[out3 = 1]− Pr[out2.1 = 1]| ≤ Adv

pio-ind(?)
piO?` ,S,B

(prerand(λ)).

Thus, G3 does not make use of the extraction trapdoor td ext corresponding to crs anymore.
Game G4. The game G4 is defined as G3, except that crs is produced via HSetup(1λ), i.e. in hiding mode. This
game hop is justified by CRS indistinguishability of Π. Hence, |Pr[out4 = 1]− Pr[out3 = 1]| ≤ Advcrs-ind

Π,B (λ).

Game G4.1. G4.1 is defined as G4 but ΛAdd is produced via piO(1padd(λ), C
(3)
Add), see Figure 6. Let S be a circuit

sampler, which produces public parameters as in G4 and outputs the circuits C0 := C
(2)
Add and C1 := C

(3)
Add (and

suitable auxiliary information z). The circuit sampler S is an X-ind sampler for X(λ) := 22penc(λ) ≤ 2padd(λ)

and X := {0, 1}2penc(λ) since X-differing inputs is trivially satisfied and X-indistinguishability is satisfied
since perfect witness indistinguishability of Π implies that for every input x = (â1, â2) ∈ {0, 1}2penc(λ), the

output distributions produced by C
(2)
Add(x) and C

(3)
Add(x) are identical. Hence, for every PPT adversary A,

there exists a circuit sampler S ∈ SX-ind and a PPT adversary B such that |Pr[out4.1 = 1]− Pr[out4 = 1]| ≤
Advpio-ind

piO,S,B (padd(λ)).

Game G5. The game G5 is identical to G4.1 except that Λrerand is produced via piO?` (1
prerand(λ), C

(3)
rerand), see

Figure 6. Indistinguishability between G4.1 and G5 follows from the security of piO?` with respect to SX-(?)-ind
` .
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Again, due to the perfect witness indistinguishability of Π we have that for every input x = â ∈ {0, 1}penc(λ),

the output distributions produced by C
(2)
rerand(x) and C

(3)
rerand(x) are identical.

Let S be the circuit sampler which on input of 1prerand(λ) samples ppG ← GGenG(1λ), calls A(ppG) to obtain
([b]G , st) and produces parameters as in G4.1 (except for the obfuscated circuit Λrerand) and outputs C0 :=

C
(2)
rerand, C1 := C

(3)
rerand and auxiliary information z := (crs, pars = (ppG, TD, y, pk , [Ω]G), ΛAdd, (sk , α1, . . . , αn,

[b]G), st). By Lemma 2, S ∈ SX-(?)-ind
` and, thus, for every PPT adversary A, there exists a circuit sampler

S ∈ SX-(?)-ind
` and a PPT adversary B such that |Pr[out5 = 1]− Pr[out4.1 = 1]| ≤ Adv

pio-ind(?)
piO?` ,S,B

(prerand(λ)) is

negligible.

Note that G5 is defined as Exp
swap
H,A,1(λ). Therefore, Adv

swap
H,A (λ) = |Pr[out0 = 1]− Pr[out5 = 1]| is negligible

in λ. ut

C
(1)
Add[pars, crs, sk , td ext](ĥ1, ĥ2)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
[xout]G := [x1]G · [x2]G
Cout ← FHE.Eval(pk , C(+)[Znp ], C1, C2)
vi ← Dec(sk , Ci)
vout := v1 + v2

if [Ωᵀ · vout]G = [xout]G then
πout ← Prove(crs,

(pars, [xout]G , Cout), (sk ,vout))
else

let j ∈ {1, 2} s.t. [Ω]ᵀG · vj 6= [xj ]G
wy ← Ext(td ext, (pars, [xj ]G , Cj), πj)
πout ← Prove(crs,

(pars, [xout]G , Cout), wy)

return ĥout := ([xout]G , Cout, πout)H

C
(1)
rerand[pars, crs, sk , td ext](ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
v := Dec(sk , C)
Cout ← FHE.Rerand(pk , C)
if [Ωᵀ · v]G = [x]G then
πout ← Prove(crs,

(pars, [x]G , Cout), (sk ,v))
else
wy ← Ext(td ext, (pars, [x]G , C), π)
πout ← Prove(crs,

(pars, [x]G , Cout), wy)

return ĥout := ([x]G , Cout, πout)H

C
(2)
Add[pars, crs, sk , wy](ĥ1, ĥ2)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
[xout]G := [x1]G · [x2]G
Cout ← FHE.Eval(pk , C(+)[Znp ], C1, C2)
vi ← Dec(sk , Ci)
vout := v1 + v2

if [Ωᵀ · vout]G = [xout]G then
πout ← Prove(crs,

(pars, [xout]G , Cout), (sk ,vout))
else
πout ← Prove(crs,

(pars, [xout]G , Cout), wy)

return ĥout := ([xout]G , Cout, πout)H

C
(2)
rerand[pars, crs, sk , wy](ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
v := Dec(sk , C)
Cout ← FHE.Rerand(pk , C)
if [Ωᵀ · v]G = [x]G then
πout ← Prove(crs,

(pars, [x]G , Cout), (sk ,v))
else
πout ← Prove(crs,

(pars, [x]G , Cout), wy)

return ĥout := ([x]G , Cout, πout)H

C
(3)
Add[pars, crs,��sk , wy](ĥ1, ĥ2)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
[xout]G := [x1]G · [x2]G
Cout ← FHE.Eval(pk , C(+)[Znp ], C1, C2)
πout ← Prove(crs,

(pars, [xout]G , Cout), wy)

return ĥout := ([xout]G , Cout, πout)H

C
(3)
rerand[pars, crs,��sk , wy](ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
Cout ← FHE.Rerand(pk , C)
πout ← Prove(crs,

(pars, [x]G , Cout), wy)

return ĥout := ([x]G , Cout, πout)H

Fig. 6: Addition and re-randomization circuits used during the proof.

Lemma 9. The group scheme H defined in Figures 4a and 4b satisfies k-switching.

Proof (of Lemma 9). We recall that an adversary A is a legitimate k-switching adversary if A on input of

ppG always guarantees that [b]
(0)
G , [b]

(1)
G ∈ BnppG and v(0),(i),v(1),(i) ∈ Znp and [x∗i ]G :=

[
(v(0),(i))ᵀ · b(0)

]
G =[

(v(1),(i))ᵀ · b(1)
]
G for all i ∈ [k]. Let Gb0 be the original game Expk-switchingH,A,b (λ). We proceed over a series of

hybrids defined in Figure 7.
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Gb1

ppG ← GGenG(1λ)

(([b]
(j)
G )j , (v

(j),(i))i,j)← A(1λ, ppG)

(ppH, τH)← GGenH(ppG, [b]
(b)
G )

[x∗i ]G :=
[
(b(0))ᵀ · v(0),(i)

]
G

v∗i := (v
(b),(i)
1 · α−1

1 , . . . , v
(b),(i)
n · α−1

n )ᵀ

C∗i := Enc(pk ,v∗i )
π∗i ← Prove(crs, (pars, [x∗i ]G , C

∗
i ), (sk ,v∗i ))

ĥ∗i := ([x∗i ]G , C
∗
i , π

∗
i )H

return A(ppH, (ĥ
∗
i )i∈[k])

Gb2

ppG ← GGenG(1λ)

(([b]
(j)
G )j , (v

(j),(i))i,j)← A(1λ, ppG)

(ppH, τH)← GGen′H(ppG, [b]
(b)
G )

[x∗i ]G :=
[
(b(0))ᵀ · v(0),(i)

]
G

v∗i := (v
(b),(i)
1 · α−1

1 , . . . , v
(b),(i)
n · α−1

n )ᵀ

C∗i := Enc(pk ,v∗i )
π∗i ← Prove(crs, (pars, [x∗i ]G , C

∗
i ), (sk ,v∗i ))

ĥ∗i := ([x∗i ]G , C
∗
i , π

∗
i )H

return A(ppH, (ĥ
∗
i )i∈[k])

Gb3

ppG ← GGenG(1λ)

(([b]
(j)
G )j , (v

(j),(i))i,j)← A(1λ, ppG)

(ppH, τH)← GGen′H(ppG, [b]
(b)
G )

[x∗i ]G :=
[
(b(0))ᵀ · v(0),(i)

]
G

v∗i := (v
(b),(i)
1 · α−1

1 , . . . , v
(b),(i)
n · α−1

n )ᵀ

C∗i := Enc(pk ,v∗i )
π∗i ← Prove(crs, (pars, [x∗i ]G , C

∗
i ), (wy))

ĥ∗i := ([x∗i ]G , C
∗
i , π

∗
i )H

return A(ppH, (ĥ
∗
i )i∈[k])

Gb4

ppG ← GGenG(1λ)

(([b]
(j)
G )j , (v

(j),(i))i,j)← A(1λ, ppG)

(ppH, τH)← GGen′H(ppG, [b]
(b)
G )

[x∗i ]G :=
[
(b(0))ᵀ · v(0),(i)

]
G

v∗i := (0, . . . , 0)ᵀ

C∗i := Enc(pk ,v∗i )
π∗i ← Prove(crs, (pars, [x∗i ]G , C

∗
i ), (wy))

ĥ∗i := ([x∗i ]G , C
∗
i , π

∗
i )H

return A(ppH, (ĥ
∗
i )i∈[k])

Fig. 7: Games used in proof of Lemma 9. We recall that α1 = 1 and α2, . . . , αn are uniformly distributed over
Z×p .

Gb0  Gb1. The difference between these games is only conceptual. Since [x∗i ]G =
[
(b(0))ᵀ · v(0),(i)

]
G =[

(b(1))ᵀ · v(1),(i)
]
G, [x∗i ]G is independent of b. Hence, Pr[outb1 = 1] = Pr[outb0 = 1].

Gb1  Gb2. The only difference between the games Gb1 and Gb2 is that ppH is produced via GGenH(ppG, [b]
(b)
G )

and GGen′H(ppG, [b]
(b)
G ), respectively. Let A be an adversary distinguishing game Gb1 from game Gb2. We

construct an adversary B against Lemma 8. On input of ppG, B calls A on input of ppG to obtain ([b]
(0)
G ,

[b]
(1)
G , (v(0),(i))i∈[k], (v

(1),(i))i∈[k], st). B outputs ([b]
(b)
G , st) and obtains (ppH, τH) which is either sampled

according to GGenH(ppG, [b]
(b)
G ) or according to GGen′H(ppG, [b]

(b)
G ). Since, τH contains sk and (α1, . . . , αn), B

is able to simulate the game Gb1 (respectively, Gb2) for A. More precisely, B samples ĥ∗i as in Gb1, calls A on

input of (ppH, (ĥ
∗
i )i∈[k]) and outputs A’s output. If ppH is sampled using GGenH, B perfectly simulates Gb1

for A and if ppH is sampled using GGen′H, B perfectly simulates Gb2 for A. Hence, |Pr[outb2 = 1]− Pr[outb1 =
1]| ≤ Adv

swap
H,B (λ) .

Gb2  Gb3. Games Gb2 and Gb3 only differ in the witnesses which are used to produce the consistency proofs
π∗i . Since crs is produced via HSetup(1λ), the proofs produced in Gb2 and Gb3 are identically distributed due
to the perfect witness indistinguishability of Π. Hence, Pr[outb2 = 1] = Pr[outb3 = 1].
Gb3  Gb4. Note that the secret key sk is not necessary to simulate Gb3 and Gb4. Additionally, v∗i is only used
to call Enc(pk ,v∗i ). This allows to apply the IND-CPA security of FHE.

Claim. For all legitimate k-switching PPT adversaries A, we have |Pr[outb4 = 1] − Pr[outb3 = 1]| ≤ k ·
Advind-cpa

FHE,B (λ).

Proof. We use a standard hybrid argument. The hybrid game Gb3.i is defined as Gb3 except that for j < i,
C∗j is produced via Enc(pk ,0) and for j ≥ i, C∗j is produced for Enc(pk ,v∗j ). Hence, Gb3.1 is identical to

Gb3 and Gb3.k+1 is identical to G4. We construct an adversary B against the IND-CPA security of FHE.

On input of pk , B guesses an index ν ∈ [k], samples ppG ← GGenG(1λ), calls A(ppG), obtains A’s output

(([b]
(j)
G )j∈{0,1}, (v

(j),(i))i∈[k],j∈{0,1}) and produces ppH as in G3. Note that B knows α1, . . . , αn and wy.

For µ ∈ {1, . . . , ν − 1}, B produces ĥ∗µ as in Gb3. For µ ∈ {ν + 1, . . . , k}, B produces ĥ∗µ as in Gb4. For

µ = ν, B outputs M0 := (v
(b),(µ)
1 · α−11 , . . . , v

(b),(µ)
n · α−1n )ᵀ and M1 := 0 to the IND-CPA game (together

with its internal state). On input of C∗, B uses C∗ as C∗µ, computes
[
x∗µ
]
G :=

[
(b(0))ᵀ · v(0),(µ)

]
G and

π∗µ ← Prove(crs, (pars,
[
x∗µ
]
G , C

∗
µ), (wy)). Finally, B calls A on input (ppH, (ĥ

∗
i )i∈[k]) and outputs A’s output.
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If C∗ is an encryption of M0, B perfectly simulates G3.ν , otherwise B perfectly simulates G3.ν+1. Hence,
|Pr[outb3 = 1]− Pr[outb4 = 1]| ≤

∑
i∈[k]|Pr[outb3.i = 1]− Pr[outb3.i+1 = 1]| ≤ k ·Advind-cpa

FHE,B (λ). ut

G0
4 ≈ G1

4. A legitimate k-switching adversary guarantees
[
(v(0),(i))ᵀ · b(0)

]
G =

[
(v(1),(i))ᵀ · b(1)

]
G and [b]

(0)
G ,

[b]
(1)
G ∈ BnppG . Therefore, these games only differ by the fact that in Gb4, [Ω]G = ([1]G , [b2,b]

α2

G , . . . , [bn,b]
αn
G )ᵀ for

α2, . . . , αn chosen uniformly at random from Znp . Except for [Ω]G, the view of A is independent of α2, . . . , αn.

Therefore, Pr[out04 = 1] = Pr[out14 = 1].

Note that since G has unique encodings, A is unable to extract auxiliary information from the encodings of
[x∗i ]G. This is crucial since such auxiliary information may for instance reveal how [x∗i ]G was computed. ut

Lemma 10. The group scheme H defined in Figures 4a and 4b satisfies statistical re-randomizability.

Proof (of Lemma 10). The circuit Crerand takes inputs from {0, 1}penc(λ) and expects a randomness from
{0, 1}m′(λ)×{0, 1}m′′(λ). We recall that piO?` is an `-expanding pIO scheme for `(λ) = m′(λ) +m′′(λ) + 2(λ+

1)+3. Since for every distribution X1 over {0, 1}penc(λ), H̃∞(U`(λ) | X1) = `(λ) > m′(λ)+m′′(λ)+2(λ+1)+2,
the statistical distance between{

Λrerand ← piO?` (Crerand) : (Λrerand, Λrerand(X1, X2))
}

and
{
Λrerand ← piO?` (Crerand) : (Λrerand, Crerand(X1;Um′(λ)+m′′(λ)))

}
is at most 2−(λ+1).

Let ĥ0 =: ([x0]G , C0, π0)H, ĥ1 =: ([x1]G , C1, π1)H ∈ H be the encodings chosen by the adversary A. Since

A is a legitimate re-randomization adversary, PrivExtH(τH, ĥ0) = PrivExtH(τH, ĥ1). Due to perfect correctness
of FHE and since α1, . . . , αn ∈ Z×p are invertible, Dec(sk , C0) = Dec(sk , C1). Due to perfect re-randomizability

of FHE, the ciphertexts produced by Crerand(ĥ0) and Crerand(ĥ1) are identically distributed. Furthermore, since

Crerand(ĥb) produces the consistency proof using the witness (sk ,Dec(sk , Cb)), the distributions produced by

Crerand(ĥ0) and Crerand(ĥ1) are identical. Therefore, Advrerand
H,A (λ) ≤ 2 · 2−(λ+1) = 2−λ.

Note that since G has unique encodings, A is unable to extract auxiliary information from the encodings

of UnwrapH(ppH, ĥ). This is crucial since such auxiliary information may be used to distinguish whether ĥ0 or

ĥ1 was used to derive ĥ. ut

Theorem 3 then follows by Lemmas 5, 6, 7, 9 and 10. ut

5 How to use Algebraic Wrappers – Implementing proofs from the AGM

In the following, we demonstrate how proof techniques from the algebraic group model can be implemented
with our algebraic wrapper. Mainly, we want to use the extracted representation provided by the algebraic
wrapper in a similar way as in AGM proofs. We adapt the proofs of Diffie-Hellman assumptions from [FKL18]
in Section 5.1 as well as the proof for the EUF-CMA security of Schnorr signatures from [FPS19] in Section 5.2.
Before we demonstrate how to use the algebraic wrapper, we sketch two modifications which will be necessary
when we replace the AGM with the algebraic wrapper.

The symmetrization technique. Information-theoretically, the basis14 the algebraic wrapper enables extraction
for, as well as the representation vectors inside group element encodings are known to the adversary. However,
several security reductions in [FKL18] employ case distinctions where different reduction algorithms embed
their challenge in different group elements. For instance, in the CDH game, the discrete logarithm challenge
Z can be embedded either in [x]H or [y]H, leading to two different security reductions. Due to the ideal
properties of the AGM, both reductions simulate identically distributed games.

However, transferring this strategy directly using algebraic wrappers fails, since the two reductions are
information-theoretically distinguishable depending on the choice of basis. An unbounded adversary who

14 With basis we mean the set of group elements in the base group to which we can extract.
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knows which game he is playing could therefore influence the representation of his output in such a way that
it always becomes impossible for the reduction to use the representation to compute the discrete logarithm.
We call such a situation a bad case. It is necessary that the different reduction subroutines have mutually
exclusive bad cases, so that extraction is always possible in at least one game type. Thus, we need find a way
that even these representations (and the basis used to generate ppH) are identically distributed.

We therefore introduce a proof technique which we call symmetrization. We extend the basis and group
element representations in such a way that the games played by different reduction subroutines are identically
distributed (as they would be in the AGM). This is done by choosing additional base elements to which the
reduction knows the discrete logarithm (or partial logarithms), so that these additional base elements do not
add any unknowns when solving for the discrete logarithm. With this technique, we achieve that the games
defined by the different reduction algorithms are identically distributed but entail different mutually-exclusive
bad cases. For the CDH reduction, this means that both challenge elements [x]H and [y]H are contained in
the basis, so that it is not known to the adversary which one is the reduction’s discrete logarithm challenge.
This allows to adopt the proofs from AGM.

The origin element trick. Applying the algebraic wrapper to AGM proofs where an oracle (e.g. a random
oracle or a signing oracle) is present, entails the need to change the representation vectors of all oracle
responses. One possibility to realize this is to apply Q-switching, where Q denotes a polynomial upper
bound on the number of oracle queries. However, as the switching property only provides computational
guarantees, this naive approach results in a non-tight reduction. Since we are interested in preserving the
tightness of AGM proofs when applying the algebraic wrapper, we use so-called origin elements from which
we construct the oracle responses using the group operation. This enables to use n-switching for a constant
number n of origin elements instead of Q-switching for Q oracle responses.

Limitations of our techniques. While our algebraic wrapper provides an extraction property that is useful
for many proofs in the AGM, it also has its limitations. Mainly, the base elements to which the PrivExt
algorithm can extract need to be fixed at the time of group parameter generation. Therefore, we cannot
mimic reductions to assumptions with a variable amount of challenge elements, where extraction needs to
be possible with respect to all these challenge elements. For instance, q-type assumptions which are used in
[FKL18] to prove CCA1-security of ElGamal and the knowledge-soundness of Groth’s ZK-SNARK.

Furthermore, there are security proofs in the AGM that rely on the representation used by the reduction
being information-theoretically hidden from the adversary. An example for this is the tight reduction for
the BLS scheme from [FKL18]. As the reduction can forge a signature for any message, it relies on the
representations provided by the adversary being different from what the reduction could have computed
on its own. In the AGM, it is highly unlikely that the adversary computes the forged signature in the
exact same way as the reduction simulates the signing oracle, because the reduction does not provide the
adversary with an algebraic representation. However, since we need to be able to extract privately from group
element encodings, the group elements output by the reduction information theoretically contain algebraic
representations. Therefore, information-theoretically, an adversary sees how the reduction simulates hash
responses and signatures, and thus could provide signatures with a representation that is useless to the
reduction.

This problem is circumvented in the Schnorr proof in Section 5.2 due to the representation provided by
the adversary already being fixed by the time it receives a challenge through the Random Oracle. We leave it
as an open problem to transfer the BLS proof to the algebraic wrapper.

Another limitation is that due to the reduction being private, we cannot use the extraction in reductions
between problems in the same group. That is, our wrapper does not allow for “multi-step” reductions as in
the AGM.

5.1 Diffie-Hellman Assumptions

We show how to adapt the security reductions for Diffie-Hellman problems from [FKL18] to our algebraic
wrapper (see Figure 8 for the definitions). The main proof idea, namely to use the representation of the
adversary’s output to compute the discrete logarithm, stays the same; however, due to the nature of our
wrapper, we need to apply the symmetrization technique to achieve the same distributions as in the AGM.
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cdh

x, y ← Zp
s← A([1]G , [x]G , [y]G)
return s = [xy]G

sqdh

x← Zp
s← A([1]G , [x]G)
return s =

[
x2
]
G

lcdh

x, y ← Zp
u, v, w, s← A([1]G , [x]G , [y]G)
return s =

[
u · x2 + v · xy + w · y2

]
G

Fig. 8: The different types of Diffie-Hellman games shown in [FKL18]

Theorem 4. Let G be a group where the discrete logarithm is hard. Then, the computational Diffie-Hellman
assumption holds in an algebraic wrapper H for G of dimension ≥ 3.

Proof. We show this as a series of games. The first game G0 corresponds to the “honest” CDH game in H
where all group elements are represented in the first component. We then switch to a basis and group element
representations that allow the reduction to embed its challenge and extract a useful representation. The
reduction uses the extracted representation like in [FKL18] to compute the discrete logarithm. The games are
shown in Figure 9.

G0

ppG ← GGenG(1λ)
β2, β3 ← Zp
(ppH, τH)← GGenH(ppG, ([1]G , [β2]G , [β3]G)ᵀ)
x, y ← Zp
1̂ = RerandH(ppH, SamH(ppH, 1))
x̂ = RerandH(ppH, SamH(ppH, x))
ŷ = RerandH(ppH,SamH(ppH, y))
s← A(ppH, 1̂, x̂, ŷ)
return EqH(x̂y, s)

G1

ppG ← GGenG(1λ)
X ← G
z ← Zp
(ppH, τH)← GGenH(ppG, ([1]G , [x]G , [y]G)ᵀ)

1̂ = RerandH(ppH, SamH(ppH, 1))
x̂ = RerandH(ppH,PrivSamH(τH, (0, 1, 0)ᵀ))
ŷ = RerandH(ppH,PrivSamH(τH, (0, 0, 1)ᵀ))

s← A(ppH, 1̂, x̂, ŷ)
return EqH([xy]G , s)

Fig. 9: The CDH games used in the security proof. G0 corresponds to the honest CDH-game. Games of type
G1 allow the reduction to embed its discrete logarithm challenge and extract a useful representation.

Game hop from G0  G1. The two games in Figure 9 are computationally indistinguishable due to re-
randomizability and 2-switching. For the re-randomizability, we define four hybrid games H0 to H3 where
H0 is G0. In H1, we use PrivSamH for generation of 1̂. In H2, we additionally use PrivSamH for x̂ and in H3

we additionally use PrivSamH for generation of ŷ. A reduction between distinguishing the hybrid games and
re-randomization embeds its challenge encoding in the ith group element contained in the challenge and thus
simulates either Hi or Hi+1 perfectly. As the representation vectors of the challenge group elements are the
same, this reduction constitutes a legitimate adversary in the rerand game, and therefore Advrerand

R,H (λ) ≤ 1
2λ

.
This results in

|Pr [outG0
= 1]− Pr [outH3

= 1]| ≤ 3

2λ

We apply 2-switching to hop from H3 to G1. The reduction to 2-switching works as follows: Assume
there is an adversary that can distinguish games G0 and G1. Then, a reduction chooses the two bases for the
games, and the corresponding representation vectors of x̂ and ŷ as in the two games. On input of the group
parameters and the vectors, it uses these elements as well as SamH(ppH, 1) as a challenge to the distinguisher
between the games and outputs whatever the distinguisher outputs.

Games G1.0 and G1.1. Here, the reduction applies the symmetrization technique to achieve identical
distribution of the two games. To the CDH-adversary, the embedding of Z is information-theoretically hidden.

A reduction algorithm for the discrete logarithm simulates the games of type G1 by replacing X with
its discrete logarithm challenge. If the CDH adversary A wins the game, the reduction extracts (η, ι, θ) =
PrivExtH(τH, s). For a valid solution s, the following holds in G1.0:

x · y =η + θ · x+ ι · y ⇔

x =
η + ι · y
y − θ
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The bad case here is if y = θ, in which case the reduction can not solve for x. However, if the challenge is
embedded in ŷ (as in G1.1), we can solve as follows:

y =
n+ θ · x
x− ι

If both ι = x and θ = y, then η = −xy, because

η + θ · x+ ι · y = xy ⇔
η + y · x+ x · y = xy ⇔

η = −xy

The reduction can check in either game type whether both bad cases appeared by checking if [xy]G =
UnwrapH(s) = Xθ = yι. In this case, the reduction can solve for x or y (depending on where the challenge
was embedded) as x = −ηy and y = − ηx .

As the games G1.0 and G1.1 are identically distributed, the probability that the discrete logarithm was
embedded in such a way that it is possible to extract is at least 1

2 . Thus

AdvDLOG
R,G (λ) ≥

AdvCDH
A,H (λ)− 2 ·Adv2-switching

A′,H (λ)− 3
2λ

2

which concludes the proof. ut

We further show that [FKL18]’s proof for the square Diffie-Hellman and linear combination Diffie-Hellman
assumptions can be transferred to the algebraic wrapper.

Theorem 5. Let G be a group where the discrete logarithm is hard. Then, the square Diffie-Hellman
assumption holds in an algebraic wrapper H of dimension ≥ 2 for G.

G0

ppG ← GGenG(1λ)
x← Zp
β ← Zp
ppH ← GGenH(ppG, (1, β)ᵀ)
1̂ = RerandH(ppH,SamH(ppH, 1))
x̂ = RerandH(ppH, SamH(ppH, x))
s← A(ppH, 1̂, x̂)
return EqH(s,PrivSamH(τH, (x

2, 0)ᵀ))

G1

ppG ← GGenG(1λ)
X ← G
ppH ← GGenH(ppG, (1, X)ᵀ)

1̂ = RerandH(ppH, SamH(ppH, (1, 0)ᵀ))
x̂ = RerandH(ppH,PrivSamH(τH, (0, 1)ᵀ))

s← A(ppH, 1̂, x̂)
return EqH(s,PrivSamH(τH, (x

2, 0)ᵀ))

Fig. 10: Square Diffie-Hellman games

Proof. Under 1-switching and re-randomizability, the games in Figure 10 are computationally indistinguish-
able. The game hop works the same as for CDH. A reduction can embed its discrete logarithm challenge as
X. It can check the solution by solving for the discrete logarithm of X (if it is impossible to solve for x, it
returns 0). The discrete logarithm solving works as follows.

For a successful adversary in G1, the reduction can solve for x because x2 = η+θ ·x for (η, θ) = PrivExtH(s).
For a correct square Diffie-Hellman solution this quadratic equation has at least one solution. Let x1, x2 the
(possibly equal) solutions to the equation. The reduction can compute [x1]G and [x2]G to check which of the
two possible solutions is the correct one. Thus,

AdvDLOG
R,G (λ) ≥ AdvSQ-DH

A,H (λ)−Adv1-switching
A′,H (λ)− 2

2λ

ut

Theorem 6. Let G be a group where DLOG is hard and H be an algebraic wrapper of dimension ≥ 3 for G.
Then, the linear-combination Diffie-Hellman problem is hard in H.
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Proof. Similar to the above theorems, we embed the DLOG-challenge as one of the base elements. The games
are similar to Figure 9. When the adversary outputs z, u, v, w, we extract η, θ, ι s.t. η + x · θ + y · ι = z. In
the case that u 6= 0, we can solve the resulting quadratic equation for x (with probability 1

2 this is where the
DLOG was embedded). In the case that w 6= 0, we solve for y in a similar fashion. As the games are identically
distributed, (even an unbounded adversary cannot decide where the DLOG challenge is embedded), we can
solve for the DLOG with probability 1

2 in these cases. In the case that w = 0 and u = 0, we can either solve
for

x =
−η − ι · y
vy − θ

or for

y =
−η − θ · x
vx− ι

.

This is analogous to the reduction for CDH. Thus the probability that a reduction R solves the DLOG
problem is

AdvDLOG
R,G (λ) ≥

AdvLC-DH
A,H (λ)− 2 ·Adv2-switching

A′,H (λ)− 3
2λ

2

ut

5.2 Schnorr Signatures

We apply the algebraic wrapper to mimic the proof of tight EUF-CMA security of Schnorr Signatures from
[FPS19].

Theorem 7. Let GGenG be a group generator for a cyclic group G such that DLOG is hard relative to
GGenG and let H be an algebraic wrapper of dimension ≥ 2 for G. Then, the Schnorr signature scheme in H
(Figure 11) is tightly EUF-CMA secure in the random oracle model.

More precisely, for all PPT adversaries A, there exists a PPT adversary B and a legitimate switching
adversary A′′ both running in time T (B) ≈ T (A) + (qs + qh) · poly(λ) and T (A′′) ≈ T (A) + (qs + qh) · poly(λ)
such that

Adveuf-cma
Σschnorr,A (λ) ≤ AdvDLOG

B,G (λ) + Adv1-switching
A′′,H (λ) +

O(qs(qs + qh))

2λ
,

where qh is a polynomial upper bound on the number of random oracle queries, qs is a polynomial upper bound
on the number of signing queries and poly is a polynomial independent of qs and qh.

KGen(ppH)

x← Zp
1̂ := RerandH(ppH, SamH(ppH, 1))

X̂ := RerandH(ppH, SamH(ppH, x))

pk := (ppH, 1̂, X̂)
sk := (pk , x)
return (pk , sk)

Sign(sk ,m)

r ← Zp
R̂← RerandH(ppH, SamH(ppH, r))

c := H(R̂,m)
s := r + c · x mod p
return σ := (R̂, s)

Ver(pk = (ppH, 1̂, X̂),m, σ = (R̂, s))

c := H(R̂,m)

return EqH(ppH,SamH(ppH, s), R̂ · X̂c)

Fig. 11: The Schnorr signature scheme Σschnorr. Note that to compensate for the non-uniqueness of group
element encodings, the (random oracle) hash value of a group element encoding is computed for the unique
identifier produced by GetIDH(ppH, ·).

Proof. We use the origin element trick to avoid using qs-switching (see Definition 15) which would compromise
tightness of the reduction. Figure 12 shows the EUF-CMA game with Schnorr signatures instantiated with
the algebraic wrapper. We note that for groups with non-unique encodings, the hash function hashes the
unique identifier returned by GetIDH, hence, encodings corresponding to the same group element are mapped
to the same hash value. The reduction uses a table T to keep track of previously made hash queries and their
responses, as well as a set Q to keep track of the messages the adversary has requested signatures for.
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Expeuf-cma
Σschnorr,A(λ)

ppG ← GGenG(1λ)
(ppH, τH)← GGenH(ppG, ([1]G , [β2]G)ᵀ)
x← Zp
ξ1 ← RerandH(ppH, SamH(ppH, 1))
ξ2 ← RerandH(ppH, SamH(ppH, x))
pk := (ppH, ξ1, ξ2)
Q := ∅, T := []

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
c∗ = H(R̂∗,m∗)

return EqH(ppH, SamH(ppH, s
∗), R̂∗ · ξc

∗
2 )

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp
return T [(GetIDH(ppH, R̂),m)]

Sign(m)

r ← Zp
R̂← RerandH(ppH,SamH(ppH, r))

c := H(R̂,m)
s := r + cx
Q := Q ∪ {m}
return (R̂, s)

Fig. 12: The EUF-CMA game for Schnorr signatures. Note that β2 can be chosen arbitrarily.

G1

ppG ← GGenG(1λ)
(ppH, τH)← GGenH(ppG, ([1]G , [β2]G)ᵀ)
x← Zp
ξ1 ← RerandH(ppH, SamH(ppH, 1))
ξ2 ← RerandH(ppH, SamH(ppH, x))
pk := (ppH, ξ1, ξ2)
Q := ∅, T := []

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
c∗ = H(R̂∗,m∗)

return EqH(ppH, SamH(ppH, s), R̂
∗ · ξc

∗
2 )

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp
return T [(GetIDH(ppH, R̂),m)]

Sign(m)

r ← Zp
R̂1 ← SamH(ppH, r)

c := H(R̂1,m)
s := r + cx

R̂2 ← RerandH(ppH, SamH(ppH, s− cx))
Q := Q ∪ {m}
return (R̂2, s)

Fig. 13: The randomness for signatures is drawn using an x-component. G1 is identically distributed to
Expeuf-cma

Σschnorr,A(λ).

Game hop from Expeuf-cma
Σschnorr,A(λ) G1. Since r = s− cx mod p and hence GetIDH(ppH, R̂1) = GetIDH(ppH,

R̂2), these two games are identically distributed.

Game hop G1  G2. In G2 (see Figure 14), we construct R̂2 from origin elements through the group
operation instead of sampling. This game hop is justified by the re-randomizability of the algebraic wrapper.
A reduction to this property works as a series of qs+ 1 hybrids where H0 is G1, where qs denotes a polynomial
upper bound on the number of signing queries. In Hi, the first i signature queries are answered as in G2

and the i + 1-th to qs-th signature queries are answered as in G1. In the last hybrid, the public key is
also changed to private sampling. If there is an (unbounded) adversary that distinguishes Hi and Hi+1,
the reduction A′ uses this adversary to attack the re-randomizability as follows. On input of base group
parameters ppG, A′ picks a basis ([1]G , [β2]G) and gives it to the rerand challenger. It receives public
parameters and the trapdoor. Then, it simulates Hi to the adversary for the first i signature queries, i.e. it
samples R̂2,j ← RerandH(ppH, ξ

sj
1 · ξ

−cj
2 ) for j < i. For the i+ 1-th signature query, A′ sends the two elements

G2

ppG ← GGenG(1λ)
(ppH, τH)← GGenH(ppG, ([1]G , [β2]G)ᵀ)
x← Zp
ξ1 ← RerandH(ppH, SamH(ppH, 1))
ξ2 ← RerandH(ppH,PrivSamH(τH, x))
pk := (ppH, ξ1, ξ2)
Q := ∅, T := []

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
c∗ = H(R̂∗,m∗)

return EqH(ppH, [s
∗]H , R̂

∗ · ξc
∗

2 )

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp
return T [(GetIDH(ppH, R̂),m)]

Sign(m)

r ← Zp
R̂1 ← SamH(ppH, r)

c := H(R̂1,m)
s := r + cx
R̂2 ← RerandH(ppH, ξ

s
1 · ξ−c2 )

Q := Q ∪ {m}
return (R̂2, s)

Fig. 14: We construct the randomness from two origin elements. This is statistically close to G1 due to the re-
randomizability.
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ĥ0 = SamH(ppH, si+1 − ci+1 · x) and ĥ1 = ξ
si+1

1 · ξ−ci+1

2 to the challenger and receives a challenge Ĉ. It uses

this challenge Ĉ as R̂2,i+1 to answer the i + 1-th hash query and responds to the remaining queries as in

Hi+1, i.e. it samples R̂j ← RerandH(ppH,SamH(ppH, sj − cj · x)) for j > i+ 1. Depending on the challenge

encoding Ĉ, A′ either simulates Hi or Hi+1 perfectly and outputs the output of the corresponding game.
In hybrid Hqs , all signature queries are answered as in game G2. The last step to game Hqs+1 = G2

changes how ξ2 (which is part of the public key) is sampled. An adversary distinguishing Hqs and Hqs+1 can
be used to build an adversary A′ in rerand similarly as above. More precisely, A′ outputs the encodings

ĥ0 ← SamH(ppH, x) and ĥ1 ← PrivSamH(τH, x) (note that τH is known during the rerand game) and uses the
challenge encoding from the rerand challenger as ξ2. We note that this last game hop paves the way to apply
1-switching.

Due to correctness of sampling and correctness of extraction, the representation vectors of the elements
used in the rerand game are identical and hence A′ is a legitimate adversary in the rerand game and its
advantage is upper bounded by 1

2λ
. Therefore,

|Pr [out1 = 1]− Pr [out2 = 1]| ≤ qs + 1

2λ
.

Game hop G2  G3. In game G3 (see Figure 15) we switch the basis and the representation of the
origin element ξ2. This game hop is justified by 1-switching. Let A be an adversary distinguishing G2

and G3. We construct an adversary A′′ on 1-switching as follows. Initially, A′′ on input of ppG, outputs

[b]
(G2)
G = [(1, β2)ᵀ]G and [b]

(G3)
G = [(1, x)ᵀ]G and the representation vectors v(G2) := (x, 0)ᵀ and v(G3) :=

(0, 1)ᵀ. In return, A′′ receives public parameters ppH and an encoding Ĉ and samples ξ2 ← RerandH(ppH, Ĉ).
The trapdoor τH is not necessary to simulate G3 and G4 (except for sampling ξ2). Hence, A′′ perfectly
simulates G3 or G4 for A depending on the challenge provided by the 1-switching challenger. Thus,
|Pr[out3 = 1] − Pr[out2 = 1]| ≤ Adv1-switching

H,A′′ (λ). Note that A′′ is a legitimate switching adversary since

[(1, β2)]G · (x, 0)ᵀ = [x]G = [(1, x)]G · (0, 1)ᵀ and hence Adv1-switching
H,A′′ (λ) is negligible.

G3

ppG ← GGenG(1λ)
x← Zp
(ppH, τH)← GGenH(ppG, ([1]G , [x]G)ᵀ)
Q := ∅, T := []
ξ1 ← RerandH(ppH, SamH(ppH, 1))
ξ2 = RerandH(ppH,PrivSamH(τH, (0, 1)ᵀ))
pk := (ppH, ξ1, ξ2)

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
c∗ = H(R̂∗,m∗)

return EqH(ppH, [s
∗]H , R̂

∗ · ξc
∗

2 )

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp
return T [(GetIDH(ppH, R̂),m)]

Sign(m)

r ← Zp
R̂1 ← SamH(ppH, r)

c := H(R̂1,m)
s := r + cx
R̂2 ← RerandH(ppH, ξ

s
1 · ξ−c2 )

Q := Q ∪ {m}
return (R̂2, s)

Fig. 15: We switch the basis and the representation of ξ2.

Game hop G3  G4. In G4 (see Figure 16), we introduce a list U to keep track of the representations of
group elements used in Random Oracle queries. The games G3 and G4 differ in the fact that G4 extracts
the representation vectors contained in the encoding of a group element when this group element message
tuple is queried for the first time and stores this representation in a list. Furthermore, G4 introduces an
abort condition which is triggered if the representation of R̂∗ originally used to query the random oracle on
(R̂∗,m∗) already contained the response in the second component ζ∗. This corresponds to the game hop from

G0 to G1 in [FPS19]. The game only aborts if the hash T [(GetIDH(ppH, R̂
∗),m∗)] is the same as the second

component ζ∗ of the representation extracted from R̂∗. Since the hash T [(GetIDH(ppH, R̂
∗),m∗)] is chosen

uniformly at random after the representation (γ∗, ζ∗) is fixed, the probability that an unbounded adversary

can find such an (R̂∗,m∗) is upper bounded by qh
p ≤

qh
2λ

, where qh denotes a polynomial upper bound on the

number of random oracle queries. Hence, |Pr[out4 = 1]− Pr[out3 = 1]| ≤ qh
2λ

.

Game hop G4  G5. In game G5 (see Figure 17), we change how signature queries are answered such that
it is not necessary anymore to know the discrete logarithm of the public key. This game hop corresponds
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G4

ppG ← GGenG(1λ)
x← Zp
(ppH, τH)← GGenH(ppG, ([1]G , [x]G)ᵀ)
Q := ∅, T := [], U := []
ξ1 = RerandH(ppH, SamH(ppH, 1))
ξ2 = RerandH(ppH,PrivSamH(τH, (0, 1)ᵀ))
pk := (ppH, ξ1, ξ2)

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
if U [(GetIDH(ppH, R̂

∗),m∗)] 6= ⊥ then

(γ∗, ζ∗) := U [(GetIDH(ppH, R̂
∗),m∗)]

if ζ∗ = −T [(GetIDH(ppH, R̂
∗),m∗)] then return 0

c∗ = H(R̂∗,m∗)

return EqH(ppH, [s
∗]H , R̂

∗ · ξc
∗

2 )

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp
U [(GetIDH(ppH, R̂),m)] = PrivExtH(τH, R̂)

return T [(GetIDH(ppH, R̂),m)]

Sign(m)

r ← Zp
R̂1 ← SamH(ppH, r)

c := H(R̂1,m)
s := r + cx
R̂2 ← RerandH(ppH, ξ

s
1 · ξ−c2 )

Q := Q ∪ {m}
return (R̂2, s)

Fig. 16: G4 corresponds to G1 in [FPS19].

to the hop from G1 to G2 in [FPS19]. On one hand, since GetIDH(ppH, R̂1) = GetIDH(ppH, R̂2), replacing

R̂1 with R̂2 does not change the distribution. On the other hand, as we are only able to answer a signing
query if we can program the random oracle at (R̂2,m) (for randomly chosen R̂2), the signing oracle has to

abort in case the hash was already queried before. Since R̂2 is a independently sampled uniformly random
group element, this happens only with probability 1

p ≤
1
2λ

. Hence, by a union bound, this abort occurs at

most with probability qs(qs+qh)
2λ

cases, where qs denotes a polynomial upper bound on the number of signing
queries and qh denotes a polynomial upper bound on the number of random oracle queries. Conditioned on
the event that no abort occurs, G4 and G5 are distributed identically. Hence, by the Difference Lemma due

to Shoup [Sho04], we have |Pr[out5 = 1] − Pr[out4 = 1]| ≤ qs(qs+qh)
2λ

. As in [FPS19], on extraction of the

G5

ppG ← GGenG(1λ)
Z ← G
(ppH, τH)← GGenH(ppG, ([1]G , Z)ᵀ)
Q := ∅, T := [], U := []
ξ1 ← RerandH(ppH, SamH(ppH, 1))
ξ2 = RerandH(ppH,PrivSamH(τH, (0, 1)ᵀ))
pk := (ppH, ξ1, ξ2)

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
if U [(GetIDH(ppH, R̂

∗),m∗)] 6= ⊥ then

(γ∗, ζ∗) := U [(GetIDH(ppH, R̂
∗),m∗)]

if ζ∗ = −T [(GetIDH(ppH, R̂
∗),m∗)] then return 0

c∗ = H(R̂∗,m∗)

return EqH(ppH, [s
∗]H , R̂

∗ · ξc
∗

2 )

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp
U [(GetIDH(ppH, R̂),m)] = PrivExtH(τH, R̂)

return T [(GetIDH(ppH, R̂),m)]

Sign(m)

c, s← Zp
R̂2 = RerandH(ppH, ξ

s
1 · ξ−c2 )

if T [(GetIDH(ppH, R̂2),m)] = ⊥ then

T [(GetIDH(ppH, R̂2),m)] := c
else

abort
Q := Q ∪ {m}
return (R̂2, s)

Fig. 17: G5 corresponds to G2 in [FPS19].

initial representation (γ∗, ζ∗) of R̂∗ from a valid signature (R̂∗, s∗) output by the adversary, the reduction

can use that R̂∗ = [γ∗]H · [ζ∗ · z]H = [s∗ − c∗ · z]H. Therefore,

z =
s∗ − γ∗

ζ∗ − c∗
.

Due to the added check in G4, an adversary can only win G4 or G5 when ζ∗ − c∗ 6= 0 and therefore the
overall advantage of an adversary B on DLOG in G is

AdvDLOG
B,G (λ)

≥Pr[out5 = 1]

≥Pr[out4 = 1]− qs(qs + qh)

2λ

≥Pr[out3 = 1]− qh
2λ
− qs(qs + qh)

2λ

31



≥Pr[out2 = 1]−Adv
1-switching
A′′,H (λ)− qh

2λ
− qs(qs + qh)

2λ

≥Pr[out1 = 1]− qs + 1

2λ
−Adv1-switching

A′′,H (λ)− qh
2λ
− qs(qs + qh)

2λ

≥Pr[Expeuf-cma
Σschnorr,A(λ) = 1]− qs + 1 + qh + qs(qs + qh)

2λ
−Adv1-switching

A′′,H (λ)

≥Pr[Expeuf-cma
Σschnorr,A(λ) = 1]− O(qs(qs + qh))

2λ
−Adv1-switching

A′′,H (λ)

which concludes the proof. ut

5.3 Signed ElGamal

In the hashed ElGamal key-encapsulation mechanism (KEM), a public key is a group element Y , the
corresponding secret key is y = dlogg(Y ). For encryption, one picks a random exponent x← Zp to compute a
key H(Y x) accompanied by an encapsulation X := gx. Given the encapsulation and the secret key y, the
receiver can recover that key K = H(Xy). [FPS19] showed that Schnorr-signed ElGamal, a variant of hashed
ElGamal, is tightly IND-CCA2 secure under the DLOG assumption in the AGM and the random oracle
model. Schnorr-signed ElGamal (see Figure 18) works similarly as hashed ElGamal but every encapsulation
is accompanied by a Schnorr signature for message X under public key X. Decryption works as before with
the difference that decryption aborts if the provided Schnorr signature is invalid.

In this section, we demonstrate that our algebraic wrapper can be applied to mimic the proof of tight
IND-CCA2 security of Schnorr-signed ElGamal PKEsElG from [FPS19]. In contrast to our tight reduction for
Schnorr signatures from Section 5.2, the tightness for Schnorr-signed ElGamal does not require the “origin
element trick” since it is not necessary to apply switching to oracle responses.

KGen(ppH)

y ← Zp
Ĝ := RerandH(ppH, SamH(ppH, 1))

Ŷ := RerandH(ppH,SamH(ppH, y))

pk := (ppH, Ĝ, Ŷ )
sk := (pk , y)
return (pk , sk)

Enc(pk = (ppH, Ĝ, Ŷ ))

x, r ← Zp
R̂← RerandH(ppH,SamH(ppH, r))

X̂ ← RerandH(ppH, SamH(ppH, x))

k := H ′(Ŷ x)

s := r +H(R̂, X̂) · x mod p

return (k, (X̂, R̂, s))

Dec(sk , (X̂, R̂, s))

if [s]H 6=H X̂
H(R̂,X̂) · R̂ then

return ⊥
return k := H ′(X̂y)

Fig. 18: The Schnorr-signed ElGamal encryption scheme PKEsElG. Note that to compensate for the non-
uniqueness of group element encodings, the (random oracle) hash value of a group element encoding is
computed for the unique identifier produced by GetIDH(ppH, ·). The hash function H maps tuples of group
elements from H to elements in K and the hash function H ′ maps group elements from H to Zp elements.

Theorem 8. Let GGenG be a group generator for a cyclic group G such that DLOG is hard relative to GGenG
and let H be an algebraic wrapper of dimension ≥ 2 for G. Then, PKEsElG in H is tightly IND-CCA2 secure
in the random oracle model.

More precisely, for all PPT adversaries A, there exists a PPT adversary B and a legitimate switching
adversary A′ both running in time T (B) ≈ T (A) + (qd + qh) · poly(λ) and T (A′) ≈ T (A) + (qd + qh) · poly(λ)
such that

Advind-cca2
PKEsElG,A (λ) ≤ AdvDLOG

B,G (λ) + Adv2-switching
A′,H (λ) +

O(qd + qh)

2λ
,

where qh is a polynomial upper bound on the number of random oracle queries, qd is a polynomial upper
bound on the number of decryption queries and poly is a polynomial independent of qd and qh.

Proof. The proof strategy follows (up to some preparations) the outline of [FPS19]. The hybrid G0 is identical
to Expind-cca2

PKEsElG,A(λ). The initial game transitions until hybrid G3 are preparation steps due to the algebraic
wrapper. The following hybrids G4, G5, G6 correspond exactly to the hybrids G1, G2, G3 from [FPS19],
respectively. The preparation steps set up the randomness for the challenge ciphertext as x∗ := z · y. Further,
the randomness for the signature in the challenge ciphertext is chosen using an x∗-component similar to the
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proof of Schnorr signatures Section 5.2. Subsequently, re-randomizability and switching are applied such that
the public key Ŷ uses the representation vector (0, 1)ᵀ and the randomness for the challenge ciphertext X̂∗

uses the representation vector (0, z)ᵀ. The remaining proof proceeds as in [FPS19].

For simplicity, we introduce the notation Â =H B̂ for EqH(ppH, Â, B̂). We proceed over a series of
games starting from the IND-CCA2 game in the random oracle model, see Figure 19. The hash functions
H̃ : H×H→ Zp and H̃ ′ : H→ K behave exactly as there counterparts H and H ′, respectively, and act solely
as helper functions. The adversary A only has access to the oracles H and H ′ (and Dec). Throughout the

proof, the behavior of H̃ and H̃ ′ will not be altered.

G0

ppG ← GGenG(1λ)
(ppH, τH)← GGenH(ppG, ([1]G , [β2]G)ᵀ)
y ← Zp
Ĝ← RerandH(ppH, SamH(ppH, 1))

Ŷ ← RerandH(ppH, SamH(ppH, y))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = []
x∗, r∗ ← Zp
X̂∗ ← RerandH(ppH, SamH(ppH, x

∗))

R̂∗ ← RerandH(ppH, SamH(ppH, r
∗))

c∗ := H̃(R̂∗, X̂∗)
s∗ := r∗ + c∗ · x∗ mod p
k0 := H̃ ′(Ŷ x

∗
), k1 ← K

b′ ← AH,H
′,Dec(pk , kb, (R̂∗, X̂∗, s

∗))
return b = b′

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp
return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

H ′(K̂)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

Dec(R̂, X̂, s)

if R̂ =H R̂∗ ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H 6=H R̂ · X̂c then
return ⊥

k := H̃ ′(X̂y)
return k

Fig. 19: The description of G0. G0 is identical to Expind-cca2
PKEsElG,A(λ).

Game hop G0  G1. Similarly to the security proof of Schnorr signatures, we first change how the signature
in the challenge ciphertext is generated. Particularly, the randomness used for the signature is chosen using a
y-component, see Figure 20. Because x∗ is in both games uniformly distributed and r∗ = s∗ − c∗ · x∗ mod p
and thus GetIDH(ppH, R̂

∗
1) = GetIDH(ppH, R̂

∗
2), G0 and G1 are distributed identically.

G1

ppG ← GGenG(1λ)
(ppH, τH)← GGenH(ppG, ([1]G , [β2]G)ᵀ)
y ← Zp
Ĝ← RerandH(ppH, SamH(ppH, 1))

Ŷ ← RerandH(ppH, SamH(ppH, y))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = []
z, r∗ ← Zp, x∗ := z · y
X̂∗ ← RerandH(ppH, SamH(ppH, z · y))

R̂∗1 ← RerandH(ppH, SamH(ppH, r
∗))

c∗ := H̃(R̂∗, X̂∗)
s∗ := r∗ + c∗ · z · y mod p
R̂∗2 ← RerandH(ppH, SamH(ppH, s

∗ − c∗ · x∗))
k0 := H̃ ′(Ŷ z·y), k1 ← K
b′ ← AH,H

′,Dec(pk , kb, (R̂∗2, X̂
∗, s∗))

return b = b′

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp
return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

H ′(K̂)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

Dec(R̂, X̂, s)

if R̂ =H R̂∗2 ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H 6=H R̂ · X̂c then
return ⊥

k := H̃ ′(X̂y)
return k

Fig. 20: The description of the hybrid G1.

Game hop G1  G2. In G2 (see Figure 21), the encodings Ŷ , X̂∗ and R̂∗2 are produced using private
sampling or the group operation instead of public sampling. Since these encodings are re-randomized,
this game hop is justified by the re-randomizability of the algebraic wrapper H. More precisely, we suc-
cessively replace RerandH(ppH,SamH(ppH, y)) by RerandH(ppH,PrivSamH(τH, y)), RerandH(ppH,SamH(ppH,
x∗)) by RerandH(ppH,PrivSamH(τH, x

∗)) and, finally, RerandH(ppH,SamH(ppH, s
∗ − c∗ · x∗)) by RerandH(ppH,
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Ĝs
∗ · (X̂∗)−c∗). Due to correctness of sampling, we have PrivExtH(τH,SamH(ppH, y)) = y · e1 = PrivExtH(τH,

PrivSamH(τH, y)) and PrivExtH(τH,SamH(ppH, x
∗)) = x∗ · e1 = PrivExtH(τH,PrivSamH(τH, x

∗)). Further, due
to correctness of sampling and correctness of extraction, we have PrivExtH(τH,SamH(ppH, s

∗ − c∗ · x∗)) =

(s∗ − c∗ · x∗) · e1 = PrivExtH(τH, Ĝ
s∗ · (X̂∗)−c∗). Hence, due to statistical re-randomizability, |Pr[out2 =

1]− Pr[out1 = 1]| ≤ 3
2λ

.

G2

ppG ← GGenG(1λ)
(ppH, τH)← GGenH(ppG, ([1]G , [β2]G)ᵀ)
y ← Zp
Ĝ← RerandH(ppH, SamH(ppH, 1))

Ŷ ← RerandH(ppH,PrivSamH(τH, y))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = []
z, r∗ ← Zp, x∗ := z · y
X̂∗ ← RerandH(ppH,PrivSamH(τH, z · y))

R̂∗1 ← RerandH(ppH, SamH(ppH, r
∗))

c∗ := H̃(R̂∗, X̂∗)
s∗ := r∗ + c∗ · z · y mod p
R̂∗2 ← RerandH(ppH, Ĝ

s∗ · (X̂∗)−c
∗
)

k0 := H̃ ′(Ŷ z·y), k1 ← K
b′ ← AH,H

′,Dec(pk , kb, (R̂∗2, X̂
∗, s∗))

return b = b′

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp
return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

H ′(K̂)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

Dec(R̂, X̂, s)

if R̂ =H R̂∗2 ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H 6=H R̂ · X̂c then
return ⊥

k := H̃ ′(X̂y)
return k

Fig. 21: The description of the hybrid G2.

Game hop G2  G3. Towards removing the necessity to know y for the simulation, we change the basis
to be [b]G := ([1]G , [y]G)ᵀ and adapt the representation vectors used for private sampling of Ŷ and X̂∗

accordingly, see Figure 22. This game hop is justified by 2-switching. We construct an adversary A′ on

2-switching as follows. Initially, on input of ppG, A′ outputs two basis vectors [b]
(G2)
G := ([1]G , [β2]G)ᵀ

and [b]
(G3)
G := ([1]G , [y]G)ᵀ and representation vectors v(1),(G2) := (y, 0)ᵀ, v(2),(G2) := (z · y, 0)ᵀ and

v(1),(G3) := (0, 1)ᵀ, v(2),(G3) := (0, z)ᵀ. In return, A′ receives public parameters ppH and two encodings Ĉ(1)

and Ĉ(2). A′ computes Ŷ ← RerandH(ppH, Ĉ
(1)) and X̂∗ ← RerandH(ppH, Ĉ

(2)) and simulates the remaining
game as in G2. Note that this is possible since τH is not necessary. A′ simulates either G2 or G3 for A depending
on the challenge provided by the 2-switching-game. Hence, |Pr[out3 = 1]−Pr[out2 = 1]| ≤ Adv2-switching

H,A′ (λ).

Since A′ is a legitimate 2-switching adversary, Adv2-switching
H,A′ (λ) is negligible.

G3

ppG ← GGenG(1λ)
y ← Zp
(ppH, τH)← GGenH(ppG, ([1]G , [y]G)ᵀ)

Ĝ← RerandH(ppH, SamH(ppH, 1))

Ŷ ← RerandH(ppH,PrivSamH(τH, (0, 1)ᵀ))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = []
z, r∗ ← Zp, x∗ := z · y
X̂∗ ← RerandH(ppH,PrivSamH(τH, (0, z)

ᵀ))

R̂∗1 ← RerandH(ppH, SamH(ppH, r
∗))

c∗ := H̃(R̂∗, X̂∗)
s∗ := r∗ + c∗ · z · y mod p
R̂∗2 ← RerandH(ppH, Ĝ

s∗ · (X̂∗)−c
∗
)

k0 := H̃ ′(Ŷ z·y), k1 ← K
b′ ← AH,H

′,Dec(pk , kb, (R̂∗2, X̂
∗, s∗))

return b = b′

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp
return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

H ′(K̂)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

Dec(R̂, X̂, s)

if R̂ =H R̂∗2 ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H 6=H R̂ · X̂c then
return ⊥

k := H̃ ′(X̂y)
return k

Fig. 22: The description of the hybrid G3.
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Game hop G3  G4. From this point on, we are able to closely follow the lines of [FPS19]. In G4 (see
Figure 23), the oracle H stores the private extractions of the encodings used to call H in a list U . Furthermore,

the decryption oracle obtains representation vectors corresponding to the supplied encodings R̂ and X̂ by
first looking for a matching entry in U and, if no such entry is present, by applying private extraction. Let
(ν, µ) and (ν′, µ′) be the thus obtained representation vectors of R̂ and X̂, respectively. Game G4 additionally
introduces an abort condition. If µ+ µ′ · c = 0 and µ′ 6= 0, G4 aborts and outputs a random bit. The games
G3 and G4 only differ if G4 aborts.

Note that all values in the table T are set in an adversarial call to either H or Dec, except for c∗ =
T [(GetIDH(ppH, R̂

∗
2),GetIDH(ppH, X̂

∗))] which is set using H̃ in the game. If Dec(R̂, X̂, s) 6= ⊥, then (R̂, X̂) 6=
(R̂∗2, X̂

∗) since otherwise s = s∗. Hence, the value c = T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] is independent
of (ν, µ, ν′, µ′). Therefore, the probability that G4 aborts is upper bounded by the probability that c is
chosen as c = − µ

µ′ mod p which can be upper bounded by 1
p ≤ 2−λ. By a union bound, the probability

that G4 aborts is upper bounded by qd
2λ

. Since G3 and G4 behave identical unless G4 aborts, we have
|Pr[out4 = 1]− Pr[out3 = 1]| ≤ qd

2λ
.

G4 (corresponds to G1 from [FPS19])

ppG ← GGenG(1λ)
y ← Zp
(ppH, τH)← GGenH(ppG, ([1]G , [y]G)ᵀ)

Ĝ← RerandH(ppH, SamH(ppH, 1))

Ŷ ← RerandH(ppH,PrivSamH(τH, (0, 1)ᵀ))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = [], U := []
z, r∗ ← Zp, x∗ := z · y
X̂∗ ← RerandH(ppH,PrivSamH(τH, (0, z)

ᵀ))

R̂∗1 ← RerandH(ppH, SamH(ppH, r
∗))

c∗ := H̃(R̂∗, X̂∗)
s∗ := r∗ + c∗ · z · y mod p
R̂∗2 ← RerandH(ppH, Ĝ

s∗ · (X̂∗)−c
∗
)

k0 := H̃ ′(Ŷ z·y), k1 ← K
b′ ← AH,H

′,Dec(pk , kb, (R̂∗2, X̂
∗, s∗))

return b = b′

H ′(K̂)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp
U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] :=

(PrivExtH(τH, R̂),PrivExtH(τH, X̂))

return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

Dec(R̂, X̂, s)

if R̂ =H R̂∗2 ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H 6=H R̂ · X̂c then
return ⊥

(ν, µ)← PrivExtH(τH, R̂)

(ν′, µ′)← PrivExtH(τH, X̂)

if U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] 6= ⊥ then

(ν, µ, ν′, µ′) := U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]
if (µ+ µ′ · c = 0) ∧ (µ′ 6= 0) then

abort game and output random bit

k := H̃ ′(X̂y)
return k

Fig. 23: The description of the hybrid G4.

Game hop G4  G5. Figure 24 shows the description of G5. Instead of sampling r∗ and querying the H̃ for c∗

to obtain s∗ = r∗+c∗ ·x∗, G5 samples s∗ and c∗ independently and computes R̂∗2 = RerandH(ppH, Ĝ
s∗ ·(X̂∗)−c∗)

as in G4. This behavior is identical to G4 except for the event that the tuple (R̂∗2, X̂
∗) already has an entry

in T . If this event occurs, G5 aborts. Since R̂∗2 and X̂∗ are uniformly random and T contains at most qd + qh
many entries after at most qd Dec-queries and qh H-queries, the probability that G5 aborts but G4 does not
can be upper bounded by qd+qh

22λ
. Hence, |Pr[out5 = 1]− Pr[out4 = 1]| ≤ qd+qh

22λ
.

Game hop G5  G6. Game G6 (see Figure 25) introduces two further abort conditions (?) and (??). As in
[FPS19], we show that if G6 differs from G5, then we can solve discrete logarithms.

We construct an adversary B on the discrete logarithm problem. Given (ppG, [1]G , [y]G), B produces

(ppH, τH)← GGenH(ppG, ([1]G , [y]G)ᵀ) and simulates G6 for A. Note that Ŷ and X̂∗ can be sampled without
knowing y (and x∗).

– B simulates queries to H ′ as follows. When A queries H ′ for K̂, B computes (ν′′, µ′′)← PrivExtH(τH, K̂).
Hence,

UnwrapH(ppH, K̂) = (ν′′, µ′′) · ([1]G , [y]G)ᵀ.
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G5 (corresponds to G2 from [FPS19])

ppG ← GGenG(1λ)
y ← Zp
(ppH, τH)← GGenH(ppG, ([1]G , [y]G)ᵀ)

Ĝ← RerandH(ppH, SamH(ppH, 1))

Ŷ ← RerandH(ppH,PrivSamH(τH, (0, 1)ᵀ))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = [], U := []
z, c∗, s∗ ← Zp, x∗ := z · y
X̂∗ ← RerandH(ppH,PrivSamH(τH, (0, z)

ᵀ))

R̂∗2 ← RerandH(ppH, Ĝ
s∗ · (X̂∗)−c

∗
)

if T [(GetIDH(ppH, R̂
∗
2),GetIDH(ppH, X̂

∗))] = ⊥ then

T [(GetIDH(ppH, R̂
∗
2),GetIDH(ppH, X̂

∗))] := c∗

else
abort game and output random bit

k0 := H̃ ′(Ŷ z·y), k1 ← K
b′ ← AH,H

′,Dec(pk , k1, (R̂∗2, X̂
∗, s∗))

return b = b′

H ′(K̂)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp
U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] :=

(PrivExtH(τH, R̂),PrivExtH(τH, X̂))

return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

Dec(R̂, X̂, s)

if R̂ =H R̂∗2 ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H 6=H R̂ · X̂c then
return ⊥

(ν, µ)← PrivExtH(τH, R̂)

(ν′, µ′)← PrivExtH(τH, X̂)

if U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] 6= ⊥ then

(ν, µ, ν′, µ′) := U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]
if (µ+ µ′ · c = 0) ∧ (µ′ 6= 0) then

abort game and output random bit
k := H̃ ′(X̂y)
return k

Fig. 24: The description of the hybrid G5.

To test whether K̂ = (X̂∗)y which in turn (implicitly) equals Ĝz·y
2

, B solves the equation

z · y2 − µ′′ · y − ν′′ = 0 mod p

for y. If one solution is the discrete logarithm of the given DLOG challenge game G6 aborts and B outputs
y. (Note that due to (?), if the game does not abort, A’s view is independent if it receives kb or k1.)

– B simulates queries to Dec as follows. As argued above, if Dec(R̂, X̂, s) does not return ⊥, then (R̂, X̂) 6=
(R̂∗, X̂∗). We have that

UnwrapH(ppH, R̂) = (ν, µ) · ([1]G , [y]G)ᵀ mod p

UnwrapH(ppH, X̂) = (ν′, µ′) · ([1]G , [y]G)ᵀ mod p

If Dec does not return ⊥, we have s = r + c · x mod p and hence

y · (µ+ µ′ · c) = s− ν − ν′ · c mod p. (1)

If µ+µ′ ·c 6= 0 mod p, G6 aborts and B solves Equation (1) for y. If µ+µ′ ·c = 0 mod p and µ′ 6= 0 then both

G5 and G6 abort. If µ+ µ′ · c = 0 mod p and µ′ = 0 then µ = 0 and dlog[1]G(UnwrapH(ppH, X̂)) = x = ν′

allowing the reduction to simulate Dec response as k := H̃ ′(Ŷ x).

Therefore, |Pr[out6 = 1]− Pr[out5 = 1]| ≤ AdvDLOG
G,B (λ).

ut
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G6 (corresponds to G3 from [FPS19])

ppG ← GGenG(1λ)
y ← Zp
(ppH, τH)← GGenH(ppG, ([1]G , [y]G)ᵀ)

Ĝ← RerandH(ppH, SamH(ppH, 1))

Ŷ ← RerandH(ppH,PrivSamH(τH, (0, 1)ᵀ))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = [], U := []
z, c∗, s∗ ← Zp
X̂∗ ← RerandH(ppH,PrivSamH(τH, (0, z)

ᵀ))

R̂∗2 ← RerandH(ppH, Ĝ
s∗ · (X̂∗)−s

∗
)

if T [(GetIDH(ppH, R̂
∗
2),GetIDH(ppH, X̂

∗))] = ⊥ then

T [(GetIDH(ppH, R̂
∗
2),GetIDH(ppH, X̂

∗))] := c∗

else
abort game and output random bit

k0 := H̃ ′(Ŷ z·y), k1 ← K
b′ ← AH,H

′,Dec(pk , k1, (R̂∗2, X̂
∗, s∗))

return b = b′

H ′(K̂)

if K̂ = X̂∗
y

then
abort game and output random bit (?)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp
U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] :=

(PrivExtH(τH, R̂),PrivExtH(τH, X̂))

return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

Dec(R̂, X̂, s)

if R̂ =H R̂∗2 ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H 6=H R̂ · X̂c then
return ⊥

(ν, µ)← PrivExtH(τH, R̂)

(ν′, µ′)← PrivExtH(τH, X̂)
if µ+ µ′ · c 6= 0 then

abort game and output random bit (??)

if U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] 6= ⊥ then

(ν, µ, ν′, µ′) := U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]
if (µ+ µ′ · c = 0) ∧ (µ′ 6= 0) then

abort game and output random bit
k := H̃ ′(X̂y)
return k

Fig. 25: The description of the hybrid G6. The view of A is independent of b.
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