
Efficient Homomorphic Conversion
Between (Ring) LWE Ciphertexts

Hao Chen1, Wei Dai2, Miran Kim3, and Yongsoo Song2

1 Facebook, USA
sxxach@gmail.com

2 Microsoft Research, USA
{wei.dai, yongsoo.song}@microsoft.com

3 Ulsan National Institute of Science and Technology, Republic of Korea
mirankim@unist.ac.kr

Abstract. In the past few years, significant progress on homomorphic
encryption (HE) has been made toward both theory and practice. The
most promising HE schemes are based on the hardness of the Learn-
ing With Errors (LWE) problem or its ring variant (RLWE). In this
work, we present new conversion algorithms that switch between differ-
ent (R)LWE-based HE schemes to take advantage of them. Specifically,
we present and combine three ideas to improve the key-switching pro-
cedure between LWE ciphertexts, transformation from LWE to RLWE,
as well as packing of multiple LWE ciphertexts in a single RLWE en-
cryption. Finally, we demonstrate an application of building a secure
channel between a client and a cloud server with lightweight encryption,
low communication cost, and capability of homomorphic computation.

Keywords: Homomorphic encryption · Learning with Errors ·Key switch-
ing

1 Introduction

In recent years, there have been remarkable advances in cryptographic primitives
for secure computation without compromising data privacy. Specifically, homo-
morphic encryption (HE) [28] has been considered as one of the most attractive
solutions due to its conceptual simplicity and efficiency. HE is a cryptosystem
which supports arithmetic operation on encrypted data, so that any computa-
tional task can be outsourced to a public cloud while data provider does not
need to either perform a large amount of work or stay online during the protocol
execution. In addition, the concrete efficiency of HE has been improved rapidly
by theoretic and engineering optimizations [4, 15, 41]. Recent studies demon-
strated that this technology shows reasonable performance in real-world tasks
such as biomedical analysis and machine learning [33, 20, 34].

Currently, all the best-performing HE schemes, such as BGV [8], BFV [6, 23],
TFHE [18] and CKKS [16], are based on the hardness of Learning with Errors
(LWE) or its ring variant (RLWE). In particular, ring-based HE systems have



shown remarkable performance in real-world applications due to the efficient use
of the ciphertext packing technique [43]. Each HE scheme has its own pros and
cons, but it has been relatively less studied how to take advantage of various HE
schemes by converting ciphertexts of different types [5].

Our Contribution. In this paper, we provide a toolkit to transform (R)LWE-
based ciphertexts and generate another ciphertext under a new key or of a differ-
ent structure. Specifically, we present three conversion methods: (1) to perform
a new key-switching (KS) operation between LWE ciphertexts; (2) to transform
an LWE ciphertext into an RLWE-based ciphertext; and (3) to merge multiple
LWE ciphertexts into a single RLWE ciphertext. The first two conversions (from
LWE to LWE/RLWE) have quasi-linear complexity Õ(N) where N denotes the
dimension of (R)LWE. The last packing algorithm is a generalization of LWE-
to-RLWE conversion which achieves a better amortized complexity. Our algo-
rithms are almost optimal in the sense that their complexities are quasi-linear
with respect to the size of input ciphertext(s). Moreover, there is no reduction of
ciphertext level (modulus) because all building blocks (e.g. homomorphic auto-
morphism) are depth-free. The proposed methods have wide applications in the
literature: For example, our KS algorithm can replace the old KS method in the
FHEW and TFHE schemes [22, 18], and our LWEs-to-RLWE packing method
can improve the performance of [5, 10] which present a hybrid framework be-
tween different HE schemes. In addition, the proposed methods can be easily
generalized to design better key-switching methods between (R)LWE cipher-
texts with different dimensions, or more generally, Module LWE [8, 35] based
schemes with different parameters.

Finally, we present experimental results to show that our techniques achieve
better asymptotic and concrete performance than previous methods. Moreover,
we provide a secure outsourcing solution of storage and computation to a cloud
with low communication cost. A client encrypts data via an LWE-based sym-
metric encryption on a lightweight device. On receiving LWE ciphertexts, the
public server transforms or packs them into RLWE encryptions to provide better
functionality for homomorphic arithmetic. Compared to prior works based on
block or stream ciphers [27, 3, 9, 37, 21], our approach has advantages in terms
of flexibility, functionality and efficiency.

Technical Overview. Let N be the dimension and q the modulus of an LWE
problem. An LWE ciphertext with secret s ∈ ZN is of the form (b,a) ∈ ZN+1

q

and its phase is defined as µ = b+ 〈a, s〉 (mod q). Typically, the phase is a noisy
encoding of some underlying plaintext. Performing homomorphic operations on
a ciphertext will increase this noise and thus the phase will be changed, but as
long as the noise is below a given threshold, the underlying plaintext is preserved.
Similarly, in the case of RLWE over R = Z[X]/(XN + 1) and its residue ring
Rq = R/qR, the phase of an RLWE ciphertext (b, a) ∈ R2

q of secret s is defined
as µ = b+ as (mod q).

Suppose that we are given some ciphertexts of a cryptosystem (which is not
necessarily an HE scheme) and wish to publicly transform them into ciphertexts
of another HE scheme for secure computation. In general, this task can be done

2



by evaluating the decryption circuit of the initial cryptosystem using an HE
system if a homomorphically encrypted secret key is given. Furthermore, the
conversion can be more efficient if input ciphertexts are encrypted by an LWE-
based cryptosystem because it suffices to homomorphically evaluate the phase,
instead of performing the full decryption which usually includes expensive (non-
arithmetic) operations such as bit extraction or rounding [26, 12].

We remark that this approach can be still inefficient in some cases. For exam-
ple, if we aim to convert an LWE encryption (b,a) ∈ ZN+1

q under secret s ∈ ZN
into an RLWE ciphertext, the secret key owner should generate and publish an
RLWE ‘encryption’ of s as the evaluation key, and the conversion can be done
by computing the LWE phase µ = b + 〈a, s〉 homomorphically over an RLWE-
based HE system. In fact, the evaluation key consists of N key-switching keys
from individual s[i] to the RLWE secret and the conversion requires N RLWE
KS operations. Consequently, the total complexity grows quadratically with the
security parameter. The techniques we present in this work do not follow the
existing framework of the phase evaluation.

Our first idea is to embed elements of ZNq or Zq into Rq. Given an LWE
ciphertext (b,a) ∈ ZN+1

q of the phase µ0 = b + 〈a, s〉, we consider the RLWE
ciphertext ct = (b, a) ∈ R2

q for a =
∑
i∈[N ] a[i]·Xi and the secret s =

∑
i∈[N ] s[i]·

X−i ∈ R. The ciphertext ct is not a completely valid RLWE ciphertext but its
phase µ = b + as (mod q) contains µ0 = µ[0] in its constant term. We use this
idea to accelerate the KS procedure between LWE ciphertexts. For another LWE
secret s′, we first perform a RLWE KS procedure from s to s′ =

∑
i∈[N ] s

′[i]·X−i.
Then the phase of the output ciphertext is approximately equal to µ in R, so it
is enough to extract an LWE ciphertext from the ciphertext.

Our second algorithm is an efficient conversion from LWE to RLWE. In the
example above, the RLWE ciphertext ct cannot be directly used for further
homomorphic computation because the phase µ contains invalid values in its
coefficients except the constant term. We observe that the field trace function
TrK/Q of the number field K = Q[X]/(XN + 1) zeroizes all the monomials Xi

for 0 6= i ∈ [N ] but keeps the constant term (scaled by a factor of N). We
homomorphically evaluate the trace function to obtain an RLWE ciphertext
whose phase is approximately equal to the constant polynomial N ·µ0 (the extra
factor N can be easily removed). To minimize the conversion complexity, we
present a recursive algorithm that includes only logN automorphism evaluations,
based on the tower of number fields. Furthermore, our algorithm reduces the
number of key-switching keys to logN compared to N of the previous method.

Finally, we present a packing algorithm that takes at most N LWE cipher-
texts as the input and returns a single RLWE ciphertext. Suppose that we are
given n ≤ N input ciphertexts of phases µj ∈ Zq. A naive solution is to perform
our LWE-to-RLWE conversion on each LWE ciphertext and adds up the output
RLWE ciphertexts into a single ciphertext, which requires n logN homomorphic
automorphisms. We can improve the complexity by performing the FFT-style
ciphertext packing algorithm. The first step is a tree-based algorithm which
generates an RLWE ciphertext of phase µ ∈ Rq such that µ[(N/n) · j] ≈ n · µj

3



Type
Previous works [39, 17] This work
Complexity Storage Complexity Storage

LWE-to-LWE O(dN2) dN2 O(dN logN) 2dN

LWE-to-RLWE O(dN2) 2dN2 O(dN log2 N) 2dN logN

nLWEs-to-RLWE O(dN2 logN) 2dN2 O(dN logN(n+ log(N/n))) 2dN logN

Table 1: Computational costs (number of scalar operations) and storage (number of Zq

elements to store a switching key) of conversion algorithms. N denotes the dimension
of (R)LWE, n denotes the number of input LWE ciphertexts to be packed in an RLWE
ciphertext, and d denotes the gadget decomposition degree.

for all j ∈ [n], i.e., it collects the phases µj ’s in an element
∑
j∈[n] µj · Y j of

Kn = Z[Y ]/(Y n + 1). In the following step, we evaluate the field trace TrK/Kn

to annihilate the useless coefficients µ[i] for (N/n) - i and finally return an
RLWE ciphertext of phase ≈ N ·

∑
j∈[n] µj · Y j . The whole process requires

(n − 1) + log(N/n) homomorphic automorphisms, so we achieve an amortized
complexity of < 1 + n−1 · logN automorphisms per an LWE ciphertext.

Related Works. In [26, 25], the authors presented a method to switch the
underlying field of HE ciphertexts. In these works, ciphertexts were taken as the
input of the trace function to reduce the dimension of the base ring dynamically
during computation purely for efficiency reasons. Meanwhile, in our LWE(s)-
to-RLWE algorithm, we utilize the trace function in a totally different way for
a different purpose. We homomorphically evaluate the field trace on plaintexts
(phases) to generate a valid RLWE ciphertext over a larger ring Rq from LWE
ciphertexts over Zq.

It has been studied in [17, 39] how to convert multiple LWE ciphertexts into
a single RLWE ciphertext. Given n LWE ciphertexts {(bj ,aj)}j∈[n], it vertically
stacks the i-th entries of all ciphertexts in a polynomial by b =

∑
j∈[n] bj ·Xj and

ai =
∑
j∈[n] aj [i]·Xj for i ∈ [N ]. Then it homomorphically evaluates b+

∑
i ai ·si

over an RLWE-based HE scheme. Different from our packing algorithm, this
method has a fixed complexity of N RLWE KS operations, independently from
the number n of input ciphertexts. This implies that it needs to pack Ω(N)
many ciphertexts to achieve minimal amortized complexity.

Boura et al. [5] presented various transformations between ciphertexts of dif-
ferent RLWE-based HE schemes. Our work is in an orthogonal direction to [5]
as we aim to switch the secret key or change the type of ciphertexts (e.g. LWE,
RLWE) while preserving their phases (encoded plaintexts). In addition, the per-
formance of [5] can be improved by replacing the underlying KS methods by our
conversion algorithms.

Cheon and Kim [13] considered converting an ElGamal-like public key en-
cryption scheme to an HE scheme. This involves evaluating the decryption circuit
homomorphically, which consumes at least 10 levels, while our approach is almost
depth-free.

4



In Table 1, we provide the performance of previous works and analyze the
computational costs of our algorithms. Our LWE-to-RLWE conversion consists
of several iterations in which we evaluate an automorphism and add the resulting
ciphertext to the original input. There have been proposed a few algorithms [31,
11, 12, 14] which are technically similar to our conversion algorithm. However,
to the best of our knowledge, this is the first study to reinterpret and apply this
building block to the KS (conversion) of HE ciphertexts.

Recently, Gentry and Halevi [24] and Brakerski et al. [7] presented a new
framework that compresses multiple HE ciphertexts into a single ciphertext with
the nearly optimal rate of 1− o(1). Our approach solves an associated but fun-
damentally different problem. In our application, we could build a lightweight
and low-latency communication from the client to the cloud because fresh ci-
phertexts are high-rate and extremely small. However, they should be packed or
converted into an RLWE ciphertext before computation. Meanwhile, previous
works [24, 7] aim to compress HE ciphertexts after computation and thereby
minimize the communication cost from the cloud to the client.

2 Background

We denote vectors in bold, e.g. u, and the i-th entry of a vector u will be denoted
by u[i]. For simplicity, we identify Z ∩ (−q/2, q/2] as a set of representatives of
Zq and write the index set [N ] = {0, 1, . . . , N − 1}. For a finite set S, U(S)
denotes the uniform distribution on S.

2.1 Cyclotomic Field

Let ζ = exp(πi/N) for a power-of-two integer N . We denote by K = Q(ζ) the
2N -th cyclotomic field and R = Z[ζ] the ring of integers of K. We will identify
K (resp. R) with Q[X]/(XN+1) (resp. Z[X]/(XN+1)) with respect to the map
ζ 7→ X. The residue ring of R modulo an integer q is denoted by Rq = R/qR.
For a, b ∈ Z (or R, Rq), we informally write a ≈ b (mod q) if a = b+ e for some
small e ∈ Z (or R).

An element of K (resp. R, Rq) can be uniquely represented as a polynomial
of degree less than N with coefficients in Q (resp. Z, Zq). The i-th coefficient of a
polynomial a(X) will be denoted by a[i]. We use the map ι : a 7→

∑
i∈[N ] a[i] ·Xi

to identify a polynomial and the vector of its coefficients.

2.2 (Ring) Learning with Errors

Given the dimension N , modulus q and error distribution ψ over Z, the LWE
distribution with secret s ∈ ZN is a distribution over ZN+1

q which samples
a← U(ZNq ) and e← ψ, and returns (b,a) ∈ ZN+1

q where b = 〈a, s〉+ e (mod q).
The (decisional) LWE assumption of parameter (N, q, χ, ψ) is that it is compu-
tationally infeasible to distinguish the LWE distribution of a secret s← χ from
the uniform distribution U(ZN+1

q ).

5



The RLWE problem [36] is a variant of LWE which has been widely used to
design HE schemes, e.g. [8, 23, 18, 16]. The key s is chosen from the key distri-
bution χ over R, and an RLWE sample (b, a) ∈ R2

q by sampling random a and
noise e from U(Rq) and the error distribution ψ over R and computing b = as+e
(mod q). The RLWE assumption with parameter (N, q, χ, ψ) is that the RLWE
distribution of a secret s← χ and U(R2

q) are computationally indistinguishable.

2.3 Gadget Decomposition

Let q be an integer and g = (g0, . . . , gd−1) be an integral vector. A gadget
decomposition [38], denoted by g−1 : Zq → Zd, is a map satisfying 〈g−1(a),g〉 =
a (mod q) for all a ∈ Zq. We can naturally extend its domain and define g−1 :
Rq → Rd by a =

∑
i∈[N ] ai ·Xi 7→

∑
i∈[N ] g

−1(ai) ·Xi.
The base (digit) decomposition [8, 6] and prime decomposition [4, 15] are typ-

ical examples. This technique has been widely used to control the noise growth
during homomorphic computation such as key-switching, which will be described
in the next section.

2.4 Key Switching

We describe a well known KS method for RLWE ciphertexts. The goal of KS
procedure is to transform a ciphertext into another ciphertext under a different
secret key while approximately preserving its phase.

• KSKeyGen(s ∈ R, s′ ∈ R) : Sample k1 ← U(Rdq) and e ← χd. Compute
k0 = −s′ · k1 + s · g + e (mod q) and return the KS key K = [k0|k1] ∈ Rd×2q .

• KeySwitch(ct;K) : Given an RLWE ciphertext ct = (c0, c1) ∈ R2
q and a KS

key K ∈ Rd×2q , compute and return the ciphertext ct′ = (c0, 0) + g−1(c1) · K
(mod q).

Roughly speaking, a KS key consists of d RLWE ‘encryptions’ of s · gi under
s′, i.e., K · (1, s′) ≈ s · g (mod q). For an RLWE ciphertext ct ∈ R2

q and a KS
key K← KSKeyGen(s, s′), the output ct′ ← KeySwitch(ct;K) satisfies that

〈ct′, (1, s′)〉 = c0 + g−1(c1) ·K · (1, s′)
= c0 + 〈g−1(c1), s · g + e〉 = 〈ct, (1, s)〉+ eks (mod q) (1)

for the KS noise eks = 〈g−1(c1), e〉 ∈ R.

2.5 Galois Group and Evaluation of Automorphisms

We recall that K ≥ Q is a Galois extension and its Galois group Gal(K/Q)
consists of the automorphisms τd : ζ 7→ ζd for d ∈ Z×2N , the invertible residues
modulo 2N . The automorphisms τd ∈ Gal(K/Q) gives some distinctive func-
tionalities to the HE system. For example, many of RLWE-based schemes such
as BGV [8], BFV [6, 23] and CKKS [16] utilize the Discrete Fourier Transform

6



(DFT) to encode multiple plaintext values in a single polynomial, so that the
slots of a ciphertext can be permuted by evaluating an automorphism.

We describe a well-known method to homomorphically evaluate an automor-
phism τd : a(X)→ a(Xd).

• AutoKeyGen(d ∈ Z×2N ; s ∈ R) : Run Ad ← KSKeyGen(τd(s), s).

• EvalAuto
(
ct ∈ R2

q , d ∈ Z×2N ;Ad

)
: Given a ciphertext ct = (c0, c1) ∈ R2

q , an in-
teger d ∈ Z×2N and an automorphism key Ad, compute and return the ciphertext
ct′ ← KeySwitch ((τd(c0), τd(c1));Ad).

Security. The homomorphic automorphism algorithm is a simple application
of KS, so its security basically relies on the hardness of RLWE for KSKeyGen.
Moreover, an additional circular security assumption should be made because
Ad is a special encryption of τd(s) with secret s.

Correctness. Suppose that ct ∈ R2
q is an RLWE ciphertext such that µ =

〈ct, (1, s)〉 (mod q) and Ad ← AutoKeyGen(d; s) is an automorphism key. Then
the output ciphertext ct′ ← EvalAuto(ct, d;Ad) satisfies that

〈ct′, (1, s)〉 ≈ 〈(τd(c0), τd(c1)), (1, τd(s))〉 = τd (〈ct, (1, s)〉) = τd(µ) (mod q),

from the property of KeySwitch.

In the rest of this paper, we simply write EvalAuto(ct, d;Ad) = EvalAuto(ct, d)
by assuming that an automorphism key Ad ← AutoKeyGen(d; s) is properly gen-
erated and implicitly taken as input of the EvalAuto algorithm. We remark that
homomorphic automorphism has almost the same complexity as the KS proce-
dure because the computation of τd(ci) is very cheap.

3 Conversion Algorithms

This section presents core ideas and their application to efficient conversion
between HE ciphertexts of different secret keys or algebraic structures.

3.1 Functionality of Automorphisms on Coefficients

We examine how the elements of Gal(K/Q) act on the coefficients of an input
polynomial. Let us define the sets Ik =

{
i ∈ [N ] : 2k ‖ i

}
4 for 0 ≤ k < logN

and IlogN = {0}. Then, the index set [N ] can be written as the disjoint union⋃
0≤k≤logN Ik. We are interested in how the automorphism τd(·) acts on the

monomials for d = 2` + 1, 1 ≤ ` ≤ logN . We note that the map i 7→ i · d
(mod N) is a signed permutation on Ik, i.e., if i ∈ Ik, then τd(Xi) = ±Xj for
some j ∈ Ik. In particular, we see that

τd(X
i) = Xi for i ∈

⋃
k>logN−`

Ik,

τd(X
i) = −Xi for i ∈ IlogN−`. (2)

4 2k ‖ i if and only if 2k | i and 2k+1 - i.

7



In other words, the map µ 7→ µ+τd(µ) doubles the coefficients µ[i] if 2logN−`+1| i,
but zeroizes the coefficients µ[i] if 2logN−`‖ i.

3.2 LWE to LWE

Let (b,a) ∈ ZN+1
q be an LWE ciphertext under a secret s ∈ ZN with phase

µ0 = b+ 〈a, s〉 (mod q). We aim to design an efficient LWE-to-LWE conversion,
which replaces the secret of the ciphertext into another secret s′ ∈ ZN while
almost preserving the phase µ0.

Our first idea is to embed ZNq and Zq into Rq to utilize the ring structure.
We consider the two polynomials

a := ι(a) =
∑
i∈[N ]

a[i] ·Xi ∈ Rq,

s := τ−1 ◦ ι(s) =
∑
i∈[N ]

s[i] ·X−i ∈ R,

and we define the polynomial pair ct = (b, a) ∈ R2
q . We remark that ct can

be viewed as an RLWE ciphertext with secret s satisfying 〈ct, (1, s)〉[0] = (b +
as)[0] = µ0, i.e., its phase µ = 〈ct, (1, s)〉 (mod q) of ct stores µ[0] = µ0 in the
constant term but all other coefficients, µ[i] for 0 6= i ∈ [N ], have no valid values.

Though ct is not a valid RLWE ciphertext, we can still apply the KS algo-
rithm. If we perform the KS procedure from s to s′ = τ−1 ◦ ι(s′), then the output
ciphertext also includes a valid value in its constant term from the property of
KS. Finally, we can extract an LWE ciphertext with secret s′.

• LWE-to-LWE ((b,a),K) : Given an LWE ciphertext (b,a) ∈ ZN+1
q and a KS

key K ∈ RL×2q , set the RLWE ciphertext ct ← (b, a) ∈ R2
q where a = ι(a).

Compute ct′ = (b′, a′) ← KeySwitch(ct,K) ∈ R2
q and let a′ = ι−1(a′). Return

the ciphertext (b′[0],a′) ∈ ZN+1
q .

Correctness. We claim that, if K ← KSKeyGen(s, s′) is a KS key from s to
s′, then (b′[0],a′) is an LWE ciphertext under s′ whose phase is approximately
equal to the phase of (b,a) under s. It can be shown by

b′[0] + 〈a′, s′〉 = (b′ + a′s′)[0] ≈ (b+ as)[0] = b+ 〈a, s〉 (mod q),

where the approximate equality is derived from the property of KeySwitch (see
Equation (1)).

3.3 LWE to RLWE

Our next goal is to design a conversion algorithm from LWE to RLWE. As
explained above, if we set an RLWE ciphertext (b, a = ι(a)) ∈ R2

q from an LWE
ciphertext (b,a) ∈ ZN+1

q , then its phase has the valid value only in the constant
term. Hence, the key question is how to annihilate useless coefficients of µ except
the constant term µ[0] to generate a valid RLWE ciphertext.

8



Algorithm 1 Homomorphic Evaluation of the Trace Function (EvalTrN/n)

Input: ciphertext ct = (b, a) ∈ R2
q , a power-of-two integer n ≤ N .

1: ct′ ← ct
2: for k = 1 to log(N/n) do
3: ct′ ← ct′ + EvalAuto(ct′; 2logN−k+1 + 1)

4: return ct′ ∈ R2
q

We remark that the field trace TrK/Q : K → Q, a 7→
∑
τ∈Gal(K/Q) τ(a) has

the required property, i.e., TrK/Q(1) = N and TrK/Q(Xi) = 0 for all 0 6= i ∈ [N ].
Therefore, conversion from LWE into RLWE can be done by evaluating the field
trace homomorphically. A naive solution is to evaluate each automorphism τ(·)
and add up all the resulting ciphertexts, and therefore it requires N KS oper-
ations. We now describe a recursive algorithm that uses an algebraic structure
of cyclotomic fields for reducing the conversion complexity. To be precise, for
the tower of finite fields K = KN ≥ KN/2 ≥ · · · ≥ K1 = Q, where Kn denotes
the (2n)-th cyclotomic field for a power-of-two integer n, the field trace can be
expressed as a composition TrK/Q = TrK2/K1

◦ · · · ◦ TrKN/KN/2
of logN field

traces and each Galois group Gal (K2`/K2`−1) has a (unique) nontrivial element
τ2`+1|K2`

for ` = 1, . . . , logN . Therefore, the evaluation of TrK
2`
/K

2`−1
requires

only one homomorphic rotation.
See Alg. 1 for a description of homomorphic trace evaluation TrKN/Kn

for
any power-of-two integer n ≤ N . We use the parameter n = 1 in the following
LWE-to-RLWE conversion algorithm.

• LWE-to-RLWE
(
(b,a) ∈ Zq × ZNq

)
: Set the RLWE ciphertext ct ← (b, a) ∈ R2

q

where a = ι(a). Then, run Alg. 1 and return the ciphertext ct′ ← EvalTrN/1(ct) ∈
R2
q .

The phase of the input LWE ciphertext (b,a) is multiplied by N by the trace
evaluation. We will explain in the next section how to remove the constant N
by adding a pre-processing step.

Correctness. We will prove the correctness of Alg. 1 for an arbitrary n ≤ N .
Let µ = 〈ct, (1, s)〉 (mod q) be the phase of an input ct. We inductively show
that the phase µ′ = 〈ct′, (1, s)〉 (mod q) satisfies

µ′ ≈ TrKN/KN/2k
(µ) = 2k ·

∑
2k|i∈[N ]

µ[i] ·Xi (mod q) (3)

at iteration k. For the base case k = 0, the statement is trivially true since
µ′ = µ. Now we assume that (3) is true for k − 1. In the next k-th iteration, we
evaluate the map µ′ 7→ µ′+τd(µ

′) for d = 2logN−k+1+1. We recall from (2) that
τd(X

i) = Xi for 2k | i ∈ [N ] and τd(Xi) = −Xi for i ∈ [N ] such that 2k−1 ‖ i.

9



From the induction hypothesis,

µ′ ≈ 2k−1 ·
∑

2k−1|i

µ[i] ·Xi

= 2k−1 ·
∑
2k|i

µ[i] ·Xi + 2k−1 ·
∑

2k−1‖i

µ[i] ·Xi (mod q),

τd(µ
′) ≈ 2k−1 ·

∑
2k|i

µ[i] ·Xi − 2k−1 ·
∑

2k−1‖i

µ[i] ·Xi (mod q),

and thereby µ′ + τd(µ
′) ≈ 2k ·

∑
2k|i µ[i] ·Xi. Finally, we obtain

µ′ ≈ TrKN/Kn
(µ) = (N/n) ·

∑
(N/n)|i∈[N ]

µ[i] ·Xi (mod q)

after k = log(N/n) iterations. We remark that the noise does not blow up much
during the evaluation since τd(·) preserves the size of elements in R.

The correctness of LWE-to-RLWE is directly derived from this result with a
parameter n = 1. Given an RLWE encryption ct = (b, a), we homomorphically
compute the field trace TrKN/Q and the phase µ′ = 〈ct′, (1, s)〉 of the output
ciphertext is approximately equal to TrKN/Q(b+ as) = N · (b+ as)[0] = N · (b+
〈a, s〉), as desired.

3.4 LWEs to RLWE

An LWE ciphertext has a phase in Zq, which can store only one scalar message, so
our LWE-to-RLWE conversion algorithm aims to generate an RLWE ciphertext
whose phase µ contains an approximate value of an initial LWE phase in its
constant term. However, in general, an RLWE ciphertext can store at most N
scalars in the coefficients of its phase. So a natural question is how to efficiently
merge multiple LWE ciphertexts into a single RLWE ciphertext.

Suppose that we are given n LWE ciphertexts {(bj ,aj)}j∈[n] for some n =

2` ≤ N and let µj ∈ Zq be the phase of (bj ,aj) under the same secret s ∈ ZN . A
naive answer for the question above is to run ct′j ← LWE-to-RLWE ((bj ,aj)) ∈ R2

q

for all j ∈ [n] and take their linear combination ct′ =
∑
j∈[n] ct

′
j · Y j for Y =

XN/n. Then the phase of ct′ is approximately equal to N ·
∑
j∈[n] µj · Y j , which

is an element of the ring of integers of Kn. However, this method is not optimal
in terms of both complexity and noise growth.

In this section, we present a generalized version of our previous algorithm
which takes multiple LWE encryptions as input and returns a single RLWE
ciphertext. This conversion consists of two phases: packing and trace evaluation.
The first step (Alg. 2) is an FFT-style algorithm which merges n = 2` multiple
RLWE ciphertexts into one. The phase µ of an output ciphertext stores the
constant terms of input phases in its coefficients µ[i] for (N/n) | i. All valid
values are now packed into an element of Rn, so in the next step, we use the idea

10



Algorithm 2 Homomorphic Packing of LWE Ciphertexts (PackLWEs)
1: input ciphertexts ctj = (bj , aj) ∈ R2

q for j ∈ [2`]
2: if ` = 0 then
3: return ct← ct0
4: else
5: cteven ← PackLWEs

(
{ct2j}j∈[2`−1]

)
6: ctodd ← PackLWEs

(
{ct2j+1}j∈[2`−1]

)
7: ct←

(
cteven +XN/2` · ctodd

)
+EvalAuto

(
cteven −XN/2` · ctodd, 2` + 1

)
8: return ct

of the previous section to evaluate the field trace TrKN/Kn
and zeroize useless

coefficients.

• LWEs-to-RLWE
(
{(bj ,aj)}j∈[n]

)
: Given n = 2` LWE ciphertexts (bj ,aj) ∈

ZN+1
q , do the following:

1. Set ctj ← (bj , aj) ∈ R2
q for each j ∈ [n] where aj = ι(aj).

2. Run Alg. 2 to get ct← PackLWEs
(
{ctj}j∈[n]

)
.

3. Compute and return the ciphertext ct′ ← EvalTrN/n(ct).

The packing algorithm and the subsequent field trace evaluation for n = 2`

ciphertexts require (n− 1) and log(N/n) homomorphic automorphisms, respec-
tively. Hence the total complexity of LWEs-to-RLWE is (n− 1)+ log(N/n) < n+
logN automorphisms, yielding an amortized complexity less than (1+n−1·logN)
automorphisms per an input LWE ciphertext. We remark that this conversion
algorithm achieves the asymptotically optimal amortized complexity (O(1) au-
tomorphisms) when n = Ω(logN). Similar to the LWE-to-RLWE conversion,
the phase of input ciphertexts are multiplied by the factor of N which can be
removed by a pre-processing step described below.

Correctness. We first show the correctness of our packing algorithm. For j ∈
[2`], let ctj be input ciphertexts of Alg. 2 such that µj = 〈ctj , (1, s)〉[0] (mod q).
For the output ciphertext ct ← PackLWEs

(
{ctj}j∈[2`]

)
, we claim that its phase

satisfies

µ
[
(N/2`) · j

]
≈ 2` · µj (mod q) for all j ∈ [2`]. (4)

We again use the induction on ` ≥ 0. The base case ` = 0 is trivial since
µ[0] = µ0. Suppose that our statement is true for some 0 ≤ `−1 < logN . For 2`
input ciphertexts, Alg. 2 first divides them into two groups of size 2`−1 and runs
PackLWEs twice (in lines 5 and 6). From the induction hypothesis, the output
ciphertexts cteven, ctodd have phases µeven, µodd such that

µeven
[
(N/2`−1) · j

]
≈ 2`−1 · µ2j (mod q),

µodd
[
(N/2`−1) · j

]
≈ 2`−1 · µ2j+1 (mod q),

11



for all j ∈ [2`−1]. Then, we compute and return the ciphertext ct whose phase is

µ ≈ (µeven +XN/2` · µodd) + τd

(
µeven −XN/2` · µodd

)
= µ′even +XN/2` · µ′odd,

for µ′even = µeven + τd(µeven) and µ′odd = µodd + τd(µodd), which satisfies that

µ′even
[
(N/2`) · (2j)

]
≈ 2` · µ2j , µ′even

[
(N/2`) · (2j + 1)

]
≈ 0 (mod q),

µ′odd
[
(N/2`) · (2j)

]
≈ 2` · µ2j+1, µ′odd

[
(N/2`) · (2j + 1)

]
≈ 0 (mod q)

for all j ∈ [2`−1]. Therefore, their linear combination µ = µ′even +XN/2` · µ′odd
has coefficients µ

[
(N/2`) · j

]
≈ 2` · µj for all j ∈ [2`], as desired.

Now let us discuss the LWEs-to-RLWE algorithm. After running the packing
algorithm, the phase µ of ct← PackLWEs

(
{ctj}j∈[n]

)
has n ·µj in its coefficients

µ[i] such that (N/n) | i. So we homomorphically evaluate the field trace TrKN/Kn

on the ciphertext ct to zeroize all other coefficients. It follows from the property
of Alg. 1 that the final output ct′ ← EvalTrN/n(ct) satisfies

〈ct′, (1, s)〉 ≈ TrKN/Kn
(µ) = (N/n) ·

∑
(N/n)|i∈[N ]

µ[i] ·Xi

≈ (N/n) ·
∑
j∈[n]

(n · µj) ·X(N/n)·j = N ·
∑
j∈[n]

µj · Y j (mod q)

where Y = XN/n, as desired.

Removing the Leading Term. Let {ctj}j∈[n] be n LWE input encryptions of
our LWEs-to-RLWE algorithm and ct′ the output RLWE ciphertext. We denote
their phases by µj = 〈ctj , (1, s)〉 (mod q) and µ′ = 〈ct′, (1, s)〉 (mod q), respec-
tively. As shown in their correctness proofs, our algorithms converting one or
more LWE encryptions into an RLWE ciphertext introduce the additional term
N into the phase of output RLWE ciphertext.

We present a pre-processing technique to remove this constant. We multiply
the constant N−1 (mod q) to the input LWE ciphertexts so that their phases
µj are also multiplied by the same factor. If we run the same algorithm on the
ciphertexts of phases N−1 ·µj (mod q), then the leading term N is naturally can-
celled out and the phase of the output RLWE ciphertext will be approximately
equal to N ·

∑
j∈[n](N

−1 · µj) · Y j =
∑
j∈[n] µj · Y j , as desired.

We note that this method is depth-free and does not incur extra noise growth.
It requires the ciphertext modulus q to be co-prime to the dimension N , but it
is not a strong assumption in practice.5

Further Computation on a Packed Ciphertext. In a plaintext level, our
conversion algorithm computes the function Znq → Rq, (µj)j∈[n] 7→

∑
j∈[n] µj ·Y j ,

5 The ciphertext modulus q is usually set to be a product of primes 1 modulo 2N
so that we can utilize an efficient Number Theoretic Transformation (NTT) for
polynomial arithmetic in Rq.

12



which is not a multiplicative homomorphism. However, it is often required to
pack multiple values in plaintext slots, instead of coefficients, so that parallel
computation (e.g. element-wise addition or multiplication) is allowed over an
encrypted vector of plaintexts.

It has been studied in several researches about HE bootstrapping [26, 32, 14,
12] how to represent values from coefficients to slots and vice versa. In the case of
BGV, BFV or CKKS, the transformation can be done by evaluating the encoding
or decoding functions of the underlying scheme, which are expressed as linear
transformations over plaintext vectors. We do not consider it here because this
coefficients-to-slots conversion is scheme-dependent. Moreover, its computational
cost is cheaper than the main part, so that the total/amortized complexities do
not change much even if we add this extra step at the end.

4 Implementation

4.1 Experimental Results

We provide a proof-of-concept implementation to show the performance of our
conversion algorithms. Our source code is developed in C++ by modifying Mi-
crosoft SEAL version 3.5.1 [42]. All experiments are performed on a desktop
with an Intel Core i7-4770K CPU running a single thread at 3.50 GHz, compiled
with Clang 9.0.0 (-O3).6

We set the secret distribution as the uniform distribution over the set of
ternary polynomials inR coefficients in {0,±1}. Each coefficient/entry of (R)LWE
error is drawn according to the discrete Gaussian distribution centered at zero
with standard deviation σ = 3.2. The selected parameter sets provide at least
128-bit of security level according to the LWE estimator [2] and HE security
standard white paper [1].

Table 2 presents timing results and noise growth of our conversion algorithms.
The ciphertext moduli q of three parameter sets are products of 2, 4, and 8 dis-
tinct primes, respectively. We use an RNS-friendly decomposition method [4] and
exploit an efficient NTT in order to optimize the basic polynomial arithmetic.
As discussed in Section 3.4, the LWEs-to-RLWE conversion algorithm achieves
a better amortized running time as the number n of input LWE ciphertexts
increases. For comparison, we implemented the old KS method using the same
parameter sets and decomposition method, and it took 203ms and 1628ms when
(N, log q) = (212, 72) and (213, 174), respectively, compared to 1.0ms and 4.8ms
of our method. We refer the reader to Appendix A which provides noise anal-
ysis of our conversion algorithms. The noise variances of the LWE-to-LWE and
LWE(s)-to-RLWE conversions are O(N) and O(N3), respectively, which align
very well with our experimental results.

We did not specify the underlying HE scheme or its plaintext space as the
performance of our conversion algorithms depends only on the parameters N ,
6 Currently, our source repository is private to keep the anonymity, but we will make
it public in the final version.

13



(N, log q) n

(212, 72) (213, 174) (214, 389)

Total Noise Total Noise Total Noise
(Amortized) (Amortized) (Amortized)

LWE to LWE - 1.03 ms 7 4.81 ms 8 27.1 ms 10
LWE to RLWE - 11.2 ms 18 57.7 ms 21 361 ms 23

LWEs to RLWE

2 11.4 ms 18 58.7 ms 21 364 ms 23
(5.70 ms) (29.4 ms) (182 ms)

8 16.8 ms 20 83.2 ms 22 492 ms 24
(2.10 ms) (10.4 ms) (61.5 ms)

32 45.0 ms 20 209 ms 22 1168 ms 24
(1.41 ms) (6.53 ms) (36.5 ms)

Table 2: Concrete performance of our conversion algorithms measured by total
running time (amortized timing per ciphertext) and noise growth (an upper
bound on the bit size of coefficients of conversion errors). n stands for the number
of input LWE ciphertexts.

log q and n. Since the bit-size of a conversion noise is only O(logN) bits, the rest
of the space can be used to store a plaintext or be left empty to provide more
homomorphic functionality after conversion. For example, if we use the BFV
scheme with the second parameter set (N, log q) = (213, 174), then our conversion
algorithms work correctly as long as the bit-size of its plaintext modulus is ≤ 152.

4.2 Lightweight Communication with Homomorphic Functionality

HE is a useful cryptographic technology for secure outsourced computation on
the cloud, however, its applications have some common issues in practice. Since
HE schemes are comparably expensive, a client must have enough memory and
computing power. Moreover, the ciphertext expansion rate can be reasonably
small only when we pack a large number of values in a single RLWE ciphertext.
Therefore, the total communication cost may blow up much when the client
sends a small amount of information.

To mitigate this issue, Naehrig et al. [40] came up with a blueprint that the
client sends data, encrypted by a light-weight symmetric encryption scheme, as
well as a homomorphically encrypted secret key of the cryptosystem. Then, the
cloud homomorphically evaluates its decryption circuit to get homomorphically
encrypted data. In this scenario, the main challenge is to construct a symmetric
encryption with low communication cost (expansion rate) and conversion com-
plexity. After the first attempt by Gentry et al. [27] which evaluated the AES-128
circuit using the BGV scheme, there has been a line of studies (e.g. LowMC [3],
Kreyvium [9], FLIP [37], Rasta [21]) to design HE-friendly symmetric encryp-
tion schemes. These block/stream ciphers made progresses in communication
cost and encryption time, but the transformation of ciphertexts results in a
considerable computational overhead on the cloud side.

14



In this work, we present a new solution that the client uses an LWE-based
symmetric encryption on the edge device. On receiving the LWE ciphertexts,
the cloud transforms them into RLWE encryptions using our conversion algo-
rithm. In addition, we adapt the idea of Coron et al. [19] to reduce the size
of LWE ciphertexts and communication cost. To be precise, a symmetric key
LWE encryption of secret s is of the form (b,a) ∈ ZN+1

q for a random vector
a ← U(ZNq ) and b = −〈a, s〉 + µ (mod q) where µ is the phase from the input
which is a randomized encoding of the plaintext. Since the second component a
is purely random over ZNq , we can modify the encryption algorithm such that it
samples a seed se and takes it as the input of a pseudo-random number gener-
ator f : {0, 1}∗ → ZNq to generate a = f(se). As a result, a ciphertext can be
represented as a pair (b, se), and this variant remains semantically secure in the
random oracle model. Moreover, when a client sends multiple LWE ciphertexts
to the cloud, the same seed can be reused by computing the random part of
the i-th ciphertext by ai = f(se; i). Hence, the communication cost per an LWE
ciphertext is only log q bits.

Our approach has advantages in computational efficiency compared to prior
works based on block/stream ciphers. Prior works have several minutes’ latency
for the transformation (e.g. 4.1, 63.1, 29.3, 0.65 and 15.2 minutes of AES-128,
LowMC v1, Kreyvium, FLIP, and Rasta, respectively7), and have to collect a
number of ciphertexts to achieve the minimal amortized complexity. Meanwhile,
our method has significantly better conversion latency and amortized timings
(several milliseconds), and enables a smooth trade-off between them via the pack-
ing algorithm. As discussed in Section 3.4, it requires to collect only Ω(logN)
LWE ciphertexts to obtain a nearly optimal amortized complexity.

Our method is generic in the sense that it preserves the phases of input
ciphertexts approximately regardless of the type of HE schemes or a plaintext
space. Therefore, it is allowed to use the BGV/BFV scheme with a non-binary
plaintext space, or CKKS for approximate computation. Moreover, we provide a
flexible parameter setting that enables us to achieve an almost optimal expansion
rate of 1+o(1) even when a client sends only a small amount of information at a
time. For example, as shown in Table 2, the expansion rate can be reduced down
to 174/(174 − 21) ≈ 1.14 or 389/(389 − 23) ≈ 1.06 when (N, log q) = (213, 174)
or (214, 389), respectively.

Acknowledgments. The work of M. Kim was supported by the Settlement Re-
search Fund (No. 1.200109.01) of UNIST(Ulsan National Institute of Science &
Technology).

References

1. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi,
S., Hoffstein, J., Laine, K., Lauter, K., Lokam, S., Micciancio, D., Moody, D.,
Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic encryption security

7 These performance benchmarks are taken from Table 10 in [21].

15



standard. Tech. rep., HomomorphicEncryption.org, Toronto, Canada (November
2018)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

3. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques. pp. 430–454. Springer (2015)

4. Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: International Conference on Se-
lected Areas in Cryptography. pp. 423–442. Springer (2016)

5. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: Combining ring-lwe-
based fully homomorphic encryption schemes. Journal of Mathematical Cryptology
14(1), 316–338 (2020)

6. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Advances in Cryptology–CRYPTO 2012, pp. 868–886. Springer
(2012)

7. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption:
Rate-1 fully-homomorphic encryption and time-lock puzzles. In: Theory of Cryp-
tography Conference. pp. 407–437. Springer (2019)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Proc. of ITCS. pp. 309–325. ACM (2012)

9. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. Journal of Cryptology 31(3), 885–916 (2018)

10. Carpov, S., Gama, N., Georgieva, M., Troncoso-Pastoriza, J.R.: Privacy-preserving
semi-parallel logistic regression training with fully homomorphic encryption.
(2019), https://eprint.iacr.org/2019/101

11. Carpov, S., Sirdey, R.: Another compression method for homomorphic ciphertexts.
In: Proceedings of the 4th ACM International Workshop on Security in Cloud
Computing. pp. 44–50. ACM (2016)

12. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 315–337. Springer (2018)

13. Cheon, J.H., Kim, J.: A hybrid scheme of public-key encryption and somewhat ho-
momorphic encryption. IEEE Transactions on Information Forensics and Security
10(5), 1052–1063 (2015)

14. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 360–384. Springer (2018)

15. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approx-
imate homomorphic encryption. In: Selected Areas in Cryptography – SAC 2018.
pp. 347–368. Springer (2019)

16. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Advances in Cryptology–ASIACRYPT 2017:
23rd International Conference on the Theory and Application of Cryptology and
Information Security. pp. 409–437. Springer (2017)

17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption over the torus. Journal of Cryptology pp. 1–58

18. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Advances in Cryptology–

16



ASIACRYPT 2016: 22nd International Conference on the Theory and Application
of Cryptology and Information Security. pp. 3–33. Springer (2016)

19. Coron, J.S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Proc. of EURO-
CRYPT, LNCS, vol. 7237, pp. 446–464. Springer (2012)

20. Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., Musuvathi,
M., Mytkowicz, T.: CHET: an optimizing compiler for fully-homomorphic neural-
network inferencing. In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 142–156. ACM (2019)

21. Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E.,
Mendel, F., Rechberger, C.: Rasta: a cipher with low ANDdepth and few ANDs
per bit. In: Annual International Cryptology Conference. pp. 662–692. Springer
(2018)

22. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less
than a second. In: Advances in Cryptology–EUROCRYPT 2015, pp. 617–640.
Springer (2015)

23. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), https://eprint.iacr.org/2012/
144

24. Gentry, C., Halevi, S.: Compressible fhe with applications to pir. In: Theory of
Cryptography Conference. pp. 438–464. Springer (2019)

25. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-style ho-
momorphic encryption. Journal of Computer Security 21(5), 663–684 (2013)

26. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Public Key Cryptography–PKC 2012, pp. 1–16. Springer (2012)

27. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Advances in Cryptology–CRYPTO 2012, pp. 850–867. Springer (2012)

28. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC.
vol. 9, pp. 169–178 (2009)

29. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV ho-
momorphic encryption scheme. In: Cryptographers’ Track at the RSA Conference.
pp. 83–105. Springer (2019)

30. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption
library. IBM Research (Manuscript) (2013)

31. Halevi, S., Shoup, V.: Algorithms in HElib. In: Advances in Cryptology–CRYPTO
2014. pp. 554–571. Springer (2014)

32. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Advances in Cryptology–
EUROCRYPT 2015, pp. 641–670. Springer (2015)

33. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 1209–1222. ACM (2018)

34. Kim, M., Song, Y., Li, B., Micciancio, D.: Semi-parallel logistic regression for
GWAS on encrypted data. BMC Medical Genomics 13(7), 1–13 (2020)

35. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography 75(3), 565–599 (2015)

36. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Advances in Cryptology–EUROCRYPT 2010. pp. 1–23 (2010)

37. Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards stream ciphers for
efficient FHE with low-noise ciphertexts. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 311–343. Springer
(2016)

17



38. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 700–718. Springer (2012)

39. Miccianco, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping.
In: 45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

40. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM workshop on Cloud computing security
workshop. pp. 113–124. ACM (2011)

41. Riazi, M.S., Laine, K., Pelton, B., Dai, W.: Heax: High-performance architecture
for computation on homomorphically encrypted data in the cloud. arXiv preprint
arXiv:1909.09731 (2019)

42. Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL (Apr 2020),
microsoft Research, Redmond, WA.

43. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Designs, codes
and cryptography 71(1), 57–81 (2014)

A Noise analysis

The key switching procedure described in Section 2.4 is the only source of an
extra noise during our conversion algorithms. Recall that the key-switching pro-
cedure KeySwitch(ct = (c0, c1);K) introduces the noise eks = 〈g−1(c1), e〉 where
e is the noise of the KS key K. We make a heuristic assumption (which has been
widely used in HE researches, e.g. [27, 30, 17]) such that a KS noise behaves
as if its coefficients are sampled independently from a Gaussian distribution
with a fixed variance, which will be denoted by Vks. For a random variable
a =

∑
i∈[N ] ai ·Xi over R, we denote by Var(a) the maximum among the vari-

ances of its coefficients {Var(ai) : 0 ≤ i < N}.
In practice, we need to specify the gadget decomposition method to com-

pute Vks. For example, suppose that the ciphertext modulus q =
∏

0≤i<d qi is a
product of relatively co-prime integers and the gadget decomposition is defined
as Rq →

∏
i∈[d]Rqi , a 7→ g−1(a) = (a (mod qi))0≤i<d.8 Then, the coefficients of

eks = 〈g−1(c1), e〉 have the common variance Vks ≤ 1
12Nσ

2 ·
∑
i∈[d] q

2
i where σ2

is the variance of RLWE error distribution.

A.1 LWE to LWE

Technically, our LWE-to-LWE conversion includes only one KS procedure be-
tween RLWE ciphertexts and then we extract an LWE ciphertext from the out-
put ciphertext. As shown in the correctness proof in Section 3.2, the additional
noise in the final LWE ciphertext is equal to the constant term of the KS noise,
whose variance is Vks.

8 This method is called the prime decomposition which is widely used in the construc-
tion of RNS-friendly HE schemes such as [4, 29, 34, 42].

18



A.2 LWE to RLWE

We will analyze the noise of homomorphic trace evaluation (EvalTrN/n in Alg. 1)
since the LWE-to-RLWE conversion is a special case where n = 1.

We showed that if µ = b+as (mod q) is the phase of the input ciphertext ct,
then the phase of ct′ is TrKN/KN/2k

(µ) + ek for some error ek after k iterations.
We will estimate the variance of ek using the induction on k.

If k = 0, we have e0 = 0. For 1 ≤ k ≤ log(N/n), we denote by e′k ∈ R
the additional noise from the homomorphic automorphism at the k-th iteration.
Then, we get ek = ek−1 + τd(ek−1) + e′k for d = 2logN−k+1 + 1 and its variance
is bounded by Var(ek) ≤ 4 · Var(ek−1) + Vks. Therefore, the noise of the output
ciphertext from Alg. 1 is bounded by Var(ek) ≤ (1 + 4 + · · · + 4k−1) · Vks ≤
1
3

(
(N/n)2 − 1

)
· Vks.

Our LWE-to-RLWE algorithm is the case of n = 1 (or equivalently k = logN)
which returns a ciphertext whose phase is TrK/Q(µ)+elogN for some elogN such
that Var(elogN ) ≤ 1

3 (N
2 − 1) · Vks.

A.3 LWEs to RLWE

We first analyze the noise growth of Alg. 2. We showed that if {ctj = (bj , aj)}j∈[2`]
are the input RLWE ciphertexts such that µj = (bj + aj · s)[0], then the phase
µ of output ciphertext satisfies that µ[(N/2`) · j] = 2` · µj + e`,j (mod q) for
all j ∈ [2`] and for some e`,j ∈ Z. If ` = 0, then there is no extra noise from
the packing algorithm. In the case of ` > 0, we divide the input ciphertexts into
two groups and run the packing algorithm on each subgroup separately. Suppose
that the phases of cteven and ctodd satisfy

µeven[(N/2
`−1) · j] = 2`−1 · µ2j + e`−1,2j (mod q),

µodd[(N/2
`−1) · j] = 2`−1 · µ2j+1 + e`−1,2j+1 (mod q)

for some errors e`−1,2j , e`−1,2j+1 ∈ Z. Let e′`(X) be the additional noise from
the evaluation of automorphism EvalAuto(cteven−XN/2` · ctodd, 2`+1) and e′`,j
the (N/2`)) · j-th coefficient of e′`(X) for j ∈ [2`]. Then, we get a relation e`,j =
2e`−1,j + e

′
`,j between errors from the equation µ = µ′even+X

N/2` ·µ′odd+ e′`(X)

for all j ∈ [2`]. Since e′`,j has a fixed variance Vks for all ` and j, we have
Var(e`,j) = 4 ·Var(e`−1,j)+Vks. Finally, we use the induction on ` and show that
Var(e`,j) = (1 + 4 + · · ·+ 4`−1) · Vks = 1

3 (n
2 − 1) · Vks when n = 2`.

In our LWEs-to-RLWE conversion, the packing algorithm is followed by
the trace evaluation EvalTrN/n whose noise growth is analyzed above. Hence,
the phase of the output ciphertext from the LWEs-to-RLWE conversion satis-
fies that µ = (N/n) ·

(∑
j∈[n](nµj + e`,j) ·X(N/n)·j

)
+ ek(X) (mod q) where

ek denotes the noise from trace evaluation and k = log(N/n). Therefore, the
variance of total noise (N/n) ·

(∑
j∈[n] e`,j ·X(N/n)·j

)
+ ek(X) is bounded by

(N/n)2 · Var(e`,j) + Var(ek) ≤ 1
3 (N

2 − 1) · Vks.

19


