
New Subquadratic Algorithms for Constructing Lightweight Hadamard
MDS Matrices (Full Version)
Tianshuo Conga, Ximing Fub,c,∗, Xuting Zhoue, Yuli Zoud and Haining Fane

aInstitute for Advanced Study, Tsinghua University, Beijing, China
bThe Chinese University of Hong Kong, Shenzhen, Shenzhen, China
cUniversity of Science and Technology of China, Hefei, China
dAlibaba Local Life Service Lab, Shanghai, China
eDepartment of Computer Science and Technology,Tsinghua University, Beijing, China

A R T I C L E I N F O

Keywords:
Lightweight cryptography
MDS matrix
Hadamard matrix
Involution
Subquadratic matrix-vector product

A B S T R A C T

Maximum Distance Separable (MDS) Matrix plays a crucial role in designing cryptosystems. In this
paper we mainly talk about constructing lightweight Hadamard MDS matrices based on subquadratic
multipliers over GF(24). We firstly propose subquadratic Hadamard matrix-vector product formulae
(HMVP), and provide two new XOR count metrics. To the best of our knowledge, subquadratic
multipliers have not been used to construct MDS matrices. Furthermore, combined with HMVP
formulae we design a construction algorithm to find lightweight Hadamard MDS matrices under our
XOR count metric. Applying our algorithms, we successfully find MDS matrices with the state-of-
the-art fewest XOR counts for 4×4 and 8×8 involutory and non-involutory MDS matrices. Experiment
results show that our candidates save up to 40.63% and 10.34% XOR gates for 8×8 and 4×4 matrices
over GF(24) respectively.

1. Introduction
With the rapid development and application of source re-

stricted equipment like Radio Frequency Identification (RFID),
lightweight ciphers have attracted great attention, such as
stream ciphers Trivium [13], Grain v1 [22], MICKEY 2.0 [1]
and block ciphers LED [19], CLEFIA [36], etc. Confusion layer
and diffusion layer play crucial roles in designing symmet-
ric ciphers in terms of security and efficiency. The branch
number is the primary factor for the performance of dif-
fusion layers. Maximum Distance Separable (MDS) ma-
trix has the biggest branch number and hence provides the
best resistance to differential and linear attacks. As a con-
sequence, lightweight MDS matrices have been applied in
diffusion layers to provide better security and hardware per-
formances: Block cipher Shark [32] firstly utilizes MDS ma-
trix; AES [11] uses a 4 × 4 matrix over GF(28), which oc-
cupies a wealth of hardware area resources; 4 × 4 matrix
in LED is hardware-friendly. MDS matrices are also widely
used as diffusion layers in other block ciphers such as CLEFIA,
FOX [25], KHAZAD [2], ANUBIS [3], Square [10], Twofish [35],
Joltik [23]; some stream ciphers [12] and hash functions [17,
18, 29].

The method of constructing MDS matrices is mainly con-
sidered from two perspectives: structure and involution. Two
networks are widely used in block ciphers, subtitution-per-
mutation networks (SPNs) and Feistel structure. Matrix with
lightweight inverse matrix could be used in SPNs and hardware-
friendly involutory MDS matrices could be used in Feistel
structures because of the identical process of Feistel’s en-

∗Corresponding author
cts17@mails.tsinghua.edu.cn (T. Cong); fuximimg@cuhk.edu.cn (X.

Fu); zhouxt19@mails.tsinghua.edu.cn (X. Zhou); zyuli1027@gmail.com (Y.
Zou); fhn@tsinghua.edu.cn (H. Fan)

ORCID(s):

cryption and decryption. The diffusion layers of AES, Grøstl,
WHIRLPOOL use circulant matrices. The diffusion layer of KHAZAD
uses Hadamard matrix. In [9], authors propose compact Cauchy
matrices which have the fewest different entries, they prove
that all compact Cauchy matrices could be improved into
self-inverse ones. In [33], the application of Toeplitz ma-
trices in lightweight diffusion layers was discussed. The au-
thors prove that Toeplitz matrices could not be both MDS
and involutory, they give the result of 4 × 4 involutory MDS
matrix with small number of XOR operations. It is proved
in [37] that there are equivalent classes of various MDS ma-
trices, for example there are 30 equivalent classes of 8 ×
8 Hadamard matrices. In [24], the authors propose a tool
named LIGHTER to produce optimized implementations of
small functions in lightweight cryptographic designs. They
find 4 × 4 and 8 × 8 involutory and non-involutory MDS
matrices over GF(24) and GF(28) with fewer XOR counts.

TheGF(2𝑐)multiplication can be represented as a matrix-
vector product and MDS matrices usually appear in matrix-
vector multiplication, so the method to design multiplier can
also be adapted to design MDS matrices. A typical hardware
evaluation of the given MDS matrix is the total number of
2-input XOR gates cost because an addition operation over
GF(2) could be realized by a 2-input Exclusive Or (XOR)
gate, and addition operation over GF(2𝑐) can be realized by
𝑐 2-input XOR gates with one XOR gate delay. Minimizing
the number of XOR gates needed in matrix-vector multipli-
cation has always been a concern [28, 5]. Bit parallel GF(2𝑐)
multipliers could be classified into two categories: quadratic
and subquadratic multipliers [15]. Quadratic multipliers are
built on the straightforward computation and they have high
space complexity [30, 31, 34, 21]. Subquadratic multiplica-
tion algorithms could be utilized to design low space com-
plexity GF(2𝑐) multipliers for large 𝑐 [4, 16, 6, 26]. In this

TS Cong et al.: Preprint submitted to Elsevier Page 1 of 10



Construction of Lightweight MDS Matrices

work, we design lightweight MDS matrices using the sub-
quadratic Toeplitz matrix-vector product formulae in [14]
(TMVP).

1.1. Our Contributions
The goal in this work is to construct lightweight involu-

tory and non-involutory MDS matrices by using subquadratic
Hadamard matrix-vector product formulae. To the best of
our knowledge, this approach has not been used to design
MDS matrices with low XOR count before.

Considering lightweightness, we mainly consider MDS
matrices over small fields. We construct four kinds of MDS
matrices, which are involutory and non-involutory 4×4 and
8×8 Hadamard matrices over GF(24). We propose two new
XOR count metrics and use the subquadratic algorithms to
construct lightweight MDS matrices over GF(24) defined by
three irreducible polynomials under our new metrics. Com-
parison with the best results of previous work is shown in
Table 1. The known lower bounds are from [24] (FSE2017),
which are the benchmarks in our experiment. Inv. with the
check mark means involutions.

Table 1
Summary table of the MDS matrices

Dimension Inv. XOR count [24] Comparison

4 × 4 ✓ 58 63 7.94%
8 × 8 ✓ 282 424 33.49%
4 × 4 52 58 10.34%
8 × 8 228 384 40.63%

The rest of this paper is organised as follows. Section 2
briefly introduces some basic concepts such as background
knowledge of MDS matrices and subquadratic TMVP for-
mulae. Section 3 begins by laying out the applications of
HMVP to Hadamard matrices, and introduces the search-
ing process of involutions and non-involutions. Section 4
presents the experiment parameters and searching results of
the algorithm. Meanwhile we compare our MDS matrices
with the previous results to show the efficiency. Finally, Sec-
tion 5 concludes this paper.

2. Preliminaries
In this section, some basic concepts and subquadratic

HMVP formulae will be introduced. The elements of the
Hadamard matrix in our work all belong to the finite field
GF(2𝑐) generated by degree-𝑐 irreducible polynomial 𝑝(𝑥),
which is denoted as GF(2𝑐)∕𝑝(𝑥). We use hexadecimal form
to denote 𝑝(𝑥) and the elements in matrices.

2.1. Branch Number
The branch number is a key index for inspecting the per-

formance of diffusion layers. It could quantify the avalanche
effect.

Definition 1 (Hamming weight). The hamming weight𝑤ℎ(𝐱)
is the number of non-zero components of the vector x.

Definition 2 (Branch number). For a linear invertible map-
ping 𝜃 ∶ [GF(2𝑚)]𝑛 → [GF(2𝑚)]𝑛, the branch number is

(𝜃) = min
𝐱≠0 (𝑤ℎ(𝐱) +𝑤ℎ(𝜃(𝐱)). (1)

Definition 3 (Best diffusion). The diffusion is denoted as the
best diffusion when the branch number

(𝜃) = 𝑛 + 1. (2)

If the mapping 𝜃 is a matrix 𝑀 , then 𝑀 is called an MDS
matrix.

When the input x’s hamming weight is equal to 1, and
𝑤ℎ(𝜃(𝐱)) ≤ 𝑛, the diffusion matrix’s maximum branch num-
ber is 𝑛 + 1. Reference [11] gives a property to find MDS
matrix: A matrix 𝑀 is MDS if and only if every square sub-
matrix of 𝑀 is nonsingular.

2.2. Hadamard Matrix
Hadamard matrix is a specially structured matrix. Let

𝐻𝑘,𝑘 = (ℎ𝑖,𝑗) be a 𝑘 × 𝑘 Hadamard matrix, where 𝑘 =
2𝑟, 𝑟 = 1, 2,⋯, (ℎ𝑖,𝑗) is the (𝑖, 𝑗)-th element and 0 ≤ 𝑖, 𝑗 ≤
𝑘 − 1, then ℎ𝑖,𝑗 = ℎ𝑖⊕𝑗 holds, ⊕ denotes the bit-wise XOR,
ℎ0, ℎ1,⋯ , ℎ𝑘−1 are the elements in the first row. Hence,
the elements in 𝐻𝑘,𝑘 are determined by its first row, so the
Hadamard matrix𝐻 can also be denoted by had(ℎ0,⋯ , ℎ𝑘−1).
An example of 4 × 4 Hadamard matrix had(ℎ0, ℎ1, ℎ2, ℎ3) is
shown as

𝐻4,4 =

⎛⎜⎜⎜⎝
ℎ0 ℎ1 ℎ2 ℎ3
ℎ1 ℎ0 ℎ3 ℎ2
ℎ2 ℎ3 ℎ0 ℎ1
ℎ3 ℎ2 ℎ1 ℎ0

⎞⎟⎟⎟⎠ .
Definition 4 (Involutory Matrix [20]). A 𝑘×𝑘 square ma-
trix 𝐻 is called an involutory matrix if 𝐻2 = 𝐼𝑘,𝑘, where
𝐼𝑘,𝑘 is the 𝑘 × 𝑘 identity matrix.

The advantage in applying involutory MDS matrices is
its free inverse implementation.

2.3. Subquadratic TMVP Formulae
A matrix is denoted as a Toeplitz matrix if the elements

on the line parallel to the main diagonal are constant. An
example of 4 × 4 Toeplitz matrix is

𝑇 =

⎛⎜⎜⎜⎝
𝑡0 𝑡1 𝑡2 𝑡3
𝑡4 𝑡0 𝑡1 𝑡2
𝑡5 𝑡4 𝑡0 𝑡1
𝑡6 𝑡5 𝑡4 𝑡0

⎞⎟⎟⎟⎠ .
Definition 5 (Subquadratic TMVP formulae [14])). Let 𝑇
be a 𝑘 × 𝑘 Toeplitz matrix and 𝑉 be a column vector of di-
mension 𝑘. The Toeplitz matrix-vector product 𝑇𝑉 could be
computed by

𝑇𝑉 =
(
𝑇1 𝑇0
𝑇2 𝑇1

)(
𝑉0
𝑉1

)
=
(
𝑃0 + 𝑃2
𝑃1 + 𝑃2

)
, (3)

TS Cong et al.: Preprint submitted to Elsevier Page 2 of 10



Construction of Lightweight MDS Matrices

where ⎧⎪⎨⎪⎩
𝑃0 = (𝑇0 + 𝑇1)𝑉1
𝑃1 = (𝑇1 + 𝑇2)𝑉0
𝑃2 = 𝑇1(𝑉0 + 𝑉1)

.

Here 𝑇0, 𝑇1, 𝑇2 are the sub-matrices of 𝑇 with size (𝑘∕2)×
(𝑘∕2). 𝑉0, 𝑉1 are the column sub-vectors of𝑉 with size (𝑘∕2)×
1. 𝑃0, 𝑃1, 𝑃2 are three TMVPs of dimension 𝑘∕2.

Straightforward computation of 𝑇𝑉 requires 4 TMVPs
of size 𝑘∕2, while (3) saves 1 TMVP (underlined 𝑃2).

2.4. XOR Count
In this paper we use the number of XOR gates needed

(XOR count) for implementing the MDS matrix-vector mul-
tiplication to measure the lightweightness of a given MDS
matrix. XOR counts was first proposed in [27] and has been
widely adopted to quantify the hardware implementation area
cost [37, 24].

For a 𝑘 × 𝑘 Hadamard matrix 𝐻 , there are 2 metrics of
XOR count:

• The XOR count needed for directly computing the mul-
tiplication of 𝐻 with a vector is called direct-XOR-
count, denoted by (𝐻). (𝐻) is an overestimation
of the hardware implementation cost.

• For computing the matrix-vector product, some re-
peated computation (XOR gates) can be reused. The
direct-XOR-count minus the reused XOR count is de-
noted as (𝐻) [24]. However, minimizing (𝐻) is
shown to be NP-hard [7]. We find the 2-input repeated
XOR gates by hand.

Consider the XOR count of a given 𝑘×𝑘 Hadamard ma-
trix. Let (ℎ𝑖) denote the XOR count of the element ℎ𝑖. If
we directly calculate matrix-vector multiplication, we will
cost 𝑘2 multiplications and 𝑘(𝑘−1) additions. Therefore the
direct-XOR-count over GF(2𝑐)∕𝑝(𝑥) could be calculated as

(𝐻𝑘,𝑘) = 𝑘 ×
𝑘−1∑
𝑖=0

(ℎ𝑖) + 𝑘 × (𝑘 − 1) × 𝑐.

Take matrix 𝐸 = had(0x1,0x2,0x8,0xa) and vector 𝑉 =
(𝑣0, 𝑣1, 𝑣2, 𝑣3)⊤ over GF(24)∕0x13 as an example. Firstly, we
should calculate the XOR count of each element in the ma-
trix. Let 𝑣𝑘 =

∑3
𝑖=0 𝑣

𝑖
𝑘𝑥

𝑖 for 0 ≤ 𝑘 ≤ 3. For element 0xa,
0xa ⋅ 𝑣3 is equal to

0xa ⋅ 𝑣3 =(𝑥3 + 𝑥) × (𝑣33𝑥
3 + 𝑣23𝑥

2 + 𝑣13𝑥 + 𝑣03)

=(𝑣03𝑣
2
3𝑣

3
3)𝑥

3 + (𝑣13𝑣
2
3𝑣

3
3)𝑥

2 + (𝑣03𝑣
1
3𝑣

2
3𝑣

3
3)𝑥 + (𝑣13𝑣

3
3).

As there is no AND operation, we omit the XOR mark
⊕ in the expression without ambiguity. For example, 𝑣03𝑣

2
3

here denotes 𝑣03 ⊕ 𝑣23. So (10) = 2 + 2 + 3 + 1 = 8.
The XOR counts of the other elements in the matrix over all
three finite fields GF(24))∕𝑝(𝑥) can be computed similarly

and are shown in Table 2. We acquire (ℎ0) = 0, (ℎ1) =
1, (ℎ2) = 3, (ℎ3) = 8, and hence

(𝐸) = 4 × (0 + 1 + 3 + 8) + 48 = 96.

Table 2
XOR Counts of Elements over GF(24)

Elements GF(24)∕0x13 GF(24)∕0x1f GF(24)∕0x19

0x1 0 0 0
0x2 1 3 1
0x3 5 5 3
0x4 2 3 3
0x5 6 5 5
0x6 5 6 2
0x7 9 6 6
0x8 3 3 6
0x9 1 5 8
0xa 8 6 5
0xb 6 6 9
0xc 5 6 1
0xd 3 6 5
0xe 8 5 6
0xf 6 3 8

The expression of the straightforward matrix-vector prod-
uct is shown in (4) and 𝑟𝑘 =

∑3
𝑖=0 𝑟

𝑖
𝑘𝑥

𝑖, 0 ≤ 𝑘 ≤ 3, it re-
quires 96 XOR gates. The 2-bit combination underlined are
the shared 2-input XOR gates, e.g., 𝑣02𝑣

3
2 appears both in 𝑟30

and 𝑟31. There are 18 shared XOR gates, such that

(𝐸) = 96 − 18 = 78.

𝑟0 =[𝑣02𝑣
3
2𝑣

3
0𝑣

2
1𝑣

0
3𝑣

2
3𝑣

3
3]𝑥

3 + [𝑣20𝑣
1
1𝑣

2
2𝑣

3
2𝑣

2
3𝑣

3
3𝑣

1
3]𝑥

2+

[𝑣01𝑣
3
1𝑣

1
2𝑣

2
2𝑣

1
3𝑣

2
3𝑣

0
3𝑣

1
0𝑣

3
3]𝑥 + [𝑣00𝑣

3
1𝑣

1
2𝑣

1
3𝑣

3
3],

𝑟1 =[𝑣03𝑣
3
3𝑣

0
2𝑣

3
2𝑣

2
0𝑣

3
1𝑣

2
2]𝑥

3 + [(𝑣22𝑣
3
2)(𝑣

2
3𝑣

3
3)𝑣

1
0𝑣

2
1𝑣

1
2]𝑥

2+

[𝑣11𝑣
0
2(𝑣

0
0𝑣

3
0)(𝑣

1
2𝑣

2
2)(𝑣

1
3𝑣

2
3)𝑣

3
2]𝑥 + [𝑣32𝑣

1
3𝑣

3
0𝑣

0
1𝑣

1
2],

𝑟2 =[𝑣00𝑣
3
0𝑣

2
1𝑣

3
1𝑣

0
1𝑣

3
2𝑣

2
3]𝑥

3 + [(𝑣20𝑣
1
1)(𝑣

2
1𝑣

3
1)𝑣

3
0𝑣

2
2𝑣

1
3]𝑥

2+

[𝑣10𝑣
2
0(𝑣

0
1𝑣

3
1)(𝑣

0
3𝑣

3
3)𝑣

1
1𝑣

2
1𝑣

1
2]𝑥 + [𝑣31𝑣

3
3𝑣

1
1𝑣

0
2𝑣

1
0],

𝑟3 =[𝑣00𝑣
3
0𝑣

2
0𝑣

0
1𝑣

2
2𝑣

3
1𝑣

3
3]𝑥

3 + [𝑣10𝑣
2
0𝑣

3
0𝑣

1
2𝑣

2
3𝑣

2
1𝑣

3
1𝑣

3
0𝑣

1
2𝑣

2
3]𝑥

2+

[𝑣10𝑣
2
0𝑣

3
0𝑣

1
1𝑣

3
2𝑣

1
3𝑣

0
0𝑣

2
1𝑣

0
2]𝑥 + [𝑣30𝑣

1
1𝑣

1
0𝑣

3
2𝑣

0
3].

(4)

3. Construction Algorithms
In this section, we will introduce our construction algo-

rithms in detail. We firstly introduce the subquadratic Hadamard
matrix-vector formulae and its application to 4× 4 and 8× 8
Hadamard matrices, followed by the construction algorithms
of involutory and non-involutory MDS matrices. Involutory
and non-involutory matrices are called involutions and non-
involutions respectively for short.

TS Cong et al.: Preprint submitted to Elsevier Page 3 of 10



Construction of Lightweight MDS Matrices

3.1. Subquadratic HMVP Formulae
In this part, we show that the Hadamard matrices are ap-

plicable for TMVP formulae.

Lemma 1. A 𝑘 × 𝑘 Hadamard matrix 𝐻 could be denoted
as

𝐻 =
(
𝐻1 𝐻0
𝐻0 𝐻1

)
,

where𝐻0 and𝐻1 are (𝑘∕2)×(𝑘∕2)Hadamard sub-matrices.

Proof 1. Denote

𝐻 =
(
𝐻0 𝐻1
𝐻2 𝐻3

)
,

where 𝐻0, 𝐻1, 𝐻2 and 𝐻3 are (𝑘∕2) × (𝑘∕2) sub-matrices.
Denote 𝐻0 = (ℎ𝑖,𝑗), 0 ≤ 𝑖, 𝑗 < 𝑘∕2. Then 𝐻1 = (ℎ𝑖,𝑗+(𝑘∕2)),
𝐻2 = (ℎ𝑖+(𝑘∕2),𝑗), 𝐻3 = (ℎ𝑖+(𝑘∕2),𝑗+(𝑘∕2)). The elements
of 𝐻0, 𝐻1, 𝐻2 and 𝐻3 satisfy ℎ𝑖,𝑗 = ℎ𝑖⊕𝑗 , so they are
Hadamard matrices. Meanwhile we have

𝑖 ⊕ 𝑗 = (𝑖 + (𝑘∕2))⊕ (𝑗 + (𝑘∕2)),

and
𝑖 ⊕ (𝑗 + (𝑘∕2)) = (𝑖 + (𝑘∕2)⊕ 𝑗),

as a result,

𝐻0 = 𝐻3,
𝐻1 = 𝐻2.

Lemma 2. Given a 𝑘 × 𝑘 Hadamard matrix 𝐻 of the form

𝐻 =
(
𝐻1 𝐻0
𝐻0 𝐻1

)
,

where 𝐻0 and 𝐻1 are (𝑘∕2)×(𝑘∕2) sub-matrices, then 𝐻0+
𝐻1 is a Hadamard matrix.

Proof 2. Denote 𝐻1 = (ℎ𝑖,𝑗), 𝐻0 = (ℎ𝑖,𝑞), 𝐻01 = 𝐻0 +
𝐻1 = had(𝜃0,⋯ , 𝜃𝑘∕2−1) = (𝜃𝑖,𝑗), where 0 ≤ 𝑖, 𝑗 ≤ 𝑘∕2 − 1,
𝑞 = 𝑗 + 𝑘∕2. We know that ℎ𝑖,𝑗 = ℎ𝑖⊕𝑗 , ℎ𝑖,𝑞 = ℎ𝑖⊕𝑞 , and
𝜃𝑖⊕𝑗 = ℎ𝑖⊕𝑗 +ℎ𝑖⊕𝑞 , 𝜃𝑖,𝑗 = ℎ𝑖,𝑗 +ℎ𝑖,𝑞 , so 𝜃𝑖⊕𝑗 = 𝜃𝑖,𝑗 and 𝐻01
is a Hadamard matrix.

Definition 6 (Subquadratic HMVP Formulae). Based on
Lemma 1 and Lemma 2, we can compute the subquadratic
Hamamard matrix-vector product (HMVP) of 𝐻 and 𝑉 by

𝐻𝑉 =
(
𝐻1 𝐻0
𝐻0 𝐻1

)(
𝑉0
𝑉1

)
=
(
𝑃0 + 𝑃2
𝑃1 + 𝑃2

)
,

where ⎧⎪⎨⎪⎩
𝑃0 = (𝐻0 +𝐻1)𝑉1
𝑃1 = (𝐻1 +𝐻0)𝑉0
𝑃2 = 𝐻1(𝑉0 + 𝑉1)

.

Here, 𝑃0, 𝑃1 and 𝑃2 are HMVPs of dimension 𝑘∕2.

There are 2𝑘 − 1 independent elements which are in the
first row and first column of a Toeplitz matrix while there are
𝑘 independent of a Hadamard matrix. Hence, constructing
Hadamard matrices needs smaller search space than Toeplitz
matrices.

3.2. Application of HMVP to 4 × 4 Hadamard
Matrices

We firstly apply the HMVP formulae on 4×4 Hadamard
matrices. According to the structure of Hadamard matrices,
𝐻4,4 is in the form of

𝐻4,4 = had(ℎ0, ℎ1, ℎ2, ℎ3) =
(
𝐻1 𝐻0
𝐻0 𝐻1

)
,

where

𝐻1 =
(
ℎ0 ℎ1
ℎ1 ℎ0

)
, 𝐻0 =

(
ℎ2 ℎ3
ℎ3 ℎ2

)
.

The vector 𝑉 is in the form of

𝑉 =
(
𝑉0
𝑉1

)
,

where

𝑉0 =
(
𝑣0
𝑣1

)
, 𝑉1 =

(
𝑣2
𝑣3

)
.

By applying the HMVP formulae, the three correspond-
ing HMVPs could be computed by

𝑃0 = (𝐻0 +𝐻1)𝑉1 =
(
ℎ02𝑣2 + ℎ13𝑣3
ℎ13𝑣2 + ℎ02𝑣3

)
,

𝑃1 = (𝐻1 +𝐻0)𝑉0 =
(
ℎ02𝑣0 + ℎ13𝑣1
ℎ13𝑣0 + ℎ02𝑣1

)
,

𝑃2 = 𝐻1(𝑉0 + 𝑉1) =
(
ℎ0𝑣02 + ℎ1𝑣13
ℎ1𝑣02 + ℎ0𝑣13

)
.

Finally the matrix-vector product 𝑅4 = 𝐻4,4𝑉 could be
computed by

𝑅4 =

⎛⎜⎜⎜⎝
𝑟0
𝑟1
𝑟2
𝑟3

⎞⎟⎟⎟⎠ =
(

𝑃0 + 𝑃2
𝑃1 + 𝑃2

)

=

⎛⎜⎜⎜⎜⎝
ℎ02𝑣2 + ℎ13𝑣3 + ℎ0𝑣02 + ℎ1𝑣13
ℎ13𝑣2 + ℎ02𝑣3 + ℎ1𝑣02 + ℎ0𝑣13
ℎ02𝑣0 + ℎ13𝑣1 + ℎ0𝑣02 + ℎ1𝑣13
ℎ13𝑣0 + ℎ02𝑣1 + ℎ1𝑣02 + ℎ0𝑣13

⎞⎟⎟⎟⎟⎠
.

where ℎ𝑖𝑗 denotes ℎ𝑖 + ℎ𝑗 and 𝑣𝑖𝑗 denotes 𝑣𝑖 + 𝑣𝑗 .
According to above computation, when we directly com-

pute the matrix-vector multiplication on 4 × 4 matrix, there
needs 12 addition operations and 16 multiplication opera-
tions over the finite field.

In order to implement the multiplication of 𝐻4,4 with
a vector, 𝐻0 + 𝐻1 can be computed in advance. 𝑉0 + 𝑉1
costs 2 addition operations. By applying the HMVP formu-
lae, 10 addition operations and 12 multiplication operations
are needed in 𝑅4, so the total number of addition operations
is 10 + 2 = 12. 12 Multiplication operations all appear in
𝑅4. In summary, we economize 4 multiplication operations,

TS Cong et al.: Preprint submitted to Elsevier Page 4 of 10



Construction of Lightweight MDS Matrices

which helps us to reduce the space complexity in hardware
implementation.

Here we give a new observation of HMVP on XOR count
and define two new metrics:

• The number of XOR gates by directly applying HMVP
formulae is denoted as (𝐻).

• The number of XOR gates (𝐻) minus the repeated
XOR gates is denoted as (𝐻).

From the expression of 𝑅4 we can obtain the XOR count
of 4 × 4 Hadamard matrix by applying the HMVP formulae
over GF(2𝑐):

(𝐻4,4) =4((ℎ02) +(ℎ13)) + 2((ℎ0) +(ℎ1)) + 12𝑐.
(5)

Look back to the example 𝐸 = had(0x1,0x2,0x8,0xa), if
we apply the HMVP formulae on 𝐸, ℎ02 = 0x1⊕ 0x8 = 0x9,
ℎ13 = 0x2 ⊕ 0xa = 0x8, so (ℎ02) = 1, (ℎ13) = 3. We
could compute

(𝐸) = 4 × (1 + 3) + 2 × (0 + 1) + 12 × 4 = 66.

The implementation of HMVP based matrix-vector prod-
uct is shown in Section A.1. There are 8 shared XOR gates
(underlined) totally, and hence

(𝐸) = 66 − 8 = 58.

3.3. Application of HMVP to 8 × 8 Hadamard
Matrices

In this section, we apply the HMVP to 8 × 8 Hadamard
matrices.

According to Lemma 1, 𝐻8,8 is in the form of

𝐻8,8 = had(ℎ0,… , ℎ7) =
(
𝐻1 𝐻0
𝐻0 𝐻1

)
,

where𝐻1 = had(ℎ0, ℎ1, ℎ2, ℎ3) and𝐻0 = had(ℎ4, ℎ5, ℎ6, ℎ7).
The vector 𝑉 is in the form of

𝑉 =
(
𝑉0
𝑉1

)
,

where 𝑉0 = (𝑣0, 𝑣1, 𝑣2, 𝑣3)⊤ and 𝑉1 = (𝑣4, 𝑣5, 𝑣6, 𝑣7)⊤.
By applying the HMVP formulae, the three correspond-

ing HMVPs of 𝐻8,8𝑉 , i.e., 𝑃0, 𝑃1 and 𝑃2, need to be com-
puted. Firstly, 𝑃0 can be computed by

𝑃0 = (𝐻0 +𝐻1)𝑉1 =

⎛⎜⎜⎜⎝
ℎ04 ℎ15 ℎ26 ℎ37
ℎ15 ℎ04 ℎ37 ℎ26
ℎ26 ℎ37 ℎ04 ℎ15
ℎ37 ℎ26 ℎ15 ℎ04

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝑣4
𝑣5
𝑣6
𝑣7

⎞⎟⎟⎟⎠ .
According to Lemma 2, 𝐻0 + 𝐻1 is also a Hadamard

matrix. And hence, the HMVP formulae can be applied for
computing the matrix-vector product 𝑃0 = (𝐻0 + 𝐻1)𝑉1.
Rewrite 𝐻0 +𝐻1 as

𝐻0 +𝐻1 =

(
𝐻𝑃0

1 𝐻𝑃0
0

𝐻𝑃0
0 𝐻𝑃0

1

)
,

where 𝐻𝑃0
0 = had(ℎ26, ℎ37), 𝐻

𝑃0
1 = had(ℎ04, ℎ15). Let 𝑉1 be

𝑉1 =

(
𝑉 𝑃0
0

𝑉 𝑃0
1

)
,

where 𝑉 𝑃0
0 = (𝑣4, 𝑣5)⊤, 𝑉 𝑃0

1 = (𝑣6, 𝑣7)⊤. Then 𝑃0 can be
computed by

𝑃0 =

(
𝐻𝑃0

1 𝐻𝑃0
0

𝐻𝑃0
0 𝐻𝑃0

1

)(
𝑉 𝑃0
0

𝑉 𝑃0
1

)
Denote three corresponding HMVPs of 𝑃0 as 𝐴0, 𝐴1, 𝐴2,
which can be computed according to (3), i.e.,

𝐴0 = (𝐻𝑃0
0 +𝐻𝑃0

1 )𝑉 𝑃0
1 =

(
ℎ0246𝑣6 + ℎ1357𝑣7
ℎ1357𝑣6 + ℎ0246𝑣7

)
,

𝐴1 = (𝐻𝑃0
1 +𝐻𝑃0

0 )𝑉 𝑃0
0 =

(
ℎ0246𝑣4 + ℎ1357𝑣5
ℎ1357𝑣4 + ℎ0246𝑣5

)
,

𝐴2 = 𝐻𝑃0
1 (𝑉 𝑃0

0 + 𝑉 𝑃0
1 ) =

(
ℎ04𝑣46 + ℎ15𝑣57
ℎ15𝑣46 + ℎ04𝑣57

)
.

Then, 𝑃0 can be computed accordingly by

𝑃0 =
(
𝐴0 + 𝐴2
𝐴1 + 𝐴2

)

=

⎛⎜⎜⎜⎜⎝
ℎ0246𝑣6 + ℎ1357𝑣7 + ℎ04𝑣46 + ℎ15𝑣57
ℎ1357𝑣6 + ℎ0246𝑣7 + ℎ15𝑣46 + ℎ04𝑣57
ℎ0246𝑣4 + ℎ1357𝑣5 + ℎ04𝑣46 + ℎ15𝑣57
ℎ1357𝑣4 + ℎ0246𝑣5 + ℎ15𝑣46 + ℎ04𝑣57

⎞⎟⎟⎟⎟⎠
.

By similar derivation process, 𝐵0 = (𝐻𝑃1
0 + 𝐻𝑃1

1 )𝑉 𝑃1
1 ,

𝐵1 = (𝐻𝑃1
1 +𝐻𝑃1

0 )𝑉 𝑃1
0 ,𝐵2 = 𝐻𝑃1

1 (𝑉 𝑃1
0 +𝑉 𝑃1

1 ),𝐶0 = (𝐻𝑃2
0 +

𝐻𝑃2
1 )𝑉 𝑃2

1 , 𝐶1 = (𝐻𝑃2
1 +𝐻𝑃2

0 )𝑉 𝑃2
0 , 𝐶2 = 𝐻𝑃2

1 (𝑉 𝑃2
0 + 𝑉 𝑃2

1 ),
the other two HMVPs of 𝐻8,8𝑉 , i.e., 𝑃1 and 𝑃2 are

𝑃1 =
(
𝐵0 + 𝐵2
𝐵1 + 𝐵2

)

=

⎛⎜⎜⎜⎜⎝
ℎ0246𝑣2 + ℎ1357𝑣3 + ℎ04𝑣02 + ℎ15𝑣13
ℎ1357𝑣2 + ℎ0246𝑣3 + ℎ15𝑣02 + ℎ04𝑣13
ℎ0246𝑣0 + ℎ1357𝑣1 + ℎ04𝑣02 + ℎ15𝑣13
ℎ1357𝑣0 + ℎ0246𝑣1 + ℎ15𝑣02 + ℎ04𝑣13

⎞⎟⎟⎟⎟⎠
,

and

𝑃2 =
(
𝐶0 + 𝐶2
𝐶1 + 𝐶2

)

=

⎛⎜⎜⎜⎜⎝
ℎ02𝑣26 + ℎ13𝑣37 + ℎ0𝑣0246 + ℎ1𝑣1357
ℎ13𝑣26 + ℎ02𝑣37 + ℎ1𝑣0246 + ℎ0𝑣1357
ℎ02𝑣04 + ℎ13𝑣15 + ℎ0𝑣0246 + ℎ1𝑣1357
ℎ13𝑣04 + ℎ02𝑣15 + ℎ1𝑣0246 + ℎ0𝑣1357

⎞⎟⎟⎟⎟⎠
.

TS Cong et al.: Preprint submitted to Elsevier Page 5 of 10



Construction of Lightweight MDS Matrices

Finally the matrix-vector product 𝑅8 = 𝐻8,8𝑉 is

𝑅8 =
(
𝑃0 + 𝑃2
𝑃1 + 𝑃2

)

=

⎛⎜⎜⎜⎜⎝
𝐴0 + 𝐴2 + 𝐶0 + 𝐶2
𝐴1 + 𝐴2 + 𝐶1 + 𝐶2
𝐵0 + 𝐵2 + 𝐶0 + 𝐶2
𝐵1 + 𝐵2 + 𝐶1 + 𝐶2

⎞⎟⎟⎟⎟⎠
.

A direct calculation of 8 × 8 HMVP needs 56 addition
operations and 64 multiplication operations. By using the
above HMVP formulae, 𝑅8 consists of 𝑃0 +𝑃2 and 𝑃1 +𝑃2,
𝑃0, 𝑃1, 𝑃2 each cost 10 addition operations, 𝑃2 costs free.
And 𝑃0, 𝑃1, 𝑃2 are vectors with 4 × 1, so 𝑃0 + 𝑃2 and 𝑃1 +
𝑃2 each cost 4 addition operations. 10 addition operations
are needed in 𝑣02, 𝑣04, 𝑣13, 𝑣15, 𝑣26, 𝑣46, 𝑣37, 𝑣57, 𝑣0246,
𝑣1357. So the total number of addition operations is 10× 3+
4 × 2 + 10 = 48. Meanwhile, in 𝑅8, 𝑃0, 𝑃1, 𝑃2 each cost
12 multiplication operations, so 𝑅8 needs 36 multiplication
operations totally. In summary, we economize 8 addition
operations and 28 multiplication operations.

Here, by counting the frequency of elements in 𝑅8 over
GF(2𝑐) we generalize

(𝐻8,8) =8((ℎ0246) +(ℎ1357)) + 2((ℎ0) +(ℎ1))
+ 4((ℎ04) +(ℎ15) +(ℎ02) +(ℎ13)) + 48𝑐.

(6)

3.4. Searching for Involutory MDS Matrices
If a Hadamard matrix 𝐻𝑘,𝑘 is an involutory MDS matrix

over GF(2𝑐)∕𝑝(𝑥), the following three constraints hold [8]:

• ℎ𝑖 ≠ ℎ𝑗 for 𝑖 ≠ 𝑗, where 0 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1 ;

• ℎ𝑖 ≠ 0, where 0 ≤ 𝑖 ≤ 𝑘 − 1 ;

•
∑𝑘−1

𝑖=0 ℎ𝑖 = 1.

We use these involutory constraints to reduce the search space
of the Hadamard MDS matrices.

In this part we introduce a bottom-up construction strat-
egy for involutory MDS matrices. Combined with the HMVP
formulae, we identify an exhausted search strategy accord-
ing to (5) and (6).

3.4.1. Construct 4 × 4 Involutory MDS Matrices
According to (5), which illustrates the XOR count of 4×4

Hadamard matrices by applying HMVP, the XOR count can
be minimized if (ℎ02) +(ℎ13) and (ℎ0) +(ℎ1) can be
minimized. So we can combine lightweight elements into a
group, and assign these elements to ℎ02, ℎ0, ℎ1.

Firstly, we compute the XOR count of each possible el-
ement and choose 𝑠 most lightweight elements as the can-
didate set , so the search space over GF(2𝑐) is determined
by 𝑠. As there is no zero element in a Hadamard matrix,
𝑠 ≤ 2𝑐 − 1. To construct a 4 × 4 involutory Hadamard
matrix, we search ℎ0, ℎ1, ℎ02 from . Due to the constraint

ℎ0+ℎ1+ℎ2+ℎ3 = 1 for involution, ℎ13 = ℎ02+1, and hence
ℎ3 = ℎ13+ℎ1 = ℎ02+ℎ1+1. Combined with ℎ2 = ℎ02+ℎ0,
all elements of the Hadamard matrix can be determined. The
whole construction algorithm is shown in Algorithm 1.

Algorithm 1 Construct 4 × 4 Involutory MDS Matrices.
Input: The finite field GF(2𝑐)∕𝑝(𝑥), and the candidate 

with the corresponding size 𝑠.
Output: A series of 4 × 4 involutions over GF(2𝑐)∕𝑝(𝑥).

1: for each ℎ0, ℎ1, ℎ02 from  do
2: ℎ2 ← ℎ02 + ℎ0
3: ℎ13 ← ℎ02 + 1
4: ℎ3 ← ℎ13 + ℎ1
5: 𝐻4,4 ← had(ℎ0, ℎ1, ℎ2, ℎ3)
6: if 𝐻4,4 is an involutory MDS matrix then
7: Save 𝐻4,4 and calculate (𝐻4,4) and (𝐻4,4).
8: end if
9: end for

The complexity of Algorithm 1 is

𝑇1 = 𝑂(𝑠3).

If we search all matrices over GF(24), the total space is
153 = 3, 375 ≈ 211.7 matrices. And for finite fieldGF(28)∕𝑝(𝑥),
there are 255 non-zeros elements, the search space is 2553 =
16, 581, 375. The whole search space of 4×4 involutory ma-
trices is under the computing ability of a single PC.

3.4.2. Construct 8 × 8 Involutory MDS Matrices
Continue to use the similar method, according to (6),

which illustrates the XOR count of 8 × 8 HMVP, the XOR
count can be minimized if (ℎ0246) + (ℎ1357), (ℎ0) +(ℎ1) and (ℎ04) +(ℎ15) +(ℎ02) +(ℎ13) can be min-
imized.

Due to the constraint
∑7

𝑖=0 ℎ𝑖 = 1, ℎ1357 = ℎ0246+1, we
should search only ℎ0, ℎ1, ℎ02, ℎ13, ℎ04, ℎ15, ℎ0246 from ,
and all elements of 𝐻8,8 can be determined as ℎ2 = ℎ02+ℎ0,
ℎ3 = ℎ13 + ℎ1, ℎ4 = ℎ04 + ℎ0, ℎ5 = ℎ15 + ℎ1, ℎ6 = ℎ0246 +
ℎ02+ℎ4, ℎ7 = ℎ1357+ℎ13+ℎ5 = ℎ0246+1+ℎ13+ℎ5. The
whole construction algorithm is shown in Algorithm 2.

The complexity of Algorithm 2 is

𝑇2 = 𝑂(𝑠7).

For finite field GF(24), the whole search space is 157 =
170, 859, 375. For finite fieldGF(28), the whole search space
is 2557 = 70, 110, 209, 207, 109, 375.

In order to reduce the search space, 𝑠 can be smaller, i.e., can be initialized with the top 𝑠 most lightweight elements,
which will be detailed in Sec. 4.

3.5. Searching for Non-involutory MDS Matrices
For 4×4 non-involutions, we should searchℎ0, ℎ1, ℎ02, ℎ13

from . Elements ℎ2 and ℎ3 can be determined as follows:
ℎ2 = ℎ02 + ℎ0, and ℎ3 = ℎ13 + ℎ1. The whole construction
algorithm of constructing 4 × 4 non-involutory MDS matri-
ces is similar with Algorithm 1. The complexity is 𝑂(𝑠4).

TS Cong et al.: Preprint submitted to Elsevier Page 6 of 10



Construction of Lightweight MDS Matrices

Algorithm 2 Construct 8 × 8 Involutory MDS Matrices.
Input: The finite field GF(2𝑐)∕𝑝(𝑥), and the candidate 

with the corresponding size 𝑠.
Output: A series of 8 × 8 involutions over GF(2𝑐)∕𝑝(𝑥).

1: for each ℎ0, ℎ1, ℎ02, ℎ04, ℎ13, ℎ15, ℎ0246 from  do
2: ℎ2 ← ℎ02 + ℎ0
3: ℎ3 ← ℎ13 + ℎ1
4: ℎ4 ← ℎ04 + ℎ0
5: ℎ5 ← ℎ15 + ℎ1
6: ℎ6 ← ℎ0246 + ℎ0 + ℎ2 + ℎ4
7: ℎ1357 ← ℎ0246 + 1
8: ℎ7 ← ℎ1357 + ℎ1 + ℎ3 + ℎ5
9: 𝐻8,8 ← had(ℎ0, ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6, ℎ7)

10: if 𝐻8,8 is an involutory MDS matrix then
11: Save 𝐻8,8 and calculate (𝐻8,8) and (𝐻8,8).
12: end if
13: end for

For 8 × 8 non-involutions, we should search ℎ0, ℎ1, ℎ02,
ℎ13, ℎ04, ℎ15, ℎ0264, ℎ1357 from . And all elements can be
determined as ℎ2 = ℎ02+ℎ0, ℎ3 = ℎ13+ℎ1, ℎ4 = ℎ04+ℎ0,
ℎ5 = ℎ15+ℎ1, ℎ6 = ℎ0246+ℎ02+ℎ4, ℎ7 = ℎ1357+ℎ13+ℎ5.
The whole construction algorithm is similar as Algorithm 2.
The complexity is 𝑂(𝑠8).

4. Experiment results
We construct MDS matrices over all three finite fields

(GF(24)∕0x13, GF(24)∕0x1f, GF(24)∕0x19).
According to the analysis in Sec. 3.4.1 and Sec. 3.5, the

total search space for 4 × 4 involutory and non-involutory
matrices are 𝑠3 and 𝑠4 respectively, such that the full search
needs 153 ≈ 211.7 and 154 ≈ 215.6, so we set 𝑠 = 15 for 4×4
matrices and search full space.

For 8 × 8 matrices, the total search space are 𝑠7 and 𝑠8
for 8 × 8 involutory and non-involutory matrices, according
to Sec. 3.4.2 and Sec. 3.5 respectively. In order to reduce
the search space, we fix ℎ0 = 1, ℎ1 = 2, such that the search
space for involutory and non-involutory matrices are 𝑠5 and
𝑠6 respectively. For 𝑠 = 15, the search space is 155 ≈ 219.53
and 156 ≈ 223.44, which is within the computing ability of a
single PC. There are lightweight non-involutions while there
is no such involution with this setting. We fix 𝑠 = 10 for
constructing 8 × 8 involutions to select an appropriate value
for ℎ0246. By heuristic attempt, finally we fix ℎ0246 = 10 and
go through ℎ0 and ℎ1. In order to further reduce the search
space, the size 𝑠 is reduced to 10, i.e.,  contains the top 10
most lightweight elements. The values of ℎ0246 and ℎ1357 are
specified, such that the search space for constructing 8 × 8
involutions is 106 ≈ 219.93.

All experimental parameters and results are shown in Ta-
ble 3. Num. is used to record the number of matrices and
Max. and Min. are the maximum and minimum XOR count(𝐻) respectively. The detailed information of the matrices
are as follows.

• 4×4 involutions: We find 1512MDS involutory MDS

matrices, of which the smallest (𝐻) is 66. There
are 8 MDS matrices with XOR count 66 by apply-
ing the HMVP formulae, of which 4 matrices are over
GF(24)∕0x13 and 4 matrices are over GF(24)∕0x19.
The matrices over GF(24)∕0x13 are

had(0x1,0x2,0x9,0xb), had(0x1,0x2,0x8,0xa),
had(0x2,0x1,0xa,0x8), had(0x2,0x1,0xb,0x9).

The matrices over GF(24)∕0x19 are

had(0x1,0xc,0x3,0xf), had(0x1,0xc,0x2,0xe),
had(0xc,0x1,0xe,0x2), had(0xc,0x1,0xf,0x3).

We choose had(0x1,0x2,0x8,0xa) over GF(24)∕0x13 as
the 4 × 4 involutory candidate 𝐼4, and hence we can
obtain (𝐼4) = 58 according to the implementation
in Section A.1.

• 4×4 non-involutions: We find 21168 non-involutory
MDS matrices, of which the smallest(𝐻) is 56. There
are 16 MDS matrices with (𝐻) 56 by applying the
HMVP formulae, of which 8matrices are overGF(24)∕0x13
and 8 matrices are over GF(24)∕0x19.
The matrices over GF(24)∕0x13 are

had(0x1,0x4,0x3,0x5), had(0x1,0x4,0x8,0x5),
had(0x2,0x9,0x3,0xb), had(0x2,0x9,0xb,0x8),
had(0x4,0x1,0x5,0x3), had(0x4,0x1,0x5,0x8),
had(0x9,0x2,0x8,0xb), had(0x9,0x2,0xb,0x3).

The matrices over GF(24)∕0x19 are

had(0x1,0x6,0x3,0x7), had(0x1,0x6,0xd,0x7),
had(0x2,0xc,0x3,0xe), had(0x2,0xc,0xe,0xd),
had(0x6,0x1,0x7,0x3), had(0x6,0x1,0x7,0xd),
had(0xc,0x2,0xd,0xe), had(0xc,0x2,0xe,0x3).

We choose had(0x1,0x4,0x3,0x5) over GF(24)∕0x13 as
the 4×4 non-involutory MDS candidate𝑁4, where we
find 4 shared XOR gates, such that(𝑁4) = 56−4 =
52. The detailed matrix-vector product is shown in
Section A.2.

• 8×8 involutions: We totally find 22 8×8 involutions.
There are 2 matrices over GF(24)∕0x19 cost 344 XOR
gates, which is the smallest (𝐻) of them. They are:

had(0xc,0x5,0xd,0x6,0x8,0x7,0x3,0xf),
had(0xc,0x5,0x8,0x7,0xd,0x6,0x3,0xf).

We choose had(0xc,0x5,0x8,0x7,0xd,0x6,0x3,0xf) as
the 8 × 8 involutory candidate 𝐼8. The corresponding
matrix-vector product is shown in Section A.3. We
find 62 shared XOR gates, such that (𝐼8) = 344 −
62 = 282.

TS Cong et al.: Preprint submitted to Elsevier Page 7 of 10



Construction of Lightweight MDS Matrices

Table 3
Input parameters and experiment results

Parameter GF(24)∕0x13 GF(24)∕0x1f GF(24)∕0x19

Type 𝑘 𝑐 𝑠 Num. Max. Min. Num. Max. Min. Num. Max. Min.

Involution 4 4 15 1512 138 66 1512 120 86 1512 138 66
Non-involution 4 4 15 21168 148 56 21168 120 66 21168 148 56

Involution 8 4 10 4 496 362 12 390 376 6 376 344
Non-involution 8 4 15 96 410 258 96 382 290 96 406 266

Table 4
Comparisons of involutory MDS matrices

Field 𝑘 / / Inv. Ref.

GF(24)∕0x13 4 72 68 ✓ [23]
GF(24)∕0x13 4 64 64 ✓ [33]
GF(24)∕0x13 4 68 63 ✓ [24]
GF(24)∕0x13 4 66 𝟓𝟖 ✓ 𝐼4
GF(24)∕0x19 4 58 58 [33]
GF(24)∕0x13 4 58 58 [24]
GF(24)∕0x19 4 56 𝟓𝟐 𝑁4

GF(24)∕0x13 8 512 424 ✓ [37],[24]
GF(24)∕0x19 8 344 𝟐𝟖𝟐 ✓ 𝐼8
GF(24)∕0x13 8 512 408 [29]
GF(24)∕0x13 8 448 392 [29]
GF(24)∕0x13 8 432 384 [24]
GF(24)∕0x13 8 258 𝟐𝟐𝟖 𝑁8

• 8×8 non-involutions: We find 96 8×8 non-involutions.
2matrices overGF(24)∕0x13 have smallest XOR count(𝐻) = 258:

had(0x1,0x2,0x5,0xe,0x7,0x3,0xa,0xd),
had(0x1,0x2,0x7,0x3,0x5,0xe,0xa,0xd).

We choose had(0x1,0x2,0x5,0xe,0x7,0x3,0xa,0xd) as
the 8 × 8 non-involutory candidate 𝑁8. The corre-
sponding matrix-vector product is shown in Section A.4.
We find 30 shared XOR gates, such that (𝑁8) =
258 − 30 = 228.

We compare our results with the previous work in Ta-
ble 4. All the candidates we choose are more lightweight
than the previous MDS matrices.

5. Conclusion
In this paper we propose efficient algorithms for con-

structing lightweight involutory and non-involutory MDS ma-
trices. We find 4 × 4 and 8 × 8 lightweight MDS matri-
ces with the fewest XOR counts over GF(24) until now. In
this paper, we focus on the construction of lightweight MDS
Hadamard matrices over GF(24). Our algorithms can be ex-
tended to construct MDS matrices over bigger finite field
such as GF(28), which will be our future work.

Acknowledgement
This work was supported by the National Key Research

and Development Program of China (No. 2018YFA0704701).

A. Matrix-vector product of the candidates
A.1. Matrix-vector product of 𝐼4

𝑃0 =
⎛⎜⎜⎝
(𝑣02𝑣

0
3𝑣

3
3)𝑥

3+ (𝑣32𝑣
3
3𝑣

2
3)𝑥

2 + (𝑣22𝑣
2
3𝑣

1
3)𝑥 + (𝑣12𝑣

1
3𝑣

0
2)

(𝑣02𝑣
0
3𝑣

3
2)𝑥

3+ (𝑣32𝑣
3
3𝑣

2
2)𝑥

2 + (𝑣22𝑣
2
3𝑣

1
2)𝑥 + (𝑣13𝑣

1
2𝑣

0
3)

⎞⎟⎟⎠ ,
𝑃1 =

⎛⎜⎜⎝
(𝑣00𝑣

0
1𝑣

3
1)𝑥

3 + (𝑣30𝑣
3
1𝑣

2
1)𝑥

2 + (𝑣20𝑣
2
1𝑣

1
1)𝑥 + (𝑣10𝑣

1
1𝑣

0
0)

(𝑣00𝑣
0
1𝑣

3
0)𝑥

3 + (𝑣30𝑣
3
1𝑣

2
0)𝑥

2 + (𝑣20𝑣
2
1𝑣

1
0)𝑥 + (𝑣10𝑣

1
1𝑣

0
1)

⎞⎟⎟⎠ ,
𝑃2 =

⎛⎜⎜⎝
(𝑣302𝑣

2
13)𝑥

3+(𝑣202𝑣
1
13)𝑥

2 + (𝑣102𝑣
0
13𝑣

3
13)𝑥 + (𝑣002𝑣

3
13)

(𝑣202𝑣
3
13)𝑥

3+(𝑣102𝑣
2
13)𝑥

2 + (𝑣002𝑣
3
02𝑣

1
13)𝑥 + (𝑣302𝑣

0
13)

⎞⎟⎟⎠ .
A.2. Matrix-vector product of 𝑁4

𝑃0 =
⎛⎜⎜⎝
(𝑣22𝑣

3
3)𝑥

3 + (𝑣12𝑣
2
3)𝑥

2 + (𝑣02𝑣
3
2𝑣

1
3)𝑥 + (𝑣32𝑣

0
3)

(𝑣32𝑣
2
3)𝑥

3 + (𝑣22𝑣
1
3)𝑥

2 + (𝑣12𝑣
0
3𝑣

3
3)𝑥 + (𝑣02𝑣

3
3)

⎞⎟⎟⎠ ,
𝑃1 =

⎛⎜⎜⎝
(𝑣20𝑣

3
1)𝑥

3 + (𝑣10𝑣
2
1)𝑥

2 + (𝑣00𝑣
3
0𝑣

1
1)𝑥 + (𝑣30𝑣

0
1)

(𝑣30𝑣
2
1)𝑥

3 + (𝑣20𝑣
1
1)𝑥

2 + (𝑣10𝑣
0
1𝑣

3
1)𝑥 + (𝑣00𝑣

3
1)

⎞⎟⎟⎠ ,
𝑃2 =

⎛⎜⎜⎝
(𝑣302𝑣

1
13)𝑥

3+(𝑣202𝑣
0
13𝑣

3
13)𝑥

2+(𝑣102𝑣
3
13𝑣

2
13)𝑥+(𝑣

0
02𝑣

2
13)

(𝑣102𝑣
3
13)𝑥

3+(𝑣002𝑣
2
13𝑣

3
02)𝑥

2+(𝑣202𝑣
3
02𝑣

1
13)𝑥+(𝑣

2
02𝑣

0
13)

⎞⎟⎟⎠ .
A.3. Matrix-vector product of 𝐼8

𝐴0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(𝑣06𝑣
1
6𝑣

0
7𝑣

1
7𝑣

3
7)𝑥

3 + (𝑣16𝑣
1
7𝑣

3
6𝑣

2
7𝑣

3
7)𝑥

2+

(𝑣06𝑣
0
7𝑣

2
6𝑣

3
6𝑣

3
7𝑣

1
7𝑣

2
7)𝑥 + (𝑣16𝑣

1
7𝑣

0
7𝑣

2
6𝑣

2
7)

(𝑣06𝑣
0
7𝑣

3
6𝑣

1
6𝑣

1
7)𝑥

3 + (𝑣16𝑣
1
7𝑣

2
6𝑣

3
6𝑣

3
7)𝑥

2+

(𝑣06𝑣
0
7𝑣

1
6(𝑣

2
6𝑣

2
7)(𝑣

3
6𝑣

3
7))𝑥 + (𝑣16𝑣

1
7𝑣

0
6𝑣

2
6𝑣

2
7)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

TS Cong et al.: Preprint submitted to Elsevier Page 8 of 10



Construction of Lightweight MDS Matrices

𝐴1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(𝑣04𝑣
1
4𝑣

0
5𝑣

1
5𝑣

3
5)𝑥

3 + (𝑣14𝑣
3
4𝑣

1
5𝑣

2
5𝑣

3
5)𝑥

2+

(𝑣04𝑣
2
4𝑣

3
4𝑣

0
5𝑣

1
5𝑣

2
5𝑣

3
5)𝑥 + (𝑣14(𝑣

0
5𝑣

1
5)(𝑣

2
4𝑣

2
5))

(𝑣04𝑣
1
4𝑣

3
4𝑣

0
5𝑣

1
5)𝑥

3 + (𝑣14𝑣
2
4𝑣

3
4𝑣

1
5𝑣

3
5)𝑥

2+

(𝑣04𝑣
1
4𝑣

0
5𝑣

2
4𝑣

3
4𝑣

2
5𝑣

3
5)𝑥 + (𝑣04𝑣

1
4𝑣

1
5𝑣

2
4𝑣

2
5)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐴2 =
⎛⎜⎜⎝
(𝑣346𝑣

2
57)𝑥

3+(𝑣246𝑣
1
57𝑣

2
57)𝑥

2+(𝑣146𝑣
0
57𝑣

1
57)𝑥+(𝑣

0
46𝑣

0
57𝑣

3
57)

(𝑣246𝑣
3
57)𝑥

3+(𝑣146𝑣
2
46𝑣

2
57)𝑥

2+(𝑣046𝑣
1
46𝑣

1
57)𝑥+(𝑣

0
46𝑣

0
57𝑣

3
46)

⎞⎟⎟⎠ ,

𝐵0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(𝑣02𝑣
1
2𝑣

0
3𝑣

1
3𝑣

3
3)𝑥

3 + (𝑣12𝑣
3
2𝑣

1
3𝑣

3
3𝑣

2
3)𝑥

2+

(𝑣02𝑣
2
2𝑣

3
2𝑣

0
3𝑣

1
3𝑣

3
3𝑣

2
3)𝑥 + (𝑣12𝑣

2
2𝑣

0
3𝑣

2
3𝑣

1
3)

(𝑣02𝑣
1
2𝑣

3
2𝑣

0
3𝑣

1
3)𝑥

3 + (𝑣12(𝑣
2
2𝑣

3
2)(𝑣

1
3𝑣

3
3))𝑥

2+

((𝑣02𝑣
1
2)(𝑣

2
2𝑣

3
2)(𝑣

0
3𝑣

2
3)𝑣

3
3)𝑥 + (𝑣02𝑣

1
2𝑣

2
3𝑣

2
2𝑣

1
3)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(𝑣00𝑣
1
0𝑣

0
1𝑣

1
1𝑣

3
1)𝑥

3 + (𝑣10𝑣
3
0𝑣

1
1𝑣

3
1𝑣

2
1)𝑥

2+

(𝑣00𝑣
2
0𝑣

3
0𝑣

0
1𝑣

1
1𝑣

3
1𝑣

2
1)𝑥 + (𝑣10𝑣

2
0𝑣

1
1𝑣

0
1𝑣

2
1)

(𝑣00𝑣
1
0𝑣

3
0𝑣

0
1𝑣

1
1)𝑥

3 + (𝑣20𝑣
3
0𝑣

1
0𝑣

1
1𝑣

3
1)𝑥

2+

((𝑣00𝑣
1
0)(𝑣

2
0𝑣

3
0)𝑣

3
1𝑣

0
1𝑣

2
1)𝑥 + (𝑣00𝑣

1
0𝑣

2
1𝑣

2
0𝑣

1
1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐵2 =

⎛⎜⎜⎜⎜⎜⎜⎝

(𝑣302𝑣
2
13)𝑥

3 + (𝑣202𝑣
1
13𝑣

2
13)𝑥

2+

(𝑣102𝑣
0
13𝑣

1
13)𝑥 + (𝑣002𝑣

0
13𝑣

3
13)

(𝑣202𝑣
3
13)𝑥

3 + (𝑣102𝑣
2
02𝑣

2
13)𝑥

2+

(𝑣002𝑣
1
02𝑣

1
13)𝑥 + (𝑣002𝑣

0
13𝑣

3
02)

⎞⎟⎟⎟⎟⎟⎟⎠
,

𝐶0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(𝑣126𝑣
2
26𝑣

3
26𝑣

2
37𝑣

3
37)𝑥

3 + (𝑣026𝑣
1
37)𝑥

2+

(𝑣326𝑣
0
37)𝑥 + (𝑣226𝑣

3
26𝑣

3
37)

(𝑣226𝑣
3
26𝑣

1
37𝑣

2
37𝑣

3
37)𝑥

3 + (𝑣126𝑣
0
37)𝑥

2+

(𝑣026𝑣
3
37)𝑥 + (𝑣326𝑣

2
37𝑣

3
37)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐶1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(𝑣104𝑣
2
04𝑣

3
04𝑣

2
15𝑣

3
15)𝑥

3 + (𝑣004𝑣
1
15)𝑥

2+

(𝑣304𝑣
0
15)𝑥 + (𝑣204𝑣

3
04𝑣

3
15)

(𝑣204𝑣
3
04𝑣

1
15𝑣

2
15𝑣

3
15)𝑥

3 + (𝑣104𝑣
0
15)𝑥

2+

(𝑣004𝑣
3
15)𝑥 + (𝑣304𝑣

2
15𝑣

3
15)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐶2 =

⎛⎜⎜⎜⎜⎜⎜⎝

(𝑣00246𝑣
1
1357𝑣

2
1357)𝑥

3 + (𝑣00246𝑣
3
0246𝑣

0
1357𝑣

2
1357)𝑥

2+

(𝑣20246𝑣
1
1357𝑣

3
1357)𝑥 + (𝑣10246𝑣

0
1357𝑣

2
1357𝑣

3
1357)

(𝑣10246𝑣
2
0246𝑣

0
1357)𝑥

3 + (𝑣00246𝑣
2
0246𝑣

0
1357𝑣

3
1357)𝑥

2+

(𝑣10246𝑣
3
0246𝑣

2
1357)𝑥 + (𝑣00246𝑣

2
0246𝑣

3
0246𝑣

1
1357)

⎞⎟⎟⎟⎟⎟⎟⎠
.

A.4. Matrix-vector product of 𝑁8

𝐴0 =
⎛⎜⎜⎝
(𝑣06𝑣

2
7)𝑥

3 + (𝑣36𝑣
1
7)𝑥

2 + (𝑣26𝑣
0
7𝑣

3
7)𝑥 + (𝑣06𝑣

1
6𝑣

3
7)

(𝑣26𝑣
0
7)𝑥

3 + (𝑣16𝑣
3
7)𝑥

2 + (𝑣06𝑣
2
7𝑣

3
6)𝑥 + (𝑣36𝑣

1
7𝑣

0
7)

⎞⎟⎟⎠ ,

𝐴1 =
⎛⎜⎜⎝
(𝑣04𝑣

2
5)𝑥

3 + (𝑣34𝑣
1
5)𝑥

2 + (𝑣24𝑣
0
5𝑣

3
5)𝑥 + (𝑣04𝑣

1
4𝑣

3
5)

(𝑣24𝑣
0
5)𝑥

3 + (𝑣14𝑣
3
5)𝑥

2 + (𝑣04𝑣
2
5𝑣

3
4)𝑥 + (𝑣34𝑣

1
5𝑣

0
5)

⎞⎟⎟⎠ ,

𝐴2 =

⎛⎜⎜⎜⎜⎜⎜⎝

(𝑣146𝑣
2
46𝑣

3
57)𝑥

3 + (𝑣046𝑣
1
46𝑣

3
46𝑣

2
57)𝑥

2+

(𝑣046𝑣
2
46𝑣

1
57)𝑥 + (𝑣246𝑣

3
46𝑣

0
57)

(𝑣346𝑣
2
57𝑣

1
57)𝑥

3 + (𝑣246𝑣
3
57𝑣

0
57𝑣

1
57)𝑥

2+

(𝑣146𝑣
2
57𝑣

0
57)𝑥 + (𝑣046𝑣

2
57𝑣

3
57)

⎞⎟⎟⎟⎟⎟⎟⎠
,

𝐵0 =
⎛⎜⎜⎝
(𝑣02𝑣

2
3)𝑥

3 + (𝑣32𝑣
1
3)𝑥

2 + (𝑣22𝑣
0
3𝑣

3
3)𝑥 + (𝑣02𝑣

1
2𝑣

3
3)

(𝑣22𝑣
0
3)𝑥

3 + (𝑣12𝑣
3
3)𝑥

2 + (𝑣02𝑣
2
3𝑣

3
2)𝑥 + (𝑣32𝑣

1
3𝑣

0
3)

⎞⎟⎟⎠ ,

𝐵1 =
⎛⎜⎜⎝
(𝑣00𝑣

2
1)𝑥

3 + (𝑣30𝑣
1
1)𝑥

2 + (𝑣20𝑣
0
1𝑣

3
1)𝑥 + (𝑣00𝑣

1
0𝑣

3
1)

(𝑣20𝑣
0
1)𝑥

3 + (𝑣10𝑣
3
1)𝑥

2 + (𝑣00𝑣
2
1𝑣

3
0)𝑥 + (𝑣30𝑣

1
1𝑣

0
1)

⎞⎟⎟⎠ ,

𝐵2 =

⎛⎜⎜⎜⎜⎜⎜⎝

(𝑣102𝑣
2
02𝑣

3
13)𝑥

3 + (𝑣002𝑣
1
02𝑣

3
02𝑣

2
13)𝑥

2+

(𝑣002𝑣
2
02𝑣

1
13)𝑥 + (𝑣202𝑣

3
02𝑣

0
13)

(𝑣302𝑣
1
13𝑣

2
13)𝑥

3 + (𝑣202𝑣
1
13𝑣

0
13𝑣

3
13)𝑥

2+

(𝑣102𝑣
2
13𝑣

0
13)𝑥 + (𝑣002𝑣

2
13𝑣

3
13)

⎞⎟⎟⎟⎟⎟⎟⎠
,

𝐶0 =

⎛⎜⎜⎜⎜⎜⎜⎝

(𝑣126𝑣
0
37𝑣

1
37𝑣

3
37)𝑥

3 + (𝑣026𝑣
3
26𝑣

0
37𝑣

2
37)𝑥

2+

(𝑣226𝑣
3
26𝑣

1
37𝑣

3
37)𝑥 + (𝑣226𝑣

1
37𝑣

2
37)

(𝑣026𝑣
3
26𝑣

1
26𝑣

1
37)𝑥

3 + (𝑣226𝑣
0
26𝑣

0
37𝑣

3
37)𝑥

2+

(𝑣126𝑣
3
26𝑣

3
37𝑣

2
37)𝑥 + (𝑣126𝑣

2
26𝑣

2
37)

⎞⎟⎟⎟⎟⎟⎟⎠
,

𝐶1 =

⎛⎜⎜⎜⎜⎜⎜⎝

(𝑣104𝑣
0
15𝑣

1
15𝑣

3
15)𝑥

3 + (𝑣004𝑣
3
04𝑣

0
15𝑣

2
15)𝑥

2+

(𝑣204𝑣
3
04𝑣

1
15𝑣

3
15)𝑥 + (𝑣204𝑣

1
15𝑣

2
15)

(𝑣004𝑣
3
04𝑣

1
04𝑣

1
15)𝑥

3 + (𝑣204𝑣
0
04𝑣

0
15𝑣

3
15)𝑥

2+

(𝑣104𝑣
3
04𝑣

3
15𝑣

2
15)𝑥 + (𝑣104𝑣

2
04𝑣

2
15)

⎞⎟⎟⎟⎟⎟⎟⎠
,

TS Cong et al.: Preprint submitted to Elsevier Page 9 of 10



Construction of Lightweight MDS Matrices

𝐶2 =

⎛⎜⎜⎜⎜⎜⎜⎝

(𝑣30246𝑣
2
1357)𝑥

3 + (𝑣20246𝑣
1
1357)𝑥

2+

(𝑣10246𝑣
0
1357𝑣

3
1357)𝑥 + (𝑣00246𝑣

3
1357)

(𝑣20246𝑣
3
1357)𝑥

3 + (𝑣10246𝑣
2
1357)𝑥

2+

(𝑣00246𝑣
3
0246𝑣

1
1357)𝑥 + (𝑣30246𝑣

0
1357)

⎞⎟⎟⎟⎟⎟⎟⎠
.

References
[1] Steve Babbage and Matthew Dodd. The stream cipher MICKEY 2.0.

ECRYPT Stream Cipher, 2006.
[2] PSLM Barreto and Vincent Rijmen. The Khazad legacy-level block

cipher. Primitive submitted to NESSIE, 97, 2000.
[3] PSLM Barreto and Vincent Rijmen. The Anubis Block Cipher. Sub-

mission to the NESSIE Project, 2000.
[4] Gérard M Baudet, Franco P Preparata, and Jean E Vuillemin. Area?

time optimal vlsi circuits for convolution. IEEE transactions on com-
puters, (7):684–688, 1983.

[5] Christof Beierle, Thorsten Kranz, and Gregor Leander. Lightweight
multiplication in GF(2𝑛) with applications to MDS matrices. interna-
tional cryptology conference, 2016:625–653, 2016.

[6] Daniel J Bernstein. Multidigit multiplication for mathematicians. Ad-
vances in Applied Mathematics, pages 1–19, 2001.

[7] Joan Boyar, Philip Matthews, and René Peralta. On the shortest lin-
ear straight-line program for computing linear forms. In Interna-
tional Symposium on Mathematical Foundations of Computer Sci-
ence, pages 168–179. Springer, 2008.

[8] Ting Cui and Chenhui Jin. Construction of involution cauchy-
hadamard type MDS matrices. Journal of Electronics Information
& Technology, 32:500–503, 02 2010.

[9] Ting Cui, Chenhui Jin, and Zhiyin Kong. On compact cauchy ma-
trices for substitution-permutation networks. IEEE Transactions on
Computers, 64(7):2098–2102, 2014.

[10] Joan Daemen, Lars Knudsen, and Vincent Rijmen. The block ci-
pher Square. In International Workshop on Fast Software Encryption,
1997.

[11] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the
advanced encryption standard. Springer Science & Business Media,
2013.

[12] Watanabe Dai, Soichi Furuya, Hirotaka Yoshida, Kazuo Takaragi,
and Bart Preneel. A New Keystream Generator MUGI. 2002.

[13] Christophe De Cannière. Trivium: A stream cipher construction in-
spired by block cipher design principles. In International Conference
on Information Security, pages 171–186. Springer, 2006.

[14] Haining Fan and M Anwar Hasan. A new approach to subquadratic
space complexity parallel multipliers for extended binary fields. IEEE
Transactions on Computers, 56(2):224–233, 2007.

[15] Haining Fan and M Anwar Hasan. A survey of some recent bit-parallel
GF (2n) multipliers. Finite Fields and Their Applications, 32:5–43,
2015.

[16] Martin Fürer and Kurt Mehlhorn. At 2-optimal Galois field multi-
plier for vlsi. In Aegean Workshop on Computing, pages 217–225.
Springer, 1986.

[17] Praveen Gauravaram, Lars R Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S Thom-
sen. Grøstl-a SHA-3 candidate. In Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

[18] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON fam-
ily of lightweight hash functions. In Annual Cryptology Conference,
pages 222–239. Springer, 2011.

[19] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J B Rob-
shaw. The LED block cipher. cryptographic hardware and embedded
systems, 2012:326–341, 2011.

[20] Kishan Chand Gupta and Indranil Ghosh Ray. On constructions of cir-
culant MDS matrices for lightweight cryptography. In International

Conference on Information Security Practice and Experience, pages
564–576. Springer, 2014.

[21] Alper Halbutogullari and Çetin K Koç. Mastrovito multiplier for
general irreducible polynomials. IEEE Transactions on Computers,
49(5):503–518, 2000.

[22] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream
cipher for constrained environments. IJWMC, 2(1):86–93, 2007.

[23] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik v1. 3. CAESAR
Round, 2, 2015.

[24] Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux.
Optimizing implementations of lightweight building blocks. IACR
Transactions on Symmetric Cryptology, pages 130–168, 2017.

[25] Pascal Junod and Serge Vaudenay. Fox: a new family of block ciphers.
Lecture Notes in Computer Science, 3357:131–146, 2004.

[26] Anatolii Karatsuba. Multiplication of multidigit numbers on au-
tomata. In Soviet physics doklady, volume 7, pages 595–596, 1963.

[27] Khoongming Khoo, Thomas Peyrin, Axel Y Poschmann, and Huihui
Yap. Foam: searching for hardware-optimal spn structures and com-
ponents with a fair comparison. In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pages 433–450. Springer,
2014.

[28] Lukas Kölsch. Xor-counts and lightweight multiplication with fixed
elements in binary finite fields. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages
285–312. Springer, 2019.

[29] Paulo S L M and Vincent Rijmen. The whirlpool hashing function.
the web conference, 2003.

[30] Christophe Negre. Quadrinomial modular arithmetic using modi-
fied polynomial basis. In International Conference on Information
Technology: Coding and Computing (ITCC’05)-Volume II, volume 1,
pages 550–555. IEEE, 2005.

[31] Arash Reyhani-Masoleh and M Anwarul Hasan. A new construction
of massey-omura parallel multiplier over GF (2𝑚). IEEE Transactions
on Computers, 51(5):511–520, 2002.

[32] Vincent Rijmen, Joan Daemen, Bart Preneel, Antoon Bosselaers, and
Erik De Win. The cipher shark. In International Workshop on Fast
Software Encryption, 1996.

[33] Sumanta Sarkar and Habeeb Syed. Lightweight diffusion layer: Im-
portance of toeplitz matrices. IACR Transactions on Symmetric Cryp-
tology, pages 95–113, 2016.

[34] Erkay Savaš, Alexandre F Tenca, and Cetin K Koç. A scalable and
unified multiplier architecture for finite fields GF (p) and GF (2𝑚). In
International Workshop on Cryptographic Hardware and Embedded
Systems, pages 277–292. Springer, 2000.

[35] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris
Hall, and Niels Ferguson. The Twofish encryption algorithm: a 128-
bit block cipher. 1999.

[36] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu
Iwata. The 128-bit blockcipher CLEFIA. In International Conference
on Fast Software Encryption, 2007.

[37] Siang Meng Sim, Khoongming Khoo, Frederique E Oggier, and
Thomas Peyrin. Lightweight MDS involution matrices. fast software
encryption, 2015:471–493, 2015.

TS Cong et al.: Preprint submitted to Elsevier Page 10 of 10


