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Abstract. In this paper, we propose a novel lattice-based group key ex-
change protocol with dynamic membership. Our protocol is constructed
by generalizing Dutta-Barua protocol to RLWE setting, inspired by Apon
et al.’s recent paper in PQCrypto 2019.
We describe our (static) group key exchange protocol from Apon et al.’s
paper by modifying its third round and computation step. Then, we
present both authenticated and dynamic group key exchange protocol
with Join and Leave algorithms. The number of rounds for authenticated
group key exchange remains the same as unauthenticated one.
Our protocol also supports the scalable property so that the number of
rounds does not change depending on the number of group participants.
By assuming the hardness of RLWE assumption and unforgeability of
digital signatures, we give a full security proof for (un-)authenticated
(dynamic) group key exchange protocols.

Keywords: Dynamic group key exchange · authenticated key exchange
· RLWE · constant-round group key exchange

1 Introduction

An authenticated key exchange (AKE) protocol is needed over an insecure chan-
nel, to prevent any attacks in the presence of active adversaries, to read trans-
mitted messages during a secure communication between two parties over the
network. As network topology becomes more complex, we require a secure com-
munication between multiple parties instead of two parties. A group key ex-
change (GKE) protocol is a cryptographic primitive that establishes a common
group secret key in which a shared secret is derived from group members There
have been many works on GKE protocols [2, 5, 9–13,18,22–24,30–32,34].

On the other hand, as quantum computer becomes realistic, National In-
stitute of Standards and Technology (NIST) has been selecting standard post-
quantum cryptographic algorithms like key exchange, encryption, and signature
schemes. Unfortunately, group (authenticated) key exchange protocol is out-of-
scope in this competition. Beyond NIST post-quantum algorithm standardiza-
tion, there are a few work on post-quantum GKE protocols. Ding et al. [17]
constructed the first lattice-based GKE protocol and Yang et al. [34] and Apon
et al. [2] suggested constant-round lattice-based GKE protocols, respectively.
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But, to the best of our knowledge, there exists no post-quantum dynamic
GKE without trusted authority that involves in the process of generating com-
mon secret key, in the literature.

1.1 Our Contributions

In this paper, we give a constant-round dynamic GKE protocol based on hard-
ness of RLWE assumption [26] where a party can join or leave the group. We
extend two-round Dutta-Barua protocol [18] into RLWE setting.

Given a group G of prime order q and a generator g ∈ G, we briefly describe
Burmester-Desmedt and Dutta-Barua protocols as below:

1. (Round 1) Each party Pi chooses “uniform” value ri ∈ Zq and broadcasts
zi = gri to all other parties.

2. (Round 2) Each party Pi broadcastsXi = (zi+1/zi−1)
ri to all other parties.

3. (Key Computation)
– Burmester-Desmedt protocol:
bi = zi−1

Nri ·Xi
N−1 ·Xi+1

N−2 · · ·Xi+N−2.
– Dutta-Barua protocol:

Each party Pi calculate Yi+1 = Xi+1zi+1
ri and Yi+j = Xi+jYi+(j−1) for

j = 2 to N − 1, then bi =
∏N−1
j=0 Yi+j .

Since Dutta-Barua protocol is a modification from Burmester-Desmedt pro-
tocol [12,13,22] used in Apon et al.’s recent work [2], our unauthenticated GKE
protocol in static setting is somewhat similar to Apon et al.’s protocol.

We apply this relationship into Apon et al.’s protocol. Given a ring Rq and
a ring element a← Rq, we sketch our unauthenticated GKE protocol compared
to Apon et al.’s as below:

1. (Round 1) Each party Pi chooses ‘small’ secret value si ∈ Rq and ‘small’
noise ei ∈ Rq and broadcasts zi = asi + ei to all other parties.

2. (Round 2) Each party Pi chooses another ‘small’ noise e′i ∈ Rq and broad-
casts Xi = (zi+1 − zi−1) si + e′i to all other parties.

3. (Key Computation)
– Apon et al.’s protocol: bi = Nzi−1si + (N − 1)Xi + (N − 2)Xi+1 + · · ·+
Xi+N−2.

– Our protocol: Each party Pi calculate Yi = Xi + zi−1si and Yi+j =

Xi+j + Yi+(j−1) for j = 1 to N − 1, then bi =
∑N−1
j=0 Yi+j .

Hence, we follow security analysis of Apon et al.’s protocol with slight mod-
ification in the presence of the passive adversary. We adopt “unpredictability-
based” security analysis (i.e., given the transcript, it is infeasible to determine
the real session key) instead of “indistinguishability-based” one (i.e., given the
transcript, the real session key should be indistinguishable from random) to
apply the characteristic of bounded Rényi divergence.

But instead of applying Katz-Yung compiler [22] for authenticated GKE with
active adversary, we adopt the security model of Bresson et al. [9] to give a full
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security analysis of the dynamic case. Hence, our authenticated GKE protocol
also achieves forward secrecy, almost fully symmetric and being constant-round
but we do not require one more round to achieve AKE security, compared to
Apon et al.’s protocol.

1.2 Outline of the Paper

The rest of this paper is organized as follows. First, we review the previous work
on lattice-based key exchange protocols, constant-round group key exchange,
and security models of group key exchange in Chapter 2. We define the basic
terms and security model for our protocol in Chapters 3 and 4. Then, we give
a design and security analysis of our (authenticated) GKE protocol in Chapters
5 and 6, respectively. In Chapter 7, We compare our protocol with the previous
lattice-based GKE protocols and finally, we give a conclusion and future work
in Chapter 8.

2 Previous Work

2.1 Constant-round Group Key Exchange

Burmester and Desmedt [12] proposed the first constant-round GKE protocol.
In [12], the indices of users are organized logically in a ring structure and the
session key is generated by a cyclic function with the contributions of all users.
Just and Vaudenay [?] proposed an authenticated GKE protocol by combining
the idea from [12] and a public key signature scheme. Compared with the protocol
of [12], this protocol is more efficient with respect to communication bandwidth
while requires four-round to generate the session key.

Katz and Yung [22] brought forward a scalable compiler that converts any
unauthenticated GKA protocol into an authenticated key exchange (AKE) se-
curity protocol by adding one round to the original protocol. An authenticated
GKA protocol is proposed via utilizing the compiler to the protocol of [12], while
each user is required to perform additional signing and verification operations.

Dutta and Barua [?,18] proposed an two-round authenticated GKE protocol,
which is constructed by combining a variant of [12] and a signature scheme mod-
ified from [22]. Besides, this protocol supports dynamic membership updating.
Compared to the [22] protocol, this protocol is more efficient in communication
rounds and computation overhead.

For dynamic GKE, Kim et al. [?] brought forward a two-round authenticated
GKE protocol for the ad-hoc network, in which no trustee is involved. In the
protocol [?], the XOR operation is introduced into the generation of session key
to reduce the computational cost of each group member. Besides, this protocol
supports dynamic membership updating, in which the computation and com-
munication overhead of group members rely on the amount of joining/leaving
members rather than relying on the cardinality of group members.
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Dutta and Barua [?, 18] also proposed a dynamic extension. In the joining
algorithm, the original members are considered to be a member with a pre-
calculated value, which is generated in the previous session. The new session key
is calculated with the input of the pre-calculated value and the contributions of
the joining members. In the leaving algorithm, the remaining members cooperate
to update the membership and the contributions of the new joining members.
The new session key is calculated with the input of the pre-calculated values in
the previous session and the updated contributions. Compared to the protocol
[?], the dynamic version of [?, 18] is proven secure under the standard model.
Besides, each group member in this protocol is capable of detecting the presence
of the malicious insiders without recognizing who behave improperly.

2.2 Security Model of Group Key Exchange

Bresson et al. [11] suggested a first formal security model called BCPQ model for
authenticated GKE protocols in static setting. In the paper, they defined AKE
security and Mutual authentication (MA) security. AKE security guarantees that
the active adversary who does not participate in the session cannot distinguish
the common secret key from a random number. Active adversary can control
underlying communication channel by eavesdropping and modifying messages.
MA security ensures that only legitimate participants can compute identical
session group secret key. After that, Katz and Yung [22] revised this model to
compile unauthenticated GKE protocol into authenticated GKE protocol. They
proved the security of Burmester-Desmedt protocol [12] in the presence of a
passive adversary who can only eavesdrop messages and make a compiler from
GKE to authenticated GKE with an active adversary. After that, Katz and
Shin [21] proposed another compiler which can transform an implicitly secure
authenticated GKE into a secure authenticated GKE resistant to insider attacks,
in the universally-composable (UC) model.

For dynamic setting, Bresson et al. [9,10] suggested two formal security mod-
els for authenticated GKE protocols depending on the power of corruption and
the presence of MA security. Compared to weak corruption model, with strong
corruption model, the adversary A is capable of revealing the long-term key as
well as the short-term ephemeral secrets of the protocol instance. Moreover, the
security notion of forward secrecy is also defined in this security model.

2.3 Lattice-based Key Exchange

By modifying Diffie-Hellman key exchange protocol [15] into RLWE setting,
Ding et al. [17] suggested the first lattice-based key exchange protocol in 2012.
Following this research, numerous work [1–3,6–8,14,16,19,27–29,34,35] studied
on constructing key exchange protocols based on lattice but most of them are
focusing on two-party key exchange.

For lattice-based GKE protocol, Ding et al. [15] suggested the natural exten-
sion to GKE protocol based on their key exchange protocol using the GKE com-
piler by Bresson et al. [9]. After that, Yang et al. [34] proposed the first provably-
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secure (authenticated) GKE protocol based on the hardness of LWE/RLWE as-
sumption and security property of secure sketch in the random oracle model. For
secure sketch, trusted authority is necessary and this protocol is not contributory.

Recently, Apon et al. [2] proposed the first constant-round authenticated
GKE protocol based on the hardness of RLWE assumption, without trusted
third party. This protocol uses Katz-Yung compiler for authentication and it is
also contributory since they adopt the protocol in [12].

3 Preliminaries

3.1 Notation

Let Z be the set of integers and [N ] = {0, 1, 2, · · ·N − 1}. For a set A, xi ← A
denotes a uniformly random sampling of xi ∈ A. Let χ(E) stand for a probability
of a set E of events occurs under a distribution χ. We set Supp(χ) = {ε : χ(ε) 6=
0} and let Ē be the complement of an event set E. Let f(a, b) be a function f
on a and b. We say a function f is negligible when f = O(n−c) for all c > 0.

Given a polynomial p, (p)j denotes the j-th coefficient of p. We use log(x) and
exp(x) to denote log2(x) and ex, respectively. We denote Pi and P [0, 1, · · · , k] =
{P0, P1, · · · , Pk} for i-th party of a protocol and an array of parties, respectively.

3.2 Ring Learning with Errors

Informally, the decisional Ring Learning with Errors (RLWE) problem [26] is
that given m independent samples in Rq×Rq which is defined below, distinguish
each sample is either a noisy product with a secret element s of Rq or uniformly
random element of Rq. More precisely, RLWE problem is defined as follows:
given a tuple (R, q, χ, l) where R = Z[x]/(f(x)) is a polynomial ring for an
irreducible polynomial f(x), q is a positive integer modulus defining a quotient
ring Rq = R/qR, χ = (χs;χe) is a pair of noise distributions over Rq, and l is
the number of samples given to the adversary, distinguish each sample is either
(1) (a, as + e) ∈ Rq × Rq for some uniform element a ← Rq, secret key s ← χs
and error e← χe or (2) uniformly sampled from Rq ×Rq.

We let AdvRLWE
n,q,χs,χe,l(B) denote the advantage of algorithm B in distinguishing

these two cases, and defining AdvRLWE
n,q,χs,χe,l(t) to be the maximum advantage

of any algorithm running in time t. If χ = χs = χe, we write AdvRLWE
n,q,χ,l for

simplicity.

3.3 Rényi Divergence

For two discrete probability distributions P and Q with Supp(P ) ⊆ Supp(Q),
their Rényi divergence is defined as

RD2(P ||Q) =
∑

x∈Supp(P )

P (x)2

Q(x)
.
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Rényi divergence measures closeness of two probability distributions and it is
widely used in cryptographic research [4, 25, 26, 33]. We introduce some impor-
tant results related to Rényi divergence that can be used in our protocol.

Proposition 1. [4] For discrete distributions P and Q with Supp(P ) ⊆ Supp(Q),
let E ⊆ Supp(Q) be an arbitrary event. We have

Q(E) ≥ P (E)2/RD2(P‖Q)

.
Roughly, the proposition says that if RD2(P‖Q) is bounded by some polyno-

mial, then any event set E that occurs with negligible probability Q(E) under Q
also occurs with negligible probability P (E) under P .

Lemma 1. [4] Let m, q, λ ∈ Z and fix a bound βRényi and σ with βRényi < σ < q.
Let e ∈ Z satisfying |e| ≤ βRényi. Then

RD2((e+DZ,σ)m||Dm
Z,σ) ≤ exp(2πm(βRényi/σ)2)

where χm means that we sample m times independently from the distribution χ.
Moreover, if we take σ = Ω(βRényi

√
m/ log λ) with security parameter λ, we can

deduce RD2((e+DZ,σ)m||Dm
Z,σ) ≤ poly(λ).

3.4 Generic Key Reconciliation Algorithm

The concept of key reconciliation was first introduced by Ding et al. [17] to handle
error between two approximately agreed ring elements in their lattice-based key
exchange protocol. Then, it has been used in several works on lattice-based two-
party key exchange protocol [1, 6, 8, 27,35].

From Apon et al.’s paper [2], we describe a generic key reconciliation algo-
rithm which is performed between two-party in one-round.

A key reconciliation KeyRec = (recMsg, recKey) allows two parties to derive
the same key from approximately agreed ring elements. One of two participants
runs the first algorithm recMsg taking the security parameter λ and a ring el-
ement b ∈ Rq and outputs rec and a key k ∈ {0, 1}λ. The other participant
runs recKey taking rec and a ring element b′ ∈ Rq and outputs a key value
k′ ∈ {0, 1}λ.

We say a key exchange protocol works correctly when two participants have
the same key (i.e. k = k′). To hold this equality, b and b′ have to be sufficiently
close. Especially, if b− b′ are bounded by some value βRec and two participants
run KeyRec algorithm, then they share the same key except with negligible prob-
ability.

Security is defined by the indistinguishability between a key k, result of key
exchange, and uniformly random value. Formally, an attacker A is computation-
ally infeasible to distinguish two distribution,

{(rec, k) : b← Rq; (rec, k)← recMsg(1λ, b)}λ∈N,
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{(rec, k′) : b← Rq; (rec, k)← recMsg(1λ, b); k′ ← {0, 1}λ}λ∈N
For a fixed value of λ, we denote the advantage of adversary A in distin-

guishing these two distributions by AdvKeyRec(A), and the maximum advantage
of any such adversary running in time t by AdvKeyRec(t).

4 Security Model

We describe the adversary model of Bresson et al. [9]. This model is suitable in
our protocol since it covers authenticated GKE with dynamic setting.

Let P = P [0, 1, · · · , N − 1] be a set of N parties. Any subset of P wishes
to establish a session key. We identify the execution of protocols for (authenti-
cated) GKE or Join/Leave for inclusion/exclusion of a party or a set of parties
as different sessions. We assume adversary never participates as a party in the
protocol.

This adversary model allows concurrent execution of the protocol. The in-
teraction between the adversary A and the protocol participants happens via
oracle queries only. We denote a set of session identity and partner identity
as sidiP and pidiP , respectively. For a party (Uj , ij) ∈ S, we set sidijUj = S =

{(U0, i0), · · · , (Ul−1, il−1)} and pidijUj = U [0, 1, · · · , l − 1] when U [0, 1, · · · , l − 1]
wish to agree a common secret key.

We assume that the adversary has full control over all communications in the
network. All information that the adversary gets is written in a transcript since
a transcript consists of all public information flowing across the network. The
following oracles model adversary’s interaction with the protocol participants:

– Send(U, i,m): This oracle models an active attack where the adversary has
full control on the communication. The output is the reply by (U, i) upon the
receipt of message m. The adversary can initiate the protocol with partners
U [0, 1, · · · , l − 1] where l ≤ N , by invoking Send(U, i, U [0, 1, · · · , l − 1]).

– Execute(S): This oracle models passive attacks where the attacker eaves-
drops on honest execution of the protocol and outputs the transcript of the
execution. A transcript consists of all messages exchanged.

– Join(S, S1): This oracle models the addition of a set of party instances S1 in
the group S, where all parties in S or S1 are in P. For S, Execute oracle has
already been queried. The output is the transcript generated by the honest
execution of algorithm Join. If Execute(S) is not preprocessed, the adversary
gets no output.

– Leave(S, S2): This oracle models the removal of a set of party instances S2 ⊆
S from the group S where all parties are in P. Similaar to Join(S, S1), if
Execute(S) is not preprocessed, the adversary gets no output. Otherwise,
algorithm Leave is invoked. The adversary obtains the transcript from the
honest execution of algorithm Leave.

– Reveal(U, i): This oracle models the misuse of the session keys, i.e known
session key attack. This query outputs session key skiU .
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– Corrupt(U): This oracle models (perfect) forward secrecy. It outputs the
long-term secret key of player U . The adversary model that we adopt is
a weak-corruption model where ephemeral keys or internal states of protocol
participants are not corrupted.

– Test(U, i): We can query this oracle only once during the adversary’s exe-
cution. A bit b ∈ {0, 1} is chosen uniformly at random. The adversary gets
sk if b = 1 and a random session key sk′ if b = 0. This oracle checks the
adversary’s ability to distinguish a real session key from random.

An adversary, which can access Execute, Join, Leave, Reveal, Corrupt and Test
oracles, is considered as “passive” while an “active” adversary has full access to
above-mentioned oracles including Send oracle. (For static case, Join or Leave
queries doesn’t need to be considered.)

The adversary can ask Send, Execute, Join, Leave, Reveal and Corrupt queries
several times, but Test query is asked only once for a fresh instance. We say that
an instance (U, i) is fresh if none of the following occurs:

(1) the adversary queried Reveal(U, i) or Reveal(U ′, j) with U ′ ∈ pidiU ,
(2) the adversary queried Corrupt(U ′) (with U ′ ∈ pidiU ) before a query of the

form Send(U, i, ?) or Send(U ′, j, ?) where U ′ ∈ pidiU .

Adversary outputs a guess b′. Adversary wins the game if b = b′ where b is chosen
bit from Test oracle.

Let Succ denote the event that the adversary A wins the game for a protocol
XP. We define AdvA,XP := |2 ·Pr[Succ]− 1| to be the advantage of the adversary
A in attacking the protocol XP.

The protocol XP provides secure unauthenticated/authenticated GKE (KE/AKE)
security if there is no polynomial time passive/active adversary with non-negligible
advantage, respectively.

Let t be the running time for adversary and qE , qJ , qL, qS be the number
of queries to Execute, Join, Leave, Send oracles, respectively. AdvKE

XP(t, qE) is
the maximum advantage of any passive adversary attacking protocol XP and
AdvAKE

XP (t, qE , qS) and AdvAKE
XP (t, qE , qJ , qL, qS) are the maximum advantage of

any active adversary attacking protocol XP.

5 Dynamic (Authenticated) Group Key Exchange

In this section, we describe our (authenticated) GKE protocol with static and
dynamic membership.

As we mentioned earlier, for the basic static setting, we follow the very similar
procedure as Apon et al.’s scheme. We run KeyRec = (recMsg, recKey) as a
subroutine. We also consider two security parameters for security analysis, λ
and ρ. λ is used for security proof and ρ is used for correctness check.



Constant-round Dynamic GKE from RLWE 9

Algorithm 1: STUG(P [0, 1, · · · , N − 1] , a,H, σ1, σ2)

(Round 1) For each party Pi for i = 0 to N − 1, do the following in parallel.
1. Computes zi = asi + ei where si, ei ← χσ1 ;
2. Broadcasts zi;

(Round 2) For i = 0 to N − 1, do the following in parallel.

1. If i = 0, party P0 samples e′0 ← χσ2 and otherwise, party Pi samples e′i ← χσ1 ;
2. Each party Pi broadcasts Xi = (zi+1 − zi−1) si + e′i;

(Round 3) For party PN−1 only.

1. Samples e′′N−1 ← χσ1 and computes YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;
2. For j = 1 to N − 1, computes YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);
3. Calculates bN−1 =

∑N−1
j=0 YN−1,(N−1)+j ;

4. Runs recMsg() to output (rec, kN−1) = recMsg(bN−1);
5. Broadcasts rec and gets session key as skN−1 = H(kN−1);

(Key Computation) For party Pi (i 6= N − 1).

1. Computes Yi,i = Xi + zi−1si;
2. For j = 1 to N − 1, computes Yi,i+j = Xi+j + Yi,i+(j−1);
3. bi =

∑N−1
j=0 Yi,i+j ;

4. Runs recKey() to output ki = recKey (bi, rec) and
gets session key as ski = H(ki);

5.1 Unauthenticated Group Key Exchange

In the static setting, given Rq = Zq [x] /(xn+1) and a← Rq, all parties calculate
the partial numbers Xi and Yi,j and agree on “close” values b0 ≈ b1 ≈ · · · ≈ bN−1
after the second round. Then, party PN−1 runs recMsg algorithm from KeyRec
to allow all parties to get a common value k = k0 = k1 = · · · = kN−1.

Since we only show that k is difficult to compute for a passive adversary in
the security proof, we hash k using random oracle H to get the session group
secret key sk, which is indistinguishable from random. More detail description
of unauthenticated GKE is given in Algorithm 1.

5.2 Authenticated Group Key Exchange

To authenticate the unauthenticated one in Section 5.1, we use a digital signature
scheme DSig = (K,S,V) where K is the key generation algorithm with output
(ski, pki) for each party, S outputs a signature δi for a messagemi, and V outputs
whether the input signature is valid or not.

Following Dutta-Barua protocol [18], at the start of the session, Pi doesn’t
need to know the entire session identity set siddiPi . As protocol proceeds, we build
this set from partial session identity set psiddiPi . Initially, psiddiPi = {(Pi, di)} and



10 R. Choi et al.

after completing the procedure, it becomes the full session identity set siddiPi . We
assume that all parties know its partner identity piddiPi . More detail description
of authenticated GKE is given in Algorithm 2.

Algorithm 2: STAG(P [0, 1, · · · , N − 1] , a,H,S, σ1, σ2)

(Round 1) For each party Pi for i = 0 to N − 1, do the following in parallel.
1. Sets partial session-identity psiddiPi = {Pi, di};
2. Computes zi = asi + ei where si, ei ← χσ1 ;
3. Sets mi = Pi | 1 | zi and δi = S(mi);
4. Broadcasts mi | δi;

(Round 2) For each party Pi for i = 0 to N − 1, do the following in parallel.

1. Verifies δi−1 of mi−1 and δi+1 of mi+1 and proceeds only if both signatures are
valid (Otherwise, aborts);

2. If i = 0, party P0 samples e′0 ← χσ2 and otherwise, party Pi samples e′i ← χσ1 ;
3. Computes Xi = (zi+1 − zi−1) si + e′i;
4. Sets m′i = Pi | 2 | Xi | di and δ′i = S(m′i) and broadcasts m′i | δ′i;

(Round 3) For party PN−1 only.

1. Verifies all δ′j of m′j where j 6= N − 1 and proceeds only if both signatures are
valid (Otherwise, aborts);

2. Extracts dj from m′j and sets psiddN−1

PN−1
= psiddN−1

PN−1

⋃
{(Pj , dj)};

3. Samples e′′N−1 ← χσ1 and computes YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;
4. For j = 1 to N − 1, computes YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);
5. Calculates bN−1 =

∑N−1
j=0 YN−1,(N−1)+j ;

6. Runs recMsg(·) to output (rec, kN−1) = recMsg(bN−1);
7. Broadcasts rec and gets session key as skN−1 = H(kN−1);

(Key Computation) For party Pi (i 6= N − 1).

1. Verifies all δ′j of m′j where j 6= i and proceeds only
if both signatures are valid (Otherwise, aborts);

2. Extracts dj from m′j and sets psiddiPi = psiddiPi
⋃
{(Pj , dj)};

3. Computes Yi,i = Xi + zi−1si;
4. For j = 1 to N − 1, computes Yi,i+j = Xi+j + Yi,i+(j−1);
5. bi =

∑N−1
j=0 Yi,i+j ;

6. Runs recKey() to output ki = recKey (bi, rec) and
gets session key as ski = H(ki);

5.3 Dynamic Group Key Exchange

Join Algorithm In the dynamic setting, we require another hash function H1

that outputs a value from the distribution χσ1
. This function is required since
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we cannot apply the original common secret sk as a secret key of U1 = P1 due
to its type difference. Instead, we apply H1(sk) as a secret key of U1 = P1.

If we assume that there are M parties in the set P [N,N + 1, · · · , N +M −1]
who wish to join the group P [0, 1, · · · , N − 1] who already shared the common
secret key sk, we make a new ring that consists of three parties P0, P1, PN−1
from P [0, 1, · · · , N −1] and all parties from the set P [N,N + 1, · · · , N +M −1].
P1 chooses the original session key sk as his ephemeral key s1.

For authenticated version A.Join algorithm, we consider partial session-identity
as STAG algorithm but we assume that psiddiPi = psiddiPi

⋃
{{(Pj , dj) | j = 1 to N−

2} if Pi(i = 0, 1, or N ≤ i ≤ N +M − 1) verifies δ
′
1 of m′1. We assume this since

the ephemeral keys s1 and z1 are from the session key sk among the group
P [0, 1, · · · , N − 1].

Signature generation and verification happen by switching STUG algorithm
into STAG algorithm, also these operations happen in Round 2 of A.Join algo-
rithm when z1, z3, and Xi are delivered to group P [2, · · · , N − 2].

By modifying the concept of psiddiPi slightly, we can achieve a common session
identity siddiPi = {(Pj , dj) | j ∈ [N +M ]} for parties in P [0, 1, · · · , N + M − 1]

while Dutta-Barua only provides a common session identity siddiUi = {(Uj , dj) |
j ∈

[
N
]
} for parties in U [0, 1, · · · , N − 1] where N = M + 3.

Algorithm 3: U.Join(P [0, 1, · · · , N − 1] , P [N,N + 1, · · · , N +M − 1])

(Round 1) Rearrange the order with a new array of N =M + 3 parties
1. U0 = P0, U1 = P1, U2 = PN−1, s0 = s0, s1 = H1(sk), s2 = sN−1 and for

1 ≤ i ≤ N − 3, Ui+3 = PN−1+i;
2. Let U [0, 1, · · · , N − 1] be a new ring that we run in (Round 2);

(Round 2) Run STUG algorithm.

1. Group U [0, 1, · · · , N − 1] runs STUG;
2. Ui calculates zi during the 1st round of STUG and broadcasts it;
3. U0 and U2 during 1st round of STUG additionally sends z1 and z3 to all parties

in P [2, · · · , N − 2];
4. Ui calculates Xi during the 2nd round of STUG sends Xi to all parties in

P [0, · · · , N +M − 1];
5. After the 3rd round of STUG, UN−1 sends rec to all parties in

P [0, · · · , N +M − 1];

(Key Computation) For party Pi (2 ≤ i ≤ N − 2).

1. Computes Y i,2 = X2 + z2s1 = X2 + z2 · H1(sk);
2. For j = 1 to N − 2, computes Y i,2+j = X2+j + Y i,2+(j−1);
3. b′i =

∑N−1
j=0 Y i,j ;

4. Runs recKey(·, ·) to output ki = recKey
(
bi, rec

)
and gets session key as

ski = H(ki);
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Leave Algorithm Let the set of parties Pl1 , Pl2 , · · ·PlM want to leave the
group P [0, 1, · · · , N − 1]. Then, the new group becomes P ′ = P [0, · · · , l1 − L]∪
P [l1 +R, · · · , l2 − L]∪· · ·∪P [lM +R, · · · , N − 1]. Instead of li−1 and li+1, we
use li−L and li +R since there might be consecutive parties who want to leave
the group P [0, 1, · · · , N − 1]. e.g., if Pl, Pl−1, Pl−2, · · · , Pl−(j−1) are consecutive
parties who want to leave, then Pl−L = Pl−j .

After making a new group P ′, we simply relabel orders to make a new array
U [0, 1, · · · , N −M − 1] of the parties in the protocol and run U.Leave algorithm
for U [0, 1, · · · , N −M − 1] based on the remaining parties and run STUG al-
gorithm. For authenticated version A.Leave, we simply apply STAG algorithm
instead of STUG algorithm.

Our dynamic unauthenticated and authenticated GKE protocols DRUG and
DRAG consist of three algorithms, (STUG, U.Join,U.Leave) and (STAG, A.Join,A.Leave)
as a subroutine, respectively.

6 Security Analysis

In this section, we check the correctness of our protocol and give a full security
proof using the security model by Bresson et al. [9]. Our proof techniques is
based on Apon et al.’s protocol [2] and Dutta-Barua protocol [18].

In this section, we check the correctness of our protocol and give a full security
proof using the security model by Bresson et al. [9]. Our proof techniques is based
on Apon et al.’s protocol [2] and Dutta-Barua protocol [18].

6.1 Correctness Proof

In Theorem 1, we give a condition that our GKE is correct. Most part of our
correctness proof follow Apon et al.’s correctness proof but there are some mod-
ification on error bound.

Note that correctness of GKE protocol is all parties agree on the same secret
key. Lemmas 2 and 3 and its proofs are from Apon et al.’s paper [2].

Lemma 2. [2] Given si for all i defined in the group key exchange protocol, fix
c =

√
2ρ

π log(e) and let boundρ be the event that for all i ∈ [N ] and all coordinate
j ∈ [n], |(si)j |, |(ei)j |, |(e′i)j |, |(e′′N−1)j | ≤ cσ1 except |(e′0)j | ≤ cσ2. Then

Pr[boundρ] ≥ 1− 2ρ.
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Proof. Since the complementary error function erfc(x) = 2
π

∫∞
x

exp(−t2)dt ≤
exp(−x2), we get

Pr[v ← DZq,σ; |v| ≥cσ + 1] ≤ 2

∞∑
x=bcσ+1e

DZq,σ(x)

≤ 2

σ

∫ ∞
cσ

exp(
−πx2

σ2
)dx

=
2

π

∫ ∞
√
π
σ (cσ)

exp(−t2)dt ≤ exp(−c2π).

Then we have 3nN samplings from DZq,σ1 and n samplings from DZq,σ2 in our
protocol. Under the assumption that 3nN + n ≤ exp(c2π/2), we have

Pr[boundρ] = (1− Pr[v ← DZq,σ1
; |v| ≥ cσ1 + 1])3nN

· (1− Pr[e′0 ← DZq,σ2
; |v| ≥ cσ2 + 1])n

≥ 1− (3nN + n) · exp(−c2π) ≥ 1− exp(c2π/2)

≥ 1− 2−ρ.

Lemma 3. [2] Given boundρ defined in Lemma 2, let productsi, ej be the event
that for all v-th coordinate, |(si · ej)v| ≤

√
nρ3/2σ2

1. Then

Pr[productsi·ej | boundρ] ≥ 1− n · 2 · 2−2ρ

Proof. Note that for l ∈ [n], (si)l denotes the l-th coefficient of si and we can
express si =

∑n−1
l=0 (si)lX

l. Since we take Xn + 1 as modulus of R, (siej)l =∑n−1
k=0(si)k(ej)

∗
l−kX

l where (ej)
∗
l−k is (ej)l−k if l−k ≥ 0 and −(ej)l−k otherwise.

Thus, under boundρ, specifically |(si)l|, |(ej)l| ≤ cσ1 where c =
√

2ρ
π·log(e) , by

Hoeffding’s inequality [20], we can get

Pr[|(siej)l| ≥ γ | boundρ]

= Pr

[∣∣∣∣∣
n−1∑
k=0

(si)k(ej)l−k

∣∣∣∣∣ ≥ γ | boundρ

]

≤ 2· exp

(
−2γ2

n(2c2σ2
1)2

)
.

(Note that (si)k(ej)l−k is an independent random variable with mean 0 in in-
terval [−c2σ2

1 , c
2σ2

1 ].) If we take γ =
√
nρ3/2σ2

1 , then we get

Pr[|(siej)l| ≥ γ | boundρ] ≤ 2 · exp(
−ρ3

2c4
) ≤ 2−2ρ+1

Thus, after union all bound, we have

Pr[productsi, ej | boundρ] = Pr[∀l, |(siej)l| ≤
√
nρ3/2σ2

1 ]

≥ 1− n · 2 · 2−2ρ.
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Theorem 1. For a fixed ρ, and assume that

(N − 1)N/2 ·
√
nρ3/2σ2

1 + (N(N + 1)/2 +N)σ1

+ (N − 2)σ2 ≤ βRec.

Then all participants in a group have the same key except with probability at
most 2−ρ+1.

Proof. As mentioned in Section 3.4, we will show that all parties have the same
secret key except with negligible probability. To hold this, we claim that if for
all i ∈ [N ] and j ∈ [n] j-th coefficient of |bN−1 − bi| ≤ βRec, then ki = kN−1.
After some tedious computation, we have

bN−1 − bi = Ne′′N−1 +

N−1∑
j=0

(N − j)(e′N−1+j − e′i+j)

+

N−2∑
j=0

(N − 1− j){(eN+jsN−1+j − eN−1+jsN+j)

− (ei+j+1si+j − ei+jsi+j+1)}.

Now observe how many terms are in bN−1 − bi. There are at most (N − 1)N/2
terms in form of si · ej , at most N(N + 1)/2 terms in form of e′k sampled from
χσ1

, at most N − 2 terms of e′0 sampled from χσ2
, and N terms of e′′N−1. Sum

of these at most terms is less than Apon et al.’s terms.
Let productALL be the event that for all terms in form of si · ej , each coeffi-

cient of this form is bounded by
√
nρ3/2σ2

1 . Under an assumptiont that 2n(N −
1)N/2 ≤ 2ρ, by Lemma 3 we can get

Pr[productALL | boundρ] ≤
(N − 1)N

2
· n · 2−2ρ+1 ≤ 2−ρ

Denote fail by the event that at least one of parties does not agree on the same
key. Given a condition that (N − 1)N/2 ·

√
nρ3/2σ2

1 + (N(N + 1)/2 + N)σ1 +
(N − 2)σ2 ≤ βRec, by Lemma 2 and the above inequality we have

Pr[fail] = Pr[fail | boundρ] · Pr[boundρ]

+ Pr[fail | boundρ] · Pr[boundρ]

≤ Pr[productALL | boundρ] · 1 + 1 · Pr[boundρ]

≤ 2 · 2−ρ.

Therefore, all parties agree on the same secret key except with probability 2·2−ρ.

From the result of Theorem 1, the number of error terms in our protocol
is smaller than Apon et al.’s protocol. Then, the probability PrSTUG [AbortKey]
of the event AbortKey that error between bi’s exceeds βRec in our protocol is
smaller than the probability PrApon [AbortKey] in Apon et al.’s protocol. Thus,
our protocol has higher probability to have the common secret key between
protocol participants.
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6.2 Security Proof

We write Theorems 2, 3 and 4 to show that our dynamic key exchange protocol
DRUG = (STUG, U.Join,U.Leave) (or DRAG = (STAG, A.Join,A.Leave)) is secure
in the random oracle model based on hardness of RLWE assumption. We prove
all theorems in this section.

Theorem 2. For unauthenticated GKE protocol STUG, 2N
√
nλ3/2σ2

1 + (N −
1)σ1 ≤ βRényi and σ2 = Ω

(
βRényi

√
n/ log λ

)
. Then, we have the following:

AdvKE
STUG(t, qE) ≤ 2−λ+1+√

AdvExp-1 ·
exp (2πn(βRényi/σ2)2)

1− 2−λ+1

where AdvExp-1 = N ·AdvRLWE
n,q,χσ1 ,3

(t1) + AdvKeyRec(t2) + qE
2λ

, t1 = t+O(N · tring),
and t2 = t+O(N · tring) such that tring is the maximum time required to make
operations in Rq.

Proof. Let A be an adversary that breaks the protocol STUG. From this, we con-
struct an adversary B that solves RLWE problem with non-negligible advantage.
Since we do not have any long-term secret key in our protocol STUG, Corrupt
can be ignored and the protocol achieves the forward secrecy.

Let Query be the event that kN−1 is among the adversary A’s random oracle
queries and Pri [Query] be the probability of Query in Experiment i.

Then, by a sequence of experiments, we show that an efficient adversary who
queries the random oracle in Ideal experiment with at most negligible probability
can query the random oracle in Exp0 experiment. For Ideal experiment, the input
kN−1 is chosen uniformly random while kN−1 is chosen by the honest execution
of STUG in Exp0Exp1 experiment.

Experiment 0. This is the original experiment that is equal to the procedure
of STUG.

Exp0 :=



a← Rq;

: (T, sk)

si, ei ← χσ1
; zi = asi + ei for i ∈ [N ] ;

e′0 ← χσ2
; e′i ← χσ1

for 1 ≤ i ≤ N − 1;
Xi = (zi+1 − zi−1)si + e′i for i ∈ [N ] ;
e′′N−1 ← χσ1 ;
YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);

bN−1 =
∑N−1
j=0 YN−1,(N−1)+j ;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


Since Pr [A wins] =

1

2
+ AdvKE

STUG(t, qE) = Pr0 [Query] + Pr0[Query] · 1

2
,

AdvKE
STUG(t, qE) ≤ Pr0 [Query] .
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Experiment 1. We replace X0 into X ′0 = −
∑N−1
i=1 Xi + e′0. The rest are same

as the previous experiment.

Exp1 :=



a← Rq;

: (T, sk)

si, ei ← χσ1
; zi = asi + ei; for i ∈ [N ] ;

e′0 ← χσ2 ; e′i ← χσ1 for 1 ≤ i ≤ N − 1;

X ′0 = −
∑N−1
i=1 Xi + e′0;

Xi = (zi+1 − zi−1)si + e′i for 1 ≤ i ≤ N − 1;
e′′N−1 ← χσ1

;
YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);

bN−1 =
∑N−1
j=0 YN−1,(N−1)+j ;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


Lemma 4. Given two distributions of X0 and X ′0, if we have 2N

√
nλ3/2σ2

1 +
(N − 1)σ1 ≤ βRényi, then

Pr0 [Query] ≤ 2−λ+1

+

√
Pr1 [Query] ·

exp
(
2πn(βRényi/σ2)2

)
1− 2−λ+1

using the property of Rényi divergence.

Proof. Note that we may define the random variablesX0, X
′
0 in both experiments

Exp1 and Dist1. We define Error and main as

Error =

N−1∑
i=0

(siei+1 − siei−1) +

N−1∑
i=1

e′i and

main = z1s0 − zN−1s0 − Error,

respectively. Then,

X0 = main + Error + e′0 and X ′0 = main + e′0

where e′0 ← σ2. We check whether Rényi divergence between two distribu-
tions of X0 and X ′0 is small using Lemma 1. Let boundError be the event that for
all participants j, Errorj ≤ βRényi. Then,

|Errorj | =

∣∣∣∣∣∣
(
N−1∑
i=0

(siei+1 − siei−1) +

N−1∑
i=1

e′i

)
j

∣∣∣∣∣∣ .
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Set c =
√

2λ
π log e and let bound be the event that |(e′0)j | ≤ cσ2, |(si)j | , |(ei)j | ,∣∣(e′′N−1)j

∣∣ ≤ cσ1, and |(e′i)j | ≤ cσ1 for all i > 0 and j.
From Lemmas 2 and 3, we have Pr [bound] ≥ 1 − 2−λ and Pr[|(siej)v| ≤√

nλ3/2σ2
1 | bound] ≥ 1− 2−2λ+1. With a union bound, we have

Pr[∀j : |Errorj | ≤ 2N
√
nλ3/2σ2

1 + (N − 1)σ1 | bound]

≥ 1− 4N · n · 2−2λ.

If we assume 4Nn ≤ 2λ, we derive that Pr [boundError] ≥ 1− 2−λ+1.
We have RD2 (Error + χσ2‖χσ2) ≤ exp(2πn(βRényi/σ)2) from Lemma 1. Thus,

Pr0 [Query] ≤ Pr0 [Query | boundError] + Pr0
[
boundError

]
≤ Pr0 [Query | boundError] + 2−λ+1

≤
√

Pr1 [Query | boundError] · exp (2πn(βRényi/σ2)2)

+ 2−λ+1

≤

√
Pr1 [Query] ·

exp
(
2πn(βRényi/σ2)2

)
Pr1 [boundError]

+ 2−λ+1

≤

√
Pr1 [Query] ·

exp
(
2πn(βRényi/σ2)2

)
1− 2−λ+1

+ 2−λ+1

From second to third inequality, we use the property that Rényi divergence
is bounded.

For the rest of the proof, we will show that

Pr1 [Query] ≤ N · AdvRLWE
n,q,χσ1 ,3

(t1) + AdvKeyRec(t2) +
qE
2λ
.

Experiment 2. We replace z0 into uniform element in Rq. The rest are same
as the previous experiment.

Exp2 :=



a, z0 ← Rq;

: (T, sk)

si, ei ← χσ1
; zi = asi + ei for 1 ≤ i ≤ N − 1;

e′0 ← χσ2
; e′i ← χσ1

for 1 ≤ i ≤ N − 1;

X ′0 = −
∑N−1
i=1 Xi + e′0;

Xi = (zi+1 − zi−1)si + e′i for 1 ≤ i ≤ N − 1;
e′′N−1 ← χσ1 ;
YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);

bN−1 =
∑N−1
j=0 YN−1,(N−1)+j ;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


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Between Experiment 1 and Experiment 2, we replace one RLWE instance
into random. Hence, |Pr2 [Query]− Pr1 [Query]| ≤ AdvRLWE

n,q,χσ1 ,1
(t1)

where t1 = t+O(N · tring) and tring is the time required to perform opera-
tions in Rq. Since AdvRLWE

n,q,χσ1 ,1
(t1) ≤ AdvRLWE

n,q,χσ1 ,2
(t1) ≤ AdvRLWE

n,q,χσ1 ,3
(t1), we have

|Pr2 [Query]− Pr1 [Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1).

Experiment 3. We replace z0 into z2−r1 and X1 into r1s1+e′1 where r1 ← Rq.
The rest are same as the previous experiment.

Exp3 :=



a, r1 ← Rq;

: (T, sk)

si, ei ← χσ1
; zi = asi + ei for 1 ≤ i ≤ N − 1;

z0 = z2 − r1;
e′0 ← χσ2 ; e′i ← χσ1 for 1 ≤ i ≤ N − 1;

X ′0 = −
∑N−1
i=1 Xi + e′0;

X1 = r1s1 + e′1;
Xi = (zi+1 − zi−1)si + e′i for 2 ≤ i ≤ N − 1;
e′′N−1 ← χσ1

;
YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);

bN−1 =
∑N−1
j=0 YN−1,(N−1)+j ;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


Since both z0 and z2 − r1 are uniform, Pr3 [Query] = Pr2 [Query].

Experiment 4. We replace z1, X1 into uniform element in Rq. The rest are
same as the previous experiment.

Exp4 :=



a, r1, z1 ← Rq;

: (T, sk)

si, ei ← χσ1 ; zi = asi + ei for 2 ≤ i ≤ N − 1;
z0 = z2 − r1;
e′0 ← χσ2

; e′i ← χσ1
for 2 ≤ i ≤ N − 1;

X ′0 = −
∑N−1
i=1 Xi + e′0; X1 ← Rq;

Xi = (zi+1 − zi−1)si + e′i for 2 ≤ i ≤ N − 1;
e′′N−1 ← χσ1 ;
YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);

bN−1 =
∑N−1
j=0 YN−1,(N−1)+j ;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


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Between Experiment 3 and Experiment 4, we replace two RLWE instances into
random. Hence, |Pr4 [Query]− Pr3 [Query]| ≤ AdvRLWE

n,q,χσ1 ,2
(t1) and thus,

|Pr4 [Query]− Pr3 [Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1)

t1 is the time to solve RLWE problem which is the sum of t and some minor
overhead O(tring) for simulation.

Experiment 5. We replace z0 into uniform element in Rq. The rest are same
as the previous experiment.

Exp5 :=



a, z0, z1 ← Rq;

: (T, sk)

si, ei ← χσ1
; zi = asi + ei for 2 ≤ i ≤ N − 1;

e′0 ← χσ2
; e′i ← χσ1

for 2 ≤ i ≤ N − 1;

X ′0 = −
∑N−1
i=1 Xi + e′0; X1 ← Rq;

Xi = (zi+1 − zi−1)si + e′i for 2 ≤ i ≤ N − 1;
e′′N−1 ← χσ1 ;
YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);

bN−1 =
∑N−1
j=0 YN−1,(N−1)+j ;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


Since both z0 and z2 − r1 are uniform, Pr5 [Query] = Pr4 [Query].

Similarly, we can design distribution of (T, sk) in Experiment 3j, 3j + 1, 3j + 2
as below:

Experiment 3j. We replace zj−1 into zj+1 − ri and Xi into rjsj + e′i where
rj ← Rq. The rest are same as the previous experiment.

Exp3j :=



a, rj ← Rq;

: (T, sk)

si, ei ← χσ1 ; zi = asi + ei for j ≤ i ≤ N − 1;
z0, · · · , zj−2 ← Rq; zj−1 = zj+1 − rj ;
e′0 ← χσ2

; e′i ← χσ1
for j + 1 ≤ i ≤ N − 1;

X ′0 = −
∑N−1
i=1 Xi + e′0;

X1, · · · , Xj−1 ← Rq;Xj = rjsj + e′j ;
Xi = (zi+1 − zi−1)si + e′i for j + 1 ≤ i ≤ N − 1;
e′′N−1 ← χσ1

;
YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);

bN−1 =
∑N−1
j=0 YN−1,(N−1)+j ;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


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Experiment 3j+1. We replace zj , Xj into uniform element in Rq. The rest are
same as the previous experiment.

Exp3j+1 :=



a, rj ← Rq;

: (T, sk)

si, ei ← χσ1 ; zi = asi + ei for j + 1 ≤ i ≤ N − 1;
z0, · · · , zj−2, zj ← Rq; zj−1 = zj+1 − rj ;
e′0 ← χσ2

; e′i ← χσ1
for j + 1 ≤ i ≤ N − 1;

X ′0 = −
∑N−1
i=1 Xi + e′0;

X1, · · · , Xj ← Rq;
Xi = (zi+1 − zi−1)si + e′i for j + 1 ≤ i ≤ N − 1;
e′′N−1 ← χσ1 ;
YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);

bN−1 =
∑N−1
j=0 YN−1,(N−1)+j ;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


Experiment 3j + 2. We replace zj−1 into uniform element in Rq. The rest
are same as the previous experiment.

Exp3j+2 :=



a← Rq;

: (T, sk)

si, ei ← χσ1
; zi = asi + ei for j + 1 ≤ i ≤ N − 1;

z0, · · · , zj ← Rq;
e′0 ← χσ2

; e′i ← χσ1
for j + 1 ≤ i ≤ N − 1;

X ′0 = −
∑N−1
i=1 Xi + e′0;

X1, · · · , Xj ← Rq;Xj = rjsj + e′j ;
Xi = (zi+1 − zi−1)si + e′i for j + 1 ≤ i ≤ N − 1;
e′′N−1 ← χσ1 ;
YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);

bN−1 =
∑N−1
j=0 YN−1,(N−1)+j ;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


With similar argument of Experiment 3, 4 and 5, we have

Pr3i [Query] = Pr3i−1 [Query]

|Pr3i+1 [Query]− Pr3i [Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1)

Pr3i+2 [Query] = Pr3i+1 [Query]
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Experiment 3N − 3. We set zN−2 = r2, XN−1 = r1sN−1 +e′N−1, z0 = r1 + r2
where r1, r2 ← Rq. The rest are same as the previous experiment.

Exp3N−3 :=



a, r1, r2 ← Rq;

: (T, sk)

sN−1, eN−1 ← χσ1
;

z0 = r1 + r2; zi ← Rq for 1 ≤ i ≤ N − 3; zN−2 = r2;
zN−1 = asN−1 + eN−1;
e′0 ← χσ2 ; e′N−1 ← χσ1 ;

X ′0 = −
∑N−1
i=1 Xi + e′0;

Xi ← Rq for 1 ≤ i ≤ N − 2;
XN−1 = r1sN−1 + e′N−1;
e′′N−1 ← χσ1 ;
YN−1,N−1 = XN−1 + zN−2sN−1 + e′′N−1;
YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);

bN−1 =
∑N−1
j=0 YN−1,(N−1)+j ;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


Since r1, r2 are uniform, so does z0 = r1 + r2. For both Experiment 3N −
4 and 3N − 3, zN−2 and z0 are uniform. Then, we have Pr3N−3 [Query] =
Pr3N−4 [Query].

Experiment 3N − 2. We replace zN−1, XN−1, zN−2sN−1 + e′′N−1 into uniform
element in Rq. The rest are same as the previous experiment.

Exp3N−2 :=



a, r3 ← Rq;

: (T, sk)

zi ← Rq for i ∈ [N ] ;
e′0 ← χσ2

;

X ′0 = −
∑N−1
i=1 Xi + e′0;

Xi ← Rq for 1 ≤ i ≤ N − 1;
YN−1,N−1 = XN−1 + r3;
YN−1,(N−1)+j = X(N−1)+j + YN−1,(N−1)+(j−1);

bN−1 =
∑N−1
j=0 YN−1,(N−1)+j ;

(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


Between Experiment 3N − 3 and Experiment 3N − 2, we replace three RLWE
instances into random. Hence,

|Pr3N−2 [Query]− Pr3N−3 [Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1)
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Experiment 3N − 1. We replace YN−1,N−1, YN−1,(N−1)+j , bN−1 into uniform
element in Rq. The rest are same as the previous experiment.

Exp3N−1 :=



a← Rq;

: (T, sk)

zi ← Rq for i ∈ [N ] ;
e′0 ← χσ2

;

X ′0 = −
∑N−1
i=1 Xi + e′0;

Xi ← Rq for 1 ≤ i ≤ N − 1;
YN−1,(N−1)+j ← Rq for j ∈ [N ] ;
bN−1 ← Rq;
(rec, kN−1) = recMsg(bN−1);
sk = H(kN−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


For both Experiment 3N − 2 and Experiment 3N − 1, YN−1,N−1, YN−1,(N−1)+j ,
and bN−1 are all uniform since r3 is uniform in Experiment 3N − 2. Then, we
have Pr3N−1 [Query] = Pr3N−2 [Query].

Experiment 3N . We replace kN−1 into uniform element k′N−1 in {0, 1}λ. The
rest are same as the previous experiment.

Exp3N :=



a← Rq;

: (T, sk)

zi ← Rq for i ∈ [N ] ;
e′0 ← χσ2

;

X ′0 = −
∑N−1
i=1 Xi + e′0;

Xi ← Rq for 1 ≤ i ≤ N − 1;
YN−1,(N−1)+j ← Rq for j ∈ [N ] ;
bN−1 ← Rq;
(rec, kN−1) = recMsg(bN−1);
k′N−1 ← {0, 1}λ; sk = H(k′N−1);
T = (z0, z1, · · · , zN−1, X0, X1, · · · , XN−1, rec)


Between Experiment 3N−1 and Experiment 3N , we replace kN−1 from recMsg(bN−1)
into random. Hence,

|Pr3N [Query]− Pr3N−1 [Query]| ≤ AdvKeyRec(t2)

t2 is the time to break KeyRec algorithm which is the sum of t and some minor
overhead O(tring) for simulation.

Since adversary attacking STUG makes at most qE queries to the random
oracle, we have Pr1 [Query] = qE

2λ
, which is negligible in λ.

From Experiment 1 to Experiment 3N , we have

Pr1 [Query] ≤ N · AdvRLWE
n,q,χσ1 ,3

(t1) + AdvKeyRec(t2) +
qE
2λ
.

as expected. With the Lemma 4 and AdvKE
STUG(t, qE) ≤ Pr0 [Query], we derive the

result of the theorem.
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Theorem 3. The authenticated GKE protocol STAG described in Section 5.2
is secure against active adversary under RLWE assumption, achieves forward
secrecy and satisfies the following:

AdvAKE
STAG(t, qE , qS) ≤ AdvKE

STUG(t′, qE +
qS
2

) + |P|AdvDSig(t′)

where t′ ≤ t + (|P|qE + qS)tSTAG when tSTAG is the time required for execution
of STAG by any one of the protocol participants.

Proof. From an adversary A′ which attacks STAG, we construct an adversary
A who attacks STUG. We divide the event Succ that A′ wins the security game
defined in Section 4 into the one that A′ can forge a signature and the one that
A′ cannot forge a signature.

For the former case, we claim that the probability of event Forge that the
adversary can forge a signature is bounded by |P|AdvDSig(t′) where |P| is the
number of participants. This is obvious since we have |P| protocol participants
who generates their own signature. For the latter case, we claim that we can
answer Execute and Send queries from STAG using Execute queries from STUG.
Then, after A′ ‘makes the query Reveal or Test, we derive the result of the
theorem.

Theorem 4. The dynamic authenticated GKE protocol DRAG described in Sec-
tion 5.3 is secure against active adversary under RLWE assumption, achieves
forward secrecy and satisfies the following:

AdvAKE
DRAG(t, qE , qJ , qL, qS) ≤ AdvKE

STUG(t′, qE +
qJ + qL + qS

2
)

+ |P|AdvDSig(t′)

where t′ ≤ t+ (|P|qE + qJ + qL + qS)tDRAG when tDRAG is the time required for
execution of DRAG by any one of the protocol participants.

Proof. Similar to Theorem 4, we separate the winning event into two cases as
the one with forging a signature and the other without forging. Then, we design
how to answer Execute, Join, Leave and Send queries from DRAG using Execute
queries from STUG.

7 Comparison with Other Protocols

In Table 1, we compare our construction with other lattice-based GKE protocols
[2,17,34]. For computation complexity, we ignore ring addition/deletion, or scalar
multiplication with smaller computing power. We consider the following:

Samp total number of Gaussian samplings
R.Mult total number of ring multiplication computed
Sign total number of signatures generated
Verify total number of verification
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Table 1: Comparison with other lattice-based (authenticated) GKE protocols

Method Ding et al. [17] Yang et al. [34] Apon et al.’s [2] Ours

Trusted Authoritya X O X X

Scalabilityb X O O O
Communication
Round for GKE

(AGKE)c
N 2 3(4) 3(3)

Computation
Complexityc

(Samp, R.Mult,
Sign, Verify)

(N2, N2 −N, ·, ·) (2N, 2N + 2, ·, ·) (3N + 1, 2N +
1, 2N, 2N)

(3N+1, 2N+1,
2N, N+2)

Dynamic
Settingd X X X O

a O: protocol needs trusted authority to run the procedure, X: protocol does not need trusted authority
b O: protocol is scalable, i.e., protocol is constant-round regardless of the number of protocol participants, X:
protocol is not scalable
c N is the number of protocol participants on GKE protocol.
d O: protocol supports dynamic membership changes like Join or Leave, X: protocol does not support them

From Table 1, Ding et al.’s protocol requires N−1 rounds to have N approx-
imately agreed ring elements and one round to obtain session secret key by key
reconciliation. For each party, it has N Gaussian samplings (one secret sampling
and N − 1 error samplings) and N − 1 ring multiplications. Yang et al.’s pro-
tocol provides the minimum communication rounds but Yang et al.’s protocol
has trusted authority so that it contains more security issues such as a single
point of failure. Moreover, this protocol does one more computation for secure
sketch, which requires huge computing power. Both Ding et al.’s and Yang et
al.’s protocols do not specify digital signature scheme in the paper.

For Apon et al.’s protocol and our protocol, both provides scalability without
trusted authority. Our protocol remains 3 round for authenticated GKE while
Apon et al.’s protocol needs one more round from Katz-Yung compiler. The
number of Gaussian sampling and ring multiplications are 3N + 1 and 2N + 1,
respectively, for both protocols. But, we expect smaller number of signature
verification step since we only check the signatures from the neighbourhood.

8 Conclusion and Future Work

In this paper, we construct a novel method to design a quantum-resistant dy-
namic (authenticated) GKE protocol by extending Dutta-Barua protocol to
RLWE setting. Then, we compare our protocol with other lattice-based GKE
protocols. Assuming the hardness of RLWE assumption and underlying digital
signature scheme, we provide a concrete security analysis of our protocol against
active adversary in the random oracle model.

As future work, we will check the vulnerability against key reuse attacks by
applying the practical key reconciliation algorithm used in other lattice-based
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key exchange protocols. Then, we will implement the protocol based on our pa-
rameter selection. Then, we plan to check the security in the quantum-accessible
random oracle model.
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